




World	Headquarters
Jones	&	Bartlett	Learning
5	Wall	Street
Burlington,	MA	01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones	&	Bartlett	 Learning	 books	 and	 products	 are	 available	 through	most	 bookstores	 and	 online	 booksellers.	 To	 contact	 Jones	&	Bartlett
Learning	directly,	call	800-832-0034,	fax	978-443-8000,	or	visit	our	website,	www.jblearning.com.

Substantial	discounts	on	bulk	quantities	of	 Jones	&	Bartlett	Learning	publications	are	available	 to	corporations,	professional	associations,
and	other	qualified	organizations.	For	details	 and	 specific	discount	 information,	 contact	 the	 special	 sales	department	 at	 Jones	&	Bartlett
Learning	via	the	above	contact	information	or	send	an	email	to	specialsales@jblearning.com.

Copyright	©	2015	by	Jones	&	Bartlett	Learning,	LLC,	an	Ascend	Learning	Company

All	rights	reserved.	No	part	of	 the	material	protected	by	 this	copyright	may	be	reproduced	or	utilized	 in	any	form,	electronic	or	mechanical,
including	photocopying,	recording,	or	by	any	information	storage	and	retrieval	system,	without	written	permission	from	the	copyright	owner.

The	content,	statements,	views,	and	opinions	herein	are	the	sole	expression	of	the	respective	authors	and	not	that	of	Jones	&	Bartlett	Learning,
LLC.	Reference	herein	 to	any	specific	commercial	product,	process,	or	service	by	trade	name,	 trademark,	manufacturer,	or	otherwise	does
not	 constitute	 or	 imply	 its	 endorsement	 or	 recommendation	 by	 Jones	&	Bartlett	 Learning,	 LLC	 and	 such	 reference	 shall	 not	 be	 used	 for
advertising	 or	 product	 endorsement	 purposes.	All	 trademarks	 displayed	 are	 the	 trademarks	 of	 the	 parties	 noted	 herein.	The	 Essentials	 of
Computer	 Organization	 and	 Architecture,	 Fourth	 Edition	 is	 an	 independent	 publication	 and	 has	 not	 been	 authorized,	 sponsored,	 or
otherwise	approved	by	the	owners	of	the	trademarks	or	service	marks	referenced	in	this	product.

There	may	 be	 images	 in	 this	 book	 that	 feature	models;	 these	models	 do	 not	 necessarily	 endorse,	 represent,	 or	 participate	 in	 the	 activities
represented	 in	 the	 images.	Any	screenshots	 in	 this	product	are	 for	educational	and	 instructive	purposes	only.	Any	 individuals	and	scenarios
featured	in	the	case	studies	throughout	this	product	may	be	real	or	fictitious,	but	are	used	for	instructional	purposes	only.

Production	Credits
Executive	Publisher:	William	Brottmiller
Publisher:	Cathy	L.	Esperti
Acquisitions	Editor:	Laura	Pagluica
Editorial	Assistant:	Brooke	Yee
Director	of	Production:	Amy	Rose
Senior	Production	Editor:	Tiffany	Sliter
Associate	Production	Editor:	Sara	Fowles
Associate	Marketing	Manager:	Cassandra	Peterson
VP,	Manufacturing	and	Inventory	Control:	Therese	Connell	Composition:	Laserwords	Private	Limited,	Chennai,	India
Cover	and	Title	Page	Design:	Kristin	E.	Parker
Director	of	Photo	Research	and	Permissions:	Amy	Wrynn
Cover	and	Title	Page	Image:	©	Eugene	Sergeev/ShutterStock,	Inc.	Printing	and	Binding:	Edwards	Brothers	Malloy
Cover	Printing:	Edwards	Brothers	Malloy

To	order	this	product,	use	ISBN:	978-1-284-04561-1

Library	of	Congress	Cataloging-in-Publication	Data
Null,	Linda.
The	essentials	of	computer	organization	and	architecture	/	Linda	Null	and	Julia	Lobur.	--	Fourth	edition.
				pages	;	cm
Includes	index.
ISBN	978-1-284-03314-4	(pbk.)	--	ISBN	1-284-03314-7	(pbk.)	1.	Computer	organization.	2.	Computer	architecture.	I.	Lobur,	Julia.	II.	Title.
QA76.9.C643N85	2015
004.2’2--dc23 2013034383

6048

Printed	in	the	United	States	of	America
18	17	16	15	14						10	9	8	7	6	5	4	3	2	1

mailto:info@jblearning.com
http://www.jblearning.com
http://www.jblearning.com
mailto:specialsales@jblearning.com


In	memory	of	my	father,	Merrill	Cornell,	a	pilot	and	man	of	endless	talent	and	courage,	who	taught	me
that	when	we	step	into	the	unknown,	we	either	find	solid	ground,	or	we	learn	to	fly.

—L.	M.	N.

To	the	loving	memory	of	my	mother,	Anna	J.	Surowski,	who	made	all	things	possible	for	her	girls.

—J.	M.	L.



Contents

Preface

CHAPTER	1								Introduction
1.1				Overview
1.2				The	Main	Components	of	a	Computer
1.3				An	Example	System:	Wading	Through	the	Jargon
1.4				Standards	Organizations
1.5				Historical	Development

1.5.1				Generation	Zero:	Mechanical	Calculating	Machines	(1642–1945)
1.5.2				The	First	Generation:	Vacuum	Tube	Computers	(1945–1953)
1.5.3				The	Second	Generation:	Transistorized	Computers	(1954–1965)
1.5.4				The	Third	Generation:	Integrated	Circuit	Computers	(1965–1980)
1.5.5				The	Fourth	Generation:	VLSI	Computers	(1980–????)
1.5.6				Moore’s	Law

1.6				The	Computer	Level	Hierarchy
1.7				Cloud	Computing:	Computing	as	a	Service
1.8				The	Von	Neumann	Model
1.9				Non–Von	Neumann	Models
1.10			Parallel	Processors	and	Parallel	Computing
1.11			Parallelism:	Enabler	of	Machine	Intelligence—Deep	Blue	and	Watson
Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises

CHAPTER	2								Data	Representation	in	Computer	Systems
2.1				Introduction
2.2				Positional	Numbering	Systems
2.3				Converting	Between	Bases

2.3.1				Converting	Unsigned	Whole	Numbers
2.3.2				Converting	Fractions
2.3.3				Converting	Between	Power-of-Two	Radices

2.4				Signed	Integer	Representation
2.4.1				Signed	Magnitude



2.4.2				Complement	Systems
2.4.3				Excess-M	Representation	for	Signed	Numbers
2.4.4				Unsigned	Versus	Signed	Numbers
2.4.5				Computers,	Arithmetic,	and	Booth’s	Algorithm
2.4.6				Carry	Versus	Overflow
2.4.7				Binary	Multiplication	and	Division	Using	Shifting

2.5				Floating-Point	Representation
2.5.1				A	Simple	Model
2.5.2				Floating-Point	Arithmetic
2.5.3				Floating-Point	Errors
2.5.4				The	IEEE-754	Floating-Point	Standard
2.5.5				Range,	Precision,	and	Accuracy
2.5.6				Additional	Problems	with	Floating-Point	Numbers

2.6				Character	Codes
2.6.1				Binary-Coded	Decimal
2.6.2				EBCDIC
2.6.3				ASCII
2.6.4				Unicode

2.7				Error	Detection	and	Correction
2.7.1				Cyclic	Redundancy	Check
2.7.2				Hamming	Codes
2.7.3				Reed-Solomon

Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises
Focus	on	Codes	for	Data	Recording	and	Transmission

2A.1				Non-Return-to-Zero	Code
2A.2				Non-Return-to-Zero-Invert	Code
2A.3				Phase	Modulation	(Manchester	Code)
2A.4				Frequency	Modulation
2A.5				Run-Length-Limited	Code
2A.6				Partial	Response	Maximum	Likelihood	Coding
2A.7				Summary
Exercises

CHAPTER	3								Boolean	Algebra	and	Digital	Logic
3.1				Introduction



3.2				Boolean	Algebra
3.2.1				Boolean	Expressions
3.2.2				Boolean	Identities
3.2.3				Simplification	of	Boolean	Expressions
3.2.4				Complements
3.2.5				Representing	Boolean	Functions

3.3				Logic	Gates
3.3.1				Symbols	for	Logic	Gates
3.3.2				Universal	Gates
3.3.3				Multiple	Input	Gates

3.4				Digital	Components
3.4.1				Digital	Circuits	and	Their	Relationship	to	Boolean	Algebra
3.4.2				Integrated	Circuits
3.4.3				Putting	It	All	Together:	From	Problem	Description	to	Circuit

3.5				Combinational	Circuits
3.5.1				Basic	Concepts
3.5.2				Examples	of	Typical	Combinational	Circuits

3.6				Sequential	Circuits
3.6.1				Basic	Concepts
3.6.2				Clocks
3.6.3				Flip-Flops
3.6.4				Finite	State	Machines
3.6.5				Examples	of	Sequential	Circuits
3.6.6				An	Application	of	Sequential	Logic:	Convolutional	Coding	and	Viterbi

Detection
3.7				Designing	Circuits
Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises
Focus	on	Karnaugh	Maps

3A.1				Introduction
3A.2				Description	of	Kmaps	and	Terminology
3A.3				Kmap	Simplification	for	Two	Variables
3A.4				Kmap	Simplification	for	Three	Variables
3A.5				Kmap	Simplification	for	Four	Variables
3A.6				Don’t	Care	Conditions
3A.7				Summary



Exercises

CHAPTER	4								MARIE:	An	Introduction	to	a	Simple	Computer
4.1				Introduction
4.2				CPU	Basics	and	Organization

4.2.1				The	Registers
4.2.2				The	ALU
4.2.3				The	Control	Unit

4.3				The	Bus
4.4				Clocks
4.5				The	Input/Output	Subsystem
4.6				Memory	Organization	and	Addressing
4.7				Interrupts
4.8				MARIE

4.8.1				The	Architecture
4.8.2				Registers	and	Buses
4.8.3				Instruction	Set	Architecture
4.8.4				Register	Transfer	Notation

4.9				Instruction	Processing
4.9.1				The	Fetch–Decode–Execute	Cycle
4.9.2				Interrupts	and	the	Instruction	Cycle
4.9.3				MARIE’s	I/O

4.10				A	Simple	Program
4.11				A	Discussion	on	Assemblers

4.11.1				What	Do	Assemblers	Do?
4.11.2				Why	Use	Assembly	Language?

4.12				Extending	Our	Instruction	Set
4.13				A	Discussion	on	Decoding:	Hardwired	Versus	Microprogrammed	Control

4.13.1				Machine	Control
4.13.2				Hardwired	Control
4.13.3				Microprogrammed	Control

4.14				Real-World	Examples	of	Computer	Architectures
4.14.1				Intel	Architectures
4.14.2				MIPS	Architectures

Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises



CHAPTER	5								A	Closer	Look	at	Instruction	Set	Architectures
5.1				Introduction
5.2				Instruction	Formats

5.2.1				Design	Decisions	for	Instruction	Sets
5.2.2				Little	Versus	Big	Endian
5.2.3				Internal	Storage	in	the	CPU:	Stacks	Versus	Registers
5.2.4				Number	of	Operands	and	Instruction	Length
5.2.5				Expanding	Opcodes

5.3				Instruction	Types
5.3.1				Data	Movement
5.3.2				Arithmetic	Operations
5.3.3				Boolean	Logic	Instructions
5.3.4				Bit	Manipulation	Instructions
5.3.5				Input/Output	Instructions
5.3.6				Instructions	for	Transfer	of	Control
5.3.7				Special-Purpose	Instructions
5.3.8				Instruction	Set	Orthogonality

5.4				Addressing
5.4.1				Data	Types
5.4.2				Address	Modes

5.5				Instruction	Pipelining
5.6				Real-World	Examples	of	ISAs

5.6.1				Intel
5.6.2				MIPS
5.6.3				Java	Virtual	Machine
5.6.4				ARM

Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises

CHAPTER	6								Memory
6.1				Introduction
6.2				Types	of	Memory
6.3				The	Memory	Hierarchy

6.3.1				Locality	of	Reference
6.4				Cache	Memory



6.4.1				Cache	Mapping	Schemes
6.4.2				Replacement	Policies
6.4.3				Effective	Access	Time	and	Hit	Ratio
6.4.4				When	Does	Caching	Break	Down?
6.4.5				Cache	Write	Policies
6.4.6				Instruction	and	Data	Caches
6.4.7				Levels	of	Cache

6.5				Virtual	Memory
6.5.1				Paging
6.5.2				Effective	Access	Time	Using	Paging
6.5.3				Putting	It	All	Together:	Using	Cache,	TLBs,	and	Paging
6.5.4				Advantages	and	Disadvantages	of	Paging	and	Virtual	Memory
6.5.5				Segmentation
6.5.6				Paging	Combined	with	Segmentation

6.6				A	Real-World	Example	of	Memory	Management
Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises

CHAPTER	7								Input/Output	and	Storage	Systems
7.1				Introduction
7.2				I/O	and	Performance
7.3				Amdahl’	s	Law
7.4				I/O	Architectures

7.4.1				I/O	Control	Methods
7.4.2				Character	I/O	Versus	Block	I/O
7.4.3				I/O	Bus	Operation

7.5				Data	Transmission	Modes
7.5.1				Parallel	Data	Transmission
7.5.2				Serial	Data	Transmission

7.6				Magnetic	Disk	Technology
7.6.1				Rigid	Disk	Drives
7.6.2				Solid	State	Drives

7.7				Optical	Disks
7.7.1				CD-ROM
7.7.2				DVD
7.7.3				Blue-Violet	Laser	Discs



7.7.4				Optical	Disk	Recording	Methods
7.8				Magnetic	Tape
7.9				RAID

7.9.1				RAID	Level	0
7.9.2				RAID	Level	1
7.9.3				RAID	Level	2
7.9.4				RAID	Level	3
7.9.5				RAID	Level	4
7.9.6				RAID	Level	5
7.9.7				RAID	Level	6
7.9.8				RAID	DP
7.9.9				Hybrid	RAID	Systems

7.10				The	Future	of	Data	Storage
Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises
Focus	on	Data	Compression

7A.1				Introduction
7A.2				Statistical	Coding

7A.2.1				Huffman	Coding
7A.2.2				Arithmetic	Coding

7A.3				Ziv-Lempel	(LZ)	Dictionary	Systems
7A.4				GIF	and	PNG	Compression
7A.5				JPEG	Compression
7A.6				MP3	Compression
7A.7				Summary
Further	Reading
References
Exercises

CHAPTER	8								System	Software
8.1				Introduction
8.2				Operating	Systems

8.2.1				Operating	Systems	History
8.2.2				Operating	System	Design
8.2.3				Operating	System	Services

8.3				Protected	Environments



8.3.1				Virtual	Machines
8.3.2				Subsystems	and	Partitions
8.3.3				Protected	Environments	and	the	Evolution	of	Systems	Architectures

8.4				Programming	Tools
8.4.1				Assemblers	and	Assembly
8.4.2				Link	Editors
8.4.3				Dynamic	Link	Libraries
8.4.4				Compilers
8.4.5				Interpreters

8.5				Java:	All	of	the	Above
8.6				Database	Software
8.7				Transaction	Managers
Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises

CHAPTER	9								Alternative	Architectures
9.1				Introduction
9.2				RISC	Machines
9.3				Flynn’s	Taxonomy
9.4				Parallel	and	Multiprocessor	Architectures

9.4.1				Superscalar	and	VLIW
9.4.2				Vector	Processors
9.4.3				Interconnection	Networks
9.4.4				Shared	Memory	Multiprocessors
9.4.5				Distributed	Computing

9.5				Alternative	Parallel	Processing	Approaches
9.5.1				Dataflow	Computing
9.5.2				Neural	Networks
9.5.3				Systolic	Arrays

9.6				Quantum	Computing
Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises



CHAPTER	10								Topics	in	Embedded	Systems
10.1				Introduction
10.2				An	Overview	of	Embedded	Hardware

10.2.1				Off-the-Shelf	Embedded	System	Hardware
10.2.2				Configurable	Hardware
10.2.3				Custom-Designed	Embedded	Hardware

10.3				An	Overview	of	Embedded	Software
10.3.1				Embedded	Systems	Memory	Organization
10.3.2				Embedded	Operating	Systems
10.3.3				Embedded	Systems	Software	Development

Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises

CHAPTER	11								Performance	Measurement	and	Analysis
11.1				Introduction
11.2				Computer	Performance	Equations
11.3				Mathematical	Preliminaries

11.3.1				What	the	Means	Mean
11.3.2				The	Statistics	and	Semantics

11.4				Benchmarking
11.4.1				Clock	Rate,	MIPS,	and	FLOPS
11.4.2				Synthetic	Benchmarks:	Whetstone,	Linpack,	and	Dhrystone
11.4.3				Standard	Performance	Evaluation	Corporation	Benchmarks
11.4.4				Transaction	Processing	Performance	Council	Benchmarks
11.4.5				System	Simulation

11.5				CPU	Performance	Optimization
11.5.1				Branch	Optimization
11.5.2				Use	of	Good	Algorithms	and	Simple	Code

11.6				Disk	Performance
11.6.1				Understanding	the	Problem
11.6.2				Physical	Considerations
11.6.3				Logical	Considerations

Chapter	Summary
Further	Reading
References



Review	of	Essential	Terms	and	Concepts
Exercises

CHAPTER	12									Network	Organization	and	Architecture
12.1				Introduction
12.2				Early	Business	Computer	Networks
12.3				Early	Academic	and	Scientific	Networks:	The	Roots	and	Architecture	of

the	Internet
12.4				Network	Protocols	I:	ISO/OSI	Protocol	Unification

12.4.1				A	Parable
12.4.2				The	OSI	Reference	Model

12.5				Network	Protocols	II:	TCP/IP	Network	Architecture
12.5.1				The	IP	Layer	for	Version	4
12.5.2				The	Trouble	with	IP	Version	4
12.5.3				Transmission	Control	Protocol
12.5.4				The	TCP	Protocol	at	Work
12.5.5				IP	Version	6

12.6				Network	Organization
12.6.1				Physical	Transmission	Media
12.6.2				Interface	Cards
12.6.3				Repeaters
12.6.4				Hubs
12.6.5				Switches
12.6.6				Bridges	and	Gateways
12.6.7				Routers	and	Routing

12.7				The	Fragility	of	the	Internet
Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises

CHAPTER	13								Selected	Storage	Systems	and	Interfaces
13.1				Introduction
13.2				SCSI	Architecture

13.2.1				“Classic”	Parallel	SCSI
13.2.2				The	SCSI	Architecture	Model-3

13.3				Internet	SCSI
13.4				Storage	Area	Networks



13.5				Other	I/O	Connections
13.5.1				Parallel	Buses:	XT	to	ATA
13.5.2				Serial	ATA	and	Serial	Attached	SCSI
13.5.3				Peripheral	Component	Interconnect
13.5.4				A	Serial	Interface:	USB

13.6				Cloud	Storage
Chapter	Summary
Further	Reading
References
Review	of	Essential	Terms	and	Concepts
Exercises

APPENDIX	A							Data	Structures	and	the	Computer
A.1				Introduction
A.2				Fundamental	Structures

A.2.1				Arrays
A.2.2				Queues	and	Linked	Lists
A.2.3				Stacks

A.3				Trees
A.4				Network	Graphs
Summary
Further	Reading
References
Exercises

Glossary

Answers	and	Hints	for	Selected	Exercises

Index



Preface

TO	THE	STUDENT
This	is	a	book	about	computer	organization	and	architecture.	It	focuses	on	the	function	and	design	of	the
various	components	necessary	to	process	information	digitally.	We	present	computing	systems	as	a	series
of	 layers,	 starting	 with	 low-level	 hardware	 and	 progressing	 to	 higher-level	 software,	 including
assemblers	and	operating	systems.	These	levels	constitute	a	hierarchy	of	virtual	machines.	The	study	of
computer	organization	focuses	on	this	hierarchy	and	the	issues	involved	with	how	we	partition	the	levels
and	how	each	level	is	implemented.	The	study	of	computer	architecture	focuses	on	the	interface	between
hardware	 and	 software,	 and	 emphasizes	 the	 structure	 and	 behavior	 of	 the	 system.	 The	 majority	 of
information	 contained	 in	 this	 textbook	 is	 devoted	 to	 computer	 hardware,	 computer	 organization	 and
architecture,	and	their	relationship	to	software	performance.

Students	 invariably	 ask,	 “Why,	 if	 I	 am	 a	 computer	 science	 major,	 must	 I	 learn	 about	 computer
hardware?	Isn’t	that	for	computer	engineers?	Why	do	I	care	what	the	inside	of	a	computer	looks	like?”	As
computer	users,	we	probably	do	not	have	to	worry	about	this	any	more	than	we	need	to	know	what	our
cars	look	like	under	the	hood	in	order	to	drive	them.	We	can	certainly	write	high-level	language	programs
without	 understanding	 how	 these	 programs	 execute;	 we	 can	 use	 various	 application	 packages	 without
understanding	how	they	really	work.	But	what	happens	when	 the	program	we	have	written	needs	 to	be
faster	 and	 more	 efficient,	 or	 the	 application	 we	 are	 using	 doesn’t	 do	 precisely	 what	 we	 want?	 As
computer	scientists,	we	need	a	basic	understanding	of	the	computer	system	itself	in	order	to	rectify	these
problems.

There	 is	 a	 fundamental	 relationship	 between	 the	 computer	 hardware	 and	 the	 many	 aspects	 of
programming	and	software	components	in	computer	systems.	In	order	to	write	good	software,	it	 is	very
important	 to	understand	 the	computer	system	as	a	whole.	Understanding	hardware	can	help	you	explain
the	mysterious	errors	that	sometimes	creep	into	your	programs,	such	as	the	infamous	segmentation	fault	or
bus	 error.	 The	 level	 of	 knowledge	 about	 computer	 organization	 and	 computer	 architecture	 that	 a	 high-
level	programmer	must	have	depends	on	the	task	the	high-level	programmer	is	attempting	to	complete.

For	 example,	 to	 write	 compilers,	 you	 must	 understand	 the	 particular	 hardware	 to	 which	 you	 are
compiling.	 Some	 of	 the	 ideas	 used	 in	 hardware	 (such	 as	 pipelining)	 can	 be	 adapted	 to	 compilation
techniques,	 thus	 making	 the	 compiler	 faster	 and	 more	 efficient.	 To	 model	 large,	 complex,	 real-world
systems,	 you	 must	 understand	 how	 floating-point	 arithmetic	 should,	 and	 does,	 work	 (which	 are	 not
necessarily	 the	same	 thing).	To	write	device	drivers	 for	video,	disks,	or	other	 I/O	devices,	you	need	a
good	 understanding	 of	 I/O	 interfacing	 and	 computer	 architecture	 in	 general.	 If	 you	 want	 to	 work	 on
embedded	 systems,	which	 are	 usually	 very	 resource	 constrained,	 you	must	 understand	 all	 of	 the	 time,
space,	 and	 price	 trade-offs.	 To	 do	 research	 on,	 and	 make	 recommendations	 for,	 hardware	 systems,
networks,	or	specific	algorithms,	you	must	acquire	an	understanding	of	benchmarking	and	then	learn	how
to	present	performance	results	adequately.	Before	buying	hardware,	you	need	to	understand	benchmarking
and	all	the	ways	that	others	can	manipulate	the	performance	results	to	“prove”	that	one	system	is	better
than	another.	Regardless	of	our	particular	area	of	expertise,	as	computer	scientists,	 it	 is	 imperative	that
we	understand	how	hardware	interacts	with	software.

You	may	also	be	wondering	why	a	book	with	the	word	essentials	in	its	title	is	so	large.	The	reason	is



twofold.	First,	the	subject	of	computer	organization	is	expansive	and	it	grows	by	the	day.	Second,	there	is
little	agreement	as	to	which	topics	from	within	this	burgeoning	sea	of	information	are	truly	essential	and
which	are	 just	helpful	 to	know.	 In	writing	 this	book,	one	goal	was	 to	provide	a	concise	 text	compliant
with	the	computer	architecture	curriculum	guidelines	jointly	published	by	the	Association	for	Computing
Machinery	 (ACM)	 and	 the	 Institute	 of	 Electrical	 and	 Electronic	 Engineers	 (IEEE).	 These	 guidelines
encompass	 the	 subject	 matter	 that	 experts	 agree	 constitutes	 the	 “essential”	 core	 body	 of	 knowledge
relevant	to	the	subject	of	computer	organization	and	architecture.

We	have	augmented	 the	ACM/IEEE	recommendations	with	subject	matter	 that	we	 feel	 is	useful—if
not	 essential—to	 your	 continuing	 computer	 science	 studies	 and	 to	 your	 professional	 advancement.	The
topics	that	we	feel	will	help	you	in	your	continuing	computer	science	studies	include	operating	systems,
compilers,	database	management,	and	data	communications.	Other	subjects	are	included	because	they	will
help	you	understand	how	actual	systems	work	in	real	life.

We	 hope	 that	 you	 find	 reading	 this	 book	 an	 enjoyable	 experience,	 and	 that	 you	 take	 time	 to	 delve
deeper	into	some	of	the	material	that	we	have	presented.	It	is	our	intention	that	this	book	will	serve	as	a
useful	reference	long	after	your	formal	course	is	complete.	Although	we	give	you	a	substantial	amount	of
information,	it	is	only	a	foundation	upon	which	you	can	build	throughout	the	remainder	of	your	studies	and
your	career.	Successful	computer	professionals	continually	add	to	their	knowledge	about	how	computers
work.	Welcome	to	the	start	of	your	journey.

TO	THE	INSTRUCTOR
This	book	is	the	outgrowth	of	two	computer	science	organization	and	architecture	classes	taught	at	Penn
State	Harrisburg.	As	the	computer	science	curriculum	evolved,	we	found	it	necessary	not	only	to	modify
the	material	taught	in	the	courses,	but	also	to	condense	the	courses	from	a	two-semester	sequence	into	a
three-credit,	 one-semester	 course.	 Many	 other	 schools	 have	 also	 recognized	 the	 need	 to	 compress
material	 in	 order	 to	 make	 room	 for	 emerging	 topics.	 This	 new	 course,	 as	 well	 as	 this	 textbook,	 is
primarily	for	computer	science	majors	and	is	intended	to	address	the	topics	in	computer	organization	and
architecture	 with	 which	 computer	 science	 majors	 must	 be	 familiar.	 This	 book	 not	 only	 integrates	 the
underlying	principles	in	these	areas,	but	it	also	introduces	and	motivates	the	topics,	providing	the	breadth
necessary	for	majors	while	providing	the	depth	necessary	for	continuing	studies	in	computer	science.

Our	 primary	 objective	 in	 writing	 this	 book	 was	 to	 change	 the	 way	 computer	 organization	 and
architecture	 are	 typically	 taught.	 A	 computer	 science	major	 should	 leave	 a	 computer	 organization	 and
architecture	class	with	not	only	an	understanding	of	the	important	general	concepts	on	which	the	digital
computer	is	founded,	but	also	with	a	comprehension	of	how	those	concepts	apply	to	the	real	world.	These
concepts	should	transcend	vendor-specific	terminology	and	design;	in	fact,	students	should	be	able	to	take
concepts	 given	 in	 the	 specific	 and	 translate	 to	 the	 generic	 and	 vice	 versa.	 In	 addition,	 students	 must
develop	a	firm	foundation	for	further	study	in	the	major.

The	 title	 of	 our	 book,	The	 Essentials	 of	 Computer	Organization	 and	 Architecture,	 is	 intended	 to
convey	that	the	topics	presented	in	the	text	are	those	for	which	every	computer	science	major	should	have
exposure,	familiarity,	or	mastery.	We	do	not	expect	students	using	our	textbook	to	have	complete	mastery
of	all	topics	presented.	It	is	our	firm	belief,	however,	that	there	are	certain	topics	that	must	be	mastered;
there	are	those	topics	about	which	students	must	have	a	definite	familiarity;	and	there	are	certain	topics
for	which	a	brief	introduction	and	exposure	are	adequate.

We	 do	 not	 feel	 that	 concepts	 presented	 in	 sufficient	 depth	 can	 be	 learned	 by	 studying	 general
principles	 in	 isolation.	We	 therefore	 present	 the	 topics	 as	 an	 integrated	 set	 of	 solutions,	 not	 simply	 a



collection	of	 individual	pieces	of	 information.	We	feel	our	explanations,	examples,	exercises,	 tutorials,
and	simulators	all	combine	to	provide	the	student	with	a	total	learning	experience	that	exposes	the	inner
workings	of	a	modern	digital	computer	at	the	appropriate	level.

We	have	written	 this	 textbook	in	an	 informal	style,	omitting	unnecessary	 jargon,	writing	clearly	and
concisely,	and	avoiding	unnecessary	abstraction,	in	hopes	of	increasing	student	enthusiasm.	We	have	also
broadened	the	range	of	topics	typically	found	in	a	first-level	architecture	book	to	include	system	software,
a	brief	tour	of	operating	systems,	performance	issues,	alternative	architectures,	and	a	concise	introduction
to	networking,	 as	 these	 topics	 are	 intimately	 related	 to	 computer	 hardware.	Like	most	 books,	we	have
chosen	an	architectural	model,	but	it	is	one	that	we	have	designed	with	simplicity	in	mind.

Relationship	to	CS2013
In	October	2013,	the	ACM/IEEE	Joint	Task	Force	unveiled	Computer	Science	Curricula	2013	(CS2013).
Although	 we	 are	 primarily	 concerned	 with	 the	 Computer	 Architecture	 knowledge	 area,	 these	 new
guidelines	 suggest	 integrating	 the	 core	 knowledge	 throughout	 the	 curriculum.	 Therefore,	 we	 also	 call
attention	to	additional	knowledge	areas	beyond	architecture	that	are	addressed	in	this	book.

CS2013	 is	 a	 comprehensive	 revision	 of	 CS2008,	 mostly	 the	 result	 of	 focusing	 on	 the	 essential
concepts	 in	 the	 Computer	 Science	 curriculum	 while	 still	 being	 flexible	 enough	 to	 meet	 individual
institutional	 needs.	 These	 guidelines	 introduce	 the	 notion	 of	 Core	 Tier-1	 and	 Core	 Tier-2	 topics,	 in
addition	to	elective	topics.	Core	Tier-1	topics	are	those	that	should	be	part	of	every	Computer	Science
curriculum.	Core	Tier-2	 topics	 are	 those	 that	 are	 considered	essential	 enough	 that	 a	Computer	Science
curriculum	 should	 contain	 90–100%	 of	 these	 topics.	 Elective	 topics	 are	 those	 that	 allow	 curricula	 to
provide	breadth	and	depth.	The	suggested	coverage	for	each	topic	is	listed	in	lecture	hours.

The	main	change	in	the	Architecture	and	Organization	(AR)	knowledge	area	from	CS2008	to	CS2013
is	a	reduction	of	lecture	hours	from	36	to	16;	however,	a	new	area,	System	Fundamentals	(SF),	has	been
introduced	and	includes	some	concepts	previously	found	in	the	AR	module	(including	hardware	building
blocks	 and	 architectural	 organization).	 The	 interested	 reader	 is	 referred	 to	 the	 CS2013	 guidelines
(http://www.acm.org/education/curricula-recommendations)	for	more	information	on	what	the	individual
knowledge	areas	include.

We	are	pleased	that	the	fourth	edition	of	The	Essentials	of	Computer	Organization	and	Architecture
is	 in	 direct	 correlation	 with	 the	 ACM/IEEE	 CS2013	 guidelines	 for	 computer	 organization	 and
architecture,	 in	 addition	 to	 integrating	 material	 from	 additional	 knowledge	 units.	 Table	 P.1	 indicates
which	 chapters	of	 this	 textbook	 satisfy	 the	 eight	 topics	 listed	 in	 the	AR	knowledge	 area.	For	 the	other
knowledge	areas,	only	the	topics	that	are	covered	in	this	textbook	are	listed.

http://www.acm.org/education/curricula-recommendations


TABLE	P.1	ACM/IEEE	CS2013	Topics	Covered	in	This	Book

Why	Another	Text?
No	 one	 can	 deny	 there	 is	 a	 plethora	 of	 textbooks	 for	 teaching	 computer	 organization	 and	 architecture
already	 on	 the	market.	 In	 our	 35-plus	 years	 of	 teaching	 these	 courses,	we	 have	 used	many	 very	 good
textbooks.	However,	 each	 time	we	have	 taught	 the	course,	 the	content	has	 evolved,	 and	eventually,	we
discovered	we	were	writing	significantly	more	course	notes	to	bridge	the	gap	between	the	material	in	the
textbook	 and	 the	 material	 we	 deemed	 necessary	 to	 present	 in	 our	 classes.	 We	 found	 that	 our	 course
material	was	migrating	from	a	computer	engineering	approach	to	organization	and	architecture	toward	a
computer	 science	approach	 to	 these	 topics.	When	 the	decision	was	made	 to	 fold	 the	organization	class
and	the	architecture	class	into	one	course,	we	simply	could	not	find	a	textbook	that	covered	the	material
we	 felt	was	necessary	 for	 our	majors,	written	 from	a	 computer	 science	point	 of	 view,	written	without
machine-specific	terminology,	and	designed	to	motivate	the	topics	before	covering	them.



In	this	textbook,	we	hope	to	convey	the	spirit	of	design	used	in	the	development	of	modern	computing
systems	 and	what	 effect	 this	 has	 on	 computer	 science	 students.	 Students,	 however,	must	 have	 a	 strong
understanding	of	 the	basic	concepts	before	 they	can	understand	and	appreciate	 the	 intangible	aspects	of
design.	Most	 organization	 and	 architecture	 textbooks	 present	 a	 similar	 subset	 of	 technical	 information
regarding	these	basics.	We,	however,	pay	particular	attention	to	the	level	at	which	the	information	should
be	 covered,	 and	 to	 presenting	 that	 information	 in	 the	 context	 that	 has	 relevance	 for	 computer	 science
students.	For	example,	 throughout	 this	book,	when	concrete	examples	are	necessary,	we	offer	examples
for	personal	computers,	enterprise	systems,	and	mainframes,	as	these	are	the	types	of	systems	most	likely
to	be	encountered.	We	avoid	the	“PC	bias”	prevalent	in	similar	books	in	the	hope	that	students	will	gain
an	 appreciation	 for	 the	 differences,	 the	 similarities,	 and	 the	 roles	 various	 platforms	 play	 in	 today’s
automated	 infrastructures.	 Too	 often,	 textbooks	 forget	 that	 motivation	 is,	 perhaps,	 the	 single	 most
important	 key	 in	 learning.	 To	 that	 end,	 we	 include	 many	 real-world	 examples,	 while	 attempting	 to
maintain	a	balance	between	theory	and	application.

Features
We	 have	 included	 many	 features	 in	 this	 textbook	 to	 emphasize	 the	 various	 concepts	 in	 computer
organization	and	architecture,	and	to	make	the	material	more	accessible	to	students.	Some	of	the	features
are:
•		Sidebars.	These	sidebars	include	interesting	tidbits	of	information	that	go	a	step	beyond	the	main	focus
of	the	chapter,	thus	allowing	readers	to	delve	further	into	the	material.

•		Real-World	Examples.	We	have	integrated	the	textbook	with	examples	from	real	life	to	give	students	a
better	understanding	of	how	technology	and	techniques	are	combined	for	practical	purposes.

•	 	Chapter	Summaries.	These	 sections	provide	brief	yet	 concise	 summaries	of	 the	main	points	 in	each
chapter.

•		Further	Reading.	These	sections	list	additional	sources	for	those	readers	who	wish	to	investigate	any
of	the	topics	in	more	detail,	and	contain	references	to	definitive	papers	and	books	related	to	the	chapter
topics.

•		Review	Questions.	Each	chapter	contains	a	set	of	review	questions	designed	to	ensure	that	the	reader
has	a	firm	grasp	of	the	material.

•		Chapter	Exercises.	Each	chapter	has	a	broad	selection	of	exercises	 to	reinforce	 the	 ideas	presented.
More	challenging	exercises	are	marked	with	an	asterisk.

•		Answers	to	Selected	Exercises.	To	ensure	that	students	are	on	the	right	track,	we	provide	answers	to
representative	questions	from	each	chapter.	Questions	with	answers	in	the	back	of	the	text	are	marked
with	a	blue	diamond.

•		Special	“Focus	On”	Sections.	These	sections	provide	additional	information	for	instructors	who	may
wish	 to	 cover	 certain	 concepts,	 such	 as	 Kmaps	 and	 data	 compression,	 in	 more	 detail.	 Additional
exercises	are	provided	for	these	sections	as	well.

•	 	Appendix.	The	 appendix	provides	 a	brief	 introduction	or	 review	of	 data	 structures,	 including	 topics
such	as	stacks,	linked	lists,	and	trees.

•		Glossary.	An	extensive	glossary	includes	brief	definitions	of	all	key	terms	from	the	chapters.
•		Index.	An	exhaustive	index	is	provided	with	this	book,	with	multiple	cross-references,	to	make	finding
terms	and	concepts	easier	for	the	reader.



About	the	Authors
We	bring	to	this	textbook	not	only	35-plus	years	of	combined	teaching	experience,	but	also	30-plus	years
of	 industry	 experience.	 Our	 combined	 efforts	 therefore	 stress	 the	 underlying	 principles	 of	 computer
organization	and	architecture	and	how	 these	 topics	 relate	 in	practice.	We	 include	 real-life	 examples	 to
help	students	appreciate	how	these	fundamental	concepts	are	applied	in	the	world	of	computing.

Linda	Null	holds	a	PhD	in	computer	science	from	Iowa	State	University,	an	MS	in	computer	science
from	 Iowa	 State	 University,	 an	 MS	 in	 computer	 science	 education	 from	 Northwest	 Missouri	 State
University,	 an	 MS	 in	 mathematics	 education	 from	 Northwest	 Missouri	 State	 University,	 and	 a	 BS	 in
mathematics	and	English	from	Northwest	Missouri	State	University.	She	has	been	 teaching	mathematics
and	 computer	 science	 for	more	 than	 35	 years	 and	 is	 currently	 the	 computer	 science	 graduate	 program
coordinator	and	associate	program	chair	at	the	Pennsylvania	State	University	Harrisburg	campus,	where
she	has	been	a	member	of	the	faculty	since	1995.	She	has	received	numerous	teaching	awards	including
the	Penn	State	Teaching	Fellow	Award	and	the	Teaching	Excellence	Award.	Her	areas	of	interest	include
computer	 organization	 and	 architecture,	 operating	 systems,	 computer	 science	 education,	 and	 computer
security.

Julia	Lobur	 has	 been	 a	 practitioner	 in	 the	 computer	 industry	 for	more	 than	 30	 years.	 She	 has	 held
positions	 as	 systems	 consultant,	 staff	 programmer/analyst,	 systems	 and	 network	 designer,	 software
development	manager,	and	project	manager,	in	addition	to	part-time	teaching	duties.	Julia	holds	an	MS	in
computer	science	and	is	an	IEEE	Certified	Software	Development	Professional.

Prerequisites
The	 typical	 background	 necessary	 for	 a	 student	 using	 this	 textbook	 includes	 a	 year	 of	 programming
experience	 using	 a	 high-level	 procedural	 language.	 Students	 are	 also	 expected	 to	 have	 taken	 a	 year	 of
college-level	mathematics	(calculus	or	discrete	mathematics),	as	this	textbook	assumes	and	incorporates
these	mathematical	concepts.	This	book	assumes	no	prior	knowledge	of	computer	hardware.

A	 computer	 organization	 and	 architecture	 class	 is	 customarily	 a	 prerequisite	 for	 an	 undergraduate
operating	 systems	class	 (students	must	know	about	 the	memory	hierarchy,	 concurrency,	 exceptions,	 and
interrupts),	 compilers	 (students	 must	 know	 about	 instruction	 sets,	 memory	 addressing,	 and	 linking),
networking	 (students	 must	 understand	 the	 hardware	 of	 a	 system	 before	 attempting	 to	 understand	 the
network	 that	 ties	 these	 components	 together),	 and	of	 course,	 any	 advanced	 architecture	 class.	This	 text
covers	the	topics	necessary	for	these	courses.

General	Organization	and	Coverage
Our	presentation	of	concepts	in	this	textbook	is	an	attempt	at	a	concise	yet	thorough	coverage	of	the	topics
we	 feel	 are	 essential	 for	 the	 computer	 science	 major.	 We	 do	 not	 feel	 the	 best	 way	 to	 do	 this	 is	 by
“compartmentalizing”	the	various	topics;	therefore,	we	have	chosen	a	structured	yet	integrated	approach
where	each	topic	is	covered	in	the	context	of	the	entire	computer	system.

As	with	many	popular	texts,	we	have	taken	a	bottom-up	approach,	starting	with	the	digital	logic	level
and	building	to	the	application	level	 that	students	should	be	familiar	with	before	starting	the	class.	The
text	is	carefully	structured	so	that	the	reader	understands	one	level	before	moving	on	to	the	next.	By	the
time	 the	 reader	 reaches	 the	 application	 level,	 all	 the	 necessary	 concepts	 in	 computer	 organization	 and
architecture	have	been	presented.	Our	goal	is	to	allow	the	students	to	tie	the	hardware	knowledge	covered
in	this	book	to	the	concepts	learned	in	their	introductory	programming	classes,	resulting	in	a	complete	and



thorough	 picture	 of	 how	 hardware	 and	 software	 fit	 together.	 Ultimately,	 the	 extent	 of	 hardware
understanding	has	a	significant	influence	on	software	design	and	performance.	If	students	can	build	a	firm
foundation	 in	 hardware	 fundamentals,	 this	 will	 go	 a	 long	 way	 toward	 helping	 them	 to	 become	 better
computer	scientists.

The	concepts	in	computer	organization	and	architecture	are	integral	to	many	of	the	everyday	tasks	that
computer	professionals	perform.	To	address	the	numerous	areas	in	which	a	computer	professional	should
be	educated,	we	have	taken	a	high-level	look	at	computer	architecture,	providing	low-level	coverage	only
when	deemed	necessary	for	an	understanding	of	a	specific	concept.	For	example,	when	discussing	ISAs,
many	 hardware-dependent	 issues	 are	 introduced	 in	 the	 context	 of	 different	 case	 studies	 to	 both
differentiate	and	reinforce	the	issues	associated	with	ISA	design.
The	text	is	divided	into	13	chapters	and	an	appendix,	as	follows:

•		Chapter	1	provides	a	historical	overview	of	computing	in	general,	pointing	out	the	many	milestones	in
the	 development	 of	 computing	 systems	 and	 allowing	 the	 reader	 to	 visualize	 how	we	 arrived	 at	 the
current	state	of	computing.	This	chapter	introduces	the	necessary	terminology,	the	basic	components	in	a
computer	 system,	 the	 various	 logical	 levels	 of	 a	 computer	 system,	 and	 the	 von	 Neumann	 computer
model.	It	provides	a	high-level	view	of	the	computer	system,	as	well	as	the	motivation	and	necessary
concepts	for	further	study.

•		Chapter	2	provides	thorough	coverage	of	the	various	means	computers	use	to	represent	both	numerical
and	 character	 information.	 Addition,	 subtraction,	 multiplication,	 and	 division	 are	 covered	 once	 the
reader	has	been	exposed	to	number	bases	and	the	typical	numeric	representation	techniques,	including
one’s	complement,	two’s	complement,	and	BCD.	In	addition,	EBCDIC,	ASCII,	and	Unicode	character
representations	are	addressed.	Fixed-	and	floating-point	representation	are	also	introduced.	Codes	for
data	recording	and	error	detection	and	correction	are	covered	briefly.	Codes	for	data	transmission	and
recording	are	described	in	a	special	“Focus	On”	section.

•		Chapter	3	is	a	classic	presentation	of	digital	logic	and	how	it	relates	to	Boolean	algebra.	This	chapter
covers	both	combinational	and	sequential	logic	in	sufficient	detail	to	allow	the	reader	to	understand	the
logical	makeup	of	more	complicated	MSI	(medium-scale	integration)	circuits	(such	as	decoders).	More
complex	 circuits,	 such	 as	 buses	 and	memory,	 are	 also	 included.	We	 have	 included	 optimization	 and
Kmaps	in	a	special	“Focus	On”	section.

•		Chapter	4	illustrates	basic	computer	organization	and	introduces	many	fundamental	concepts,	including
the	 fetch–decode–execute	 cycle,	 the	 data	 path,	 clocks	 and	 buses,	 register	 transfer	 notation,	 and,	 of
course,	the	CPU.	A	very	simple	architecture,	MARIE,	and	its	ISA	are	presented	to	allow	the	reader	to
gain	a	full	understanding	of	the	basic	architectural	organization	involved	in	program	execution.	MARIE
exhibits	the	classic	von	Neumann	design	and	includes	a	program	counter,	an	accumulator,	an	instruction
register,	 4096	 bytes	 of	 memory,	 and	 two	 addressing	 modes.	 Assembly	 language	 programming	 is
introduced	 to	 reinforce	 the	 concepts	of	 instruction	 format,	 instruction	mode,	data	 format,	 and	control
that	are	presented	earlier.	This	is	not	an	assembly	language	textbook	and	was	not	designed	to	provide	a
practical	course	in	assembly	language	programming.	The	primary	objective	in	introducing	assembly	is
to	 further	 the	understanding	of	computer	architecture	 in	general.	However,	a	simulator	 for	MARIE	 is
provided	 so	 assembly	 language	 programs	 can	 be	 written,	 assembled,	 and	 run	 on	 the	 MARIE
architecture.	 The	 two	 methods	 of	 control,	 hardwiring	 and	 microprogramming,	 are	 introduced	 and
compared	in	this	chapter.	Finally,	Intel	and	MIPS	architectures	are	compared	to	reinforce	the	concepts
in	the	chapter.



•	 	 Chapter	 5	 provides	 a	 closer	 look	 at	 instruction	 set	 architectures,	 including	 instruction	 formats,
instruction	types,	and	addressing	modes.	Instruction-level	pipelining	is	introduced	as	well.	Real-world
ISAs	 (including	 Intel®,	 MIPS®	 Technologies,	 ARM,	 and	 Java™)	 are	 presented	 to	 reinforce	 the
concepts	presented	in	the	chapter.

•	 	Chapter	6	 covers	basic	memory	concepts,	 such	as	RAM	and	 the	various	memory	devices,	 and	also
addresses	 the	more	advanced	concepts	of	 the	memory	hierarchy,	 including	cache	memory	and	virtual
memory.	This	chapter	gives	a	 thorough	presentation	of	direct	mapping,	associative	mapping,	and	set-
associative	mapping	techniques	for	cache.	It	also	provides	a	detailed	look	at	paging	and	segmentation,
TLBs,	and	 the	various	algorithms	and	devices	associated	with	each.	A	 tutorial	and	simulator	 for	 this
chapter	is	available	on	the	book’s	website.

•		Chapter	7	provides	a	detailed	overview	of	I/O	fundamentals,	bus	communication	and	protocols,	and
typical	 external	 storage	 devices,	 such	 as	magnetic	 and	 optical	 disks,	 as	well	 as	 the	 various	 formats
available	 for	 each.	DMA,	programmed	 I/O,	 and	 interrupts	 are	 covered	 as	well.	 In	 addition,	 various
techniques	for	exchanging	information	between	devices	are	introduced.	RAID	architectures	are	covered
in	detail.	Various	data	compression	formats	are	introduced	in	a	special	“Focus	On”	section.

•		Chapter	8	discusses	the	various	programming	tools	available	(such	as	compilers	and	assemblers)	and
their	relationship	to	the	architecture	of	the	machine	on	which	they	are	run.	The	goal	of	this	chapter	is	to
tie	 the	 programmer’s	 view	 of	 a	 computer	 system	 with	 the	 actual	 hardware	 and	 architecture	 of	 the
underlying	machine.	In	addition,	operating	systems	are	introduced,	but	only	covered	in	as	much	detail
as	applies	to	the	architecture	and	organization	of	a	system	(such	as	resource	use	and	protection,	traps
and	interrupts,	and	various	other	services).

•		Chapter	9	provides	an	overview	of	alternative	architectures	that	have	emerged	in	recent	years.	RISC,
Flynn’s	Taxonomy,	parallel	processors,	instruction-level	parallelism,	multiprocessors,	interconnection
networks,	 shared	 memory	 systems,	 cache	 coherence,	 memory	 models,	 superscalar	 machines,	 neural
networks,	systolic	architectures,	dataflow	computers,	quantum	computing,	and	distributed	architectures
are	covered.	Our	main	objective	in	this	chapter	is	to	help	the	reader	realize	we	are	not	limited	to	the
von	Neumann	architecture,	and	to	force	the	reader	to	consider	performance	issues,	setting	the	stage	for
the	next	chapter.

•		Chapter	10	covers	concepts	and	topics	of	interest	in	embedded	systems	that	have	not	been	covered	in
previous	 chapters.	 Specifically,	 this	 chapter	 focuses	 on	 embedded	 hardware	 and	 components,
embedded	 system	 design	 topics,	 the	 basics	 of	 embedded	 software	 construction,	 and	 embedded
operating	systems	features.

•	 	 Chapter	 11	 addresses	 various	 performance	 analysis	 and	 management	 issues.	 The	 necessary
mathematical	preliminaries	are	introduced,	followed	by	a	discussion	of	MIPS,	FLOPS,	benchmarking,
and	various	optimization	 issues	with	which	a	computer	scientist	should	be	familiar,	 including	branch
prediction,	speculative	execution,	and	loop	optimization.

•	 	Chapter	 12	 focuses	 on	 network	 organization	 and	 architecture,	 including	 network	 components	 and
protocols.	The	OSI	model	and	TCP/IP	suite	are	introduced	in	the	context	of	the	Internet.	This	chapter	is
by	no	means	intended	to	be	comprehensive.	The	main	objective	is	 to	put	computer	architecture	in	the
correct	context	relative	to	network	architecture.

•		Chapter	13	introduces	some	popular	I/O	architectures	suitable	for	large	and	small	systems,	including
SCSI,	ATA,	 IDE,	SATA,	PCI,	USB,	and	 IEEE	1394.	This	chapter	also	provides	a	brief	overview	of
storage	area	networks	and	cloud	computing.



•		Appendix	A	is	a	short	appendix	on	data	structures	that	is	provided	for	those	situations	in	which	students
may	need	a	brief	introduction	or	review	of	such	topics	as	stacks,	queues,	and	linked	lists.

The	sequencing	of	the	chapters	is	such	that	they	can	be	taught	in	the	given	numerical	order.	However,
an	 instructor	 can	modify	 the	 order	 to	 better	 fit	 a	 given	 curriculum	 if	 necessary.	 Figure	 P.1	 shows	 the
prerequisite	relationships	that	exist	between	various	chapters.

FIGURE	P.1	Prerequisite	Relationship	Between	Chapters

What’s	New	in	the	Fourth	Edition
In	 the	 years	 since	 the	 third	 edition	 of	 this	 book	 was	 created,	 the	 field	 of	 computer	 architecture	 has
continued	to	grow.	In	this	fourth	edition,	we	have	incorporated	many	of	these	new	changes	in	addition	to
expanding	topics	already	introduced	in	the	first	three	editions.	Our	goal	in	the	fourth	edition	was	to	update
content	 and	 references,	 add	 new	material,	 expand	 current	 discussions	 based	 on	 reader	 comments,	 and
expand	the	number	of	exercises	in	all	of	the	core	chapters.	Although	we	cannot	itemize	all	the	changes	in
this	edition,	the	list	that	follows	highlights	those	major	changes	that	may	be	of	interest	to	the	reader:

•		Chapter	1	has	been	updated	to	include	new	examples	and	illustrations,	tablet	computers,	computing	as
a	service	(Cloud	computing),	and	cognitive	computing.	The	hardware	overview	has	been	expanded	and



updated	 (notably,	 the	 discussion	 on	CRTs	has	 been	 removed	 and	 a	 discussion	 of	 graphics	 cards	 has
been	added),	and	additional	motivational	sidebars	have	been	added.	The	non-von	Neumann	section	has
been	updated,	and	a	new	section	on	parallelism	has	been	included.	The	number	of	exercises	at	the	end
of	the	chapter	has	been	increased	by	26%.

•		Chapter	2	contains	a	new	section	on	excess-M	notation.	The	simple	model	has	been	modified	to	use	a
standard	format,	and	more	examples	have	been	added.	This	chapter	has	a	44%	increase	in	the	number
of	exercises.

•		Chapter	3	has	been	modified	 to	use	a	prime	(′)	 instead	of	an	overbar	 to	 indicate	 the	NOT	operator.
Timing	diagrams	have	been	added	to	help	explain	the	operation	of	sequential	circuits.	The	section	on
FSMs	has	been	expanded,	and	additional	exercises	have	been	included.

•		Chapter	4	contains	an	expanded	discussion	of	memory	organization	(including	memory	interleaving)	as
well	as	additional	examples	and	exercises.	We	are	now	using	the	“0x”	notation	to	indicate	hexadecimal
numbers.	More	detail	has	been	added	to	the	discussions	on	hardwired	and	microprogrammed	control,
and	 the	 logic	 diagrams	 for	MARIE’s	 hardwired	 control	 unit	 and	 the	 timing	 diagrams	 for	MARIE’s
microoperations	have	all	been	updated.

•		Chapter	5	contains	expanded	coverage	of	big	and	little	endian	and	additional	examples	and	exercises,
as	well	as	a	new	section	on	ARM	processors.

•	 	 Chapter	 6	 has	 updated	 figures,	 an	 expanded	 discussion	 of	 associative	 memory,	 and	 additional
examples	 and	 discussion	 to	 clarify	 cache	 memory.	 The	 examples	 have	 all	 been	 updated	 to	 reflect
hexadecimal	addresses	instead	of	decimal	addresses.	This	chapter	now	contains	20%	more	exercises
than	the	third	edition.

•	 	Chapter	7	 has	 expanded	 coverage	of	 solid	 state	drives	 and	 emerging	data	 storage	devices	 (such	 as
carbon	nanotubes	and	memristors),	as	well	as	additional	coverage	of	RAID.	There	is	a	new	section	on
MP3	 compression	 and	 in	 addition	 to	 a	 20%	 increase	 in	 the	 number	 of	 exercises	 at	 the	 end	 of	 this
chapter.

•		Chapter	8	has	been	updated	to	reflect	advances	in	the	field	of	system	software.
•		Chapter	9	has	an	expanded	discussion	of	both	RISC	vs.	CISC	(integrating	this	debate	into	the	mobile
arena)	and	quantum	computing,	including	a	discussion	of	the	technological	singularity.

•		Chapter	10	contains	updated	material	for	embedded	operating	systems.
•		Chapter	12	has	been	updated	to	remove	obsolete	material	and	integrate	new	material.
•	 	Chapter	13	 has	 expanded	 and	updated	 coverage	of	USB,	 expanded	 coverage	of	Cloud	 storage,	 and
removal	of	obsolete	material.

Intended	Audience
This	book	was	originally	written	for	an	undergraduate	class	in	computer	organization	and	architecture	for
computer	science	majors.	Although	specifically	directed	toward	computer	science	majors,	the	book	does
not	preclude	its	use	by	IS	and	IT	majors.

This	 book	 contains	more	 than	 sufficient	material	 for	 a	 typical	 one-semester	 (14	weeks,	 42	 lecture
hours)	course;	however,	all	the	material	in	the	book	cannot	be	mastered	by	the	average	student	in	a	one-
semester	 class.	 If	 the	 instructor	 plans	 to	 cover	 all	 topics	 in	 detail,	 a	 two-semester	 sequence	would	be
optimal.	The	organization	is	such	that	an	instructor	can	cover	the	major	topic	areas	at	different	levels	of
depth,	depending	on	the	experience	and	needs	of	the	students.	Table	P.2	gives	the	instructor	an	idea	of	the



amount	of	time	required	to	cover	the	topics,	and	also	lists	the	corresponding	levels	of	accomplishment	for
each	chapter.

It	is	our	intention	that	this	book	serve	as	a	useful	reference	long	after	the	formal	course	is	complete.

TABLE	P.2	Suggested	Lecture	Hours

Support	Materials
A	 textbook	 is	 a	 fundamental	 tool	 in	 learning,	 but	 its	 effectiveness	 is	 greatly	 enhanced	by	 supplemental
materials	and	exercises,	which	emphasize	the	major	concepts,	provide	immediate	feedback	to	the	reader,
and	 motivate	 understanding	 through	 repetition.	 We	 have,	 therefore,	 created	 the	 following	 ancillary
materials	for	the	fourth	edition	of	The	Essentials	of	Computer	Organization	and	Architecture:

•		Test	bank.
•	 	 Instructor’s	Manual.	 This	 manual	 contains	 answers	 to	 exercises.	 In	 addition,	 it	 provides	 hints	 on
teaching	various	concepts	and	trouble	areas	often	encountered	by	students.

•		PowerPoint	Presentations.	These	slides	contain	lecture	material	appropriate	for	a	one-semester	course
in	computer	organization	and	architecture.

•		Figures	and	Tables.	For	those	who	wish	to	prepare	their	own	lecture	materials,	we	provide	the	figures
and	tables	in	downloadable	form.

•	 	Memory	Tutorial	and	Simulator.	 This	 package	 allows	 students	 to	 apply	 the	 concepts	 on	 cache	 and
virtual	memory.

•		MARIE	Simulator.	This	package	allows	students	to	assemble	and	run	MARIE	programs.
•		Datapath	Simulator.	This	package	allows	students	to	trace	the	MARIE	datapath.
•		Tutorial	Software.	Other	tutorial	software	is	provided	for	various	concepts	in	the	book.
•		Companion	Website.	All	software,	slides,	and	related	materials	can	be	downloaded	from	the	book’s
website:

go.jblearning.com/ecoa4e

http://go.jblearning.com/ecoa4e


The	 exercises,	 sample	 exam	 problems,	 and	 solutions	 have	 been	 tested	 in	 numerous	 classes.	 The
Instructor’s	Manual,	which	includes	suggestions	for	teaching	the	various	chapters	in	addition	to	answers
for	the	book’s	exercises,	suggested	programming	assignments,	and	sample	example	questions,	is	available
to	instructors	who	adopt	the	book.	(Please	contact	your	Jones	&	Bartlett	Learning	representative	at	1-800-
832-0034	for	access	to	this	area	of	the	website.)

The	Instructional	Model:	MARIE
In	a	computer	organization	and	architecture	book,	the	choice	of	architectural	model	affects	the	instructor
as	well	as	 the	students.	 If	 the	model	 is	 too	complicated,	both	 the	 instructor	and	 the	students	 tend	 to	get
bogged	 down	 in	 details	 that	 really	 have	 no	 bearing	 on	 the	 concepts	 being	 presented	 in	 class.	 Real
architectures,	 although	 interesting,	 often	 have	 far	 too	 many	 peculiarities	 to	 make	 them	 usable	 in	 an
introductory	class.	To	make	things	even	more	complicated,	real	architectures	change	from	day	to	day.	In
addition,	it	is	difficult	to	find	a	book	incorporating	a	model	that	matches	the	local	computing	platform	in	a
given	department,	noting	that	the	platform,	too,	may	change	from	year	to	year.

To	alleviate	these	problems,	we	have	designed	our	own	simple	architecture,	MARIE,	specifically	for
pedagogical	use.	MARIE	(Machine	Architecture	that	is	Really	Intuitive	and	Easy)	allows	students	to	learn
the	 essential	 concepts	 of	 computer	 organization	 and	 architecture,	 including	 assembly	 language,	without
getting	 caught	 up	 in	 the	 unnecessary	 and	 confusing	 details	 that	 exist	 in	 real	 architectures.	 Despite	 its
simplicity,	it	simulates	a	functional	system.	The	MARIE	machine	simulator,	MarieSim,	has	a	user-friendly
GUI	that	allows	students	to	(1)	create	and	edit	source	code,	(2)	assemble	source	code	into	machine	object
code,	(3)	run	machine	code,	and	(4)	debug	programs.

Specifically,	MarieSim	has	the	following	features:

•		Support	for	the	MARIE	assembly	language	introduced	in	Chapter	4
•		An	integrated	text	editor	for	program	creation	and	modification
•		Hexadecimal	machine	language	object	code
•		An	integrated	debugger	with	single	step	mode,	break	points,	pause,	resume,	and	register	and	memory
tracing

•		A	graphical	memory	monitor	displaying	the	4096	addresses	in	MARIE’s	memory
•		A	graphical	display	of	MARIE’s	registers
•		Highlighted	instructions	during	program	execution
•		User-controlled	execution	speed
•		Status	messages
•		User-viewable	symbol	tables
•	 	An	 interactive	 assembler	 that	 lets	 the	 user	 correct	 any	 errors	 and	 reassemble	 automatically,	without
changing	environments

•		Online	help
•		Optional	core	dumps,	allowing	the	user	to	specify	the	memory	range
•		Frames	with	sizes	that	can	be	modified	by	the	user
•		A	small	learning	curve,	allowing	students	to	learn	the	system	quickly

MarieSim	was	written	 in	 the	 Java	 language	 so	 that	 the	 system	would	 be	 portable	 to	 any	 platform	 for



which	a	Java	Virtual	Machine	(JVM)	is	available.	Students	of	Java	may	wish	to	look	at	the	simulator’s
source	code,	and	perhaps	even	offer	improvements	or	enhancements	to	its	simple	functions.

Figure	P.2,	 the	MarieSim	Graphical	 Environment,	 shows	 the	 graphical	 environment	 of	 the	MARIE
machine	simulator.	The	screen	consists	of	four	parts:	the	menu	bar,	the	central	monitor	area,	the	memory
monitor,	and	the	message	area.

Menu	 options	 allow	 the	 user	 to	 control	 the	 actions	 and	 behavior	 of	 the	MARIE	 simulator	 system.
These	 options	 include	 loading,	 starting,	 stopping,	 setting	 breakpoints,	 and	 pausing	 programs	 that	 have
been	written	in	MARIE	assembly	language.

The	MARIE	simulator	 illustrates	 the	process	of	assembly,	 loading,	and	execution,	all	 in	one	simple
environment.	Users	 can	 see	 assembly	 language	 statements	 directly	 from	 their	 programs,	 along	with	 the
corresponding	machine	code	(hexadecimal)	equivalents.	The	addresses	of	these	instructions	are	indicated
as	well,	and	users	can	view	any	portion	of	memory	at	any	time.	Highlighting	is	used	to	indicate	the	initial
loading	address	of	a	program	in	addition	to	the	currently	executing	instruction	while	a	program	runs.	The
graphical	display	of	 the	 registers	 and	memory	allows	 the	 student	 to	 see	how	 the	 instructions	 cause	 the
values	in	the	registers	and	memory	to	change.

FIGURE	P.2	The	MarieSim	Graphical	Environment

If	You	Find	an	Error
We	have	attempted	to	make	this	book	as	technically	accurate	as	possible,	but	even	though	the	manuscript
has	 been	 through	 numerous	 proofreadings,	 errors	 have	 a	way	 of	 escaping	 detection.	We	would	 greatly
appreciate	hearing	from	readers	who	find	any	errors	that	need	correcting.	Your	comments	and	suggestions
are	always	welcome;	please	send	on	email	to	ECOA@jblearning.com.

Credits	and	Acknowledgments
Few	books	are	entirely	the	result	of	one	or	two	people’s	unaided	efforts,	and	this	one	is	no	exception.	We

mailto:ECOA@jblearning.com


realize	that	writing	a	textbook	is	a	formidable	task	and	only	possible	with	a	combined	effort,	and	we	find
it	 impossible	 to	 adequately	 thank	 those	 who	 have	 made	 this	 book	 possible.	 If,	 in	 the	 following
acknowledgments,	we	inadvertently	omit	anyone,	we	humbly	apologize.

A	number	of	people	have	contributed	to	the	fourth	edition	of	this	book.	We	would	first	like	to	thank	all
of	the	reviewers	for	their	careful	evaluations	of	previous	editions	and	their	thoughtful	written	comments.
In	addition,	we	are	grateful	for	the	many	readers	who	have	emailed	useful	ideas	and	helpful	suggestions.
Although	we	cannot	mention	all	of	these	people	here,	we	especially	thank	John	MacCormick	(Dickinson
College)	 and	 Jacqueline	 Jones	 (Brooklyn	 College)	 for	 their	 meticulous	 reviews	 and	 their	 numerous
comments	and	suggestions.	We	extend	a	special	thanks	to	Karishma	Rao	and	Sean	Willeford	for	their	time
and	effort	in	producing	a	quality	memory	software	module.

We	would	also	like	to	thank	the	individuals	at	Jones	&	Bartlett	Learning	who	worked	closely	with	us
to	make	this	fourth	edition	possible.	We	are	very	grateful	to	Tiffany	Silter,	Laura	Pagluica,	and	Amy	Rose
for	their	professionalism,	commitment,	and	hard	work	on	the	fourth	edition.

I,	Linda	Null,	would	personally	like	to	thank	my	husband,	Tim	Wahls,	for	his	continued	patience	while
living	life	as	a	“book	widower”	for	a	fourth	time,	for	listening	and	commenting	with	frankness	about	the
book’s	contents	and	modifications,	 for	doing	such	an	extraordinary	 job	with	all	of	 the	cooking,	and	for
putting	up	with	 the	almost	daily	compromises	necessitated	by	my	writing	 this	book—including	missing
our	annual	fly-fishing	vacation	and	forcing	our	horses	into	prolonged	pasture	ornament	status.	I	consider
myself	amazingly	lucky	to	be	married	to	such	a	wonderful	man.	I	extend	my	heartfelt	thanks	to	my	mentor,
Merry	 McDonald,	 who	 taught	 me	 the	 value	 and	 joys	 of	 learning	 and	 teaching,	 and	 doing	 both	 with
integrity.	Lastly,	I	would	like	to	express	my	deepest	gratitude	to	Julia	Lobur,	as	without	her,	this	book	and
its	accompanying	software	would	not	be	a	reality.	It	has	been	both	a	joy	and	an	honor	working	with	her.

I,	Julia	Lobur,	am	deeply	indebted	to	my	lawful	spouse,	Marla	Cattermole,	who	married	me	despite
the	 demands	 that	 this	 book	 has	 placed	 on	 both	 of	 us.	 She	 has	 made	 this	 work	 possible	 through	 her
forbearance	and	fidelity.	She	has	nurtured	my	body	through	her	culinary	delights	and	my	spirit	through	her
wisdom.	She	has	taken	up	my	slack	in	many	ways	while	working	hard	at	her	own	career.	I	would	also	like
to	convey	my	profound	gratitude	to	Linda	Null:	first,	for	her	unsurpassed	devotion	to	the	field	of	computer
science	education	and	dedication	to	her	students	and,	second,	for	giving	me	the	opportunity	to	share	with
her	the	ineffable	experience	of	textbook	authorship.



“Computing	is	not	about	computers	anymore.	It	is	about	living….	We	have	seen	computers
move	out	of	giant	air-conditioned	rooms	into	closets,	then	onto	desktops,	and	now	into	our
laps	and	pockets.	But	this	is	not	the	end….	Like	a	force	of	nature,	the	digital	age	cannot	be
denied	or	stopped….	The	information	superhighway	may	be	mostly	hype	today,	but	it	is	an
understatement	about	tomorrow.	It	will	exist	beyond	people’s	wildest	predictions….	We	are
not	waiting	on	any	invention.	It	is	here.	It	is	now.	It	is	almost	genetic	in	its	nature,	in	that
each	generation	will	become	more	digital	than	the	preceding	one.”

—Nicholas	Negroponte,	professor	of	media	technology	at	MIT

CHAPTER	1



Introduction

1.1			OVERVIEW
Dr.	Negroponte	is	among	many	who	see	the	computer	revolution	as	if	it	were	a	force	of	nature.	This	force
has	the	potential	to	carry	humanity	to	its	digital	destiny,	allowing	us	to	conquer	problems	that	have	eluded
us	for	centuries,	as	well	as	all	of	the	problems	that	emerge	as	we	solve	the	original	problems.	Computers
have	freed	us	from	the	tedium	of	routine	tasks,	liberating	our	collective	creative	potential	so	that	we	can,
of	course,	build	bigger	and	better	computers.

As	we	observe	the	profound	scientific	and	social	changes	that	computers	have	brought	us,	it	is	easy	to
start	feeling	overwhelmed	by	the	complexity	of	it	all.	This	complexity,	however,	emanates	from	concepts
that	are	fundamentally	very	simple.	These	simple	ideas	are	the	ones	that	have	brought	us	to	where	we	are
today	and	are	the	foundation	for	the	computers	of	the	future.	To	what	extent	they	will	survive	in	the	future
is	anybody’s	guess.	But	today,	they	are	the	foundation	for	all	of	computer	science	as	we	know	it.

Computer	scientists	are	usually	more	concerned	with	writing	complex	program	algorithms	than	with
designing	computer	hardware.	Of	course,	if	we	want	our	algorithms	to	be	useful,	a	computer	eventually
has	 to	 run	 them.	 Some	 algorithms	 are	 so	 complicated	 that	 they	would	 take	 too	 long	 to	 run	 on	 today’s
systems.	These	kinds	of	algorithms	are	considered	computationally	 infeasible.	Certainly,	at	 the	current
rate	of	innovation,	some	things	that	are	infeasible	today	could	be	feasible	tomorrow,	but	it	seems	that	no
matter	 how	 big	 or	 fast	 computers	 become,	 someone	 will	 think	 up	 a	 problem	 that	 will	 exceed	 the
reasonable	limits	of	the	machine.

To	understand	why	an	algorithm	is	infeasible,	or	to	understand	why	the	implementation	of	a	feasible
algorithm	is	running	too	slowly,	you	must	be	able	to	see	the	program	from	the	computer’s	point	of	view.
You	must	understand	what	makes	a	computer	system	tick	before	you	can	attempt	to	optimize	the	programs
that	it	runs.	Attempting	to	optimize	a	computer	system	without	first	understanding	it	is	like	attempting	to
tune	your	car	by	pouring	an	elixir	into	the	gas	tank:	You’ll	be	lucky	if	it	runs	at	all	when	you’re	finished.

Program	optimization	and	system	tuning	are	perhaps	the	most	important	motivations	for	learning	how
computers	work.	There	are,	however,	many	other	reasons.	For	example,	if	you	want	to	write	compilers,
you	 must	 understand	 the	 hardware	 environment	 within	 which	 the	 compiler	 will	 function.	 The	 best
compilers	leverage	particular	hardware	features	(such	as	pipelining)	for	greater	speed	and	efficiency.

If	you	ever	need	to	model	large,	complex,	real-world	systems,	you	will	need	to	know	how	floating-
point	arithmetic	should	work	as	well	as	how	it	really	works	in	practice.	If	you	wish	to	design	peripheral
equipment	 or	 the	 software	 that	 drives	 peripheral	 equipment,	 you	 must	 know	 every	 detail	 of	 how	 a
particular	computer	deals	with	its	input/output	(I/O).	If	your	work	involves	embedded	systems,	you	need
to	know	that	these	systems	are	usually	resource-constrained.	Your	understanding	of	time,	space,	and	price
trade-offs,	as	well	as	I/O	architectures,	will	be	essential	to	your	career.

All	 computer	 professionals	 should	 be	 familiar	 with	 the	 concepts	 of	 benchmarking	 and	 be	 able	 to
interpret	 and	 present	 the	 results	 of	 benchmarking	 systems.	 People	 who	 perform	 research	 involving
hardware	 systems,	 networks,	 or	 algorithms	 find	 benchmarking	 techniques	 crucial	 to	 their	 day-to-day
work.	Technical	managers	in	charge	of	buying	hardware	also	use	benchmarks	to	help	them	buy	the	best
system	for	a	given	amount	of	money,	keeping	in	mind	the	ways	in	which	performance	benchmarks	can	be



manipulated	to	imply	results	favorable	to	particular	systems.
The	preceding	examples	 illustrate	 the	 idea	 that	 a	 fundamental	 relationship	exists	between	computer

hardware	and	many	aspects	of	programming	and	software	components	 in	computer	 systems.	Therefore,
regardless	 of	 our	 areas	 of	 expertise,	 as	 computer	 scientists,	 it	 is	 imperative	 that	 we	 understand	 how
hardware	interacts	with	software.	We	must	become	familiar	with	how	various	circuits	and	components	fit
together	 to	 create	working	 computer	 systems.	We	do	 this	 through	 the	 study	of	computer	 organization.
Computer	 organization	 addresses	 issues	 such	 as	 control	 signals	 (how	 the	 computer	 is	 controlled),
signaling	methods,	and	memory	types.	It	encompasses	all	physical	aspects	of	computer	systems.	It	helps
us	to	answer	the	question:	How	does	a	computer	work?

The	study	of	computer	architecture,	on	the	other	hand,	focuses	on	the	structure	and	behavior	of	the
computer	system	and	refers	 to	 the	 logical	and	abstract	aspects	of	system	implementation	as	seen	by	 the
programmer.	 Computer	 architecture	 includes	 many	 elements	 such	 as	 instruction	 sets	 and	 formats,
operation	codes,	data	 types,	 the	number	and	 types	of	 registers,	addressing	modes,	main	memory	access
methods,	and	various	I/O	mechanisms.	The	architecture	of	a	system	directly	affects	the	logical	execution
of	 programs.	 Studying	 computer	 architecture	 helps	 us	 to	 answer	 the	 question:	 How	 do	 I	 design	 a
computer?

The	computer	architecture	for	a	given	machine	is	the	combination	of	its	hardware	components	plus	its
instruction	set	architecture	(ISA).	The	ISA	is	 the	agreed-upon	 interface	between	all	 the	software	 that
runs	on	the	machine	and	the	hardware	that	executes	it.	The	ISA	allows	you	to	talk	to	the	machine.

The	distinction	between	computer	organization	and	computer	architecture	is	not	clear-cut.	People	in
the	 fields	 of	 computer	 science	 and	 computer	 engineering	 hold	 differing	 opinions	 as	 to	 exactly	 which
concepts	 pertain	 to	 computer	 organization	 and	which	 pertain	 to	 computer	 architecture.	 In	 fact,	 neither
computer	 organization	 nor	 computer	 architecture	 can	 stand	 alone.	 They	 are	 interrelated	 and
interdependent.	 We	 can	 truly	 understand	 each	 of	 them	 only	 after	 we	 comprehend	 both	 of	 them.	 Our
comprehension	of	computer	organization	and	architecture	ultimately	 leads	 to	a	deeper	understanding	of
computers	and	computation—the	heart	and	soul	of	computer	science.

1.2			THE	MAIN	COMPONENTS	OF	A	COMPUTER
Although	 it	 is	 difficult	 to	 distinguish	 between	 the	 ideas	 belonging	 to	 computer	 organization	 and	 those
ideas	belonging	to	computer	architecture,	it	is	impossible	to	say	where	hardware	issues	end	and	software
issues	begin.	Computer	scientists	design	algorithms	that	usually	are	implemented	as	programs	written	in
some	computer	language,	such	as	Java	or	C++.	But	what	makes	the	algorithm	run?	Another	algorithm,	of
course!	And	 another	 algorithm	 runs	 that	 algorithm,	 and	 so	on	until	 you	get	 down	 to	 the	machine	 level,
which	can	be	 thought	of	as	an	algorithm	implemented	as	an	electronic	device.	Thus,	modern	computers
are	actually	implementations	of	algorithms	that	execute	other	algorithms.	This	chain	of	nested	algorithms
leads	us	to	the	following	principle:

Principle	of	Equivalence	of	Hardware	and	Software:	Any	task	done	by	software	can	also	be	done
using	hardware,	and	any	operation	performed	directly	by	hardware	can	be	done	using	software.1

A	 special-purpose	 computer	 can	 be	 designed	 to	 perform	 any	 task,	 such	 as	 word	 processing,	 budget
analysis,	 or	 playing	 a	 friendly	 game	 of	 Tetris.	 Accordingly,	 programs	 can	 be	 written	 to	 carry	 out	 the
functions	of	special-purpose	computers,	such	as	the	embedded	systems	situated	in	your	car	or	microwave.
There	are	 times	when	a	simple	embedded	system	gives	us	much	better	performance	than	a	complicated



computer	 program,	 and	 there	 are	 times	 when	 a	 program	 is	 the	 preferred	 approach.	 The	 Principle	 of
Equivalence	 of	 Hardware	 and	 Software	 tells	 us	 that	 we	 have	 a	 choice.	 Our	 knowledge	 of	 computer
organization	and	architecture	will	help	us	to	make	the	best	choice.

We	begin	 our	 discussion	 of	 computer	 hardware	 by	 looking	 at	 the	 components	 necessary	 to	 build	 a
computing	system.	At	the	most	basic	level,	a	computer	is	a	device	consisting	of	three	pieces:

1.		A	processor	to	interpret	and	execute	programs
2.		A	memory	to	store	both	data	and	programs
3.		A	mechanism	for	transferring	data	to	and	from	the	outside	world

We	 discuss	 these	 three	 components	 in	 detail	 as	 they	 relate	 to	 computer	 hardware	 in	 the	 following
chapters.

Once	you	understand	computers	in	terms	of	their	component	parts,	you	should	be	able	to	understand
what	a	system	is	doing	at	all	times	and	how	you	could	change	its	behavior	if	so	desired.	You	might	even
feel	like	you	have	a	few	things	in	common	with	it.	This	idea	is	not	as	far-fetched	as	it	appears.	Consider
how	 a	 student	 sitting	 in	 class	 exhibits	 the	 three	 components	 of	 a	 computer:	 The	 student’s	 brain	 is	 the
processor,	the	notes	being	taken	represent	the	memory,	and	the	pencil	or	pen	used	to	take	notes	is	the	I/O
mechanism.	But	keep	in	mind	that	your	abilities	far	surpass	those	of	any	computer	in	the	world	today,	or
any	that	can	be	built	in	the	foreseeable	future.

1.3			AN	EXAMPLE	SYSTEM:	WADING	THROUGH	THE
JARGON

This	text	will	introduce	you	to	some	of	the	vocabulary	that	is	specific	to	computers.	This	jargon	can	be
confusing,	imprecise,	and	intimidating.	We	believe	that	with	a	little	explanation,	we	can	clear	the	fog.

For	 the	sake	of	discussion,	we	have	provided	a	facsimile	computer	advertisement	(see	Figure	1.1).
The	ad	is	typical	of	many	in	that	it	bombards	the	reader	with	phrases	such	as	“32GB	DDR3	SDRAM,”
“PCIe	sound	card,”	and	“128KB	L1	cache.”	Without	having	a	handle	on	such	terminology,	you	would	be
hard-pressed	to	know	whether	the	stated	system	is	a	wise	buy,	or	even	whether	the	system	is	able	to	serve
your	needs.	As	we	progress	through	this	text,	you	will	learn	the	concepts	behind	these	terms.



FIGURE	1.1	A	Typical	Computer	Advertisement

Before	we	explain	the	ad,	however,	we	need	to	discuss	something	even	more	basic:	the	measurement
terminology	you	will	encounter	throughout	your	study	of	computers.

It	seems	that	every	field	has	its	own	way	of	measuring	things.	The	computer	field	is	no	exception.	For
computer	people	to	tell	each	other	how	big	something	is,	or	how	fast	something	is,	they	must	use	the	same
units	of	measure.	The	common	prefixes	used	with	computers	are	given	in	Table	1.1.	Back	in	the	1960s,
someone	decided	 that	because	 the	powers	of	2	were	close	 to	 the	powers	of	10,	 the	same	prefix	names
could	be	used	for	both.	For	example,	210	is	close	to	103,	so	“kilo”	is	used	to	refer	to	them	both.	The	result
has	been	mass	confusion:	Does	a	given	prefix	refer	to	a	power	of	10	or	a	power	of	2?	Does	a	kilo	mean
103	of	something	or	210	of	something?	Although	 there	 is	no	definitive	answer	 to	 this	question,	 there	are
accepted	“standards	of	usage.”	Power-of-10	prefixes	are	ordinarily	used	 for	power,	electrical	voltage,
frequency	(such	as	computer	clock	speeds),	and	multiples	of	bits	(such	as	data	speeds	in	number	of	bits
per	second).	If	your	antiquated	modem	transmits	at	28.8kb/s,	then	it	transmits	28,800	bits	per	second	(or
28.8	×	103).	Note	 the	use	of	 the	 lowercase	“k”	 to	mean	103	 and	 the	 lowercase	“b”	 to	 refer	 to	bits.	An
uppercase	“K”	is	used	to	refer	to	the	power-of-2	prefix,	or	1024.	If	a	file	is	2KB	in	size,	then	it	is	2	×	210
or	2048	bytes.	Note	the	uppercase	“B”	to	refer	to	byte.	If	a	disk	holds	1MB,	then	it	holds	220	bytes	(or	one
megabyte)	of	information.

Not	knowing	whether	specific	prefixes	refer	to	powers	of	2	or	powers	of	10	can	be	very	confusing.
For	 this	 reason,	 the	 International	Electrotechnical	Commission,	with	help	 from	 the	National	 Institute	of
Standards	and	Technology,	has	approved	standard	names	and	symbols	for	binary	prefixes	to	differentiate
them	from	decimal	prefixes.	Each	prefix	is	derived	from	the	symbols	given	in	Table	1.1	by	adding	an	“i.”
For	example,	210	has	been	renamed	“kibi”	(for	kilobinary)	and	is	represented	by	the	symbol	Ki.	Similarly,
220	 is	 mebi,	 or	Mi,	 followed	 by	 gibi	 (Gi),	 tebi	 (Ti),	 pebi	 (Pi),	 exbi	 (Ei),	 and	 so	 on.	 Thus,	 the	 term
mebibyte,	which	means	220	bytes,	replaces	what	we	traditionally	call	a	megabyte.



TABLE	1.1	Common	Prefixes	Associated	with	Computer	Organization	and	Architecture

There	has	been	 limited	 adoption	of	 these	new	prefixes.	This	 is	 unfortunate	because,	 as	 a	 computer
user,	 it	 is	 important	 to	 understand	 the	 true	meaning	 of	 these	 prefixes.	A	 kilobyte	 (1KB)	 of	memory	 is
typically	 1024	bytes	 of	memory	 rather	 than	1000	bytes	 of	memory.	However,	 a	 1GB	disk	 drive	might
actually	be	1	billion	bytes	 instead	of	230	 (which	means	you	are	getting	 less	storage	 than	you	think).	All
3.5″	floppy	disks	are	described	as	storing	1.44MB	of	data	when	in	fact	they	store	1440KB	(or	1440	×	210
=	 1474560	 bytes).	 You	 should	 always	 read	 the	manufacturer’s	 fine	 print	 just	 to	 make	 sure	 you	 know
exactly	what	1K,	1KB,	or	1G	represents.	See	the	sidebar	“When	a	Gigabyte	Isn’t	Quite	…”	for	a	good
example	of	why	this	is	so	important.

Who	Uses	Zettabytes	and	Yottabytes	Anyway?
The	 National	 Security	 Agency	 (NSA),	 an	 intelligence-gathering	 organization	 in	 the	 United	 States,
announced	that	its	new	Intelligence	Community	Comprehensive	National	Cybersecurity	Initiative	Data
Center,	in	Bluffdale,	Utah,	was	set	to	open	in	October	2013.	Approximately	100,000	square	feet	of	the
structure	is	utilized	for	the	data	center,	Whereas	the	remaining	900,000+	square	feet	houses	technical
support	and	administration.	The	new	data	center	will	help	 the	NSA	monitor	 the	vast	volume	of	data
traffic	on	the	Internet.

It	is	estimated	that	the	NSA	collects	roughly	2	million	gigabytes	of	data	every	hour,	24	hours	a	day,
seven	days	a	week.	This	data	includes	foreign	and	domestic	emails,	cell	phone	calls,	Internet	searches,
various	purchases,	and	other	forms	of	digital	data.	The	computer	responsible	for	analyzing	this	data	for
the	new	data	center	 is	 the	Titan	supercomputer,	a	water-cooled	machine	capable	of	operating	at	100
petaflops	 (or	 100,000	 trillion	 calculations	 each	 second).	 The	 PRISM	 (Planning	 Tool	 for	 Resource
Integration,	Synchronization,	and	Management)	surveillance	program	will	gather,	process,	and	track	all
collected	data.

Although	we	tend	to	think	in	terms	of	gigabytes	and	terabytes	when	buying	storage	for	our	personal
computers	and	other	devices,	 the	NSA’s	data	center	 storage	capacity	will	be	measured	 in	zettabytes
(with	many	hypothesizing	that	storage	will	be	in	thousands	of	zettabytes,	or	yottabytes).	To	put	this	in
perspective,	in	a	2003	study	done	at	the	University	of	California	(UC)	Berkeley,	it	was	estimated	that
the	amount	of	new	data	created	in	2002	was	roughly	5EB.	An	earlier	study	by	UC	Berkeley	estimated
that	 by	 the	 end	 of	 1999,	 the	 sum	 of	 all	 information,	 including	 audio,	 video,	 and	 text,	 created	 by
humankind	was	approximately	12EB	of	data.	In	2006,	the	combined	storage	space	of	every	computer



hard	drive	 in	 the	world	was	estimated	at	160EB;	 in	2009,	 the	 Internet	as	a	whole	was	estimated	 to
contain	 roughly	 500	 total	 exabytes,	 or	 a	 half	 zettabyte,	 of	 data.	 Cisco,	 a	 U.S.	 computer	 network
hardware	manufacturer,	has	estimated	that	by	2016,	the	total	volume	of	data	on	the	global	internet	will
be	1.3ZB,	and	Seagate	Technology,	an	American	manufacturer	of	hard	drives,	has	estimated	 that	 the
total	storage	capacity	demand	will	reach	7ZB	in	2020.

The	NSA	is	not	the	only	organization	dealing	with	information	that	must	be	measured	in	numbers	of
bytes	 beyond	 the	 typical	 “giga”	 and	 “tera.”	 It	 is	 estimated	 that	 Facebook	 collects	 500TB	 of	 new
material	 per	 day;	YouTube	observes	 roughly	1TB	of	 new	video	 information	 every	 four	minutes;	 the
CERN	Large	Hadron	Collider	 generates	 1PB	 of	 data	 per	 second;	 and	 the	 sensors	 on	 a	 single,	 new
Boeing	jet	engine	produce	20TB	of	data	every	hour.	Although	not	all	of	the	aforementioned	examples
require	permanent	storage	of	the	data	they	create/handle,	these	examples	nonetheless	provide	evidence
of	the	remarkable	quantity	of	data	we	deal	with	every	day.	This	tremendous	volume	of	information	is
what	prompted	the	IBM	Corporation,	in	2011,	to	develop	and	announce	its	new	120-PB	hard	drive,	a
storage	cluster	consisting	of	200,000	conventional	hard	drives	harnessed	to	work	together	as	a	single
unit.	 If	 you	 plugged	 your	MP3	 player	 into	 this	 drive,	 you	would	 have	 roughly	 two	 billion	 hours	 of
music!

In	 this	 era	 of	 smartphones,	 tablets,	 Cloud	 computing,	 and	 other	 electronic	 devices,	 we	 will
continue	to	hear	people	talking	about	petabytes,	exabytes,	and	zettabytes	(and,	in	the	case	of	the	NSA,
even	 yottabytes).	 However,	 if	 we	 outgrow	 yottabytes,	 what	 then?	 In	 an	 effort	 to	 keep	 up	 with	 the
astronomical	growth	of	information	and	to	refer	to	even	bigger	volumes	of	data,	the	next	generation	of
prefixes	will	most	likely	include	the	terms	brontobyte	for	1027	and	gegobyte	for	1030	 (although	some
argue	for	geobyte	and	geopbyte	as	 the	prefixes	for	 the	 latter).	Although	these	are	not	yet	universally
accepted	international	prefix	units,	 if	history	is	any	indication,	we	will	need	them	sooner	rather	 than
later.

When	a	Gigabyte	Isn’t	Quite	…
Purchasing	 a	 new	 array	 of	 disk	 drives	 should	 be	 a	 relatively	 straightforward	 process	 once	 you
determine	 your	 technical	 requirements	 (e.g.,	 disk	 transfer	 rate,	 interface	 type,	 etc.).	 From	 here,	 you
should	 be	 able	 to	 make	 your	 decision	 based	 on	 a	 simple	 price/capacity	 ratio,	 such	 as	 dollars	 per
gigabyte,	and	then	you’ll	be	done.	Well,	not	so	fast.

The	first	boulder	in	the	path	of	a	straightforward	analysis	is	that	you	must	make	sure	that	the	drives
you	are	comparing	all	 express	 their	 capacities	either	 in	 formatted	or	unformatted	bytes.	As	much	as
16%	of	drive	 space	 is	 consumed	during	 the	 formatting	process.	 (Some	vendors	give	 this	number	 as
“usable	capacity.”)	Naturally,	 the	price–capacity	ratio	 looks	much	better	when	unformatted	bytes	are
used,	although	you	are	most	interested	in	knowing	the	amount	of	usable	space	a	disk	provides.

Your	next	 obstacle	 is	 to	make	 sure	 that	 the	 same	 radix	 is	 used	when	 comparing	disk	 sizes.	 It	 is
increasingly	common	for	disk	capacities	to	be	given	in	base	10	rather	than	base	2.	Thus,	a	“1GB”	disk
drive	has	a	capacity	of	109	=	1,000,000,000	bytes,	rather	than	230	=	1,073,741,824	bytes—a	reduction
of	about	7%.	This	can	make	a	huge	difference	when	purchasing	multigigabyte	enterprise-class	storage
systems.

As	 a	 concrete	 example,	 suppose	 you	 are	 considering	 purchasing	 a	 disk	 array	 from	 one	 of	 two
leading	 manufacturers.	 Manufacturer	 x	 advertises	 an	 array	 of	 12	 250GB	 disks	 for	 $20,000.



Manufacturer	y	is	offering	an	array	of	12	212.5GB	disks	for	$21,000.	All	other	things	being	equal,	the
cost	ratio	overwhelmingly	favors	Manufacturer	x:

Manufacturer	x:	$20,000	÷	(12	×	250GB)	 	$6.67	per	GB
Manufacturer	y:	$21,000	÷	(12	×	212.5GB)	 	$8.24	per	GB

Being	a	 little	suspicious,	you	make	a	 few	telephone	calls	and	 learn	 that	Manufacturer	x	 is	 citing
capacities	using	unformatted	base	10	gigabytes	and	Manufacturer	y	is	using	formatted	base	2	gigabytes.
These	facts	cast	the	problem	in	an	entirely	different	light:	To	start	with,	Manufacturer	x’s	disks	aren’t
really	 250GB	 in	 the	 way	 that	 we	 usually	 think	 of	 gigabytes.	 Instead,	 they	 are	 about	 232.8	 base	 2
gigabytes.	After	formatting,	 the	number	reduces	even	more	to	about	197.9GB.	So	the	real	cost	ratios
are,	in	fact:

Manufacturer	x:	$20,000	÷	(12	×	197.9GB)	 	$8.42	per	GB
Manufacturer	y:	$21,000	÷	(12	×	212.5GB)	 	$8.24	per	GB

Indeed,	 some	 vendors	 are	 scrupulously	 honest	 in	 disclosing	 the	 capabilities	 of	 their	 equipment.
Unfortunately,	 others	 reveal	 the	 facts	 only	 under	 direct	 questioning.	 Your	 job	 as	 an	 educated
professional	is	to	ask	the	right	questions.

When	we	want	 to	 talk	 about	 how	 fast	 something	 is,	we	 speak	 in	 terms	 of	 fractions	 of	 a	 second—
usually	thousandths,	millionths,	billionths,	or	trillionths.	Prefixes	for	these	metrics	are	given	in	the	right-
hand	 side	 of	 Table	 1.1.	 Generally,	 negative	 powers	 refer	 to	 powers	 of	 10,	 not	 powers	 of	 2.	 For	 this
reason,	 the	new	binary	prefix	standards	do	not	 include	any	new	names	for	 the	negative	powers.	Notice
that	 the	 fractional	prefixes	have	exponents	 that	are	 the	 reciprocal	of	 the	prefixes	on	 the	 left	 side	of	 the
table.	Therefore,	if	someone	says	to	you	that	an	operation	requires	a	microsecond	to	complete,	you	should
also	understand	that	a	million	of	those	operations	could	take	place	in	one	second.	When	you	need	to	talk
about	how	many	of	these	things	happen	in	a	second,	you	would	use	the	prefix	mega-.	When	you	need	to
talk	about	how	fast	the	operations	are	performed,	you	would	use	the	prefix	micro-.

Now	to	explain	the	ad.	The	microprocessor	in	the	ad	is	an	Intel	i7	Quad	Core	processor	(which	means
it	is	essentially	four	processors)	and	belongs	to	a	category	of	processors	known	as	multicore	processors
(Section	 1.10	 contains	 more	 information	 on	 multicore	 processors).	 This	 particular	 processor	 runs	 at
3.9GHz.	Every	 computer	 system	contains	 a	 clock	 that	 keeps	 the	 system	 synchronized.	The	 clock	 sends
electrical	pulses	simultaneously	to	all	main	components,	ensuring	that	data	and	instructions	will	be	where
they’re	supposed	to	be,	when	they’re	supposed	to	be	there.	The	number	of	pulsations	emitted	each	second
by	the	clock	is	its	frequency.	Clock	frequencies	are	measured	in	cycles	per	second,	or	hertz.	If	computer
system	clocks	generate	millions	of	pulses	per	second,	we	say	that	they	operate	in	the	megahertz	(MHz)
range.	Most	 computers	 today	 operate	 in	 the	gigahertz	(GHz)	 range,	 generating	 billions	 of	 pulses	 per
second.	And	because	nothing	much	gets	done	in	a	computer	system	without	microprocessor	involvement,
the	frequency	rating	of	the	microprocessor	is	crucial	to	overall	system	speed.	The	microprocessor	of	the
system	 in	our	advertisement	operates	at	3.9	billion	cycles	per	 second,	 so	 the	 seller	 says	 that	 it	 runs	at
3.9GHz.

The	 fact	 that	 this	 microprocessor	 runs	 at	 3.9GHz,	 however,	 doesn’t	 necessarily	 mean	 that	 it	 can
execute	 3.9	 billion	 instructions	 every	 second	 or,	 equivalently,	 that	 every	 instruction	 requires	 0.039
nanoseconds	 to	 execute.	Later	 in	 this	 text,	 you	will	 see	 that	 each	 computer	 instruction	 requires	 a	 fixed
number	 of	 cycles	 to	 execute.	 Some	 instructions	 require	 one	 clock	 cycle;	 however,	 most	 instructions



require	more	than	one.	The	number	of	instructions	per	second	that	a	microprocessor	can	actually	execute
is	proportionate	to	its	clock	speed.	The	number	of	clock	cycles	required	to	carry	out	a	particular	machine
instruction	is	a	function	of	both	the	machine’s	organization	and	its	architecture.

The	next	 thing	we	see	 in	 the	ad	 is	 “1600MHz	32GB	DDR3	SDRAM.”	The	1600MHz	refers	 to	 the
speed	of	 the	 system	bus,	which	 is	 a	group	of	wires	 that	moves	data	 and	 instructions	 to	various	places
within	 the	 computer.	 Like	 the	microprocessor,	 the	 speed	 of	 the	 bus	 is	 also	measured	 in	MHz	or	GHz.
Many	computers	have	a	special	local	bus	for	data	that	supports	very	fast	transfer	speeds	(such	as	those
required	 by	 video).	 This	 local	 bus	 is	 a	 high-speed	 pathway	 that	 connects	 memory	 directly	 to	 the
processor.	Bus	speed	ultimately	sets	the	upper	limit	on	the	system’s	information-carrying	capability.

The	system	 in	our	advertisement	also	boasts	a	memory	capacity	of	32	gigabytes	 (GB),	or	about	32
billion	characters.	Memory	capacity	not	only	determines	 the	size	of	 the	programs	you	can	run,	but	also
how	many	programs	you	can	run	at	the	same	time	without	bogging	down	the	system.	Your	application	or
operating	system	manufacturer	will	usually	recommend	how	much	memory	you’ll	need	to	run	its	products.
(Sometimes	these	recommendations	can	be	hilariously	conservative,	so	be	careful	whom	you	believe!)

In	addition	to	memory	size,	our	advertised	system	provides	us	with	a	memory	type,	SDRAM,	short	for
synchronous	 dynamic	 random	 access	 memory.	 SDRAM	 is	 much	 faster	 than	 conventional
(nonsynchronous)	memory	because	it	can	synchronize	itself	with	a	microprocessor’s	bus.	The	system	in
our	 ad	 has	DDR3	 SDRAM,	 or	 double	 data	 rate	 type	 three	 SDRAM	 (for	 more	 information	 on	 the
different	types	of	memory,	see	Chapter	6).

A	Look	Inside	a	Computer
Have	 you	 ever	 wondered	 what	 the	 inside	 of	 a	 computer	 really	 looks	 like?	 The	 example	 computer
described	in	this	section	gives	a	good	overview	of	the	components	of	a	modern	PC.	However,	opening
a	computer	and	attempting	 to	 find	and	 identify	 the	various	pieces	can	be	 frustrating,	even	 if	you	are
familiar	with	the	components	and	their	functions.



Photo	courtesy	of	Moxfyre	at	en.wikipedia	(from
http://commons.wikimedia.org/wiki/File:Acer_E360_Socket_939_motherboard_by_Foxconn.svg).

If	you	remove	the	cover	on	your	computer,	you	will	no	doubt	first	notice	a	big	metal	box	with	a	fan
attached.	This	is	the	power	supply.	You	will	also	see	various	drives,	including	a	hard	drive	and	a	DVD
drive	 (or	 perhaps	 an	 older	 floppy	 or	 CD	 drive).	 There	 are	many	 integrated	 circuits—small,	 black
rectangular	boxes	with	legs	attached.	You	will	also	notice	electrical	pathways,	or	buses,	in	the	system.
There	are	printed	circuit	boards	(expansion	cards)	that	plug	into	sockets	on	the	motherboard,	the	large
board	at	 the	bottom	of	a	standard	desktop	PC	or	on	the	side	of	a	PC	configured	as	a	 tower	or	mini-
tower.	The	motherboard	is	the	printed	circuit	board	that	connects	all	the	components	in	the	computer,
including	the	CPU,	and	RAM	and	ROM,	as	well	as	an	assortment	of	other	essential	components.	The
components	on	the	motherboard	tend	to	be	the	most	difficult	to	identify.	Above	you	see	an	Acer	E360
motherboard	with	the	more	important	components	labeled.

The	 Southbridge,	 an	 integrated	 circuit	 that	 controls	 the	 hard	 disk	 and	 I/O	 (including	 sound	 and
video	cards),	is	a	hub	that	connects	slower	I/O	devices	to	the	system	bus.	These	devices	connect	via
the	I/O	ports	at	the	bottom	of	the	board.	The	PCI	slots	allow	for	expansion	boards	belonging	to	various
PCI	devices.	This	motherboard	also	has	PS/2	and	Firewire	connectors.	It	has	serial	and	parallel	ports,
in	addition	 to	 four	USB	ports.	This	motherboard	has	 two	 IDE	connector	 slots,	 four	SATA	connector
slots,	and	one	floppy	disk	controller.	The	super	I/O	chip	 is	a	 type	of	 I/O	controller	 that	controls	 the
floppy	disk,	both	the	parallel	and	serial	ports,	and	the	keyboard	and	mouse.	The	motherboard	also	has
an	integrated	audio	chip,	as	well	as	an	integrated	Ethernet	chip	and	an	integrated	graphics	processor.
There	are	four	RAM	memory	banks.	There	is	no	processor	currently	plugged	into	this	motherboard,	but
we	see	the	socket	where	the	CPU	is	to	be	placed.	All	computers	have	an	internal	battery,	as	seen	in	the
top	middle	 of	 the	 picture.	 The	 power	 supply	 plugs	 into	 the	 power	 connector.	 The	BIOS	 flash	 chip
contains	the	instructions	in	ROM	that	your	computer	uses	when	it	is	first	powered	up.

A	note	of	caution	regarding	looking	inside	the	box:	There	are	many	safety	issues,	for	both	you	and
your	computer,	 involved	with	removing	the	cover.	There	are	many	things	you	can	do	to	minimize	the

http://commons.wikimedia.org/wiki/File:Acer_E360_Socket_939_motherboard_by_Foxconn.svg


risks.	First	and	foremost,	make	sure	the	computer	is	turned	off.	Leaving	it	plugged	in	is	often	preferred,
as	this	offers	a	path	for	static	electricity.	Before	opening	your	computer	and	touching	anything	inside,
you	should	make	sure	you	are	properly	grounded	so	static	electricity	will	not	damage	any	components.
Many	 of	 the	 edges,	 both	 on	 the	 cover	 and	 on	 the	 circuit	 boards,	 can	 be	 sharp,	 so	 take	 care	 when
handling	the	various	pieces.	Trying	to	jam	misaligned	cards	into	sockets	can	damage	both	the	card	and
the	motherboard,	so	be	careful	if	you	decide	to	add	a	new	card	or	remove	and	reinstall	an	existing	one.

The	 next	 line	 in	 the	 ad,	 “128KB	 L1	 cache,	 2MB	 L2	 cache”	 also	 describes	 a	 type	 of	 memory.	 In
Chapter	6,	you	will	learn	that	no	matter	how	fast	a	bus	is,	it	still	takes	“a	while”	to	get	data	from	memory
to	 the	processor.	To	provide	even	faster	access	 to	data,	many	systems	contain	a	special	memory	called
cache.	 The	 system	 in	 our	 advertisement	 has	 two	 kinds	 of	 cache.	 Level	 1	 cache	 (L1)	 is	 a	 small,	 fast
memory	 cache	 that	 is	 built	 into	 the	microprocessor	 chip	 and	 helps	 speed	 up	 access	 to	 frequently	 used
data.	 Level	 2	 cache	 (L2)	 is	 a	 collection	 of	 fast,	 built-in	 memory	 chips	 situated	 between	 the
microprocessor	and	main	memory.	Notice	that	the	cache	in	our	system	has	a	capacity	of	kilobytes	(KB),
which	is	much	smaller	than	main	memory.	In	Chapter	6,	you	will	learn	how	cache	works,	and	that	a	bigger
cache	isn’t	always	better.

On	the	other	hand,	everyone	agrees	that	the	more	fixed	disk	capacity	you	have,	the	better	off	you	are.
The	advertised	system	has	a	1TB	hard	drive,	an	average	size	by	today’s	standards.	The	storage	capacity
of	a	fixed	(or	hard)	disk	is	not	the	only	thing	to	consider,	however.	A	large	disk	isn’t	very	helpful	if	it	is
too	slow	for	its	host	system.	The	computer	in	our	ad	has	a	hard	drive	that	rotates	at	7200	revolutions	per
minute	(RPM).	To	the	knowledgeable	reader,	this	indicates	(but	does	not	state	outright)	that	this	is	a	fairly
fast	drive.	Usually,	disk	speeds	are	stated	in	terms	of	the	number	of	milliseconds	required	(on	average)	to
access	data	on	the	disk,	in	addition	to	how	fast	the	disk	rotates.

Rotational	 speed	 is	 only	 one	 of	 the	 determining	 factors	 in	 the	 overall	 performance	 of	 a	 disk.	 The
manner	 in	 which	 it	 connects	 to—or	 interfaces	 with—the	 rest	 of	 the	 system	 is	 also	 important.	 The
advertised	system	uses	a	SATA	(serial	advanced	technology	attachment	or	serial	ATA)	disk	interface.
This	is	an	evolutionary	storage	interface	that	has	replaced	IDE,	or	integrated	drive	electronics.	Another
common	interface	is	EIDE,	enhanced	integrated	drive	electronics,	a	cost-effective	hardware	interface
alternative	for	mass	storage	devices.	EIDE	contains	special	circuits	that	allow	it	to	enhance	a	computer’s
connectivity,	speed,	and	memory	capability.	Most	ATA,	IDE,	and	EIDE	systems	share	the	main	system	bus
with	the	processor	and	memory,	so	the	movement	of	data	 to	and	from	the	disk	is	also	dependent	on	the
speed	of	the	system	bus.

Whereas	 the	system	bus	 is	 responsible	 for	all	data	movement	 internal	 to	 the	computer,	ports	 allow
movement	of	data	to	and	from	devices	external	to	the	computer.	Our	ad	speaks	of	two	different	ports	with
the	line,	“10	USB	ports,	1	serial	port.”	Serial	ports	transfer	data	by	sending	a	series	of	electrical	pulses
across	one	or	two	data	lines.	Another	type	of	port	some	computers	have	is	a	parallel	port.	Parallel	ports
use	at	least	eight	data	lines,	which	are	energized	simultaneously	to	transmit	data.	Many	new	computers	no
longer	come	with	serial	or	parallel	ports,	but	instead	have	only	USB	ports.	USB	(universal	serial	bus)	is
a	 popular	 external	 bus	 that	 supports	 Plug-and-Play	 installation	 (the	 ability	 to	 configure	 devices
automatically)	 as	well	 as	hot	 plugging	 (the	 ability	 to	 add	 and	 remove	 devices	while	 the	 computer	 is
running).

Expansion	slots	are	openings	on	the	motherboard	where	various	boards	can	be	plugged	in	to	add	new
capabilities	 to	a	computer.	These	slots	can	be	used	 for	 such	 things	as	additional	memory,	video	cards,
sound	cards,	network	cards,	and	modems.	Some	systems	augment	their	main	bus	with	dedicated	I/O	buses



using	these	expansion	slots.	Peripheral	Component	Interconnect	(PCI)	is	one	such	I/O	bus	standard	that
supports	the	connection	of	multiple	peripheral	devices.	PCI,	developed	by	the	Intel	Corporation,	operates
at	high	speeds	and	also	supports	Plug-and-Play.

PCI	is	an	older	standard	(it	has	been	around	since	1993)	and	was	superseded	by	PCI-x	in	2004.	PCI-x
basically	doubled	the	bandwidth	of	regular	PCI.	Both	PCI	and	PCI-x	are	parallel	in	operation.	In	2004,
PCI	 express	 (PCIe)	 replaced	 PCI-x.	 PCIe	 operates	 in	 serial	 and	 is	 currently	 the	 standard	 in	 today’s
computers.	 In	 the	 ad,	we	 see	 the	 computer	 has	 1	PCI	 slot,	 1	PCI	 x	 16	 slot,	 and	 2	PCI	 x	 1	 slots.	This
computer	 also	 has	 Bluetooth	 (a	 wireless	 technology	 allowing	 the	 transfer	 of	 information	 over	 short
distances)	and	an	HDMI	port	(High-Definition	Multimedia	Interface,	used	to	transmit	audio	and	video).

PCIe	 has	 not	 only	 superseded	 PCI	 and	 PCI-x,	 but	 in	 the	 graphics	world,	 it	 has	 also	 progressively
replaced	the	AGP	(accelerated	graphics	port)	graphics	interface	designed	by	Intel	specifically	for	3D
graphics.	The	computer	in	our	ad	has	a	PCIe	video	card	with	1GB	of	memory.	The	memory	is	used	by	a
special	graphics	processing	unit	on	the	card.	This	processor	is	responsible	for	performing	the	necessary
calculations	to	render	the	graphics	so	the	main	processor	of	the	computer	is	not	required	to	do	so.	This
computer	also	has	a	PCIe	sound	card;	a	sound	card	contains	components	needed	by	the	system’s	stereo
speakers	and	microphone.

In	addition	to	telling	us	about	the	ports	and	expansion	slots	in	the	advertised	system,	the	ad	supplies	us
with	information	on	an	LCD	(liquid	crystal	display)	monitor,	or	“flat	panel”	display.	Monitors	have	little
to	do	with	the	speed	or	efficiency	of	a	computer	system,	but	they	have	great	bearing	on	the	comfort	of	the
user.	This	LCD	monitor	has	the	following	specifications:	24",	1920	×	1200	WUXGA,	300	cd/m2,	active
matrix,	1000:1	(static),	8ms,	24-bit	color	(16.7	million	colors),	VGA/DVI	input,	and	2USB	ports.	LCDs
use	a	liquid	crystal	material	sandwiched	between	two	pieces	of	polarized	glass.	Electric	currents	cause
the	crystals	 to	move	around,	allowing	differing	 levels	of	backlighting	 to	pass	 through,	creating	 the	 text,
colors,	 and	 pictures	 that	 appear	 on	 the	 screen.	 This	 is	 done	 by	 turning	 on/off	 different	 pixels,	 small
“picture	elements”	or	dots	on	the	screen.	Monitors	typically	have	millions	of	pixels,	arranged	in	rows	and
columns.	This	monitor	has	1920	×	1200	(more	than	a	million)	pixels.

Most	 LCDs	 manufactured	 today	 utilize	 active	 matrix	 technology,	 Whereas	 passive	 technology	 is
reserved	for	smaller	devices	such	as	calculators	and	clocks.	Active	matrix	technology	uses	one	transistor
per	 pixel;	passive	matrix	 technology	 uses	 transistors	 that	 activate	 entire	 rows	 and	 columns.	Although
passive	technology	is	 less	costly,	active	technology	renders	a	better	 image	because	it	drives	each	pixel
independently.

The	LCD	monitor	in	the	ad	is	24",	measured	diagonally.	This	measurement	affects	the	aspect	ratio	of
the	monitor—the	ratio	of	horizontal	pixels	 to	vertical	pixels	 that	 the	monitor	can	display.	Traditionally,
this	ratio	was	4:3,	but	newer	widescreen	monitors	use	ratios	of	16:10	or	16:9.	Ultra-wide	monitors	use	a
higher	ratio,	around	3:1	or	2:1.

When	discussing	resolution	and	LCDs,	it	is	important	to	note	that	LCDs	have	a	native	resolution;	this
means	 LCDs	 are	 designed	 for	 a	 specific	 resolution	 (generally	 given	 in	 horizontal	 pixels	 by	 vertical
pixels).	 Although	 you	 can	 change	 the	 resolution,	 the	 image	 quality	 typically	 suffers.	 Resolutions	 and
aspect	ratios	are	often	paired.	When	listing	resolutions	for	LCDs,	manufacturers	often	use	the	following
abbreviations:	 XGA	 (extended	 graphics	 array);	 XGA+	 (extended	 graphics	 array	 plus);	 SXGA	 (super
XGA);	 UXGA	 (ultra	 XGA);	 W	 prefix	 (wide);	 and	 WVA	 (wide	 viewing	 angle).	 The	 viewing	 angle
specifies	an	angle,	in	degrees,	that	indicates	at	which	angle	a	user	can	still	see	the	image	on	the	screen;
common	angles	range	from	120	to	170	degrees.	Some	examples	of	standard	4:3	native	resolutions	include
XGA	(1024	×	768),	SXGA	(1280	×	1024),	SXGA+	(1400	×	1050),	and	UXGA	(1600	×	1200).	Common
16:9	 and	16:10	 resolutions	 include	WXGA	(1280	×	800),	WXGA+	 (1440	×	900),	WSXGA+	 (1680	×



1050),	and	WUXGA	(1920	×	1200).
LCD	monitor	specifications	often	list	a	response	time,	which	 indicates	 the	rate	at	which	 the	pixels

can	change	colors.	If	this	rate	is	too	slow,	ghosting	and	blurring	can	occur.	The	LCD	monitor	in	the	ad	has
a	response	time	of	8ms.	Originally,	response	rates	measured	the	time	to	go	from	black	to	white	and	back
to	black.	Many	manufacturers	now	list	the	response	time	for	gray-to-gray	transitions	(which	is	generally
faster).	Because	they	typically	do	not	specify	which	transition	has	been	measured,	 it	 is	very	difficult	 to
compare	monitors.	One	manufacturer	may	specify	a	response	time	of	2ms	for	a	monitor	(and	it	measures
gray-to-gray),	 while	 another	 manufacturer	 may	 specify	 a	 response	 rate	 of	 5ms	 for	 its	 monitor	 (and	 it
measures	black-to-white-to-black).	In	reality,	the	monitor	with	the	response	rate	of	5ms	may	actually	be
faster	overall.

Continuing	with	the	ad,	we	see	that	the	LCD	monitor	has	a	specification	of	300	cd/m2,	which	 is	 the
monitor’s	 luminance.	Luminance	 (or	 image	 brightness)	 is	 a	 measure	 of	 the	 amount	 of	 light	 an	 LCD
monitor	emits.	This	measure	is	typically	given	in	candelas	per	square	meter	(cd/m2).	When	purchasing	a
monitor,	 the	 brightness	 level	 should	 be	 at	 least	 250	 (the	 higher	 the	 better);	 the	 average	 for	 computer
monitors	is	from	200	to	300	cd/m2.	Luminance	affects	how	easy	a	monitor	is	to	read,	particularly	in	low
light	situations.

Whereas	 luminance	measures	 the	brightness,	 the	contrast	ratio	measures	 the	difference	 in	 intensity
between	bright	whites	and	dark	blacks.	Contrast	ratios	can	be	static	(the	ratio	of	the	brightest	point	on	the
monitor	to	the	darkest	point	on	the	monitor	that	can	be	produced	at	a	given	instant	in	time)	or	dynamic	(the
ratio	of	the	darkest	point	in	one	image	to	the	lightest	point	in	another	image	produced	at	a	separate	point	in
time).	 Static	 specifications	 are	 typically	 preferred.	 A	 low	 static	 ratio	 (such	 as	 300:1)	 makes	 it	 more
difficult	to	discern	shades;	a	good	static	ratio	is	500:1	(with	ranges	from	400:1	to	3000:1).	The	monitor	in
the	ad	has	a	static	contrast	ratio	of	1000:1.	LCD	monitors	can	have	dynamic	ratios	of	12,000,000:1	and
higher,	but	a	higher	dynamic	number	does	not	necessarily	mean	the	monitor	is	better	than	a	monitor	with	a
much	lower	static	ratio.

The	next	specification	given	for	the	LCD	monitor	in	the	ad	is	its	color	depth.	This	number	reflects	the
number	of	colors	that	can	be	displayed	on	the	screen	at	one	time.	Common	depths	are	8-bit,	16-bit,	24-bit,
and	32-bit.	The	LCD	monitor	in	our	ad	can	display	224,	or	roughly	16.7	million	colors.

LCD	monitors	 also	 have	 many	 optional	 features.	 Some	 have	 integrated	 USB	 ports	 (as	 in	 this	 ad)
and/or	 speakers.	Many	 are	HDCP	 (high	 bandwidth	 digital	 content	 protection)	 compliant	 (which	means
you	 can	watch	HDCP-encrypted	materials,	 such	 as	Blu-ray	 discs).	LCD	monitors	may	 also	 come	with
both	VGA	(video	graphics	array)	and	DVI	(digital	video	interface)	connections	(as	seen	in	the	ad).	VGA
sends	analog	signals	to	the	monitor	from	the	computer,	which	requires	digital-to-analog	conversion;	DVI
is	already	digital	 in	format	and	requires	no	conversion,	resulting	in	a	cleaner	signal	and	crisper	 image.
Although	 an	 LCD	 monitor	 typically	 provides	 better	 images	 using	 a	 DVI	 connection,	 having	 both
connectors	allows	one	to	use	an	LCD	with	existing	system	components.

Now	that	we	have	discussed	how	an	LCD	monitor	works	and	we	understand	the	concept	of	a	pixel,
let’s	go	back	and	discuss	graphics	cards	(also	called	video	cards)	in	more	detail.	With	millions	of	pixels
on	the	screen,	it	is	quite	challenging	to	determine	which	ones	should	be	off	and	which	ones	should	be	on
(and	 in	what	 color).	 The	 job	 of	 the	 graphics	 card	 is	 to	 input	 the	 binary	 data	 from	 your	 computer	 and
“translate”	 it	 into	 signals	 to	 control	 all	 pixels	 on	 the	 monitor;	 the	 graphics	 card	 therefore	 acts	 as	 a
“middleman”	between	the	computer’s	processor	and	monitor.	As	mentioned	previously,	some	computers
have	integrated	graphics,	which	means	the	computer’s	processor	is	responsible	for	doing	this	translation,
causing	 a	 large	workload	 on	 this	 processor;	 therefore,	many	 computers	 have	 slots	 for	 graphics	 cards,
allowing	the	processor	on	the	graphics	card	(called	a	graphics	processing	unit,	or	GPU)	to	perform	this



translation	instead.
The	GPU	is	no	ordinary	processor;	it	is	designed	to	most	efficiently	perform	the	complex	calculations

required	 for	 image	 rendering	 and	 contains	 special	 programs	 allowing	 it	 to	 perform	 this	 task	 more
effectively.	Graphics	cards	typically	contain	their	own	dedicated	RAM	used	to	hold	temporary	results	and
information,	 including	the	location	and	color	for	each	pixel	on	the	screen.	A	frame	buffer	 (part	of	 this
RAM)	is	used	to	store	rendered	images	until	these	images	are	intended	to	be	displayed.	The	memory	on	a
graphics	card	connects	to	a	digital-to-analog	converter	(DAC),	a	device	that	converts	a	binary	image	to
analog	signals	 that	 a	monitor	can	understand	and	sends	 them	via	a	cable	 to	 the	monitor.	Most	graphics
cards	 today	have	 two	 types	of	monitor	connections:	DVI	for	LCD	screens	and	VGA	for	 the	older	CRT
(cathode	ray	tube)	screens.

Most	 graphics	 cards	 are	 plugged	 into	 slots	 in	 computer	motherboards,	 so	 are	 thus	 powered	 by	 the
computers	themselves.	However,	some	are	very	powerful	and	actually	require	a	connection	directly	to	a
computer’s	power	supply.	These	high-end	graphics	cards	are	typically	found	in	computers	that	deal	with
image-intensive	applications,	such	as	video	editing	and	high-end	gaming.

Continuing	with	the	ad,	we	see	that	the	advertised	system	has	a	16x	DVD	+/–	RW	drive.	This	means
we	 can	 read	 and	write	 to	DVDs	 and	CDs.	 “16x”	 is	 a	measure	 of	 the	 drive	 speed	 and	measures	 how
quickly	the	drive	can	read	and	write.	DVDs	and	CDs	are	discussed	in	more	detail	in	Chapter	7.

Computers	are	more	useful	if	they	can	communicate	with	the	outside	world.	One	way	to	communicate
is	to	employ	an	Internet	service	provider	and	a	modem.	There	is	no	mention	of	a	modem	for	the	computer
in	 our	 ad,	 as	 many	 desktop	 owners	 use	 external	 modems	 provided	 by	 their	 Internet	 service	 provider
(phone	modem,	cable	modem,	satellite	modem,	etc).	However,	both	USB	and	PCI	modems	are	available
that	allow	you	to	connect	your	computer	to	the	Internet	using	the	phone	line;	many	of	these	also	allow	you
to	use	your	computer	as	a	fax	machine.	I/O	and	I/O	buses	in	general	are	discussed	in	Chapter	7.

A	computer	can	also	connect	directly	to	a	network.	Networking	allows	computers	to	share	files	and
peripheral	 devices.	 Computers	 can	 connect	 to	 a	 network	 via	 either	 a	wired	 or	 a	wireless	 technology.
Wired	 computers	 use	Ethernet	 technology,	 an	 international	 standard	 networking	 technology	 for	 wired
networks,	 and	 there	 are	 two	 options	 for	 the	 connection.	 The	 first	 is	 to	 use	 a	network	 interface	 card
(NIC),	which	connects	to	the	motherboard	via	a	PCI	slot.	NICs	typically	support	10/100	Ethernet	(both
Ethernet	at	a	 speed	of	10Mbps	and	 fast	Ethernet	at	a	 speed	of	100Mbps)	or	10/100/1000	 (which	adds
Ethernet	at	1,000Mbps).	Another	option	for	wired	network	capability	is	integrated	Ethernet,	which	means
that	the	motherboard	itself	contains	all	necessary	components	to	support	10/100	Ethernet;	thus	no	PCI	slot
is	required.	Wireless	networking	has	the	same	two	options.	Wireless	NICs	are	available	from	a	multitude
of	 vendors	 and	 are	 available	 for	 both	 desktops	 and	 laptops.	 For	 installation	 in	 desktop	machines,	 you
need	 an	 internal	 card	 that	 will	 most	 likely	 have	 a	 small	 antenna.	 Laptops	 usually	 use	 an	 expansion
(PCMCIA)	slot	for	the	wireless	network	card,	and	vendors	have	started	to	integrate	the	antenna	into	the
back	of	 the	case	behind	 the	screen.	 Integrated	wireless	 (such	as	 that	 found	 in	 the	 Intel	Centrino	mobile
technology)	eliminates	the	hassle	of	cables	and	cards.	The	system	in	our	ad	employs	integrated	Ethernet.
Note	 that	 many	 new	 computers	 may	 have	 integrated	 graphics	 and/or	 integrated	 sound	 in	 addition	 to
integrated	Ethernet.

Although	we	cannot	delve	into	all	of	 the	brand-specific	components	available,	after	completing	this
text,	 you	 should	 understand	 the	 concept	 of	 how	most	 computer	 systems	 operate.	 This	 understanding	 is
important	for	casual	users	as	well	as	experienced	programmers.	As	a	user,	you	need	to	be	aware	of	the
strengths	and	limitations	of	your	computer	system	so	you	can	make	informed	decisions	about	applications
and	 thus	use	your	system	more	effectively.	As	a	programmer,	you	need	 to	understand	exactly	how	your
system	hardware	functions	so	you	can	write	effective	and	efficient	programs.	For	example,	something	as



simple	 as	 the	 algorithm	 your	 hardware	 uses	 to	 map	 main	 memory	 to	 cache	 and	 the	 method	 used	 for
memory	 interleaving	 can	 have	 a	 tremendous	 effect	 on	 your	 decision	 to	 access	 array	 elements	 in	 row
versus	column-major	order.

Throughout	 this	 text,	 we	 investigate	 both	 large	 and	 small	 computers.	 Large	 computers	 include
mainframes,	 enterprise-class	 servers,	 and	 supercomputers.	 Small	 computers	 include	 personal	 systems,
workstations,	 and	 handheld	 devices.	 We	 will	 show	 that	 regardless	 of	 whether	 they	 carry	 out	 routine
chores	 or	 perform	 sophisticated	 scientific	 tasks,	 the	 components	 of	 these	 systems	 are	 very	 similar.	We
also	visit	some	architectures	that	lie	outside	what	is	now	the	mainstream	of	computing.	We	hope	that	the
knowledge	you	gain	from	this	text	will	ultimately	serve	as	a	springboard	for	your	continuing	studies	the
vast	and	exciting	fields	of	computer	organization	and	architecture.

Tablet	Computers
Ken	 Olsen,	 the	 founder	 of	 Digital	 Equipment	 Corporation,	 has	 been	 unfairly	 ridiculed	 for	 saying
“There	 is	no	 reason	 for	 any	 individual	 to	have	a	 computer	 in	his	home.”	He	made	 this	 statement	 in
1977	 when	 the	 word,	 computer,	 evoked	 a	 vision	 of	 the	 type	 of	 machine	 made	 by	 his	 company:
refrigerator-sized	behemoths	that	cost	a	fortune	and	required	highly	skilled	personnel	to	operate.	One
might	safely	say	that	no	one—except	perhaps	a	computer	engineer—ever	had	such	a	machine	in	his	or
her	home.

As	already	discussed,	the	“personal	computing”	wave	that	began	in	the	1980s	erupted	in	the	1990s
with	the	establishment	of	the	World	Wide	Web.	By	2010,	decennial	census	data	reported	that	68%	of
U.S.	households	claimed	to	have	a	personal	computer.	There	is,	however,	some	evidence	that	this	trend
has	peaked	and	is	now	in	decline,	owing	principally	to	the	widespread	use	of	smartphones	and	tablet
computers.	According	to	some	estimates,	as	many	as	65%	of	Internet	users	in	the	United	States	connect
exclusively	via	mobile	platforms.	The	key	 to	 this	 trend	 is	 certainly	 the	 enchanting	usability	of	 these
devices.

We	hardly	need	the	power	of	a	desktop	computer	to	surf	the	Web,	read	email,	or	listen	to	music.
Much	more	economical	and	lightweight,	tablet	computers	give	us	exactly	what	we	need	in	an	easy-to-
use	 package.	 With	 its	 booklike	 form,	 one	 is	 tempted	 to	 claim	 that	 a	 tablet	 constitutes	 the	 perfect
“portable	computer.”

The	 figure	 on	 the	 next	 page	 shows	 a	 disassembled	 Pandigital	 Novel	 tablet	 computer.	We	 have
labeled	several	 items	common	 to	all	 tablets.	The	mini	USB	port	provides	access	 to	 internal	 storage
and	the	removable	SD	card.	Nearly	all	tablets	provide	Wi-Fi	connection	to	the	Internet,	with	some	also
supporting	2G,	3G,	and	4G	cellular	protocols.	Battery	 life	can	be	as	much	as	14	hours	 for	 the	most
efficient	high-end	tablet	computers.	Unlike	the	Pandigital,	most	tablets	include	at	least	one	camera	for
still	photography	and	live	video.



A	Disassembled	Tablet	Computer
Courtesy	of	Julia	Lobur.

A	touchscreen	dominates	the	real	estate	of	all	portable	devices.	For	consumer	tablets	and	phones,
touchscreens	come	in	two	general	types:	resistive	and	capacitive.	Resistive	 touchscreens	respond	 to
the	pressure	of	a	 finger	or	a	stylus.	Capacitive	 touchscreens	 react	 to	 the	electrical	properties	of	 the
human	 skin.	 Resistive	 screens	 are	 less	 sensitive	 than	 capacitive	 screens,	 but	 they	 provide	 higher
resolution.	 Unlike	 resistive	 screens,	 capacitive	 screens	 support	 multitouch,	 which	 is	 the	 ability	 to
detect	the	simultaneous	press	of	two	or	more	fingers.

Military	and	medical	computer	touchscreens	are	necessarily	more	durable	than	those	intended	for
the	consumer	market.	Two	different	 technologies,	 surface	acoustic	wave	 touch	sense	 and	 infrared
touch	 sense,	 respectively,	 send	 ultrasonic	 and	 infrared	 waves	 across	 the	 surface	 of	 a	 ruggedized
touchscreen.	The	matrix	 of	waves	 is	 broken	when	 a	 finger	 comes	 in	 contact	with	 the	 surface	 of	 the
screen.

Because	of	 its	high	efficiency,	cell	phone	CPU	technology	has	been	adapted	for	use	 in	 the	 tablet
platform.	The	mobile	computing	space	has	been	dominated	by	ARM	chips,	although	 Intel	 and	AMD
have	been	gaining	market	share.	Operating	systems	for	 these	devices	 include	variants	of	Android	by
Google	 and	 iOS	 by	 Apple.	 Microsoft’s	 Surface	 tablets	 running	Windows	 8	 provide	 access	 to	 the
Microsoft	Office	suite	of	products.

As	tablet	computers	continue	to	replace	desktop	systems,	they	will	also	find	uses	in	places	where
traditional	computers—even	laptops—are	impractical.	Thousands	of	free	and	inexpensive	applications
are	 available	 for	 all	 platforms,	 thereby	 increasing	 demand	 even	 further.	 Educational	 applications
abound.	With	a	 size,	 shape,	and	weight	 similar	 to	a	paperback	book,	 tablet	computers	are	 replacing
paper	 textbooks	 in	 some	 U.S.	 school	 districts.	 Thus,	 the	 elusive	 dream	 of	 “a	 computer	 for	 every
student”	is	finally	coming	true—thanks	to	the	tablet.	By	1985,	people	were	already	laughing	at	Olsen’s
“home	computer”	assertion.	Would	perhaps	these	same	people	have	scoffed	if	instead	he	would	have
predicted	a	computer	in	every	backpack?

1.4			STANDARDS	ORGANIZATIONS
Suppose	you	decide	you’d	like	to	have	one	of	those	nifty	new	LCD	widescreen	monitors.	You	figure	you



can	shop	around	a	bit	to	find	the	best	price.	You	make	a	few	phone	calls,	surf	the	Web,	and	drive	around
town	until	you	find	the	one	that	gives	you	the	most	for	your	money.	From	your	experience,	you	know	you
can	 buy	 your	 monitor	 anywhere	 and	 it	 will	 probably	 work	 fine	 on	 your	 system.	 You	 can	 make	 this
assumption	 because	 computer	 equipment	 manufacturers	 have	 agreed	 to	 comply	 with	 connectivity	 and
operational	specifications	established	by	a	number	of	government	and	industry	organizations.

Some	of	these	standards-setting	organizations	are	ad	hoc	trade	associations	or	consortia	made	up	of
industry	 leaders.	Manufacturers	 know	 that	 by	 establishing	 common	 guidelines	 for	 a	 particular	 type	 of
equipment,	 they	can	market	their	products	to	a	wider	audience	than	if	 they	came	up	with	separate—and
perhaps	incompatible—specifications.

Some	standards	organizations	have	formal	charters	and	are	recognized	internationally	as	the	definitive
authority	 in	 certain	 areas	 of	 electronics	 and	 computers.	 As	 you	 continue	 your	 studies	 in	 computer
organization	and	architecture,	you	will	encounter	specifications	formulated	by	these	groups,	so	you	should
know	something	about	them.

The	Institute	of	Electrical	and	Electronics	Engineers	 (IEEE)	 is	 an	organization	dedicated	 to	 the
advancement	of	the	professions	of	electronic	and	computer	engineering.	The	IEEE	actively	promotes	the
interests	of	the	worldwide	engineering	community	by	publishing	an	array	of	technical	literature.	The	IEEE
also	 sets	 standards	 for	 various	 computer	 components,	 signaling	 protocols,	 and	 data	 representation,	 to
name	 only	 a	 few	 areas	 of	 its	 involvement.	 The	 IEEE	 has	 a	 democratic,	 albeit	 convoluted,	 procedure
established	for	the	creation	of	new	standards.	Its	final	documents	are	well	respected	and	usually	endure
for	several	years	before	requiring	revision.

The	International	Telecommunications	Union	(ITU)	is	based	in	Geneva,	Switzerland.	The	ITU	was
formerly	 known	 as	 the	 Comité	 Consultatif	 International	 Télégraphique	 et	 Téléphonique,	 or	 the
International	 Consultative	 Committee	 on	 Telephony	 and	 Telegraphy.	 As	 its	 name	 implies,	 the	 ITU
concerns	 itself	with	 the	 interoperability	 of	 telecommunications	 systems,	 including	 telephone,	 telegraph,
and	data	communication	systems.	The	 telecommunications	arm	of	 the	ITU,	 the	ITU-T,	has	established	a
number	of	 standards	 that	you	will	 encounter	 in	 the	 literature.	You	will	 see	 these	 standards	prefixed	by
ITU-T	or	the	group’s	former	initials,	CCITT.

Many	 countries,	 including	 the	 European	 Community,	 have	 commissioned	 umbrella	 organizations	 to
represent	 their	 interests	 in	various	 international	groups.	The	group	representing	 the	United	States	 is	 the
American	 National	 Standards	 Institute	 (ANSI).	 Great	 Britain	 has	 its	British	 Standards	 Institution
(BSI)	 in	 addition	 to	having	 a	voice	on	 the	CEN	 (Comité	Européen	de	Normalisation),	 the	European
committee	for	standardization.

The	International	Organization	for	Standardization	(ISO)	is	the	entity	that	coordinates	worldwide
standards	development,	including	the	activities	of	ANSI	with	BSI,	among	others.	ISO	is	not	an	acronym,
but	derives	from	the	Greek	word,	 isos,	meaning	“equal.”	The	ISO	consists	of	more	than	2800	technical
committees,	each	of	which	is	charged	with	some	global	standardization	issue.	Its	interests	range	from	the
behavior	 of	 photographic	 film	 to	 the	 pitch	 of	 screw	 threads	 to	 the	 complex	 world	 of	 computer
engineering.	 The	 proliferation	 of	 global	 trade	 has	 been	 facilitated	 by	 the	 ISO.	Today,	 the	 ISO	 touches
virtually	every	aspect	of	our	lives.

Throughout	 this	 text,	 we	 mention	 official	 standards	 designations	 where	 appropriate.	 Definitive
information	concerning	many	of	these	standards	can	be	found	in	excruciating	detail	on	the	website	of	the
organization	responsible	for	establishing	the	standard	cited.	As	an	added	bonus,	many	standards	contain
“normative”	 and	 informative	 references,	which	 provide	 background	 information	 in	 areas	 related	 to	 the
standard.



1.5			HISTORICAL	DEVELOPMENT
During	 their	 60-year	 life	 span,	 computers	 have	 become	 the	 perfect	 example	 of	 modern	 convenience.
Living	memory	is	strained	to	recall	the	days	of	steno	pools,	carbon	paper,	and	mimeograph	machines.	It
sometimes	seems	that	these	magical	computing	machines	were	developed	instantaneously	in	the	form	that
we	 now	 know	 them.	 But	 the	 developmental	 path	 of	 computers	 is	 paved	 with	 accidental	 discovery,
commercial	coercion,	and	whimsical	fancy.	And	occasionally	computers	have	even	improved	through	the
application	 of	 solid	 engineering	 practices!	 Despite	 all	 the	 twists,	 turns,	 and	 technological	 dead	 ends,
computers	have	evolved	at	a	pace	that	defies	comprehension.	We	can	fully	appreciate	where	we	are	today
only	when	we	have	seen	where	we’ve	come	from.

In	 the	 sections	 that	 follow,	we	 divide	 the	 evolution	 of	 computers	 into	 generations,	 each	 generation
being	defined	by	the	technology	used	to	build	the	machine.	We	have	provided	approximate	dates	for	each
generation	 for	 reference	 purposes	 only.	 You	 will	 find	 little	 agreement	 among	 experts	 as	 to	 the	 exact
starting	and	ending	times	of	each	technological	epoch.

Every	invention	reflects	the	time	in	which	it	was	made,	so	one	might	wonder	whether	it	would	have
been	called	a	computer	if	it	had	been	invented	in	the	late	1990s.	How	much	computation	do	we	actually
see	pouring	from	the	mysterious	boxes	perched	on	or	beside	our	desks?	Until	recently,	computers	served
us	 only	 by	 performing	mind-bending	mathematical	manipulations.	 No	 longer	 limited	 to	 white-jacketed
scientists,	today’s	computers	help	us	to	write	documents,	keep	in	touch	with	loved	ones	across	the	globe,
and	 do	 our	 shopping	 chores.	 Modern	 business	 computers	 spend	 only	 a	 minuscule	 part	 of	 their	 time
performing	 accounting	 calculations.	 Their	main	 purpose	 is	 to	 provide	 users	with	 a	 bounty	 of	 strategic
information	 for	 competitive	 advantage.	 Has	 the	 word	 computer	 now	 become	 a	 misnomer?	 An
anachronism?	What,	then,	should	we	call	them,	if	not	computers?

We	cannot	present	the	complete	history	of	computing	in	a	few	pages.	Entire	texts	have	been	written	on
this	subject	and	even	they	leave	their	readers	wanting	more	detail.	 If	we	have	piqued	your	 interest,	we
refer	you	to	some	of	the	books	cited	in	the	list	of	references	at	the	end	of	this	chapter.

1.5.1		Generation	Zero:	Mechanical	Calculating	Machines	(1642–
1945)

Prior	to	the	1500s,	a	typical	European	businessperson	used	an	abacus	for	calculations	and	recorded	the
result	of	his	ciphering	in	Roman	numerals.	After	 the	decimal	numbering	system	finally	replaced	Roman
numerals,	 a	 number	 of	 people	 invented	 devices	 to	 make	 decimal	 calculations	 even	 faster	 and	 more
accurate.	Wilhelm	Schickard	 (1592–1635)	has	been	credited	with	 the	 invention	of	 the	 first	mechanical
calculator,	the	Calculating	Clock	(exact	date	unknown).	This	device	was	able	to	add	and	subtract	numbers
containing	as	many	as	six	digits.	In	1642,	Blaise	Pascal	(1623–1662)	developed	a	mechanical	calculator
called	the	Pascaline	to	help	his	father	with	his	tax	work.	The	Pascaline	could	do	addition	with	carry	and
subtraction.	It	was	probably	the	first	mechanical	adding	device	actually	used	for	a	practical	purpose.	In
fact,	the	Pascaline	was	so	well	conceived	that	its	basic	design	was	still	being	used	at	the	beginning	of	the
twentieth	 century,	 as	 evidenced	 by	 the	 Lightning	 Portable	Adder	 in	 1908	 and	 the	Addometer	 in	 1920.
Gottfried	Wilhelm	von	Leibniz	(1646–1716),	a	noted	mathematician,	invented	a	calculator	known	as	the
Stepped	 Reckoner	 that	 could	 add,	 subtract,	 multiply,	 and	 divide.	 None	 of	 these	 devices	 could	 be
programmed	or	had	memory.	They	required	manual	intervention	throughout	each	step	of	their	calculations.

Although	machines	 like	 the	 Pascaline	were	 used	 into	 the	 twentieth	 century,	 new	 calculator	 designs
began	 to	 emerge	 in	 the	 nineteenth	 century.	 One	 of	 the	 most	 ambitious	 of	 these	 new	 designs	 was	 the



Difference	Engine	 by	Charles	Babbage	 (1791–1871).	 Some	 people	 refer	 to	Babbage	 as	 “the	 father	 of
computing.”	By	all	accounts,	he	was	an	eccentric	genius	who	brought	us,	among	other	things,	the	skeleton
key	and	the	“cow	catcher,”	a	device	intended	to	push	cows	and	other	movable	obstructions	out	of	the	way
of	locomotives.

Babbage	built	his	Difference	Engine	in	1822.	The	Difference	Engine	got	 its	name	because	it	used	a
calculating	 technique	 called	 the	method	 of	 differences.	 The	 machine	 was	 designed	 to	 mechanize	 the
solution	of	polynomial	functions	and	was	actually	a	calculator,	not	a	computer.	Babbage	also	designed	a
general-purpose	machine	in	1833	called	the	Analytical	Engine.	Although	Babbage	died	before	he	could
build	it,	the	Analytical	Engine	was	designed	to	be	more	versatile	than	his	earlier	Difference	Engine.	The
Analytical	Engine	would	have	been	capable	of	performing	any	mathematical	operation.	The	Analytical
Engine	included	many	of	the	components	associated	with	modern	computers:	an	arithmetic	processing	unit
to	perform	calculations	(Babbage	referred	to	this	as	the	mill),	a	memory	(the	store),	and	input	and	output
devices.	 Babbage	 also	 included	 a	 conditional	 branching	 operation	 where	 the	 next	 instruction	 to	 be
performed	 was	 determined	 by	 the	 result	 of	 the	 previous	 operation.	 Ada,	 Countess	 of	 Lovelace	 and
daughter	of	poet	Lord	Byron,	suggested	that	Babbage	write	a	plan	for	how	the	machine	would	calculate
numbers.	This	is	regarded	as	the	first	computer	program,	and	Ada	is	considered	to	be	the	first	computer
programmer.	 It	 is	 also	 rumored	 that	 she	 suggested	 the	 use	 of	 the	 binary	 number	 system	 rather	 than	 the
decimal	number	system	to	store	data.

A	perennial	problem	facing	machine	designers	has	been	how	to	get	data	 into	 the	machine.	Babbage
designed	the	Analytical	Engine	to	use	a	type	of	punched	card	for	input	and	programming.	Using	cards	to
control	 the	behavior	of	a	machine	did	not	originate	with	Babbage,	but	with	one	of	his	 friends,	 Joseph-
Marie	 Jacquard	 (1752–1834).	 In	 1801,	 Jacquard	 invented	 a	 programmable	 weaving	 loom	 that	 could
produce	intricate	patterns	in	cloth.	Jacquard	gave	Babbage	a	tapestry	that	had	been	woven	on	this	loom
using	 more	 than	 10,000	 punched	 cards.	 To	 Babbage,	 it	 seemed	 only	 natural	 that	 if	 a	 loom	 could	 be
controlled	 by	 cards,	 then	 his	Analytical	Engine	 could	 be	 as	well.	Ada	 expressed	 her	 delight	with	 this
idea,	writing,	 “[T]he	Analytical	Engine	weaves	 algebraical	patterns	 just	 as	 the	 Jacquard	 loom	weaves
flowers	and	leaves.”

The	 punched	 card	 proved	 to	 be	 the	most	 enduring	means	 of	 providing	 input	 to	 a	 computer	 system.
Keyed	data	 input	 had	 to	wait	 until	 fundamental	 changes	were	made	 in	 how	calculating	machines	were
constructed.	In	the	latter	half	of	the	nineteenth	century,	most	machines	used	wheeled	mechanisms,	which
were	difficult	to	integrate	with	early	keyboards	because	they	were	levered	devices.	But	levered	devices
could	 easily	 punch	 cards	 and	wheeled	 devices	 could	 easily	 read	 them.	 So	 a	 number	 of	 devices	were
invented	 to	 encode	 and	 then	 “tabulate”	 card-punched	 data.	 The	 most	 important	 of	 the	 late-nineteenth-
century	tabulating	machines	was	the	one	invented	by	Herman	Hollerith	(1860–1929).	Hollerith’s	machine
was	used	for	encoding	and	compiling	1890	census	data.	This	census	was	completed	in	record	time,	thus
boosting	Hollerith’s	finances	and	the	reputation	of	his	invention.	Hollerith	later	founded	the	company	that
would	become	 IBM.	His	80-column	punched	card,	 the	Hollerith	card,	was	 a	 staple	 of	 automated	data
processing	for	more	than	50	years.

A	Pre-Modern	“Computer”	Hoax
The	 latter	 half	 of	 the	 sixteenth	 century	 saw	 the	 beginnings	 of	 the	 first	 Industrial	 Revolution.	 The
spinning	 jenny	 allowed	 one	 textile	worker	 to	 do	 the	work	 of	 twenty,	 and	 steam	 engines	 had	 power



equivalent	to	hundreds	of	horses.	Thus	began	our	enduring	fascination	with	all	things	mechanical.	With
the	 right	skills	applied	 to	 the	problems	at	hand,	 there	seemed	no	 limits	 to	what	humankind	could	do
with	its	machines!

Elaborate	 clocks	 began	 appearing	 at	 the	 beginning	 of	 the	 1700s.	 Complex	 and	 ornate	 models
graced	cathedrals	and	town	halls.	These	clockworks	eventually	morphed	into	mechanical	robots	called
automata.	Typical	models	played	musical	instruments	such	as	flutes	and	keyboard	instruments.	In	the
mid-1700s,	 the	most	sublime	of	these	devices	entertained	royal	families	across	Europe.	Some	relied
on	trickery	to	entertain	their	audiences.	It	soon	became	something	of	a	sport	to	unravel	the	chicanery.
Empress	Marie-Therese	 of	 the	Austria-Hungarian	Empire	 relied	 on	 a	wealthy	 courtier	 and	 tinkerer,
Wolfgang	 von	Kempelen,	 to	 debunk	 the	 spectacles	 on	 her	 behalf.	One	 day,	 following	 a	 particularly
impressive	display,	Marie-Therese	challenged	von	Kempelen	to	build	an	automaton	to	surpass	all	that
had	ever	been	brought	to	her	court.

von	Kempelen	took	the	challenge,	and	after	several	months’	work,	he	delivered	a	turban-wearing,
pipe-smoking,	chess-playing	automaton.	For	all	appearances,	“The	Turk”	was	a	formidable	opponent
for	even	the	best	players	of	the	day.	As	an	added	touch,	the	machine	contained	a	set	of	baffles	enabling
it	to	rasp	“Échec!”	as	needed.	So	impressive	was	this	machine	that	for	84	years	it	drew	crowds	across
Europe	and	the	United	States.

Of	 course,	 as	with	 all	 similar	 automata,	 von	Kempelen’s	 Turk	 relied	 on	 trickery	 to	 perform	 its
prodigious	feat.	Despite	some	astute	debunkers	correctly	deducing	how	it	was	done,	the	secret	of	the
Turk	was	never	divulged:	A	human	chess	player	was	cleverly	concealed	inside	its	cabinet.	The	Turk
thus	pulled	off	one	of	the	first	and	most	impressive	“computer”	hoaxes	in	the	history	of	technology.	It
would	take	another	200	years	before	a	real	machine	could	match	the	Turk—without	the	trickery.



The	mechanical	Turk
Reprinted	from	Robert	Willis,	An	attempt	to	Analyse	the	Automaton	Chess	Player	of	Mr.	de
Kempelen.	JK	Booth,	London.	1824.

1.5.2		The	First	Generation:	Vacuum	Tube	Computers	(1945–1953)
Although	Babbage	is	often	called	the	“father	of	computing,”	his	machines	were	mechanical,	not	electrical
or	 electronic.	 In	 the	 1930s,	 Konrad	 Zuse	 (1910–1995)	 picked	 up	 where	 Babbage	 left	 off,	 adding
electrical	 technology	 and	 other	 improvements	 to	 Babbage’s	 design.	 Zuse’s	 computer,	 the	 Z1,	 used
electromechanical	relays	instead	of	Babbage’s	hand-cranked	gears.	The	Z1	was	programmable	and	had	a
memory,	 an	 arithmetic	 unit,	 and	 a	 control	 unit.	 Because	money	 and	 resources	were	 scarce	 in	wartime
Germany,	Zuse	used	discarded	movie	film	instead	of	punched	cards	for	input.	Although	his	machine	was
designed	to	use	vacuum	tubes,	Zuse,	who	was	building	his	machine	on	his	own,	could	not	afford	the	tubes.
Thus,	the	Z1	correctly	belongs	in	the	first	generation,	although	it	had	no	tubes.

Zuse	built	the	Z1	in	his	parents’	Berlin	living	room	while	Germany	was	at	war	with	most	of	Europe.
Fortunately,	he	couldn’t	convince	the	Nazis	to	buy	his	machine.	They	did	not	realize	the	tactical	advantage
such	a	device	would	give	them.	Allied	bombs	destroyed	all	three	of	Zuse’s	first	systems,	the	Z1,	Z2,	and
Z3.	 Zuse’s	 impressive	 machines	 could	 not	 be	 refined	 until	 after	 the	 war	 and	 ended	 up	 being	 another



“evolutionary	dead	end”	in	the	history	of	computers.
Digital	computers,	as	we	know	them	today,	are	the	outcome	of	work	done	by	a	number	of	people	in

the	1930s	and	1940s.	Pascal’s	basic	mechanical	calculator	was	designed	and	modified	simultaneously	by
many	 people;	 the	 same	 can	 be	 said	 of	 the	modern	 electronic	 computer.	 Notwithstanding	 the	 continual
arguments	 about	 who	 was	 first	 with	 what,	 three	 people	 clearly	 stand	 out	 as	 the	 inventors	 of	 modern
computers:	John	Atanasoff,	John	Mauchly,	and	J.	Presper	Eckert.

John	Atanasoff	(1904–1995)	has	been	credited	with	the	construction	of	the	first	completely	electronic
computer.	The	Atanasoff	Berry	Computer	(ABC)	was	a	binary	machine	built	from	vacuum	tubes.	Because
this	system	was	built	specifically	to	solve	systems	of	linear	equations,	we	cannot	call	it	a	general-purpose
computer.	There	were,	 however,	 some	 features	 that	 the	ABC	had	 in	 common	with	 the	 general-purpose
ENIAC	 (Electronic	Numerical	 Integrator	 and	Computer),	which	was	 invented	 a	 few	years	 later.	These
common	features	caused	considerable	controversy	as	to	who	should	be	given	the	credit	(and	patent	rights)
for	 the	 invention	 of	 the	 electronic	 digital	 computer.	 (The	 interested	 reader	 can	 find	more	 details	 on	 a
rather	lengthy	lawsuit	involving	Atanasoff	and	the	ABC	in	Mollenhoff	[1988].)

John	Mauchly	(1907–1980)	and	J.	Presper	Eckert	(1929–1995)	were	the	two	principal	inventors	of
the	 ENIAC,	 introduced	 to	 the	 public	 in	 1946.	 The	 ENIAC	 is	 recognized	 as	 the	 first	 all-electronic,
general-purpose	digital	computer.	This	machine	used	17,468	vacuum	tubes,	occupied	1800	square	feet	of
floor	space,	weighed	30	tons,	and	consumed	174	kilowatts	of	power.	The	ENIAC	had	a	memory	capacity
of	about	1000	information	bits	(about	20	10-digit	decimal	numbers)	and	used	punched	cards	to	store	data.

John	Mauchly’s	 vision	 for	 an	 electronic	 calculating	machine	was	 born	 from	his	 lifelong	 interest	 in
predicting	the	weather	mathematically.	While	a	professor	of	physics	at	Ursinus	College	near	Philadelphia,
Mauchly	 engaged	 dozens	 of	 adding	 machines	 and	 student	 operators	 to	 crunch	 mounds	 of	 data	 that	 he
believed	would	reveal	mathematical	relationships	behind	weather	patterns.	He	felt	that	if	he	could	have
only	 a	 little	 more	 computational	 power,	 he	 could	 reach	 the	 goal	 that	 seemed	 just	 beyond	 his	 grasp.
Pursuant	 to	 the	 Allied	 war	 effort,	 and	 with	 ulterior	 motives	 to	 learn	 about	 electronic	 computation,
Mauchly	 volunteered	 for	 a	 crash	 course	 in	 electrical	 engineering	 at	 the	 University	 of	 Pennsylvania’s
Moore	School	of	Engineering.	Upon	completion	of	this	program,	Mauchly	accepted	a	teaching	position	at
the	Moore	School,	where	he	taught	a	brilliant	young	student,	J.	Presper	Eckert.	Mauchly	and	Eckert	found
a	mutual	interest	in	building	an	electronic	calculating	device.	In	order	to	secure	the	funding	they	needed	to
build	their	machine,	they	wrote	a	formal	proposal	for	review	by	the	school.	They	portrayed	their	machine
as	conservatively	as	they	could,	billing	it	as	an	“automatic	calculator.”	Although	they	probably	knew	that
computers	would	 be	 able	 to	 function	most	 efficiently	 using	 the	 binary	 numbering	 system,	Mauchly	 and
Eckert	designed	their	system	to	use	base	10	numbers,	in	keeping	with	the	appearance	of	building	a	huge
electronic	adding	machine.	The	university	rejected	Mauchly	and	Eckert’s	proposal.	Fortunately,	the	U.S.
Army	was	more	interested.



U.S.	Army,	1946.

During	World	 War	 II,	 the	 army	 had	 an	 insatiable	 need	 for	 calculating	 the	 trajectories	 of	 its	 new



ballistic	armaments.	Thousands	of	human	“computers”	were	engaged	around	 the	clock	cranking	 through
the	arithmetic	required	for	these	firing	tables.	Realizing	that	an	electronic	device	could	shorten	ballistic
table	calculation	from	days	to	minutes,	the	army	funded	the	ENIAC.	And	the	ENIAC	did	indeed	shorten
the	time	to	calculate	a	table	from	20	hours	to	30	seconds.	Unfortunately,	the	machine	wasn’t	ready	before
the	end	of	the	war.	But	the	ENIAC	had	shown	that	vacuum	tube	computers	were	fast	and	feasible.	During
the	next	decade,	vacuum	tube	systems	continued	to	improve	and	were	commercially	successful.

What	Is	a	Vacuum	Tube?
The	wired	world	that	we	know	today	was	born	from	the	invention	of	a	single	electronic	device	called
a	vacuum	tube	by	Americans	and—more	accurately—a	valve	by	the	British.	Vacuum	tubes	should	be
called	valves	because	they	control	the	flow	of	electrons	in	electrical	systems	in	much	the	same	way	as
valves	control	the	flow	of	water	in	a	plumbing	system.	In	fact,	some	mid-twentieth-century	breeds	of
these	electron	 tubes	contain	no	vacuum	at	all,	but	are	 filled	with	conductive	gases,	 such	as	mercury
vapor,	which	can	provide	desirable	electrical	behavior.

The	electrical	phenomenon	that	makes	tubes	work	was	discovered	by	Thomas	A.	Edison	in	1883
while	 he	 was	 trying	 to	 find	 ways	 to	 keep	 the	 filaments	 of	 his	 light	 bulbs	 from	 burning	 away	 (or
oxidizing)	a	few	minutes	after	electrical	current	was	applied.	Edison	reasoned	correctly	that	one	way
to	prevent	filament	oxidation	would	be	to	place	the	filament	in	a	vacuum.	Edison	didn’t	immediately
understand	that	air	not	only	supports	combustion,	but	also	is	a	good	insulator.	When	he	energized	the
electrodes	holding	a	new	tungsten	filament,	the	filament	soon	became	hot	and	burned	out	as	the	others
had	before	it.	This	time,	however,	Edison	noticed	that	electricity	continued	to	flow	from	the	warmed
negative	terminal	to	the	cool	positive	terminal	within	the	light	bulb.	In	1911,	Owen	Willans	Richardson
analyzed	 this	behavior.	He	concluded	 that	when	a	negatively	charged	filament	was	heated,	electrons
“boiled	 off”	 as	 water	 molecules	 can	 be	 boiled	 to	 create	 steam.	 He	 aptly	 named	 this	 phenomenon
thermionic	emission.

Thermionic	emission,	as	Edison	had	documented	it,	was	thought	by	many	to	be	only	an	electrical
curiosity.	But	in	1905,	a	British	former	assistant	to	Edison,	John	A.	Fleming,	saw	Edison’s	discovery



as	much	more	than	a	novelty.	He	knew	that	thermionic	emission	supported	the	flow	of	electrons	in	only
one	 direction:	 from	 the	 negatively	 charged	 cathode	 to	 the	 positively	 charged	 anode,	 also	 called	 a
plate.	 He	 realized	 that	 this	 behavior	 could	 rectify	 alternating	 current.	 That	 is,	 it	 could	 change
alternating	 current	 into	 the	 direct	 current	 that	 was	 essential	 for	 the	 proper	 operation	 of	 telegraph
equipment.	Fleming	used	his	ideas	to	invent	an	electronic	valve	later	called	a	diode	tube	or	rectifier.

The	 diode	 was	 well	 suited	 for	 changing	 alternating	 current	 into	 direct	 current,	 but	 the	 greatest
power	of	the	electron	tube	was	yet	to	be	discovered.	In	1907,	an	American	named	Lee	DeForest	added
a	third	element,	called	a	control	grid.	The	control	grid,	when	carrying	a	negative	charge,	can	reduce	or
prevent	electron	flow	from	the	cathode	to	the	anode	of	a	diode.

When	DeForest	patented	his	device,	he	called	it	an	audion	tube.	 It	was	 later	known	as	a	triode.
The	schematic	symbol	for	the	triode	is	shown	at	the	left.

A	triode	can	act	as	either	a	switch	or	an	amplifier.	Small	changes	in	the	charge	of	the	control	grid
can	cause	much	larger	changes	in	the	flow	of	electrons	between	the	cathode	and	the	anode.	Therefore,
a	weak	signal	applied	 to	 the	grid	 results	 in	a	much	stronger	signal	at	 the	plate	output.	A	sufficiently
large	negative	charge	applied	to	the	grid	stops	all	electrons	from	leaving	the	cathode.

Additional	 control	 grids	were	 eventually	 added	 to	 the	 triode	 to	 allow	more	 exact	 control	 of	 the
electron	 flow.	Tubes	with	 two	grids	 (four	 elements)	 are	 called	 tetrodes;	 tubes	with	 three	 grids	 are
called	pentodes.	Triodes	 and	pentodes	were	 the	 tubes	most	 commonly	used	 in	 communications	 and
computer	 applications.	 Often,	 two	 or	 three	 triodes	 or	 pentodes	 would	 be	 combined	 within	 one
envelope	so	they	could	share	a	single	heater,	thereby	reducing	the	power	consumption	of	a	particular
device.	 These	 latter-day	 devices	were	 called	 “miniature”	 tubes	 because	many	were	 about	 2	 inches
(5cm)	high	and	0.5	inch	(1.5cm)	in	diameter.	Equivalent	full-sized	diodes,	triodes,	and	pentodes	were
a	little	smaller	than	a	household	light	bulb.



Vacuum	 tubes	 were	 not	 well	 suited	 for	 building	 computers.	 Even	 the	 simplest	 vacuum	 tube
computer	system	required	thousands	of	tubes.	Enormous	amounts	of	electrical	power	were	required	to
heat	the	cathodes	of	these	devices.	To	prevent	a	meltdown,	this	heat	had	to	be	removed	from	the	system
as	 quickly	 as	 possible.	 Power	 consumption	 and	 heat	 dissipation	 could	 be	 reduced	 by	 running	 the
cathode	 heaters	 at	 lower	 voltages,	 but	 this	 reduced	 the	 already	 slow	 switching	 speed	 of	 the	 tube.
Despite	 their	 limitations	 and	 power	 consumption,	 vacuum	 tube	 computer	 systems,	 both	 analog	 and
digital,	 served	 their	 purpose	 for	 many	 years	 and	 are	 the	 architectural	 foundation	 for	 all	 modern
computer	systems.

Although	 decades	 have	 passed	 since	 the	 last	 vacuum	 tube	 computer	was	manufactured,	 vacuum
tubes	 are	 still	 used	 in	 audio	 amplifiers.	These	 “high-end”	 amplifiers	 are	 favored	by	musicians	who
believe	that	tubes	provide	a	resonant	and	pleasing	sound	unattainable	by	solid-state	devices.

1.5.3		The	Second	Generation:	Transistorized	Computers	(1954–1965)
The	 vacuum	 tube	 technology	 of	 the	 first	 generation	 was	 not	 very	 dependable.	 In	 fact,	 some	 ENIAC
detractors	 believed	 that	 the	 system	would	 never	 run	 because	 the	 tubes	would	 burn	 out	 faster	 than	 they
could	be	replaced.	Although	system	reliability	wasn’t	as	bad	as	the	doomsayers	predicted,	vacuum	tube
systems	often	experienced	more	downtime	than	uptime.

In	 1948,	 three	 researchers	 with	 Bell	 Laboratories—John	 Bardeen,	 Walter	 Brattain,	 and	 William
Shockley—invented	 the	 transistor.	 This	 new	 technology	 not	 only	 revolutionized	 devices	 such	 as
televisions	and	radios,	but	also	pushed	the	computer	industry	into	a	new	generation.	Because	transistors
consume	less	power	than	vacuum	tubes,	are	smaller,	and	work	more	reliably,	the	circuitry	in	computers
consequently	became	smaller	and	more	reliable.	Despite	using	 transistors,	computers	of	 this	generation
were	 still	 bulky	 and	quite	 costly.	Typically	 only	 universities,	 governments,	 and	 large	 businesses	 could
justify	the	expense.	Nevertheless,	a	plethora	of	computer	makers	emerged	in	this	generation;	IBM,	Digital
Equipment	Corporation	(DEC),	and	Univac	(now	Unisys)	dominated	the	industry.	IBM	marketed	the	7094
for	scientific	applications	and	the	1401	for	business	applications.	DEC	was	busy	manufacturing	the	PDP-
1.	 A	 company	 founded	 (but	 soon	 sold)	 by	 Mauchly	 and	 Eckert	 built	 the	 Univac	 systems.	 The	 most
successful	Unisys	systems	of	this	generation	belonged	to	its	1100	series.	Another	company,	Control	Data
Corporation	 (CDC),	 under	 the	 supervision	 of	 Seymour	 Cray,	 built	 the	 CDC	 6600,	 the	 world’s	 first



supercomputer.	The	$10	million	CDC	6600	could	perform	10	million	instructions	per	second,	used	60-bit
words,	and	had	an	astounding	128	kilowords	of	main	memory.

What	Is	a	Transistor?
The	 transistor,	 short	 for	 transfer	resistor,	 is	 the	 solid-state	 version	 of	 the	 triode.	 There	 is	 no	 such
thing	as	a	solid-state	version	of	the	tetrode	or	pentode.	Electrons	are	better	behaved	in	a	solid	medium
than	 in	 the	 open	 void	 of	 a	 vacuum	 tube,	 so	 there	 is	 no	 need	 for	 the	 extra	 controlling	 grids.	 Either
germanium	or	 silicon	 can	be	 the	basic	 “solid”	used	 in	 these	 solid-state	devices.	 In	 their	 pure	 form,
neither	of	 these	elements	 is	 a	good	conductor	of	 electricity.	But	when	 they	are	combined	with	 trace
amounts	 of	 elements	 that	 are	 their	 neighbors	 in	 the	 Periodic	 Chart	 of	 the	 Elements,	 they	 conduct
electricity	in	an	effective	and	easily	controlled	manner.

Boron,	aluminum,	and	gallium	can	be	 found	 to	 the	 left	of	silicon	and	germanium	on	 the	Periodic
Chart.	Because	they	lie	to	the	left	of	silicon	and	germanium,	they	have	one	less	electron	in	their	outer
electron	shell,	or	valence.	So	 if	you	add	a	small	amount	of	aluminum	to	silicon,	 the	silicon	ends	up
with	a	slight	 imbalance	in	its	outer	electron	shell,	and	therefore	attracts	electrons	from	any	pole	that
has	 a	negative	potential	 (an	excess	of	 electrons).	When	modified	 (or	doped)	 in	 this	way,	 silicon	or
germanium	becomes	a	P-type	material.

Similarly,	 if	we	 add	 a	 little	 boron,	 arsenic,	 or	 gallium	 to	 silicon,	we’ll	 have	 extra	 electrons	 in
valences	of	the	silicon	crystals.	This	gives	us	an	N-type	material.	A	small	amount	of	current	will	flow
through	 the	N-type	material	 if	we	provide	 the	 loosely	bound	electrons	 in	 the	N-type	material	with	a
place	 to	go.	 In	other	words,	 if	we	apply	a	positive	potential	 to	N-type	material,	electrons	will	 flow
from	the	negative	pole	 to	 the	positive	pole.	 If	 the	poles	are	reversed,	 that	 is,	 if	we	apply	a	negative



potential	 to	 the	N-type	material	and	a	positive	potential	 to	 the	P-type	material,	no	current	will	 flow.
This	means	we	can	make	a	solid-state	diode	from	a	simple	junction	of	N-	and	P-type	materials.

The	solid-state	 triode,	 the	 transistor,	consists	of	 three	 layers	of	 semiconductor	material.	Either	a
slice	of	P-type	material	is	sandwiched	between	two	N-type	materials,	or	a	slice	of	N-type	material	is
sandwiched	between	 two	P-type	materials.	The	former	 is	called	an	NPN	transistor,	 the	 latter	a	PNP
transistor.	 The	 inner	 layer	 of	 the	 transistor	 is	 called	 the	 base;	 the	 other	 two	 layers	 are	 called	 the
collector	and	the	emitter.

The	 figure	at	 the	 left	 shows	how	current	 flows	 through	NPN	and	PNP	 transistors.	The	base	 in	a
transistor	works	just	like	the	control	grid	in	a	triode	tube:	Small	changes	in	the	current	at	the	base	of	a
transistor	result	in	a	large	electron	flow	from	the	emitter	to	the	collector.

A	discrete-component	 transistor	 is	 shown	 in	 “TO-50”	packaging	 in	 the	 figure	 at	 the	 top	of	 this
sidebar.	There	are	only	three	wires	(leads)	that	connect	the	base,	emitter,	and	collector	of	the	transistor
to	the	rest	of	the	circuit.	Transistors	are	not	only	smaller	than	vacuum	tubes,	but	they	also	run	cooler
and	are	much	more	 reliable.	Vacuum	tube	 filaments,	 like	 light	bulb	 filaments,	 run	hot	and	eventually
burn	out.	Computers	using	transistorized	components	will	naturally	be	smaller	and	run	cooler	than	their
vacuum	 tube	 predecessors.	 The	 ultimate	 miniaturization,	 however,	 is	 not	 realized	 by	 replacing
individual	triodes	with	discrete	transistors,	but	in	shrinking	entire	circuits	onto	one	piece	of	silicon.

Integrated	 circuits,	 or	 chips,	 contain	 hundreds	 to	 billions	 of	 microscopic	 transistors.	 Several
different	techniques	are	used	to	manufacture	integrated	circuits.	One	of	the	simplest	methods	involves
creating	a	circuit	using	computer-aided	design	software	that	can	print	large	maps	of	each	of	the	several
silicon	 layers	 forming	 the	 chip.	Each	map	 is	 used	 like	 a	 photographic	 negative	where	 light-induced
changes	in	a	photoresistive	substance	on	the	chip’s	surface	produce	the	delicate	patterns	of	the	circuit
when	the	silicon	chip	 is	 immersed	 in	a	chemical	 that	washes	away	the	exposed	areas	of	 the	silicon.
This	technique	is	called	photomicrolithography.	After	the	etching	is	completed,	a	layer	of	N-type	or
P-type	 material	 is	 deposited	 on	 the	 bumpy	 surface	 of	 the	 chip.	 This	 layer	 is	 then	 treated	 with	 a
photoresistive	 substance,	 exposed	 to	 light,	 and	 etched	 as	 was	 the	 layer	 before	 it.	 This	 process
continues	 until	 all	 the	 layers	 have	 been	 etched.	 The	 resulting	 peaks	 and	 valleys	 of	 P-	 and	 N-type
material	 form	microscopic	 electronic	 components,	 including	 transistors,	 that	 behave	 just	 like	 larger



versions	 fashioned	 from	discrete	 components,	 except	 that	 they	 run	 a	 lot	 faster	 and	 consume	 a	 small
fraction	of	the	power.

1.5.4		The	Third	Generation:	Integrated	Circuit	Computers	(1965–
1980)

The	real	explosion	in	computer	use	came	with	the	integrated	circuit	generation.	Jack	Kilby	invented	the
integrated	circuit	(IC),	or	microchip,	made	of	germanium.	Six	months	later,	Robert	Noyce	(who	had	also
been	working	on	integrated	circuit	design)	created	a	similar	device	using	silicon	instead	of	germanium.
This	 is	 the	 silicon	 chip	 upon	 which	 the	 computer	 industry	 was	 built.	 Early	 ICs	 allowed	 dozens	 of
transistors	to	exist	on	a	single	silicon	chip	that	was	smaller	than	a	single	“discrete	component”	transistor.
Computers	 became	 faster,	 smaller,	 and	 cheaper,	 bringing	 huge	 gains	 in	 processing	 power.	 The	 IBM
System/360	family	of	computers	was	among	the	first	commercially	available	systems	to	be	built	entirely
of	solid-state	components.	The	360	product	line	was	also	IBM’s	first	offering	in	which	all	the	machines	in
the	 family	 were	 compatible,	 meaning	 they	 all	 used	 the	 same	 assembly	 language.	 Users	 of	 smaller
machines	could	upgrade	to	larger	systems	without	rewriting	all	their	software.	This	was	a	revolutionary
new	concept	at	the	time.

The	 IC	 generation	 also	 saw	 the	 introduction	 of	 time-sharing	 and	multiprogramming	 (the	 ability	 for
more	 than	 one	 person	 to	 use	 the	 computer	 at	 a	 time).	 Multiprogramming,	 in	 turn,	 necessitated	 the
introduction	of	new	operating	systems	for	 these	computers.	Time-sharing	minicomputers	such	as	DEC’s
PDP-8	 and	 PDP-11	 made	 computing	 affordable	 to	 smaller	 businesses	 and	 more	 universities.	 IC
technology	also	allowed	for	the	development	of	more	powerful	supercomputers.	Seymour	Cray	took	what
he	 had	 learned	 while	 building	 the	 CDC	 6600	 and	 started	 his	 own	 company,	 the	 Cray	 Research
Corporation.	This	company	produced	a	number	of	supercomputers,	starting	with	the	$8.8	million	Cray-1,
in	1976.	The	Cray-1,	in	stark	contrast	to	the	CDC	6600,	could	execute	more	than	160	million	instructions
per	second	and	could	support	8MB	of	memory.	See	Figure	1.2	 for	a	size	comparison	of	vacuum	tubes,
transistors,	and	integrated	circuits.

1.5.5		The	Fourth	Generation:	VLSI	Computers	(1980–????)
In	 the	 third	 generation	 of	 electronic	 evolution,	 multiple	 transistors	 were	 integrated	 onto	 one	 chip.	 As
manufacturing	techniques	and	chip	technologies	advanced,	increasing	numbers	of	transistors	were	packed
onto	one	chip.	There	are	now	various	levels	of	integration:	SSI	(small-scale	integration),	in	which	there
are	 10	 to	 100	 components	 per	 chip;	MSI	 (medium-scale	 integration),	 in	which	 there	 are	 100	 to	 1000
components	per	 chip;	LSI	 (large-scale	 integration),	 in	which	 there	are	1000	 to	 10,000	 components	 per
chip;	and	 finally,	VLSI	 (very-large-scale	 integration),	 in	which	 there	are	more	 than	10,000	components
per	chip.	This	last	level,	VLSI,	marks	the	beginning	of	the	fourth	generation	of	computers.	The	complexity
of	integraged	circuits	continues	to	grow,	with	more	transistors	being	added	all	 the	time.	The	term	ULSI
(ultra-large-scale	 integration)	has	been	 suggested	 for	 integrated	circuits	 containing	more	 than	1	million
transistors.	In	2005,	billions	of	transistors	were	put	on	a	single	chip.	Other	useful	terminology	includes:
(1)	WSI	(wafer-scale	integration,	building	superchip	ICs	from	an	entire	silicon	wafer;	(2)	3D-IC	(three-
dimensional	 integrated	 circuit);	 and	 (3)	 SOC	 (system-on-a-chip),	 an	 IC	 that	 includes	 all	 the	 necessary
components	for	the	entire	computer.



FIGURE	1.2	Comparison	of	Computer	Components	Clockwise,	starting	from	the	top:
1)	Vacuum	tube
2)	Transistor
3)	Chip	containing	3200	2-input	NAND	gates
4)	Integrated	circuit	package	(the	small	silver	square	in	the	lower	left-hand	corner	is	an	integrated	circuit)
Courtesy	of	Linda	Null.

To	 give	 some	 perspective	 to	 these	 numbers,	 consider	 the	 ENIAC-on-a-chip	 project.	 In	 1997,	 to
commemorate	 the	 fiftieth	 anniversary	 of	 its	 first	 public	 demonstration,	 a	 group	 of	 students	 at	 the
University	of	Pennsylvania	constructed	a	single-chip	equivalent	of	the	ENIAC.	The	1800-square-foot,	30-
ton	beast	that	devoured	174	kilowatts	of	power	the	minute	it	was	turned	on	had	been	reproduced	on	a	chip
the	size	of	a	 thumbnail.	This	chip	contained	approximately	174,569	 transistors—an	order	of	magnitude
fewer	than	the	number	of	components	typically	placed	on	the	same	amount	of	silicon	in	the	late	1990s.

VLSI	allowed	Intel,	in	1971,	to	create	the	world’s	first	microprocessor,	the	4004,	which	was	a	fully
functional,	4-bit	system	that	ran	at	108KHz.	Intel	also	introduced	the	random	access	memory	(RAM)	chip,
accommodating	four	kilobits	of	memory	on	a	single	chip.	This	allowed	computers	of	the	fourth	generation
to	become	smaller	and	faster	than	their	solid-state	predecessors.

VLSI	technology,	and	its	incredible	shrinking	circuits,	spawned	the	development	of	microcomputers.
These	systems	were	small	enough	and	inexpensive	enough	to	make	computers	available	and	affordable	to
the	 general	 public.	 The	 premiere	microcomputer	was	 the	Altair	 8800,	 released	 in	 1975	 by	 the	Micro
Instrumentation	and	Telemetry	(MITS)	corporation.	The	Altair	8800	was	soon	followed	by	 the	Apple	I
and	Apple	 II,	 and	Commodore’s	 PET	 and	Vic	 20.	 Finally,	 in	 1981,	 IBM	 introduced	 its	 PC	 (Personal
Computer).

The	Personal	Computer	was	IBM’s	third	attempt	at	producing	an	“entry-level”	computer	system.	Its



Datamaster	and	its	5100	Series	desktop	computers	flopped	miserably	in	 the	marketplace.	Despite	 these
early	 failures,	 IBM’s	 John	Opel	 convinced	his	management	 to	 try	 again.	He	 suggested	 forming	a	 fairly
autonomous	“independent	business	unit”	in	Boca	Raton,	Florida,	far	from	IBM’s	headquarters	in	Armonk,
New	York.	Opel	picked	Don	Estridge,	an	energetic	and	capable	engineer,	to	champion	the	development	of
the	 new	 system,	 code-named	 the	 Acorn.	 In	 light	 of	 IBM’s	 past	 failures	 in	 the	 small-systems	 area,
corporate	management	held	tight	rein	on	the	Acorn’s	timeline	and	finances.	Opel	could	get	his	project	off
the	ground	only	after	promising	to	deliver	it	within	a	year,	a	seemingly	impossible	feat.

Estridge	 knew	 that	 the	 only	 way	 he	 could	 deliver	 the	 PC	 within	 the	 wildly	 optimistic	 12-month
schedule	would	be	to	break	with	IBM	convention	and	use	as	many	“off-the-shelf”	parts	as	possible.	Thus,
from	the	outset,	the	IBM	PC	was	conceived	with	an	“open”	architecture.	Although	some	people	at	IBM
may	have	later	regretted	the	decision	to	keep	the	architecture	of	the	PC	as	nonproprietary	as	possible,	it
was	this	very	openness	that	allowed	IBM	to	set	 the	standard	for	 the	industry.	While	IBM’s	competitors
were	 busy	 suing	 companies	 for	 copying	 their	 system	designs,	 PC	 clones	 proliferated.	Before	 long,	 the
price	of	“IBM-compatible”	microcomputers	came	within	reach	for	just	about	every	small	business.	Also,
thanks	 to	 the	 clone	makers,	 large	 numbers	 of	 these	 systems	 soon	 began	 finding	 true	 “personal	 use”	 in
people’s	homes.

IBM	 eventually	 lost	 its	microcomputer	market	 dominance,	 but	 the	 genie	was	 out	 of	 the	 bottle.	 For
better	or	worse,	the	IBM	architecture	continues	to	be	the	de	facto	standard	for	microcomputing,	with	each
year	 heralding	 bigger	 and	 faster	 systems.	 Today,	 the	 average	 desktop	 computer	 has	 many	 times	 the
computational	power	of	the	mainframes	of	the	1960s.

Since	the	1960s,	mainframe	computers	have	seen	stunning	improvements	in	price–performance	ratios
owing	to	VLSI	technology.	Although	the	IBM	System/360	was	an	entirely	solid-state	system,	it	was	still	a
water-cooled,	power-gobbling	behemoth.	It	could	perform	only	about	50,000	instructions	per	second	and
supported	only	16MB	of	memory	(while	usually	having	kilobytes	of	physical	memory	 installed).	These
systems	were	so	costly	that	only	the	largest	businesses	and	universities	could	afford	to	own	or	lease	one.
Today’s	mainframes—now	 called	 “enterprise	 servers”—are	 still	 priced	 in	 the	millions	 of	 dollars,	 but
their	 processing	 capabilities	 have	 grown	 several	 thousand	 times	 over,	 passing	 the	 billion-instructions-
per-second	mark	in	the	late	1990s.	These	systems,	often	used	as	Web	servers,	routinely	support	hundreds
of	thousands	of	transactions	per	minute!

The	 processing	 power	 brought	 by	 VLSI	 to	 supercomputers	 defies	 comprehension.	 The	 first
supercomputer,	the	CDC	6600,	could	perform	10	million	instructions	per	second,	and	had	128KB	of	main
memory.	By	contrast,	supercomputers	of	today	contain	thousands	of	processors,	can	address	terabytes	of
memory,	and	will	soon	be	able	to	perform	a	quadrillion	instructions	per	second.

What	 technology	will	mark	 the	beginning	of	 the	 fifth	generation?	Some	say	 the	 fifth	generation	will
mark	the	acceptance	of	parallel	processing	and	the	use	of	networks	and	single-user	workstations.	Many
people	believe	we	have	already	crossed	into	this	generation.	Some	believe	it	will	be	quantum	computing.
Some	people	characterize	the	fifth	generation	as	being	the	generation	of	neural	network,	DNA,	or	optical
computing	 systems.	 It’s	 possible	 that	 we	 won’t	 be	 able	 to	 define	 the	 fifth	 generation	 until	 we	 have
advanced	into	the	sixth	or	seventh	generations,	and	whatever	those	eras	will	bring.

The	Integrated	Circuit	and	Its	Production
Integrated	circuits	are	found	all	around	us,	from	computers	to	cars	to	refrigerators	to	cell	phones.	The



most	 advanced	 circuits	 contain	 hundreds	 of	 millions	 (and	 even	 billions)	 of	 components	 in	 an	 area
about	the	size	of	your	thumbnail.	The	transistors	in	these	advanced	circuits	can	be	as	small	as	45nm,	or
0.000045	millimeters,	 in	 size.	Thousands	of	 these	 transistors	would	 fit	 in	a	circle	 the	diameter	of	a
human	hair.

How	 are	 these	 circuits	 made?	 They	 are	 manufactured	 in	 semiconductor	 fabrication	 facilities.
Because	the	components	are	so	small,	all	precautions	must	be	 taken	to	ensure	a	sterile,	particle-free
environment,	so	manufacturing	is	done	in	a	“clean	room.”	There	can	be	no	dust,	no	skin	cells,	no	smoke
—not	even	bacteria.	Workers	must	wear	 clean	 room	suits,	 often	called	“bunny	 suits,”	 to	 ensure	 that
even	the	tiniest	particle	does	not	escape	into	the	air.

The	 process	 begins	 with	 the	 chip	 design,	 which	 eventually	 results	 in	 a	 mask,	 the	 template	 or
blueprint	 that	 contains	 the	circuit	patterns.	A	silicon	wafer	 is	 then	covered	by	an	 insulating	 layer	of
oxide,	followed	by	a	layer	of	photosensitive	film	called	photo-resist.	This	photo-resist	has	regions	that
break	down	under	UV	light	and	other	regions	that	do	not.	A	UV	light	is	then	shone	through	the	mask	(a
process	called	photolithography).	Bare	oxide	 is	 left	on	portions	where	 the	photo-resist	breaks	down
under	the	UV	light.	Chemical	“etching”	is	 then	used	to	dissolve	the	revealed	oxide	layer	and	also	to
remove	the	remaining	photo-resist	not	affected	by	the	UV	light.	The	“doping”	process	embeds	certain
impurities	 into	 the	 silicon	 that	 alters	 the	 electrical	 properties	 of	 the	 unprotected	 areas,	 basically
creating	 the	 transistors.	 The	 chip	 is	 then	 covered	 with	 another	 layer	 of	 both	 the	 insulating	 oxide
material	 and	 the	 photo-resist,	 and	 the	 entire	 process	 is	 repeated	 hundreds	 of	 times,	 each	 iteration
creating	a	new	layer	of	the	chip.	Different	masks	are	used	with	a	similar	process	to	create	the	wires
that	connect	 the	components	on	 the	chip.	The	circuit	 is	 finally	encased	 in	a	protective	plastic	cover,
tested,	and	shipped	out.

As	 components	 become	 smaller	 and	 smaller,	 the	 equipment	 used	 to	 make	 them	 must	 be	 of
continually	 higher	 quality.	This	 has	 resulted	 in	 a	 dramatic	 increase	 in	 the	 cost	 of	manufacturing	 ICs
over	the	years.	In	the	early	1980s,	the	cost	to	build	a	semiconductor	factory	was	roughly	$10	million.
By	 the	 late	 1980s,	 that	 cost	 had	 risen	 to	 approximately	 $200	million,	 and	 by	 the	 late	 1990s,	 an	 IC
fabrication	factory	cost	more	or	less	around	$1	billion.	In	2005,	Intel	spent	approximately	$2	billion
for	a	single	fabrication	facility	and,	in	2007,	invested	roughly	$7	billion	to	retool	three	plants	in	order
to	 allow	 them	 to	 produce	 a	 smaller	 processor.	 In	 2009,	 AMD	 begin	 building	 a	 $4.2	 billion	 chip
manufacturing	facility	in	upstate	New	York.

The	manufacturing	facility	is	not	the	only	high-dollar	item	when	it	comes	to	making	ICs.	The	cost	to
design	a	chip	and	create	the	mask	can	run	anywhere	from	$1	million	to	$3	million—more	for	smaller
chips	and	less	for	larger	ones.	Considering	the	costs	of	both	the	chip	design	and	the	fabrication	facility,
it	 truly	 is	 amazing	 that	 we	 can	 walk	 into	 our	 local	 computer	 store	 and	 buy	 a	 new	 Intel	 i3
microprocessor	chip	for	around	$100.

1.5.6		Moore’s	Law
So	where	does	it	end?	How	small	can	we	make	transistors?	How	densely	can	we	pack	chips?	No	one	can
say	 for	 sure.	 Every	 year,	 scientists	 continue	 to	 thwart	 prognosticators’	 attempts	 to	 define	 the	 limits	 of
integration.	In	fact,	more	than	one	skeptic	raised	an	eyebrow	when,	in	1965,	Intel	founder	Gordon	Moore
stated,	“The	density	of	transistors	in	an	integrated	circuit	will	double	every	year.”	The	current	version	of
this	 prediction	 is	 usually	 conveyed	 as	 “the	 density	 of	 silicon	 chips	 doubles	 every	 18	 months.”	 This
assertion	has	become	known	as	Moore’s	Law.	Moore	intended	this	postulate	to	hold	for	only	10	years.
However,	 advances	 in	chip	manufacturing	processes	have	allowed	 this	 assertion	 to	hold	 for	 almost	40



years	(and	many	believe	it	will	continue	to	hold	well	into	the	2010s).
Yet,	 using	 current	 technology,	Moore’s	 Law	 cannot	 hold	 forever.	 There	 are	 physical	 and	 financial

limitations	that	must	ultimately	come	into	play.	At	the	current	rate	of	miniaturization,	it	would	take	about
500	years	 to	put	 the	entire	solar	system	on	a	chip!	Clearly,	 the	 limit	 lies	somewhere	between	here	and
there.	Cost	may	be	the	ultimate	constraint.	Rock’s	Law,	proposed	by	early	Intel	capitalist	Arthur	Rock,	is
a	corollary	to	Moore’s	Law:	“The	cost	of	capital	equipment	to	build	semiconductors	will	double	every
four	years.”	Rock’s	Law	arises	from	the	observations	of	a	financier	who	saw	the	price	tag	of	new	chip
facilities	 escalate	 from	 about	 $12,000	 in	 1968	 to	 $12	million	 in	 the	mid-1990s.	 In	 2005,	 the	 cost	 of
building	a	new	chip	plant	was	nearing	$3	billion.	At	this	rate,	by	the	year	2035,	not	only	will	the	size	of	a
memory	element	be	smaller	than	an	atom,	but	it	would	also	require	the	entire	wealth	of	the	world	to	build
a	 single	 chip!	 So	 even	 if	we	 continue	 to	make	 chips	 smaller	 and	 faster,	 the	 ultimate	 question	may	 be
whether	we	can	afford	to	build	them.

Certainly,	if	Moore’s	Law	is	to	hold,	Rock’s	Law	must	fall.	It	is	evident	that	for	these	two	things	to
happen,	computers	must	shift	to	a	radically	different	technology.	Research	into	new	computing	paradigms
has	 been	 proceeding	 in	 earnest	 during	 the	 last	 half	 decade.	 Laboratory	 prototypes	 fashioned	 around
organic	computing,	superconducting,	molecular	physics,	and	quantum	computing	have	been	demonstrated.
Quantum	computers,	which	leverage	the	vagaries	of	quantum	mechanics	to	solve	computational	problems,
are	 particularly	 exciting.	 Not	 only	 would	 quantum	 systems	 compute	 exponentially	 faster	 than	 any
previously	 used	method,	 but	 they	would	 also	 revolutionize	 the	way	 in	which	we	 define	 computational
problems.	Problems	that	today	are	considered	ludicrously	infeasible	could	be	well	within	the	grasp	of	the
next	generation’s	schoolchildren.	These	school-children	may,	in	fact,	chuckle	at	our	“primitive”	systems
in	the	same	way	that	we	are	tempted	to	chuckle	at	the	ENIAC.

1.6			THE	COMPUTER	LEVEL	HIERARCHY
If	a	machine	is	to	be	capable	of	solving	a	wide	range	of	problems,	it	must	be	able	to	execute	programs
written	in	different	languages,	from	Fortran	and	C	to	Lisp	and	Prolog.	As	we	shall	see	in	Chapter	3,	 the
only	 physical	 components	 we	 have	 to	 work	 with	 are	 wires	 and	 gates.	 A	 formidable	 open	 space—a
semantic	gap—exists	between	these	physical	components	and	a	high-level	language	such	as	C++.	For	a
system	to	be	practical,	the	semantic	gap	must	be	invisible	to	most	of	the	users	of	the	system.

Programming	experience	teaches	us	that	when	a	problem	is	large,	we	should	break	it	down	and	use	a
“divide	and	conquer”	approach.	In	programming,	we	divide	a	problem	into	modules	and	then	design	each
module	separately.	Each	module	performs	a	specific	task,	and	modules	need	only	know	how	to	interface
with	other	modules	to	make	use	of	them.

Computer	 system	 organization	 can	 be	 approached	 in	 a	 similar	 manner.	 Through	 the	 principle	 of
abstraction,	we	can	imagine	the	machine	to	be	built	from	a	hierarchy	of	levels,	in	which	each	level	has	a
specific	function	and	exists	as	a	distinct	hypothetical	machine.	We	call	the	hypothetical	computer	at	each
level	 a	virtual	machine.	 Each	 level’s	 virtual	 machine	 executes	 its	 own	 particular	 set	 of	 instructions,
calling	 upon	 machines	 at	 lower	 levels	 to	 carry	 out	 the	 tasks	 when	 necessary.	 By	 studying	 computer
organization,	you	will	see	the	rationale	behind	the	hierarchy’s	partitioning,	as	well	as	how	these	layers
are	 implemented	 and	 interface	 with	 each	 other.	 Figure	 1.3	 shows	 the	 commonly	 accepted	 layers
representing	the	abstract	virtual	machines.

Level	6,	 the	User	Level,	 is	composed	of	applications	and	 is	 the	 level	with	which	everyone	 is	most
familiar.	 At	 this	 level,	 we	 run	 programs	 such	 as	 word	 processors,	 graphics	 packages,	 or	 games.	 The



lower	levels	are	nearly	invisible	from	the	User	Level.
Level	5,	the	High-Level	Language	Level,	consists	of	languages	such	as	C,	C++,	Fortran,	Lisp,	Pascal,

and	Prolog.	These	languages	must	be	translated	(using	either	a	compiler	or	an	interpreter)	to	a	language
the	 machine	 can	 understand.	 Compiled	 languages	 are	 translated	 into	 assembly	 language	 and	 then
assembled	 into	machine	code.	 (They	are	 translated	 to	 the	next	 lower	 level.)	The	user	at	 this	 level	sees
very	little	of	the	lower	levels.	Even	though	a	programmer	must	know	about	data	types	and	the	instructions
available	for	those	types,	he	or	she	need	not	know	about	how	those	types	are	actually	implemented.

FIGURE	1.3	The	Abstract	Levels	of	Modern	Computing	Systems

Level	4,	the	Assembly	Language	Level,	encompasses	some	type	of	assembly	language.	As	previously
mentioned,	 compiled	 higher-level	 languages	 are	 first	 translated	 to	 assembly,	 which	 is	 then	 directly
translated	 to	 machine	 language.	 This	 is	 a	 one-to-one	 translation,	 meaning	 that	 one	 assembly	 language
instruction	is	translated	to	exactly	one	machine	language	instruction.	By	having	separate	levels,	we	reduce
the	semantic	gap	between	a	high-level	 language,	 such	as	C++,	and	 the	actual	machine	 language	 (which
consists	of	0s	and	1s).

Level	 3,	 the	 System	 Software	 Level,	 deals	 with	 operating	 system	 instructions.	 This	 level	 is
responsible	 for	 multiprogramming,	 protecting	 memory,	 synchronizing	 processes,	 and	 various	 other
important	functions.	Often,	instructions	translated	from	assembly	language	to	machine	language	are	passed
through	this	level	unmodified.



Level	2,	 the	Instruction	Set	Architecture	(ISA),	or	Machine	Level,	consists	of	 the	machine	language
recognized	by	the	particular	architecture	of	 the	computer	system.	Programs	written	in	a	computer’s	 true
machine	 language	 on	 a	 hardwired	 computer	 (see	 below)	 can	 be	 executed	 directly	 by	 the	 electronic
circuits	without	any	interpreters,	translators,	or	compilers.	We	will	study	ISAs	in	depth	in	Chapters	4	and
5.

Level	 1,	 the	Control	 Level,	 is	where	 a	 control	 unit	 makes	 sure	 that	 instructions	 are	 decoded	 and
executed	properly	and	 that	data	 is	moved	where	and	when	 it	 should	be.	The	control	unit	 interprets	 the
machine	instructions	passed	to	it,	one	at	a	time,	from	the	level	above,	causing	the	required	actions	to	take
place.

Control	 units	 can	 be	 designed	 in	 one	 of	 two	 ways:	 They	 can	 be	 hardwired	 or	 they	 can	 be
microprogrammed.	 In	 hardwired	 control	 units,	 control	 signals	 emanate	 from	 blocks	 of	 digital	 logic
components.	These	 signals	direct	 all	 the	data	 and	 instruction	 traffic	 to	 appropriate	parts	of	 the	 system.
Hardwired	control	units	are	typically	very	fast	because	they	are	actually	physical	components.	However,
once	implemented,	they	are	very	difficult	to	modify	for	the	same	reason.

The	other	option	for	control	is	to	implement	instructions	using	a	microprogram.	A	microprogram	is	a
program	 written	 in	 a	 low-level	 language	 that	 is	 implemented	 directly	 by	 the	 hardware.	 Machine
instructions	produced	in	Level	2	are	fed	into	this	microprogram,	which	then	interprets	the	instructions	by
activating	 hardware	 suited	 to	 execute	 the	 original	 instruction.	 One	 machine-level	 instruction	 is	 often
translated	into	several	microcode	instructions.	This	is	not	the	one-to-one	correlation	that	exists	between
assembly	 language	 and	 machine	 language.	 Microprograms	 are	 popular	 because	 they	 can	 be	 modified
relatively	 easily.	 The	 disadvantage	 of	 microprogramming	 is,	 of	 course,	 that	 the	 additional	 layer	 of
translation	typically	results	in	slower	instruction	execution.

Level	0,	the	Digital	Logic	Level,	is	where	we	find	the	physical	components	of	the	computer	system:
the	gates	and	wires.	These	are	the	fundamental	building	blocks,	the	implementations	of	the	mathematical
logic,	that	are	common	to	all	computer	systems.	Chapter	3	presents	the	Digital	Logic	Level	in	detail.

1.7			CLOUD	COMPUTING:	COMPUTING	AS	A	SERVICE
We	must	never	forget	that	the	ultimate	aim	of	every	computer	system	is	to	deliver	functionality	to	its	users.
Computer	users	typically	do	not	care	about	terabytes	of	storage	and	gigahertz	of	processor	speed.	In	fact,
many	 companies	 and	 government	 agencies	 have	 “gotten	 out	 of	 the	 technology	 business”	 entirely	 by
outsourcing	 their	data	centers	 to	 third-party	specialists.	These	outsourcing	agreements	 tend	 to	be	highly
complex	 and	 prescribe	 every	 aspect	 of	 the	 hardware	 configuration.	Along	with	 the	 detailed	 hardware
specifications,	 service-level	 agreements	 (SLAs)	 provide	 penalties	 if	 certain	 parameters	 of	 system
performance	and	availability	are	not	met.	Both	contracting	parties	employ	individuals	whose	main	job	is
to	 monitor	 the	 contract,	 calculate	 bills,	 and	 determine	 SLA	 penalties	 when	 needed.	 Thus,	 with	 the
additional	 administrative	overhead,	 data	 center	 outsourcing	 is	 neither	 a	 cheap	nor	 an	 easy	 solution	 for
companies	that	want	to	avoid	the	problems	of	technology	management.



FIGURE	1.4	Levels	of	Computing	as	a	Service

A	 somewhat	 easier	 approach	 may	 be	 found	 in	 the	 emerging	 field	 of	 Cloud	 computing.	 Cloud
computing	 is	 the	general	 term	for	any	 type	of	virtual	computing	platform	provided	over	 the	Internet.	A
Cloud	 computing	 platform	 is	 defined	 in	 terms	 of	 the	 services	 that	 it	 provides	 rather	 than	 its	 physical
configuration.	 Its	name	derives	 from	the	cloud	 icon	 that	symbolizes	 the	Internet	on	schematic	diagrams.
But	the	metaphor	carries	well	into	the	actual	Cloud	infrastructure,	because	the	computer	is	more	abstract
than	real.	The	“computer”	and	“storage”	appear	to	the	user	as	a	single	entity	in	the	Cloud	but	usually	span
several	 physical	 servers.	 The	 storage	 is	 usually	 located	 on	 an	 array	 of	 disks	 that	 are	 not	 directly
connected	to	any	particular	server.	System	software	is	designed	to	give	this	configuration	the	illusion	of
being	a	single	system;	thus,	we	say	that	it	presents	a	virtual	machine	to	the	user.

Cloud	computing	services	can	be	defined	and	delivered	in	a	number	of	ways	based	on	levels	of	the
computer	 hierarchy	 shown	 again	 in	Figure	1.4.	At	 the	 top	 of	 the	 hierarchy,	where	we	 have	 executable
programs,	 a	 Cloud	 provider	 might	 offer	 an	 entire	 application	 over	 the	 Internet,	 with	 no	 components
installed	locally.	This	is	called	Software	as	a	Service,	or	SaaS.	The	consumer	of	this	service	does	not
maintain	 the	 application	 or	 need	 to	 be	 at	 all	 concerned	 with	 the	 infrastructure	 in	 any	 way.	 SaaS
applications	 tend	 to	 focus	on	narrow,	non-business-critical	 applications.	Well-known	examples	 include
Gmail,	 Dropbox,	 GoToMeeting,	 and	 Netflix.	 Specialized	 products	 are	 available	 for	 tax	 return
preparation,	payroll,	 fleet	management,	and	case	management,	 to	name	only	a	 few.	Salesforce.com	 is	 a

http://Salesforce.com


pioneering,	full-featured	SaaS	offering	designed	for	customer	relationship	management.	Fee-based	SaaS
is	typically	billed	monthly	according	to	the	number	of	users,	sometimes	with	per-transaction	fees	added
on	as	well.

A	great	disadvantage	of	SaaS	is	that	the	consumer	has	little	control	over	the	behavior	of	the	product.
This	may	be	problematic	if	a	company	has	to	make	radical	changes	to	its	processes	or	policies	in	order	to
use	 a	 SaaS	 product.	 Companies	 that	 desire	 to	 have	more	 control	 over	 their	 applications,	 or	 that	 need
applications	 for	 which	 SaaS	 is	 unavailable,	 might	 instead	 opt	 to	 deploy	 their	 own	 applications	 on	 a
Cloud-hosted	 environment	 called	 Platform	 as	 a	 Service,	 or	 PaaS.	 PaaS	 provides	 server	 hardware,
operating	systems,	database	services,	security	components,	and	backup	and	recovery	services.	The	PaaS
provider	manages	 performance	 and	 availability	 of	 the	 environment,	whereas	 the	 customer	manages	 the
applications	hosted	in	the	PaaS	Cloud.	The	customer	is	typically	billed	monthly	per	megabytes	of	storage,
processor	utilization,	and	megabytes	of	data	transferred.	Well-known	PaaS	providers	include	Google	App
Engine	 and	 Microsoft	 Windows	 Azure	 Cloud	 Services	 [as	 well	 as	 Force.com	 (PaaS	 provided	 by
Salesforce.com)].

PaaS	is	not	a	good	fit	in	situations	where	rapid	configuration	changes	are	required.	This	would	be	the
case	if	a	company’s	main	business	is	software	development.	The	formality	of	change	processes	necessary
to	a	well-run	PaaS	operation	impedes	rapid	software	deployment	[by	forcing	a	company	to	play	by	the
service	provider’s	rules].	 Indeed,	 in	any	company	where	staff	 is	capable	of	managing	operating	system
and	database	 software,	 the	Infrastructure	as	a	Service	 (IaaS)	Cloud	model	might	 be	 the	 best	 option.
IaaS,	 [the	 most	 basic	 of	 the	 models,]	 provides	 only	 server	 hardware,	 secure	 network	 access	 to	 the
servers,	and	backup	and	recovery	services.	The	customer	is	responsible	for	all	system	software	including
the	 operating	 system	 and	 databases.	 IaaS	 is	 typically	 billed	 by	 the	 number	 of	 virtual	 machines	 used,
megabytes	of	storage,	and	megabytes	of	data	transferred,	but	at	a	lower	rate	than	PaaS.	The	biggest	names
in	IaaS	include	Amazon	EC2,	Google	Compute	Engine,	Microsoft	Azure	Services	Platform,	Rackspace,
and	HP	Cloud.

Not	only	do	PaaS	and	IaaS	liberate	the	customer	from	the	difficulties	of	data	center	management,	they
also	provide	elasticity:	the	ability	to	add	and	remove	resources	based	on	demand.	A	customer	pays	for
only	as	much	infrastructure	as	is	needed.	So	if	a	business	has	a	peak	season,	extra	capacity	needs	to	be
allocated	only	 for	 the	duration	of	 the	peak	period.	This	 flexibility	 can	 save	a	 company	a	great	deal	of
money	when	it	has	large	variations	in	computing	demands.

Cloud	 storage	 is	 a	 limited	 type	 of	 IaaS.	 The	 general	 public	 can	 obtain	 small	 amounts	 of	 Cloud
storage	inexpensively	through	services	such	as	Dropbox,	Google	Drive,	and	Amazon.com’s	Cloud	Drive
—to	 name	 only	 a	 few	 among	 a	 crowded	 field.	 Google,	 Amazon,	 HP,	 IBM,	 and	Microsoft	 are	 among
several	 vendors	 that	 provide	 Cloud	 storage	 for	 the	 enterprise.	 As	 with	 Cloud	 computing	 in	 general,
enterprise-grade	Cloud	storage	also	requires	careful	management	of	performance	and	availability.

The	question	that	all	potential	Cloud	computing	customers	must	ask	themselves	is	whether	 it	 is	 less
expensive	to	maintain	their	own	data	center	or	to	buy	Cloud	services—including	the	allowances	for	peak
periods.	 Moreover,	 as	 with	 traditional	 outsourcing,	 vendor-provided	 Cloud	 computing	 still	 involves
considerable	contract	negotiation	and	management	on	the	part	of	both	parties.	SLA	management	remains
an	 important	 activity	 in	 the	 relationship	 between	 the	 service	 provider	 and	 the	 service	 consumer.
Moreover,	once	an	enterprise	moves	 its	assets	 to	 the	Cloud,	 it	might	be	difficult	 to	 transition	back	 to	a
company-owned	data	center,	should	the	need	arise.	Thus,	any	notion	of	moving	assets	to	the	Cloud	must
be	carefully	considered,	and	the	risks	clearly	understood.

The	 Cloud	 also	 presents	 a	 number	 of	 challenges	 to	 computer	 scientists.	 First	 and	 foremost	 is	 the
technical	configuration	of	the	data	center.	The	infrastructure	must	provide	for	uninterrupted	service,	even

http://Force.com
http://Salesforce.com
http://Amazon.com


during	 maintenance	 activities.	 It	 must	 permit	 expedient	 allocation	 of	 capacity	 to	 where	 it	 is	 needed
without	degrading	or	interrupting	services.	Performance	of	the	infrastructure	must	be	carefully	monitored
and	 interventions	 taken	 whenever	 performance	 falls	 below	 certain	 defined	 thresholds;	 otherwise,
monetary	SLA	penalties	may	be	incurred.

On	the	consumer	side	of	the	Cloud,	software	architects	and	programmers	must	be	mindful	of	resource
consumption,	 because	 the	 Cloud	 model	 charges	 fees	 in	 proportion	 to	 the	 resources	 consumed.	 These
resources	 include	 communications	 bandwidth,	 processor	 cycles,	 and	 storage.	 Thus,	 to	 save	 money,
application	programs	 should	be	designed	 to	 reduce	 trips	over	 the	network,	 economize	machine	 cycles,
and	minimize	bytes	of	storage.	Meticulous	testing	is	crucial	prior	to	deploying	a	program	in	the	Cloud:	An
errant	module	that	consumes	resources,	say,	in	an	infinite	loop,	could	result	in	a	“surprising”	Cloud	bill	at
the	end	of	the	month.

With	 the	 cost	 and	 complexity	 of	 data	 centers	 continuing	 to	 rise—with	 no	 end	 in	 sight—Cloud
computing	is	almost	certain	to	become	the	platform	of	choice	for	medium-	to	small-sized	businesses.	But
the	 Cloud	 is	 not	 worry-free.	 A	 company	might	 end	 up	 trading	 its	 technical	 challenges	 for	 even	 more
vexing	supplier	management	challenges.

1.8			THE	VON	NEUMANN	MODEL
In	 the	 earliest	 electronic	 computing	machines,	 programming	was	 synonymous	with	 connecting	wires	 to
plugs.	No	 layered	architecture	existed,	 so	programming	a	computer	was	as	much	of	a	 feat	of	electrical
engineering	as	 it	was	an	exercise	 in	algorithm	design.	Before	 their	work	on	 the	ENIAC	was	complete,
John	W.	Mauchly	 and	 J.	 Presper	 Eckert	 conceived	 of	 an	 easier	 way	 to	 change	 the	 behavior	 of	 their
calculating	 machine.	 They	 reckoned	 that	 memory	 devices,	 in	 the	 form	 of	 mercury	 delay	 lines,	 could
provide	a	way	to	store	program	instructions.	This	would	forever	end	the	tedium	of	rewiring	the	system
each	time	it	had	a	new	problem	to	solve,	or	an	old	one	to	debug.	Mauchly	and	Eckert	documented	their
idea,	proposing	it	as	the	foundation	for	their	next	computer,	the	EDVAC.	Unfortunately,	while	they	were
involved	in	the	top	secret	ENIAC	project	during	World	War	II,	Mauchly	and	Eckert	could	not	immediately
publish	their	insight.

No	 such	 proscriptions,	 however,	 applied	 to	 a	 number	 of	 people	 working	 at	 the	 periphery	 of	 the
ENIAC	project.	One	of	these	people	was	a	famous	Hungarian	mathematician	named	John	von	Neumann
(pronounced	von	noy-man).	After	reading	Mauchly	and	Eckert’s	proposal	for	the	EDVAC,	von	Neumann
published	 and	 publicized	 the	 idea.	 So	 effective	was	 he	 in	 the	 delivery	 of	 this	 concept	 that	 history	 has
credited	him	with	its	invention.	All	stored-program	computers	have	come	to	be	known	as	von	Neumann
systems	using	the	von	Neumann	architecture.	Although	we	are	compelled	by	tradition	to	say	that	stored-
program	computers	use	the	von	Neumann	architecture,	we	shall	not	do	so	without	paying	proper	tribute	to
its	true	inventors:	John	W.	Mauchly	and	J.	Presper	Eckert.

Today’s	 version	 of	 the	 stored-program	 machine	 architecture	 satisfies	 at	 least	 the	 following
characteristics:

•	 	 	 Consists	 of	 three	 hardware	 systems:	 A	 central	 processing	 unit	 (CPU)	 with	 a	 control	 unit,	 an
arithmetic	logic	unit	(ALU),	registers	(small	storage	areas),	and	a	program	counter;	a	main	memory
system,	which	holds	programs	that	control	the	computer’s	operation;	and	an	I/O	system.

•			Capacity	to	carry	out	sequential	instruction	processing.
•			Contains	a	single	path,	either	physically	or	logically,	between	the	main	memory	system	and	the	control



unit	 of	 the	 CPU,	 forcing	 alternation	 of	 instruction	 and	 execution	 cycles.	 This	 single	 path	 is	 often
referred	to	as	the	von	Neumann	bottleneck.

Figure	1.5	shows	how	these	features	work	together	in	modern	computer	systems.	Notice	that	the	system
shown	in	the	figure	passes	all	of	its	I/O	through	the	arithmetic	logic	unit	(actually,	 it	passes	through	the
accumulator,	which	 is	 part	 of	 the	ALU).	This	 architecture	 runs	 programs	 in	what	 is	 known	 as	 the	von
Neumann	 execution	 cycle	 (also	 called	 the	 fetch-decode-execute	 cycle),	 which	 describes	 how	 the
machine	works.	One	iteration	of	the	cycle	is	as	follows:

1.	 	The	control	unit	fetches	the	next	program	instruction	from	the	memory,	using	the	program	counter	to
determine	where	the	instruction	is	located.

2.		The	instruction	is	decoded	into	a	language	the	ALU	can	understand.
3.		Any	data	operands	required	to	execute	the	instruction	are	fetched	from	memory	and	placed	in	registers

in	the	CPU.
4.		The	ALU	executes	the	instruction	and	places	the	results	in	registers	or	memory.

The	 ideas	 present	 in	 the	 von	Neumann	 architecture	 have	 been	 extended	 so	 that	 programs	 and	 data
stored	in	a	slow-to-access	storage	medium,	such	as	a	hard	disk,	can	be	copied	to	a	fast-access,	volatile
storage	medium	such	as	RAM	prior	to	execution.	This	architecture	has	also	been	streamlined	into	what	is
currently	called	the	system	bus	model,	which	is	shown	in	Figure	1.6.	The	data	bus	moves	data	from	main
memory	to	the	CPU	registers	(and	vice	versa).	The	address	bus	holds	the	address	of	the	data	that	the	data
bus	 is	 currently	 accessing.	 The	 control	 bus	 carries	 the	 necessary	 control	 signals	 that	 specify	 how	 the
information	transfer	is	to	take	place.



FIGURE	1.5	The	von	Neumann	Architecture

FIGURE	1.6	The	Modified	von	Neumann	Architecture,	Adding	a	System	Bus

Other	 enhancements	 to	 the	 von	Neumann	 architecture	 include	 using	 index	 registers	 for	 addressing,
adding	 floating-point	 data,	 using	 interrupts	 and	 asynchronous	 I/O,	 adding	 virtual	 memory,	 and	 adding
general	registers.	You	will	learn	a	great	deal	about	these	enhancements	in	the	chapters	that	follow.

Quantum	Leap	for	Computers:	How	Small	Can	We	Go?
VLSI	technology	has	allowed	us	to	put	billions	of	 transistors	on	a	single	chip,	but	 there	is	a	 limit	 to
how	small	we	can	go	with	current	transistor	technology.	Researchers	at	the	University	of	New	South
Wales’	 Centre	 for	 Quantum	 Computer	 Technology	 and	 the	 University	 of	 Wisconsin–Madison	 have
taken	“small”	to	an	entirely	new	level.	In	May	2010,	they	announced	the	7-atom	transistor,	a	working
transistor	embedded	in	silicon	that	is	only	7	atoms	in	size.	Transistors	1	atom	in	size	that	allowed	the
flows	of	electrons	were	reported	as	early	as	2002,	but	this	transistor	is	different	in	that	it	provides	all
the	functionality	of	a	transistor	as	we	know	it	today.

The	7-atom	transistor	was	created	by	hand,	using	a	scanning	tunneling	microscope.	It’s	a	long	way
from	being	mass	produced,	but	the	researchers	hope	to	make	it	commercially	available	by	2015.	The
transistor’s	 tiny	 size	 means	 smaller	 but	 more	 powerful	 computers.	 Experts	 estimate	 it	 may	 shrink
microchips	by	a	factor	of	100,	while	enabling	an	exponential	speedup	in	processing.	This	means	our
computers	 could	 become	 one	 hundred	 times	 smaller,	 but	 at	 the	 same	 time,	 also	 one	 hundred	 times
faster.

In	addition	to	replacing	traditional	transistors,	this	discovery	may	be	fundamental	in	the	efforts	to
build	a	quantum	computer	in	silicon.	Quantum	computing	is	expected	to	be	the	next	significant	leap	in
computer	technology.	Small	quantum	computers	now	exist	that	perform	calculations	millions	of	times
faster	than	conventional	computers,	but	these	computers	are	too	small	to	be	of	much	use.	A	large-scale,
working	quantum	computer	would	enable	us	 to	perform	calculations	and	 solve	problems	 that	would
take	 a	 conventional	 computer	more	 than	 13	 billion	 years.	 That	 could	 change	 the	way	we	 view	 the
world.	For	one	thing,	every	encryption	algorithm	employed	today	would	be	useless	against	that	kind	of
computing	 power.	 On	 the	 other	 hand,	 ultra-secure	 communications	 would	 be	 possible	 using	 new



quantum	technologies.
Quantum	computers	have	 significant	potential.	Current	 applications,	 including	 special	 effects	 for

movies,	cryptography,	searching	large	data	files,	factoring	large	numbers,	simulating	various	systems
(such	as	nuclear	explosions	and	weather	patterns),	military	and	 intelligence	gathering,	and	 intensive,
time-consuming	 computations	 (such	 as	 those	 found	 in	 astronomy,	 physics,	 and	 chemistry),	would	 all
see	tremendous	performance	increases	if	quantum	computing	were	used.	New	applications	we	have	not
yet	discovered	are	likely	to	evolve	as	well.

In	addition	to	its	potential	to	change	computing	as	we	know	it	today,	this	new	7-atom	transistor	is
significant	for	another	reason.	Recall	Moore’s	Law;	this	law	is	not	so	much	a	law	of	nature,	but	rather
an	expectation	of	innovation	and	a	significant	driving	force	in	chip	design.	Moore’s	Law	has	held	since
1965,	but	in	order	to	do	so,	chip	manufacturers	have	jumped	from	one	technology	to	another.	Gordon
Moore	himself	has	predicted	 that,	 if	 restricted	 to	CMOS	silicon,	his	 law	will	 fail	 sometime	around
2020.	The	discovery	of	 this	7-atom	 transistor	gives	new	 life	 to	Moore’s	Law—and	we	 suspect	 that
Gordon	 Moore	 is	 breathing	 a	 sigh	 of	 relief	 over	 its	 discovery.	 However,	 noted	 physicist	 Stephen
Hawking	has	explained	that	chip	manufacturers	are	limited	in	their	quest	to	“enforce”	Moore’s	Law	by
two	fundamental	constraints:	the	speed	of	light	and	the	atomic	nature	of	matter,	implying	that	Moore’s
Law	will	eventually	fail,	regardless	of	the	technology	being	used.

1.9			NON–VON	NEUMANN	MODELS
Until	 recently,	 almost	 all	 general-purpose	 computers	 followed	 the	 von	 Neumann	 design.	 That	 is,	 the
architecture	consisted	of	a	CPU,	memory,	and	I/O	devices,	and	they	had	single	storage	for	instructions	and
data,	as	well	as	a	single	bus	used	for	fetching	instructions	and	transferring	data.	von	Neumann	computers
execute	 instructions	 sequentially	 and	 are	 therefore	 extremely	 well	 suited	 to	 sequential	 processing.
However,	 the	 von	 Neumann	 bottleneck	 continues	 to	 baffle	 engineers	 looking	 for	 ways	 to	 build	 fast
systems	that	are	inexpensive	and	compatible	with	the	vast	body	of	commercially	available	software.

Engineers	who	are	not	constrained	by	the	need	to	maintain	compatibility	with	von	Neumann	systems
are	free	to	use	many	different	models	of	computing.	Non–von	Neumann	architectures	are	those	in	which
the	model	 of	 computation	 varies	 from	 the	 characteristics	 listed	 for	 the	 von	Neumann	 architecture.	 For
example,	an	architecture	that	does	not	store	programs	and	data	in	memory	or	does	not	process	a	program
sequentially	would	be	considered	a	non–von	Neumann	machine.	Also,	a	computer	that	has	two	buses,	one
for	 data	 and	 a	 separate	 one	 for	 instructions,	 would	 be	 considered	 a	 non–von	 Neumann	 machine.
Computers	designed	using	the	Harvard	architecture	have	two	buses,	thus	allowing	data	and	instructions
to	be	transferred	simultaneously,	but	also	have	separate	storage	for	data	and	instructions.	Many	modern
general-purpose	 computers	 use	 a	 modified	 version	 of	 the	 Harvard	 architecture	 in	 which	 they	 have
separate	 pathways	 for	 data	 and	 instructions	 but	 not	 separate	 storage.	 Pure	 Harvard	 architectures	 are
typically	used	in	microcontrollers	(an	entire	computer	system	on	a	chip),	such	as	those	found	in	embedded
systems,	as	in	appliances,	toys,	and	cars.

Many	non–von	Neumann	machines	are	designed	for	special	purposes.	The	first	 recognized	non–von
Neumann	processing	chip	was	designed	 strictly	 for	 image	processing.	Another	 example	 is	 a	reduction
machine	 (built	 to	 perform	 combinatory	 logic	 calculations	 using	 graph	 reduction).	 Other	 non–von
Neumann	computers	include	digital	signal	processors	(DSPs)	and	media	processors,	which	can	execute
a	single	instruction	on	a	set	of	data	(instead	of	executing	a	single	instruction	on	a	single	piece	of	data).

A	number	of	different	subfields	fall	into	the	non–von	Neumann	category,	including	neural	networks



(using	 ideas	 from	 models	 of	 the	 brain	 as	 a	 computing	 paradigm)	 implemented	 in	 silicon,	 cellular
automata,	 cognitive	 computers	 (machines	 that	 learn	 by	 experience	 rather	 than	 through	 programming,
including	IBM’s	SyNAPSE	computer,	a	machine	that	models	the	human	brain),	quantum	computation	(a
combination	of	computing	and	quantum	physics),	dataflow	computation,	and	parallel	computers.	These
all	have	something	in	common—the	computation	is	distributed	among	different	processing	units	that	act	in
parallel.	They	differ	in	how	weakly	or	strongly	the	various	components	are	connected.	Of	these,	parallel
computing	is	currently	the	most	popular.

1.10			PARALLEL	PROCESSORS	AND	PARALLEL	COMPUTING
Today,	parallel	processing	solves	some	of	our	biggest	problems	in	much	the	same	way	that	settlers	of	the
Old	West	solved	their	biggest	problems	using	parallel	oxen.	If	they	were	using	an	ox	to	move	a	tree	and
the	ox	was	not	big	enough	or	strong	enough,	they	certainly	didn’t	try	to	grow	a	bigger	ox—they	used	two
oxen.	 If	our	computer	 isn’t	 fast	 enough	or	powerful	enough,	 instead	of	 trying	 to	develop	a	 faster,	more
powerful	computer,	why	not	 simply	use	multiple	computers?	This	 is	precisely	what	parallel	computing
does.	The	first	parallel	processing	systems	were	built	in	the	late	1960s	and	had	only	two	processors.	The
1970s	saw	the	introduction	of	supercomputers	with	as	many	as	32	processors,	and	the	1980s	brought	the
first	 systems	 with	 more	 than	 1000	 processors.	 Finally,	 in	 1999,	 IBM	 announced	 funding	 for	 the
development	 of	 a	 supercomputer	 architecture	 called	 the	Blue	Gene	 series.	 The	 first	 computer	 in	 this
series,	the	Blue	Gene/L,	is	a	massively	parallel	computer	containing	131,000	dual-core	processors,	each
with	 its	 own	 dedicated	 memory.	 In	 addition	 to	 allowing	 researchers	 to	 study	 the	 behavior	 of	 protein
folding	(by	using	large	simulations),	this	computer	has	also	allowed	researchers	to	explore	new	ideas	in
parallel	architectures	and	software	 for	 those	architectures.	 IBM	has	continued	 to	add	computers	 to	 this
series.	The	Blue	Gene/P	appeared	in	2007	and	has	quad-core	processors.	The	latest	computer	designed
for	this	series,	the	Blue	Gene/Q,	uses	16-core	processors,	with	1024	compute	nodes	per	rack,	scalable
up	to	512	racks.	Installations	of	the	Blue	Gene/Q	computer	include	Nostromo	(being	used	for	biomedical
data	in	Poland),	Sequoia	(being	used	at	Lawrence	Livermore	National	Laboratory	for	nuclear	simulations
and	scientific	research),	and	Mira	(used	at	Argonne	National	Laboratory).

Dual-core	 and	 quad-core	 processors	 (and	 higher,	 as	 we	 saw	 in	 Blue	 Gene/Q)	 are	 examples	 of
multicore	 processors.	 But	what	 is	 a	multicore	 processor?	 Essentially,	 it	 is	 a	 special	 type	 of	 parallel
processor.	 Parallel	 processors	 are	 often	 classified	 as	 either	 “shared	 memory”	 processors	 (in	 which
processors	 all	 share	 the	 same	 global	 memory)	 or	 “distributed	 memory”	 computers	 (in	 which	 each
processor	has	 its	own	private	memory).	Chapter	9	 covers	parallel	 processors	 in	detail.	The	 following
discussion	is	limited	to	shared	memory	multicore	architectures—the	type	used	in	personal	computers.

Multicore	architectures	 are	 parallel	 processing	machines	 that	 allow	 for	multiple	 processing	 units
(often	called	cores)	on	a	single	chip.	Dual	core	means	2	cores;	quad	core	machines	have	4	cores;	and	so
on.	But	what	is	a	core?	Instead	of	a	single	processing	unit	in	an	integrated	circuit	(as	found	in	typical	von
Neumann	machines),	 independent	multiple	 cores	 are	 “plugged	 in”	 and	 run	 in	parallel.	Each	processing
unit	has	 its	own	ALU	and	 set	of	 registers,	 but	 all	 processors	 share	memory	and	 some	other	 resources.
“Dual	 core”	 is	 different	 from	 “dual	 processor.”	 Dual-processor	 machines,	 for	 example,	 have	 two
processors,	but	each	processor	plugs	into	the	motherboard	separately.	The	important	distinction	to	note	is
that	 all	 cores	 in	multicore	machines	 are	 integrated	 into	 the	 same	 chip.	 This	means	 that	 you	 could,	 for
example,	 replace	 a	 single-core	 (uniprocessor)	 chip	 in	 your	 computer	 with,	 for	 example,	 a	 dual-core
processor	chip	(provided	your	computer	had	the	appropriate	socket	for	the	new	chip).	Many	computers



today	are	advertised	as	dual	core,	quad	core,	or	higher.	Dual	core	is	generally	considered	the	standard	in
today’s	 computers.	 Although	 most	 desktop	 and	 laptop	 computers	 have	 limited	 cores	 (fewer	 than	 8),
machines	with	hundreds	of	cores	are	available	for	the	right	price,	of	course.

Just	because	your	computer	has	multiple	cores	does	not	mean	it	will	run	your	programs	more	quickly.
Application	 programs	 (including	 operating	 systems)	 must	 be	 written	 to	 take	 advantage	 of	 multiple
processing	units	(this	statement	is	true	for	parallel	processing	in	general).	Multicore	computers	are	very
useful	for	multitasking—when	users	are	doing	more	than	one	thing	at	a	time.	For	example,	you	may	be
reading	 email,	 listening	 to	music,	 browsing	 the	Web,	 and	 burning	 a	DVD	 all	 at	 the	 same	 time.	 These
“multiple	 tasks”	 can	 be	 assigned	 to	 different	 processors	 and	 carried	 out	 in	 parallel,	 provided	 the
operating	system	is	able	to	manipulate	many	tasks	at	once.

In	addition	to	multitasking,	multithreading	can	also	increase	the	performance	of	any	application	with
inherent	parallelism.	Programs	are	divided	into	threads,	which	can	be	thought	of	as	mini-processes.	For
example,	a	Web	browser	is	multithreaded;	one	thread	can	download	text,	while	each	image	is	controlled
and	 downloaded	 by	 a	 separate	 thread.	 If	 an	 application	 is	 multithreaded,	 separate	 threads	 can	 run	 in
parallel	 on	 different	 processing	 units.	We	 should	 note	 that	 even	 on	 uniprocessors,	 multithreading	 can
improve	 performance,	 but	 this	 is	 a	 discussion	 best	 left	 for	 another	 time.	 For	 more	 information,	 see
Stallings	(2012).

To	 summarize,	 parallel	 processing	 refers	 to	 a	 collection	 of	 different	 architectures,	 from	 multiple
separate	computers	working	together,	to	multiple	processors	sharing	memory,	to	multiple	cores	integrated
onto	the	same	chip.	Parallel	processors	are	technically	not	classified	as	von	Neumann	machines	because
they	do	 not	 process	 instructions	 sequentially.	However,	many	 argue	 that	 parallel	 processing	 computers
contain	CPUs,	 use	 program	counters,	 and	 store	 both	 programs	 and	data	 in	main	memory,	which	makes
them	more	like	an	extension	to	the	von	Neumann	architecture	rather	than	a	departure	from	it;	these	people
view	parallel	processing	computers	as	sets	of	cooperating	von	Neumann	machines.	In	this	regard,	perhaps
it	 is	more	 appropriate	 to	 say	 that	 parallel	 processing	 exhibits	 “non–von	Neumannness.”	Regardless	 of
how	parallel	processors	are	classified,	parallel	computing	allows	us	to	multitask	and	to	solve	larger	and
more	complex	problems,	and	is	driving	new	research	in	various	software	tools	and	programming.

Even	parallel	computing	has	its	limits,	however.	As	the	number	of	processors	increases,	so	does	the
overhead	of	managing	how	tasks	are	distributed	 to	 those	processors.	Some	parallel	processing	systems
require	extra	processors	just	to	manage	the	rest	of	the	processors	and	the	resources	assigned	to	them.	No
matter	how	many	processors	we	place	in	a	system,	or	how	many	resources	we	assign	to	them,	somehow,
somewhere,	a	bottleneck	 is	bound	 to	develop.	The	best	we	can	do,	however,	 is	make	sure	 the	slowest
parts	of	the	system	are	the	ones	that	are	used	the	least.	This	is	the	idea	behind	Amdahl’s	Law.	This	law
states	that	the	performance	enhancement	possible	with	a	given	improvement	is	limited	by	the	amount	that
the	 improved	 feature	 is	used.	The	underlying	premise	 is	 that	 every	algorithm	has	a	 sequential	part	 that
ultimately	limits	the	speedup	that	can	be	achieved	by	multiprocessor	implementation.

If	parallel	machines	and	other	non–von	Neumann	architectures	give	such	huge	increases	in	processing
speed	and	power,	why	isn’t	everyone	using	them	everywhere?	The	answer	lies	in	their	programmability.
Advances	in	operating	systems	that	can	utilize	multiple	cores	have	put	these	chips	in	laptops	and	desktops
that	 we	 can	 buy	 today;	 however,	 true	 multiprocessor	 programming	 is	 more	 complex	 than	 both
uniprocessor	and	multicore	programming	and	requires	people	to	think	about	problems	in	a	different	way,
using	new	algorithms	and	programming	tools.

One	of	 these	programming	 tools	 is	 a	 set	of	new	programming	 languages.	Most	of	our	programming
languages	 are	 von	 Neumann	 languages,	 created	 for	 the	 von	 Neumann	 architecture.	 Many	 common
languages	 have	 been	 extended	with	 special	 libraries	 to	 accommodate	 parallel	 programming,	 and	many



new	languages	have	been	designed	specifically	for	the	parallel	programming	environment.	We	have	very
few	 programming	 languages	 for	 the	 remaining	 (nonparallel)	 non–von	 Neumann	 platforms,	 and	 fewer
people	who	 really	 understand	how	 to	program	 in	 these	 environments	 efficiently.	Examples	 of	 non–von
Neumann	languages	include	Lucid	(for	dataflow)	and	QCL	(Quantum	Computation	Language)	for	quantum
computers,	 as	well	 as	VHDL	or	Verilog	 (languages	used	 to	program	FPGAs).	However,	 even	with	 the
inherent	difficulties	in	programming	parallel	machines,	we	see	in	the	next	section	that	significant	progress
is	being	made.

1.11		PARALLELISM:	ENABLER	OF	MACHINE	INTELLIGENCE
—DEEP	BLUE	AND	WATSON

It	 is	 evident	 by	 our	 sidebar	 on	 the	Mechanical	 Turk	 that	 chess	 playing	 has	 long	 been	 considered	 the
ultimate	demonstration	of	a	“thinking	machine.”	The	chess-board	is	a	battlefield	where	human	can	meet
machine	on	more-or-less	 equal	 terms—with	 the	human	always	having	 the	 edge,	of	 course.	Real	 chess-
playing	 computers	 have	 been	 around	 since	 the	 late	 1950s.	Over	 the	 decades,	 they	 gradually	 improved
their	hardware	and	software	to	eventually	become	formidable	opponents	for	reasonably	skilled	players.
The	 problem	 of	 championship	 chess	 playing,	 however,	 had	 long	 been	 considered	 so	 hard	 that	 many
believed	a	machine	could	never	beat	 a	human	Grandmaster.	On	May	11,	1997,	a	machine	called	Deep
Blue	did	just	that.

Deep	Blue’s	principal	designers	were	IBM	researchers	Feng-hsiung	Hsu,	Thomas	Anantharaman,	and
Murray	Campbell.	Reportedly	costing	more	than	$6	million	and	taking	six	years	to	build,	Deep	Blue	was
a	massively	 parallel	 system	consisting	of	 30	RS/6000-based	nodes	 supplemented	with	 480	 chips	 built
especially	 to	 play	 chess.	 Deep	 Blue	 included	 a	 database	 of	 700,000	 complete	 games	 with	 separate
systems	 for	 opening	 and	 endgames.	 It	 evaluated	 200	 million	 positions	 per	 second	 on	 average.	 This
enabled	Deep	Blue	to	produce	a	12-move	look	ahead.

Having	 soundly	beat	 an	earlier	version	of	Deep	Blue,	world	 chess	 champion	Garry	Kasparov	was
overwhelmingly	favored	to	win	a	rematch	starting	May	3,	1997.	At	the	end	of	five	games,	Kasparov	and
Deep	Blue	were	tied,	2½	to	2½.	Then	Deep	Blue	quickly	seized	upon	an	error	that	Kasparov	made	early
in	 the	sixth	game.	Kasparov	had	no	choice	but	 to	concede,	 thus	making	Deep	Blue	 the	 first	machine	 to
ever	defeat	a	chess	Grandmaster.

With	 Deep	 Blue’s	 stunning	 win	 over	 Kasparov	 now	 in	 the	 history	 books,	 IBM	Research	manager
Charles	Lickel	began	looking	for	a	new	challenge.	In	2004,	Lickel	was	among	the	millions	mesmerized	by
Ken	 Jennings’s	 unprecedented	 74-game	 winning	 streak	 on	 the	 American	 quiz	 show,	 Jeopardy!	 As	 he
watched	 Jennings	 win	 one	 match	 after	 another,	 Lickel	 dared	 to	 think	 that	 it	 was	 possible	 to	 build	 a
machine	 that	could	win	at	Jeopardy!	Moreover,	 he	believed	 that	 IBM	Research	had	 the	 talent	 to	build
such	a	machine.	He	tapped	Dr.	David	Ferrucci	to	lead	the	effort.

IBM	scientists	were	 in	no	 rush	 to	 sign	on	 to	Lickel’s	 audacious	project.	They	doubted—with	good
reason—that	 such	 a	 machine	 could	 be	 built.	 After	 all,	 creating	 Deep	 Blue	 was	 hard	 enough.	 Playing
Jeopardy!	 is	 enormously	 more	 difficult	 than	 playing	 chess.	 In	 chess,	 the	 problem	 domain	 is	 clearly
defined	 with	 fixed,	 unambiguous	 rules,	 and	 a	 finite	 (although	 very	 large)	 solution	 space.	 Jeopardy!
questions,	on	the	other	hand,	cover	a	nearly	infinite	problem	space	compounded	by	the	vagaries	of	human
language,	odd	relations	between	concepts,	puns,	and	vast	amounts	of	unstructured	factual	information.	For
example,	a	Jeopardy!	category	could	be	titled	“Doozy	Twos”	and	relate	to	an	African	leader,	an	article	of
clothing,	an	Al	Jolson	song,	and	an	ammunition	size	(Benjamin	Tutu,	tutu	skirt,	“Toot	Toot	Tootsie,”	and



.22	caliber).	Whereas	a	human	being	has	little	trouble	seeing	the	relationship	(especially	once	the	answer
is	revealed),	computers	are	utterly	baffled.

To	make	the	game	fair,	Watson	had	to	emulate	a	human	player	as	closely	as	possible.	No	connection	to
the	Internet	or	any	other	computers	was	permitted,	and	Watson	was	required	to	physically	press	a	plunger
to	“buzz	in”	with	an	answer.	However,	Watson	wasn’t	programmed	to	process	sound	or	images,	so	visual
and	strictly	audio	clues—such	as	musical	selections—were	not	used	during	the	match.

Once	a	clue	was	read,	Watson	initiated	several	parallel	processes.	Each	process	examined	different
aspects	 of	 the	 clue,	 narrowed	 the	 solution	 space,	 and	 formulated	 a	 hypothesis	 as	 to	 the	 answer.	 The
hypothesis	included	a	probability	of	its	being	correct.	Watson	selected	the	most	likely	of	the	hypotheses,
or	selected	no	hypothesis	at	all	if	the	probability	of	correctness	didn’t	reach	a	predetermined	threshold.
Watson’s	 designers	 determined	 that	 if	Watson	 were	 to	 attempt	 just	 70%	 of	 the	 questions	 and	 respond
correctly	just	85%	of	the	time,	it	would	win	the	contest.	No	human	players	had	ever	done	as	well.

Using	Watson’s	algorithms,	a	typical	desktop	computer	would	need	about	two	hours	to	come	up	with	a
good	hypothesis.	Watson	had	to	do	it	in	less	than	three	seconds.	It	achieved	this	feat	through	a	massively
parallel	 architecture	 dubbed	 DeepQA	 (Deep	 Question	 and	 Answer).	 The	 system	 relied	 on	 90	 IBM
POWER	 750	 servers.	 Each	 server	was	 equipped	with	 four	 POWER7	 processors,	 and	 each	 POWER7
processor	had	eight	cores,	giving	a	 total	of	2880	processor	cores.	While	playing	Jeopardy!,	 each	 core
had	access	to	16TB	of	main	memory	and	4TB	of	clustered	storage.

Unlike	 Deep	 Blue,	Watson	 could	 not	 be	 programmed	 to	 solve	 problems	 through	 brute	 force:	 The
problem	 space	 was	 much	 too	 large.	Watson’s	 designers,	 therefore,	 approached	 the	 situation	 just	 as	 a
human	 being	would:	Watson	 “learned”	 by	 consuming	 terabytes	 of	 unstructured	 data	 from	 thousands	 of
news	 sources,	 journals,	 and	 books.	 The	 DeepQA	 algorithms	 provided	 Watson	 with	 the	 ability	 to
synthesize	information—in	a	humanlike	manner—from	this	universe	of	raw	data.	Watson	drew	inferences
and	 made	 assumptions	 using	 hard	 facts	 and	 incomplete	 information.	Watson	 could	 see	 information	 in
context:	The	same	question,	in	a	different	context,	might	well	produce	a	different	answer.

On	the	third	day	of	its	match,	February	16,	2011,	Watson	stunned	the	world	by	soundly	beating	both
reigning	Jeopardy!	champs,	Ken	Jennings	and	Brad	Rutter.	Watson’s	winnings	were	donated	 to	charity,
but	Watson’s	 service	 to	 humanity	was	 only	 beginning.	Watson’s	 ability	 to	 absorb	 and	 draw	 inferences
from	pools	of	unstructured	data	made	it	a	perfect	candidate	for	medical	school.	Beginning	in	2011,	IBM,
WellPoint,	 and	 Memorial	 Sloan-Kettering	 Cancer	 Center	 set	 Watson	 to	 work	 absorbing	 more	 than
600,000	 pieces	 of	 medical	 evidence,	 and	 two	 million	 pages	 of	 text	 from	 42	 medical	 journals	 and
oncology	 research	documents.	Watson’s	 literature	 assimilation	was	 supplemented	with	14,700	hours	of
live	training	provided	by	WellPoint	nurses.	Watson	was	then	given	25,000	test	case	scenarios	and	1500
real-life	 cases	 from	 which	 it	 demonstrated	 that	 it	 had	 gained	 the	 ability	 to	 derive	 meaning	 from	 the
mountain	of	complex	medical	data,	 some	of	which	was	 in	 informal	natural	 language—such	as	doctors’
notes,	patient	records,	medical	annotations,	and	clinical	feedback.	Watson’s	Jeopardy!	success	has	now
been	matched	by	its	medical	school	success.	Commercial	products	based	on	Watson	technology,	including
“Interactive	Care	Insights	for	Oncology”	and	“Interactive	Care	Reviewer,”	are	now	available.	They	hold
the	promise	to	improve	the	speed	and	accuracy	of	medical	care	for	cancer	patients.

Although	 Watson’s	 applications	 and	 abilities	 have	 been	 growing,	 Watson’s	 footprint	 has	 been
shrinking.	 In	 the	 span	 of	 only	 a	 few	 years,	 system	 performance	 has	 improved	 by	 240%	 with	 a	 75%
reduction	in	physical	resources.	Watson	can	now	be	run	on	a	single	POWER	750	server,	leading	some	to
claim	that	“Watson	on	a	chip”	is	just	around	the	corner.

In	Watson,	we	have	not	merely	seen	an	amazing	Jeopardy!	player	or	crack	oncologist.	What	we	have
seen	is	the	future	of	computing.	Rather	than	people	being	trained	to	use	computers,	computers	will	train



themselves	to	interact	with	people—with	all	their	fuzzy	and	incomplete	information.	Tomorrow’s	systems
will	meet	humans	on	human	terms.	As	Dr.	Ferrucci	puts	it,	there	simply	is	no	other	future	for	computers
except	to	become	like	Watson.	It	just	has	to	be	this	way.

CHAPTER	SUMMARY
In	this	chapter,	we	have	presented	a	brief	overview	of	computer	organization	and	computer	architecture
and	 shown	 how	 they	 differ.	 We	 also	 have	 introduced	 some	 terminology	 in	 the	 context	 of	 a	 fictitious
computer	advertisement.	Much	of	this	terminology	will	be	expanded	on	in	later	chapters.

Historically,	computers	were	simply	calculating	machines.	As	computers	became	more	sophisticated,
they	became	general-purpose	machines,	which	necessitated	viewing	each	system	as	a	hierarchy	of	levels
instead	of	one	gigantic	machine.	Each	layer	in	this	hierarchy	serves	a	specific	purpose,	and	all	levels	help
minimize	the	semantic	gap	between	a	high-level	programming	language	or	application	and	the	gates	and
wires	that	make	up	the	physical	hardware.	Perhaps	the	single	most	important	development	in	computing
that	 affects	 us	 as	 programmers	 is	 the	 introduction	 of	 the	 stored-program	 concept	 of	 the	 von	Neumann
machine.	Although	there	are	other	architectural	models,	the	von	Neumann	architecture	is	predominant	in
today’s	general-purpose	computers.

FURTHER	READING
We	encourage	you	to	build	on	our	brief	presentation	of	the	history	of	computers.	We	think	you	will	find
this	subject	intriguing	because	it	is	as	much	about	people	as	it	is	about	machines.	You	can	read	about	the
“forgotten	father	of	 the	computer,”	John	Atanasoff,	 in	Mollenhoff	 (1988).	This	book	documents	 the	odd
relationship	 between	Atanasoff	 and	 John	Mauchly,	 and	 recounts	 the	 open	 court	 battle	 of	 two	 computer
giants,	Honeywell	and	Sperry	Rand.	This	trial	ultimately	gave	Atanasoff	his	proper	recognition.

For	a	lighter	look	at	computer	history,	try	the	book	by	Rochester	and	Gantz	(1983).	Augarten’s	(1985)
illustrated	history	of	computers	is	a	delight	to	read	and	contains	hundreds	of	hard-to-find	pictures	of	early
computers	and	computing	devices.	For	a	complete	discussion	of	the	historical	development	of	computers,
you	can	check	out	the	three-volume	dictionary	by	Cortada	(1987).	A	particularly	thoughtful	account	of	the
history	 of	 computing	 is	 presented	 in	 Ceruzzi	 (1998).	 If	 you	 are	 interested	 in	 an	 excellent	 set	 of	 case
studies	about	historical	computers,	see	Blaauw	and	Brooks	(1997).

You	will	also	be	richly	rewarded	by	reading	McCartney’s	 (1999)	book	about	 the	ENIAC,	Chopsky
and	Leonsis’s	(1988)	chronicle	of	the	development	of	the	IBM	PC,	and	Toole’s	(1998)	biography	of	Ada,
Countess	of	Lovelace.	Polachek’s	(1997)	article	conveys	a	vivid	picture	of	the	complexity	of	calculating
ballistic	firing	tables.	After	reading	this	article,	you	will	understand	why	the	army	would	gladly	pay	for
anything	that	promised	to	make	the	process	faster	or	more	accurate.	The	Maxfield	and	Brown	book	(1997)
contains	a	fascinating	look	at	the	origins	and	history	of	computing	as	well	as	in-depth	explanations	of	how
a	computer	works.

For	 more	 information	 on	 Moore’s	 Law,	 we	 refer	 the	 reader	 to	 Schaller	 (1997).	 For	 detailed
descriptions	of	early	computers	as	well	as	profiles	and	reminiscences	of	industry	pioneers,	you	may	wish
to	consult	 the	 IEEE	Annals	of	 the	History	of	Computing,	which	 is	 published	quarterly.	The	Computer
Museum	History	Center	 can	 be	 found	 online	 at	www.computerhistory.org.	 It	 contains	 various	 exhibits,
research,	timelines,	and	collections.	Many	cities	now	have	computer	museums	and	allow	visitors	to	use
some	of	the	older	computers.

A	wealth	of	information	can	be	found	at	the	websites	of	the	standards-making	bodies	discussed	in	this

http://www.computerhistory.org


chapter	(as	well	as	sites	not	discussed	in	this	chapter).	The	IEEE	can	be	found	at	www.ieee.org;	ANSI	at
www.ansi.org;	 the	 ISO	at	www.iso.ch;	 the	BSI	at	www.bsi-global.com;	 and	 the	 ITU-T	 at	www.itu.int.
The	ISO	site	offers	a	vast	amount	of	information	and	standards	reference	materials.

The	 WWW	 Computer	 Architecture	 Home	 Page	 at	 www.cs.wisc.edu/~arch/www/	 contains	 a
comprehensive	 index	 to	 computer	 architecture–related	 information.	 Many	 USENET	 newsgroups	 are
devoted	to	these	topics	as	well,	including	comp.arch	and	comp.arch.storage.

The	entire	May–June	2000	issue	of	MIT’s	Technology	Review	magazine	 is	devoted	 to	architectures
that	may	be	 the	basis	of	 tomorrow’s	computers.	Reading	 this	 issue	will	be	 time	well	spent.	 In	fact,	we
could	say	the	same	of	every	issue.

For	a	truly	unique	account	of	human	computers,	we	invite	you	to	read	Grier’s	When	Computers	Were
Human.	 Among	 other	 things,	 he	 presents	 a	 stirring	 account	 of	 the	 human	 computers	 who	 drove	 the
mathematical	 tables	 project	 under	 the	 Depression-era	 Works	 Progress	 Administration	 (WPA).	 The
contributions	 made	 by	 these	 “table	 factories”	 were	 crucial	 to	 America’s	 victory	 in	World	War	 II.	 A
shorter	account	of	this	effort	can	also	be	found	in	Grier’s	1998	article	that	appears	in	the	IEEE	Annals	of
the	History	of	Computing.

The	entire	May–June	2012	issue	of	the	IBM	Journal	of	Research	and	Development	 is	dedicated	 to
the	building	of	Watson.	The	two	articles	by	Ferrucci	and	Lewis	give	great	insight	into	the	challenges	and
triumphs	 of	 this	 groundbreaking	 machine.	 The	 IBM	 whitepaper,	 “Watson—A	 System	 Designed	 for
Answers,”	provides	a	nice	summary	of	Watson’s	hardware	architecture.	Feng-hsiung	Hsu	gives	his	first-
person	account	of	the	building	of	Deep	Blue	in	Behind	Deep	Blue:	Building	the	Computer	that	Defeated
the	World	Chess	Champion.	Readers	interested	in	the	Mechanical	Turk	can	find	more	information	in	the
book	of	the	same	name	by	Tom	Standage.

REFERENCES
Augarten,	S.	Bit	by	Bit:	An	Illustrated	History	of	Computers.	London:	Unwin	Paperbacks,	1985.
Blaauw,	G.,	&	Brooks,	F.	Computer	Architecture:	Concepts	and	Evolution.	Reading,	MA:	Addison-

Wesley,	1997.
Ceruzzi,	P.	E.	A	History	of	Modern	Computing.	Cambridge,	MA:	MIT	Press,	1998.
Chopsky,	J.,	&	Leonsis,	T.	Blue	Magic:	The	People,	Power	and	Politics	Behind	the	IBM	Personal

Computer.	New	York:	Facts	on	File	Publications,	1988.
Cortada,	J.	W.	Historical	Dictionary	of	Data	Processing,	Volume	1:	Biographies;	Volume	2:

Organization;	Volume	3:	Technology.	Westport,	CT:	Greenwood	Press,	1987.
Ferrucci,	D.	A.,	“Introduction	to	‘This	is	Watson.’	”	IBM	Journal	of	Research	and	Development	56:3/4,

May–June	2012,	pp.	1:1–1:15.
Grier,	D.	A.	“The	Math	Tables	Project	of	the	Work	Projects	Administration:	The	Reluctant	Start	of	the

Computing	Era.”	IEEE	Annals	of	the	History	of	Computing	20:3,	July–Sept.	1998,	pp.	33–50.
Grier,	D.	A.	When	Computers	Were	Human.	Princeton,	NJ:	Princeton	University	Press,	2007.
Hsu,	F.-h.	Behind	Deep	Blue:	Building	the	Computer	that	Defeated	the	World	Chess	Champion.

Princeton,	NJ:	Princeton	University	Press,	2006.
IBM.	“Watson—A	System	Designed	for	Answers:	The	future	of	workload	optimized	systems	design.”

February	2011.	ftp://public.dhe.ibm.com/common/ssi/ecm/en/pow03061usen/POW-
03061USEN.PDF.	Retrieved	June	4,	2013.

http://www.ieee.org
http://www.ansi.org
http://www.iso.ch
http://www.bsi-global.com
http://www.itu.int
http://www.cs.wisc.edu/~arch/www/
http://ftp://public.dhe.ibm.com/common/ssi/ecm/en/pow03061usen/POW-03061USEN.PDF


Lewis,	B.	L.	“In	the	game:	The	interface	between	Watson	and	Jeopardy!”	IBM	Journal	of	Research	and
Development	56:3/4,	May–June	2012,	pp.	17:1–17:6.

Maguire,	Y.,	Boyden	III,	E.	S.,	&	Gershenfeld,	N.	“Toward	a	Table-Top	Quantum	Computer.”	IBM
Systems	Journal	39:3/4,	June	2000,	pp.	823–839.

Maxfield,	C.,	&	Brown,	A.	Bebop	BYTES	Back	(An	Unconventional	Guide	to	Computers).	Madison,	AL:
Doone	Publications,	1997.

McCartney,	S.	ENIAC:	The	Triumphs	and	Tragedies	of	the	World’s	First	Computer.	New	York:	Walker
and	Company,	1999.

Mollenhoff,	C.	R.	Atanasoff:	The	Forgotten	Father	of	the	Computer.	Ames,	IA:	Iowa	State	University
Press,	1988.

Polachek,	H.	“Before	the	ENIAC.”	IEEE	Annals	of	the	History	of	Computing	19:2,	June	1997,	pp.	25–
30.

Rochester,	J.	B.,	&	Gantz,	J.	The	Naked	Computer:	A	Layperson’s	Almanac	of	Computer	Lore,	Wizardry,
Personalities,	Memorabilia,	World	Records,	Mindblowers,	and	Tomfoolery.	New	York:	William	A.
Morrow,	1983.

Schaller,	R.	“Moore’s	Law:	Past,	Present,	and	Future.”	IEEE	Spectrum,	June	1997,	pp.	52–59.
Stallings,	W.	Operating	Systems:	Internals	and	Design	Principles,	7th	ed.	Upper	Saddle	River,	NJ:

Prentice	Hall,	2012.
Standage,	T.	The	Turk:	The	Life	and	Times	of	the	Famous	Eighteenth-Century	Chess-Playing	Machine.

New	York:	Berkley	Trade,	2003.
Tanenbaum,	A.	Structured	Computer	Organization,	6th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,	2013.
Toole,	B.	A.	Ada,	the	Enchantress	of	Numbers:	Prophet	of	the	Computer	Age.	Mill	Valley,	CA:

Strawberry	Press,	1998.
Waldrop,	M.	M.	“Quantum	Computing.”	MIT	Technology	Review	103:3,	May/June	2000,	pp.	60–66.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS
1.		What	is	the	difference	between	computer	organization	and	computer	architecture?
2.		What	is	an	ISA?
3.		What	is	the	importance	of	the	Principle	of	Equivalence	of	Hardware	and	Software?
4.		Name	the	three	basic	components	of	every	computer.
5.		To	what	power	of	10	does	the	prefix	giga-	refer?	What	is	the	(approximate)	equivalent	power	of	2?
6.		To	what	power	of	10	does	the	prefix	micro-	refer?	What	is	the	(approximate)	equivalent	power	of	2?
7.		What	unit	is	typically	used	to	measure	the	speed	of	a	computer	clock?
8.		What	are	the	distinguishing	features	of	tablet	computers?
9.		Name	two	types	of	computer	memory.
10.		What	is	the	mission	of	the	IEEE?
11.		What	is	the	full	name	of	the	organization	that	uses	the	initials	ISO?	Is	ISO	an	acronym?



12.		ANSI	is	the	acronym	used	by	which	organization?
13.	 	 What	 is	 the	 name	 of	 the	 Swiss	 organization	 that	 devotes	 itself	 to	 matters	 concerning	 telephony,

telecommunications,	and	data	communications?
14.		Who	is	known	as	the	father	of	computing,	and	why?
15.		What	was	the	significance	of	the	punched	card?
16.		Name	two	driving	factors	in	the	development	of	computers.
17.		What	is	it	about	the	transistor	that	made	it	such	a	great	improvement	over	the	vacuum	tube?
18.		How	does	an	integrated	circuit	differ	from	a	transistor?
19.		Explain	the	differences	between	SSI,	MSI,	LSI,	and	VLSI.
20.		What	technology	spawned	the	development	of	microcomputers?	Why?
21.		What	is	meant	by	an	“open	architecture”?
22.		State	Moore’s	Law.
23.		How	is	Rock’s	Law	related	to	Moore’s	Law?
24.		Name	and	explain	the	seven	commonly	accepted	layers	of	the	Computer	Level	Hierarchy.	How	does

this	arrangement	help	us	to	understand	computer	systems?
25.		How	does	the	term	abstraction	apply	to	computer	organization	and	architecture?
26.		What	was	it	about	the	von	Neumann	architecture	that	distinguished	it	from	its	predecessors?
27.		Name	the	characteristics	present	in	von	Neumann	architecture.
28.		How	does	the	fetch-decode-execute	cycle	work?
29.		What	is	a	multicore	processor?
30.		What	are	the	key	characteristics	of	Cloud	computing?
31.		What	are	the	three	types	of	Cloud	computing	platforms?
32.		What	are	the	main	challenges	of	Cloud	computing	from	a	provider	perspective	as	well	as	a	consumer

perspective?
33.		What	are	the	advantages	and	disadvantages	of	service-oriented	computing?
34.		What	is	meant	by	parallel	computing?
35.		What	is	the	underlying	premise	of	Amdahl’s	Law?
36.		What	makes	Watson	so	different	from	traditional	computers?

EXERCISES
	1.		In	what	ways	are	hardware	and	software	different?	In	what	ways	are	they	the	same?
2.		a)		How	many	milliseconds	(ms)	are	in	1	second?

b)		How	many	microseconds	(µs)	are	in	1	second?
c)		How	many	nanoseconds	(ns)	are	in	1	millisecond?
d)		How	many	microseconds	are	in	1	millisecond?



e)		How	many	nanoseconds	are	in	1	microsecond?
f)		How	many	kilobytes	(KB)	are	in	1	gigabyte	(GB)?
g)		How	many	kilobytes	are	in	1	megabyte	(MB)?
h)		How	many	megabytes	are	in	1	gigabyte?
i)		How	many	bytes	are	in	20	megabytes?
j)		How	many	kilobytes	are	in	2	gigabytes?

	3.		By	what	order	of	magnitude	is	something	that	runs	in	nanoseconds	faster	than	something	that	runs	in
milliseconds?

4.	 	 Pretend	 you	 are	 ready	 to	 buy	 a	 new	 computer	 for	 personal	 use.	 First,	 take	 a	 look	 at	 ads	 from
various	magazines	and	newspapers	and	list	terms	you	don’t	quite	understand.	Look	up	these	terms
and	 give	 a	 brief	written	 explanation.	Decide	what	 factors	 are	 important	 in	 your	 decision	 as	 to
which	computer	to	buy	and	list	 them.	After	you	select	 the	system	you	would	like	to	buy,	 identify
which	terms	refer	to	hardware	and	which	refer	to	software.

5.	 	 Makers	 of	 tablet	 computers	 continually	 work	 within	 narrow	 constraints	 on	 cost,	 power
consumption,	 weight,	 and	 battery	 life.	 Describe	 what	 you	 feel	 would	 be	 the	 perfect	 tablet
computer.	How	large	would	the	screen	be?	Would	you	rather	have	a	longer-lasting	battery,	even	if
it	means	having	a	heavier	unit?	How	heavy	would	be	too	heavy?	Would	you	rather	have	low	cost
or	fast	performance?	Should	the	battery	be	consumer	replaceable?

6.		Pick	your	favorite	computer	language	and	write	a	small	program.	After	compiling	the	program,	see
if	 you	 can	 determine	 the	 ratio	 of	 source	 code	 instructions	 to	 the	machine	 language	 instructions
generated	by	 the	compiler.	 If	you	add	one	 line	of	source	code,	how	does	 that	affect	 the	machine
language	 program?	 Try	 adding	 different	 source	 code	 instructions,	 such	 as	 an	 add	 and	 then	 a
multiply.	 How	 does	 the	 size	 of	 the	 machine	 code	 file	 change	 with	 the	 different	 instructions?
Comment	on	the	result.

7.		Respond	to	the	idea	presented	in	Section	1.5:	If	invented	today,	what	name	do	you	think	would	be
given	to	the	computer?	Give	at	least	one	good	reason	for	your	answer.

8.		Briefly	explain	two	breakthroughs	in	the	history	of	computing.
9.		Would	it	be	possible	to	fool	people	with	an	automaton	like	the	Mechanical	Turk	today?	If	you	were

to	try	to	create	a	Turk	today,	how	would	it	differ	from	the	eighteenth-century	version?
	10.	 	Suppose	a	transistor	on	an	integrated	circuit	chip	were	2	microns	in	size.	According	to	Moore’s

Law,	 how	 large	 would	 that	 transistor	 be	 in	 2	 years?	 How	 is	 Moore’s	 Law	 relevant	 to
programmers?

11.		What	circumstances	helped	the	IBM	PC	become	so	successful?
12.		List	five	applications	of	personal	computers.	Is	there	a	limit	to	the	applications	of	computers?	Do

you	envision	any	radically	different	and	exciting	applications	in	the	near	future?	If	so,	what?
13.		In	the	von	Neumann	model,	explain	the	purpose	of	the:

a)		processing	unit
b)		program	counter

14.	 	 Under	 the	 von	 Neumann	 architecture,	 a	 program	 and	 its	 data	 are	 both	 stored	 in	 memory.	 It	 is
therefore	possible	 for	a	program,	 thinking	 that	 a	memory	 location	holds	a	piece	of	data	when	 it



actually	 holds	 a	 program	 instruction,	 to	 accidentally	 (or	 on	 purpose)	 modify	 itself.	 What
implications	does	this	present	to	you	as	a	programmer?

15.		Explain	why	modern	computers	consist	of	multiple	levels	of	virtual	machines.
16.		Explain	the	three	main	types	of	Cloud	computing	platforms.
17.		What	are	the	challenges	facing	organizations	that	wish	to	move	to	a	Cloud	platform?	What	are	the

risks	and	benefits?
18.	 	 Does	 Cloud	 computing	 eliminate	 all	 of	 an	 organization’s	 concerns	 about	 its	 computing

infrastructure?
19.		Explain	what	it	means	to	“fetch”	an	instruction.
20.		Read	a	popular	local	newspaper	and	search	through	the	job	openings.	(You	can	also	check	some	of

the	more	popular	online	career	sites.)	Which	jobs	require	specific	hardware	knowledge?	Which
jobs	 imply	 knowledge	 of	 computer	 hardware?	 Is	 there	 any	 correlation	 between	 the	 required
hardware	knowledge	and	the	company	or	its	location?

21.		List	and	describe	some	common	uses	and	some	not-so-common	uses	of	computers	in	business	and
other	sectors	of	society.

22.	 	 The	 technologist’s	 notion	 of	 Moore’s	 Law	 is	 that	 the	 number	 of	 transistors	 per	 chip	 doubles
approximately	every	18	months.	In	the	1990s,	Moore’s	Law	started	to	be	described	as	the	doubling
of	microprocessor	power	every	18	months.	Given	this	new	variation	of	Moore’s	Law,	answer	the
following:
a)	 	After	 successfully	completing	your	computer	organization	and	architecture	class,	you	have	a

brilliant	idea	for	a	new	chip	design	that	would	make	a	processor	six	times	faster	than	the	fastest
ones	on	the	market	today.	Unfortunately,	it	will	take	you	four	and	a	half	years	to	save	the	money,
create	 the	 prototype,	 and	 build	 a	 finished	 product.	 If	Moore’s	Law	holds,	 should	 you	 spend
your	money	developing	and	producing	your	chip	or	invest	in	some	other	venture?

b)		Suppose	we	have	a	problem	that	currently	takes	100,000	hours	of	computer	time	using	current
technology	to	solve.	Which	of	the	following	would	give	us	the	solution	first:	(1)	Replace	the
algorithm	used	in	the	current	solution	with	one	that	runs	twice	as	fast	and	run	it	on	the	current
technology,	or	(2)	Wait	3	years,	assuming	Moore’s	Law	doubles	the	performance	of	a	computer
every	18	months,	and	find	the	solution	using	the	current	algorithm	with	the	new	technology?

23.		What	are	the	limitations	of	Moore’s	Law?	Why	can’t	this	law	hold	forever?	Explain.
24.		What	are	some	technical	implications	of	Moore’s	Law?	What	effect	does	it	have	on	your	future?
25.		Do	you	share	Dr.	Ferrucci’s	opinion	that	all	computers	will	become	like	Watson	someday?	If	you

had	a	tablet-sized	Watson,	what	would	you	do	with	it?
	
1	What	 this	 principle	 does	not	 address	 is	 the	 speed	with	which	 the	 equivalent	 tasks	 are	 carried	out.	Hardware	 implementations	 are	 almost
always	faster.



There	are	10	kinds	of	people	in	the	world—those	who	understand	binary	and	those	who
don’t.

—Anonymous

CHAPTER	2



Data	Representation	in	Computer	Systems

2.1			INTRODUCTION
The	organization	of	any	computer	depends	considerably	on	how	 it	 represents	numbers,	 characters,	 and
control	information.	The	converse	is	also	true:	Standards	and	conventions	established	over	the	years	have
determined	certain	aspects	of	computer	organization.	This	chapter	describes	 the	various	ways	 in	which
computers	 can	 store	 and	 manipulate	 numbers	 and	 characters.	 The	 ideas	 presented	 in	 the	 following
sections	form	the	basis	for	understanding	the	organization	and	function	of	all	types	of	digital	systems.

The	most	 basic	 unit	 of	 information	 in	 a	 digital	 computer	 is	 called	 a	bit,	which	 is	 a	 contraction	 of
binary	digit.	 In	 the	 concrete	 sense,	 a	 bit	 is	 nothing	more	 than	 a	 state	 of	 “on”	 or	 “off”	 (or	 “high”	 and
“low”)	within	 a	 computer	 circuit.	 In	 1964,	 the	 designers	 of	 the	 IBM	System/360	mainframe	 computer
established	a	convention	of	using	groups	of	8	bits	as	the	basic	unit	of	addressable	computer	storage.	They
called	this	collection	of	8	bits	a	byte.

Computer	words	 consist	 of	 two	 or	 more	 adjacent	 bytes	 that	 are	 sometimes	 addressed	 and	 almost
always	 are	 manipulated	 collectively.	 The	 word	 size	 represents	 the	 data	 size	 that	 is	 handled	 most
efficiently	by	a	particular	architecture.	Words	can	be	16	bits,	32	bits,	64	bits,	or	any	other	size	that	makes
sense	in	the	context	of	a	computer’s	organization	(including	sizes	that	are	not	multiples	of	eight).	An	8-bit
byte	can	be	divided	into	two	4-bit	halves	called	nibbles	(or	nybbles).	Because	each	bit	of	a	byte	has	a
value	within	a	positional	numbering	system,	the	nibble	containing	the	least-valued	binary	digit	is	called
the	low-order	nibble,	and	the	other	half	the	high-order	nibble.

2.2	POSITIONAL	NUMBERING	SYSTEMS
At	 some	 point	 during	 the	middle	 of	 the	 sixteenth	 century,	 Europe	 embraced	 the	 decimal	 (or	 base	 10)
numbering	system	that	the	Arabs	and	Hindus	had	been	using	for	nearly	a	millennium.	Today,	we	take	for
granted	that	the	number	243	means	two	hundreds,	plus	four	tens,	plus	three	units.	Notwithstanding	the	fact
that	zero	means	“nothing,”	virtually	everyone	knows	that	there	is	a	substantial	difference	between	having
1	of	something	and	having	10	of	something.

The	general	idea	behind	positional	numbering	systems	is	that	a	numeric	value	is	represented	through
increasing	 powers	 of	 a	 radix	 (or	 base).	 This	 is	 often	 referred	 to	 as	 a	weighted	 numbering	 system
because	each	position	is	weighted	by	a	power	of	the	radix.

The	set	of	valid	numerals	for	a	positional	numbering	system	is	equal	in	size	to	the	radix	of	that	system.
For	example,	there	are	10	digits	in	the	decimal	system,	0	through	9,	and	3	digits	for	the	ternary	(base	3)
system,	0,	1,	and	2.	The	largest	valid	number	in	a	radix	system	is	one	smaller	than	the	radix,	so	8	is	not	a
valid	numeral	in	any	radix	system	smaller	than	9.	To	distinguish	among	numbers	in	different	radices,	we
use	 the	 radix	as	a	 subscript,	 such	as	 in	3310	 to	 represent	 the	decimal	number	33.	 (In	 this	 text,	numbers
written	without	 a	 subscript	 should	 be	 assumed	 to	 be	 decimal.)	Any	 decimal	 integer	 can	 be	 expressed
exactly	in	any	other	integral	base	system	(see	Example	2.1).

	EXAMPLE	2.1	Three	numbers	represented	as	powers	of	a	radix.



The	two	most	important	radices	in	computer	science	are	binary	(base	two),	and	hexadecimal	(base	16).
Another	 radix	 of	 interest	 is	 octal	 (base	 8).	 The	 binary	 system	 uses	 only	 the	 digits	 0	 and	 1;	 the	 octal
system,	0	through	7.	The	hexadecimal	system	allows	the	digits	0	through	9	with	A,	B,	C,	D,	E,	and	F	being
used	to	represent	the	numbers	10	through	15.	Table	2.1	shows	some	of	the	radices.

2.3			CONVERTING	BETWEEN	BASES
Gottfried	Leibniz	(1646–1716)	was	the	first	to	generalize	the	idea	of	the	(positional)	decimal	system	to
other	bases.	Being	a	deeply	spiritual	person,	Leibniz	attributed	divine	qualities	to	the	binary	system.	He
correlated	the	fact	that	any	integer	could	be	represented	by	a	series	of	ones	and	zeros	with	the	idea	that
God	(1)	created	the	universe	out	of	nothing	(0).	Until	the	first	binary	digital	computers	were	built	in	the
late	1940s,	this	system	remained	nothing	more	than	a	mathematical	curiosity.	Today,	it	lies	at	the	heart	of
virtually	every	electronic	device	that	relies	on	digital	controls.

TABLE	2.1	Some	Numbers	to	Remember

Because	of	its	simplicity,	the	binary	numbering	system	translates	easily	into	electronic	circuitry.	It	is
also	 easy	 for	 humans	 to	 understand.	Experienced	 computer	 professionals	 can	 recognize	 smaller	 binary
numbers	(such	as	those	shown	in	Table	2.1)	at	a	glance.	Converting	larger	values	and	fractions,	however,
usually	 requires	 a	 calculator	 or	 pencil	 and	 paper.	 Fortunately,	 the	 conversion	 techniques	 are	 easy	 to
master	with	a	little	practice.	We	show	a	few	of	the	simpler	techniques	in	the	sections	that	follow.

2.3.1		Converting	Unsigned	Whole	Numbers
We	begin	with	the	base	conversion	of	unsigned	numbers.	Conversion	of	signed	numbers	(numbers	that	can
be	positive	or	negative)	is	more	complex,	and	it	is	important	that	you	first	understand	the	basic	technique
for	conversion	before	continuing	with	signed	numbers.

Conversion	 between	 base	 systems	 can	 be	 done	 by	 using	 either	 repeated	 subtraction	 or	 a	 division-



remainder	method.	The	subtraction	method	is	cumbersome	and	requires	a	familiarity	with	the	powers	of
the	 radix	being	used.	Because	 it	 is	 the	more	 intuitive	of	 the	 two	methods,	however,	we	will	 explain	 it
first.

As	an	example,	 let’s	 say	we	want	 to	 convert	10410	 to	base	3.	We	know	 that	 34	 =	 81	 is	 the	 highest
power	of	3	that	is	less	than	104,	so	our	base	3	number	will	be	5	digits	wide	(one	for	each	power	of	the
radix:	0	through	4).	We	make	note	that	81	goes	once	into	104	and	subtract,	leaving	a	difference	of	23.	We
know	that	the	next	power	of	3,	33	=	27,	 is	 too	large	to	subtract,	so	we	note	 the	zero	“placeholder”	and
look	for	how	many	times	32	=	9	divides	23.	We	see	that	it	goes	twice	and	subtract	18.	We	are	left	with	5,
from	which	we	subtract	31	=	3,	leaving	2,	which	is	2	×	30.	These	steps	are	shown	in	Example	2.2.

	EXAMPLE	2.2	Convert	10410	to	base	3	using	subtraction.

The	division-remainder	method	is	faster	and	easier	than	the	repeated	subtraction	method.	It	employs	the
idea	that	successive	divisions	by	the	base	are	in	fact	successive	subtractions	by	powers	of	the	base.	The
remainders	 that	we	 get	when	we	 sequentially	 divide	 by	 the	 base	 end	 up	 being	 the	 digits	 of	 the	 result,
which	are	read	from	bottom	to	top.	This	method	is	illustrated	in	Example	2.3.

	EXAMPLE	2.3	Convert	10410	to	base	3	using	the	division-remainder	method.

Reading	the	remainders	from	bottom	to	top,	we	have:	10410	=	102123.

This	method	works	with	 any	 base,	 and	 because	 of	 the	 simplicity	 of	 the	 calculations,	 it	 is	 particularly



useful	in	converting	from	decimal	to	binary.	Example	2.4	shows	such	a	conversion.

	EXAMPLE	2.4	Convert	14710	to	binary.

Reading	the	remainders	from	bottom	to	top,	we	have:	14710	=	100100112.

A	binary	number	with	N	bits	can	represent	unsigned	integers	from	0	to	2N	–	1.	For	example,	4	bits	can
represent	 the	decimal	values	0	 through	15,	whereas	8	bits	can	 represent	 the	values	0	 through	255.	The
range	 of	 values	 that	 can	 be	 represented	 by	 a	 given	 number	 of	 bits	 is	 extremely	 important	when	 doing
arithmetic	 operations	 on	 binary	 numbers.	 Consider	 a	 situation	 in	 which	 binary	 numbers	 are	 4	 bits	 in
length,	 and	 we	 wish	 to	 add	 11112	 (1510)	 to	 11112.	We	 know	 that	 15	 plus	 15	 is	 30,	 but	 30	 cannot	 be
represented	 using	 only	 4	 bits.	This	 is	 an	 example	 of	 a	 condition	 known	 as	overflow,	which	 occurs	 in
unsigned	binary	representation	when	the	result	of	an	arithmetic	operation	is	outside	the	range	of	allowable
precision	 for	 the	 given	 number	 of	 bits.	 We	 address	 overflow	 in	 more	 detail	 when	 discussing	 signed
numbers	in	Section	2.4.

2.3.2		Converting	Fractions
Fractions	in	any	base	system	can	be	approximated	in	any	other	base	system	using	negative	powers	of	a
radix.	Radix	points	separate	the	integer	part	of	a	number	from	its	fractional	part.	In	the	decimal	system,
the	radix	point	is	called	a	decimal	point.	Binary	fractions	have	a	binary	point.

Fractions	 that	 contain	 repeating	 strings	of	digits	 to	 the	 right	of	 the	 radix	point	 in	one	base	may	not
necessarily	have	a	repeating	sequence	of	digits	 in	another	base.	For	 instance,	⅔	is	a	 repeating	decimal
fraction,	but	in	the	ternary	system,	it	terminates	as	0.23	(2	×	3–1	=	2	×	⅓).

We	can	convert	fractions	between	different	bases	using	methods	analogous	to	the	repeated	subtraction
and	division-remainder	methods	 for	 converting	 integers.	Example	2.5	 shows	how	we	can	use	 repeated
subtraction	to	convert	a	number	from	decimal	to	base	5.

	EXAMPLE	2.5	Convert	0.430410	to	base	5.



Reading	from	top	to	bottom,	we	have:	0.430410	=	0.20345.

Because	 the	 remainder	method	works	with	 positive	 powers	 of	 the	 radix	 for	 conversion	 of	 integers,	 it
stands	 to	 reason	 that	we	would	 use	multiplication	 to	 convert	 fractions,	 because	 they	 are	 expressed	 in
negative	powers	of	the	radix.	However,	instead	of	looking	for	remainders,	as	we	did	above,	we	use	only
the	 integer	part	of	 the	product	after	multiplication	by	 the	 radix.	The	answer	 is	 read	 from	 top	 to	bottom
instead	of	bottom	to	top.	Example	2.6	illustrates	the	process.

	EXAMPLE	2.6	Convert	0.430410	to	base	5.

Reading	from	top	to	bottom,	we	have	0.430410	=	0.20345.

This	example	was	contrived	so	that	the	process	would	stop	after	a	few	steps.	Often	things	don’t	work	out
quite	so	evenly,	and	we	end	up	with	repeating	fractions.	Most	computer	systems	implement	specialized
rounding	algorithms	 to	provide	 a	predictable	degree	of	 accuracy.	For	 the	 sake	of	 clarity,	 however,	we
will	simply	discard	(or	truncate)	our	answer	when	the	desired	accuracy	has	been	achieved,	as	shown	in
Example	2.7.

	EXAMPLE	2.7	Convert	0.3437510	to	binary	with	4	bits	to	the	right	of	the	binary	point.



Reading	from	top	to	bottom,	0.3437510	=	0.01012	to	four	binary	places.

The	methods	just	described	can	be	used	to	directly	convert	any	number	in	any	base	to	any	other	base,	say
from	base	4	to	base	3	(as	in	Example	2.8).	However,	in	most	cases,	it	is	faster	and	more	accurate	to	first
convert	 to	 base	 10	 and	 then	 to	 the	 desired	 base.	One	 exception	 to	 this	 rule	 is	when	 you	 are	working
between	bases	that	are	powers	of	two,	as	you’ll	see	in	the	next	section.

	EXAMPLE	2.8	Convert	31214	to	base	3.

First,	convert	to	decimal:

Then	convert	to	base	3:

2.3.3		Converting	Between	Power-of-Two	Radices
Binary	numbers	are	often	expressed	in	hexadecimal—and	sometimes	octal—to	improve	their	readability.
Because	 16	 =	 24,	 a	 group	 of	 4	 bits	 (called	 a	 hextet)	 is	 easily	 recognized	 as	 a	 hexadecimal	 digit.
Similarly,	with	8	=	23,	a	group	of	3	bits	(called	an	octet)	 is	expressible	as	one	octal	digit.	Using	these
relationships,	we	can	therefore	convert	a	number	from	binary	to	octal	or	hexadecimal	by	doing	little	more
than	looking	at	it.



	EXAMPLE	2.9	Convert	1100100111012	to	octal	and	hexadecimal.

If	there	are	too	few	bits,	leading	zeros	can	be	added.

2.4			SIGNED	INTEGER	REPRESENTATION
We	have	seen	how	to	convert	an	unsigned	integer	from	one	base	to	another.	Signed	numbers	require	that
additional	 issues	be	addressed.	When	an	 integer	variable	 is	declared	 in	a	program,	many	programming
languages	automatically	allocate	a	storage	area	that	includes	a	sign	as	the	first	bit	of	the	storage	location.
By	convention,	a	“1”	 in	 the	high-order	bit	 indicates	a	negative	number.	The	storage	 location	can	be	as
small	 as	 an	 8-bit	 byte	 or	 as	 large	 as	 several	words,	 depending	 on	 the	 programming	 language	 and	 the
computer	system.	The	remaining	bits	(after	the	sign	bit)	are	used	to	represent	the	number	itself.

How	 this	 number	 is	 represented	 depends	 on	 the	 method	 used.	 There	 are	 three	 commonly	 used
approaches.	 The	 most	 intuitive	 method,	 signed	 magnitude,	 uses	 the	 remaining	 bits	 to	 represent	 the
magnitude	 of	 the	 number.	 This	 method	 and	 the	 other	 two	 approaches,	 which	 both	 use	 the	 concept	 of
complements,	are	introduced	in	the	following	sections.

2.4.1		Signed	Magnitude
Up	to	this	point,	we	have	ignored	the	possibility	of	binary	representations	for	negative	numbers.	The	set
of	 positive	 and	 negative	 integers	 is	 referred	 to	 as	 the	 set	 of	 signed	 integers.	 The	 problem	 with
representing	signed	 integers	as	binary	values	 is	 the	sign—how	should	we	encode	 the	actual	sign	of	 the
number?	Signed-magnitude	representation	is	one	method	of	solving	this	problem.	As	its	name	implies,
a	signed-magnitude	number	has	a	sign	as	its	leftmost	bit	(also	referred	to	as	the	high-order	bit	or	the	most
significant	 bit)	whereas	 the	 remaining	 bits	 represent	 the	magnitude	 (or	 absolute	 value)	 of	 the	 numeric
value.	For	example,	in	an	8-bit	word,	–1	would	be	represented	as	10000001,	and	+1	as	00000001.	In	a
computer	system	that	uses	signed-magnitude	representation	and	8	bits	to	store	integers,	7	bits	can	be	used
for	the	actual	representation	of	the	magnitude	of	the	number.	This	means	that	the	largest	integer	an	8-bit
word	 can	 represent	 is	 27	 –	 1,	 or	 127	 (a	 zero	 in	 the	 high-order	 bit,	 followed	by	7	 ones).	The	 smallest
integer	is	8	ones,	or	–127.	Therefore,	N	bits	can	represent	–(2(N–1)	–	1)	to	2(N–1)	–	1.

Computers	must	be	able	to	perform	arithmetic	calculations	on	integers	that	are	represented	using	this
notation.	Signed-magnitude	arithmetic	is	carried	out	using	essentially	the	same	methods	that	humans	use
with	 pencil	 and	 paper,	 but	 it	 can	 get	 confusing	 very	 quickly.	 As	 an	 example,	 consider	 the	 rules	 for
addition:	(1)	If	the	signs	are	the	same,	add	the	magnitudes	and	use	that	same	sign	for	the	result;	(2)	If	the
signs	differ,	you	must	determine	which	operand	has	the	larger	magnitude.	The	sign	of	the	result	is	the	same
as	the	sign	of	the	operand	with	the	larger	magnitude,	and	the	magnitude	must	be	obtained	by	subtracting



(not	adding)	the	smaller	one	from	the	larger	one.	If	you	consider	these	rules	carefully,	this	is	the	method
you	use	for	signed	arithmetic	by	hand.

We	arrange	the	operands	in	a	certain	way	based	on	their	signs,	perform	the	calculation	without	regard
to	the	signs,	and	then	supply	the	sign	as	appropriate	when	the	calculation	is	complete.	When	modeling	this
idea	in	an	8-bit	word,	we	must	be	careful	to	include	only	7	bits	in	the	magnitude	of	the	answer,	discarding
any	carries	that	take	place	over	the	high-order	bit.

	EXAMPLE	2.10	Add	010011112	to	001000112	using	signed-magnitude	arithmetic.

The	arithmetic	proceeds	just	as	in	decimal	addition,	including	the	carries,	until	we	get	to	the	seventh	bit
from	 the	 right.	 If	 there	 is	 a	 carry	 here,	 we	 say	 that	 we	 have	 an	 overflow	 condition	 and	 the	 carry	 is
discarded,	resulting	in	an	incorrect	sum.	There	is	no	overflow	in	this	example.

We	find	that	010011112	+	001000112	=	011100102	in	signed-magnitude	representation.

Sign	bits	are	 segregated	because	 they	are	 relevant	only	after	 the	addition	 is	 complete.	 In	 this	case,	we
have	 the	 sum	 of	 two	 positive	 numbers,	which	 is	 positive.	Overflow	 (and	 thus	 an	 erroneous	 result)	 in
signed	numbers	occurs	when	the	sign	of	the	result	is	incorrect.

In	signed	magnitude,	the	sign	bit	is	used	only	for	the	sign,	so	we	can’t	“carry	into”	it.	If	there	is	a	carry
emitting	from	the	seventh	bit,	our	result	will	be	truncated	as	the	seventh	bit	overflows,	giving	an	incorrect
sum.	 (Example	 2.11	 illustrates	 this	 overflow	 condition.)	 Prudent	 programmers	 avoid	 “million-dollar”
mistakes	by	checking	for	overflow	conditions	whenever	there	is	the	slightest	possibility	they	could	occur.
If	we	did	not	discard	the	overflow	bit,	it	would	carry	into	the	sign,	causing	the	more	outrageous	result	of
the	sum	of	two	positive	numbers	being	negative.	(Imagine	what	would	happen	if	the	next	step	in	a	program
were	to	take	the	square	root	or	log	of	that	result!)

	EXAMPLE	2.11	Add	010011112	to	011000112	using	signed-magnitude	arithmetic.

We	obtain	the	erroneous	result	of	79	+	99	=	50.

Dabbling	on	the	Double
The	fastest	way	to	convert	a	binary	number	to	decimal	is	a	method	called	double-dabble	(or	double-
dibble).	This	method	builds	on	the	idea	that	a	subsequent	power	of	two	is	double	the	previous	power



of	two	in	a	binary	number.	The	calculation	starts	with	the	leftmost	bit	and	works	toward	the	rightmost
bit.	 The	 first	 bit	 is	 doubled	 and	 added	 to	 the	 next	 bit.	 This	 sum	 is	 then	 doubled	 and	 added	 to	 the
following	bit.	The	process	is	repeated	for	each	bit	until	the	rightmost	bit	has	been	used.

EXAMPLE	1

Convert	100100112	to	decimal.

Step	1:	Write	down	the	binary	number,	leaving	space	between	the	bits.

Step	2:	Double	the	high-order	bit	and	copy	it	under	the	next	bit.

Step	3:	Add	the	next	bit	and	double	the	sum.	Copy	this	result	under	the	next	bit.

Step	4:	Repeat	Step	3	until	you	run	out	of	bits.

When	we	combine	hextet	grouping	(in	reverse)	with	the	double-dabble	method,	we	find	that	we	can
convert	hexadecimal	to	decimal	with	ease.

EXAMPLE	2

Convert	02CA16	to	decimal.

First,	convert	the	hex	to	binary	by	grouping	into	hextets.



Then	apply	the	double-dabble	method	on	the	binary	form:

As	with	 addition,	 signed-magnitude	 subtraction	 is	 carried	 out	 in	 a	manner	 similar	 to	 pencil-and-paper
decimal	arithmetic,	where	it	is	sometimes	necessary	to	borrow	from	digits	in	the	minuend.

	EXAMPLE	2.12	Subtract	010011112	from	011000112	using	signed-magnitude	arithmetic.

We	find	that	011000112	–	010011112	=	000101002	in	signed-magnitude	representation.

	EXAMPLE	2.13	Subtract	011000112	(99)	from	010011112	(79)	using	signed-magnitude	arithmetic.
By	inspection,	we	see	that	the	subtrahend,	01100011,	is	larger	than	the	minuend,	01001111.	With	the

result	obtained	in	Example	2.12,	we	know	that	the	difference	of	these	two	numbers	is	00101002.	Because
the	subtrahend	is	larger	than	the	minuend,	all	we	need	to	do	is	change	the	sign	of	the	difference.	So	we
find	that	010011112	–	011000112	=	100101002	in	signed-magnitude	representation.

We	know	that	subtraction	is	 the	same	as	“adding	the	opposite,”	which	equates	to	negating	the	value	we
wish	 to	 subtract	 and	 then	 adding	 instead	 (which	 is	 often	much	 easier	 than	 performing	 all	 the	 borrows
necessary	 for	 subtraction,	 particularly	 in	 dealing	with	 binary	 numbers).	 Therefore,	we	 need	 to	 look	 at
some	 examples	 involving	 both	 positive	 and	 negative	 numbers.	Recall	 the	 rules	 for	 addition:	 (1)	 If	 the
signs	are	 the	same,	add	 the	magnitudes	and	use	 that	same	sign	for	 the	result;	 (2)	 If	 the	signs	differ,	you
must	determine	which	operand	has	the	larger	magnitude.	The	sign	of	the	result	is	the	same	as	the	sign	of
the	operand	with	the	larger	magnitude,	and	the	magnitude	must	be	obtained	by	subtracting	(not	adding)	the
smaller	one	from	the	larger	one.

	EXAMPLE	2.14	Add	100100112	(–19)	to	000011012	(+13)	using	signed-magnitude	arithmetic.
The	 first	 number	 (the	 augend)	 is	 negative	 because	 its	 sign	 bit	 is	 set	 to	 1.	 The	 second	 number	 (the

addend)	is	positive.	What	we	are	asked	to	do	is	 in	fact	a	subtraction.	First,	we	determine	which	of	 the
two	numbers	 is	 larger	 in	magnitude	and	use	 that	number	 for	 the	augend.	 Its	sign	will	be	 the	sign	of	 the
result.



With	the	inclusion	of	the	sign	bit,	we	see	that	100100112	–	000011012	=	100001102	in	signed-magnitude
representation.

	EXAMPLE	2.15	Subtract	100110002	(–24)	from	101010112	(–43)	using	signed-magnitude	arithmetic.
We	can	convert	the	subtraction	to	an	addition	by	negating	–24,	which	gives	us	24,	and	then	we	can	add

this	to	–43,	giving	us	a	new	problem	of	–43	+	24.	However,	we	know	from	the	addition	rules	above	that
because	the	signs	now	differ,	we	must	actually	subtract	the	smaller	magnitude	from	the	larger	magnitude
(or	subtract	24	from	43)	and	make	the	result	negative	(because	43	is	larger	than	24).

Note	 that	 we	 are	 not	 concerned	 with	 the	 sign	 until	 we	 have	 performed	 the	 subtraction.	We	 know	 the
answer	must	be	negative.	So	we	end	up	with	101010112	–	100110002	=	100100112	in	signed-magnitude
representation.

While	 reading	 the	 preceding	 examples,	 you	 may	 have	 noticed	 how	 many	 questions	 we	 had	 to	 ask
ourselves:	Which	number	is	larger?	Am	I	subtracting	a	negative	number?	How	many	times	do	I	have	to
borrow	from	the	minuend?	A	computer	engineered	to	perform	arithmetic	in	this	manner	must	make	just	as
many	decisions	(though	a	whole	lot	faster).	The	logic	(and	circuitry)	is	further	complicated	by	the	fact	that
signed	 magnitude	 has	 two	 representations	 for	 zero,	 10000000	 and	 00000000	 (and	 mathematically
speaking,	this	simply	shouldn’t	happen!).	Simpler	methods	for	representing	signed	numbers	would	allow
simpler	and	less	expensive	circuits.	These	simpler	methods	are	based	on	radix	complement	systems.

2.4.2		Complement	Systems
Number	 theorists	 have	 known	 for	 hundreds	 of	 years	 that	 one	 decimal	 number	 can	 be	 subtracted	 from
another	by	adding	the	difference	of	the	subtrahend	from	all	nines	and	adding	back	a	carry.	This	is	called
taking	 the	 nine’s	 complement	 of	 the	 subtrahend	 or,	 more	 formally,	 finding	 the	 diminished	 radix
complement	of	the	subtrahend.	Let’s	say	we	wanted	to	find	167	–	52.	Taking	the	difference	of	52	from
999,	we	have	947.	Thus,	in	nine’s	complement	arithmetic,	we	have	167	–	52	=	167	+	947	=	1114.	The
“carry”	from	the	hundreds	column	is	added	back	to	the	units	place,	giving	us	a	correct	167	–	52	=	115.
This	 method	 was	 commonly	 called	 “casting	 out	 9s”	 and	 has	 been	 extended	 to	 binary	 operations	 to
simplify	computer	arithmetic.	The	advantage	that	complement	systems	give	us	over	signed	magnitude	is
that	there	is	no	need	to	process	sign	bits	separately,	but	we	can	still	easily	check	the	sign	of	a	number	by
looking	at	its	high-order	bit.

Another	way	 to	envision	complement	 systems	 is	 to	 imagine	an	odometer	on	a	bicycle.	Unlike	cars,
when	you	go	backward	on	a	bike,	the	odometer	will	go	backward	as	well.	Assuming	an	odometer	with



three	digits,	 if	we	start	at	zero	and	end	with	700,	we	can’t	be	sure	whether	 the	bike	went	forward	700
miles	or	backward	300	miles!	The	easiest	solution	to	this	dilemma	is	simply	to	cut	the	number	space	in
half	and	use	001–500	for	positive	miles	and	501–999	for	negative	miles.	We	have,	effectively,	cut	down
the	distance	our	odometer	can	measure.	But	now	if	it	reads	997,	we	know	the	bike	has	backed	up	3	miles
instead	of	riding	forward	997	miles.	The	numbers	501–999	represent	the	radix	complements	(the	second
of	the	two	methods	introduced	below)	of	the	numbers	001–500	and	are	being	used	to	represent	negative
distance.

One’s	Complement
As	illustrated	above,	the	diminished	radix	complement	of	a	number	in	base	10	is	found	by	subtracting	the
subtrahend	from	the	base	minus	one,	which	is	9	in	decimal.	More	formally,	given	a	number	N	 in	base	r
having	d	digits,	the	diminished	radix	complement	of	N	is	defined	to	be	(r	d	–	1)	–	N.	For	decimal	numbers,
r	=	10,	and	the	diminished	radix	is	10	–	1	=	9.	For	example,	 the	nine’s	complement	of	2468	is	9999	–
2468	=	7531.	For	an	equivalent	operation	in	binary,	we	subtract	from	one	less	the	base	(2),	which	is	1.
For	 example,	 the	 one’s	 complement	 of	 01012	 is	 11112	 –	 0101	 =	 1010.	 Although	 we	 could	 tediously
borrow	 and	 subtract	 as	 discussed	 above,	 a	 few	 experiments	will	 convince	 you	 that	 forming	 the	 one’s
complement	of	 a	binary	number	amounts	 to	nothing	more	 than	 switching	all	of	 the	1s	with	0s	and	vice
versa.	This	sort	of	bit-flipping	is	very	simple	to	implement	in	computer	hardware.

It	 is	 important	 to	note	at	 this	point	 that	although	we	can	 find	 the	nine’s	complement	of	any	decimal
number	 or	 the	 one’s	 complement	 of	 any	 binary	 number,	 we	 are	 most	 interested	 in	 using	 complement
notation	to	represent	negative	numbers.	We	know	that	performing	a	subtraction,	such	as	10	–	7,	can	also
be	 thought	 of	 as	 “adding	 the	 opposite,”	 as	 in	 10	 +	 (–7).	 Complement	 notation	 allows	 us	 to	 simplify
subtraction	 by	 turning	 it	 into	 addition,	 but	 it	 also	 gives	 us	 a	 method	 to	 represent	 negative	 numbers.
Because	 we	 do	 not	 wish	 to	 use	 a	 special	 bit	 to	 represent	 the	 sign	 (as	 we	 did	 in	 signed-magnitude
representation),	we	need	to	remember	that	if	a	number	is	negative,	we	should	convert	it	to	its	complement.
The	result	should	have	a	1	in	the	leftmost	bit	position	to	indicate	that	the	number	is	negative.

Although	 the	 one’s	 complement	 of	 a	 number	 is	 technically	 the	 value	 obtained	 by	 subtracting	 that
number	 from	a	 large	power	of	 two,	we	often	 refer	 to	 a	 computer	using	one’s	 complement	 for	negative
numbers	as	a	one’s	complement	system,	or	a	computer	that	uses	one’s	complement	arithmetic.	This	can	be
somewhat	 misleading,	 as	 positive	 numbers	 do	 not	 need	 to	 be	 complemented;	 we	 only	 complement
negative	numbers	so	we	can	get	them	into	a	format	the	computer	will	understand.	Example	2.16	illustrates
these	concepts.

	EXAMPLE	2.16	Express	2310	and	–910	in	8-bit	binary,	assuming	a	computer	is	using	one’s	complement
representation.

Unlike	signed	magnitude,	in	one’s	complement	addition	there	is	no	need	to	maintain	the	sign	bit	separate
from	the	other	bits.	The	sign	takes	care	of	itself.	Compare	Example	2.17	with	Example	2.10.

	EXAMPLE	2.17	Add	010011112	to	001000112	using	one’s	complement	addition.



Suppose	we	wish	to	subtract	9	from	23.	To	carry	out	a	one’s	complement	subtraction,	we	first	express	the
subtrahend	(9)	in	one’s	complement,	then	add	it	to	the	minuend	(23);	we	are	effectively	now	adding	–9	to
23.	The	high-order	bit	will	have	a	1	or	a	0	carry,	which	is	added	to	the	low-order	bit	of	the	sum.	(This	is
called	end	carry-around	and	results	from	using	the	diminished	radix	complement.)

	EXAMPLE	2.18	Add	2310	to	–910	using	one’s	complement	arithmetic.

	EXAMPLE	2.19	Add	910	to	–2310	using	one’s	complement	arithmetic.

How	do	we	know	that	111100012	is	actually	–1410?	We	simply	need	to	take	the	one’s	complement	of	this
binary	 number	 (remembering	 it	 must	 be	 negative	 because	 the	 leftmost	 bit	 is	 negative).	 The	 one’s
complement	of	111100012	is	000011102,	which	is	14.

The	 primary	 disadvantage	 of	 one’s	 complement	 is	 that	we	 still	 have	 two	 representations	 for	 zero:
00000000	 and	11111111.	For	 this	 and	other	 reasons,	 computer	 engineers	 long	 ago	 stopped	using	one’s
complement	in	favor	of	the	more	efficient	two’s	complement	representation	for	binary	numbers.

Two’s	Complement
Two’s	complement	is	an	example	of	a	radix	complement.	Given	a	number	N	in	base	r	having	d	digits,	the
radix	complement	of	N	is	defined	as	r	d	–	N	for	N	≠	0	and	0	for	N	=	0.	The	radix	complement	 is	often
more	intuitive	than	the	diminished	radix	complement.	Using	our	odometer	example,	the	ten’s	complement
of	going	forward	2	miles	is	103	–	2	=	998,	which	we	have	already	agreed	indicates	a	negative	(backward)
distance.	Similarly,	in	binary,	the	two’s	complement	of	the	4-bit	number	00112	is	24	–	00112	=	100002	–
00112	=	11012.

Upon	 closer	 examination,	 you	 will	 discover	 that	 two’s	 complement	 is	 nothing	 more	 than	 one’s
complement	incremented	by	1.	To	find	the	two’s	complement	of	a	binary	number,	simply	flip	bits	and	add



1.	This	simplifies	addition	and	subtraction	as	well.	Because	the	subtrahend	(the	number	we	complement
and	add)	is	incremented	at	the	outset,	however,	there	is	no	end	carry-around	to	worry	about.	We	simply
discard	any	carries	involving	the	high-order	bits.	Just	as	with	one’s	complement,	two’s	complement	refers
to	the	complement	of	a	number,	whereas	a	computer	using	this	notation	to	represent	negative	numbers	is
said	to	be	a	two’s	complement	system,	or	uses	two’s	complement	arithmetic.	As	before,	positive	numbers
can	be	left	alone;	we	only	need	to	complement	negative	numbers	to	get	them	into	their	two’s	complement
form.	Example	2.20	illustrates	these	concepts.

	EXAMPLE	2.20	Express	 2310,	–2310,	 and	–910	 in	 8-bit	 binary,	 assuming	 a	 computer	 is	 using	 two’s
complement	representation.

Because	the	representation	of	positive	numbers	is	the	same	in	one’s	complement	and	two’s	complement
(as	well	as	signed-magnitude),	the	process	of	adding	two	positive	binary	numbers	is	the	same.	Compare
Example	2.21	with	Example	2.17	and	Example	2.10.

	EXAMPLE	2.21	Add	010011112	to	001000112	using	two’s	complement	addition.

Suppose	we	are	given	the	binary	representation	for	a	number	and	want	 to	know	its	decimal	equivalent.
Positive	numbers	are	easy.	For	example,	to	convert	the	two’s	complement	value	of	000101112	to	decimal,
we	 simply	 convert	 this	 binary	 number	 to	 a	 decimal	 number	 to	 get	 23.	 However,	 converting	 two’s
complement	 negative	 numbers	 requires	 a	 reverse	 procedure	 similar	 to	 the	 conversion	 from	decimal	 to
binary.	Suppose	we	are	given	the	two’s	complement	binary	value	of	111101112,	and	we	want	to	know	the
decimal	equivalent.	We	know	this	is	a	negative	number	but	must	remember	it	is	represented	using	two’s
complement.	We	first	flip	the	bits	and	then	add	1	(find	the	one’s	complement	and	add	1).	This	results	in
the	 following:	 000010002	 +	 1	 =	 000010012.	 This	 is	 equivalent	 to	 the	 decimal	 value	 9.	 However,	 the
original	 number	 we	 started	 with	 was	 negative,	 so	 we	 end	 up	 with	 –9	 as	 the	 decimal	 equivalent	 to
111101112.

The	following	two	examples	 illustrate	how	to	perform	addition	(and	hence	subtraction,	because	we
subtract	a	number	by	adding	its	opposite)	using	two’s	complement	notation.

	EXAMPLE	2.22	Add	910	to	–2310	using	two’s	complement	arithmetic.



It	is	left	as	an	exercise	for	you	to	verify	that	111100102	is	actually	–1410	using	two’s	complement	notation.

	EXAMPLE	2.23	Find	the	sum	of	2310	and	–910	in	binary	using	two’s	complement	arithmetic.

In	 two’s	 complement,	 the	 addition	 of	 two	 negative	 numbers	 produces	 a	 negative	 number,	 as	we	might
expect.

	EXAMPLE	 2.24	 Find	 the	 sum	 of	 111010012	 (–23)	 and	 111101112	 (–9)	 using	 two’s	 complement
addition.

Notice	 that	 the	 discarded	 carries	 in	 Examples	 2.23	 and	 2.24	 did	 not	 cause	 an	 erroneous	 result.	 An
overflow	occurs	if	two	positive	numbers	are	added	and	the	result	is	negative,	or	if	two	negative	numbers
are	added	and	 the	 result	 is	positive.	 It	 is	not	possible	 to	have	overflow	when	using	 two’s	complement
notation	if	a	positive	and	a	negative	number	are	being	added	together.

INTEGER	MULTIPLICATION	AND	DIVISION
Unless	 sophisticated	 algorithms	 are	 used,	 multiplication	 and	 division	 can	 consume	 a	 considerable
number	 of	 computation	 cycles	 before	 a	 result	 is	 obtained.	 Here,	 we	 discuss	 only	 the	 most
straightforward	approach	to	these	operations.	In	real	systems,	dedicated	hardware	is	used	to	optimize
throughput,	sometimes	carrying	out	portions	of	the	calculation	in	parallel.	Curious	readers	will	want	to
investigate	some	of	these	advanced	methods	in	the	references	cited	at	the	end	of	this	chapter.

The	 simplest	multiplication	 algorithms	 used	 by	 computers	 are	 similar	 to	 traditional	 pencil-and-
paper	 methods	 used	 by	 humans.	 The	 complete	 multiplication	 table	 for	 binary	 numbers	 couldn’t	 be
simpler:	zero	times	any	number	is	zero,	and	one	times	any	number	is	that	number.

To	 illustrate	 simple	 computer	 multiplication,	 we	 begin	 by	 writing	 the	 multiplicand	 and	 the
multiplier	 to	 two	separate	storage	areas.	We	also	need	a	 third	storage	area	 for	 the	product.	Starting



with	the	low-order	bit,	a	pointer	is	set	to	each	digit	of	the	multiplier.	For	each	digit	in	the	multiplier,
the	multiplicand	is	“shifted”	one	bit	to	the	left.	When	the	multiplier	is	1,	the	“shifted”	multiplicand	is
added	to	a	running	sum	of	partial	products.	Because	we	shift	the	multiplicand	by	one	bit	for	each	bit	in
the	multiplier,	a	product	requires	double	the	working	space	of	either	the	multiplicand	or	the	multiplier.

There	 are	 two	 simple	 approaches	 to	 binary	 division:	 We	 can	 either	 iteratively	 subtract	 the
denominator	from	the	divisor,	or	we	can	use	the	same	trial-and-error	method	of	long	division	that	we
were	 taught	 in	 grade	 school.	 As	 with	 multiplication,	 the	 most	 efficient	 methods	 used	 for	 binary
division	are	beyond	the	scope	of	this	text	and	can	be	found	in	the	references	at	the	end	of	this	chapter.

Regardless	of	the	relative	efficiency	of	any	algorithms	that	are	used,	division	is	an	operation	that
can	always	cause	a	computer	to	crash.	This	is	the	case	particularly	when	division	by	zero	is	attempted
or	when	two	numbers	of	enormously	different	magnitudes	are	used	as	operands.	When	the	divisor	is
much	smaller	than	the	dividend,	we	get	a	condition	known	as	divide	underflow,	which	 the	computer
sees	as	the	equivalent	of	division	by	zero,	which	is	impossible.

Computers	make	 a	distinction	between	 integer	division	 and	 floating-point	 division.	With	 integer
division,	the	answer	comes	in	two	parts:	a	quotient	and	a	remainder.	Floating-point	division	results	in
a	number	that	is	expressed	as	a	binary	fraction.	These	two	types	of	division	are	sufficiently	different
from	 each	 other	 as	 to	warrant	 giving	 each	 its	 own	 special	 circuitry.	 Floating-point	 calculations	 are
carried	out	in	dedicated	circuits	called	floating-point	units,	or	FPUs.

	EXAMPLE	Find	the	product	of	000001102	and	000010112.

Simple	 computer	 circuits	 can	 easily	 detect	 an	 overflow	 condition	 using	 a	 rule	 that	 is	 easy	 to
remember.	You’ll	 notice	 in	 both	 Examples	 2.23	 and	 2.24	 that	 the	 carry	 going	 into	 the	 sign	 bit	 (a	 1	 is
carried	from	the	previous	bit	position	into	the	sign	bit	position)	is	the	same	as	the	carry	going	out	of	the
sign	bit	(a	1	is	carried	out	and	discarded).	When	these	carries	are	equal,	no	overflow	occurs.	When	they
differ,	an	overflow	indicator	is	set	in	the	arithmetic	logic	unit,	indicating	the	result	is	incorrect.

A	Simple	Rule	 for	Detecting	an	Overflow	Condition	 in	Signed	Numbers:	 If	 the	carry	 into	 the
sign	bit	equals	the	carry	out	of	the	bit,	no	overflow	has	occurred.	If	the	carry	into	the	sign	bit	is
different	from	the	carry	out	of	the	sign	bit,	overflow	(and	thus	an	error)	has	occurred.

The	 hard	 part	 is	 getting	 programmers	 (or	 compilers)	 to	 consistently	 check	 for	 the	 overflow	 condition.
Example	2.25	indicates	overflow	because	the	carry	into	the	sign	bit	(a	1	is	carried	in)	is	not	equal	to	the
carry	out	of	the	sign	bit	(a	0	is	carried	out).



	EXAMPLE	2.25	Find	the	sum	of	12610	and	810	in	binary	using	two’s	complement	arithmetic.

A	one	 is	carried	 into	 the	 leftmost	bit,	but	a	zero	 is	carried	out.	Because	 these	carries	are	not	equal,	an
overflow	has	occurred.	 (We	can	easily	see	 that	 two	positive	numbers	are	being	added	but	 the	 result	 is
negative.)	We	return	to	this	topic	in	Section	2.4.6.

Two’s	complement	is	the	most	popular	choice	for	representing	signed	numbers.	The	algorithm	for	adding
and	subtracting	is	quite	easy,	has	the	best	representation	for	0	(all	0	bits),	is	self-inverting,	and	is	easily
extended	to	larger	numbers	of	bits.	The	biggest	drawback	is	in	the	asymmetry	seen	in	the	range	of	values
that	 can	 be	 represented	 by	N	 bits.	 With	 signed-magnitude	 numbers,	 for	 example,	 4	 bits	 allow	 us	 to
represent	 the	values	–7	 through	+7.	However,	using	 two’s	complement,	we	can	represent	 the	values	–8
through	+7,	which	is	often	confusing	to	anyone	learning	about	complement	representations.	To	see	why	+7
is	 the	 largest	 number	 we	 can	 represent	 using	 4-bit	 two’s	 complement	 representation,	 we	 need	 only
remember	 that	 the	 first	 bit	must	 be	 0.	 If	 the	 remaining	 bits	 are	 all	 1s	 (giving	 us	 the	 largest	magnitude
possible),	we	have	01112,	which	is	7.	An	immediate	reaction	to	this	is	that	the	smallest	negative	number
should	then	be	11112,	but	we	can	see	that	11112	is	actually	–1	(flip	the	bits,	add	one,	and	make	the	number
negative).	So	how	do	we	 represent	–8	 in	 two’s	 complement	notation	using	4	bits?	 It	 is	 represented	 as
10002.	We	know	this	is	a	negative	number.	If	we	flip	the	bits	(0111),	add	1	(to	get	1000,	which	is	8),	and
make	it	negative,	we	get	–8.

2.4.3		Excess-M	Representation	for	Signed	Numbers
Recall	 the	 bicycle	 example	 that	 we	 discussed	 when	 introducing	 complement	 systems.	 We	 selected	 a
particular	 value	 (500)	 as	 the	 cutoff	 for	 positive	 miles,	 and	 we	 assigned	 values	 from	 501	 to	 999	 to
negative	miles.	We	didn’t	need	signs	because	we	used	 the	 range	 to	determine	whether	 the	number	was
positive	 or	 negative.	 Excess-M	 representation	 (also	 called	 offset	 binary	 representation)	 does
something	very	similar;	unsigned	binary	values	are	used	to	represent	signed	integers.	However,	excess-M
representation,	 unlike	 signed	 magnitude	 and	 the	 complement	 encodings,	 is	 more	 intuitive	 because	 the
binary	string	with	all	0s	represents	the	smallest	number,	whereas	the	binary	string	with	all	1s	represents
the	largest	value;	in	other	words,	ordering	is	preserved.

The	unsigned	binary	representation	for	integer	M	(called	the	bias)	represents	the	value	0,	whereas	all
zeros	in	the	bit	pattern	represents	the	integer	–M.	Essentially,	a	decimal	integer	is	“mapped”	(as	in	our
bicycle	 example)	 to	 an	 unsigned	 binary	 integer,	 but	 interpreted	 as	 positive	 or	 negative	 depending	 on
where	it	falls	in	the	range.	If	we	are	using	n	bits	for	the	binary	representation,	we	need	to	select	the	bias
in	such	a	manner	that	we	split	the	range	equally.	We	typically	do	this	by	choosing	a	bias	of	2n–1	–	1.	For
example,	 if	 we	 were	 using	 4-bit	 representation,	 the	 bias	 should	 be	 24–1	 –	 1	 =	 7.	 Just	 as	 with	 signed
magnitude,	 one’s	 complement,	 and	 two’s	 complement,	 there	 is	 a	 specific	 range	 of	 values	 that	 can	 be
expressed	in	n	bits.

The	unsigned	binary	value	for	a	signed	integer	using	excess-M	representation	is	determined	simply	by



adding	M	to	that	integer.	For	example,	assuming	that	we	are	using	excess-7	representation,	the	integer	010
would	be	represented	as	0	+	7	=	710	=	01112;	the	integer	310	would	be	represented	as	3	+	7	=	1010	=	10102;
and	the	integer	–7	would	be	represented	as	–7	+	7	=	010	=	00002.	Using	excess-7	notation	and	given	the
binary	number	11112,	to	find	the	decimal	value	it	represents,	we	simply	subtract	7:	11112	=	1510,	and	15	–
7	=	8;	therefore,	the	value	11112,	using	excess-7	representation,	is	+810.

Let’s	compare	the	encoding	schemes	we	have	seen	so	far,	assuming	8-bit	numbers:

Excess-M	representation	allows	us	 to	use	unsigned	binary	values	 to	 represent	 signed	 integers;	 it	 is
important	to	note,	however,	that	two	parameters	must	be	specified:	the	number	of	bits	being	used	in	the
representation	and	the	bias	value	itself.	In	addition,	a	computer	is	unable	to	perform	addition	on	excess-M
values	 using	 hardware	 designed	 for	 unsigned	 numbers;	 special	 circuits	 are	 required.	 Excess-M
representation	is	important	because	of	its	use	in	representing	integer	exponents	in	floating-point	numbers,
as	we	will	see	in	Section	2.5.

2.4.4		Unsigned	Versus	Signed	Numbers
We	introduced	our	discussion	of	binary	 integers	with	unsigned	numbers.	Unsigned	numbers	are	used	 to
represent	 values	 that	 are	 guaranteed	 not	 to	 be	 negative.	 A	 good	 example	 of	 an	 unsigned	 number	 is	 a
memory	address.	If	the	4-bit	binary	value	1101	is	unsigned,	then	it	represents	the	decimal	value	13,	but	as
a	signed	two’s	complement	number,	it	represents	–3.	Signed	numbers	are	used	to	represent	data	that	can
be	either	positive	or	negative.

A	 computer	 programmer	must	 be	 able	 to	manage	both	 signed	 and	unsigned	numbers.	To	do	 so,	 the
programmer	must	 first	 identify	 numeric	 values	 as	 either	 signed	 or	 unsigned	 numbers.	 This	 is	 done	 by
declaring	the	value	as	a	specific	type.	For	instance,	the	C	programming	language	has	int	and	unsigned	int
as	possible	types	for	integer	variables,	defining	signed	and	unsigned	integers,	respectively.	In	addition	to
different	type	declarations,	many	languages	have	different	arithmetic	operations	for	use	with	signed	and
unsigned	numbers.	A	 language	may	have	one	 subtraction	 instruction	 for	 signed	numbers	 and	a	different
subtraction	instruction	for	unsigned	numbers.	In	most	assembly	languages,	programmers	can	choose	from
a	signed	comparison	operator	or	an	unsigned	comparison	operator.

It	 is	 interesting	 to	 compare	what	 happens	with	 unsigned	 and	 signed	 numbers	when	we	 try	 to	 store
values	that	are	too	large	for	the	specified	number	of	bits.	Unsigned	numbers	simply	wrap	around	and	start
over	at	zero.	For	example,	if	we	are	using	4-bit	unsigned	binary	numbers,	and	we	add	1	to	1111,	we	get
0000.	This	“return	to	zero”	wraparound	is	familiar—perhaps	you	have	seen	a	high-mileage	car	in	which
the	 odometer	 has	 wrapped	 back	 around	 to	 zero.	 However,	 signed	 numbers	 devote	 half	 their	 space	 to
positive	numbers	and	the	other	half	to	negative	numbers.	If	we	add	1	to	the	largest	positive	4-bit	 two’s
complement	number	0111	(+7),	we	get	1000	(–8).	This	wraparound	with	the	unexpected	change	in	sign
has	been	problematic	to	inexperienced	programmers,	resulting	in	multiple	hours	of	debugging	time.	Good



programmers	 understand	 this	 condition	 and	make	 appropriate	 plans	 to	 deal	with	 the	 situation	 before	 it
occurs.

2.4.5		Computers,	Arithmetic,	and	Booth’s	Algorithm
Computer	arithmetic	as	introduced	in	this	chapter	may	seem	simple	and	straight-forward,	but	it	is	a	field
of	major	study	in	computer	architecture.	The	basic	focus	is	on	the	implementation	of	arithmetic	functions,
which	can	be	realized	in	software,	firmware,	or	hardware.	Researchers	in	this	area	are	working	toward
designing	superior	central	processing	units	(CPUs),	developing	high-performance	arithmetic	circuits,	and
contributing	 to	 the	 area	 of	 embedded	 systems	 application-specific	 circuits.	 They	 are	 working	 on
algorithms	and	new	hardware	implementations	for	fast	addition,	subtraction,	multiplication,	and	division,
as	 well	 as	 fast	 floating-point	 operations.	 Researchers	 are	 looking	 for	 schemes	 that	 use	 nontraditional
approaches,	 such	 as	 the	 fast	 carry	 look-ahead	 principle,	residue	arithmetic,	 and	Booth’s	 algorithm.
Booth’s	algorithm	is	a	good	example	of	one	such	scheme	and	is	introduced	here	in	the	context	of	signed
two’s	complement	numbers	to	give	you	an	idea	of	how	a	simple	arithmetic	operation	can	be	enhanced	by
a	clever	algorithm.

Although	 Booth’s	 algorithm	 usually	 yields	 a	 performance	 increase	 when	 multiplying	 two’s
complement	 numbers,	 there	 is	 another	 motivation	 for	 introducing	 this	 algorithm.	 In	 Section	 2.4.2,	 we
covered	examples	of	two’s	complement	addition	and	saw	that	the	numbers	could	be	treated	as	unsigned
values.	We	simply	perform	“regular”	addition,	as	the	following	example	illustrates:

The	 same	 is	 true	 for	 two’s	 complement	 subtraction.	 However,	 now	 consider	 the	 standard	 pencil-and-
paper	method	for	multiplying	the	following	two’s	complement	numbers:

“Regular”	 multiplication	 clearly	 yields	 the	 incorrect	 result.	 There	 are	 a	 number	 of	 solutions	 to	 this
problem,	such	as	converting	both	values	to	positive	numbers,	performing	conventional	multiplication,	and
then	remembering	if	one	or	both	values	were	negative	to	determine	whether	the	result	should	be	positive
or	 negative.	 Booth’s	 algorithm	 not	 only	 solves	 this	 dilemma,	 but	 also	 speeds	 up	multiplication	 in	 the
process.

The	 general	 idea	 of	Booth’s	 algorithm	 is	 to	 increase	 the	 speed	 of	 a	multiplication	when	 there	 are
consecutive	zeros	or	ones	in	the	multiplier.	It	is	easy	to	see	that	consecutive	zeros	help	performance.	For
example,	if	we	use	the	tried	and	true	pencil-and-paper	method	and	find	978	×	1001,	the	multiplication	is
much	easier	than	if	we	take	978	×	999.	This	is	because	of	the	two	zeros	found	in	1001.	However,	if	we
rewrite	the	two	problems	as	follows:



we	see	that	the	problems	are	in	fact	equal	in	difficulty.
Our	goal	is	to	use	a	string	of	ones	in	a	binary	number	to	our	advantage	in	much	the	same	way	that	we

use	a	string	of	zeros	to	our	advantage.	We	can	use	the	rewriting	idea	from	above.	For	example,	the	binary
number	 0110	 can	 be	 rewritten	 1000	 –	 0010	=	 –0010	+	 1000.	The	 two	 ones	 have	 been	 replaced	 by	 a
“subtract”	(determined	by	the	rightmost	1	in	the	string)	followed	by	an	“add”	(determined	by	moving	one
position	left	of	the	leftmost	1	in	the	string).

Consider	the	following	standard	multiplication	example:

The	 idea	of	Booth’s	 algorithm	 is	 to	 replace	 the	 string	of	 ones	 in	 the	multiplier	with	 an	 initial	 subtract
when	we	see	the	rightmost	1	of	the	string	(or	subtract	0011)	and	then	later	add	for	the	bit	after	the	last	1
(or	add	001100).	In	the	middle	of	the	string,	we	can	now	use	simple	shifting:

In	Booth’s	algorithm,	if	the	multiplicand	and	multiplier	are	n-bit	two’s	complement	numbers,	the	result	is
a	2n-bit	 two’s	complement	value.	Therefore,	when	we	perform	our	 intermediate	 steps,	we	must	extend
our	n-bit	numbers	to	2n-bit	numbers.	If	a	number	is	negative	and	we	extend	it,	we	must	extend	the	sign.
For	example,	the	value	1000	(–8)	extended	to	8	bits	would	be	11111000.	We	continue	to	work	with	bits	in
the	multiplier,	shifting	each	time	we	complete	a	step.	However,	we	are	interested	in	pairs	of	bits	in	the
multiplier	and	proceed	according	to	the	following	rules:

1.	 	 If	 the	current	multiplier	bit	 is	1	and	the	preceding	bit	was	0,	we	are	at	 the	beginning	of	a	string	of
ones,	so	subtract	the	multiplicand	from	the	product	(or	add	the	opposite).

2.		If	the	current	multiplier	bit	is	0	and	the	preceding	bit	was	1,	we	are	at	the	end	of	a	string	of	ones,	so
add	the	multiplicand	to	the	product.

3.		If	it	is	a	00	pair,	or	a	11	pair,	do	no	arithmetic	operation	(we	are	in	the	middle	of	a	string	of	zeros	or	a
string	of	ones).	Simply	shift.	The	power	of	the	algorithm	is	in	this	step:	We	can	now	treat	a	string	of
ones	as	a	string	of	zeros	and	do	nothing	more	than	shift.

Note:	 The	 first	 time	 we	 pick	 a	 pair	 of	 bits	 in	 the	 multiplier,	 we	 should	 assume	 a	 mythical	 0	 as	 the
“previous”	bit.	Then	we	simply	move	left	one	bit	for	our	next	pair.



Example	 2.26	 illustrates	 the	 use	 of	 Booth’s	 algorithm	 to	multiply	 –3	 ×	 5	 using	 signed	 4-bit	 two’s
complement	numbers.

	EXAMPLE	2.26	Negative	3	in	4-bit	two’s	complement	is	1101.	Extended	to	8	bits,	it	is	11111101.	Its
complement	is	00000011.	When	we	see	the	rightmost	1	in	the	multiplier,	it	is	the	beginning	of	a	string	of
1s,	so	we	treat	it	as	if	it	were	the	string	10:

Ignore	extended	sign	bits	that	go	beyond	2n.

	EXAMPLE	2.27	Let’s	look	at	the	larger	example	of	53	×	126:

Note	 that	we	have	not	 shown	 the	extended	 sign	bits	 that	go	beyond	what	we	need	and	use	only	 the	16
rightmost	bits.	The	entire	string	of	ones	in	the	multiplier	was	replaced	by	a	subtract	(adding	11001011)
followed	 by	 an	 add.	 Everything	 in	 the	 middle	 is	 simply	 shifting—something	 that	 is	 very	 easy	 for	 a
computer	 to	 do	 (as	 we	 will	 see	 in	 Chapter	 3).	 If	 the	 time	 required	 for	 a	 computer	 to	 do	 an	 add	 is
sufficiently	larger	than	that	required	to	do	a	shift,	Booth’s	algorithm	can	provide	a	considerable	increase
in	performance.	This	depends	somewhat,	of	course,	on	the	multiplier.	If	the	multiplier	has	strings	of	zeros
and/or	ones,	the	algorithm	works	well.	If	the	multiplier	consists	of	an	alternating	string	of	zeros	and	ones
(the	 worst	 case),	 using	 Booth’s	 algorithm	 might	 very	 well	 require	 more	 operations	 than	 the	 standard
approach.

Computers	perform	Booth’s	algorithm	by	adding	and	shifting	values	stored	in	registers.	A	special	type
of	 shift	 called	 an	arithmetic	 shift	 is	 necessary	 to	 preserve	 the	 sign	 bit.	Many	 books	 present	 Booth’s
algorithm	in	terms	of	arithmetic	shifts	and	add	operations	on	registers	only,	and	may	appear	quite	different
from	the	preceding	method.	We	have	presented	Booth’s	algorithm	so	 that	 it	more	closely	resembles	 the
pencil-and-paper	 method	 with	 which	 we	 are	 all	 familiar,	 although	 it	 is	 equivalent	 to	 the	 computer
algorithms	presented	elsewhere.



There	have	been	many	algorithms	developed	for	fast	multiplication,	but	many	do	not	hold	for	signed
multiplication.	Booth’s	algorithm	not	only	allows	multiplication	to	be	performed	faster	in	most	cases,	but
it	also	has	the	added	bonus	in	that	it	works	correctly	on	signed	numbers.

2.4.6		Carry	Versus	Overflow
The	wraparound	referred	to	in	the	preceding	section	is	really	overflow.	CPUs	often	have	flags	to	indicate
both	carry	and	overflow.	However,	the	overflow	flag	is	used	only	with	signed	numbers	and	means	nothing
in	the	context	of	unsigned	numbers,	which	use	the	carry	flag	instead.	If	carry	(which	means	carry	out	of
the	leftmost	bit)	occurs	in	unsigned	numbers,	we	know	we	have	overflow	(the	new	value	is	too	large	to
be	 stored	 in	 the	 given	 number	 of	 bits)	 but	 the	 overflow	 bit	 is	 not	 set.	 Carry	 out	 can	 occur	 in	 signed
numbers	 as	 well;	 however,	 its	 occurrence	 in	 signed	 numbers	 is	 neither	 sufficient	 nor	 necessary	 for
overflow.	We	have	already	seen	that	overflow	in	signed	numbers	can	be	determined	if	the	carry	in	to	the
leftmost	bit	and	the	carry	out	of	the	leftmost	bit	differ.	However,	carry	out	of	the	leftmost	bit	in	unsigned
operations	always	indicates	overflow.

TABLE	2.2	Examples	of	Carry	and	Overflow	in	Signed	Numbers

To	illustrate	these	concepts,	consider	4-bit	unsigned	and	signed	numbers.	If	we	add	the	two	unsigned
values	0111	(7)	and	0001	(1),	we	get	1000	(8).	There	is	no	carry	(out),	and	thus	no	error.	However,	if	we
add	the	two	unsigned	values	0111	(7)	and	1011	(11),	we	get	0010	with	a	carry,	indicating	that	there	is	an
error	 (indeed,	 7	 +	 11	 is	 not	 2).	 This	 wraparound	 would	 cause	 the	 carry	 flag	 in	 the	 CPU	 to	 be	 set.
Essentially,	carry	out	in	the	context	of	unsigned	numbers	means	an	overflow	has	occurred,	even	though	the
overflow	flag	is	not	set.

We	 said	 carry	 (out)	 is	 neither	 sufficient	 nor	 necessary	 for	 overflow	 in	 signed	 numbers.	 Consider
adding	the	two’s	complement	integers	0101	(+5)	and	0011	(+3).	The	result	is	1000	(–8),	which	is	clearly
incorrect.	The	problem	is	that	we	have	a	carry	in	to	the	sign	bit,	but	no	carry	out,	which	indicates	that	we
have	an	overflow	(therefore,	carry	 is	not	necessary	for	overflow).	However,	 if	we	now	add	0111	(+7)
and	1011	 (–5),	we	get	 the	correct	 result:	0010	 (+2).	We	have	both	a	carry	 in	 to	and	a	carry	out	of	 the
leftmost	bit,	so	there	is	no	error	(so	carry	is	not	sufficient	for	overflow).	The	carry	flag	would	be	set,	but
the	 overflow	 flag	 would	 not	 be	 set.	 Thus	 carry	 out	 does	 not	 necessarily	 indicate	 an	 error	 in	 signed
numbers,	nor	does	the	lack	of	carry	out	indicate	that	the	answer	is	correct.

To	summarize,	the	rule	of	thumb	used	to	determine	when	carry	indicates	an	error	depends	on	whether
we	are	using	signed	or	unsigned	numbers.	For	unsigned	numbers,	a	carry	(out	of	the	leftmost	bit)	indicates
the	total	number	of	bits	was	not	large	enough	to	hold	the	resulting	value,	and	overflow	has	occurred.	For
signed	numbers,	if	the	carry	in	to	the	sign	bit	and	the	carry	(out	of	the	sign	bit)	differ,	then	overflow	has
occurred.	The	overflow	flag	is	set	only	when	overflow	occurs	with	signed	numbers.

Carry	 and	 overflow	 clearly	 occur	 independently	 of	 each	 other.	 Examples	 using	 signed	 two’s
complement	representation	are	given	in	Table	2.2.	Carry	in	to	the	sign	bit	is	not	indicated	in	the	table.



2.4.7		Binary	Multiplication	and	Division	Using	Shifting
Shifting	a	binary	number	simply	means	moving	the	bits	left	or	right	by	a	certain	amount.	For	example,	the
binary	value	00001111	shifted	left	one	place	results	in	00011110	(if	we	fill	with	a	zero	on	the	right).	The
first	number	is	equivalent	to	decimal	value	15;	the	second	is	decimal	30,	which	is	exactly	double	the	first
value.	This	is	no	coincidence!

When	working	with	signed	two’s	complement	numbers,	we	can	use	a	special	type	of	shift,	called	an
arithmetic	shift,	to	perform	quick	and	easy	multiplication	and	division	by	2.	Recall	that	the	leftmost	bit	in
a	two’s	complement	number	determines	its	sign,	so	we	must	be	careful	when	shifting	these	values	that	we
don’t	change	the	sign	bit,	as	multiplying	or	dividing	by	2	should	not	change	the	sign	of	the	number.

We	 can	 perform	 a	 left	 arithmetic	 shift	 (which	multiples	 a	 number	 by	 2)	 or	 a	 right	 arithmetic	 shift
(which	divides	a	number	by	2).	Assuming	that	bits	are	numbered	right	to	left	beginning	with	zero,	we	have
the	following	definitions	for	left	and	right	arithmetic	shifts.

A	left	arithmetic	shift	inserts	a	0	in	for	bit	b0,	and	shifts	all	other	bits	left	one	position,	resulting	in
bit	bn–1	 being	 replaced	 by	 bit	bn–2.	Because	 bit	bn–1	 is	 the	 sign	 bit,	 if	 the	 value	 in	 this	 bit	 changes,	 the
operation	has	caused	overflow.	Multiplication	by	2	always	results	in	a	binary	number	with	the	rightmost
bit	equal	to	0,	which	is	an	even	number,	and	thus	explains	why	we	pad	with	a	zero	on	the	right.	Consider
the	following	examples:

	 EXAMPLE	 2.28	 Multiply	 the	 value	 11	 (expressed	 using	 8-bit	 signed	 two’s	 complement
representation)	by	2.

We	start	with	the	binary	value	for	11:

0	0	0	0	1	0	1	1

and	we	shift	left	one	place,	resulting	in:

0	0	0	1	0	1	1	0

which	is	decimal	2	=	11	×	2.	No	overflow	has	occurred,	so	the	value	is	correct.

	 EXAMPLE	 2.29	 Multiply	 the	 value	 12	 (expressed	 using	 8-bit	 signed	 two’s	 complement
representation)	by	4.

We	start	with	the	binary	value	for	12:

0	0	0	0	1	1	0	0

and	we	shift	left	two	places	(each	shift	multiplies	by	2,	so	two	shifts	is	equivalent	to	multiplying	by	4),
resulting	in:

0	0	1	1	0	0	0	0

which	is	decimal	48	=	12	×	4.	No	overflow	has	occurred,	so	the	value	is	correct.

	 EXAMPLE	 2.30	 Multiply	 the	 value	 66	 (expressed	 using	 8-bit	 signed	 two’s	 complement
representation)	by	2.

We	start	with	the	binary	value	for	66:

0	1	0	0	0	0	1	0



and	we	shift	left	one	place,	resulting	in:

1	0	0	0	0	1	0	0

but	the	sign	bit	has	changed,	so	overflow	has	occurred	(66	×	2	=	132,	which	is	too	large	to	be	expressed
using	8	bits	in	signed	two’s	complement	notation).

A	right	arithmetic	shift	moves	all	bits	to	the	right,	but	carries	(copies)	the	sign	bit	from	bit	bn–1	to	bn–2.
Because	we	copy	the	sign	bit	from	right	to	left,	overflow	is	not	a	problem.	However,	division	by	2	may
have	 a	 remainder	 of	 1;	 division	 using	 this	method	 is	 strictly	 integer	 division,	 so	 the	 remainder	 is	 not
stored	in	any	way.	Consider	the	following	examples:

	EXAMPLE	2.31	Divide	the	value	12	(expressed	using	8-bit	signed	two’s	complement	representation)
by	2.

We	start	with	the	binary	value	for	12:

0	0	0	0	1	1	0	0

and	we	shift	right	one	place,	copying	the	sign	bit	of	0,	resulting	in:

0	0	0	0	0	1	1	0

which	is	decimal	6	=	12	÷	2.

	EXAMPLE	2.32	Divide	the	value	12	(expressed	using	8-bit	signed	two’s	complement	representation)
by	4.

We	start	with	the	binary	value	for	12:

0	0	0	0	1	1	0	0

and	we	shift	right	two	places,	resulting	in:

0	0	0	0	0	0	1	1

which	is	decimal	3	=	12	÷	4.

	 EXAMPLE	 2.33	 Divide	 the	 value	 –14	 (expressed	 using	 8-bit	 signed	 two’s	 complement
representation)	by	2.

We	start	with	the	two’s	complement	representation	for	–14:

1	1	1	1	0	0	1	0

and	we	shift	right	one	place	(carrying	across	the	sign	bit),	resulting	in:

1	1	1	1	1	0	0	1

which	is	decimal	–7	=	–14	÷	2.

Note	that	if	we	had	divided	–15	by	2	(in	Example	2.33),	the	result	would	be	11110001	shifted	one	to	the
left	to	yield	11111000,	which	is	–8.	Because	we	are	doing	integer	division,	–15	divided	by	2	is	indeed
equal	to	–8.



2.5			FLOATING-POINT	REPRESENTATION
If	 we	 wanted	 to	 build	 a	 real	 computer,	 we	 could	 use	 any	 of	 the	 integer	 representations	 that	 we	 just
studied.	We	would	pick	one	of	them	and	proceed	with	our	design	tasks.	Our	next	step	would	be	to	decide
the	word	size	of	our	system.	If	we	want	our	system	to	be	really	inexpensive,	we	would	pick	a	small	word
size,	say,	16	bits.	Allowing	for	the	sign	bit,	the	largest	integer	this	system	could	store	is	32,767.	So	now
what	 do	 we	 do	 to	 accommodate	 a	 potential	 customer	 who	 wants	 to	 keep	 a	 tally	 of	 the	 number	 of
spectators	paying	admission	to	professional	sports	events	in	a	given	year?	Certainly,	the	number	is	larger
than	32,767.	No	problem.	Let’s	just	make	the	word	size	larger.	Thirty-two	bits	ought	to	do	it.	Our	word	is
now	big	enough	for	just	about	anything	that	anyone	wants	to	count.	But	what	if	this	customer	also	needs	to
know	the	amount	of	money	each	spectator	spends	per	minute	of	playing	time?	This	number	is	likely	to	be	a
decimal	fraction.	Now	we’re	really	stuck.

The	easiest	and	cheapest	approach	to	this	problem	is	to	keep	our	16-bit	system	and	say,	“Hey,	we’re
building	a	cheap	system	here.	 If	you	want	 to	do	 fancy	 things	with	 it,	get	yourself	a	good	programmer.”
Although	this	position	sounds	outrageously	flippant	in	the	context	of	today’s	technology,	it	was	a	reality	in
the	earliest	days	of	each	generation	of	computers.	There	simply	was	no	such	thing	as	a	floating-point	unit
in	many	of	 the	first	mainframes	or	microcomputers.	For	many	years,	clever	programming	enabled	 these
integer	systems	to	act	as	if	they	were,	in	fact,	floating-point	systems.

If	 you	 are	 familiar	with	 scientific	 notation,	 you	may	 already	 be	 thinking	 of	 how	 you	 could	 handle
floating-point	 operations—how	 you	 could	 provide	 floating-point	 emulation—in	 an	 integer	 system.	 In
scientific	 notation,	 numbers	 are	 expressed	 in	 two	 parts:	 a	 fractional	 part	 and	 an	 exponential	 part	 that
indicates	the	power	of	ten	to	which	the	fractional	part	should	be	raised	to	obtain	the	value	we	need.	So	to
express	32,767	in	scientific	notation,	we	could	write	3.2767	×	104.	Scientific	notation	simplifies	pencil-
and-paper	calculations	that	involve	very	large	or	very	small	numbers.	It	is	also	the	basis	for	floating-point
computation	in	today’s	digital	computers.

2.5.1		A	Simple	Model
In	 digital	 computers,	 floating-point	 numbers	 consist	 of	 three	 parts:	 a	 sign	 bit,	 an	 exponent	 part
(representing	the	exponent	on	a	power	of	2),	and	a	fractional	part	(which	has	sparked	considerable	debate
regarding	 appropriate	 terminology).	 The	 term	 mantissa	 is	 widely	 accepted	 when	 referring	 to	 this
fractional	part.	However,	many	people	take	exception	to	this	term	because	it	also	denotes	the	fractional
part	of	a	logarithm,	which	is	not	the	same	as	the	fractional	part	of	a	floating-point	number.	The	Institute	of
Electrical	and	Electronics	Engineers	(IEEE)	introduced	the	term	significand	to	refer	to	the	fractional	part
of	a	floating-point	number	combined	with	the	implied	binary	point	and	implied	1	(which	we	discuss	at	the
end	of	 this	section).	Regrettably,	 the	 two	 terms	mantissa	and	significand	 have	become	 interchangeable
when	 referring	 to	 the	 fractional	 part	 of	 a	 floating-point	 number,	 even	 though	 they	 are	 not	 technically
equivalent.	Throughout	this	text,	we	refer	to	the	fractional	part	as	the	significand,	regardless	of	whether	it
includes	the	implied	1	as	intended	by	IEEE.

The	 number	 of	 bits	 used	 for	 the	 exponent	 and	 significand	 depends	 on	 whether	 we	 would	 like	 to
optimize	 for	 range	 (more	bits	 in	 the	exponent)	or	precision	 (more	bits	 in	 the	 significand).	 (We	discuss
range	and	precision	in	more	detail	in	Section	2.5.7.)	For	the	remainder	of	this	section,	we	will	use	a	14-
bit	model	with	a	5-bit	exponent,	an	8-bit	significand,	and	a	sign	bit	(see	Figure	2.1).	More	general	forms
are	described	in	Section	2.5.2.



FIGURE	2.1	Simple	Model	Floating-Point	Representation

Let’s	say	that	we	wish	to	store	the	decimal	number	17	in	our	model.	We	know	that	17	=	17.0	×	100	=
1.7	×	101	 =	 0.17	×	 102.	Analogously,	 in	 binary,	 1710	 =	 100012	 ×	 20	 =	 1000.12	 ×	 21	 =	 100.012	 ×	 22	 =
10.0012	×	23	=	1.00012	×	24	=	0.100012	×	25.	If	we	use	this	last	form,	our	fractional	part	will	be	10001000
and	our	exponent	will	be	00101,	as	shown	here:

Using	 this	 form,	 we	 can	 store	 numbers	 of	much	 greater	magnitude	 than	 we	 could	 using	 a	 fixed-point
representation	of	14	bits	(which	uses	a	total	of	14	binary	digits	plus	a	binary,	or	radix,	point).	If	we	want
to	represent	65536	=	0.12	×	217	in	this	model,	we	have:

One	obvious	problem	with	this	model	is	that	we	haven’t	provided	for	negative	exponents.	If	we	wanted	to
store	 0.25,	 we	 would	 have	 no	 way	 of	 doing	 so	 because	 0.25	 is	 2–2	 and	 the	 exponent	 –2	 cannot	 be
represented.	We	could	fix	the	problem	by	adding	a	sign	bit	to	the	exponent,	but	it	turns	out	that	it	is	more
efficient	to	use	a	biased	exponent,	because	we	can	use	simpler	integer	circuits	designed	specifically	for
unsigned	numbers	when	comparing	the	values	of	two	floating-point	numbers.

Recall	 from	Section	2.4.3	 that	 the	 idea	behind	using	a	bias	value	 is	 to	convert	 every	 integer	 in	 the
range	 into	 a	nonnegative	 integer,	which	 is	 then	 stored	 as	 a	binary	numeral.	The	 integers	 in	 the	desired
range	of	exponents	are	first	adjusted	by	adding	this	fixed	bias	value	to	each	exponent.	The	bias	value	is	a
number	near	the	middle	of	the	range	of	possible	values	that	we	select	to	represent	zero.	In	this	case,	we
would	select	15	because	it	is	midway	between	0	and	31	(our	exponent	has	5	bits,	thus	allowing	for	25	or
32	values).	Any	number	larger	than	15	in	the	exponent	field	represents	a	positive	value.	Values	less	than
15	indicate	negative	values.	This	is	called	an	excess-15	representation	because	we	have	to	subtract	15	to
get	the	true	value	of	the	exponent.	Note	that	exponents	of	all	zeros	or	all	ones	are	typically	reserved	for
special	numbers	(such	as	zero	or	infinity).	In	our	simple	model,	we	allow	exponents	of	all	zeros	and	ones.

Returning	to	our	example	of	storing	17,	we	calculated	1710	=	0.100012	×	25.	The	biased	exponent	is
now	15	+	5	=	20:

If	we	wanted	to	store	0.25	=	0.1	×	2–1,	we	would	have:

There	is	still	one	rather	large	problem	with	this	system:	We	do	not	have	a	unique	representation	for	each
number.	All	of	the	following	are	equivalent:



Because	synonymous	forms	such	as	these	are	not	well-suited	for	digital	computers,	floating-point	numbers
must	be	normalized—that	is,	the	leftmost	bit	of	the	significand	must	always	be	1.	This	process	is	called
normalization.	This	convention	has	the	additional	advantage	that	if	the	1	is	implied,	we	effectively	gain
an	extra	bit	of	precision	in	the	significand.	Normalization	works	well	for	every	value	except	zero,	which
contains	no	nonzero	bits.	For	that	reason,	any	model	used	to	represent	floating-point	numbers	must	treat
zero	as	a	special	case.	We	will	see	in	the	next	section	that	the	IEEE-754	floating-point	standard	makes	an
exception	to	the	rule	of	normalization.

	EXAMPLE	2.34	Express	 0.0312510	 in	 normalized	 floating-point	 form	 using	 the	 simple	model	with
excess-15	bias.

0.0312510	=	0.000012	×	20	=	0.0001	×	2–1	=	0.001	×	2–2	=	0.01	×	2–3	=	0.1	×	2–4.	Applying	the	bias,	the
exponent	field	is	15	–	4	=	11.

Note	 that	 in	our	 simple	model	we	have	not	 expressed	 the	number	using	 the	normalization	notation	 that
implies	the	1,	which	is	introduced	in	Section	2.5.4.

2.5.2		Floating-Point	Arithmetic
If	we	wanted	to	add	two	decimal	numbers	that	are	expressed	in	scientific	notation,	such	as	1.5	×	102	+	3.5
×	103,	we	would	change	one	of	the	numbers	so	that	both	of	them	are	expressed	in	the	same	power	of	the
base.	In	our	example,	1.5	×	102	+	3.5	×	103	=	0.15	×	103	+	3.5	×	103	=	3.65	×	103.	Floating-point	addition
and	subtraction	work	the	same	way,	as	illustrated	below.

	EXAMPLE	 2.35	 Add	 the	 following	 binary	 numbers	 as	 represented	 in	 a	 normalized	 14-bit	 format,
using	the	simple	model	with	a	bias	of	15.

We	see	that	the	addend	is	raised	to	the	second	power	and	that	the	augend	is	to	the	zero	power.	Alignment



of	these	two	operands	on	the	binary	point	gives	us:

Renormalizing,	we	retain	the	larger	exponent	and	truncate	the	low-order	bit.	Thus,	we	have:

However,	 because	 our	 simple	model	 requires	 a	 normalized	 significand,	we	 have	 no	way	 to	 represent
zero.	This	is	easily	remedied	by	allowing	the	string	of	all	zeros	(a	zero	sign,	a	zero	exponent,	and	a	zero
significand)	 to	 represent	 the	 value	 zero.	 In	 the	 next	 section,	we	will	 see	 that	 IEEE-754	 also	 reserves
special	meaning	for	certain	bit	patterns.

Multiplication	 and	 division	 are	 carried	 out	 using	 the	 same	 rules	 of	 exponents	 applied	 to	 decimal
arithmetic,	such	as	2–3	×	24	=	21,	for	example.

	EXAMPLE	2.36	Assuming	a	15-bit	bias,	multiply:

Multiplication	 of	 0.11001000	 by	 0.10011010	 yields	 a	 product	 of	 0.0111100001010000,	 and	 then
multiplying	by	23	×	21	=	24	yields	111.10000101.	Renormalizing	and	supplying	the	appropriate	exponent,
the	floating-point	product	is:

2.5.3		Floating-Point	Errors
When	we	use	pencil	and	paper	to	solve	a	trigonometry	problem	or	compute	the	interest	on	an	investment,
we	intuitively	understand	that	we	are	working	in	the	system	of	real	numbers.	We	know	that	this	system	is
infinite,	because	given	any	pair	of	real	numbers,	we	can	always	find	another	real	number	that	is	smaller
than	one	and	greater	than	the	other.

Unlike	 the	mathematics	 in	our	 imaginations,	computers	are	 finite	systems,	with	 finite	storage.	When
we	call	upon	our	computers	to	carry	out	floating-point	calculations,	we	are	modeling	the	infinite	system	of
real	numbers	in	a	finite	system	of	integers.	What	we	have,	in	truth,	is	an	approximation	of	the	real	number
system.	The	more	bits	we	use,	 the	better	 the	approximation.	However,	 there	is	always	some	element	of
error,	no	matter	how	many	bits	we	use.

Floating-point	 errors	 can	 be	 blatant,	 subtle,	 or	 unnoticed.	 The	 blatant	 errors,	 such	 as	 numeric
overflow	 or	 underflow,	 are	 the	 ones	 that	 cause	 programs	 to	 crash.	 Subtle	 errors	 can	 lead	 to	 wildly



erroneous	results	that	are	often	hard	to	detect	before	they	cause	real	problems.	For	example,	in	our	simple
model,	we	can	express	normalized	numbers	in	the	range	of	–.111111112	×	216	 through	+.11111111	×	216.
Obviously,	we	cannot	 store	2–19	or	2128;	 they	 simply	don’t	 fit.	 It	 is	not	quite	 so	obvious	 that	we	cannot
accurately	store	128.5,	which	is	well	within	our	range.	Converting	128.5	to	binary,	we	have	10000000.1,
which	 is	 9	 bits	wide.	Our	 significand	 can	 hold	 only	 eight.	 Typically,	 the	 low-order	 bit	 is	 dropped	 or
rounded	 into	 the	next	bit.	No	matter	how	we	handle	 it,	however,	we	have	 introduced	an	error	 into	our
system.

We	can	compute	the	relative	error	in	our	representation	by	taking	the	ratio	of	the	absolute	value	of	the
error	to	the	true	value	of	the	number.	Using	our	example	of	128.5,	we	find:

If	we	are	not	careful,	such	errors	can	propagate	through	a	lengthy	calculation,	causing	substantial	loss	of
precision.	Table	2.3	illustrates	the	error	propagation	as	we	iteratively	multiply	16.24	by	0.91	using	our
14-bit	simple	model.	Upon	converting	 these	numbers	 to	8-bit	binary,	we	see	 that	we	have	a	substantial
error	from	the	outset.

As	 you	 can	 see,	 in	 six	 iterations,	 we	 have	 more	 than	 tripled	 the	 error	 in	 the	 product.	 Continued
iterations	will	produce	an	error	of	100%	because	the	product	eventually	goes	to	zero.	Although	this	14-bit
model	is	so	small	that	it	exaggerates	the	error,	all	floating-point	systems	behave	the	same	way.	There	is
always	some	degree	of	error	involved	when	representing	real	numbers	in	a	finite	system,	no	matter	how
large	 we	 make	 that	 system.	 Even	 the	 smallest	 error	 can	 have	 catastrophic	 results,	 particularly	 when
computers	are	used	to	control	physical	events	such	as	in	military	and	medical	applications.	The	challenge
to	 computer	 scientists	 is	 to	 find	 efficient	 algorithms	 for	 controlling	 such	 errors	 within	 the	 bounds	 of
performance	and	economics.

TABLE	2.3	Error	Propagation	in	a	14-Bit	Floating-Point	Number

2.5.4		The	IEEE-754	Floating-Point	Standard



The	 floating-point	model	we	have	been	using	 in	 this	 section	 is	 designed	 for	 simplicity	 and	 conceptual
understanding.	We	 could	 extend	 this	 model	 to	 include	 whatever	 number	 of	 bits	 we	 wanted.	 Until	 the
1980s,	these	kinds	of	decisions	were	purely	arbitrary,	resulting	in	numerous	incompatible	representations
across	 various	manufacturers’	 systems.	 In	 1985,	 the	 IEEE	 published	 a	 floating-point	 standard	 for	 both
single-	 and	 double-precision	 floating-point	 numbers.	 This	 standard	 is	 officially	 known	 as	 IEEE-754
(1985)	and	includes	two	formats:	single	precision	and	double	precision.	The	IEEE-754	standard	not	only
defines	 binary	 floating-point	 representations,	 but	 also	 specifies	 basic	 operations,	 exception	 conditions,
conversions,	 and	 arithmetic.	 Another	 standard,	 IEEE	 854-1987,	 provides	 similar	 specifications	 for
decimal	arithmetic.	In	2008,	IEEE	revised	the	754	standard,	and	it	became	known	as	IEEE	754-2008.	It
carried	 over	 the	 single	 and	 double	 precision	 from	 754,	 and	 added	 support	 for	 decimal	 arithmetic	 and
formats,	superseding	both	754	and	854.	We	discuss	only	the	single	and	double	representation	for	floating-
point	numbers.

The	 IEEE-754	 single-precision	 standard	 uses	 an	 excess	 127	 bias	 over	 an	 8-bit	 exponent.	 The
significand	assumes	an	implied	1	to	the	left	of	the	radix	point	and	is	23	bits.	This	implied	1	is	referred	to
as	 the	hidden	bit	 or	hidden	1	 and	 allows	 an	 actual	 significand	 of	 23	 +	 1	 =	 24	 bits.	With	 the	 sign	 bit
included,	the	total	word	size	is	32	bits,	as	shown	in	Figure	2.2.

FIGURE	2.2	IEEE-754	Single-Precision	Floating-Point	Representation

We	mentioned	 earlier	 that	 IEEE-754	makes	 an	 exception	 to	 the	 rule	 of	 normalization.	Because	 this
standard	assumes	an	implied	1	to	the	left	of	the	radix	point,	the	leading	bit	in	the	significand	can	indeed	be
zero.	For	example,	the	number	5.5	=	101.1	=	.1011	×	23.	IEEE-754	assumes	an	implied	1	to	the	left	of	the
radix	point	and	thus	represents	5.5	as	1.011	×	22.	Because	the	1	is	implied,	the	significand	is	011	and	does
not	begin	with	a	1.

Table	2.4	shows	the	single-precision	representation	of	several	floating-point	numbers,	including	some
special	 ones.	One	 should	note	 that	 zero	 is	 not	 directly	 representable	 in	 the	 given	 format,	 because	 of	 a
required	hidden	bit	in	the	significand.	Therefore,	zero	is	a	special	value	denoted	using	an	exponent	of	all
zeros	and	a	significand	of	all	zeros.	 IEEE-754	does	allow	for	both	–0	and	+0,	although	 they	are	equal
values.	For	this	reason,	programmers	should	use	caution	when	comparing	a	floating-point	value	to	zero.

	

Floating-Point	Number Single-Precision	Representation

1.0 			0	01111111	00000000000000000000000

0.5 			0	01111110	00000000000000000000000

19.5 			0	10000011	00111000000000000000000

–3.75 			1	10000000	11100000000000000000000

Zero 			0	00000000	00000000000000000000000

±	Infinity 0/1	11111111	00000000000000000000000



NaN 0/1	11111111	any	nonzero	significand

Denormalized	Number 0/1	00000000	any	nonzero	significand

TABLE	2.4	Some	Example	IEEE-754	Single-Precision	Floating-Point	Numbers

When	the	exponent	is	255,	the	quantity	represented	is	±	infinity	(which	has	a	zero	significand)	or	“not
a	number”	(which	has	a	nonzero	significand).	“Not	a	number,”	or	NaN,	is	used	to	represent	a	value	that	is
not	a	 real	number	(such	as	 the	square	root	of	a	negative	number)	or	as	an	error	 indicator	 (such	as	 in	a
“division	by	zero”	error).

Under	the	IEEE-754	standard,	most	numeric	values	are	normalized	and	have	an	implicit	leading	1	in
their	 significands	 (that	 is	assumed	 to	be	 to	 the	 left	of	 the	 radix	point).	Another	 important	convention	 is
when	the	exponent	is	all	zeros	but	the	significand	is	nonzero.	This	represents	a	denormalized	number	in
which	there	is	no	hidden	bit	assumed.

FIGURE	2.3	Range	of	IEEE-754	Double-Precision	Numbers

The	 largest	magnitude	 value	we	 can	 represent	 (forget	 the	 sign	 for	 the	 time	 being)	with	 the	 single-
precision	 floating-point	 format	 is	2127	×	1.1111111111	11111111111112	 (let’s	 call	 this	 value	MAX).	We
can’t	use	an	exponent	of	all	ones	because	that	is	reserved	for	NaN.	The	smallest	magnitude	number	we
can	represent	is	2–127	×	.000000000000000000000012	(let’s	call	this	value	MIN).	We	can	use	an	exponent
of	all	zeros	(which	means	the	number	is	denormalized)	because	the	significand	is	nonzero	(and	represents
2–23).	Due	to	the	preceding	special	values	and	the	limited	number	of	bits,	there	are	four	numerical	ranges
that	 single-precision	 floating-point	 numbers	 cannot	 represent:	 negative	 numbers	 less	 than	 –MAX
(negative	 overflow);	 negative	 numbers	 greater	 than	 –MIN	 (negative	 underflow);	 positive	 numbers	 less
than	+MIN	(positive	underflow);	and	positive	numbers	greater	than	+MAX	(positive	overflow).

Double-precision	 numbers	 use	 a	 signed	 64-bit	word	 consisting	 of	 an	 11-bit	 exponent	 and	 a	 52-bit
significand.	The	bias	is	1023.	The	range	of	numbers	that	can	be	represented	in	the	IEEE	double-precision
model	is	shown	in	Figure	2.3.	NaN	is	indicated	when	the	exponent	is	2047.	Representations	for	zero	and
infinity	correspond	to	the	single-precision	model.

At	 a	 slight	 cost	 in	 performance,	 most	 FPUs	 use	 only	 the	 64-bit	 model	 so	 that	 only	 one	 set	 of
specialized	circuits	needs	to	be	designed	and	implemented.

Virtually	 every	 recently	designed	 computer	 system	has	 adopted	 the	 IEEE-754	 floating-point	model.
Unfortunately,	by	 the	 time	 this	standard	came	along,	many	mainframe	computer	systems	had	established
their	own	 floating-point	 systems.	Changing	 to	 the	newer	 system	has	 taken	decades	 for	well-established
architectures	such	as	IBM	mainframes,	which	now	support	both	their	traditional	floating-point	system	and
IEEE-754.	Before	1998,	however,	 IBM	systems	had	been	using	 the	same	architecture	 for	 floating-point
arithmetic	that	the	original	System/360	used	in	1964.	One	would	expect	that	both	systems	will	continue	to



be	supported,	owing	to	the	substantial	amount	of	older	software	that	is	running	on	these	systems.

2.5.5		Range,	Precision,	and	Accuracy
When	 discussing	 floating-point	 numbers	 it	 is	 important	 to	 understand	 the	 terms	 range,	 precision,	 and
accuracy.	Range	is	very	straightforward,	because	it	represents	the	interval	from	the	smallest	value	in	a
given	format	to	the	largest	value	in	that	same	format.	For	example,	the	range	of	16-bit	two’s	complement
integers	is	–32768	to	+32767.	The	range	of	IEEE-754	double-precision	floating-point	numbers	is	given	in
Figure	2.3.	Even	with	this	large	range,	we	know	there	are	infinitely	many	numbers	that	do	not	exist	within
the	range	specified	by	IEEE-754.	The	reason	floating-point	numbers	work	at	all	is	that	there	will	always
be	a	number	in	this	range	that	is	close	to	the	number	you	want.

People	have	no	problem	understanding	range,	but	accuracy	and	precision	are	often	confused	with	each
other.	Accuracy	refers	to	how	close	a	number	is	to	its	true	value;	for	example,	we	can’t	represent	0.1	in
floating	point,	but	we	can	find	a	number	in	 the	range	that	 is	relatively	close,	or	reasonably	accurate,	 to
0.1.	Precision,	on	the	other	hand,	deals	with	how	much	information	we	have	about	a	value	and	the	amount
of	 information	 used	 to	 represent	 the	 value.	 1.666	 is	 a	 number	 with	 four	 decimal	 digits	 of	 precision;
1.6660	is	 the	same	exact	number	with	five	decimal	digits	of	precision.	The	second	number	is	not	more
accurate	than	the	first.

Accuracy	must	be	put	into	context—to	know	how	accurate	a	value	is,	one	must	know	how	close	it	is
to	its	intended	target	or	“true	value.”	We	can’t	look	at	two	numbers	and	immediately	declare	that	the	first
is	more	accurate	than	the	second	simply	because	the	first	has	more	digits	of	precision.

Although	they	are	separate,	accuracy	and	precision	are	related.	Higher	precision	often	allows	a	value
to	be	more	 accurate,	 but	 that	 is	 not	 always	 the	 case.	For	 example,	we	can	 represent	 the	value	1	 as	 an
integer,	 a	 single-precision	 floating	 point,	 or	 a	 double-precision	 floating	 point,	 but	 each	 is	 equally
(exactly)	 accurate.	 As	 another	 example,	 consider	 3.13333	 as	 an	 estimate	 for	 pi.	 It	 has	 6	 digits	 of
precision,	 yet	 is	 accurate	 to	 only	 two	 digits.	 Adding	 more	 precision	 will	 do	 nothing	 to	 increase	 the
accuracy.

On	the	other	hand,	when	multiplying	0.4	×	0.3,	our	accuracy	depends	on	our	precision.	If	we	allow
only	one	decimal	place	for	precision,	our	result	is	0.1	(which	is	close	to,	but	not	exactly,	the	product).	If
we	allow	two	decimal	places	of	precision,	we	get	0.12,	which	accurately	reflects	the	answer.

2.5.6		Additional	Problems	with	Floating-Point	Numbers
We	 have	 seen	 that	 floating-point	 numbers	 can	 overflow	 and	 underflow.	 In	 addition,	 we	 know	 that	 a
floating-point	number	may	not	exactly	represent	the	value	we	wish,	as	is	the	case	with	the	rounding	error
that	occurs	with	 the	binary	 floating-point	 representation	 for	 the	decimal	number	0.1.	As	we	have	 seen,
these	rounding	errors	can	propagate,	resulting	in	substantial	problems.

Although	rounding	is	undesirable,	it	is	understandable.	In	addition	to	this	rounding	problem,	however,
floating-point	 arithmetic	 differs	 from	 real	 number	 arithmetic	 in	 two	 relatively	 disturbing,	 and	 not
necessarily	intuitive,	ways.	First,	floating-point	arithmetic	is	not	always	associative.	This	means	that	for
three	floating-point	numbers	a,	b,	and	c,

(a	+	b)	+	c	≠	a	+	(b	+	c)

The	same	holds	true	for	associativity	under	multiplication.	Although	in	many	cases	the	left-hand	side	will
equal	the	right-hand	side,	there	is	no	guarantee.	Floating-point	arithmetic	is	also	not	distributive:



a	×	(b)	+	c)	≠	ab	+	ac

Although	results	can	vary	depending	on	compiler	(we	used	Gnu	C),	declaring	the	doubles	a	=	0.1,	b	=	0.2,
and	c	=	0.3	illustrates	the	above	inequalities	nicely.	We	encourage	you	to	find	three	additional	floating-
point	numbers	to	illustrate	that	floating-point	arithmetic	is	neither	associative	nor	distributive.

What	does	this	all	mean	to	you	as	a	programmer?	Programmers	should	use	extra	care	when	using	the
equality	 operator	 on	 floating-point	 numbers.	 This	 implies	 that	 they	 should	 be	 avoided	 in	 controlling
looping	 structures	 such	 as	 do…while	 and	 for	 loops.	 It	 is	 good	 practice	 to	 declare	 a	 “nearness	 to	 x”
epsilon	(e.g.,	epsilon	=	1.0	×	10–20)	and	then	test	an	absolute	value.
For	example,	instead	of	using:

if	x	=	2	then…

it	is	better	to	use:

Floating-Point	Ops	or	Oops?
In	 this	 chapter,	 we	 have	 introduced	 floating-point	 numbers	 and	 the	 means	 by	 which	 computers
represent	 them.	We	 have	 touched	 upon	 floating-point	 rounding	 errors	 (studies	 in	 numerical	 analysis
will	 provide	 further	 depth	 on	 this	 topic)	 and	 the	 fact	 that	 floating-point	 numbers	 don’t	 obey	 the
standard	 associative	 and	 distributive	 laws.	 But	 just	 how	 serious	 are	 these	 issues?	 To	 answer	 this
question,	we	introduce	three	major	floating-point	blunders.

In	1994,	when	 Intel	 introduced	 the	Pentium	microprocessor,	 number	 crunchers	 around	 the	world
noticed	 something	 weird	 was	 happening.	 Calculations	 involving	 double-precision	 divisions	 and
certain	bit	patterns	were	producing	incorrect	results.	Although	the	flawed	chip	was	slightly	inaccurate
for	some	pairs	of	numbers,	other	instances	were	more	extreme.	For	example,	if	x	=	4,195,835	and	y	=
3,145,727,	finding	z	=	x	–	(x/y)	×	y	should	produce	a	z	of	0.	The	Intel	286,	386,	and	486	chips	gave
exactly	that	result.	Even	taking	into	account	the	possibility	of	floating-point	round-off	error,	the	value
of	z	should	have	been	about	9.3	×	10–10.	But	on	the	new	Pentium,	z	was	equal	to	256!

Once	Intel	was	informed	of	the	problem,	research	and	testing	revealed	the	flaw	to	be	an	omission
in	 the	 chip’s	 design.	 The	 Pentium	was	 using	 the	 radix-4	 SRT	 algorithm	 for	 speedy	 division,	which
necessitated	a	1066-element	 table.	Once	implemented	in	silicon,	5	of	 those	 table	entries	were	0	and
should	have	been	+2.

Although	 the	 Pentium	bug	was	 a	 public	 relations	 debacle	 for	 Intel,	 it	was	 not	 a	 catastrophe	 for
those	using	the	chip.	In	fact,	it	was	a	minor	thing	compared	to	the	programming	mistakes	with	floating-
point	numbers	that	have	resulted	in	disasters	in	areas	from	off-shore	oil	drilling,	to	stock	markets,	to
missile	defense.	The	list	of	actual	disasters	 that	resulted	from	floating-point	errors	 is	very	long.	The
following	two	instances	are	among	the	worst	of	them.

During	 the	 Persian	Gulf	War	 of	 1991,	 the	 United	 States	 relied	 on	 Patriot	missiles	 to	 track	 and
intercept	 cruise	missiles	 and	Scud	missiles.	One	of	 these	missiles	 failed	 to	 track	 an	 incoming	Scud
missile,	 allowing	 the	 Scud	 to	 hit	 an	American	 army	 barracks,	 killing	 28	 people	 and	 injuring	many
more.	After	an	investigation,	it	was	determined	that	the	failure	of	the	Patriot	missile	was	due	to	using



too	little	precision	to	allow	the	missile	to	accurately	determine	the	incoming	Scud	velocity.
The	 Patriot	 missile	 uses	 radar	 to	 determine	 the	 location	 of	 an	 object.	 If	 the	 internal	 weapons

control	 computer	 identifies	 the	 object	 as	 something	 that	 should	 be	 intercepted,	 calculations	 are
performed	 to	 predict	 the	 air	 space	 in	 which	 the	 object	 should	 be	 located	 at	 a	 specific	 time.	 This
prediction	is	based	on	the	object’s	known	velocity	and	time	of	last	detection.

The	problem	was	in	the	clock,	which	measured	time	in	tenths	of	seconds.	But	the	time	since	boot
was	stored	as	an	integer	number	of	seconds	(determined	by	multiplying	the	elapsed	time	by	1/10).	For
predicting	 where	 an	 object	 would	 be	 at	 a	 specific	 time,	 the	 time	 and	 velocity	 needed	 to	 be	 real
numbers.	It	was	no	problem	to	convert	the	integer	to	a	real	number;	however,	using	24-bit	registers	for
its	 calculations,	 the	 Patriot	was	 limited	 in	 the	 precision	 of	 this	 operation.	The	 potential	 problem	 is
easily	seen	when	one	realizes	1/10	in	binary	is:

0.0001100110011001100110011001100	…

When	the	elapsed	time	was	small,	this	“chopping	error”	was	insignificant	and	caused	no	problems.
The	Patriot	was	designed	to	be	on	for	only	a	few	minutes	at	a	 time,	so	this	 limit	of	24-bit	precision
would	be	of	no	consequence.	The	problem	was	that	during	the	Gulf	War,	the	missiles	were	on	for	days.
The	longer	a	missile	was	on,	the	larger	the	error	became,	and	the	more	probable	that	the	inaccuracy	of
the	 prediction	 calculation	 would	 cause	 an	 unsuccessful	 interception.	 And	 this	 is	 precisely	 what
happened	 on	 February	 25,	 1991,	 when	 a	 failed	 interception	 resulted	 in	 28	 people	 killed—a	 failed
interception	 caused	 by	 loss	 of	 precision	 (required	 for	 accuracy)	 in	 floating-point	 numbers.	 It	 is
estimated	that	the	Patriot	missile	had	been	operational	about	100	hours,	introducing	a	rounding	error	in
the	time	conversion	of	about	0.34	seconds,	which	translates	to	approximately	half	a	kilometer	of	travel
for	a	Scud	missile.

Designers	were	 aware	 of	 the	 conversion	 problem	well	 before	 the	 incident	 occurred.	 However,
deploying	new	software	under	wartime	conditions	 is	anything	but	 trivial.	Although	the	new	software
would	have	fixed	the	bug,	field	personnel	could	have	simply	rebooted	the	systems	at	specific	intervals
to	keep	the	clock	value	small	enough	so	that	24-bit	precision	would	have	been	sufficient.

One	of	the	most	famous	examples	of	a	floating-point	numeric	disaster	is	the	explosion	of	the	Ariane
5	rocket.	On	June	4,	1996,	the	unmanned	Ariane	5	was	launched	by	the	European	Space	Agency.	Forty
seconds	 after	 liftoff,	 the	 rocket	 exploded,	 scattering	 a	 $500	 million	 cargo	 across	 parts	 of	 French
Guiana.	 Investigation	 revealed	perhaps	one	of	 the	most	devastatingly	 careless	but	 efficient	 software
bugs	 in	 the	 annals	 of	 computer	 science—a	 floating-point	 conversion	 error.	 The	 rocket’s	 inertial
reference	system	converted	a	64-bit	floating-point	number	(dealing	with	the	horizontal	velocity	of	the
rocket)	to	a	16-bit	signed	integer.	However,	the	particular	64-bit	floating-point	number	to	be	converted
was	larger	than	32,767	(the	largest	 integer	that	can	be	stored	in	16-bit	signed	representation),	so	the
conversion	process	failed.	The	rocket	tried	to	make	an	abrupt	course	correction	for	a	wrong	turn	that	it
had	never	taken,	and	the	guidance	system	shut	down.	Ironically,	when	the	guidance	system	shut	down,
control	reverted	to	a	backup	unit	 installed	in	the	rocket	 in	case	of	 just	such	a	failure,	but	 the	backup
system	was	running	the	same	flawed	software.

It	seems	obvious	that	a	64-bit	floating-point	number	could	be	much	larger	than	32,767,	so	how	did
the	rocket	programmers	make	such	a	glaring	error?	They	decided	the	velocity	value	would	never	get
large	enough	to	be	a	problem.	Their	reasoning?	It	had	never	gotten	too	large	before.	Unfortunately,	this
rocket	was	faster	than	all	previous	rockets,	resulting	in	a	larger	velocity	value	than	the	programmers
expected.	One	of	 the	most	 serious	mistakes	a	programmer	can	make	 is	 to	accept	 the	old	adage	“But



we’ve	always	done	it	that	way.”
Computers	are	everywhere—in	our	washing	machines,	our	televisions,	our	microwaves,	even	our

cars.	We	certainly	hope	the	programmers	who	work	on	computer	software	for	our	cars	don’t	make	such
hasty	 assumptions.	 With	 approximately	 15	 to	 60	 microprocessors	 in	 all	 new	 cars	 that	 roll	 off	 the
assembly	 line	 and	 innumerable	 processors	 in	 commercial	 aircraft	 and	 medical	 equipment,	 a	 deep
understanding	of	floating-point	anomalies	can	quite	literally	be	a	lifesaver.

2.6			CHARACTER	CODES
We	have	seen	how	digital	computers	use	the	binary	system	to	represent	and	manipulate	numeric	values.
We	 have	 yet	 to	 consider	 how	 these	 internal	 values	 can	 be	 converted	 to	 a	 form	 that	 is	 meaningful	 to
humans.	The	manner	in	which	this	is	done	depends	on	both	the	coding	system	used	by	the	computer	and
how	the	values	are	stored	and	retrieved.

2.6.1		Binary-Coded	Decimal
For	many	applications,	we	need	the	exact	binary	equivalent	of	the	decimal	system,	which	means	we	need
an	encoding	for	 individual	decimal	digits.	This	 is	precisely	 the	case	 in	many	business	applications	 that
deal	 with	 money—we	 can’t	 afford	 the	 rounding	 errors	 that	 occur	 when	 we	 convert	 real	 numbers	 to
floating	point	when	making	financial	transactions!

Binary-coded	 decimal	 (BCD)	 is	 very	 common	 in	 electronics,	 particularly	 those	 that	 display
numerical	data,	such	as	alarm	clocks	and	calculators.	BCD	encodes	each	digit	of	a	decimal	number	into	a
4-bit	binary	form.	Each	decimal	digit	is	individually	converted	to	its	binary	equivalent,	as	seen	in	Table
2.5.	For	example,	to	encode	146,	the	decimal	digits	are	replaced	by	0001,	0100,	and	0110,	respectively.

Because	most	computers	use	bytes	as	the	smallest	unit	of	access,	most	values	are	stored	in	8	bits,	not
4.	That	gives	us	two	choices	for	storing	4-bit	BCD	digits.	We	can	ignore	the	cost	of	extra	bits	and	pad	the
high-order	nibbles	with	zeros	(or	ones),	forcing	each	decimal	digit	 to	be	replaced	by	8	bits.	Using	this
approach,	 padding	 with	 zeros,	 146	 would	 be	 stored	 as	 00000001	 00000100	 00000110.	 Clearly,	 this
approach	is	quite	wasteful.	The	second	approach,	called	packed	BCD,	stores	two	digits	per	byte.	Packed
decimal	format	allows	numbers	to	be	signed,	but	instead	of	putting	the	sign	at	 the	beginning,	the	sign	is
stored	at	the	end.	The	standard	values	for	this	“sign	digit”	are	1100	for	+,	1101	for	–,	and	1111	to	indicate
that	 the	 value	 is	 unsigned	 (see	 Table	 2.5).	 Using	 packed	 decimal	 format,	 +146	 would	 be	 stored	 as
00010100	01101100.	Padding	would	still	be	required	for	an	even	number	of	digits.	Note	that	if	a	number
has	a	decimal	point	(as	with	monetary	values),	this	is	not	stored	in	the	BCD	representation	of	the	number
and	must	be	retained	by	the	application	program.

Another	variation	of	BCD	is	zoned	decimal	format.	Zoned	decimal	representation	stores	a	decimal
digit	 in	 the	 low-order	 nibble	 of	 each	 byte,	 which	 is	 exactly	 the	 same	 as	 unpacked	 decimal	 format.
However,	instead	of	padding	the	high-order	nibbles	with	zeros,	a	specific	pattern	is	used.	There	are	two
choices	for	the	high-order	nibble,	called	the	numeric	zone.	EBCDIC	zoned	decimal	format	requires	the
zone	 to	 be	 all	 ones	 (hexadecimal	 F).	 ASCII	 zoned	 decimal	 format	 requires	 the	 zone	 to	 be	 0011
(hexadecimal	 3).	 (See	 the	 next	 two	 sections	 for	 detailed	 explanations	 of	 EBCDIC	 and	 ASCII.)	 Both
formats	allow	for	signed	numbers	(using	the	sign	digits	found	in	Table	2.5)	and	typically	expect	the	sign	to
be	located	in	the	high-order	nibble	of	the	least	significant	byte	(although	the	sign	could	be	a	completely
separate	byte).	For	example,	+146	 in	EBCDIC	zoned	decimal	 format	 is	11110001	11110100	11000110



(note	 that	 the	 high-order	 nibble	 of	 the	 last	 byte	 is	 the	 sign).	 In	ASCII	 zoned	 decimal	 format,	 +146	 is
00110001	00110100	11000110.

	

Digit BCD

0
1
2
3
4
5
6
7
8
9

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

Zones

1111
1100
1101

Unsigned
Positive
Negative

TABLE	2.5	Binary-Coded	Decimal

Note	from	Table	2.5	that	six	of	the	possible	binary	values	are	not	used—1010	through	1111.	Although
it	may	appear	that	nearly	40%	of	our	values	are	going	to	waste,	we	are	gaining	a	considerable	advantage
in	accuracy.	For	example,	the	number	0.3	is	a	repeating	decimal	when	stored	in	binary.	Truncated	to	an	8-
bit	fraction,	it	converts	back	to	0.296875,	giving	us	an	error	of	approximately	1.05%.	In	EBCDIC	zoned
decimal	BCD,	the	number	is	stored	directly	as	1111	0011	(we	are	assuming	the	decimal	point	is	implied
by	the	data	format),	giving	no	error	at	all.

	EXAMPLE	2.37	Represent	–1265	using	packed	BCD	and	EBCDIC	zoned	decimal.
The	4-bit	BCD	representation	for	1265	is:

0001	0010	0110	0101

Adding	the	sign	after	the	low-order	digit	and	padding	the	high-order	bit	with	0000,	we	have:

The	EBCDIC	zoned	decimal	representation	requires	4	bytes:

The	sign	bit	is	shaded	in	both	representations.



2.6.2		EBCDIC
Before	the	development	of	the	IBM	System/360,	IBM	had	used	a	6-bit	variation	of	BCD	for	representing
characters	and	numbers.	This	code	was	severely	limited	in	how	it	could	represent	and	manipulate	data;	in
fact,	 lowercase	 letters	 were	 not	 part	 of	 its	 repertoire.	 The	 designers	 of	 the	 System/360	 needed	more
information	processing	capability	as	well	as	a	uniform	manner	in	which	to	store	both	numbers	and	data.
To	maintain	compatibility	with	earlier	computers	and	peripheral	equipment,	 the	IBM	engineers	decided
that	it	would	be	best	to	simply	expand	BCD	from	6	bits	to	8	bits.	Accordingly,	this	new	code	was	called
Extended	Binary	Coded	Decimal	Interchange	Code	(EBCDIC).	IBM	continues	to	use	EBCDIC	in	IBM
mainframe	and	midrange	computer	systems;	however,	IBM’s	AIX	operating	system	(found	on	the	RS/6000
and	 its	 successors)	 and	operating	 systems	 for	 the	 IBM	PC	use	ASCII.	The	EBCDIC	code	 is	 shown	 in
Table	 2.6	 in	 zone-digit	 form.	 Characters	 are	 represented	 by	 appending	 digit	 bits	 to	 zone	 bits.	 For
example,	 the	 character	 a	 is	 1000	 0001	 and	 the	 digit	 3	 is	 1111	 0011	 in	 EBCDIC.	 Note	 that	 the	 only
difference	between	uppercase	 and	 lowercase	 characters	 is	 in	 bit	 position	2,	making	 a	 translation	 from
uppercase	to	lowercase	(or	vice	versa)	a	simple	matter	of	flipping	one	bit.	Zone	bits	also	make	it	easier
for	a	programmer	to	test	the	validity	of	input	data.

2.6.3		ASCII
While	IBM	was	busy	building	its	iconoclastic	System/360,	other	equipment	makers	were	trying	to	devise
better	 ways	 for	 transmitting	 data	 between	 systems.	 The	 American	 Standard	 Code	 for	 Information
Interchange	(ASCII)	is	one	outcome	of	those	efforts.	ASCII	is	a	direct	descendant	of	the	coding	schemes
used	for	decades	by	teletype	(telex)	devices.	These	devices	used	a	5-bit	(Murray)	code	that	was	derived
from	the	Baudot	code,	which	was	invented	in	the	1880s.	By	the	early	1960s,	the	limitations	of	the	5-bit
codes	were	becoming	apparent.	The	International	Organization	for	Standardization	devised	a	7-bit	coding
scheme	that	it	called	International	Alphabet	Number	5.	In	1967,	a	derivative	of	this	alphabet	became	the
official	standard	that	we	now	call	ASCII.

As	 you	 can	 see	 in	 Table	 2.7,	 ASCII	 defines	 codes	 for	 32	 control	 characters,	 10	 digits,	 52	 letters
(uppercase	and	lowercase),	32	special	characters	(such	as	$	and	#),	and	the	space	character.	The	high-
order	(eighth)	bit	was	intended	to	be	used	for	parity.

Parity	is	the	most	basic	of	all	error-detection	schemes.	It	is	easy	to	implement	in	simple	devices	like
teletypes.	A	parity	bit	is	turned	“on”	or	“off”	depending	on	whether	the	sum	of	the	other	bits	in	the	byte	is
even	or	odd.	For	example,	if	we	decide	to	use	even	parity	and	we	are	sending	an	ASCII	A,	 the	lower	7
bits	are	100	0001.	Because	the	sum	of	the	bits	is	even,	the	parity	bit	would	be	set	to	off	and	we	would
transmit	0100	0001.	Similarly,	 if	we	 transmit	an	ASCII	C,	100	0011,	 the	parity	bit	would	be	 set	 to	on
before	we	 sent	 the	 8-bit	 byte,	 1100	 0011.	 Parity	 can	 be	 used	 to	 detect	 only	 single-bit	 errors.	We	will
discuss	more	sophisticated	error-detection	methods	in	Section	2.7.

To	 allow	 compatibility	 with	 telecommunications	 equipment,	 computer	 manufacturers	 gravitated
toward	the	ASCII	code.	As	computer	hardware	became	more	reliable,	however,	the	need	for	a	parity	bit
began	to	fade.	In	the	early	1980s,	microcomputer	and	microcomputer-peripheral	makers	began	to	use	the
parity	bit	to	provide	an	“extended”	character	set	for	values	between	12810	and	25510.

Depending	 on	 the	manufacturer,	 the	 higher-valued	 characters	 could	 be	 anything	 from	mathematical
symbols	to	characters	that	form	the	sides	of	boxes	to	foreign-language	characters	such	as	ñ.	Unfortunately,
no	number	of	clever	tricks	can	make	ASCII	a	truly	international	interchange	code.



2.6.4		Unicode
Both	 EBCDIC	 and	 ASCII	 were	 built	 around	 the	 Latin	 alphabet.	 As	 such,	 they	 are	 restricted	 in	 their
abilities	 to	provide	data	 representation	 for	 the	non-Latin	alphabets	used	by	 the	majority	of	 the	world’s
population.	As	all	countries	began	using	computers,	each	was	devising	codes	that	would	most	effectively
represent	their	native	languages.	None	of	these	was	necessarily	compatible	with	any	others,	placing	yet
another	barrier	in	the	way	of	the	emerging	global	economy.

TABLE	2.6	The	EBCDIC	Code	(Values	Given	in	Binary	Zone-Digit	Format)



TABLE	2.7	The	ASCII	Code	(Values	Given	in	Decimal)

In	1991,	before	things	got	too	far	out	of	hand,	a	consortium	of	industry	and	public	leaders	was	formed
to	establish	a	new	international	 information	exchange	code	called	Unicode.	This	group	is	appropriately
called	the	Unicode	Consortium.

Unicode	is	a	16-bit	alphabet	that	is	downward	compatible	with	ASCII	and	the	Latin-1	character	set.	It
is	conformant	with	the	ISO/IEC	10646-1	international	alphabet.	Because	the	base	coding	of	Unicode	is	16
bits,	it	has	the	capacity	to	encode	the	majority	of	characters	used	in	every	language	of	the	world.	If	this
weren’t	 enough,	 Unicode	 also	 defines	 an	 extension	 mechanism	 that	 will	 allow	 for	 the	 coding	 of	 an
additional	million	characters.	This	is	sufficient	to	provide	codes	for	every	written	language	in	the	history
of	civilization.

The	 Unicode	 codespace	 consists	 of	 five	 parts,	 as	 shown	 in	 Table	 2.8.	 A	 full	 Unicode-compliant
system	 will	 also	 allow	 formation	 of	 composite	 characters	 from	 the	 individual	 codes,	 such	 as	 the



combination	of	 ´	 and	A	 to	 form	Á.	The	algorithms	used	 for	 these	 composite	 characters,	 as	well	 as	 the
Unicode	extensions,	can	be	found	in	the	references	at	the	end	of	this	chapter.

Although	 Unicode	 has	 yet	 to	 become	 the	 exclusive	 alphabet	 of	 American	 computers,	 most
manufacturers	are	including	at	least	some	limited	support	for	it	in	their	systems.	Unicode	is	currently	the
default	 character	 set	 of	 the	 Java	 programming	 language.	 Ultimately,	 the	 acceptance	 of	 Unicode	 by	 all
manufacturers	will	depend	on	how	aggressively	they	wish	to	position	themselves	as	international	players
and	 how	 inexpensively	 disk	 drives	 can	 be	 produced	 to	 support	 an	 alphabet	 with	 double	 the	 storage
requirements	of	ASCII	or	EBCDIC.

TABLE	2.8	Unicode	Codespace

2.7			ERROR	DETECTION	AND	CORRECTION
No	 communications	 channel	 or	 storage	 medium	 can	 be	 completely	 error-free.	 It	 is	 a	 physical
impossibility.	As	 transmission	 rates	 are	 increased,	bit	 timing	gets	 tighter.	As	more	bits	 are	packed	per
square	millimeter	of	storage,	magnetic	flux	densities	increase.	Error	rates	increase	in	direct	proportion	to
the	number	of	bits	per	second	transmitted,	or	the	number	of	bits	per	square	millimeter	of	magnetic	storage.

In	Section	2.6.3,	we	mentioned	that	a	parity	bit	could	be	added	to	an	ASCII	byte	 to	help	determine
whether	 any	 of	 the	 bits	 had	 become	 corrupted	 during	 transmission.	 This	 method	 of	 error	 detection	 is
limited	in	its	effectiveness:	Simple	parity	can	detect	only	an	odd	number	of	errors	per	byte.	If	two	errors
occur,	we	are	helpless	 to	detect	a	problem.	Nonsense	could	pass	for	good	data.	If	such	errors	occur	 in
sending	financial	information	or	program	code,	the	effects	can	be	disastrous.

As	you	read	the	sections	that	follow,	you	should	keep	in	mind	that	just	as	it	is	impossible	to	create	an



error-free	medium,	 it	 is	 also	 impossible	 to	 detect	 or	 correct	 100%	of	 all	 errors	 that	 could	 occur	 in	 a
medium.	 Error	 detection	 and	 correction	 is	 yet	 another	 study	 in	 the	 trade-offs	 that	 one	 must	 make	 in
designing	 computer	 systems.	 The	well-constructed	 error	 control	 system	 is	 therefore	 a	 system	where	 a
“reasonable”	number	of	the	“reasonably”	expected	errors	can	be	detected	or	corrected	within	the	bounds
of	“reasonable”	economics.	(Note:	The	word	reasonable	is	implementation-dependent.)

2.7.1		Cyclic	Redundancy	Check
Checksums	are	used	in	a	wide	variety	of	coding	systems,	from	bar	codes	to	International	Standard	Book
Numbers.	These	are	self-checking	codes	that	will	quickly	indicate	whether	the	preceding	digits	have	been
misread.	 A	 cyclic	 redundancy	 check	 (CRC)	 is	 a	 type	 of	 checksum	 used	 primarily	 in	 data
communications	 that	 determines	 whether	 an	 error	 has	 occurred	 within	 a	 large	 block	 or	 stream	 of
information	 bytes.	 The	 larger	 the	 block	 to	 be	 checked,	 the	 larger	 the	 checksum	 must	 be	 to	 provide
adequate	protection.	Checksums	and	CRCs	are	 types	of	 systematic	 error	detection	 schemes,	meaning
that	 the	 error-checking	bits	 are	 appended	 to	 the	original	 information	byte.	The	group	of	 error-checking
bits	 is	 called	 a	 syndrome.	 The	 original	 information	 byte	 is	 unchanged	 by	 the	 addition	 of	 the	 error-
checking	bits.

The	word	cyclic	 in	 cyclic	 redundancy	 check	 refers	 to	 the	 abstract	mathematical	 theory	 behind	 this
error	 control	 system.	 Although	 a	 discussion	 of	 this	 theory	 is	 beyond	 the	 scope	 of	 this	 text,	 we	 can
demonstrate	 how	 the	method	 works	 to	 aid	 in	 your	 understanding	 of	 its	 power	 to	 economically	 detect
transmission	errors.

Arithmetic	Modulo	2
You	may	 be	 familiar	with	 integer	 arithmetic	 taken	 over	 a	modulus.	 Twelve-hour	 clock	 arithmetic	 is	 a
modulo	 12	 system	 that	 you	 use	 every	 day	 to	 tell	 time.	When	 we	 add	 2	 hours	 to	 11:00,	 we	 get	 1:00.
Arithmetic	modulo	2	uses	two	binary	operands	with	no	borrows	or	carries.	The	result	is	likewise	binary
and	is	also	a	member	of	the	modulus	2	system.	Because	of	this	closure	under	addition,	and	the	existence
of	identity	elements,	mathematicians	say	that	this	modulo	2	system	forms	an	algebraic	field.

The	addition	rules	are	as	follows:

0	+	0	=	0
0	+	1	=	1
1	+	0	=	1
1	+	1	=	0

	EXAMPLE	2.38	Find	the	sum	of	10112	and	1102	modulo	2.

This	sum	makes	sense	only	in	modulo	2.

Modulo	2	division	operates	through	a	series	of	partial	sums	using	the	modulo	2	addition	rules.	Example
2.39	illustrates	the	process.



	EXAMPLE	2.39	Find	the	quotient	and	remainder	when	10010112	is	divided	by	10112.

The	quotient	is	10102.

Arithmetic	 operations	 over	 the	 modulo	 2	 field	 have	 polynomial	 equivalents	 that	 are	 analogous	 to
polynomials	over	the	field	of	integers.	We	have	seen	how	positional	number	systems	represent	numbers	in
increasing	powers	of	a	radix,	for	example,

10112	=	1	×	23	+	0	×	22	+	1	×	21	+	1	×	20.

By	letting	X	=	2,	the	binary	number	10112	becomes	shorthand	for	the	polynomial:

1	×	X3	+	0	×	X2	+	1	×	X1	+	1	×	X0.

The	division	performed	in	Example	2.39	then	becomes	the	polynomial	operation:

Calculating	and	Using	CRCs
With	that	lengthy	preamble	behind	us,	we	can	now	proceed	to	show	how	CRCs	are	constructed.	We	will
do	this	by	example:

1.		Let	the	information	byte	I	=	10010112.	(Any	number	of	bytes	can	be	used	to	form	a	message	block.)
2.	 	The	sender	and	receiver	agree	upon	an	arbitrary	binary	pattern,	say,	P	=	10112.	 (Patterns	beginning

and	ending	with	1	work	best.)
3.		Shift	I	to	the	left	by	one	less	than	the	number	of	bits	in	P,	giving	a	new	I	=	10010110002.
4.		Using	I	as	a	dividend	and	P	as	a	divisor,	perform	the	modulo	2	division	(as	shown	in	Example	2.39).

We	 ignore	 the	 quotient	 and	 note	 that	 the	 remainder	 is	 1002.	 The	 remainder	 is	 the	 actual	 CRC
checksum.

5.		Add	the	remainder	to	I,	giving	the	message	M:



10010110002	+	1002	=	10010111002
6.		M	is	decoded	and	checked	by	the	message	receiver	using	the	reverse	process.	Only	now	P	divides	M

exactly:

Note:	The	reverse	process	would	include	appending	the	remainder.
A	remainder	other	than	zero	indicates	that	an	error	has	occurred	in	the	transmission	of	M.	This	method

works	best	when	a	large	prime	polynomial	is	used.	There	are	four	standard	polynomials	used	widely	for
this	purpose:

•			CRC-CCITT	(ITU-T):	X16	+	X12	+	X5	+	1
•			CRC-12:	X12	+	X11	+	X3	+	X2	+	X	+	1
•			CRC-16	(ANSI):	X16	+	X15	+	X2	+	1
•			CRC-32:	X32	+	X26	+	X23	+	X22	+	X16	+	X12	+	X11	+	X10	+	X8	+	X7	+	X5	+	X4	+	X	+	1

CRC-CCITT,	 CRC-12,	 and	 CRC-16	 operate	 over	 pairs	 of	 bytes;	 CRC-32	 uses	 four	 bytes,	 which	 is
appropriate	for	systems	operating	on	32-bit	words.	It	has	been	proven	that	CRCs	using	these	polynomials
can	detect	more	than	99.8%	of	all	single-bit	errors.

CRCs	 can	be	 implemented	 effectively	 using	 lookup	 tables	 as	 opposed	 to	 calculating	 the	 remainder
with	each	byte.	The	remainder	generated	by	each	possible	input	bit	pattern	can	be	“burned”	directly	into
communications	and	storage	electronics.	The	remainder	can	then	be	retrieved	using	a	1-cycle	lookup	as
compared	 to	a	16-	or	32-cycle	division	operation.	Clearly,	 the	 trade-off	 is	 in	 speed	versus	 the	cost	of
more	complex	control	circuitry.

2.7.2		Hamming	Codes
Data	communications	channels	are	simultaneously	more	error-prone	and	more	tolerant	of	errors	than	disk
systems.	 In	 data	 communications,	 it	 is	 sufficient	 to	 have	 only	 the	 ability	 to	 detect	 errors.	 If	 a
communications	device	determines	 that	 a	message	contains	an	erroneous	bit,	 all	 it	has	 to	do	 is	 request
retransmission.	Storage	systems	and	memory	do	not	have	 this	 luxury.	A	disk	can	sometimes	be	 the	sole
repository	 of	 a	 financial	 transaction	 or	 other	 collection	 of	 nonreproducible	 real-time	 data.	 Storage
devices	and	memory	must	therefore	have	the	ability	to	not	only	detect	but	to	correct	a	reasonable	number
of	errors.

Error-recovery	coding	has	been	studied	 intensively	over	 the	past	century.	One	of	 the	most	effective
codes—and	the	oldest—is	the	Hamming	code.	Hamming	codes	are	an	adaptation	of	the	concept	of	parity,



whereby	error	detection	and	correction	capabilities	are	 increased	in	proportion	to	 the	number	of	parity
bits	added	to	an	information	word.	Hamming	codes	are	used	in	situations	where	random	errors	are	likely
to	 occur.	 With	 random	 errors,	 we	 assume	 each	 bit	 failure	 has	 a	 fixed	 probability	 of	 occurrence
independent	of	other	bit	failures.	It	is	common	for	computer	memory	to	experience	such	errors,	so	in	our
following	 discussion,	 we	 present	 Hamming	 codes	 in	 the	 context	 of	 memory	 bit	 error	 detection	 and
correction.

We	mentioned	 that	Hamming	 codes	 use	 parity	 bits,	 also	 called	 check	bits	 or	 redundant	 bits.	 The
memory	word	itself	consists	of	m	bits,	but	r	redundant	bits	are	added	to	allow	for	error	detection	and/or
correction.	Thus,	the	final	word,	called	a	code	word,	is	an	n-bit	unit	containing	m	data	bits	and	r	check
bits.	There	exists	a	unique	code	word	consisting	of	n	=	m	+	r	bits	for	each	data	word	as	follows:

The	number	of	bit	positions	in	which	two	code	words	differ	is	called	the	Hamming	distance	of	those	two
code	words.	For	example,	if	we	have	the	following	two	code	words:

we	see	that	they	differ	in	3	bit	positions	(marked	by	*),	so	the	Hamming	distance	of	these	two	code	words
is	3.	(Please	note	that	we	have	not	yet	discussed	how	to	create	code	words;	we	will	do	that	shortly.)

The	Hamming	distance	between	two	code	words	is	important	in	the	context	of	error	detection.	If	two
code	words	are	a	Hamming	distance	d	apart,	d	single-bit	errors	are	required	to	convert	one	code	word	to
the	other,	which	implies	that	this	type	of	error	would	not	be	detected.	Therefore,	if	we	wish	to	create	a
code	that	guarantees	detection	of	all	single-bit	errors	(an	error	in	only	1	bit),	all	pairs	of	code	words	must
have	 a	Hamming	distance	of	 at	 least	 2.	 If	 an	n-bit	word	 is	 not	 recognized	 as	 a	 legal	 code	word,	 it	 is
considered	an	error.

Given	an	algorithm	for	computing	check	bits,	it	is	possible	to	construct	a	complete	list	of	legal	code
words.	The	smallest	Hamming	distance	found	among	all	pairs	of	the	code	words	in	this	code	is	called	the
minimum	Hamming	distance	for	the	code.	The	minimum	Hamming	distance	of	a	code,	often	signified	by
the	notation	D(min),	 determines	 its	 error	 detecting	 and	 correcting	 capability.	 Stated	 succinctly,	 for	 any
code	word	X	to	be	received	as	another	valid	code	word	Y,	at	least	D(min)	errors	must	occur	in	X.	So,	to
detect	k	(or	fewer)	single-bit	errors,	the	code	must	have	a	Hamming	distance	of	D(min)	=	k	+	1.	Hamming
codes	 can	 always	 detect	 D(min)	 –	 1	 errors	 and	 correct	 ( D(min)	 –	 1)/2	 errors. 1	 Accordingly,	 the
Hamming	distance	of	a	code	must	be	at	least	2k	+	1	in	order	for	it	to	be	able	to	correct	k	errors.

Code	 words	 are	 constructed	 from	 information	 words	 using	 r	 parity	 bits.	 Before	 we	 continue	 the
discussion	of	 error	detection	and	correction,	 let’s	 consider	 a	 simple	 example.	The	most	 common	error
detection	 uses	 a	 single	 parity	 bit	 appended	 to	 the	 data	 (recall	 the	 discussion	 on	 ASCII	 character
representation).	A	single-bit	error	in	any	bit	of	the	code	word	produces	the	wrong	parity.

	EXAMPLE	2.40	Assume	a	memory	with	2	data	bits	and	1	parity	bit	(appended	at	the	end	of	the	code
word)	that	uses	even	parity	(so	the	number	of	1s	in	the	code	word	must	be	even).	With	2	data	bits,	we
have	a	total	of	4	possible	words.	We	list	here	the	data	word,	its	corresponding	parity	bit,	and	the	resulting
code	word	for	each	of	these	4	possible	words:



	

Data	Word Parity	Bit Code	Word

00 0 000

01 1 011

10 1 101

11 0 110

The	resulting	code	words	have	3	bits.	However,	using	3	bits	allows	for	8	different	bit	patterns,	as	follows
(valid	code	words	are	marked	with	an	*):

	

000* 100

001 101*

010 110*

011* 111

If	the	code	word	001	is	encountered,	it	is	invalid	and	thus	indicates	that	an	error	has	occurred	somewhere
in	the	code	word.	For	example,	suppose	the	correct	code	word	to	be	stored	in	memory	is	011,	but	an	error
produces	001.	This	error	can	be	detected,	but	it	cannot	be	corrected.	It	is	impossible	to	determine	exactly
how	many	 bits	 have	 been	 flipped	 and	 exactly	which	 ones	 are	 in	 error.	 Error-correcting	 codes	 require
more	than	a	single	parity	bit,	as	we	see	in	the	following	discussion.

What	 happens	 in	 the	 above	 example	 if	 a	 valid	 code	word	 is	 subject	 to	 two-bit	 errors?	 For	 example,
suppose	the	code	word	011	is	converted	into	000.	This	error	is	not	detected.	If	you	examine	the	code	in
the	above	example,	you	will	see	that	D(min)	is	2,	which	implies	that	this	code	is	guaranteed	to	detect	only
single-bit	errors.

We	have	already	stated	that	the	error	detecting	and	correcting	capabilities	of	a	code	are	dependent	on
D(min),	and	from	an	error	detection	point	of	view,	we	have	seen	this	relationship	exhibited	in	Example
2.40.	 Error	 correction	 requires	 the	 code	 to	 contain	 additional	 redundant	 bits	 to	 ensure	 a	 minimum
Hamming	distance	D(min)	=	2k	+	1	if	the	code	is	to	detect	and	correct	k	errors.	This	Hamming	distance
guarantees	 that	all	 legal	code	words	are	far	enough	apart	 that	even	with	k	changes,	 the	original	 invalid
code	word	is	closer	to	one	unique	valid	code	word.	This	is	important	because	the	method	used	in	error
correction	is	to	change	the	invalid	code	word	into	the	valid	code	word	that	differs	in	the	fewest	number	of
bits.	This	idea	is	illustrated	in	Example	2.41.

	EXAMPLE	2.41	Suppose	we	have	the	following	code	(do	not	worry	at	this	time	about	how	this	code
was	generated;	we	will	address	this	issue	shortly):



First,	 let’s	 determine	D(min).	 By	 examining	 all	 possible	 pairs	 of	 code	 words,	 we	 discover	 that	 the
minimum	Hamming	 distance	D(min)	 =	 3.	 Thus,	 this	 code	 can	 detect	 up	 to	 two	 errors	 and	 correct	 one
single-bit	error.	How	is	correction	handled?	Suppose	we	read	the	invalid	code	word	10000.	There	must
be	at	 least	one	error	because	 this	does	not	match	any	of	 the	valid	 code	words.	We	now	determine	 the
Hamming	distance	between	the	observed	code	word	and	each	legal	code	word:	It	differs	in	1	bit	from	the
first	code	word,	4	from	the	second,	2	from	the	third,	and	3	from	the	last,	resulting	in	a	difference	vector
of	 [1,4,2,3].	 To	make	 the	 correction	 using	 this	 code,	we	 automatically	 correct	 to	 the	 legal	 code	word
closest	 to	 the	 observed	 word,	 resulting	 in	 a	 correction	 to	 00000.	 Note	 that	 this	 “correction”	 is	 not
necessarily	correct!	We	are	assuming	that	the	minimum	number	of	possible	errors	has	occurred,	namely,	1.
It	is	possible	that	the	original	code	word	was	supposed	to	be	10110	and	was	changed	to	10000	when	two
errors	occurred.

Suppose	two	errors	really	did	occur.	For	example,	assume	we	read	the	invalid	code	word	11000.	If
we	calculate	the	distance	vector	of	[2,3,3,2],	we	see	there	is	no	“closest”	code	word,	and	we	are	unable
to	make	 the	correction.	The	minimum	Hamming	distance	of	3	permits	correction	of	one	error	only,	and
cannot	ensure	correction,	as	evidenced	in	this	example,	if	more	than	one	error	occurs.

In	our	discussion	up	 to	 this	 point,	we	have	 simply	presented	you	with	various	 codes,	 but	 have	not
given	any	specifics	as	 to	how	the	codes	are	generated.	There	are	many	methods	 that	are	used	for	code
generation;	perhaps	one	of	the	more	intuitive	is	the	Hamming	algorithm	for	code	design,	which	we	now
present.	Before	explaining	the	actual	steps	in	the	algorithm,	we	provide	some	background	material.

Suppose	we	wish	 to	 design	 a	 code	with	words	 consisting	 of	m	 data	 bits	 and	 r	 check	 bits,	 which
allows	for	single-bit	errors	to	be	corrected.	This	implies	that	there	are	2m	legal	code	words,	each	with	a
unique	combination	of	check	bits.	Because	we	are	focused	on	single-bit	errors,	 let’s	examine	the	set	of
invalid	code	words	that	are	a	distance	of	1	from	all	legal	code	words.

Each	valid	code	word	has	n	 bits,	 and	an	error	 could	occur	 in	any	of	 these	n	 positions.	Thus,	 each
valid	code	word	has	n	 illegal	code	words	at	a	distance	of	1.	Therefore,	if	we	are	concerned	with	each
legal	 code	 word	 and	 each	 invalid	 code	 word	 consisting	 of	 one	 error,	 we	 have	 n	 +	 1	 bit	 patterns
associated	with	each	code	word	(1	legal	word	and	n	illegal	words).	Because	each	code	word	consists	of
n	bits,	where	n	=	m	+	r,	there	are	2n	total	bit	patterns	possible.	This	results	in	the	following	inequality:

(n	+	1)	×	2m	≤	2n

where	n	+	1	is	the	number	of	bit	patterns	per	code	word,	2m	is	the	number	of	legal	code	words,	and	2n	is
the	total	number	of	bit	patterns	possible.	Because	n	=	m	+	r,	we	can	rewrite	the	inequality	as:

(m	+	r	+	1)	×	2m	≤	2m+r

or

(m	+	r	+	1)	≤	2r

This	inequality	is	important	because	it	specifies	the	lower	limit	on	the	number	of	check	bits	required	(we
always	 use	 as	 few	 check	 bits	 as	 possible)	 to	 construct	 a	 code	with	m	 data	 bits	 and	 r	 check	 bits	 that
corrects	all	single-bit	errors.

Suppose	we	have	data	words	of	length	m	=	4.	Then:

(4	+	r	+	1)	≤	2r

which	implies	that	r	must	be	greater	than	or	equal	to	3.	We	choose	r	=	3.	This	means	to	build	a	code	with



data	words	of	4	bits	that	should	correct	single-bit	errors,	we	must	add	3	check	bits.

The	Hamming	Algorithm
The	 Hamming	 algorithm	 provides	 a	 straightforward	 method	 for	 designing	 codes	 to	 correct	 single-bit
errors.	To	construct	error-correcting	codes	for	any	size	memory	word,	we	follow	these	steps:

1.		Determine	the	number	of	check	bits,	r,	necessary	for	the	code	and	then	number	the	n	bits	(where	n	=	m
+	r),	right	to	left,	starting	with	1	(not	0).

2.		Each	bit	whose	bit	number	is	a	power	of	2	is	a	parity	bit—the	others	are	data	bits.
3.		Assign	parity	bits	to	check	bit	positions	as	follows:	Bit	b	is	checked	by	those	parity	bits	b1,	b2,	…,	bj

such	that	b1	+	b2	+	…	+	bj	=	b	(where	“+”	indicates	the	modulo	2	sum).

We	now	present	an	example	to	illustrate	these	steps	and	the	actual	process	of	error	correction.

	EXAMPLE	 2.42	 Using	 the	Hamming	 code	 just	 described	 and	 even	 parity,	 encode	 the	 8-bit	ASCII
character	K.	(The	high-order	bit	will	be	zero.)	Induce	a	single-bit	error	and	then	indicate	how	to	locate
the	error.

We	first	determine	the	code	word	for	K.
Step	1:	Determine	the	number	of	necessary	check	bits,	add	these	bits	to	the	data	bits,	and	number	all	n

bits.
Because	m	=	8,	we	have:	(8	+	r	+	1)	≤	2r,	which	implies	that	r	must	be	greater	 than	or	equal	 to	4.	We
choose	r	=	4.
Step	2:	Number	the	n	bits	right	to	left,	starting	with	1,	which	results	in:

The	parity	bits	are	marked	by	boxes.
Step	3:	Assign	parity	bits	to	check	the	various	bit	positions.
To	perform	this	step,	we	first	write	all	bit	positions	as	sums	of	those	numbers	that	are	powers	of	2:

The	number	1	contributes	to	1,	3,	5,	7,	9,	and	11,	so	this	parity	bit	will	reflect	the	parity	of	the	bits	in	these
positions.	Similarly,	2	contributes	to	2,	3,	6,	7,	10,	and	11,	so	the	parity	bit	in	position	2	reflects	the	parity
of	this	set	of	bits.	Bit	4	provides	parity	for	4,	5,	6,	7,	and	12,	and	bit	8	provides	parity	for	bits	8,	9,	10,
11,	and	12.	 If	we	write	 the	data	bits	 in	 the	nonboxed	blanks,	and	 then	add	 the	parity	bits,	we	have	 the
following	code	word	as	a	result:

Therefore,	the	code	word	for	K	is	010011010110.



Let’s	 introduce	an	error	 in	bit	position	b9,	 resulting	 in	 the	code	word	010111010110.	 If	we	use	 the
parity	bits	to	check	the	various	sets	of	bits,	we	find	the	following:

Bit	1	checks	1,	3,	5,	7,	9,	and	11:	With	even	parity,	this	produces	an	error.
Bit	2	checks	2,	3,	6,	7,	10,	and	11:	This	is	ok.
Bit	4	checks	4,	5,	6,	7,	and	12:	This	is	ok.
Bit	8	checks	8,	9,	10,	11,	and	12:	This	produces	an	error.

Parity	bits	1	and	8	show	errors.	These	two	parity	bits	both	check	9	and	11,	so	the	single-bit	error	must	be
in	either	bit	9	or	bit	11.	However,	because	bit	2	checks	bit	11	and	indicates	no	error	has	occurred	in	the
subset	 of	 bits	 it	 checks,	 the	 error	 must	 occur	 in	 bit	 9.	 (We	 know	 this	 because	 we	 created	 the	 error;
however,	note	that	even	if	we	have	no	clue	where	the	error	is,	using	this	method	allows	us	to	determine
the	position	of	the	error	and	correct	it	by	simply	flipping	the	bit.)

Because	of	the	way	the	parity	bits	are	positioned,	an	easier	method	to	detect	and	correct	the	error	bit
is	to	add	the	positions	of	the	parity	bits	that	indicate	an	error.	We	found	that	parity	bits	1	and	8	produced
an	error,	and	1	+	8	=	9,	which	is	exactly	where	the	error	occurred.

	EXAMPLE	 2.43	 Use	 the	 Hamming	 algorithm	 to	 find	 all	 code	 words	 for	 a	 3-bit	 memory	 word,
assuming	odd	parity.

We	have	8	possible	words:	000,	001,	010,	011,	100,	101,	110,	and	111.	We	first	need	to	determine	the
required	number	of	check	bits.	Because	m	=	3,	we	have:	(3	+	r	+	1)	≤	2r,	which	implies	that	r	must	be
greater	than	or	equal	to	3.	We	choose	r	=	3.	Therefore,	each	code	word	has	6	bits,	and	the	check	bits	are
in	positions	1,	2,	and	4,	as	shown	here:

From	our	previous	example,	we	know	that:

•			bit	1	checks	the	parity	over	bits	1,	3,	and	5
•			bit	2	check	the	parity	over	bits	2,	3,	and	6
•			bit	4	checks	the	parity	over	bits	4,	5,	and	6

Therefore,	we	have	the	following	code	words	for	each	memory	word:



Our	set	of	code	words	is	001011,	001100,	010010,	010101,	100001,	100110,	111000,	111111.	If	a	single
bit	in	any	of	these	words	is	flipped,	we	can	determine	exactly	which	one	it	is	and	correct	it.	For	example,
to	send	111,	we	actually	send	the	code	word	111111	instead.	If	110111	is	received,	parity	bit	1	(which
checks	bits	1,	3,	and	5)	is	ok,	and	parity	bit	2	(which	checks	bits	2,	3,	and	6)	is	ok,	but	parity	bit	4	shows
an	error,	as	only	bits	5	and	6	are	ones,	violating	odd	parity.	Bit	5	cannot	be	incorrect,	because	parity	bit	1
checked	out	ok.	Bit	6	cannot	be	wrong	because	parity	bit	2	checked	out	ok.	Therefore,	it	must	be	bit	4	that
is	wrong,	so	it	is	changed	from	a	0	to	a	1,	resulting	in	the	correct	code	word	111111.

In	 the	next	chapter,	you	will	 see	how	easy	 it	 is	 to	 implement	a	Hamming	code	using	simple	binary
circuits.	 Because	 of	 its	 simplicity,	 Hamming	 code	 protection	 can	 be	 added	 inexpensively	 and	 with
minimal	effect	on	performance.

2.7.3		Reed-Solomon
Hamming	codes	work	well	in	situations	where	one	can	reasonably	expect	errors	to	be	rare	events.	Fixed
magnetic	disk	drives	have	error	ratings	on	the	order	of	1	bit	in	100	million.	The	3-bit	Hamming	code	that
we	just	studied	will	easily	correct	this	type	of	error.	However,	Hamming	codes	are	useless	in	situations
where	there	is	a	likelihood	that	multiple	adjacent	bits	will	be	damaged.	These	kinds	of	errors	are	called
burst	 errors.	 Because	 of	 their	 exposure	 to	 mishandling	 and	 environmental	 stresses,	 burst	 errors	 are
common	on	removable	media	such	as	magnetic	tapes	and	compact	discs.

If	we	expect	errors	to	occur	in	blocks,	it	stands	to	reason	that	we	should	use	an	error-correcting	code
that	operates	at	a	block	level,	as	opposed	to	a	Hamming	code,	which	operates	at	the	bit	level.	A	Reed-
Solomon	(RS)	code	can	be	thought	of	as	a	CRC	that	operates	over	entire	characters	instead	of	only	a	few
bits.	RS	codes,	like	CRCs,	are	systematic:	The	parity	bytes	are	appended	to	a	block	of	information	bytes.
RS(n,	k)	codes	are	defined	using	the	following	parameters:



•			s	=	The	number	of	bits	in	a	character	(or	“symbol”)
•			k	=	The	number	of	s-bit	characters	comprising	the	data	block
•			n	=	The	number	of	bits	in	the	code	word

RS(n,	k)	can	correct	 	errors	in	the	k	information	bytes.
The	popular	RS(255,	223)	code,	therefore,	uses	223	8-bit	information	bytes	and	32	syndrome	bytes	to

form	255-byte	code	words.	It	will	correct	as	many	as	16	erroneous	bytes	in	the	information	block.
The	 generator	 polynomial	 for	 an	 RS	 code	 is	 given	 by	 a	 polynomial	 defined	 over	 an	 abstract

mathematical	 structure	 called	 a	Galois	 field.	 (A	 lucid	 discussion	 of	Galois	mathematics	 is	 beyond	 the
scope	of	this	text.	See	the	references	at	the	end	of	the	chapter.)	The	RS-generating	polynomial	is:

where	t	=	n	–	k	and	x	is	an	entire	byte	(or	symbol)	and	g(x)	operates	over	the	field	GF(2s).	(Note:	This
polynomial	expands	over	the	Galois	field,	which	is	considerably	different	from	the	integer	fields	used	in
ordinary	algebra.)

The	n-byte	RS	code	word	is	computed	using	the	equation:

where	i(x)	is	the	information	block.
Despite	 the	 daunting	 algebra	 behind	 them,	RS	 error-correction	 algorithms	 lend	 themselves	well	 to

implementation	 in	 computer	 hardware.	 They	 are	 implemented	 in	 high-performance	 disk	 drives	 for
mainframe	computers	as	well	as	compact	discs	used	for	music	and	data	storage.	These	implementations
will	be	described	in	Chapter	7.

CHAPTER	SUMMARY
We	have	presented	 the	essentials	of	data	 representation	and	numerical	operations	 in	digital	computers.
You	should	master	the	techniques	described	for	base	conversion	and	memorize	the	smaller	hexadecimal
and	binary	numbers.	This	knowledge	will	 be	beneficial	 to	you	as	you	 study	 the	 remainder	of	 this	 text.
Your	knowledge	of	hexadecimal	coding	will	be	useful	if	you	are	ever	required	to	read	a	core	(memory)
dump	after	a	system	crash	or	if	you	do	any	serious	work	in	the	field	of	data	communications.

You	have	also	seen	that	floating-point	numbers	can	produce	significant	errors	when	small	errors	are
allowed	to	compound	over	iterative	processes.	There	are	various	numerical	techniques	that	can	be	used
to	control	such	errors.	These	techniques	merit	detailed	study	but	are	beyond	the	scope	of	this	text.

You	have	learned	that	most	computers	use	ASCII	or	EBCDIC	to	represent	characters.	It	is	generally	of
little	value	to	memorize	any	of	these	codes	in	their	entirety,	but	if	you	work	with	them	frequently,	you	will
find	yourself	learning	a	number	of	“key	values”	from	which	you	can	compute	most	of	the	others	that	you
need.

Unicode	 is	 the	 default	 character	 set	 used	 by	 Java	 and	 recent	 versions	 of	Windows.	 It	 is	 likely	 to
replace	 EBCDIC	 and	 ASCII	 as	 the	 basic	 method	 of	 character	 representation	 in	 computer	 systems;
however,	the	older	codes	will	be	with	us	for	the	foreseeable	future,	owing	both	to	their	economy	and	their
pervasiveness.

Error	detecting	and	correcting	codes	are	used	in	virtually	all	facets	of	computing	technology.	Should
the	need	arise,	your	understanding	of	the	various	error	control	methods	will	help	you	to	make	informed



choices	among	 the	various	options	available.	The	method	 that	you	choose	will	depend	on	a	number	of
factors	 including	 computational	 overhead	 and	 the	 capacity	 of	 the	 storage	 and	 transmission	 media
available	to	you.

FURTHER	READING
A	brief	account	of	early	mathematics	in	Western	civilization	can	be	found	in	Bunt	et	al.	(1988).

Knuth	 (1998)	presents	 a	delightful	 and	 thorough	discussion	of	 the	evolution	of	number	 systems	and
computer	arithmetic	in	Volume	2	of	his	series	on	computer	algorithms.	(Every	computer	scientist	should
own	a	set	of	the	Knuth	books.)

A	 definitive	 account	 of	 floating-point	 arithmetic	 can	 be	 found	 in	Goldberg	 (1991).	 Schwartz	 et	 al.
(1999)	describe	how	the	IBM	System/390	performs	floating-point	operations	in	both	the	older	form	and
the	 IEEE	 standard.	 Soderquist	 and	 Leeser	 (1996)	 provide	 an	 excellent	 and	 detailed	 discussion	 of	 the
problems	surrounding	floating-point	division	and	square	roots.

Detailed	 information	 about	 Unicode	 can	 be	 found	 at	 the	 Unicode	 Consortium	 website,
www.unicode.org,	as	well	as	in	the	Unicode	Standard,	Version	4.0	(2003).

The	International	Standards	Organization	website	can	be	found	at	www.iso.ch.	You	will	be	amazed	at
the	span	of	influence	of	this	group.	A	similar	trove	of	information	can	be	found	at	the	American	National
Standards	Institute	website:	www.ansi.org.

After	you	master	 the	concepts	of	Boolean	algebra	and	digital	 logic,	you	will	enjoy	 reading	Arazi’s
book	(1988).	This	well-written	book	shows	how	error	detection	and	correction	are	achieved	using	simple
digital	circuits.	Arazi’s	appendix	gives	a	remarkably	lucid	discussion	of	the	Galois	field	arithmetic	that	is
used	in	Reed-Solomon	codes.

If	you’d	prefer	a	rigorous	and	exhaustive	study	of	error-correction	theory,	Pretzel’s	(1992)	book	is	an
excellent	place	to	start.	The	text	is	accessible,	well-written,	and	thorough.

Detailed	discussions	of	Galois	fields	can	be	found	in	the	(inexpensive!)	books	by	Artin	(1998)	and
Warner	 (1990).	Warner’s	much	 larger	 book	 is	 a	 clearly	written	 and	 comprehensive	 introduction	 to	 the
concepts	of	abstract	algebra.	A	study	of	abstract	algebra	will	be	helpful	to	you	should	you	delve	into	the
study	of	mathematical	cryptography,	a	fast-growing	area	of	interest	in	computer	science.

REFERENCES
Arazi,	B.	A	Commonsense	Approach	to	the	Theory	of	Error	Correcting	Codes.	Cambridge,	MA:	The

MIT	Press,	1988.
Artin,	E.	Galois	Theory.	New	York:	Dover	Publications,	1998.
Bunt,	L.	N.	H.,	Jones,	P.	S.,	&	Bedient,	J.	D.	The	Historical	Roots	of	Elementary	Mathematics.
New	York:	Dover	Publications,	1988.
Goldberg,	D.	“What	Every	Computer	Scientist	Should	Know	about	Floating-Point	Arithmetic.”	ACM

Computing	Surveys	23:1,	March	1991,	pp.	5–47.
Knuth,	D.	E.	The	Art	of	Computer	Programming,	3rd	ed.	Reading,	MA:	Addison-Wesley,	1998.
Pretzel,	O.	Error-Correcting	Codes	and	Finite	Fields.	New	York:	Oxford	University	Press,	1992.
Schwartz,	E.	M.,	Smith,	R.	M.,	&	Krygowski,	C.	A.	“The	S/390	G5	Floating-Point	Unit	Supporting	Hex

and	Binary	Architectures.”	IEEE	Proceedings	from	the	14th	Symposium	on	Computer	Arithmetic,
1999,	pp.	258–265.

http://www.unicode.org
http://www.iso.ch
http://www.ansi.org


Soderquist,	P.,	&	Leeser,	M.	“Area	and	Performance	Tradeoffs	in	Floating-Point	Divide	and	Square-Root
Implementations.”	ACM	Computing	Surveys	28:3,	September	1996,	pp.	518–564.

The	Unicode	Consortium.	The	Unicode	Standard,	Version	4.0.	Reading,	MA:	Addison-Wesley,	2003.
Warner,	S.	Modern	Algebra.	New	York:	Dover	Publications,	1990.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS
1.		The	word	bit	is	a	contraction	for	what	two	words?
2.		Explain	how	the	terms	bit,	byte,	nibble,	and	word	are	related.
3.		Why	are	binary	and	decimal	called	positional	numbering	systems?
4.		Explain	how	base	2,	base	8,	and	base	16	are	related.
5.		What	is	a	radix?
6.		How	many	of	the	“numbers	to	remember”	(in	all	bases)	from	Table	2.1	can	you	remember?
7.		What	does	overflow	mean	in	the	context	of	unsigned	numbers?
8.		Name	the	four	ways	in	which	signed	integers	can	be	represented	in	digital	computers,	and	explain	the

differences.
9.	 	Which	 one	 of	 the	 four	 representations	 for	 signed	 integers	 is	 used	most	 often	 by	 digital	 computer

systems?
10.		How	are	complement	systems	similar	to	the	odometer	on	a	bicycle?
11.	 	Do	 you	 think	 that	 double-dabble	 is	 an	 easier	method	 than	 the	 other	 binary-to-decimal	 conversion

methods	explained	in	this	chapter?	Why?
12.	 	 With	 reference	 to	 the	 previous	 question,	 what	 are	 the	 drawbacks	 of	 the	 other	 two	 conversion

methods?
13.		What	is	overflow,	and	how	can	it	be	detected?	How	does	overflow	in	unsigned	numbers	differ	from

overflow	in	signed	numbers?
14.	 	 If	 a	 computer	 is	 capable	 only	 of	 manipulating	 and	 storing	 integers,	 what	 difficulties	 present

themselves?	How	are	these	difficulties	overcome?
15.		What	are	the	goals	of	Booth’s	algorithm?
16.		How	does	carry	differ	from	overflow?
17.		What	is	arithmetic	shifting?
18.		What	are	the	three	component	parts	of	a	floating-point	number?
19.		What	is	a	biased	exponent,	and	what	efficiencies	can	it	provide?
20.		What	is	normalization,	and	why	is	it	necessary?
21.	 	Why	is	there	always	some	degree	of	error	in	floating-point	arithmetic	when	performed	by	a	binary

digital	computer?
22.		How	many	bits	long	is	a	double-precision	number	under	the	IEEE-754	floating-point	standard?
23.		What	is	EBCDIC,	and	how	is	it	related	to	BCD?



24.		What	is	ASCII,	and	how	did	it	originate?
25.		Explain	the	difference	between	ASCII	and	Unicode.
26.		How	many	bits	does	a	Unicode	character	require?
27.		Why	was	Unicode	created?
28.		How	do	cyclic	redundancy	checks	work?
29.		What	is	systematic	error	detection?
30.		What	is	a	Hamming	code?
31.		What	is	meant	by	Hamming	distance,	and	why	is	it	important?	What	is	meant	by	minimum	Hamming

distance?
32.		How	is	the	number	of	redundant	bits	necessary	for	code	related	to	the	number	of	data	bits?
33.		What	is	a	burst	error?
34.		Name	an	error-detection	method	that	can	compensate	for	burst	errors.

EXERCISES
	1.		Perform	the	following	base	conversions	using	subtraction	or	division-remainder:
	a)	45810	=	________	3
	b)	67710	=	________	5
	c)	151810	=	_______	7
	d)	440110	=	_______	9

2.		Perform	the	following	base	conversions	using	subtraction	or	division-remainder:
a)		58810	=	_________	3
b)		225410	=	________	5
c)		65210	=	________	7
d)		310410	=	________	9

3.		Perform	the	following	base	conversions	using	subtraction	or	division-remainder:
a)		13710	=	_________	3
b)		24810	=	________	5
c)		38710	=	________	7
d)		63310	=	________	9

4.		Perform	the	following	base	conversions:
a)		201013	=	_________	10
b)		23025	=	________	10
c)		16057	=________	10
d)		6879	=	________	10

5.		Perform	the	following	base	conversions:



a)		200123	=	_________	10
b)		41035	=	________	10
c)		32367	=	________	10
d)		13789	=	________	10

6.		Perform	the	following	base	conversions:
a)		212003	=	_________	10
b)		32445	=	________	10
c)		34027	=	________	10
d)		76579	=	________	10

	7.		Convert	the	following	decimal	fractions	to	binary	with	a	maximum	of	six	places	to	the	right	of	the
binary	point:

	a)	26.78125
	b)	194.03125
	c)	298.796875
	d)	16.1240234375

8.		Convert	the	following	decimal	fractions	to	binary	with	a	maximum	of	six	places	to	the	right	of	the
binary	point:
a)	25.84375
b)	57.55
c)	80.90625
d)	84.874023

9.		Convert	the	following	decimal	fractions	to	binary	with	a	maximum	of	six	places	to	the	right	of	the
binary	point:
a)	27.59375
b)	105.59375
c)	241.53125
d)	327.78125

10.		Convert	the	following	binary	fractions	to	decimal:
a)	10111.1101
b)	100011.10011
c)	1010011.10001
d)	11000010.111

11.		Convert	the	following	binary	fractions	to	decimal:
a)	100001.111
b)	111111.10011
c)	1001100.1011
d)	10001001.0111



12.		Convert	the	following	binary	fractions	to	decimal:
a)		110001.10101
b)		111001.001011
c)		1001001.10101
d)		11101001.110001

13.		Convert	the	hexadecimal	number	AC1216	to	binary.

14.		Convert	the	hexadecimal	number	7A0116	to	binary.

15.		Convert	the	hexadecimal	number	DEAD	BEEF16	to	binary.

16.	 	 Represent	 the	 following	 decimal	 numbers	 in	 binary	 using	 8-bit	 signed	 magnitude,	 one’s
complement,	two’s	complement,	and	excess-127	representations.

	a)	77
	b)	–42
c)		119
d)		–107

17.	 	 Represent	 the	 following	 decimal	 numbers	 in	 binary	 using	 8-bit	 signed	 magnitude,	 one’s
complement,	two’s	complement,	and	excess-127	representations:
a)		60
b)	–60
c)	20
d)	–20

18.	 	 Represent	 the	 following	 decimal	 numbers	 in	 binary	 using	 8-bit	 signed	 magnitude,	 one’s
complement,	two’s	complement,	and	excess-127	representations:
a)	97
b)	–97
c)	44
d)	–44

19.	 	 Represent	 the	 following	 decimal	 numbers	 in	 binary	 using	 8-bit	 signed	 magnitude,	 one’s
complement,	two’s	complement,	and	excess-127	representations:
a)	89
b)	–89
c)	66
d)	–66

20.		What	decimal	value	does	the	8-bit	binary	number	10011110	have	if:
a)		it	is	interpreted	as	an	unsigned	number?
b)		it	is	on	a	computer	using	signed-magnitude	representation?
c)		it	is	on	a	computer	using	one’s	complement	representation?
d)		it	is	on	a	computer	using	two’s	complement	representation?
e)		it	is	on	a	computer	using	excess-127	representation?



21.		What	decimal	value	does	the	8-bit	binary	number	00010001	have	if:
a)		it	is	interpreted	as	an	unsigned	number?
b)		it	is	on	a	computer	using	signed-magnitude	representation?
c)		it	is	on	a	computer	using	one’s	complement	representation?
d)		it	is	on	a	computer	using	two’s	complement	representation?
e)		it	is	on	a	computer	using	excess-127	representation?

22.		What	decimal	value	does	the	8-bit	binary	number	10110100	have	if:
a)		it	is	interpreted	as	an	unsigned	number?
b)		it	is	on	a	computer	using	signed-magnitude	representation?
c)		it	is	on	a	computer	using	one’s	complement	representation?
d)		it	is	on	a	computer	using	two’s	complement	representation?
e)		it	is	on	a	computer	using	excess-127	representation?

23.		Given	the	following	two	binary	numbers:	11111100	and	01110000.
a)		Which	of	these	two	numbers	is	the	larger	unsigned	binary	number?
b)		Which	of	these	two	is	the	larger	when	it	is	being	interpreted	on	a	computer	using	signed	two’s

complement	representation?
c)	 	Which	of	 these	 two	 is	 the	 smaller	when	 it	 is	 being	 interpreted	on	 a	 computer	 using	 signed-

magnitude	representation?
24.		Using	a	“word”	of	3	bits,	list	all	the	possible	signed	binary	numbers	and	their	decimal	equivalents

that	are	representable	in:
a)		Signed	magnitude
b)		One’s	complement
c)		Two’s	complement

25.		Using	a	“word”	of	4	bits,	list	all	the	possible	signed	binary	numbers	and	their	decimal	equivalents
that	are	representable	in:
a)		Signed	magnitude
b)		One’s	complement
c)		Two’s	complement

26.		From	the	results	of	the	previous	two	questions,	generalize	the	range	of	values	(in	decimal)	that	can
be	represented	in	any	given	x	number	of	bits	using:
a)		Signed	magnitude
b)		One’s	complement
c)		Two’s	complement

27.	 	 Fill	 in	 the	 following	 table	 to	 indicate	 what	 each	 binary	 pattern	 represents	 using	 the	 various
formats.



28.		Given	a	(very)	tiny	computer	that	has	a	word	size	of	6	bits,	what	are	the	smallest	negative	numbers
and	 the	 largest	 positive	 numbers	 that	 this	 computer	 can	 represent	 in	 each	 of	 the	 following
representations?

	a)	One’s	complement
b)		Two’s	complement

29.		To	add	2	two’s	complement	numbers	together,	what	must	be	true?
30.		What	is	the	most	common	representation	used	in	most	computers	to	store	signed	integer	values	and

why?
31.		You	have	stumbled	on	an	unknown	civilization	while	sailing	around	the	world.	The	people,	who

call	themselves	Zebronians,	do	math	using	40	separate	characters	(probably	because	there	are	40
stripes	on	a	zebra).	They	would	very	much	like	to	use	computers,	but	would	need	a	computer	to	do
Zebronian	math,	which	would	mean	a	computer	that	could	represent	all	40	characters.	You	are	a
computer	designer	and	decide	to	help	them.	You	decide	the	best	thing	is	to	use	BCZ,	Binary-Coded
Zebronian	(which	is	like	BCD	except	it	codes	Zebronian,	not	Decimal).	How	many	bits	will	you
need	to	represent	each	character	if	you	want	to	use	the	minimum	number	of	bits?

	32.		Add	the	following	unsigned	binary	numbers	as	shown.

33.		Add	the	following	unsigned	binary	numbers	as	shown.



	34.		Subtract	the	following	signed	binary	numbers	as	shown	using	two’s	complement	arithmetic.

35.		Subtract	the	following	signed	binary	numbers	as	shown	using	two’s	complement	arithmetic.

36.		Perform	the	following	binary	multiplications,	assuming	unsigned	integers:

37.		Perform	the	following	binary	multiplications,	assuming	unsigned	integers:

38.		Perform	the	following	binary	divisions,	assuming	unsigned	integers:
	a)	101101	÷	101
b)		10000001	÷	101
c)		1001010010	÷	1011

39.		Perform	the	following	binary	divisions,	assuming	unsigned	integers:
a)		11111101	÷	1011
b)		110010101	÷	1001
c)		1001111100	÷	1100

	40.		Use	the	double-dabble	method	to	convert	102123	directly	to	decimal.	(Hint:	You	have	to	change	the
multiplier.)

41.		Using	signed-magnitude	representation,	complete	the	following	operations:



	42.	 	Suppose	a	computer	uses	4-bit	one’s	complement	representation.	Ignoring	overflows,	what	value
will	be	stored	in	the	variable	j	after	the	following	pseudocode	routine	terminates?

43.	 	 Perform	 the	 following	 binary	 multiplications	 using	 Booth’s	 algorithm,	 assuming	 signed	 two’s
complement	integers:

44.		Using	arithmetic	shifting,	perform	the	following:
a)		double	the	value	000101012
b)	quadruple	the	value	011101112
c)	divide	the	value	110010102	in	half

45.		If	the	floating-point	number	representation	on	a	certain	system	has	a	sign	bit,	a	3-bit	exponent,	and
a	4-bit	significand:
a)		What	is	the	largest	positive	and	the	smallest	positive	number	that	can	be	stored	on	this	system	if

the	storage	is	normalized?	(Assume	that	no	bits	are	implied,	there	is	no	biasing,	exponents	use
two’s	complement	notation,	and	exponents	of	all	zeros	and	all	ones	are	allowed.)

b)		What	bias	should	be	used	in	the	exponent	if	we	prefer	all	exponents	to	be	non-negative?	Why
would	you	choose	this	bias?

	46.		Using	the	model	in	the	previous	question,	including	your	chosen	bias,	add	the	following	floating-
point	numbers	and	express	your	answer	using	the	same	notation	as	the	addend	and	augend:

Calculate	the	relative	error,	if	any,	in	your	answer	to	the	previous	question.
47.	 	Assume	we	are	using	 the	 simple	model	 for	 floating-point	 representation	as	given	 in	 the	 text	 (the

representation	 uses	 a	 14-bit	 format,	 5	 bits	 for	 the	 exponent	 with	 a	 bias	 of	 15,	 a	 normalized
mantissa	of	8	bits,	and	a	single	sign	bit	for	the	number):
a)		Show	how	the	computer	would	represent	the	numbers	100.0	and	0.25	using	this	floating-point

format.
b)		Show	how	the	computer	would	add	the	two	floating-point	numbers	in	part	a	by	changing	one	of

the	numbers	so	they	are	both	expressed	using	the	same	power	of	2.
c)	 	 Show	 how	 the	 computer	 would	 represent	 the	 sum	 in	 part	 b	 using	 the	 given	 floating-point



representation.	What	decimal	value	for	the	sum	is	the	computer	actually	storing?	Explain.
48.		What	causes	divide	underflow,	and	what	can	be	done	about	it?
49.	 	Why	do	we	usually	 store	 floating-point	 numbers	 in	 normalized	 form?	What	 is	 the	 advantage	 of

using	a	bias	as	opposed	to	adding	a	sign	bit	to	the	exponent?
50.		Let	a	=	1.0	×	29,	b	=	–1.0	×	29	and	c	=	1.0	×	21.	Using	the	simple	floating-point	model	described	in

the	 text	 (the	 representation	 uses	 a	 14-bit	 format,	 5	 bits	 for	 the	 exponent	 with	 a	 bias	 of	 15,	 a
normalized	 mantissa	 of	 8	 bits,	 and	 a	 single	 sign	 bit	 for	 the	 number),	 perform	 the	 following
calculations,	 paying	 close	 attention	 to	 the	 order	 of	 operations.	 What	 can	 you	 say	 about	 the
algebraic	properties	of	 floating-point	arithmetic	 in	our	 finite	model?	Do	you	 think	 this	algebraic
anomaly	holds	under	multiplication	as	well	as	addition?

b	+	(a	+	c)	=
(b	+	a)	+	c	=

51.	 	 Show	 how	 each	 of	 the	 following	 floating-point	 values	would	 be	 stored	 using	 IEEE-754	 single
precision	(be	sure	to	indicate	the	sign	bit,	the	exponent,	and	the	significand	fields):
a)	12.5					b)	–1.5					c)	0.75					d)	26.625

52.	 	Show	how	each	of	 the	 following	 floating-point	values	would	be	 stored	using	 IEEE-754	double
precision	(be	sure	to	indicate	the	sign	bit,	the	exponent,	and	the	significand	fields):
a)	12.5					b)	–1.5					c)	0.75					d)	26.625

53.	 	 Suppose	 we	 have	 just	 found	 yet	 another	 representation	 for	 floating-point	 numbers.	 Using	 this
representation,	a	12-bit	 floating-point	number	has	1	bit	 for	 the	sign	of	 the	number,	4	bits	 for	 the
exponent,	and	7	bits	for	the	mantissa,	which	is	normalized	as	in	the	Simple	Model	so	that	the	first
digit	 to	 the	 right	 of	 the	 radix	 points	must	 be	 a	 1.	Numbers	 in	 the	 exponent	 are	 in	 signed	 two’s
complement	representation.	No	bias	is	used,	and	there	are	no	implied	bits.	Show	the	representation
for	the	smallest	positive	number	this	machine	can	represent	using	the	following	format	(simply	fill
in	the	squares	provided).	What	decimal	number	does	this	equate	to?

54.	 	Find	 three	 floating-point	values	 to	 illustrate	 that	 floating-point	 addition	 is	not	 associative.	 (You
will	need	to	run	a	program	on	specific	hardware	with	a	specific	compiler.)

55.		a)	Given	that	the	ASCII	code	for	A	is	1000001,	what	is	the	ASCII	code	for	J?
b)		Given	that	the	EBCDIC	code	for	A	is	1100	0001,	what	is	the	EBCDIC	code	for	J?

56.		a)	The	ASCII	code	for	 the	 letter	A	 is	1000001,	and	 the	ASCII	code	for	 the	 letter	a	 is	1100001.
Given	that	the	ASCII	code	for	the	letter	G	is	1000111,	without	looking	at	Table	2.7,	what	is	the
ASCII	code	for	the	letter	g?

b)		The	EBCDIC	code	for	the	letter	A	is	1100	0001,	and	the	EBCDIC	code	for	the	letter	a	is	1000
0001.	Given	that	the	EBCDIC	code	for	the	letter	G	is	1100	0111,	without	looking	at	Table	2.6,
what	is	the	EBCDIC	code	for	the	letter	g?

c)	 	The	ASCII	code	for	the	letter	A	 is	1000001,	and	the	ASCII	code	for	 the	letter	a	 is	1100001.
Given	that	the	ASCII	code	for	the	letter	Q	is	1010001,	without	looking	at	Table	2.7,	what	is	the



ASCII	code	for	the	letter	q?
d)		The	EBCDIC	code	for	the	letter	J	is	1101	0001,	and	the	EBCDIC	code	for	the	letter	j	is	1001

0001.	Given	that	the	EBCDIC	code	for	the	letter	Q	is	1101	1000,	without	looking	at	Table	2.6,
what	is	the	EBCDIC	code	for	the	letter	q?

e)	 In	 general,	 if	 you	were	 going	 to	 write	 a	 program	 to	 convert	 uppercase	 ASCII	 characters	 to
lowercase,	how	would	you	do	it?	Looking	at	Table	2.6,	could	you	use	 the	same	algorithm	to
convert	uppercase	EBCDIC	letters	to	lowercase?

f)	 	 If	 you	were	 tasked	with	 interfacing	 an	EBCDIC-based	 computer	with	 an	ASCII	 or	Unicode
computer,	what	would	be	the	best	way	to	convert	the	EBCDIC	characters	to	ASCII	characters?

	57.		Assume	a	24-bit	word	on	a	computer.	In	these	24	bits,	we	wish	to	represent	the	value	295.
	a)	How	would	the	computer	represent	the	decimal	value	295?
	b)	If	our	computer	uses	8-bit	ASCII	and	even	parity,	how	would	the	computer	represent	the	string

295?
	c)	 If	 our	 computer	 uses	 packed	BCD	with	 zero	 padding,	 how	would	 the	 computer	 represent	 the

number	+295?
58.	 	Decode	 the	 following	ASCII	message,	assuming	7-bit	ASCII	characters	and	no	parity:	1001010

1001111	1001000	1001110	0100000	1000100	1001111	1000101
59.		Why	would	a	system	designer	wish	to	make	Unicode	the	default	character	set	for	their	new	system?

What	 reason(s)	 could	you	give	 for	 not	 using	Unicode	 as	 a	 default?	 (Hint:	Think	 about	 language
compatibility	versus	storage	space.)

60.		Assume	we	wish	to	create	a	code	using	3	information	bits,	1	parity	bit	(appended	to	the	end	of	the
information),	and	odd	parity.	List	all	legal	code	words	in	this	code.	What	is	the	Hamming	distance
of	your	code?

61.		Suppose	we	are	given	the	following	subset	of	code	words,	created	for	a	7-bit	memory	word	with
one	parity	bit:	 11100110,	00001000,	10101011,	 and	11111110.	Does	 this	 code	use	 even	or	odd
parity?	Explain.

62.		Are	the	error-correcting	Hamming	codes	systematic?	Explain.
63.		Compute	the	Hamming	distance	of	the	following	code:

0011010010111100
0000011110001111
0010010110101101
0001011010011110

64.		Compute	the	Hamming	distance	of	the	following	code:
0000000101111111
0000001010111111
0000010011011111
0000100011101111
0001000011110111
0010000011111011
0100000011111101
1000000011111110



65.		In	defining	the	Hamming	distance	for	a	code,	we	choose	to	use	the	minimum	(Hamming)	distance
between	any	 two	encodings.	Explain	why	 it	would	not	be	better	 to	use	 the	maximum	or	average
distance.

66.		Suppose	we	want	an	error-correcting	code	that	will	allow	all	single-bit	errors	to	be	corrected	for
memory	words	of	length	10.
a)		How	many	parity	bits	are	necessary?
b)	 	Assuming	we	are	using	the	Hamming	algorithm	presented	in	this	chapter	to	design	our	error-

correcting	code,	find	the	code	word	to	represent	the	10-bit	information	word:
1	0	0	1	1	0	0	1	1	0.

67.		Suppose	we	want	an	error-correcting	code	that	will	allow	all	single-bit	errors	to	be	corrected	for
memory	words	of	length	12.
a)		How	many	parity	bits	are	necessary?
b)	 	Assuming	we	are	using	the	Hamming	algorithm	presented	in	this	chapter	to	design	our	error-

correcting	code,	find	the	code	word	to	represent	the	12-bit	information	word:
1	0	0	1	0	0	0	1	1	0	1	0.

	68.		Suppose	we	are	working	with	an	error-correcting	code	that	will	allow	all	single-bit	errors	to	be
corrected	for	memory	words	of	length	7.	We	have	already	calculated	that	we	need	4	check	bits,
and	the	length	of	all	code	words	will	be	11.	Code	words	are	created	according	to	the	Hamming
algorithm	presented	in	the	text.	We	now	receive	the	following	code	word:
1	0	1	0	1	0	1	1	1	1	0
Assuming	 even	parity,	 is	 this	 a	 legal	 code	word?	 If	 not,	 according	 to	 our	 error-correcting	 code,
where	is	the	error?

69.		Repeat	exercise	68	using	the	following	code	word:
0	1	1	1	1	0	1	0	1	0	1

70.		Suppose	we	are	working	with	an	error-correcting	code	that	will	allow	all	single-bit	errors	to	be
corrected	for	memory	words	of	length	12.	We	have	already	calculated	that	we	need	5	check	bits,
and	the	length	of	all	code	words	will	be	17.	Code	words	are	created	according	to	the	Hamming
algorithm	presented	in	the	text.	We	now	receive	the	following	code	word:
0	1	1	0	0	1	0	1	0	0	1	0	0	1	0	0	1
Assuming	 even	parity,	 is	 this	 a	 legal	 code	word?	 If	 not,	 according	 to	 our	 error-correcting	 code,
where	is	the	error?

71.		Name	two	ways	in	which	Reed-Solomon	coding	differs	from	Hamming	coding.
72.		When	would	you	choose	a	CRC	code	over	a	Hamming	code?	A	Hamming	code	over	a	CRC?
	73.		Find	the	quotients	and	remainders	for	the	following	division	problems	modulo	2.

	a)	10101112	÷	11012
	b)	10111112	÷	111012
	c)	10110011012	÷	101012
	d)	1110101112	÷	101112

74.		Find	the	quotients	and	remainders	for	the	following	division	problems	modulo	2.



a)		11110102	÷	10112	b)	10101012	÷	11002	c)	11011010112	÷	101012	d)	11111010112	÷	1011012
75.		Find	the	quotients	and	remainders	for	the	following	division	problems	modulo	2.

a)		110010012	÷	11012
b)	10110002	÷	100112
c)	111010112	÷	101112
d)	1111100012	÷	10012

76.		Find	the	quotients	and	remainders	for	the	following	division	problems	modulo	2.
a)		10011112	÷	11012
b)		10111102	÷	11002
c)		10011011102	÷	110012
d)		1111010102	÷	100112

	77.		Using	the	CRC	polynomial	1011,	compute	the	CRC	code	word	for	the	information	word,	1011001.
Check	the	division	performed	at	the	receiver.

78.	 	 Using	 the	 CRC	 polynomial	 1101,	 compute	 the	 CRC	 code	 word	 for	 the	 information	 word,
01001101.	Check	the	division	performed	at	the	receiver.

79.		Using	the	CRC	polynomial	1101,	compute	the	CRC	code	word	for	the	information	word,	1100011.
Check	the	division	performed	at	the	receiver.

80.	 	 Using	 the	 CRC	 polynomial	 1101,	 compute	 the	 CRC	 code	 word	 for	 the	 information	 word,
01011101.	Check	the	division	performed	at	the	receiver.

81.		Pick	an	architecture	(such	as	80486,	Pentium,	Pentium	IV,	SPARC,	Alpha,	or	MIPS).	Do	research
to	find	out	how	your	architecture	approaches	the	concepts	introduced	in	this	chapter.	For	example,
what	representation	does	it	use	for	negative	values?	What	character	codes	does	it	support?

82.	 	We	 have	 seen	 that	 floating-point	 arithmetic	 is	 neither	 associative	 nor	 distributive.	Why	 do	 you
think	this	is	the	case?

FOCUS	ON	CODES	FOR	DATA	RECORDING	AND
TRANSMISSION
ASCII,	 EBCDIC,	 and	 Unicode	 are	 represented	 unambiguously	 in	 computer	 memories.	 (Chapter	 3
describes	 how	 this	 is	 done	 using	 binary	 digital	 devices.)	 Digital	 switches,	 such	 as	 those	 used	 in
memories,	are	either	“off”	or	“on”	with	nothing	in	between.	However,	when	data	are	written	to	some	sort
of	recording	medium	(such	as	tape	or	disk),	or	transmitted	over	long	distances,	binary	signals	can	become
blurred,	particularly	when	long	strings	of	ones	and	zeros	are	involved.	This	blurring	is	partly	attributable
to	timing	drifts	that	occur	between	senders	and	receivers.	Magnetic	media,	such	as	tapes	and	disks,	can
also	lose	synchronization	owing	to	the	electrical	behavior	of	the	magnetic	material	from	which	they	are
made.	 Signal	 transitions	 between	 the	 “high”	 and	 “low”	 states	 of	 digital	 signals	 help	 to	 maintain
synchronization	 in	 data	 recording	 and	 communications	 devices.	 To	 this	 end,	 ASCII,	 EBCDIC,	 and
Unicode	are	translated	into	other	codes	before	they	are	transmitted	or	recorded.	This	translation	is	carried
out	 by	 control	 electronics	 in	 data	 recording	 and	 transmission	 devices.	 Neither	 the	 user	 nor	 the	 host
computer	is	ever	aware	that	this	translation	has	taken	place.



Bytes	are	sent	and	received	by	telecommunications	devices	by	using	“high”	and	“low”	pulses	in	the
transmission	media	(copper	wire,	 for	example).	Magnetic	storage	devices	record	data	using	changes	 in
magnetic	polarity	called	flux	reversals.	Certain	coding	methods	are	better	suited	for	data	communications
than	 for	data	 recording.	New	codes	are	continually	being	 invented	 to	accommodate	evolving	 recording
methods	and	 improved	 transmission	and	 recording	media.	We	will	 examine	a	 few	of	 the	more	popular
recording	and	transmission	codes	to	show	how	some	of	the	challenges	in	this	area	have	been	overcome.
For	the	sake	of	brevity,	we	will	use	the	term	data	encoding	to	mean	the	process	of	converting	a	simple
character	 code	 such	 as	 ASCII	 to	 some	 other	 code	 that	 better	 lends	 itself	 to	 storage	 or	 transmission.
Encoded	data	will	be	used	to	refer	to	character	codes	so	encoded.

2A.1	NON-RETURN-TO-ZERO	CODE
The	simplest	data	encoding	method	is	the	non-return-to-zero	(NRZ)	code.	We	use	this	code	implicitly
when	we	say	that	“highs”	and	“lows”	represent	ones	and	zeros:	ones	are	usually	high	voltage,	and	zeroes
are	low	voltage.	Typically,	high	voltage	is	positive	3	or	5	volts;	low	voltage	is	negative	3	or	5	volts.	(The
reverse	is	logically	equivalent.)

For	example,	the	ASCII	code	for	the	English	word	OK	with	even	parity	is	11001111	01001011.	This
pattern	in	NRZ	code	is	shown	in	its	signal	form	as	well	as	in	its	magnetic	flux	form	in	Figure	2A.1.	Each
of	the	bits	occupies	an	arbitrary	slice	of	time	in	a	transmission	medium	or	an	arbitrary	speck	of	space	on	a
disk.	These	slices	and	specks	are	called	bit	cells.

FIGURE	2A.1	NRZ	Encoding	of	OKas
a)	Transmission	Waveform
b)	Magnetic	Flux	Pattern	(The	direction	of	the	arrows	indicates	the	magnetic	polarity.)

As	you	can	see	by	the	figure,	we	have	a	 long	run	of	ones	in	 the	ASCII	O.	If	we	transmit	 the	longer
form	 of	 the	word	OK,	OKAY,	we	would	 have	 a	 long	 string	 of	 zeros	 as	well	 as	 a	 long	 string	 of	 ones:
11001111	01001011	01000001	01011001.	Unless	the	receiver	is	synchronized	precisely	with	the	sender,
it	is	not	possible	for	either	to	know	the	exact	duration	of	the	signal	for	each	bit	cell.	Slow	or	out-of-phase
timing	within	 the	 receiver	might	 cause	 the	 bit	 sequence	 for	OKAY	 to	 be	 received	 as:	 10011	 0100101
010001	0101001,	which	would	be	translated	back	to	ASCII	as	<ETX>(),	bearing	no	resemblance	to	what
was	sent.	(<ETX>	is	used	here	to	mean	the	single	ASCII	End-of-Text	character,	26	in	decimal.)

A	 little	experimentation	with	 this	example	will	demonstrate	 to	you	 that	 if	only	one	bit	 is	missed	 in
NRZ	code,	the	entire	message	can	be	reduced	to	gibberish.



2A.2	NON-RETURN-TO-ZERO-INVERT	CODE
The	non-return-to-zero-invert	 (NRZI)	method	 addresses	 part	 of	 the	 problem	of	 synchronization	 loss.
NRZI	provides	a	transition—either	high-to-low	or	low-to-high—for	each	binary	one,	and	no	transition	for
binary	zero.	The	NRZI	coding	for	OK	(with	even	parity)	is	shown	in	Figure	2A.2.

Although	NRZI	eliminates	the	problem	of	dropping	binary	ones,	we	are	still	faced	with	the	problem	of
long	strings	of	zeros	causing	the	receiver	or	reader	to	drift	out	of	phase,	potentially	dropping	bits	along
the	way.

The	obvious	 approach	 to	 solving	 this	 problem	 is	 to	 inject	 sufficient	 transitions	 into	 the	 transmitted
waveform	to	keep	the	sender	and	receiver	synchronized,	while	preserving	the	information	content	of	the
message.	This	is	the	essential	idea	behind	all	coding	methods	used	today	in	the	storage	and	transmission
of	data.

FIGURE	2A.2	NRZI	Encoding	of	OK

2A.3	PHASE	MODULATION	(MANCHESTER	CODE)
The	coding	method	known	commonly	as	phase	modulation	(PM),	or	Manchester	coding,	deals	with	the
synchronization	problem	head-on.	PM	provides	a	transition	for	each	bit,	whether	a	one	or	a	zero.	In	PM,
each	 binary	 one	 is	 signaled	 by	 an	 “up”	 transition,	 and	 binary	 zeros	 with	 a	 “down”	 transition.	 Extra
transitions	are	provided	at	bit	cell	boundaries	when	necessary.	The	PM	coding	of	the	word	OK	is	shown
in	Figure	2A.3.

Phase	modulation	 is	often	used	 in	data	 transmission	applications	 such	as	 local	 area	networks.	 It	 is
inefficient	for	use	in	data	storage,	however.	If	PM	were	used	for	tape	and	disk,	phase	modulation	would
require	twice	the	bit	density	of	NRZ.	(One	flux	transition	for	each	half	bit	cell,	depicted	in	Figure	2A.3b.)
However,	we	 have	 just	 seen	 how	 using	NRZ	might	 result	 in	 unacceptably	 high	 error	 rates.	We	 could
therefore	 define	 a	 “good”	 encoding	 scheme	 as	 a	 method	 that	 most	 economically	 achieves	 a	 balance
between	“excessive”	storage	volume	requirements	and	“excessive”	error	rates.	A	number	of	codes	have
been	created	in	trying	to	find	this	middle	ground.



FIGURE	2A.3	Phase	Modulation	(Manchester	Coding)	of	the	Word	OK	as:
a)	Transmission	Waveform
b)	Magnetic	Flux	Pattern

2A.4	FREQUENCY	MODULATION
As	used	 in	 digital	 applications,	 frequency	modulation	 (FM)	 is	 similar	 to	 phase	modulation	 in	 that	 at
least	one	transition	is	supplied	for	each	bit	cell.	These	synchronizing	transitions	occur	at	the	beginning	of
each	bit	cell.	To	encode	a	binary	1,	an	additional	transition	is	provided	in	the	center	of	the	bit	cell.	The
FM	coding	for	OK	is	shown	in	Figure	2A.4.

As	you	can	readily	see	from	the	figure,	FM	is	only	slightly	better	than	PM	with	respect	to	its	storage
requirements.	 FM,	 however,	 lends	 itself	 to	 a	 coding	 method	 called	modified	 frequency	 modulation
(MFM),	whereby	bit	cell	boundary	transitions	are	provided	only	between	consecutive	zeros.	With	MFM,
then,	at	least	one	transition	is	supplied	for	every	pair	of	bit	cells,	as	opposed	to	each	cell	in	PM	or	FM.

With	 fewer	 transitions	 than	PM	and	more	 transitions	 than	NRZ,	MFM	 is	 a	highly	 effective	 code	 in
terms	of	economy	and	error	control.	For	many	years,	MFM	was	virtually	the	only	coding	method	used	for
rigid	disk	storage.	The	MFM	coding	for	OK	is	shown	in	Figure	2A.5.

2A.5	RUN-LENGTH-LIMITED	CODE
Run-length-limited	(RLL)	 is	a	coding	method	 in	which	block	character	code	words	such	as	ASCII	or
EBCDIC	 are	 translated	 into	 code	 words	 specially	 designed	 to	 limit	 the	 number	 of	 consecutive	 zeros
appearing	in	the	code.	An	RLL(d,	k)	code	allows	a	minimum	of	d	and	a	maximum	of	k	consecutive	zeros
to	appear	between	any	pair	of	consecutive	ones.



FIGURE	2A.4	Frequency	Modulation	Coding	of	OK

FIGURE	2A.5	Modified	Frequency	Modulation	Coding	of	OK

Clearly,	RLL	code	words	must	contain	more	bits	than	the	original	character	code.	However,	because
RLL	 is	 coded	using	NRZI	on	 the	 disk,	RLL-coded	data	 actually	 occupy	 less	 space	 on	magnetic	media
because	fewer	flux	transitions	are	involved.	The	code	words	employed	by	RLL	are	designed	to	prevent	a
disk	from	losing	synchronization	as	it	would	if	a	“flat”	binary	NRZI	code	were	used.

Although	there	are	many	variants,	RLL(2,	7)	is	the	predominant	code	used	by	magnetic	disk	systems.	It
is	technically	a	16-bit	mapping	of	8-bit	ASCII	or	EBCDIC	characters.	However,	it	is	nearly	50%	more
efficient	than	MFM	in	terms	of	flux	reversals.	(Proof	of	this	is	left	as	an	exercise.)

Theoretically	 speaking,	 RLL	 is	 a	 form	 of	 data	 compression	 called	Huffman	 coding	 (discussed	 in
Chapter	7),	where	the	most	likely	information	bit	patterns	are	encoded	using	the	shortest	code	word	bit
patterns.	(In	our	case,	we	are	talking	about	the	fewest	number	of	flux	reversals.)	The	theory	is	based	on
the	assumption	 that	 the	presence	or	absence	of	a	1	 in	any	bit	 cell	 is	an	equally	 likely	event.	From	 this
assumption,	 we	 can	 infer	 that	 the	 probability	 is	 0.25	 of	 the	 pattern	 10	 occurring	 within	 any	 pair	 of
adjacent	bit	cells.	(

Similarly,	 the	 bit	 pattern	 011	 has	 a	 probability	 of	 0.125	 of	 occurring.	 Figure	 2A.6	 shows	 the
probability	tree	for	the	bit	patterns	used	in	RLL(2,	7).	Table	2A.1	gives	the	bit	patterns	used	by	RLL(2,
7).

As	you	can	see	by	the	table,	it	is	impossible	to	have	more	than	seven	consecutive	0s,	whereas	at	least
two	0s	will	appear	in	any	possible	combination	of	bits.

Figure	2A.7	compares	 the	MFM	coding	for	OK	with	 its	RLL(2,	7)	NRZI	coding.	MFM	has	12	flux
transitions	 to	 8	 transitions	 for	RLL.	 If	 the	 limiting	 factor	 in	 the	 design	 of	 a	 disk	 is	 the	 number	 of	 flux
transitions	per	square	millimeter,	we	can	pack	50%	more	OKs	in	the	same	magnetic	area	using	RLL	than
we	could	using	MFM.	For	this	reason,	RLL	is	used	almost	exclusively	in	high-capacity	disk	drives.



FIGURE	2A.6	The	Probability	Tree	for	RLL(2,	7)	Coding

Character	Bit	Pattern RLL(2,	7)	Code

10 0100

11 1000

000 000100

010 100100

011 001000

0010 00100100

0011 00001000

Table	2A.1	RLL(2,	7)	Coding

FIGURE	2A.7	MFM	(top)	and	RLL(2,	7)	Coding	(bottom)	for	OK

2A.6	PARTIAL	RESPONSE	MAXIMUM	LIKELIHOOD	CODING
RLL	by	itself	 is	 insufficient	for	reliable	encoding	on	today’s	ultra-high-capacity	magnetic	disk	and	tape
media.	As	data	density	 increases,	encoded	bits	are	necessarily	written	closer	 together.	This	means	 that
fewer	 grains	 of	magnetic	material	 participate	 in	 the	 encoding	 of	 each	 bit,	 causing	 decreased	magnetic
signal	 strength.	As	 signal	 strength	decreases,	 adjacent	 flux	 reversals	begin	 to	 interfere	with	each	other.
This	phenomenon,	known	as	superpositioning,	is	characterized	in	Figure	2A.8,	which	shows	how	a	nice,
neat,	easy-to-detect	magnetic	sine	wave	starts	looking	like	a	string	of	overcooked	spaghetti.

Despite	its	wild	appearance,	superpositioned	waveforms	are	well	defined	and	understood.	However,
unlike	traditional	sine	waves,	their	characteristics	cannot	be	captured	by	a	simple	peak	detector	that	takes
one	 measurement	 per	 bit	 cell.	 They	 are	 instead	 sampled	 several	 times	 across	 the	 bit	 cell	 waveform,
giving	 a	 “partial	 response”	 pattern	 to	 the	 detector	 circuit.	 The	 detector	 circuit	 (Viterbi	 detector)	 then
matches	the	partial	response	pattern	to	a	relatively	small	set	of	possible	response	patterns	and	the	closest
match	(the	pattern	with	the	“maximum	likelihood”	of	being	correct)	is	passed	to	the	digital	decoder.	Thus,
this	 encoding	 scheme	 is	 called	 partial	 response	 maximum	 likelihood,	 or	 PRML.	 (After	 you	 read
Chapter	3,	you	will	understand	how	a	Viterbi	detector	decides	which	pattern	is	the	most	likely.)



PRML	 is	 a	 generic	 designation	 for	 a	 family	 of	 encoding	 methods	 that	 are	 distinguished	 from	 one
another	by	the	number	of	samples	taken	per	bit	cell.	More	frequent	sampling	permits	greater	data	density.
Along	with	 improvements	 in	magnetic	 head	 technology,	 PRML	 has	 been	 a	 fundamental	 enabler	 of	 the
geometric	increase	in	disk	and	tape	densities	since	2000,	and	it	is	indeed	possible	that	this	technology	has
not	yet	been	fully	exploited.

FIGURE	2A.8	Magnetic	Behaviors	as	Bit	Density	Increases
In	a),	b),	and	c),	magnetic	flux	changes	are	pushed	increasingly	closer	together.

2A.7	SUMMARY
Your	 knowledge	 of	 how	 bytes	 are	 stored	 on	 disks	 and	 tape	will	 help	 you	 to	 understand	many	 of	 the
concepts	and	problems	relating	to	data	storage.	Your	familiarity	with	error	control	methods	will	aid	you
in	 your	 study	 of	 both	 data	 storage	 and	 data	 communications.	 The	 best	 information	 pertinent	 to	 data
encoding	 for	 magnetic	 storage	 can	 be	 found	 in	 electrical	 engineering	 books.	 They	 contain	 a	 trove	 of
fascinating	information	regarding	the	behavior	of	physical	media,	and	how	this	behavior	is	employed	by
various	coding	methods.	You	will	learn	more	about	data	storage	in	Chapter	7.	Chapter	12	presents	topics
relating	to	data	communications.

EXERCISES
1.		Why	is	non-return-to-zero	coding	avoided	as	a	method	for	writing	data	to	a	magnetic	disk?
2.		Why	is	Manchester	coding	not	a	good	choice	for	writing	data	to	a	magnetic	disk?
3.		Explain	how	run-length-limited	encoding	works.
4.		Write	the	7-bit	ASCII	code	for	the	character	4	using	the	following	encoding:

a)	Non-return-to-zero
b)	Non-return-to-zero-invert
c)	Manchester	code



d)	Frequency	modulation
e)	Modified	frequency	modulation
f)	Run-length-limited
(Assume	1	is	“high”	and	0	is	“low.”)

	
1The	 	 	brackets	denote	 the	 integer	 floor	 function,	which	 is	 the	 largest	 integer	 that	 is	 smaller	 than	or	equal	 to	 the	enclosed	quantity.	For
example,	8.3	=	8	and	8.9	=	8.



“I’ve	always	loved	that	word,	Boolean.”

—Claude	Shannon

CHAPTER	3



Boolean	Algebra	and	Digital	Logic

3.1			INTRODUCTION
George	 Boole	 lived	 in	 England	 during	 the	 first	 half	 of	 the	 nineteenth	 century.	 The	 firstborn	 son	 of	 a
cobbler,	Boole	taught	himself	Greek,	Latin,	French,	German,	and	the	language	of	mathematics.	Just	before
he	turned	16,	Boole	accepted	a	position	teaching	at	a	small	Methodist	school,	providing	his	family	with
much-needed	income.	At	the	age	of	19,	Boole	returned	home	to	Lincoln,	England,	and	founded	his	own
boarding	school	 to	better	provide	support	 for	his	 family.	He	operated	 this	school	 for	15	years,	until	he
became	Professor	of	Mathematics	at	Queen’s	College	in	Cork,	Ireland.	His	social	status	as	the	son	of	a
tradesman	prevented	Boole’s	appointment	to	a	more	prestigious	university,	despite	his	authoring	of	more
than	a	dozen	highly	esteemed	papers	and	treatises.	His	most	famous	monograph,	The	Laws	of	Thought,
published	in	1854,	created	a	branch	of	mathematics	known	as	symbolic	logic	or	Boolean	algebra.

Nearly	85	years	later,	John	Vincent	Atanasoff	applied	Boolean	algebra	to	computing.	He	recounted	the
moment	of	his	insight	to	Linda	Null.	At	the	time,	Atanasoff	was	attempting	to	build	a	calculating	machine
based	on	 the	 same	 technology	used	by	Pascal	 and	Babbage.	His	 aim	was	 to	use	 this	machine	 to	 solve
systems	of	 linear	equations.	After	 struggling	with	 repeated	 failures,	Atanasoff	was	so	 frustrated	 that	he
decided	to	take	a	drive.	He	was	living	in	Ames,	Iowa,	at	the	time,	but	found	himself	200	miles	away	in
Illinois	before	he	suddenly	realized	how	far	he	had	driven.

Atanasoff	had	not	intended	to	drive	that	far,	but	because	he	was	in	Illinois,	where	it	was	legal	to	buy	a
drink	in	a	tavern,	he	sat	down	and	ordered	a	bourbon.	He	chuckled	to	himself	when	he	realized	that	he	had
driven	such	a	distance	for	a	drink!	Even	more	ironic	is	the	fact	that	he	never	touched	the	drink.	He	felt	he
needed	 a	 clear	 head	 to	write	 down	 the	 revelations	 that	 came	 to	 him	 during	 his	 long,	 aimless	 journey.
Exercising	 his	 physics	 and	 mathematics	 backgrounds	 and	 focusing	 on	 the	 failures	 of	 his	 previous
computing	machine,	he	made	four	critical	breakthroughs	necessary	in	the	machine’s	new	design:

1.	 	He	would	use	 electricity	 instead	of	mechanical	movements	 (vacuum	 tubes	would	 allow	him	 to	do
this).

2.	 	Because	he	was	using	electricity,	he	would	use	base	2	numbers	 instead	of	base	10	(this	correlated
directly	with	 switches	 that	were	 either	 “on”	 or	 “off”),	 resulting	 in	 a	 digital,	 rather	 than	 an	 analog,
machine.

3.	 	 He	 would	 use	 capacitors	 (condensers)	 for	 memory	 because	 they	 store	 electrical	 charges	 with	 a
regenerative	process	to	avoid	power	leakage.

4.		Computations	would	be	done	by	what	Atanasoff	termed	“direct	logical	action”	(which	is	essentially
equivalent	to	Boolean	algebra)	and	not	by	enumeration	as	all	previous	computing	machines	had	done.

It	should	be	noted	that	at	the	time,	Atanasoff	did	not	recognize	the	application	of	Boolean	algebra	to
his	problem	and	that	he	devised	his	own	direct	logical	action	by	trial	and	error.	He	was	unaware	that	in
1938,	 Claude	 Shannon	 proved	 that	 two-valued	 Boolean	 algebra	 could	 describe	 the	 operation	 of	 two-
valued	electrical	switching	circuits.	Today,	we	see	the	significance	of	Boolean	algebra’s	application	in
the	design	of	modern	computing	systems.	It	is	for	this	reason	that	we	include	a	chapter	on	Boolean	logic



and	its	relationship	to	digital	computers.
This	chapter	contains	a	brief	introduction	to	the	basics	of	logic	design.	It	provides	minimal	coverage

of	 Boolean	 algebra	 and	 this	 algebra’s	 relationship	 to	 logic	 gates	 and	 basic	 digital	 circuits.	 You	 may
already	be	familiar	with	the	basic	Boolean	operators	from	your	previous	programming	experience.	It	is	a
fair	 question,	 then,	 to	 ask	 why	 you	must	 study	 this	 material	 in	 more	 detail.	 The	 relationship	 between
Boolean	logic	and	the	actual	physical	components	of	any	computer	system	is	strong,	as	you	will	see	in	this
chapter.	 As	 a	 computer	 scientist,	 you	 may	 never	 have	 to	 design	 digital	 circuits	 or	 other	 physical
components—in	fact,	this	chapter	will	not	prepare	you	to	design	such	items.	Rather,	it	provides	sufficient
background	for	you	 to	understand	 the	basic	motivation	underlying	computer	design	and	 implementation.
Understanding	how	Boolean	logic	affects	the	design	of	various	computer	system	components	will	allow
you	to	use,	from	a	programming	perspective,	any	computer	system	more	effectively.	If	you	are	interested
in	delving	deeper,	there	are	many	resources	listed	at	the	end	of	the	chapter	to	allow	further	investigation
into	these	topics.

3.2			BOOLEAN	ALGEBRA
Boolean	algebra	is	an	algebra	for	the	manipulation	of	objects	that	can	take	on	only	two	values,	typically
true	 and	 false,	 although	 it	 can	 be	 any	 pair	 of	 values.	 Because	 computers	 are	 built	 as	 collections	 of
switches	that	are	either	“on”	or	“off,”	Boolean	algebra	is	a	natural	way	to	represent	digital	information.	In
reality,	digital	circuits	use	low	and	high	voltages,	but	for	our	level	of	understanding,	0	and	1	will	suffice.
It	is	common	to	interpret	the	digital	value	0	as	false	and	the	digital	value	1	as	true.

3.2.1		Boolean	Expressions
In	addition	to	binary	objects,	Boolean	algebra	also	has	operations	that	can	be	performed	on	these	objects,
or	variables.	Combining	 the	variables	and	operators	yields	Boolean	expressions.	A	Boolean	 function
typically	has	one	or	more	input	values	and	yields	a	result,	based	on	the	input	values,	in	the	set	{0,1}.

Three	common	Boolean	operators	are	AND,	OR,	and	NOT.	To	better	understand	these	operators,	we
need	 a	 mechanism	 to	 allow	 us	 to	 examine	 their	 behaviors.	 A	 Boolean	 operator	 can	 be	 completely
described	using	a	table	that	lists	the	inputs,	all	possible	values	for	these	inputs,	and	the	resulting	values	of
the	operation	for	all	possible	combinations	of	these	inputs.	This	table	is	called	a	truth	table.	A	truth	table
shows	 the	 relationship,	 in	 tabular	 form,	 between	 the	 input	 values	 and	 the	 result	 of	 a	 specific	Boolean
operator	or	function	on	the	input	variables.	Let’s	 look	at	 the	Boolean	operators	AND,	OR,	and	NOT	to
see	how	each	is	represented,	using	both	Boolean	algebra	and	truth	tables.

The	logical	operator	AND	is	typically	represented	by	either	a	dot	or	no	symbol	at	all.	For	example,
the	Boolean	expression	xy	is	equivalent	to	the	expression	x	º	y	and	is	read	“x	and	y.”	The	expression	xy	is
often	referred	to	as	a	Boolean	product.	The	behavior	of	this	operator	is	characterized	by	the	truth	table
shown	in	Table	3.1.

The	result	of	 the	expression	xy	 is	1	only	when	both	 inputs	are	1,	and	0	otherwise.	Each	row	in	 the
table	represents	a	different	Boolean	expression,	and	all	possible	combinations	of	values	for	x	and	y	are
represented	by	the	rows	in	the	table.

The	Boolean	operator	OR	is	typically	represented	by	a	plus	sign.	Therefore,	the	expression	x	+	y	 is
read	“x	or	y.”	The	result	of	x	+	y	is	0	only	when	both	of	its	input	values	are	0.	The	expression	x	+	y	 is
often	referred	to	as	a	Boolean	sum.	The	truth	table	for	OR	is	shown	in	Table	3.2.

The	 remaining	 logical	 operator,	 NOT,	 is	 represented	 typically	 by	 either	 an	 overscore	 or	 a	 prime.



Therefore,	both	x–	and	x′	are	read	“not	x.”	The	truth	table	for	NOT	is	shown	in	Table	3.3.
	

Inputs Outputs

x						y xy

0						0 0

0						1 0

1						0 0

1						1 1

TABLE	3.1	Truth	Table	for	AND

	

Inputs Outputs

x						y x	+	y

0						0 0

0						1 1

1						0 1

1						1 1

TABLE	3.2	Truth	Table	for	OR

	

Inputs Outputs

x x′

0 1

1 0

TABLE	3.3	Truth	Table	for	NOT

We	now	understand	that	Boolean	algebra	deals	with	binary	variables	and	logical	operations	on	those
variables.	Combining	 these	 two	 concepts,	we	 can	 examine	Boolean	 expressions	 composed	of	Boolean
variables	and	multiple	logic	operators.	For	example,	the	Boolean	function

F(x,y,z)	=	x	+	y′z

is	represented	by	a	Boolean	expression	involving	the	three	Boolean	variables	x,	y,	and	z	and	the	logical
operators	OR,	NOT,	and	AND.	How	do	we	know	which	operator	to	apply	first?	The	rules	of	precedence
for	Boolean	operators	give	NOT	top	priority,	followed	by	AND,	and	then	OR.	For	our	previous	function
F,	we	would	negate	y	first,	then	perform	the	AND	of	y′	and	z,	and	finally	OR	this	result	with	x.



We	can	also	use	 a	 truth	 table	 to	 represent	 this	 expression.	 It	 is	 often	helpful,	when	creating	 a	 truth
table	 for	 a	more	 complex	 function	 such	 as	 this,	 to	 build	 the	 table	 representing	 different	 pieces	 of	 the
function,	one	column	at	a	time,	until	the	final	function	can	be	evaluated.	The	truth	table	for	our	function	F
is	shown	in	Table	3.4.

The	last	column	in	the	truth	table	indicates	the	values	of	the	function	for	all	possible	combinations	of
x,	y,	and	z.	We	note	that	the	real	truth	table	for	our	function	F	consists	of	only	the	first	three	columns	and
the	last	column.	The	shaded	columns	show	the	intermediate	steps	necessary	to	arrive	at	our	final	answer.
Creating	truth	tables	in	this	manner	makes	it	easier	to	evaluate	the	function	for	all	possible	combinations
of	the	input	values.

3.2.2		Boolean	Identities
Frequently,	a	Boolean	expression	is	not	in	its	simplest	form.	Recall	from	algebra	that	an	expression	such
as	2x	+	6x	 is	not	in	its	simplest	form;	it	can	be	reduced	(represented	by	fewer	or	simpler	terms)	to	8x.
Boolean	expressions	can	also	be	simplified,	but	we	need	new	identities,	or	laws,	that	apply	to	Boolean
algebra	instead	of	regular	algebra.	These	identities,	which	apply	to	single	Boolean	variables	as	well	as
Boolean	expressions,	are	listed	in	Table	3.5.	Note	 that	each	relationship	(with	 the	exception	of	 the	 last
one)	has	both	an	AND	(or	product)	form	and	an	OR	(or	sum)	form.	This	is	known	as	the	duality	principle.

TABLE	3.4	Truth	Table	for	F(x,y,z)	=	x	+	y′z

	

Identity	Name AND	Form OR	Form

Identity	Law 1x	=	x 0	+	x	=	x

Null	(or	Dominance)	Law 0x	=	0 1	+	x	=	1

Idempotent	Law xx	=	x x	+	x	=	x

Inverse	Law xx′	=	0 x	+	x′	=	1

Commutative	Law xy	=	yx x	+	y	=	y	+	x

Associative	Law (xy)z	=	x(yz) (x	+	y)	+	z	=	x	+	(y	+	z)

Distributive	Law x	+	(yz)	=	(x	+	y)	(x	+	z) x(y	+	z)	=	xy	+	xz

Absorption	Law x(x	+	y)	=	x x	+	xy	=	x



DeMorgan’s	Law (xy)′	=	x′	+	y′ (x	+	y)′	=	x′y′

Double	Complement	Law x″	=	x

TABLE	3.5	Basic	Identities	of	Boolean	Algebra

The	Identity	Law	states	that	any	Boolean	variable	ANDed	with	1	or	ORed	with	0	simply	results	in	the
original	 variable	 (1	 is	 the	 identity	 element	 for	AND;	0	 is	 the	 identity	 element	 for	OR).	The	Null	Law
states	 that	 any	 Boolean	 variable	 ANDed	 with	 0	 is	 0,	 and	 a	 variable	 ORed	 with	 1	 is	 always	 1.	 The
Idempotent	Law	states	that	ANDing	or	ORing	a	variable	with	itself	produces	the	original	variable.	The
Inverse	Law	states	that	ANDing	or	ORing	a	variable	with	its	complement	produces	the	identity	for	that
given	 operation.	 Boolean	 variables	 can	 be	 reordered	 (commuted)	 and	 regrouped	 (associated)	 without
affecting	 the	 final	 result.	 You	 should	 recognize	 these	 as	 the	 Commutative	 and	Associative	 Laws	 from
algebra.	The	Distributive	Law	shows	how	OR	distributes	over	AND	and	vice	versa.

The	Absorption	Law	and	DeMorgan’s	Law	are	not	so	obvious,	but	we	can	prove	these	identities	by
creating	a	truth	table	for	the	various	expressions:	If	the	right-hand	side	is	equal	to	the	left-hand	side,	the
expressions	 represent	 the	 same	 function	 and	 result	 in	 identical	 truth	 tables.	 Table	3.6	 depicts	 the	 truth
table	for	both	the	left-	and	right-hand	sides	of	DeMorgan’s	Law	for	AND.	It	is	left	as	exercises	to	prove
the	validity	of	the	remaining	laws,	in	particular,	the	OR	form	of	DeMorgan’s	Law	and	both	forms	of	the
Absorption	Law.

The	Double	Complement	Law	formalizes	the	idea	of	the	double	negative,	which	evokes	rebuke	from
high	school	English	teachers.	The	Double	Complement	Law	can	be	useful	in	digital	circuits	as	well	as	in
your	life.	For	example,	let	x	=	1	represent	the	idea	that	you	have	a	positive	quantity	of	cash.	If	you	have	no
cash,	you	have	x′.	When	an	untrustworthy	acquaintance	asks	to	borrow	some	cash,	you	can	truthfully	say
that	you	don’t	have	no	money.	That	is,	x	=	(x)″	even	if	you	just	got	paid.

TABLE	3.6	Truth	Table	for	the	AND	Form	of	DeMorgan’s	Law

One	of	the	most	common	errors	that	beginners	make	when	working	with	Boolean	logic	is	to	assume
the	 following:	 (xy)′	 =	 x′y′.	 Please	 note	 that	 this	 is	 not	 a	 valid	 equality!	 DeMorgan’s	 Law	 clearly
indicates	that	this	statement	is	incorrect.	Instead,	(xy)′	=	x′	+	y′.	This	is	a	very	easy	mistake	to	make,	and
one	that	should	be	avoided.	Care	must	be	taken	with	other	expressions	involving	negation	as	well.

3.2.3		Simplification	of	Boolean	Expressions
The	algebraic	 identities	we	studied	 in	algebra	class	allow	us	 to	 reduce	algebraic	expressions	 (such	as
10x	 +	 2y	 –	x	 +	 3y)	 to	 their	 simplest	 forms	 (9x	 +	 5y).	 The	Boolean	 identities	 can	 be	 used	 to	 simplify
Boolean	expressions	in	a	similar	manner.	We	apply	these	identities	in	the	following	examples.

	EXAMPLE	3.1	Suppose	we	have	the	function	F(x,y)	=	xy	+	xy.	Using	the	OR	form	of	the	Idempotent



Law	 and	 treating	 the	 expression	 xy	 as	 a	 Boolean	 variable,	we	 simplify	 the	 original	 expression	 to	 xy.
Therefore,	F(x,y)	=	xy	+	xy	=	xy.

	EXAMPLE	3.2	Given	the	function	F(x,y,z)	=	x′yz	+	x′yz′	+	xz,	we	simplify	as	follows:

	EXAMPLE	3.3	Given	the	function	F(x,y)	=	y	+	(xy)′,	we	simplify	as	follows:

	EXAMPLE	3.4	Given	the	function	F(x,y)	=	(xy)′(x′	+	y)(y′ +	y),	we	simplify	as	follows:

At	 times,	 the	 simplification	 is	 reasonably	 straightforward,	 as	 in	 the	preceding	 examples.	However,
using	the	identities	can	be	tricky,	as	we	see	in	the	next	two	examples.

	EXAMPLE	3.5	Given	the	function	F(x,y)	=	x′(x	+	y)	+	(y	+	x)(x	+	y′),	we	simplify	as	follows:



	EXAMPLE	3.6	Given	the	function	F(x,y,z)	=	xy	+	x′z	+	yz,	we	simplify	as	follows:

Example	3.6	illustrates	what	is	commonly	known	as	the	Consensus	Theorem.
How	did	we	know	to	insert	additional	terms	to	simplify	the	function	in	Example	3.6?	Unfortunately,

there	is	no	defined	set	of	rules	for	using	these	identities	to	minimize	a	Boolean	expression;	it	 is	simply
something	 that	 comes	with	 experience.	 There	 are	 other	methods	 that	 can	 be	 used	 to	 simplify	 Boolean
expressions;	we	mention	these	later	in	this	section.

We	can	also	use	these	identities	to	prove	Boolean	equalities,	as	we	see	in	Example	3.7.

	EXAMPLE	3.7	Prove	that	(x	+	y)(x′	+	y)	=	y



To	prove	the	equality	of	two	Boolean	expressions,	you	can	also	create	the	truth	tables	for	each	and
compare.	If	the	truth	tables	are	identical,	the	expressions	are	equal.	We	leave	it	as	an	exercise	to	find	the
truth	tables	for	the	equality	proven	in	Example	3.7.

3.2.4		Complements
As	you	saw	 in	Example	3.1,	 the	Boolean	 identities	can	be	applied	 to	Boolean	expressions,	not	 simply
Boolean	variables	(we	treated	xy	as	a	Boolean	variable	and	then	applied	the	Idempotent	Law).	The	same
is	true	for	the	Boolean	operators.	The	most	common	Boolean	operator	applied	to	more	complex	Boolean
expressions	is	the	NOT	operator,	resulting	in	the	complement	of	the	expression.	Quite	often,	it	is	cheaper
and	 less	 complicated	 to	 implement	 the	 complement	 of	 a	 function	 rather	 than	 the	 function	 itself.	 If	 we
implement	 the	 complement,	 we	 must	 invert	 the	 final	 output	 to	 yield	 the	 original	 function;	 this	 is
accomplished	with	one	simple	NOT	operation.	Therefore,	complements	are	quite	useful.

To	 find	 the	complement	of	a	Boolean	 function,	we	use	DeMorgan’s	Law.	The	OR	form	of	 this	 law
states	that	(x	+	y)′	=	x′y′.	We	can	easily	extend	this	to	three	or	more	variables	as	follows:

Given	the	function:

F(x,y,z)	=	(x+y+z).	Then	F′(x,y,z)	=	(x	+	y	+	z)′.

Let	w	=	(x	+	y).	Then	F′(x,y,z)	=	(w	+	z)′	=	w′z′.

Now,	applying	DeMorgan’s	Law	again,	we	get:

w′z′	=	(x	+	y)′z′	=	x′y′z′	=	F′(x,y,z)

Therefore,	if	F(x,y,z)	=	(x	+	y	+	z),	then	F′(x,y,z)	=	x′y′z′.	Applying	the	principle	of	duality,	we	see	that
(xyz)′	=	x′	+	y′ +	z′.

It	appears	that,	to	find	the	complement	of	a	Boolean	expression,	we	simply	replace	each	variable	by
its	 complement	 (x	 is	 replaced	 by	 x′)	 and	 interchange	 ANDs	 and	 ORs.	 In	 fact,	 this	 is	 exactly	 what
DeMorgan’s	Law	tells	us	to	do.	For	example,	the	complement	of	x′	+	yz′	is	x(y′ +	z).	We	have	to	add	the
parentheses	to	ensure	the	correct	precedence.

You	can	verify	that	this	simple	rule	of	thumb	for	finding	the	complement	of	a	Boolean	expression	is
correct	by	examining	the	truth	tables	for	both	the	expression	and	its	complement.	The	complement	of	any
expression,	when	represented	as	a	truth	table,	should	have	0s	for	output	everywhere	the	original	function
has	1s,	and	1s	 in	 those	places	where	 the	original	 function	has	0s.	Table	3.7	depicts	 the	 truth	 tables	 for
F(x,y,z)	=	x′	+	yz′	and	its	complement,	F′(x,y,z)	=	x(y′ +	z).	The	shaded	portions	indicate	the	final	results



for	F	and	F′.

3.2.5		Representing	Boolean	Functions
We	have	seen	that	there	are	many	different	ways	to	represent	a	given	Boolean	function.	For	example,	we
can	 use	 a	 truth	 table,	 or	 we	 can	 use	 one	 of	many	 different	 Boolean	 expressions.	 In	 fact,	 there	 are	 an
infinite	number	of	Boolean	expressions	that	are	logically	equivalent	to	one	another.	Two	expressions	that
can	be	represented	by	the	same	truth	table	are	considered	logically	equivalent	(see	Example	3.8).

	EXAMPLE	3.8	Suppose	F(x,y,z)	=	x	+	xy′.	We	can	also	express	F	as	F(x,y,z)	=	x	+	x	+	xy′	because	the
Idempotent	Law	tells	us	these	two	expressions	are	the	same.	We	can	also	express	F	as	F(x,y,z)	=	x(1	+	y′)
using	the	Distributive	Law.

To	help	eliminate	potential	confusion,	logic	designers	specify	a	Boolean	function	using	a	canonical,
or	 standardized,	 form.	 For	 any	 given	 Boolean	 function,	 there	 exists	 a	 unique	 standardized	 form.
However,	 there	 are	 different	 “standards”	 that	 designers	 use.	 The	 two	 most	 common	 are	 the	 sum-of-
products	form	and	the	product-of-sums	form.

The	 sum-of-products	 form	 requires	 that	 the	 expression	 be	 a	 collection	 of	 ANDed	 variables	 (or
product	terms)	that	are	ORed	together.	The	function	F1(x,y,z)	=	xy	+	yz′	+	xyz	is	in	sum-of-products	form.
The	function	F2(x,y,z)	=	xy′ +	x	(y	+	z′)	is	not	in	sum-of-products	form.	We	apply	the	Distributive	Law	to
distribute	the	x	variable	in	F2,	resulting	in	the	expression	xy′ +	xy	+	xz′,	which	is	now	in	sum-of-products
form.

TABLE	3.7	Truth	Table	Representation	for	a	Function	and	Its	Complement

Boolean	expressions	stated	in	product-of-sums	form	consist	of	ORed	variables	(sum	terms)	that	are
ANDed	together.	The	function	F1(x,y,z)	=	(x	+	y)	(x	+	z′)(y	+	z′)(y	+	z)	is	in	product-of-sums	form.	The
product-of-sums	form	is	often	preferred	when	the	Boolean	expression	evaluates	true	in	more	cases	than	it
evaluates	 false.	 This	 is	 not	 the	 case	with	 the	 function	F1,	 so	 the	 sum-of-products	 form	 is	 appropriate.
Also,	the	sum-of-products	form	is	usually	easier	to	work	with	and	to	simplify;	we	therefore	use	this	form
exclusively	in	the	sections	that	follow.

Any	 Boolean	 expression	 can	 be	 represented	 in	 sum-of-products	 form.	 Because	 any	 Boolean
expression	 can	 also	 be	 represented	 as	 a	 truth	 table,	 we	 conclude	 that	 any	 truth	 table	 can	 also	 be
represented	in	sum-of-products	form.	Example	3.9	shows	us	that	 it	 is	a	simple	matter	 to	convert	a	 truth
table	into	sum-of-products	form.



	EXAMPLE	3.9	Consider	a	simple	majority	function.	This	is	a	function	that,	when	given	three	inputs,
outputs	a	0	if	less	than	half	of	its	inputs	are	1,	and	a	1	if	at	least	half	of	its	inputs	are	1.	Table	3.8	depicts
the	truth	table	for	this	majority	function	over	three	variables.

To	convert	the	truth	table	to	sum-of-products	form,	we	start	by	looking	at	the	problem	in	reverse.	If
we	want	the	expression	x	+	y	to	equal	1,	then	either	x	or	y	(or	both)	must	be	equal	to	1.	If	xy	+	yz	=	1,	then
either	xy	=	1	or	yz	=	1	(or	both).

Using	 this	 logic	 in	 reverse	 and	 applying	 it	 to	 our	majority	 function,	we	 see	 that	 the	 function	must
output	a	1	when	x	=	0,	y	=	1,	and	z	=	1.	The	product	term	that	satisfies	this	is	x′yz	(clearly,	this	is	equal	to
1	when	x	=	0,	y	=	1,	and	z	=	1).	The	second	occurrence	of	an	output	value	of	1	is	when	x	=	1,	y	=	0,	and	z
=	1.	The	product	term	to	guarantee	an	output	of	1	is	xy′z.	The	third	product	term	we	need	is	xyz′,	and	the
last	 is	xyz.	 In	 summary,	 to	generate	a	 sum-of-products	 expression	using	 the	 truth	 table	 for	 any	Boolean
expression,	we	must	generate	a	product	term	of	the	input	variables	corresponding	to	each	row	where	the
value	of	the	output	variable	in	that	row	is	1.	In	each	product	term,	we	must	then	complement	any	variables
that	are	0	for	that	row.

Our	majority	function	can	be	expressed	in	sum-of-products	form	as	F(x,y,z)	=	x′yz	+	xy′z	+	xyz′	+	xyz.

TABLE	3.8	Truth	Table	Representation	for	the	Majority	Function

Please	note	that	the	expression	for	the	majority	function	in	Example	3.9	may	not	be	in	simplest	form;
we	are	only	guaranteeing	a	standard	form.	The	sum-of-products	and	product-of-sums	standard	forms	are
equivalent	ways	 of	 expressing	 a	Boolean	 function.	One	 form	 can	 be	 converted	 to	 the	 other	 through	 an
application	of	Boolean	identities.	Whether	using	sum-of-products	or	product-of-sums,	the	expression	must
eventually	be	converted	to	its	simplest	form,	which	means	reducing	the	expression	to	the	minimum	number
of	 terms.	 Why	 must	 the	 expressions	 be	 simplified?	 A	 one-to-one	 correspondence	 exists	 between	 a
Boolean	 expression	 and	 its	 implementation	 using	 electrical	 circuits,	 as	 shown	 in	 the	 next	 section.
Unnecessary	terms	in	the	expression	lead	to	unnecessary	components	in	the	physical	circuit,	which	in	turn
yield	a	suboptimal	circuit.

3.3			LOGIC	GATES
The	logical	operators	AND,	OR,	and	NOT	that	we	have	discussed	have	been	represented	thus	far	in	an
abstract	 sense	 using	 truth	 tables	 and	 Boolean	 expressions.	 The	 actual	 physical	 components,	 or	digital
circuits,	such	as	those	that	perform	arithmetic	operations	or	make	choices	in	a	computer,	are	constructed
from	a	number	of	primitive	elements	called	gates.	Gates	implement	each	of	the	basic	logic	functions	we
have	discussed.	These	gates	are	the	basic	building	blocks	for	digital	design.	Formally,	a	gate	is	a	small,



electronic	 device	 that	 computes	 various	 functions	 of	 two-valued	 signals.	 More	 simply	 stated,	 a	 gate
implements	 a	 simple	Boolean	 function.	To	physically	 implement	 each	gate	 requires	 from	one	 to	 six	 or
more	 transistors	 (described	 in	Chapter	1),	 depending	on	 the	 technology	being	used.	To	 summarize,	 the
basic	physical	component	of	a	computer	is	the	transistor;	the	basic	logic	element	is	the	gate.

3.3.1		Symbols	for	Logic	Gates
We	initially	examine	the	three	simplest	gates.	These	correspond	to	the	logical	operators	AND,	OR,	and
NOT.	We	have	discussed	the	functional	behavior	of	each	of	these	Boolean	operators.	Figure	3.1	depicts
the	graphical	representation	of	the	gate	that	corresponds	to	each	operator.

Note	 the	 circle	 at	 the	 output	 of	 the	 NOT	 gate.	 Typically,	 this	 circle	 represents	 the	 complement
operation.

FIGURE	3.1	The	Three	Basic	Gates

FIGURE	3.2	a)	The	Truth	Table	for	XOR
b)	The	Logic	Symbol	for	XOR

Another	common	gate	is	the	exclusive-OR	(XOR)	gate,	represented	by	the	Boolean	expression:	x	 	y.
XOR	is	false	if	both	of	the	input	values	are	equal	and	true	otherwise.	Figure	3.2	illustrates	the	truth	table
for	XOR	as	well	as	the	logic	diagram	that	specifies	its	behavior.

3.3.2		Universal	Gates
Two	other	common	gates	are	NAND	and	NOR,	which	produce	complementary	output	 to	AND	and	OR,
respectively.	Each	gate	has	two	different	logic	symbols	that	can	be	used	for	gate	representation.	(It	is	left
as	an	exercise	 to	prove	that	 the	symbols	are	 logically	equivalent.	Hint:	Use	DeMorgan’s	Law.)	Figures
3.3	 and	 3.4	 depict	 the	 logic	 diagrams	 for	 NAND	 and	NOR	 along	with	 the	 truth	 tables	 to	 explain	 the
functional	behavior	of	each	gate.

The	NAND	gate	is	commonly	referred	to	as	a	universal	gate,	because	any	electronic	circuit	can	be
constructed	using	only	NAND	gates.	To	prove	this,	Figure	3.5	depicts	an	AND	gate,	an	OR	gate,	and	a
NOT	gate	using	only	NAND	gates.



Why	not	simply	use	the	AND,	OR,	and	NOT	gates	we	already	know	exist?	There	are	two	reasons	for
using	only	NAND	gates	to	build	any	given	circuit.	First,	NAND	gates	are	cheaper	to	build	than	the	other
gates.	Second,	complex	integrated	circuits	(which	are	discussed	in	the	following	sections)	are	often	much
easier	 to	build	using	the	same	building	block	(i.e.,	several	NAND	gates)	rather	 than	a	collection	of	 the
basic	building	blocks	(i.e.,	a	combination	of	AND,	OR,	and	NOT	gates).

FIGURE	3.3	Truth	Table	and	Logic	Symbols	for	NAND

FIGURE	3.4	Truth	Table	and	Logic	Symbols	for	NOR

FIGURE	3.5	Three	Circuits	Constructed	Using	Only	NAND	Gates

Please	note	that	the	duality	principle	applies	to	universality	as	well.	One	can	build	any	circuit	using
only	NOR	gates.	NAND	and	NOR	gates	are	related	in	much	the	same	way	as	the	sum-of-products	form
and	the	product-of-sums	form	presented.	One	would	use	NAND	for	implementing	an	expression	in	sum-
of-products	form	and	NOR	for	those	in	product-of-sums	form.

3.3.3		Multiple	Input	Gates
In	 our	 examples	 thus	 far,	 all	 gates	 have	 accepted	 only	 two	 inputs.	 Gates	 are	 not	 limited	 to	 two	 input
values,	however.	There	are	many	variations	 in	 the	number	and	 types	of	 inputs	and	outputs	allowed	 for
various	 gates.	 For	 example,	we	 can	 represent	 the	 expression	 x	 +	 y	 +	 z	 using	 one	OR	 gate	with	 three
inputs,	as	in	Figure	3.6.	Figure	3.7	represents	the	expression	xy′z.

We	shall	see	later	in	this	chapter	that	it	is	sometimes	useful	to	depict	the	output	of	a	gate	as	Q	along
with	its	complement	Q′	as	shown	in	Figure	3.8.



Note	that	Q	always	represents	the	actual	output.

FIGURE	3.6	A	Three-Input	OR	Gate	Representing	x	+	y	+	z

FIGURE	3.7	A	Three-Input	AND	Gate	Representing	x	y′z

FIGURE	3.8	AND	Gate	with	Two	Inputs	and	Two	Outputs

FIGURE	3.9	Logic	Diagram	for	F(x,y,z)	=	x	+	y′z

3.4			DIGITAL	COMPONENTS
Upon	opening	a	computer	and	looking	inside,	one	would	realize	that	there	is	a	lot	to	know	about	all	of	the
digital	components	that	make	up	the	system.	Every	computer	is	built	using	collections	of	gates	that	are	all
connected	by	way	of	wires	acting	as	signal	pathways.	These	collections	of	gates	are	often	quite	standard,
resulting	 in	a	 set	of	building	blocks	 that	 can	be	used	 to	build	 the	entire	computer	 system.	Surprisingly,
these	building	blocks	are	all	constructed	using	the	basic	AND,	OR,	and	NOT	operations.	In	the	next	few
sections,	we	discuss	digital	circuits,	their	relationship	to	Boolean	algebra,	the	standard	building	blocks,
and	examples	of	the	two	different	categories,	combinational	logic	and	sequential	logic,	into	which	these
building	blocks	can	be	placed.

3.4.1		Digital	Circuits	and	Their	Relationship	to	Boolean	Algebra
What	 is	 the	 connection	 between	 Boolean	 functions	 and	 digital	 circuits?	 We	 have	 seen	 that	 a	 simple
Boolean	 operation	 (such	 as	 AND	 or	 OR)	 can	 be	 represented	 by	 a	 simple	 logic	 gate.	 More	 complex
Boolean	 expressions	 can	 be	 represented	 as	 combinations	 of	AND,	OR,	 and	NOT	gates,	 resulting	 in	 a
logic	 diagram	 that	 describes	 the	 entire	 expression.	 This	 logic	 diagram	 represents	 the	 physical
implantation	of	the	given	expression,	or	the	actual	digital	circuit.	Consider	the	function	F(x,y,z)	=	x	+	y′z



(which	we	looked	at	earlier).	Figure	3.9	represents	a	logic	diagram	that	implements	this	function.
Recall	our	discussion	of	sum-of-products	 form.	This	 form	lends	 itself	well	 to	 implementation	using

digital	circuits.	For	example,	consider	the	function	F(x,y,z)	=	xy	+	yz′	+	xyz.	Each	term	corresponds	to	an
AND	gate,	and	the	sum	is	implemented	by	a	single	OR	gate,	resulting	in	the	following	circuit:

We	can	build	 logic	diagrams	(which	in	 turn	 lead	to	digital	circuits)	for	any	Boolean	expression.	At
some	level,	every	operation	carried	out	by	a	computer	is	an	implementation	of	a	Boolean	expression.	This
may	not	be	obvious	to	high-level	language	programmers	because	the	semantic	gap	between	the	high-level
programming	level	and	the	Boolean	logic	level	is	so	wide.	Assembly	language	programmers,	being	much
closer	to	the	hardware,	use	Boolean	tricks	to	accelerate	program	performance.	A	good	example	is	the	use
of	the	XOR	operator	to	clear	a	storage	location,	as	in	A	XOR	A.	The	XOR	operator	can	also	be	used	to
exchange	 the	 values	 of	 two	 storage	 locations.	 The	 same	 XOR	 statement	 applied	 three	 times	 to	 two
variables,	say	A	and	B,	swaps	their	values:

A	=	A	XOR

B	B	=	A	XOR

B	A	=	A	XOR	B

One	operation	that	is	nearly	impossible	to	perform	at	the	high-level	language	level	is	bit	masking,	where
individual	bits	in	a	byte	are	stripped	off	(set	to	0)	according	to	a	specified	pattern.	Boolean	bit	masking
operations	are	indispensable	for	processing	individual	bits	in	a	byte.	For	example,	if	we	want	to	find	out
whether	 the	4’s	position	of	a	byte	 is	set,	we	AND	the	byte	with	0416.	 If	 the	result	 is	nonzero,	 the	bit	 is
equal	to	1.	Bit	masking	can	strip	off	any	pattern	of	bits.	Place	a	1	in	the	position	of	each	bit	that	you	want
to	keep,	and	set	the	others	to	0.	The	AND	operation	leaves	behind	only	the	bits	that	are	of	interest.

Boolean	algebra	allows	us	to	analyze	and	design	digital	circuits.	Because	of	the	relationship	between
Boolean	 algebra	 and	 logic	 diagrams,	 we	 simplify	 our	 circuit	 by	 simplifying	 our	 Boolean	 expression.
Digital	 circuits	 are	 implemented	with	 gates,	 but	 gates	 and	 logic	 diagrams	 are	 not	 the	most	 convenient
forms	for	representing	digital	circuits	during	the	design	phase.	Boolean	expressions	are	much	better	to	use
during	this	phase	because	they	are	easier	to	manipulate	and	simplify.

The	complexity	of	the	expression	representing	a	Boolean	function	has	a	direct	effect	on	the	complexity
of	the	resulting	digital	circuit:	The	more	complex	the	expression,	the	more	complex	the	resulting	circuit.
We	 should	 point	 out	 that	 we	 do	 not	 typically	 simplify	 our	 circuits	 using	 Boolean	 identities;	 we	 have
already	seen	that	this	can	sometimes	be	quite	difficult	and	time	consuming.	Instead,	designers	use	a	more
automated	method	to	do	this.	This	method	involves	the	use	of	Karnaugh	maps	(or	Kmaps).	Refer	to	the
focus	section	following	this	chapter	to	learn	how	Kmaps	are	used	to	simplify	digital	circuits.

3.4.2		Integrated	Circuits



Computers	are	composed	of	various	digital	components,	connected	by	wires.	Like	a	good	program,	 the
actual	hardware	of	a	computer	uses	collections	of	gates	to	create	larger	modules,	which,	in	turn,	are	used
to	implement	various	functions.	The	number	of	gates	required	to	create	these	“building	blocks”	depends
on	 the	 technology	 being	 used.	Because	 the	 circuit	 technology	 is	 beyond	 the	 scope	 of	 this	 text,	 you	 are
referred	to	the	reading	list	at	the	end	of	this	chapter	for	more	information	on	this	topic.

Typically,	gates	are	not	sold	individually;	they	are	sold	in	units	called	 integrated	circuits	 (ICs).	A
chip	(a	silicon	semiconductor	crystal)	is	a	small	electronic	device	consisting	of	the	necessary	electronic
components	 (transistors,	 resistors,	 and	 capacitors)	 to	 implement	 various	 gates.	 As	 already	 explained,
components	are	etched	directly	on	 the	chip,	allowing	 them	to	be	smaller	and	 to	 require	 less	power	 for
operation	 than	 their	discrete	component	counterparts.	This	chip	 is	 then	mounted	 in	a	ceramic	or	plastic
container	with	external	pins.	The	necessary	connections	are	welded	from	the	chip	to	the	external	pins	to
form	an	 IC.	The	 first	 ICs	contained	very	 few	 transistors.	As	we	 learned,	 the	 first	 ICs	were	called	SSI
chips	and	contained	up	to	100	electronic	components	per	chip.	We	now	have	ultra-large-scale	integration
(ULSI)	with	more	than	1	million	electronic	components	per	chip.	Figure	3.10	illustrates	a	simple	SSI	IC.

FIGURE	3.10	Simple	SSI	Integrated	Circuit

We	 have	 seen	 that	 we	 can	 represent	 any	 Boolean	 function	 as	 (1)	 a	 truth	 table,	 (2)	 a	 Boolean
expression	(in	sum-of-products	form),	or	(3)	a	 logic	diagram	using	gate	symbols.	Consider	 the	function
represented	by	the	following	truth	table:



This	 function	 is	 expressed	 in	 sum-of-products	 form	 as	 F(x,y,z)	 =	 x′yz′	 +	 x′yz.	 This	 simplifies	 to
F(x,y,z)	=	x′y	(the	simplification	is	left	as	an	exercise).	We	can	now	express	this	using	a	logic	diagram	as
follows:

Using	only	NAND	gates,	we	can	redraw	the	logic	diagram	as	follows:

We	can	implement	this	in	hardware	using	the	SSI	circuit	from	Figure	3.10	as	follows:

3.4.3		Putting	It	All	Together:	From	Problem	Description	to	Circuit
We	now	 understand	 how	 to	 represent	 a	 function	 by	 a	Boolean	 expression,	 how	 to	 simplify	 a	Boolean
expression,	and	how	to	represent	a	Boolean	expression	using	a	logic	diagram.	Let’s	combine	these	skills
to	design	a	circuit	from	beginning	to	end.

	EXAMPLE	3.10	Suppose	we	are	given	the	task	of	designing	a	logic	circuit	to	help	us	determine	the
best	time	to	plant	our	garden.	We	investigate	three	possible	factors:	(1)	time,	where	0	represents	day	and
1	 represents	 evening;	 (2)	 moon	 phase,	 where	 0	 represents	 not	 full	 and	 1	 represents	 full;	 and	 (3)
temperature,	where	0	represents	45°F	and	below,	and	1	represents	over	45°F.	These	three	items	represent
our	 inputs.	 After	 significant	 research,	 we	 determine	 that	 the	 best	 time	 to	 plant	 a	 garden	 is	 during	 the
evening	with	a	full	moon	(temperature	does	not	appear	to	matter).	This	results	in	the	following	truth	table:



We	have	placed	1s	in	the	output	column	when	the	inputs	indicated	“evening”	and	“full	moon,”	and	0s
everywhere	else.	By	converting	our	truth	table	to	a	Boolean	function	F,	we	see	that	F(x,y,z)	=	xyz′	+	xyz
(we	 use	 a	 process	 similar	 to	 that	 presented	 in	 Example	 3.9:	 We	 include	 terms	 where	 the	 function
evaluates	to	1).	We	now	simplify	F:

Therefore,	this	function	evaluates	to	one	AND	gate	using	x	and	y	as	input.

The	steps	to	design	a	Boolean	circuit	are	as	follows:	(1)	read	the	problem	carefully	to	determine	the
input	and	output	values;	(2)	establish	a	truth	table	that	shows	the	output	for	all	possible	inputs;	(3)	convert
the	truth	table	into	a	Boolean	expression;	and	(4)	simplify	the	Boolean	expression.

	EXAMPLE	3.11	Assume	you	are	responsible	for	designing	a	circuit	 that	will	allow	the	president	of
your	college	to	determine	whether	to	close	campus	due	to	weather	conditions.	If	the	highway	department
has	 not	 salted	 the	 area	 roads,	 and	 there	 is	 ice	 on	 the	 roads,	 campus	 should	 be	 closed.	 Regardless	 of
whether	there	is	ice	or	salt	on	the	roads,	if	there	is	more	than	8	in.	of	snow,	campus	should	be	closed.	In
all	other	situations,	campus	should	remain	open.

There	are	three	inputs:	ice	(or	no	ice),	salt	(or	not	salt),	and	snow	of	more	than	8	in.	on	the	roads	(or
not),	resulting	in	the	following	truth	table:



The	 truth	 table	 yields	 the	Boolean	 expression	F(x,y,z)	 =	 x′y′z	 +	 x′yz	 +	 xy′z′	 +	 xy′z	 +	 xyz.	We	 can
simplify	this	expression	using	Boolean	identities	as	follows:

We	leave	it	 to	the	reader	to	draw	the	logic	diagram	corresponding	to	z	+	xy′z′.	Once	 the	circuit	has
been	implemented	in	hardware,	all	the	college	president	has	to	do	is	set	the	inputs	to	indicate	the	current
conditions,	and	the	output	will	tell	her	whether	to	close	campus.

3.5			COMBINATIONAL	CIRCUITS
Digital	 logic	 chips	 are	 combined	 to	 give	us	 useful	 circuits.	These	 logic	 circuits	 can	be	 categorized	 as
either	combinational	 logic	or	sequential	 logic.	This	section	 introduces	combinational	 logic.	Sequential
logic	is	covered	in	Section	3.6.

3.5.1		Basic	Concepts
Combinational	 logic	 is	used	 to	build	circuits	 that	contain	basic	Boolean	operators,	 inputs,	 and	outputs.
The	key	concept	in	recognizing	a	combinational	circuit	 is	that	an	output	is	always	based	entirely	on	the
given	 inputs	 (as	we	 saw	 in	Examples	 3.10	 and	 3.11).	 Thus,	 the	 output	 of	 a	 combinational	 circuit	 is	 a
function	 of	 its	 inputs,	 and	 the	 output	 is	 uniquely	 determined	 by	 the	 values	 of	 the	 inputs	 at	 any	 given
moment.	A	given	combinational	circuit	may	have	several	outputs.	If	so,	each	output	represents	a	different
Boolean	function.

3.5.2		Examples	of	Typical	Combinational	Circuits
Let’s	begin	with	a	very	simple	combinational	circuit	called	a	half-adder.



	EXAMPLE	 3.12	 Consider	 the	 problem	 of	 adding	 two	 binary	 digits	 together.	 There	 are	 only	 three
things	 to	 remember:	0	+	0	=	0,	0	+	1	=	1	+	0	=	1,	and	1	+	1	=	10.	We	know	the	behavior	 this	circuit
exhibits,	and	we	can	formalize	this	behavior	using	a	truth	table.	We	need	to	specify	two	outputs,	not	just
one,	because	we	have	a	sum	and	a	carry	to	address.	The	truth	table	for	a	half-adder	is	shown	in	Table	3.9.

A	closer	look	reveals	that	Sum	is	actually	an	XOR.	The	Carry	output	is	equivalent	to	that	of	an	AND
gate.	We	 can	 combine	 an	XOR	gate	 and	 an	AND	gate,	 resulting	 in	 the	 logic	 diagram	 for	 a	 half-adder
shown	in	Figure	3.11.

TABLE	3.9	Truth	Table	for	a	Half-Adder

FIGURE	3.11	Logic	Diagram	for	a	Half-Adder

The	half-adder	 is	a	very	simple	circuit	and	not	 really	very	useful	because	 it	 can	only	add	 two	bits
together.	However,	we	can	extend	this	adder	to	a	circuit	that	allows	the	addition	of	larger	binary	numbers.
Consider	how	you	add	base	10	numbers:	You	add	up	the	rightmost	column,	note	the	units	digit,	and	carry
the	tens	digit.	Then	you	add	that	carry	to	the	current	column	and	continue	in	a	similar	manner.	We	can	add
binary	numbers	in	the	same	way.	However,	we	need	a	circuit	that	allows	three	inputs	(x,	y,	and	Carry	In)
and	 two	 outputs	 (Sum	 and	Carry	Out).	 Figure	 3.12	 illustrates	 the	 truth	 table	 and	 corresponding	 logic
diagram	for	a	full-adder.	Note	that	this	full-adder	is	composed	of	two	half-adders	and	an	OR	gate.

Given	this	full-adder,	you	may	be	wondering	how	this	circuit	can	add	binary	numbers;	it	is	capable	of
adding	only	three	bits.	The	answer	is,	 it	can’t.	However,	we	can	build	an	adder	capable	of	adding	two
16-bit	words,	for	example,	by	replicating	the	above	circuit	16	times,	feeding	the	Carry	Out	of	one	circuit
into	the	Carry	In	of	the	circuit	immediately	to	its	left.	Figure	3.13	illustrates	this	idea.	This	type	of	circuit
is	called	a	ripple-carry	adder	because	of	 the	sequential	generation	of	carries	 that	“ripple”	 through	 the
adder	stages.	Note	that	 instead	of	drawing	all	 the	gates	that	constitute	a	full-adder,	we	use	a	black	box
approach	to	depict	our	adder.	A	black	box	approach	allows	us	to	ignore	the	details	of	the	actual	gates.	We
concern	ourselves	only	with	the	inputs	and	outputs	of	the	circuit.	This	is	typically	done	with	most	circuits,
including	decoders,	multiplexers,	and	adders,	as	we	shall	see	very	soon.



FIGURE	3.12	a)	Truth	Table	for	a	Full-Adder
b)	Logic	Diagram	for	a	Full-Adder

FIGURE	3.13	Logic	Diagram	for	a	Ripple-Carry	Adder

Because	 this	adder	 is	very	slow,	 it	 is	not	normally	 implemented.	However,	 it	 is	easy	 to	understand
and	should	give	you	some	idea	of	how	addition	of	larger	binary	numbers	can	be	achieved.	Modifications
made	to	adder	designs	have	resulted	in	the	carry-look-ahead	adder,	the	carry-select	adder,	and	the	carry-
save	adder,	as	well	as	others.	Each	attempts	to	shorten	the	delay	required	to	add	two	binary	numbers.	In
fact,	 these	 newer	 adders	 achieve	 speeds	 of	 40–90%	 faster	 than	 the	 ripple-carry	 adder	 by	 performing
additions	 in	 parallel	 and	 reducing	 the	 maximum	 carry	 path.	 Adders	 are	 very	 important	 circuits—a
computer	would	not	be	very	useful	if	it	could	not	add	numbers.

An	equally	important	operation	that	all	computers	use	frequently	is	decoding	binary	information	from
a	set	of	n	 inputs	 to	a	maximum	of	2n	outputs.	A	decoder	 uses	 the	 inputs	 and	 their	 respective	values	 to
select	one	 specific	output	 line.	What	do	we	mean	by	“select	 an	output	 line”?	 It	 simply	means	 that	 one
unique	 output	 line	 is	 asserted,	 or	 set	 to	 1,	 whereas	 the	 other	 output	 lines	 are	 set	 to	 0.	 Decoders	 are
normally	defined	by	the	number	of	 inputs	and	the	number	of	outputs.	For	example,	a	decoder	that	has	3
inputs	and	8	outputs	is	called	a	3-to-8	decoder.

We	mentioned	 that	 this	 decoder	 is	 something	 the	 computer	 uses	 frequently.	 At	 this	 point,	 you	 can
probably	name	many	arithmetic	operations	 the	computer	must	be	able	 to	perform,	but	you	might	 find	 it
difficult	to	propose	an	example	of	decoding.	If	so,	it	is	because	you	are	not	familiar	with	how	a	computer
accesses	memory.

All	memory	 addresses	 in	 a	 computer	 are	 specified	 as	 binary	 numbers.	When	 a	memory	 address	 is



referenced	 (whether	 for	 reading	or	 for	writing),	 the	computer	 first	has	 to	determine	 the	actual	address.
This	 is	 done	 using	 a	 decoder.	 Example	 3.13	 should	 clarify	 any	 questions	 you	may	 have	 about	 how	 a
decoder	works	and	what	it	might	be	used	for.

	EXAMPLE	3.13	A	3-to-8	decoder	circuit
Imagine	 memory	 consisting	 of	 8	 chips,	 each	 containing	 8K	 bytes.	 Let’s	 assume	 chip	 0	 contains

memory	addresses	0–8191	(or	1FFF	in	hex),	chip	1	contains	memory	addresses	8192–16,383	(or	2000–
3FFF	in	hex),	and	so	on.	We	have	a	total	of	8K	×	8,	or	64K	(65,536)	addresses	available.	We	will	not
write	down	all	64K	addresses	as	binary	numbers;	however,	writing	a	few	addresses	in	binary	form	(as
we	illustrate	in	the	following	paragraphs)	will	illustrate	why	a	decoder	is	necessary.

Given	 64	 =	 26	 and	 1K	 =	 210,	 then	 64K	 =	 26	 ×	 210	 =	 216,	 which	 indicates	 that	 we	 need	 16	 bits	 to
represent	each	address.	If	you	have	trouble	understanding	this,	start	with	a	smaller	number	of	addresses.
For	 example,	 if	 you	 have	 four	 addresses—addresses	 0,	 1,	 2,	 and	 3,	 the	 binary	 equivalent	 of	 these
addresses	is	00,	01,	10,	and	11,	requiring	two	bits.	We	know	22	=	4.	Now	consider	eight	addresses.	We
have	to	be	able	to	count	from	0	to	7	in	binary.	How	many	bits	does	that	require?	The	answer	is	3.	You	can
either	write	them	all	down,	or	you	recognize	that	8	=	23.	The	exponent	tells	us	the	minimum	number	of	bits
necessary	 to	 represent	 the	 addresses.	 (We	will	 see	 this	 idea	 again	 later	 in	 this	 chapter,	 as	well	 as	 in
Chapters	4	and	6.)

All	addresses	on	chip	0	have	the	format:	000xxxxxxxxxxxxx.	Because	chip	0	contains	 the	addresses
0–8191,	 the	 binary	 representation	 of	 these	 addresses	 is	 in	 the	 range	 0000000000000000	 to
0001111111111111.	Similarly,	all	addresses	on	chip	1	have	the	format	001xxxxxxxxxxxxx,	and	so	on	for
the	remaining	chips.	The	leftmost	3	bits	determine	on	which	chip	the	address	is	actually	located.	We	need
16	bits	to	represent	the	entire	address,	but	on	each	chip,	we	only	have	213	addresses.	Therefore,	we	need
only	13	bits	to	uniquely	identify	an	address	on	a	given	chip.	The	rightmost	13	bits	give	us	this	information.

When	a	computer	is	given	an	address,	it	must	first	determine	which	chip	to	use;	then	it	must	find	the
actual	address	on	that	specific	chip.	In	our	example,	the	computer	would	use	the	3	leftmost	bits	to	pick	the
chip	and	then	find	the	address	on	the	chip	using	the	remaining	13	bits.	These	3	high-order	bits	are	actually
used	 as	 the	 inputs	 to	 a	 decoder	 so	 the	 computer	 can	 determine	which	 chip	 to	 activate	 for	 reading	 or
writing.	If	the	first	3	bits	are	000,	chip	0	should	be	activated.	If	the	first	3	bits	are	111,	chip	7	should	be
activated.	Which	chip	would	be	activated	if	the	first	3	bits	were	010?	It	would	be	chip	2.	Turning	on	a
specific	wire	activates	a	chip.	The	output	of	the	decoder	is	used	to	activate	one,	and	only	one,	chip	as	the
addresses	are	decoded.

Figure	3.14	 illustrates	 the	 physical	 components	 in	 a	 decoder	 and	 the	 symbol	 often	 used	 to	 represent	 a
decoder.	We	will	see	how	a	decoder	is	used	in	memory	in	Section	3.6.

Another	common	combinational	circuit	is	a	multiplexer.	This	circuit	selects	binary	information	from
one	 of	 many	 input	 lines	 and	 directs	 it	 to	 a	 single	 output	 line.	 Selection	 of	 a	 particular	 input	 line	 is
controlled	 by	 a	 set	 of	 selection	 variables,	 or	 control	 lines.	At	 any	given	 time,	 only	 one	 input	 (the	 one
selected)	is	routed	through	the	circuit	to	the	output	line.	All	other	inputs	are	“cut	off.”	If	the	values	on	the
control	lines	change,	the	input	actually	routed	through	changes	as	well.	Figure	3.15	illustrates	the	physical
components	in	a	multiplexer	and	the	symbol	often	used	to	represent	a	multiplexer.	S0	and	S1	are	the	control
lines;	I0	–	I3	are	the	input	values.

Another	useful	set	of	combinational	circuits	to	study	includes	a	parity	generator	and	a	parity	checker
(recall	we	studied	parity	in	Chapter	2).	A	parity	generator	is	a	circuit	that	creates	the	necessary	parity



bit	to	add	to	a	word;	a	parity	checker	checks	to	make	sure	proper	parity	(odd	or	even)	is	present	in	the
word,	detecting	an	error	if	the	parity	bit	is	incorrect.

Typically,	parity	generators	and	parity	checkers	are	constructed	using	XOR	functions.	Assuming	we
are	using	odd	parity,	the	truth	table	for	a	parity	generator	for	a	3-bit	word	is	given	in	Table	3.10.	The	truth
table	for	a	parity	checker	to	be	used	on	a	4-bit	word	with	3	information	bits	and	1	parity	bit	is	given	in
Table	3.11.	 The	 parity	 checker	 outputs	 a	 1	 if	 an	 error	 is	 detected	 and	 0	 otherwise.	We	 leave	 it	 as	 an
exercise	to	draw	the	corresponding	logic	diagrams	for	both	the	parity	generator	and	the	parity	checker.

FIGURE	3.14	a)	A	Look	Inside	a	Decoder
b)	A	Decoder	Symbol

FIGURE	3.15	a)	A	Look	Inside	a	Multiplexer
b)	A	Multiplexer	Symbol

Bit	 shifting,	 moving	 the	 bits	 of	 a	 word	 or	 byte	 one	 position	 to	 the	 left	 or	 right,	 is	 a	 very	 useful
operation.	Shifting	a	bit	to	the	left	takes	it	to	the	position	of	the	next	higher	power	of	two.	When	the	bits	of
an	unsigned	integer	are	shifted	to	the	left	by	one	position,	it	has	the	same	effect	as	multiplying	that	integer
by	2,	but	using	significantly	fewer	machine	cycles	to	do	so.	The	leftmost	or	rightmost	bit	is	lost	after	a	left
or	 right	 shift	 (respectively).	 Left	 shifting	 the	 nibble,	 1101,	 changes	 it	 to	 1010,	 and	 right	 shifting	 it



produces	0110.	Some	buffers	and	encoders	 rely	on	shifters	 to	produce	a	bit	 stream	from	a	byte	so	 that
each	bit	can	be	processed	in	sequence.	A	4-bit	shifter	is	illustrated	in	Figure	3.16.	When	the	control	line,
S,	 is	 low	(i.e.,	zero),	each	bit	of	 the	input	(labeled	I0	through	I3)	 is	shifted	 left	by	one	position	 into	 the
outputs	(labeled	O0	through	O3).	When	the	control	line	is	high,	a	right	shift	occurs.	This	shifter	can	easily
be	expanded	to	any	number	of	bits,	or	combined	with	memory	elements	to	create	a	shift	register.

TABLE	3.10	Parity	Generator

TABLE	3.11	Parity	Checker

There	are	far	too	many	combinational	circuits	for	us	to	be	able	to	cover	them	all	in	this	brief	chapter.
The	references	at	 the	end	of	this	chapter	provide	much	more	information	on	combinational	circuits	than



we	 can	 give	 here.	 However,	 before	 we	 finish	 the	 topic	 of	 combinational	 logic,	 there	 is	 one	 more
combinational	circuit	we	need	to	introduce.	We	have	covered	all	of	the	components	necessary	to	build	an
arithmetic	logic	unit	(ALU).

Figure	3.17	 illustrates	a	 simple	ALU	with	 four	basic	operations—AND,	OR,	NOT,	and	addition—
carried	out	on	two	machine	words	of	2	bits	each.	The	control	lines,	f0	and	f1,	determine	which	operation
is	to	be	performed	by	the	CPU.	The	signal	00	is	used	for	addition	(A	+	B);	01	for	NOT	A;	10	for	A	OR	B,
and	11	for	A	AND	B.	The	input	lines	A0	and	A1	 indicate	2	bits	of	one	word,	and	B0	and	B1	 indicate	 the
second	word.	C0	and	C1	represent	the	output	lines.

FIGURE	3.16	4-Bit	Shifter



FIGURE	3.17	A	Simple	Two-Bit	ALU

3.6			SEQUENTIAL	CIRCUITS
In	 the	 previous	 section,	 we	 studied	 combinational	 logic.	 We	 have	 approached	 our	 study	 of	 Boolean
functions	by	examining	the	variables,	the	values	for	those	variables,	and	the	function	outputs	that	depend
solely	 on	 the	 values	 of	 the	 inputs	 to	 the	 functions.	 If	 we	 change	 an	 input	 value,	 this	 has	 a	 direct	 and
immediate	effect	on	the	value	of	the	output.	The	major	weakness	of	combinational	circuits	is	that	there	is
no	concept	of	storage—they	are	memoryless.	This	presents	us	with	a	dilemma.	We	know	that	computers
must	have	a	way	to	remember	values.	Consider	a	much	simpler	digital	circuit	needed	for	a	soda	machine.
When	you	put	money	into	a	soda	machine,	the	machine	remembers	how	much	you	have	put	in	at	any	given
instant.	Without	this	ability	to	remember,	it	would	be	very	difficult	to	use.	A	soda	machine	cannot	be	built
using	 only	 combinational	 circuits.	 To	 understand	 how	 a	 soda	 machine	 works,	 and	 ultimately	 how	 a
computer	works,	we	must	study	sequential	logic.

3.6.1		Basic	Concepts
A	 sequential	 circuit	 defines	 its	 output	 as	 a	 function	 of	 both	 its	 current	 inputs	 and	 its	 previous	 inputs.
Therefore,	the	output	depends	on	past	inputs.	To	remember	previous	inputs,	sequential	circuits	must	have



some	sort	of	storage	element.	We	typically	 refer	 to	 this	storage	element	as	a	 flip-flop.	The	state	of	 this
flip-flop	is	a	function	of	the	previous	inputs	to	the	circuit.	Therefore,	pending	output	depends	on	both	the
current	 inputs	 and	 the	 current	 state	 of	 the	 circuit.	 In	 the	 same	 way	 that	 combinational	 circuits	 are
generalizations	of	gates,	sequential	circuits	are	generalizations	of	flip-flops.

3.6.2		Clocks
Before	 we	 discuss	 sequential	 logic,	 we	 must	 first	 introduce	 a	 way	 to	 order	 events.	 (The	 fact	 that	 a
sequential	 circuit	 uses	 past	 inputs	 to	 determine	 present	 outputs	 indicates	 that	 we	 must	 have	 event
ordering.)	Some	sequential	circuits	are	asynchronous,	which	means	they	become	active	the	moment	any
input	value	changes.	Synchronous	sequential	circuits	use	clocks	to	order	events.	A	clock	is	a	circuit	that
emits	a	series	of	pulses	with	a	precise	pulse	width	and	a	precise	 interval	between	consecutive	pulses.
This	interval	is	called	the	clock	cycle	time.	Clock	speed	is	generally	measured	in	megahertz	or	gigahertz.

A	clock	is	used	by	a	sequential	circuit	to	decide	when	to	update	the	state	of	the	circuit	(i.e.,	when	do
“present”	inputs	become	“past”	inputs?).	This	means	that	inputs	to	the	circuit	can	only	affect	the	storage
element	at	given,	discrete	instances	of	time.	In	this	chapter,	we	examine	synchronous	sequential	circuits
because	 they	 are	 easier	 to	 understand	 than	 their	 asynchronous	 counterparts.	 From	 this	 point,	when	we
refer	to	“sequential	circuit,”	we	are	implying	“synchronous	sequential	circuit.”	Most	sequential	circuits
are	 edge	 triggered	 (as	 opposed	 to	 being	 level	 triggered).	This	means	 they	 are	 allowed	 to	 change	 their
states	on	either	the	rising	or	falling	edge	of	the	clock	signal,	as	seen	in	Figure	3.18.

3.6.3		Flip-Flops
A	level-triggered	circuit	is	allowed	to	change	state	whenever	the	clock	signal	is	either	high	or	low.	Many
people	use	the	terms	latch	and	flip-flop	interchangeably.	Technically,	a	latch	is	level	triggered,	whereas	a
flip-flop	 is	 edge	 triggered.	 In	 this	 text,	 we	 use	 the	 term	 flip-flop.	 William	 Eccles	 and	 F.	 W.	 Jordan
invented	the	first	flip-flop	(from	vacuum	tubes)	in	1918,	so	these	circuits	have	been	around	for	some	time.
However,	 they	 have	 not	 always	 been	 called	 flip-flops.	 Like	 so	 many	 other	 inventions,	 they	 were
originally	named	after	the	inventors	and	were	called	Eccles–Jordan	trigger	circuits.	So	where	did	“flip-
flop”	come	from?	Some	say	it	was	the	sound	the	circuit	made	(as	produced	on	a	speaker	connected	to	one
of	the	components	in	the	original	circuit)	when	it	was	triggered;	others	believe	it	came	from	the	circuit’s
ability	to	flip	from	one	state	to	another	and	back	again.

FIGURE	3.18	A	Clock	Signal	Indicating	Discrete	Instances	of	Time

To	“remember”	a	past	state,	sequential	circuits	rely	on	a	concept	called	feedback.	This	simply	means
the	output	of	a	circuit	is	fed	back	as	an	input	to	the	same	circuit.	A	very	simple	feedback	circuit	uses	two
NOT	gates,	as	shown	in	Figure	3.19.	In	this	figure,	if	Q	is	0,	it	will	always	be	0.	If	Q	is	1,	it	will	always
be	1.	This	is	not	a	very	interesting	or	useful	circuit,	but	it	allows	you	to	see	how	feedback	works.

A	more	useful	feedback	circuit	is	composed	of	two	NOR	gates	resulting	in	the	most	basic	memory	unit



called	an	SR	flip-flop.	SR	stands	for	“set/reset.”	The	logic	diagram	for	the	SR	flip-flop	is	given	in	Figure
3.20.

We	 can	 describe	 any	 flip-flop	 by	 using	 a	 characteristic	 table,	 which	 indicates	 what	 the	 next	 state
should	be	based	on	the	inputs	and	the	current	state,	Q.	The	notation	Q(t)	represents	the	current	state,	and
Q(t	+	1)	indicates	the	next	state,	or	the	state	the	flip-flop	should	enter	after	the	clock	has	been	pulsed.	We
can	also	specify	a	timing	diagram,	which	indicates	the	relationship	of	signals	from	the	clock	to	changes	in
a	 flip-flop’s	output.	Figure	3.21a	 shows	 the	 actual	 implementation	 of	 the	 SR	 sequential	 circuit;	 Figure
3.21b	adds	a	clock	to	the	flip-flop;	Figure	3.21c	specifies	its	characteristic	table;	and	Figure	3.21d	shows
an	example	timing	diagram.	We	are	interested	in	exploring	only	clocked	flip-flops.

An	SR	flip-flop	exhibits	interesting	behavior.	There	are	three	inputs:	S,	R,	and	the	current	output	Q(t).
We	create	the	truth	table	shown	in	Table	3.12	to	further	illustrate	how	this	circuit	works.

For	example,	if	S	is	0	and	R	is	0,	and	the	current	state,	Q(t),	is	0,	then	the	next	state,	Q(t	+	1),	is	also
0.	If	S	is	0	and	R	is	0,	and	Q(t)	is	1,	then	Q(t	+	1)	is	set	to	1.	Actual	inputs	of	(0,	0)	for	(S,	R)	result	in	no
change	when	the	clock	is	pulsed.	Following	a	similar	argument,	we	can	see	that	inputs	(S,	R)	=	(0,1)	force
the	next	state,	Q(t	+	1),	 to	0	 regardless	of	 the	current	 state	 (thus	 forcing	a	reset	on	 the	circuit	output).
When	(S,	R)	=	(1,	0),	the	circuit	output	is	set	to	1.

FIGURE	3.19	Example	of	Simple	Feedback

FIGURE	3.20	SR	Flip-Flop	Logic	Diagram



FIGURE	3.21	a)	SR	Flip-Flop
b)	Clocked	SR	Flip-Flop
c)	Characteristic	Table	for	the	SR	Flip-Flop
d)	Timing	Diagram	for	the	SR	Flip-Flop	(assuming	initial	state	of	Q	is	0)

TABLE	3.12	Truth	Table	for	SR	Flip-Flop

Looking	 at	 the	 example	 timing	diagram	 in	Figure	3.21d,	we	 see	 that	 at	 time	 t1,	 the	 clock	 ticks,	 but
because	S	=	R	=	0,	Q	does	not	change.	At	t2,	S	has	changed	to	1,	and	R	is	still	0,	so	when	the	clock	ticks,
Q	is	set	to	1.	At	t3,	S	=	R	=	0,	so	Q	does	not	change.	By	t4,	because	R	has	changed	to	1,	when	the	clock
ticks,	S	=	0,	R	=	1,	and	Q	is	reset	to	0.



FIGURE	3.22	a)	JK	Flip-Flop
b)	JK	Characteristic	Table
c)	JK	Flip-Flop	as	a	Modified	SR	Flip-Flop
d)	Timing	Diagram	for	JK	Flip-Flop	(assuming	initial	state	of	Q	is	0)

There	is	one	oddity	with	this	particular	flip-flop.	What	happens	if	both	S	and	R	are	set	to	1	at	the	same
time?	If	we	examine	the	unclocked	flip-flop	in	Figure	3.21a,	this	forces	a	final	state	in	which	both	Q	and
Q′	are	0,	but	how	can	Q	=	0	=	Q′?	Let’s	look	at	what	happens	when	S	=	R	=	1	using	the	clocked	flip-flop
in	Figure	3.21b.	When	the	clock	pulses,	the	S	and	R	values	are	input	into	the	flip-flop.	This	forces	both	Q
and	Q′	to	0.	When	the	clock	pulse	is	removed,	the	final	state	of	the	flip-flop	cannot	be	determined,	as	once
the	clock	pulse	 ends,	both	 the	S	 and	R	 inputs	 are	 killed,	 and	 the	 resulting	 state	 depends	 on	which	one
actually	terminated	first	(this	situation	is	often	called	a	“race	condition”).	Therefore,	this	combination	of
inputs	is	not	allowed	in	an	SR	flip-flop.

We	can	add	some	conditioning	logic	to	our	SR	flip-flop	to	ensure	that	the	illegal	state	never	arises—
we	simply	modify	the	SR	flip-flop	as	shown	in	Figure	3.22.	This	results	in	a	JK	flip-flop.	A	JK	flip-flop
is	 basically	 the	 same	 thing	 as	 an	 SR	 flip-flop	 except	 when	 both	 inputs	 are	 1,	 this	 circuit	 negates	 the
current	state.	The	timing	diagram	in	Figure	3.22d	illustrates	how	this	circuit	works.	At	time	t1,	J	=	K	=	0,
resulting	in	no	change	to	Q.	At	t2,	J	=	1	and	K	=	0,	so	Q	is	set	to	1.	At	t3,	K	=	J	=	1,	which	causes	Q	to	be
negated,	changing	it	from	1	to	0.	At	t4,	K	=	0	and	J	=	1,	forcing	Q	to	be	set	to	1.



FIGURE	3.23	a)	D	Flip-Flop	b)	D	Flip-Flop	Characteristic	Table	c)	D	Flip-Flop	as	a	Modified	SR
Flip-Flop	d)	Timing	Diagram	for	D	Flip-Flop

There	appears	to	be	significant	disagreement	regarding	where	the	“JK”	came	from.	Some	believe	it
was	 named	 after	 Jack	 Kilby,	 inventor	 of	 the	 integrated	 circuit.	 Others	 believe	 it	 is	 named	 after	 John
Kardash,	 who	 is	 often	 credited	 as	 its	 inventor	 (as	 specified	 in	 his	 biographical	 data	 on	 his	 current
company’s	 website).	 Still	 others	 believe	 it	 was	 coined	 by	 workers	 at	 Hughes	 Aircraft	 who	 labeled
circuits	 input	 using	 letters,	 and	 J	 and	K	 just	 happened	 to	 be	 next	 on	 the	 list	 (as	 detailed	 in	 a	 letter
submitted	to	the	electronics	magazine	EDN	in	1968).

Another	variant	of	the	SR	flip-flop	is	the	D	(data)	flip-flop.	A	D	flip-flop	is	a	true	representation	of
physical	computer	memory.	This	sequential	circuit	stores	one	bit	of	information.	If	a	1	is	asserted	on	the
input	line	D,	and	the	clock	is	pulsed,	the	output	line	Q	becomes	a	1.	If	a	0	is	asserted	on	the	input	line	and
the	 clock	 is	 pulsed,	 the	 output	 becomes	 0.	 Remember	 that	 output	Q	 represents	 the	 current	 state	 of	 the
circuit.	Therefore,	an	output	value	of	1	means	the	circuit	is	currently	“storing”	a	value	of	1.	Figure	3.23
illustrates	the	D	flip-flop,	lists	its	characteristic	table	and	timing	diagram,	and	reveals	that	the	D	flip-flop
is	actually	a	modified	SR	flip-flop.

3.6.4		Finite	State	Machines
Characteristic	tables	and	timing	diagrams	allow	us	to	describe	the	behavior	of	flip-flops	and	sequential
circuits.	An	 equivalent	 graphical	 depiction	 is	 provided	 by	 a	 finite	 state	machine	 (FSM).	 Finite	 state
machines	typically	use	circles	to	represent	machine	states	and	directed	arcs	to	represent	transitions	from
one	state	to	another.	Each	circle	is	labeled	with	the	state	it	represents,	and	each	arc	is	labeled	with	the
input	and/or	output	for	that	state	transition.	FSMs	can	be	in	only	one	state	at	a	time.	We	are	interested	in
synchronous	FSMs	(those	allowing	state	transitions	only	when	the	clock	ticks).

A	real-world	example	that	can	be	modeled	with	state	machines	is	a	common	traffic	light.	It	has	three
states:	green,	yellow,	and	red.	Transitions	among	states	occur	as	timers	in	the	hardware	expire.	An	FSM
for	a	traffic	light	appears	below:



There	are	a	number	of	different	kinds	of	finite	state	machines,	each	suitable	for	a	different	purpose.
Figure	3.24	shows	a	Moore	machine	representation	of	a	JK	flip-flop.	The	circles	represent	the	two	states
of	 the	 flip-flop,	which	we	have	 labeled	A	 and	B.	The	output,	Q,	 is	 indicated	 in	 brackets,	 and	 the	 arcs
illustrate	the	transitions	between	the	states.	We	can	see	in	this	figure	exactly	how	a	JK	flip-flop	goes	from
state	0	to	state	1	when	J	=	1	and	S	=	0,	or	when	J	=	K	=	1,	and	how	it	goes	from	state	1	to	state	0	when	J	=
K	=	1,	or	when	J	=	1	and	K	=	0.	This	finite	state	machine	is	a	Moore-type	machine	because	each	of	the
states	is	associated	with	the	output	of	the	machine.	In	fact,	the	reflexive	arcs	shown	in	the	figure	are	not
required	because	 the	output	of	 the	machine	changes	only	when	 the	state	changes,	and	 the	state	does	not
change	through	a	reflexive	arc.	We	can	therefore	draw	a	simplified	Moore	machine	(Figure	3.25).	Moore
machines	are	named	for	Edward	F.	Moore,	who	invented	this	type	of	FSM	in	1956.

A	contemporary	of	Edward	Moore,	George	H.	Mealy,	 independently	 invented	another	 type	of	FSM
that	has	also	been	named	after	its	inventor.	Like	a	Moore	machine,	a	Mealy	machine	consists	of	a	circle
for	each	state,	and	the	circles	are	connected	by	arcs	for	each	transition.	Unlike	a	Moore	machine,	which
associates	an	output	with	each	state	(indicated	in	the	Moore	machine	example	by	putting	a	0	or	1	in	square
brackets),	a	Mealy	machine	associates	an	output	with	each	transition.	This	implies	that	a	Mealy	machine’s
outputs	are	a	function	of	its	current	state	and	its	input,	and	a	Moore	machine’s	output	is	a	function	only	of
its	current	state.	Each	transition	arc	is	 labeled	with	its	 input	and	output	separated	by	a	slash.	Reflexive
arcs	 cannot	 be	 removed	 from	Mealy	machines	 because	 they	 depict	 an	 output	 of	 the	machine.	A	Mealy
machine	for	our	JK	flip-flop	is	shown	in	Figure	3.26.

FIGURE	3.24	JK	Flip-Flop	Represented	as	a	Moore	Machine



FIGURE	3.25	Simplified	Moore	Machine	for	the	JK	Flip-Flop

FIGURE	3.26	JK	Flip-Flop	Represented	as	a	Mealy	Machine

In	the	actual	implementation	of	either	a	Moore	or	Mealy	machine,	two	things	are	required:	a	memory
(register)	 to	 store	 the	 current	 state	 and	 combinational	 logic	 components	 that	 control	 the	 output	 and
transitions	from	one	state	to	another.	Figure	3.27	illustrates	this	idea	for	both	machines.

The	 graphical	 models	 and	 the	 block	 diagrams	 that	 we	 have	 presented	 for	 the	 Moore	 and	 Mealy
machines	 are	 useful	 for	 high-level	 conceptual	 modeling	 of	 the	 behavior	 of	 circuits.	 However,	 once	 a
circuit	reaches	a	certain	level	of	complexity,	Moore	and	Mealy	machines	become	unwieldy	and	only	with
great	 difficulty	 capture	 the	 details	 required	 for	 implementation.	 Consider,	 for	 example,	 a	 microwave
oven.	The	oven	will	be	in	the	“on”	state	only	when	the	door	is	closed,	the	control	dial	is	set	to	“cook”	or
“defrost,”	 and	 there	 is	 time	 on	 the	 timer.	 The	 “on”	 state	 means	 that	 the	 magnetron	 is	 producing
microwaves,	the	light	in	the	oven	compartment	is	lit,	and	the	carousel	is	rotating.	If	the	time	expires,	the
door	 opens,	 or	 the	 control	 is	 turned	 from	 “cook”	 to	 “off,”	 the	 oven	 moves	 to	 the	 “off”	 state.	 The
dimension	provided	by	the	timer,	along	with	the	numerous	signals	that	define	a	state,	is	hard	to	capture	in
the	 Moore	 and	 Mealy	 models.	 For	 this	 reason,	 Christopher	 R.	 Clare	 invented	 the	 algorithmic	 state
machine	 (ASM).	 As	 its	 name	 implies,	 an	 algorithmic	 state	 machine	 is	 directed	 at	 expressing	 the
algorithms	that	advance	an	FSM	from	one	state	to	another.



FIGURE	3.27	a)	Block	Diagram	for	Moore	Machines	b)	Block	Diagram	for	Mealy	Machines

An	 algorithmic	 state	 machine	 consists	 of	 blocks	 that	 contain	 a	 state	 box,	 a	 label,	 and	 optionally
condition	and	output	boxes	(Figure	3.28).	Each	ASM	block	has	exactly	one	entry	point	and	at	 least	one
exit	point.	Moore	type	outputs	(the	circuit	signals)	are	indicated	inside	the	state	block;	Mealy-type	outputs
are	 indicated	 in	 the	 oval	 output	 “box.”	 If	 a	 signal	 is	 asserted	 when	 “high,”	 it	 is	 prefixed	 with	 an	H;
otherwise,	 it	 is	prefixed	with	an	L.	 If	 the	 signal	 is	 asserted	 immediately,	 it	 is	 also	 prefixed	with	 an	 I;
otherwise,	the	signal	asserts	at	the	next	clock	cycle.	The	input	conditions	that	cause	changes	in	state	(this
is	 the	 algorithmic	 part)	 are	 expressed	 by	 elongated,	 six-sided	 polygons	 called	 condition	 boxes.	 Any
number	of	condition	boxes	can	be	placed	inside	an	ASM	block,	and	the	order	in	which	they	are	shown	is
unimportant.	An	ASM	for	our	microwave	oven	example	is	shown	in	Figure	3.29.

As	implied,	ASMs	can	express	the	behavior	of	either	a	Moore	or	Mealy	machine.	Moore	and	Mealy
machines	are	probably	equivalent	and	can	be	used	 interchangeably.	However,	 it	 is	sometimes	easier	 to
use	one	rather	than	the	other,	depending	on	the	application.	In	most	cases,	Moore	machines	require	more
states	 (memory)	 but	 result	 in	 simpler	 implementations	 than	Mealy	 machines,	 because	 there	 are	 fewer
transitions	to	account	for	in	Moore	machines.



FIGURE	3.28	Components	of	an	Algorithmic	State	Machine

FIGURE	3.29	Algorithmic	State	Machine	for	a	Microware	Oven

Hardware-Free	Machines
Moore	and	Mealy	machines	are	only	two	of	many	different	types	of	finite	state	machines	that	you	will
encounter	 in	 computer	 science	 literature.	 An	 understanding	 of	 FSMs	 is	 essential	 in	 the	 study	 of
programming	languages,	compilers,	the	theory	of	computation,	and	automata	theory.	We	refer	to	these



abstractions	 as	machines	 because	machines	 are	 devices	 that	 respond	 to	 a	 set	 of	 stimuli	 (events)	 by
generating	predictable	responses	(actions)	based	on	a	history	of	prior	events	(current	state).	One	of	the
most	 important	of	 these	 is	 the	deterministic	 finite	automata	 (DFA)	 computational	model.	Formally
speaking,	a	DFA,	M,	is	completely	described	by	the	quintuple	M	=	(Q,	S,	Σ,	δ,	F)	where

•			Q	is	a	finite	set	of	states	that	represents	every	configuration	the	machine	can	assume;
•			S	is	an	element	of	Q	that	represents	the	start	state,	which	is	the	initial	state	of	the	machine	before	it

receives	any	inputs;
•			Σ	is	the	input	alphabet	or	set	of	events	that	the	machine	will	recognize;
•	 	 	 δ	 is	 a	 transition	 function	 that	maps	 a	 state	 in	Q	 and	 a	 letter	 from	 the	 input	 alphabet	 to	 another

(possibly	the	same)	state	in	Q;	and
•			F	is	a	set	of	states	(elements	of	Q)	designated	as	the	final	(or	accepting)	states.

DFAs	are	particularly	important	in	the	study	of	programming	languages;	they	are	used	to	recognize
grammars	or	 languages.	To	use	 a	DFA,	you	begin	 in	 the	Start	 state	 and	process	 an	 input	 string,	one
character	at	a	time,	changing	states	as	you	go.	Upon	processing	the	entire	string,	if	you	are	in	a	final
accepting	state,	a	legal	string	is	“accepted”	by	that	DFA.	Otherwise,	the	string	is	rejected.

We	can	use	 this	DFA	definition	 to	describe	a	machine—as	 in	a	compiler—that	extracts	variable
names	 (character	 strings)	 from	a	 source	 code	 file.	Suppose	our	 computer	 language	 accepts	 variable
names	 that	must	start	with	a	 letter,	can	contain	an	 infinite	stream	of	 letters	or	numbers	 following	 the
initial	letter,	and	is	terminated	by	a	whitespace	character	(tab,	space,	linefeed,	etc.).	The	initial	state	of
the	variable	name	is	the	null	string,	because	no	input	has	been	read.	We	indicate	this	starting	state	in	the
figure	 below	with	 an	 exaggerated	 arrowhead	 (there	 are	 several	 other	 notations).	When	 the	machine
recognizes	an	alphabetic	character,	it	transitions	to	State	I,	where	it	stays	as	long	as	a	letter	or	number
is	input.	Upon	accepting	a	whitespace	character,	the	machine	transitions	to	State	A,	its	final	accepting
state,	which	we	indicate	with	a	double	circle.	If	a	character	other	than	a	number,	letter,	or	whitespace
is	entered,	the	machine	enters	its	error	state,	which	is	a	final	state	that	rejects	the	string.

Finite	State	Machine	for	Accepting	a	Variable	Name

Of	more	interest	to	us	(because	we	are	discussing	hardware)	are	Moore	and	Mealy	FSMs	that	have
output	states.	The	basic	difference	between	these	FSMs	and	DFAs	is	that—in	addition	to	the	transition
function	moving	us	 from	state	 to	state—Moore	and	Mealy	machines	also	generate	an	output	 symbol.
Furthermore,	no	set	of	final	states	is	defined	because	circuits	have	no	concept	of	halting	or	accepting
strings;	 they	 instead	 generate	 output.	 Both	 the	 Moore	 and	 Mealy	 machines,	M,	 can	 be	 completely



described	by	the	quintuple	M	=	(Q,	S,	Σ,	Γ,	δ)	where

•			Q	is	a	finite	set	of	states	that	represents	each	configuration	of	the	machine;
•			S	is	an	element	of	Q	that	represents	the	Start	state,	the	state	of	the	machine	before	it	has	received	any

inputs;
•			Σ	is	the	input	alphabet	or	set	of	events	that	the	machine	will	recognize;
•			Γ	is	the	finite	output	alphabet;	and
•			δ	is	a	transition	function	that	maps	a	state	from	Q	and	a	letter	from	the	input	alphabet	to	a	state	from
Q.

We	note	that	the	input	and	output	alphabets	are	usually	identical,	but	they	don’t	have	to	be.	The	way
in	which	 output	 is	 produced	 is	 the	 distinguishing	 element	 between	 the	Moore	 and	Mealy	machines.
Hence,	 the	 output	 function	 of	 the	Moore	machine	 is	 embedded	 in	 its	 definition	 of	S,	 and	 the	 output
function	for	the	Mealy	machine	is	embedded	in	the	transition	function,	δ.

If	any	of	 this	seems	 too	abstract,	 just	 remember	 that	a	computer	can	be	 thought	of	as	a	universal
finite	state	machine.	It	takes	the	description	of	one	machine	plus	its	input	and	then	produces	output	that
is	as	(usually)	expected.	Finite	state	machines	are	just	a	different	way	of	thinking	about	the	computer
and	computation.

3.6.5		Examples	of	Sequential	Circuits
Latches	 and	 flip-flops	 are	 used	 to	 implement	 more	 complex	 sequential	 circuits.	 Registers,	 counters,
memories,	and	shift	registers	all	require	the	use	of	storage	and	are	therefore	implemented	using	sequential
logic.

	EXAMPLE	3.14	Our	first	example	of	a	sequential	circuit	is	a	simple	4-bit	register	implemented	using
four	D	flip-flops.	(To	implement	registers	for	larger	words,	we	would	need	to	add	flip-flops.)	There	are
four	 input	 lines,	 four	 output	 lines,	 and	 a	 clock	 signal	 line.	 The	 clock	 is	 very	 important	 from	 a	 timing
standpoint;	 the	registers	must	all	accept	 their	new	input	values	and	change	 their	storage	elements	at	 the
same	time.	Remember	 that	a	synchronous	sequential	circuit	cannot	change	state	unless	 the	clock	pulses.
The	same	clock	signal	is	tied	into	all	four	D	flip-flops,	so	they	change	in	unison.	Figure	3.30	depicts	the
logic	 diagram	 for	 our	 4-bit	 register,	 as	 well	 as	 a	 block	 diagram	 for	 the	 register.	 In	 reality,	 physical
components	 have	 additional	 lines	 for	 power	 and	 for	 ground,	 as	well	 as	 a	 clear	 line	 (which	 gives	 the
ability	 to	 reset	 the	 entire	 register	 to	 all	 zeros).	 However,	 in	 this	 text,	 we	 are	 willing	 to	 leave	 those
concepts	to	the	computer	engineers	and	focus	on	the	actual	digital	logic	present	in	these	circuits.



FIGURE	3.30	a)	4-Bit	Register
b)	Block	Diagram	for	a	4-Bit	Register

	 EXAMPLE	 3.15	 Another	 useful	 sequential	 circuit	 is	 a	 binary	 counter,	 which	 goes	 through	 a
predetermined	sequence	of	states	as	the	clock	pulses.	In	a	straight	binary	counter,	these	states	reflect	the
binary	number	sequence.	If	we	begin	counting	in	binary	0000,	0001,	0010,	0011,	…,	we	can	see	that	as
the	numbers	increase,	the	low-order	bit	is	complemented	each	time.	Whenever	it	changes	state	from	1	to
0,	the	bit	to	the	left	is	then	complemented.	Each	of	the	other	bits	changes	state	from	0	to	1	when	all	bits	to
the	 right	 are	 equal	 to	 1.	 Because	 of	 this	 concept	 of	 complementing	 states,	 our	 binary	 counter	 is	 best
implemented	using	a	JK	flip-flop	(recall	that	when	J	and	K	are	both	equal	to	1,	the	flip-flop	complements
the	present	state).	Instead	of	independent	inputs	to	each	flip-flop,	there	is	a	count	enable	line	that	runs	to
each	flip-flop.	The	circuit	counts	only	when	the	clock	pulses	and	this	count	enable	line	is	set	to	1.	If	count
enable	 is	 set	 to	 0	 and	 the	 clock	 pulses,	 the	 circuit	 does	 not	 change	 state.	 Examine	 Figure	 3.31	 very
carefully,	tracing	the	circuit	with	various	inputs	to	make	sure	you	understand	how	this	circuit	outputs	the
binary	numbers	from	0000	to	1111.	Note:	B0,	B1,	B2,	and	B3	are	 the	outputs	of	 this	circuit,	and	 they	are
always	available	regardless	of	the	values	of	the	count	enable	and	clock	signals.	Also	check	to	see	which
state	the	circuit	enters	if	the	current	state	is	1111	and	the	clock	is	pulsed.



FIGURE	3.31	4-Bit	Synchronous	Counter	Using	JK	Flip-Flops

We	have	looked	at	a	simple	register	and	a	binary	counter.	We	are	now	ready	to	examine	a	very	simple
memory	circuit.

	EXAMPLE	3.16	The	memory	depicted	in	Figure	3.32	holds	four	3-bit	words	(this	is	typically	denoted
as	 a	 4	 ×	 3	memory).	 Each	 column	 in	 the	 circuit	 represents	 one	 3-bit	 word.	 Notice	 that	 the	 flip-flops
storing	the	bits	for	each	word	are	synchronized	via	the	clock	signal,	so	a	read	or	write	operation	always
reads	or	writes	a	complete	word.	The	inputs	In0,	In1,	and	In2	are	the	lines	used	to	store,	or	write,	a	3-bit
word	to	memory.	The	lines	S0	and	S1	are	the	address	lines	used	to	select	which	word	in	memory	is	being
referenced.	(Notice	that	S0	and	S1	are	the	input	lines	to	a	2-to-4	decoder	that	is	responsible	for	selecting
the	correct	memory	word.)	The	 three	output	 lines	 (Out0,	Out1,	and	Out2)	are	used	when	 reading	words
from	memory.



FIGURE	3.32	4	x	3	Memory

You	should	notice	another	control	 line	as	well.	The	write	enable	control	 line	 indicates	whether	we
are	 reading	or	writing.	Note	 that	 in	 this	 chip,	we	have	 separated	 the	 input	and	output	 lines	 for	ease	of
understanding.	In	practice,	the	input	lines	and	output	lines	are	the	same	lines.

To	summarize	our	discussion	of	this	memory	circuit,	here	are	the	steps	necessary	to	write	a	word	to
memory:

1.		An	address	is	asserted	on	S0	and	S1.
2.		Write	enable	(WE)	is	set	to	high.
3.		The	decoder	using	S0	and	S1	enables	only	one	AND	gate,	selecting	a	given	word	in	memory.
4.		The	line	selected	in	Step	3	combines	with	the	clock	and	Write	Enable	select	only	one	word.
5.		The	write	gate	enabled	in	Step	4	drives	the	clock	for	the	selected	word.
6.		When	the	clock	pulses,	the	word	on	the	input	lines	is	loaded	into	the	D	flip-flops.

We	 leave	 it	 as	 an	 exercise	 to	 create	 a	 similar	 list	 of	 the	 steps	 necessary	 to	 read	 a	word	 from	 this
memory.	Another	interesting	exercise	is	to	analyze	this	circuit	and	determine	what	additional	components



would	be	necessary	 to	 extend	 the	memory	 from,	 say,	 a	 4	×	3	memory	 to	 an	8	×	3	memory	or	 a	 4	×	8
memory.

Logically	Speaking,	How’d	They	Do	That?
In	this	chapter,	we	introduced	logic	gates.	But	exactly	what	goes	on	inside	these	gates	to	carry	out	the
logic	functions?	How	do	these	gates	physically	work?	It’s	time	to	open	the	hood	and	take	a	peek	at	the
internal	composition	of	digital	logic	gates.

The	 implementation	 of	 the	 logic	 gates	 is	 accomplished	 using	 different	 types	 of	 logic	 devices
belonging	to	different	production	technologies.	These	devices	are	often	classified	into	logic	 families.
Each	family	has	its	advantages	and	disadvantages,	and	each	differs	from	the	others	in	its	capabilities
and	limitations.	The	logic	families	currently	of	interest	include	TTL,	NMOS/PMOS,	CMOS,	and	ECL.

TTL	 (transistor–transistor	 logic)	 replaces	 all	 the	 diodes	 originally	 found	 in	 integrated	 circuits
with	 bipolar	 transistors.	 (See	 the	 sidebar	 on	 transistors	 in	 Chapter	 1	 for	 more	 information.)	 TTL
defines	binary	values	as	follows:	0	to	0.8	V	is	logic	0,	and	2–5	V	is	logic	1.	Virtually	any	gate	can	be
implemented	using	TTL.	Not	only	does	TTL	offer	the	largest	number	of	logic	gates	(from	the	standard
combinational	and	sequential	logic	gates	to	memory),	but	this	technology	also	offers	superior	speed	of
operation.	 The	 problem	 with	 these	 relatively	 inexpensive	 integrated	 circuits	 is	 that	 they	 draw
considerable	power.

TTL	 was	 used	 in	 the	 first	 integrated	 circuits	 that	 were	 widely	 marketed.	 However,	 the	 most
commonly	used	type	of	transistor	used	in	integrated	circuits	today	is	called	a	MOSFET	(metal-oxide
semiconductor	field	effect	transistor).	Field	effect	transistors	(FETs)	are	simply	transistors	whose
output	 fields	 are	 controlled	 by	 a	 variable	 electric	 field.	 The	 phrase	metal–oxide	 semiconductor	 is
actually	a	reference	 to	 the	process	used	to	make	the	chip,	and	even	though	polysilicon	is	used	today
instead	of	metal,	the	name	continues	to	be	used.

NMOS	(N-type	metal-oxide	semiconductors)	and	PMOS	(P-type	metaloxide	semiconductors)
are	the	two	basic	types	of	MOS	transistors.	NMOS	transistors	are	faster	than	PMOS	transistors,	but	the
real	advantage	of	NMOS	over	PMOS	is	that	of	higher	component	density	(more	NMOS	transistors	can
be	put	on	a	single	chip).	NMOS	circuits	have	lower	power	consumption	than	their	bipolar	relatives.
The	main	disadvantage	of	NMOS	technology	is	its	sensitivity	to	damage	from	electrical	discharge.	In
addition,	not	as	many	gate	 implementations	are	available	with	NMOS	as	with	TTL.	Despite	NMOS
circuits	using	less	power	than	TTL,	increased	NMOs	circuit	densities	caused	a	resurgence	in	power
consumption	problems.

CMOS	 (complementary	 metal-oxide	 semiconductor)	 chips	 were	 designed	 as	 low-power
alternatives	 to	TTL	and	NMOS	circuits,	providing	more	TTL	equivalents	 than	NMOS	in	addition	 to
addressing	the	power	issues.	Instead	of	using	bipolar	transistors,	this	technology	uses	a	complementary
pair	of	FETs,	 an	NMOS	and	a	PMOS	FET	 (hence	 the	name	“complementary”).	CMOS	differs	 from
NMOS	because	when	the	gate	is	in	a	static	state,	CMOS	uses	virtually	no	power.	Only	when	the	gate
switches	 states	 does	 the	 circuit	 draw	 power.	 Lower	 power	 consumption	 translates	 to	 reduced	 heat
dissipation.

For	this	reason,	CMOS	is	extensively	used	in	a	wide	variety	of	computer	systems.	In	addition	to
low	power	consumption,	CMOS	chips	operate	within	a	wide	range	of	supply	voltages	(typically	from
3	 to	15	V)—unlike	TTL,	which	 requires	 a	 power	 supply	voltage	of	 plus	or	minus	0.5	V.	However,



CMOS	 technology	 is	 extremely	 sensitive	 to	 static	 electricity,	 so	 extreme	 care	 must	 be	 taken	 when
handling	circuits.	Although	CMOS	technology	provides	a	larger	selection	of	gates	than	NMOS,	it	still
does	not	match	that	of	its	bipolar	relative,	TTL.

ECL	 (emitter-coupled	 logic)	 gates	 are	 used	 in	 situations	 that	 require	 extremely	 high	 speeds.
Whereas	TTL	and	MOS	use	transistors	as	digital	switches	(the	transistor	is	either	saturated	or	cut	off),
ECL	uses	 transistors	 to	guide	current	 through	gates,	 resulting	 in	 transistors	 that	are	never	completely
turned	 off	 or	 completely	 saturated.	 Because	 they	 are	 always	 in	 an	 active	 status,	 the	 transistors	 can
change	 states	 very	 quickly.	 However,	 the	 trade-off	 for	 this	 high	 speed	 is	 substantial	 power
requirements.	Therefore,	ECL	is	used	only	rarely,	in	very	specialized	applications.

A	newcomer	to	the	logic	family	scene,	BiCMOS	(bipolar	CMOS)	integrated	circuits	use	both	the
bipolar	and	CMOS	technologies.	Despite	the	fact	that	BiCMOS	logic	consumes	more	power	than	TTL,
it	is	considerably	faster.	Although	not	currently	used	in	manufacturing,	BiCMOS	appears	to	have	great
potential.

3.6.6		An	Application	of	Sequential	Logic:	Convolutional	Coding	and
Viterbi	Detection

Several	 coding	methods	 are	 employed	 in	 data	 storage	 and	 communication.	 One	 of	 them	 is	 the	 partial
response	 maximum	 likelihood	 (PRML)	 encoding	 method.	 Our	 previous	 discussion	 (which	 isn’t
prerequisite	 for	understanding	 this	 section)	concerned	 the	“partial	 response”	component	of	PRML.	The
“maximum	likelihood”	component	derives	from	the	way	that	bits	are	encoded	and	decoded.	The	salient
feature	of	 the	decoding	process	 is	 that	only	 certain	bit	 patterns	 are	valid.	These	patterns	 are	produced
using	a	convolutional	code.	A	Viterbi	decoder	 reads	 the	bits	 that	have	been	output	by	a	 convolutional
encoder	and	compares	the	symbol	stream	read	with	a	set	of	“probable”	symbol	streams.	The	one	with	the
least	 error	 is	 selected	 for	 output.	 We	 present	 this	 discussion	 because	 it	 brings	 together	 a	 number	 of
concepts	from	this	chapter	as	well	as	from	Chapter	2.	We	begin	with	the	encoding	process.

FIGURE	3.33	Convolutional	Encoder	for	PRML

The	Hamming	code	introduced	in	Chapter	2	is	a	type	of	forward	error	correction	that	uses	blocks	of



data	 (or	 block	 coding)	 to	 compute	 the	 necessary	 redundant	 bits.	 Some	 applications	 require	 a	 coding
technique	 suitable	 for	 a	 continuous	 stream	 of	 data,	 such	 as	 that	 from	 a	 satellite	 television	 transmitter.
Convolutional	coding	is	a	method	that	operates	on	an	incoming	serial	bit	stream,	generating	an	encoded
serial	 output	 stream	 (including	 redundant	 bits)	 that	 enables	 it	 to	 correct	 errors	 continuously.	 A
convolutional	code	is	an	encoding	process	whereby	the	output	is	a	function	of	the	input	and	some	number
of	bits	previously	received.	Thus,	the	input	is	overlapped,	or	convoluted,	over	itself	to	form	a	stream	of
output	 symbols.	 In	 a	 sense,	 a	 convolutional	 code	 builds	 a	 context	 for	 accurate	 decoding	 of	 its	 output.
Convolutional	encoding	combined	with	Viterbi	decoding	has	become	an	accepted	 industry	standard	 for
encoding	and	decoding	data	stored	or	transmitted	over	imperfect	(noisy)	media.

The	convolutional	coding	mechanism	used	in	PRML	is	illustrated	in	Figure	3.33.	Careful	examination
of	this	circuit	reveals	that	two	output	bits	are	written	for	each	input	bit.	The	first	output	bit	is	a	function	of
the	input	bit	and	the	second	previous	input	bit:	A	XOR	C.	The	second	bit	is	a	function	of	the	input	bit	and
the	 two	 previous	 bits:	A	 XOR	C	 XOR	B.	 The	 two	 AND	 gates	 at	 the	 right-hand	 side	 of	 the	 diagram
alternatively	select	one	of	these	functions	during	each	pulse	of	the	clock.	The	input	is	shifted	through	the	D
flip-flops	on	every	second	clock	pulse.	We	note	that	the	leftmost	flip-flop	serves	only	as	a	buffer	for	the
input	and	isn’t	strictly	necessary.

At	first	glance,	it	may	not	be	easy	to	see	how	the	encoder	produces	two	output	bits	for	every	input	bit.
The	trick	has	to	do	with	the	flip-flop	situated	between	the	clock	and	the	other	components	of	the	circuit.
When	the	complemented	output	of	this	flip-flop	is	fed	back	to	its	input,	the	flip-flop	alternately	stores	0s
and	1s.	Thus,	 the	output	goes	high	on	every	other	clock	cycle,	enabling	and	disabling	 the	correct	AND
gate	with	each	cycle.

We	step	through	a	series	of	clock	cycles	in	Figure	3.34.	The	initial	state	of	the	encoder	is	assumed	to
contain	all	0s	in	the	flip-flops	labeled	A,	B,	and	C.	A	couple	of	clock	cycles	are	required	to	move	the	first
input	into	the	A	flip-flop	(buffer),	and	the	encoder	outputs	two	zeros.	Figure	3.34a	shows	the	encoder	with
the	first	input	(1)	after	it	has	passed	to	the	output	of	flip-flop	A.	We	see	that	the	clock	on	flip-flops	A,	B,
and	C	is	enabled,	as	is	the	upper	AND	gate.	Thus,	the	function	A	XOR	C	 is	routed	to	the	output.	At	the
next	clock	cycle	(Figure	3.34b),	the	lower	AND	gate	is	enabled,	which	routes	the	function	A	XOR	C	XOR
B	to	the	output.	However,	because	the	clock	on	flip-flops	A,	B,	and	C	is	disabled,	the	input	bit	does	not
propagate	from	flip-flop	A	to	flip-flop	B.	This	prevents	the	next	input	bit	from	being	consumed	while	the
second	output	bit	is	written.	At	clock	cycle	3	(Figure	3.34c),	the	input	has	propagated	through	flip-flop	A,
and	 the	bit	 that	was	 in	 flip-flop	A	has	propagated	 to	 flip-flop	B.	The	upper	AND	gate	on	 the	output	 is
enabled	and	the	function	A	XOR	C	is	routed	to	the	output.

The	characteristic	table	for	this	circuit	is	given	in	Table	3.13.	As	an	example,	consider	the	stream	of
input	bits,	11010010.	The	encoder	initially	contains	all	0s,	so	B	=	0	and	C	=	0.	We	say	that	the	encoder	is
in	State	0	(002).	When	the	leading	1	of	the	input	stream	exits	the	buffer,	A,	B	=	0	and	C	=	0,	giving	(A	XOR
C	XOR	B)	=	1	and	(A	XOR	C)	=	1.	The	output	is	11	and	the	encoder	transitions	to	State	2	(102).	The	next
input	bit	is	1,	and	we	have	B	=	1	and	C	=	0	(in	State	2),	giving	(A	XOR	C	XOR	B)	=	0	and	(A	XOR	C)	=
1.	The	output	is	01	and	the	encoder	transitions	to	State	1	(012).	Following	this	process	over	the	remaining
six	bits,	the	completed	function	is:

F(1101	0010)	=	11	01	01	00	10	11	11	10

The	encoding	process	 is	made	a	 little	clearer	using	the	Mealy	machine	(Figure	3.35).	This	diagram
informs	 us	 at	 a	 glance	 as	 to	 which	 transitions	 are	 possible	 and	 which	 are	 not.	 You	 can	 see	 the
correspondence	between	 the	Figure	3.35	machine	 and	 the	 characteristic	 table	 by	 reading	 the	 table	 and



tracing	the	arcs	or	vice	versa.	The	fact	that	there	is	a	limited	set	of	allowable	transitions	is	crucial	to	the
error-correcting	properties	of	this	code	and	to	the	operation	of	the	Viterbi	decoder,	which	is	responsible
for	decoding	the	stream	of	bits	correctly.	By	reversing	the	inputs	with	the	outputs	on	the	transition	arcs,	as
shown	in	Figure	3.36,	we	place	bounds	around	the	set	of	possible	decoding	inputs.



FIGURE	3.34	Stepping	through	Four	Clock	Cycles	of	a	Convolutional	Encoder



TABLE	3.13	Characteristic	Table	for	the	Convolutional	Encoder	in	Figure	3.33

FIGURE	3.35	Mealy	Machine	for	the	Convolutional	Encoder	in	Figure	3.33

FIGURE	3.36	Mealy	Machine	for	a	Convolutional	Decoder



FIGURE	3.37	Trellis	Diagram	Illustrating	State	Transitions	for	the	Sequence	00	10	11	11

For	example,	suppose	 the	decoder	 is	 in	State	1	and	sees	 the	pattern	00	01.	The	decoded	bit	values
returned	are	1	1,	and	the	decoder	ends	up	in	State	3.	(The	path	traversed	is	1	→	2	→	3.)	If,	on	the	other
hand,	 the	 decoder	 is	 in	 State	 2	 and	 sees	 the	 pattern	 00	 11,	 an	 error	 has	 occurred	 because	 there	 is	 no
outbound	transition	on	State	2	for	00.	The	outbound	transitions	on	State	2	are	01	and	10.	Both	of	 these
have	a	Hamming	distance	of	1	from	00.	If	we	follow	both	(equally	likely)	paths	out	of	State	2,	the	decoder
ends	up	in	either	State	1	or	State	3.	We	see	that	there	is	no	outbound	transition	on	State	3	for	the	next	pair
of	bits,	11.	Each	outbound	 transition	 from	State	3	has	a	Hamming	distance	of	1	 from	11.	This	gives	an
accumulated	Hamming	distance	of	2	for	both	paths:	2	→	3→	1	and	2	→	3	→	2.	However,	State	1	has	a
valid	transition	on	11.	By	taking	the	path	2	→	1	→	0,	the	accumulated	error	is	only	1,	so	this	is	the	most
likely	sequence.	The	input	therefore	decodes	to	00	with	maximum	likelihood.

An	equivalent	(and	probably	clearer)	way	of	expressing	this	idea	is	through	the	trellis	diagram,	shown
in	 Figure	 3.37.	 The	 four	 states	 are	 indicated	 on	 the	 left	 side	 of	 the	 diagram.	 The	 transition	 (or	 time)
component	reads	from	left	to	right.	Every	code	word	in	a	convolutional	code	is	associated	with	a	unique
path	in	the	trellis	diagram.	A	Viterbi	detector	uses	the	logical	equivalent	of	paths	through	this	diagram	to
determine	 the	most	 likely	bit	pattern.	 In	Figure	3.37,	we	 show	 the	 state	 transitions	 that	occur	when	 the
input	 sequence	 00	 10	 11	 11	 is	 encountered	with	 the	 decoder	 starting	 in	 State	 1.	You	 can	 compare	 the
transitions	in	the	trellis	diagram	with	the	transitions	in	the	Mealy	diagram	in	Figure	3.36.

Suppose	we	introduce	an	error	in	the	first	pair	of	bits	in	our	input,	giving	the	erroneous	string	10	10
11	11.	With	our	decoder	starting	 in	State	1	as	before,	Figure	3.38	 traces	 the	possible	paths	 through	 the
trellis.	The	accumulated	Hamming	distance	is	shown	on	each	of	the	transition	arcs.	The	correct	path	that
correctly	assumes	that	the	string	should	be	00	10	11	11	is	the	one	having	the	smallest	accumulated	error,
so	it	is	accepted	as	the	correct	sequence.



FIGURE	3.38	Trellis	Diagram	Illustrating	Hamming	Errors	for	the	Sequence	10	10	11	11

In	most	cases	where	 it	 is	 applied,	 the	Viterbi	decoder	provides	only	one	 level	of	error	correction.
Additional	error-correction	mechanisms	such	as	cyclic	 redundancy	checking	and	Reed-Solomon	coding
(discussed	in	Chapter	2)	are	applied	after	the	Viterbi	algorithm	has	done	what	it	can	to	produce	a	clean
stream	of	symbols.	All	these	algorithms	are	usually	implemented	in	hardware	for	utmost	speed	using	the
digital	building	blocks	described	in	this	chapter.

We	 hope	 that	 our	 discussion	 in	 this	 section	 has	 helped	 you	 to	 see	 how	 digital	 logic	 and	 error-
correction	algorithms	fit	together.	The	same	can	be	done	with	any	algorithm	that	can	be	represented	using
one	of	the	finite	state	machines	described.	In	fact,	the	convolutional	code	just	described	is	also	referred	to
as	 a	 (2,	 1)	 convolutional	 code	 because	 two	 symbols	 are	 output	 for	 every	 one	 symbol	 input.	 Other
convolutional	codes	provide	somewhat	deeper	error	correction,	but	they	are	too	complex	for	economical
hardware	implementation.

3.7			DESIGNING	CIRCUITS
In	the	preceding	sections,	we	introduced	many	different	components	used	in	computer	systems.	We	have,
by	 no	means,	 provided	 enough	 detail	 to	 allow	you	 to	 start	 designing	 circuits	 or	 systems.	Digital	 logic
design	 requires	 someone	 not	 only	 familiar	with	 digital	 logic,	 but	 also	well	 versed	 in	digital	 analysis
(analyzing	the	relationship	between	inputs	and	outputs),	digital	synthesis	(starting	with	a	truth	table	and
determining	 the	 logic	 diagram	 to	 implement	 the	 given	 logic	 function),	 and	 the	 use	 of	 computer-aided
design	 (CAD)	 software.	Recall	 from	 our	 previous	 discussions	 that	 great	 care	 needs	 to	 be	 taken	when
designing	the	circuits	to	ensure	that	they	are	minimized.	A	circuit	designer	faces	many	problems,	including
finding	efficient	Boolean	functions,	using	the	smallest	number	of	gates,	using	an	inexpensive	combination
of	 gates,	 organizing	 the	 gates	 of	 a	 circuit	 board	 to	 use	 the	 smallest	 surface	 area	 and	 minimal	 power
requirements,	and	attempting	to	do	all	of	this	using	a	standard	set	of	modules	for	implementation.	Add	to
this	the	many	problems	we	have	not	discussed,	such	as	signal	propagation,	fan	out,	synchronization	issues,
and	external	interfacing,	and	you	can	see	that	digital	circuit	design	is	quite	complicated.

Up	 to	 this	 point,	we	 have	 discussed	 how	 to	 design	 registers,	 counters,	memory,	 and	 various	 other
digital	building	blocks.	Given	these	components,	a	circuit	designer	can	implement	any	given	algorithm	in
hardware	 (recall	 the	Principle	 of	Equivalence	 of	Hardware	 and	Software	 from	Chapter	 1).	When	 you
write	a	program,	you	are	specifying	a	sequence	of	Boolean	expressions.	Typically,	 it	 is	much	easier	 to



write	a	program	than	it	is	to	design	the	hardware	necessary	to	implement	the	algorithm.	However,	there
are	situations	 in	which	the	hardware	implementation	is	better	(e.g.,	 in	a	real-time	system,	 the	hardware
implementation	 is	 faster,	 and	 faster	 is	 definitely	 better.)	 However,	 there	 are	 also	 cases	 in	 which	 a
software	 implementation	 is	better.	 It	 is	often	desirable	 to	replace	a	 large	number	of	digital	components
with	a	single	programmed	microcomputer	chip,	resulting	in	an	embedded	system.	Your	microwave	oven
and	 your	 car	most	 likely	 contain	 embedded	 systems.	 This	 is	 done	 to	 replace	 additional	 hardware	 that
could	present	mechanical	problems.	Programming	these	embedded	systems	requires	design	software	that
can	read	input	variables	and	send	output	signals	to	perform	such	tasks	as	turning	a	light	on	or	off,	emitting
a	beep,	 sounding	 an	 alarm,	or	 opening	 a	door.	Writing	 this	 software	 requires	 an	understanding	of	how
Boolean	functions	behave.

CHAPTER	SUMMARY
The	main	purpose	of	this	chapter	is	to	acquaint	you	with	the	basic	concepts	involved	in	logic	design	and
to	give	you	a	general	understanding	of	the	basic	circuit	configurations	used	to	construct	computer	systems.
This	level	of	familiarity	will	not	enable	you	to	design	these	components;	rather,	it	gives	you	a	much	better
understanding	of	the	architectural	concepts	discussed	in	the	following	chapters.

In	this	chapter,	we	examined	the	behaviors	of	the	standard	logical	operators	AND,	OR,	and	NOT	and
looked	at	the	logic	gates	that	implement	them.	Any	Boolean	function	can	be	represented	as	a	truth	table,
which	can	then	be	transformed	into	a	logic	diagram,	indicating	the	components	necessary	to	implement	the
digital	circuit	for	that	function.	Thus,	truth	tables	provide	us	with	a	means	to	express	the	characteristics	of
Boolean	functions	as	well	as	logic	circuits.	In	practice,	these	simple	logic	circuits	are	combined	to	create
components	such	as	adders,	ALUs,	decoders,	multiplexers,	registers,	and	memory.

There	 is	 a	 one-to-one	 correspondence	 between	 a	 Boolean	 function	 and	 its	 digital	 representation.
Boolean	identities	can	be	used	to	reduce	Boolean	expressions,	and	thus,	to	minimize	both	combinational
and	 sequential	 circuits.	Minimization	 is	 extremely	 important	 in	 circuit	 design.	 From	 a	 chip	 designer’s
point	of	view,	the	two	most	important	factors	are	speed	and	cost;	minimizing	circuits	helps	to	both	lower
the	cost	and	increase	performance.

Digital	logic	is	divided	into	two	categories:	combinational	logic	and	sequential	logic.	Combinational
logic	devices,	such	as	adders,	decoders,	and	multiplexers,	produce	outputs	that	are	based	strictly	on	the
current	 inputs.	The	AND,	OR,	and	NOT	gates	are	 the	building	blocks	 for	combinational	 logic	circuits,
although	universal	gates,	such	as	NAND	and	NOR,	could	also	be	used.	Sequential	logic	devices,	such	as
registers,	 counters,	 and	 memory,	 produce	 outputs	 based	 on	 the	 combination	 of	 current	 inputs	 and	 the
current	state	of	the	circuit.	These	circuits	are	built	using	SR,	D,	and	JK	flip-flops.

You	have	seen	that	sequential	circuits	can	be	represented	in	a	number	of	different	ways,	depending	on
the	particular	behavior	that	we	want	to	emphasize.	Clear	pictures	can	be	rendered	by	Moore,	Mealy,	and
algorithmic	state	machines.	A	lattice	diagram	expresses	transitions	as	a	function	of	time.	These	finite	state
machines	differ	from	DFAs	in	that,	unlike	DFAs,	they	have	no	final	state	because	circuits	produce	output
rather	than	accept	strings.

These	 logic	 circuits	 are	 the	 building	 blocks	 necessary	 for	 computer	 systems.	 In	Chapter	 4,	we	 put
these	blocks	together	and	take	a	closer,	more	detailed	look	at	how	a	computer	actually	functions.

If	you	are	interested	in	learning	more	about	Kmaps,	there	is	a	special	section	that	focuses	on	Kmaps
located	at	the	end	of	this	chapter,	after	the	exercises.

FURTHER	READING



Most	computer	organization	and	architecture	books	have	a	brief	discussion	of	digital	logic	and	Boolean
algebra.	The	books	by	Stallings	(2013),	Tanenbaum	(2012),	and	Patterson	and	Hennessy	(2011)	contain
good	 synopses	 of	 digital	 logic.	 Mano	 (1993)	 presents	 a	 good	 discussion	 on	 using	 Kmaps	 for	 circuit
simplification	(discussed	in	the	focus	section	of	this	chapter)	and	programmable	logic	devices,	as	well	as
an	introduction	to	the	various	circuit	technologies.	For	more	in-depth	information	on	digital	logic,	see	the
Wakerly	(2000),	Katz	(1994),	or	Hayes	(1993)	books.

Davis	(2000)	traces	the	history	of	computer	theory,	including	biographies	of	all	the	seminal	thinkers,
in	his	Universal	Computer	book.	This	book	is	a	joy	to	read.	For	a	good	discussion	of	Boolean	algebra	in
lay	 terms,	check	out	 the	book	by	Gregg	(1998).	The	book	by	Maxfield	(1995)	 is	an	absolute	delight	 to
read	 and	 contains	 informative	 and	 sophisticated	 concepts	 on	 Boolean	 logic,	 as	 well	 as	 a	 trove	 of
interesting	 and	 enlightening	 bits	 of	 trivia	 (including	 a	 wonderful	 recipe	 for	 seafood	 gumbo!).	 For	 a
straightforward	and	easy-to-read	book	on	gates	and	flip-flops	(as	well	as	a	terrific	explanation	of	what
computers	 are	 and	 how	 they	 work),	 see	 Petzold	 (1989).	 Davidson	 (1979)	 presents	 a	 method	 of
decomposing	NAND-based	circuits	(of	interest	because	NAND	is	a	universal	gate).

Moore,	Mealy,	and	algorithmic	state	machines	were	first	proposed	in	papers	by	Moore	(1956),	Mealy
(1955),	and	Clare	(1973).	Cohen’s	(1991)	computer	theory	book	is	one	of	the	most	easily	understandable
on	 this	 topic.	 In	 it	 you	will	 find	 excellent	 presentations	 of	Moore,	Mealy,	 and	 finite	 state	machines	 in
general,	including	DFAs.	Forney’s	(1973)	well-written	tutorial	on	the	Viterbi	algorithm	in	a	paper	by	that
same	name	explains	the	concept	and	the	mathematics	behind	this	convolutional	decoder.	Fisher’s	(1996)
article	explains	how	PRML	is	used	in	disk	drives.

If	 you	 are	 interested	 in	 actually	 designing	 some	 circuits,	 there	 are	 several	 nice	 simulators	 freely
available.	One	 set	of	 tools	 is	 called	 the	Chipmunk	System.	 It	 performs	a	wide	variety	of	 applications,
including	electronic	circuit	 simulation,	graphics	editing,	and	curve	plotting.	 It	 contains	 four	main	 tools,
but	for	circuit	simulation,	Log	is	the	program	you	need.	The	Diglog	portion	of	Log	allows	you	to	create
and	actually	test	digital	circuits.	If	you	are	interested	in	downloading	the	program	and	running	it	on	your
machine,	 the	 general	 Chipmunk	 distribution	 can	 be	 found	 at	 www.cs.berkeley.edu/~lazzaro/chipmunk/.
The	distribution	is	available	for	a	wide	variety	of	platforms	(including	PCs	and	Unix	machines).

Another	nice	package	is	Multimedia	Logic	(MMLogic)	by	Softronix,	but	it	is	currently	available	for
Windows	platforms	only.	This	 fully	 functional	package	has	a	nice	GUI	with	drag-and-drop	components
and	comprehensive	online	help.	It	includes	not	only	the	standard	complement	of	devices	(such	as	ANDs,
ORs,	 NANDs,	 NORs,	 adders,	 and	 counters),	 but	 also	 special	 multimedia	 devices	 (including	 bitmap,
robot,	 network,	 and	 buzzer	 devices).	 You	 can	 create	 logic	 circuits	 and	 interface	 them	 to	 real	 devices
(keyboards,	screens,	serial	ports,	etc.)	or	other	computers.	The	package	is	advertised	for	use	by	beginners
but	allows	users	to	build	quite	complex	applications	(such	as	games	that	run	over	the	Internet).	MMLogic
can	 be	 found	 at	 www.softronix.com/logic.html,	 and	 the	 distribution	 includes	 not	 only	 the	 executable
package,	but	also	the	source	code	so	users	can	modify	or	extend	its	capabilities.

A	 third	 digital	 logic	 simulator	 is	 Logisim,	 an	 open-source	 software	 package	 available	 at
http://ozark.hendrix.edu/~burch/logisim/.	This	software	is	compact,	easy	to	install,	and	easy	to	use,	and	it
requires	 only	 that	 Java	5	 or	 later	 be	 installed;	 therefore,	 it	 is	 available	 for	Windows,	Mac,	 and	Linux
platforms.	 The	 interface	 is	 intuitive,	 and	 unlike	most	 simulators,	 Logisim	 allows	 the	 user	 to	modify	 a
circuit	during	simulation.	The	application	allows	the	user	to	build	larger	circuits	from	smaller	ones,	draw
bundles	of	wires	 (with	multi-bit	width)	 in	one	mouse	action,	 and	use	a	 tree	view	 to	 see	 the	 library	of
components	 that	 can	 be	 utilized	 for	 building	 circuits.	 Like	MMLogic,	 the	 package	was	 designed	 as	 an
educational	tool	to	help	beginners	experiment	with	digital	logic	circuits,	but	also	allows	the	user	to	build
fairly	complex	circuits.

http://www.cs.berkeley.edu/~lazzaro/chipmunk/
http://www.softronix.com/logic.html
http://ozark.hendrix.edu/~burch/logisim/


Any	of	these	simulators	can	be	used	to	build	the	MARIE	architecture	discussed	next	in	Chapter	4.

REFERENCES
Clare,	C.	R.	Designing	Logic	Systems	Using	State	Machines.	New	York:	McGraw-Hill,	1973.
Cohen,	D.	I.	A.	Introduction	to	Computer	Theory,	2nd	ed.	New	York:	John	Wiley	&	Sons,	1991.
Davidson,	E.	S.	“An	Algorithm	for	NAND	Decomposition	under	Network	Constraints.”	IEEE

Transactions	on	Computing	C-18,	1979,	p.	1098.
Davis,	M.	The	Universal	Computer:	The	Road	from	Leibniz	to	Turing.	New	York:	W.	W.	Norton,	2000.
Fisher,	K.	D.,	Abbott,	W.	L.,	Sonntag,	J.	L.,	&	Nesin,	R.	“PRML	Detection	Boosts	Hard-Disk	Drive

Capacity.”	IEEE	Spectrum,	November	1996,	pp.	70–76.
Forney,	G.	D.	“The	Viterbi	Algorithm.”	Proceedings	of	the	IEEE	61,	March	1973,	pp.	268–278.
Gregg,	J.	Ones	and	Zeros:	Understanding	Boolean	Algebra,	Digital	Circuits,	and	the	Logic	of	Sets.

New	York:	IEEE	Press,	1998.
Hayes,	J.	P.	Digital	Logic	Design.	Reading,	MA:	Addison-Wesley,	1993.
Katz,	R.	H.	Contemporary	Logic	Design.	Redwood	City,	CA:	Benjamin	Cummings,	1994.
Mano,	M.	M.	Computer	System	Architecture,	3rd	ed.	Englewood	Cliffs,	NJ:	Prentice	Hall,	1993.
Maxfield,	C.	Bebop	to	the	Boolean	Boogie.	Solana	Beach,	CA:	High	Text	Publications,	1995.
Mealy,	G.	H.	“A	Method	for	Synthesizing	Sequential	Circuits.”	Bell	System	Technical	Journal	34,

September	1955,	pp.	1045–1079.
Moore,	E.	F.	“Gedanken	Experiments	on	Sequential	Machines,”	in	Automata	Studies,	edited	by	C.	E.

Shannon	and	John	McCarthy.	Princeton,	NJ:	Princeton	University	Press,	1956,	pp.	129–153.
Patterson,	D.	A.,	&	Hennessy,	J.	L.	Computer	Organization	and	Design,	The	Hardware/Software

Interface,	4th	ed.	San	Mateo,	CA:	Morgan	Kaufmann,	2011.
Petzold,	C.	Code:	The	Hidden	Language	of	Computer	Hardware	and	Software.	Redmond,	WA:

Microsoft	Press,	1989.
Stallings,	W.	Computer	Organization	and	Architecture,	9th	ed.	Upper	Saddle	River,	MJ:	Prentice	Hall,

2013.
Tanenbaum,	A.	Structured	Computer	Organization,	6th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,	2012.
Wakerly,	J.	F.	Digital	Design	Principles	and	Practices.	Upper	Saddle	River,	NJ:	Prentice	Hall,	2000.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS
1.		Why	is	an	understanding	of	Boolean	algebra	important	to	computer	scientists?
2.		Which	Boolean	operation	is	referred	to	as	a	Boolean	product?
3.		Which	Boolean	operation	is	referred	to	as	a	Boolean	sum?
4.		Create	truth	tables	for	the	Boolean	operators	OR,	AND,	and	NOT.
5.		What	is	the	Boolean	duality	principle?
6.		Why	is	it	important	for	Boolean	expressions	to	be	minimized	in	the	design	of	digital	circuits?



7.		What	is	the	relationship	between	transistors	and	gates?
8.		What	is	the	difference	between	a	gate	and	a	circuit?
9.		Name	the	four	basic	logic	gates.
10.		What	are	the	two	universal	gates	described	in	this	chapter?	Why	are	these	universal	gates	important?
11.		Describe	the	basic	construction	of	a	digital	logic	chip.
12.	 	 Describe	 the	 operation	 of	 a	 ripple-carry	 adder.	 Why	 are	 ripple-carry	 adders	 not	 used	 in	 most

computers	today?
13.		What	are	the	three	methods	we	can	use	to	express	the	logical	behavior	of	Boolean	functions?
14.		What	are	the	necessary	steps	one	must	take	when	designing	a	logic	circuit	from	a	description	of	the

problem?
15.		What	is	the	difference	between	a	half-adder	and	a	full-adder?
16.		What	do	we	call	a	circuit	that	takes	several	inputs	and	their	respective	values	to	select	one	specific

output	line?	Name	one	important	application	for	these	devices.
17.		What	kind	of	circuit	selects	binary	information	from	one	of	many	input	lines	and	directs	it	to	a	single

output	line?
18.		How	are	sequential	circuits	different	from	combinational	circuits?
19.		What	is	the	basic	element	of	a	sequential	circuit?
20.		What	do	we	mean	when	we	say	that	a	sequential	circuit	is	edge	triggered	rather	than	level	triggered?
21.		In	the	context	of	digital	circuits,	what	is	feedback?
22.		How	is	a	JK	flip-flop	related	to	an	SR	flip-flop?
23.		Why	are	JK	flip-flops	often	preferred	to	SR	flip-flops?
24.		Which	flip-flop	gives	a	true	representation	of	computer	memory?
25.		How	is	a	Mealy	machine	different	from	a	Moore	machine?
26.	 	What	 does	 an	 algorithmic	 state	machine	 offer	 that	 is	 not	 provided	 by	 either	 a	Moore	 or	 a	Mealy

machine?

EXERCISES
	1.		Construct	a	truth	table	for	the	following:
	a)	yz	+	z(xy)′
	b)	x(y′ +	z)	+	xyz
c)		(x	+	y)(x′	+	y)	(Hint:	This	is	from	Example	3.7.)

2.		Construct	a	truth	table	for	the	following:
a)		xyz	+	x(yz)′	+	x′(y	+	z)	+	(xyz)′
b)		(x	+	y′)(x′	+	z′)(y′ +	z′)

	3.		Using	DeMorgan’s	Law,	write	an	expression	for	the	complement	of	F	if	F(x,y,z)
=	xy′(x	+	z).



4.		Using	DeMorgan’s	Law,	write	an	expression	for	the	complement	of	F	if	F(x,y,z)
=	(x′	+	y)(x	+	z)(y′ +	z)′.

	5.		Using	DeMorgan’s	Law,	write	an	expression	for	the	complement	of	F	if	F(w,x,y,z)
=	xz′(x′yz	+	x)	+	y(w′z	+	x′).

6.		Using	DeMorgan’s	Law,	write	an	expression	for	the	complement	of	F	if	F(x,y,z)
=	xz′(xy	+	xz)	+	xy′(wz	+	y).

7.		Prove	DeMorgan’s	Laws	are	valid.
	8.		Is	the	following	distributive	law	valid	or	invalid?	Prove	your	answer.	x	XOR	(y	+	z)	=	(x	XOR	y)

+	(x	XOR	z)
9.		Is	the	following	true	or	false?	Prove	your	answer.	(x	XOR	y)′	=	xy	+	(x	+	y)′
10.		Show	that	x	=	xy	+	xy′

a)		Using	truth	tables
b)		Using	Boolean	identities

11.		Use	only	the	first	seven	Boolean	identities	to	prove	the	Absorption	Laws.
12.		Show	that	xz	=	(x	+	y)(x	+	y′)(x′	+	z)

a)		Using	truth	tables
b)		Using	Boolean	identities

13.		Use	any	method	to	prove	the	following	either	true	or	false.
xz	+	x′y′ +	y′z′	=	xz	+	y′

14.	 	 Simplify	 the	 following	 functional	 expressions	 using	Boolean	 algebra	 and	 its	 identities.	 List	 the
identity	used	at	each	step.
a)		F(x,y,z)	=	y(x′	+	(x	+	y)′)
b)		F(x,y,z)	=	x′yz	+	xz
c)		F(x,y,z)	=	(x′	+	y	+	z′)′	+	xy′z′	+	yz	+	xyz

	15.	 	 Simplify	 the	 following	 functional	 expressions	 using	Boolean	 algebra	 and	 its	 identities.	 List	 the
identity	used	at	each	step.
a)		x(yz	+	y′z)	+	xy	+	x′y	+	xz
b)			xyz″	+	(y	+	z)′	+	x′yz
c)		z(xy′ +	z)(x	+	y′)

16.	 	 Simplify	 the	 following	 functional	 expressions	 using	Boolean	 algebra	 and	 its	 identities.	 List	 the
identity	used	at	each	step.
a)		z(w	+	x)′	+	w′xz	+	wxyz′	+	wx′yz′
b)		y′(x′z′	+	xz)	+	z(x	+	y)′
c)		x(yz′	+	x)(y′ +	z)

17.	 	 Simplify	 the	 following	 functional	 expressions	 using	Boolean	 algebra	 and	 its	 identities.	 List	 the
identity	used	at	each	step.

	a)	x(y	+	z)(x′	+	z′)
b)	xy	+	xyz	+	xy′z	+	x′y′z



c)		xy′z	+	x(y	+	z′)′	+	xy′z′
18.	 	 Simplify	 the	 following	 functional	 expressions	 using	Boolean	 algebra	 and	 its	 identities.	 List	 the

identity	used	at	each	step.
a)		y(xz′	+	x′z)	+	y′(xz′	+x′z)
b)		x(y′z	+	y)	+	x′(y	+	z′)′
c)		x[y′z	+	(y	+	z′)′](x′y	+	z)

19.		Using	the	basic	identities	of	Boolean	algebra,	show	that
x(x′	+	y)	=	xy

*20.		Using	the	basic	identities	of	Boolean	algebra,	show	that
x	+	x′y	=	x	+	y

21.		Using	the	basic	identities	of	Boolean	algebra,	show	that
xy	+	x′z	+	yz	=	xy	+	x′z

	22.		The	truth	table	for	a	Boolean	expression	is	shown	below.	Write	the	Boolean	expression	in	sum-of-
products	form.

23.		The	truth	table	for	a	Boolean	expression	is	shown	below.	Write	the	Boolean	expression	in	sum-of-
products	form.

24.		Which	of	the	following	Boolean	expressions	is	not	logically	equivalent	to	all	the	rest?
a)		wx′	+	wy′ +	wz
b)		w	+	x′	+	y′ +	z
c)		w(x′	+	y′ +	z)
d)		wx′yz′	+	wx′y′ +	wy′z′	+	wz



	25.		Draw	the	truth	table	and	rewrite	the	expression	below	as	the	complemented	sum	of	two	products:
xy′ +	x′y	+	xz	+	y′z

26.		Given	the	Boolean	function,	F(x,y,z)	=	x′y	+	xyz′
a)		Derive	an	algebraic	expression	for	the	complement	of	F.	Express	in	sum-of-products	form.
b)		Show	that	FF′	=	0.
c)		Show	that	F	+	F′	=	1.

27.		Given	the	function,	F(x,y,z)	=	y(x′z	+	xz′)	+	x(yz	+	yz′)
a)		List	the	truth	table	for	F.
b)		Draw	the	logic	diagram	using	the	original	Boolean	expression.
c)		Simplify	the	expression	using	Boolean	algebra	and	identities.
d)		List	the	truth	table	for	your	answer	in	part	c.
e)		Draw	the	logic	diagram	for	the	simplified	expression	in	part	c.

28.		Construct	the	XOR	operator	using	only	AND,	OR,	and	NOT	gates.
29.		Construct	the	XOR	operator	using	only	NAND	gates.

Hint:	x	XOR	y	=	((x′y)′(xy′)′)′
30.		Draw	a	half-adder	using	only	NAND	gates.
31.		Draw	a	full-adder	using	only	NAND	gates.
32.	 	Design	a	circuit	with	 three	 inputs	x,	y,	and	z	 representing	 the	bits	 in	a	binary	number,	and	 three

outputs	(a,	b,	and	c)	also	representing	bits	in	a	binary	number.	When	the	input	is	0,	1,	6,	or	7,	the
binary	output	will	be	the	complement	of	the	input.	When	the	binary	input	is	2,	3,	4,	or	5,	the	output
is	 the	 input	 shifted	 left	with	 rotate.	 (For	 example,	3	=	0112	 outputs	110;	4	=	1002	 outputs	 001.)
Show	your	truth	table,	all	computations	for	simplification,	and	the	final	circuit.

	33.		Draw	the	combinational	circuit	that	directly	implements	the	Boolean	expression:
F(x,y,z)	=	xyz	+	(y′ +	z)

34.		Draw	the	combinational	circuit	that	directly	implements	the	following	Boolean	expression:
F(x,y,z)	=	x	+	xy	+	y′z

35.	 	Draw	 the	 combinational	 circuit	 that	 directly	 implements	 the	Boolean	 expression:	F(x,y,z)	 =(x(y
XOR	z))	+	(xz)′

	36.		Find	the	truth	table	that	describes	the	following	circuit:

37.		Find	the	truth	table	that	describes	the	following	circuit:



38.		Find	the	truth	table	that	describes	the	following	circuit:

39.		How	many	inputs	does	a	decoder	have	if	it	has	64	outputs?
40.		How	many	control	lines	does	a	multiplexer	have	if	it	has	32	inputs?
41.		Draw	circuits	to	implement	the	parity	generator	and	parity	checker	shown	in	Tables	3.10	and	3.11,

respectively.
42.		Assume	you	have	the	following	truth	tables	for	functions	F1(x,y,z)	and	F2(x,y,z):

a)		Express	F1	and	F2	in	sum-of-products	form.
b)		Simplify	each	function.
c)		Draw	one	logic	circuit	to	implement	the	above	two	functions.

43.		Assume	you	have	the	following	truth	tables	for	functions	F1(w,x,y,z)	and	F2(w,x,y,z):



a)	Express	F1	and	F2	in	sum-of-products	form.
b)		Simplify	each	function.
c)		Draw	one	logic	circuit	to	implement	the	above	two	functions.

44.	 	Design	 a	 truth	 table	 for	 a	 combinational	 circuit	 that	 detects	 an	 error	 in	 the	 representation	 of	 a
decimal	 digit	 encoded	 in	BCD.	 (This	 circuit	 should	output	 a	 1	when	 the	 input	 is	 one	of	 the	 six
unused	combinations	for	BCD	code.)

45.		Simplify	the	function	from	exercise	44	and	draw	the	logic	circuit.
46.	 	Describe	how	each	of	the	following	circuits	works	and	indicate	typical	inputs	and	outputs.	Also

provide	a	carefully	labeled	“black	box”	diagram	for	each.
a)		Decoder
b)		Multiplexer

47.		Little	Susie	is	trying	to	train	her	new	puppy.	She	is	trying	to	figure	out	when	the	puppy	should	get	a
dog	biscuit	as	a	reward.	She	has	concluded	the	following:
1.		Give	the	puppy	a	biscuit	if	it	sits	and	wiggles	but	does	not	bark.
2.		Give	the	puppy	a	biscuit	if	it	barks	and	wiggles	but	does	not	sit.
3.		Give	the	puppy	a	biscuit	if	it	sits	but	does	not	wiggle	or	bark.
4.		Give	the	puppy	a	biscuit	if	it	sits,	wiggles,	and	barks.
5.		Don’t	give	the	puppy	a	treat	otherwise.
Use	the	following:
S:	Sit	(0	for	not	sitting;	1	for	sitting)
W:	Wiggles	(0	for	not	wiggling;	1	for	wiggling)
B:	Barking	(0	for	not	barking;	1	for	barking)
F:	Biscuit	function	(0,	don’t	give	the	puppy	a	biscuit;	1,	give	the	puppy	a	biscuit)



Construct	a	truth	table	and	find	the	minimized	Boolean	function	to	implement	the	logic	telling	Susie
when	to	give	her	dog	a	biscuit.

48.		Tyrone	Shoelaces	has	invested	a	huge	amount	of	money	into	the	stock	market	and	doesn’t	trust	just
anyone	to	give	him	buying	and	selling	information.	Before	he	will	buy	a	certain	stock,	he	must	get
input	 from	 three	 sources.	 His	 first	 source	 is	 Pain	Webster,	 a	 famous	 stock	 broker.	 His	 second
source	 is	 Meg	 A.	 Cash,	 a	 self-made	 millionaire	 in	 the	 stock	 market,	 and	 his	 third	 source	 is
Madame	LaZora,	world-famous	psychic.	After	several	months	of	receiving	advice	from	all	three,
he	has	come	to	the	following	conclusions:
a)		Buy	if	Pain	and	Meg	both	say	yes	and	the	psychic	says	no.
b)		Buy	if	the	psychic	says	yes.
c)		Don’t	buy	otherwise.

Construct	 a	 truth	 table	 and	 find	 the	 minimized	 Boolean	 function	 to	 implement	 the	 logic	 telling
Tyrone	when	to	buy.

*49.	 	A	very	 small	 company	has	hired	you	 to	 install	 a	 security	 system.	The	brand	of	 system	 that	 you
install	is	priced	by	the	number	of	bits	encoded	on	the	proximity	cards	that	allow	access	to	certain
locations	 in	 a	 facility.	 Of	 course,	 this	 small	 company	 wants	 to	 use	 the	 fewest	 bits	 possible
(spending	the	least	amount	of	money	possible)	yet	have	all	of	its	security	needs	met.	The	first	thing
you	need	to	do	is	to	determine	how	many	bits	each	card	requires.	Next,	you	have	to	program	card
readers	in	each	secured	location	so	that	they	respond	appropriately	to	a	scanned	card.

This	 company	 has	 four	 types	 of	 employees	 and	 five	 areas	 that	 they	 wish	 to	 restrict	 to	 certain
employees.	The	employees	and	their	restrictions	are	as	follows:
a)	The	Big	Boss	needs	access	to	the	executive	lounge	and	the	executive	washroom.
b)	 	The	Big	Boss’s	secretary	needs	access	 to	 the	supply	closet,	employee	 lounge,	and	executive

lounge.
c)		Computer	room	employees	need	access	to	the	server	room	and	the	employee	lounge.
d)		The	janitor	needs	access	to	all	areas	in	the	workplace.

Determine	how	each	class	of	employee	will	be	encoded	on	the	cards	and	construct	logic	diagrams
for	the	card	readers	in	each	of	the	five	restricted	areas.

	50.		Complete	the	truth	table	for	the	following	sequential	circuit:

51.		Complete	the	truth	table	for	the	following	sequential	circuit:



52.		Complete	the	truth	table	for	the	following	sequential	circuit:

53.		Complete	the	truth	table	for	the	following	sequential	circuit:

	54.		Complete	the	truth	table	for	the	following	sequential	circuit:



55.		A	sequential	circuit	has	one	flip-flop;	two	inputs,	X	and	Y;	and	one	output,	S.	It	consists	of	a	full-
adder	circuit	connected	to	a	JK	flip-flop,	as	shown.	Fill	in	the	truth	table	for	this	sequential	circuit
by	completing	the	Next	State	and	Output	columns.

56.		True	or	false:	When	a	JK	flip-flop	is	constructed	from	an	SR	flip-flop,	S	=	JQ′	and	R	=	KQ.
*57.		Investigate	the	operation	of	the	following	circuit.	Assume	an	initial	state	of	0000.	Trace	the	outputs

(the	Qs)	as	 the	clock	 ticks	and	determine	 the	purpose	of	 the	circuit.	You	must	show	the	 trace	 to
complete	your	answer.

58.		A	Null–Lobur	flip-flop	(NL	flip-flop)	behaves	as	follows:	If	N	=	0,	the	flip-flop	does	not	change



state.	If	N	=	1,	the	next	state	of	the	flip-flop	is	equal	to	the	value	of	L.
a)		Derive	the	characteristic	table	for	the	NL	flip-flop.
b)	 	 Show	 how	 an	 SR	 flip-flop	 can	 be	 converted	 to	 an	 NL	 flip-flop	 by	 adding	 gate(s)	 and

inverter(s).	(Hint:	What	values	must	S	and	R	have	so	that	the	flip-flop	will	be	set	and	reset	at
the	proper	time	when	N	=	1?	How	can	you	prevent	the	flip-flop	from	changing	state	when	N	=
0?)

*59.		A	Mux-Not	flip-flop	(MN	flip-flop)	behaves	as	follows:	If	M	=	1,	the	flip-flop	complements	the
current	state.	If	M	=	0,	the	next	state	of	the	flip-flop	is	equal	to	the	value	of	N.
a)		Derive	the	characteristic	table	for	the	flip-flop.
b)	 	 Show	 how	 a	 JK	 flip-flop	 can	 be	 converted	 to	 an	MN	 flip-flop	 by	 adding	 gate(s)	 and	 and

inverter(s).
60.		List	the	steps	necessary	to	read	a	word	from	memory	in	the	4	×	3	memory	circuit	shown	in	Figure

3.32.
61.		Construct	Moore	and	Mealy	machines	that	complement	their	input.
62.		Construct	a	Moore	machine	that	counts	modulo	5.
63.		Construct	two	parity	checkers	using	a	Moore	machine	for	one	and	a	Mealy	machine	for	the	other.
64.		Using	the	lemma	that	two	FSMs	are	equivalent	if	and	only	if	they	produce	the	same	output	from	the

same	input	strings,	show	that	Moore	and	Mealy	machines	are	equivalent.
65.	 	Using	 the	 convolutional	 code	 and	Viterbi	 algorithm	described	 in	 this	 chapter,	 assuming	 that	 the

encoder	and	decoder	always	start	in	State	0,	determine	the	following:
a)	The	output	string	generated	for	the	input:	10010110.
b)		In	which	state	is	the	encoder	after	the	sequence	in	part	a	is	read?
c)	 	Which	bit	 is	 in	error	 in	 the	string,	11	01	10	11	11	11	10?	What	 is	 the	probable	value	of	 the

string?
66.		Repeat	question	65	to	determine	the	following:

a)	The	output	string	generated	for	the	input:	00101101.
b)		In	which	state	is	the	encoder	after	the	sequence	in	part	a	is	written?
c)	 	Which	bit	 is	 in	error	 in	 the	string,	00	01	10	11	00	11	00?	What	 is	 the	probable	value	of	 the

string?
67.		Repeat	question	65	to	determine	the	following:

a)	The	output	string	generated	for	the	input:	10101010.
b)		In	which	state	is	the	encoder	after	the	sequence	in	part	a	is	written?
c)	 	Which	bit	 is	 in	error	 in	 the	string,	11	10	01	00	00	11	01?	What	 is	 the	probable	value	of	 the

string?
68.		Repeat	question	65	to	determine	the	following:

a)	The	output	string	generated	for	the	input:	01000111.
b)		In	which	state	is	the	encoder	after	the	sequence	in	part	a	is	written?
c)	 	Which	bit	 is	 in	error	 in	 the	string,	11	01	10	11	01	00	01?	What	 is	 the	probable	value	of	 the

string?



FOCUS	ON	KARNAUGH	MAPS

3A.1	INTRODUCTION
In	this	chapter,	we	focused	on	Boolean	expressions	and	their	relationship	to	digital	circuits.	Minimizing
these	circuits	helps	reduce	the	number	of	components	in	the	actual	physical	implementation.	Having	fewer
components	allows	the	circuitry	to	operate	faster.

Reducing	Boolean	expressions	can	be	done	using	Boolean	identities;	however,	using	identities	can	be
difficult	because	no	rules	are	given	on	how	or	when	to	use	the	identities,	and	there	is	no	well-defined	set
of	steps	to	follow.	In	one	respect,	minimizing	Boolean	expressions	is	very	much	like	doing	a	proof:	You
know	when	you	are	on	the	right	track,	but	getting	there	can	sometimes	be	frustrating	and	time	consuming.
In	this	focus	section,	we	introduce	a	systematic	approach	for	reducing	Boolean	expressions.

3A.2	DESCRIPTION	OF	KMAPS	AND	TERMINOLOGY
Karnaugh	maps,	or	Kmaps,	are	a	graphical	way	to	represent	Boolean	functions.	A	map	is	simply	a	table
used	 to	 enumerate	 the	 values	 of	 a	 given	Boolean	 expression	 for	 different	 input	 values.	 The	 rows	 and
columns	correspond	to	the	possible	values	of	the	function’s	inputs.	Each	cell	represents	the	outputs	of	the
function	for	those	possible	inputs.

If	 a	 product	 term	 includes	 all	 of	 the	 variables	 exactly	 once,	 either	 complemented	 or	 not
complemented,	this	product	term	is	called	a	minterm.	For	example,	if	there	are	two	input	values,	x	and	y,
there	are	four	minterms,	x′y′,	x′y,	xy′,	and	xy,	which	represent	all	of	 the	possible	input	combinations	for
the	function.	If	the	input	variables	are	x,	y,	and	z,	then	there	are	eight	minterms:	x′y′z′,	x′y′z,	x′yz′,	x′yz,	xy′z
′,	xy′z,	xyz′,	and	xyz.

As	an	example,	consider	the	Boolean	function	F(x,y)	=	xy	+	x′y.	Possible	inputs	for	x	and	y	are	shown
in	Figure	3A.1.	The	minterm	x′y′	represents	the	input	pair	(0,	0).	Similarly,	the	minterm	x′y	represents	(0,
1),	the	minterm	xy′	represents	(1,	0),	and	xy	represents	(1,	1).

The	minterms	 for	 three	 variables,	 along	with	 the	 input	 values	 they	 represent,	 are	 shown	 in	 Figure
3A.2.

FIGURE	3A.1	Minterms	for	Two	Variables



FIGURE	3A.2	Minterms	for	Three	Variables

A	Kmap	is	a	table	with	a	cell	for	each	minterm,	which	means	it	has	a	cell	for	each	line	of	the	truth
table	for	the	function.	Consider	the	function	F(x,y)	=	xy	and	its	truth	table,	as	seen	in	Example	3A.1.

	EXAMPLE	3A.1	F(x,y)	=	xy

The	corresponding	Kmap	is

Notice	that	the	only	cell	in	the	map	with	a	value	of	1	occurs	when	x	=	1	and	y	=	1,	the	same	values	for
which	xy	=	1.	Let’s	look	at	another	example,	F(x,y)	=	x	+	y.

	EXAMPLE	3A.2	F(x,y)	=	x	+	y

Three	of	the	minterms	in	Example	3A.2	have	a	value	of	1,	exactly	the	minterms	for	which	the	input	to
the	 function	gives	us	a	1	 for	 the	output.	To	assign	1s	 in	 the	Kmap,	we	 simply	place	1s	where	we	 find
corresponding	1s	in	the	truth	table.	We	can	express	the	function	F(x,y)	=	x	+	y	as	 the	 logical	OR	of	all
minterms	for	which	the	minterm	has	a	value	of	1.	Then	F(x,y)	can	be	represented	by	the	expression	x′y	+
xy′ +	xy.	Obviously,	this	expression	is	not	minimized	(we	already	know	this	function	is	simply	x	+	y).	We
can	minimize	using	Boolean	identities.

How	 did	we	 know	 to	 add	 an	 extra	 xy	 term?	Algebraic	 simplification	 using	Boolean	 identities	 can	 be
tricky.	This	is	where	Kmaps	can	help.



3A.3	KMAP	SIMPLIFICATION	FOR	TWO	VARIABLES
In	the	previous	reduction	for	the	function	F(x,y),	the	goal	was	to	group	the	terms	so	we	could	factor	out
variables.	We	added	the	xy	to	give	us	a	term	to	combine	with	the	x′y.	This	allowed	us	to	factor	out	the	y,
leaving	x′	+	x,	which	 reduces	 to	1.	However,	 if	we	use	Kmap	simplification,	we	won’t	have	 to	worry
about	which	terms	to	add	or	which	Boolean	identity	to	use.	The	maps	take	care	of	that	for	us.

Let’s	look	at	the	Kmap	for	F(x,y)	=	x	+	y	again	in	Figure	3A.3.
To	use	this	map	to	reduce	a	Boolean	function,	we	simply	need	to	group	1s.	This	grouping	is	similar	to

how	we	grouped	terms	when	we	reduced	using	Boolean	identities,	except	we	must	follow	specific	rules.
First,	we	group	only	1s.	Second,	we	can	group	1s	in	the	Kmap	if	the	1s	are	in	the	same	row	or	in	the	same
column,	but	they	cannot	be	on	the	diagonal	(i.e.,	they	must	be	adjacent	cells).	Third,	we	can	group	1s	if	the
total	number	in	the	group	is	a	power	of	2.	The	fourth	rule	specifies	that	we	must	make	the	groups	as	large
as	possible.	As	a	fifth	and	final	rule,	all	1s	must	be	in	a	group	(even	if	some	are	in	a	group	of	one).	Let’s
examine	some	correct	and	incorrect	groupings,	as	shown	in	Figures	3A.4	through	3A.7.

Notice	in	Figures	3A.6b	and	3A.7b	that	one	1	belongs	to	two	groups.	This	is	 the	map	equivalent	of
adding	 the	 term	 xy	 to	 the	Boolean	 function,	 as	we	 did	when	we	were	 performing	 simplification	 using
identities.	The	xy	term	in	the	map	is	used	twice	in	the	simplification	procedure.

FIGURE	3A.3	Kmap	for	F(x,y)	=	x	+	y

FIGURE	3A.4	Groups	Contain	Only	1s

FIGURE	3A.5	Groups	Cannot	Be	Diagonal

FIGURE	3A.6	Groups	Must	Be	Powers	of	2



FIGURE	3A.7	Groups	Must	Be	as	Large	as	Possible

To	simplify	using	Kmaps,	first	create	the	groups	as	specified	by	the	rules	above.	After	you	have	found
all	 groups,	 examine	 each	 group	 and	 discard	 the	 variable	 that	 differs	within	 each	 group.	 For	 example,
Figure	3A.7b	shows	the	correct	grouping	for	F(x,y)	=	x	+	y.	Let’s	begin	with	the	group	represented	by	the
second	row	(where	x	=	1).	The	 two	minterms	are	xy′	and	xy.	This	 group	 represents	 the	 logical	OR	of
these	two	terms,	or	xy′ +	xy.	These	terms	differ	in	y,	so	y	is	discarded,	leaving	only	x.	(We	can	see	that	if
we	use	Boolean	identities,	this	would	reduce	to	the	same	value.	The	Kmap	allows	us	to	take	a	shortcut,
helping	us	 to	 automatically	discard	 the	correct	variable.)	The	 second	group	 represents	x′y	+	xy.	 These
differ	in	x,	so	x	is	discarded,	leaving	y.	If	we	OR	the	results	of	the	first	group	and	the	second	group,	we
have	x	+	y,	which	is	the	correct	reduction	of	the	original	function,	F.

3A.4	KMAP	SIMPLIFICATION	FOR	THREE	VARIABLES
Kmaps	can	be	applied	to	expressions	of	more	than	two	variables.	In	this	focus	section,	we	show	three-
and	four-variable	Kmaps.	These	can	be	extended	for	situations	that	have	five	or	more	variables.	We	refer
you	 to	 Maxfield	 (1995)	 in	 the	 “Further	 Reading”	 section	 of	 this	 chapter	 for	 thorough	 and	 enjoyable
coverage	of	Kmaps.

You	already	know	how	to	set	up	Kmaps	for	expressions	involving	two	variables.	We	simply	extend
this	idea	to	three	variables,	as	indicated	by	Figure	3A.8.

The	first	difference	you	should	notice	is	that	two	variables,	y	and	z,	are	grouped	together	in	the	table.
The	 second	 difference	 is	 that	 the	 numbering	 for	 the	 columns	 is	 not	 sequential.	 Instead	 of	 labeling	 the
columns	as	00,	01,	10,	11	(a	normal	binary	progression),	we	have	labeled	them	00,	01,	11,	10.	The	input
values	 for	 the	 Kmap	 must	 be	 ordered	 so	 that	 each	 minterm	 differs	 in	 only	 one	 variable	 from	 each
neighbor.	By	using	this	order	(for	example,	01	followed	by	11),	the	corresponding	minterms,	x′y′z	and	x′yz
differ	 only	 in	 the	 y	 variable.	 Remember,	 to	 reduce,	 we	 need	 to	 discard	 the	 variable	 that	 is	 different.
Therefore,	we	must	ensure	that	each	group	of	two	minterms	differs	in	only	one	variable.

FIGURE	3A.8	Minterms	and	Kmap	Format	for	Three	Variables

The	largest	groups	we	found	in	our	two-variable	examples	were	composed	of	two	1s.	It	is	possible	to
have	groups	of	four	or	even	eight	1s,	depending	on	the	function.	Let’s	look	at	a	couple	of	examples	of	map
simplification	for	expressions	of	three	variables.

	EXAMPLE	3A.3	F(x,y,z)	=	x′y′z	+	x′yz	+	xy′z	+	xyz

We	 again	 follow	 the	 rules	 for	making	 groups.	You	 should	 see	 that	 you	 can	make	 groups	 of	 two	 in
several	ways.	However,	the	rules	stipulate	that	we	must	create	the	largest	groups	whose	sizes	are	powers



of	two.	There	is	one	group	of	four,	so	we	group	these	as	follows:

It	 is	not	necessary	 to	create	additional	groups	of	 two.	The	 fewer	groups	you	have,	 the	 fewer	 terms
there	will	 be.	Remember,	we	want	 to	 simplify	 the	 expression,	 and	 all	we	have	 to	do	 is	 guarantee	 that
every	1	is	in	some	group.

How,	exactly,	do	we	simplify	when	we	have	a	group	of	 four	1s?	Two	1s	 in	a	group	allowed	us	 to
discard	one	variable.	Four	1s	in	a	group	allows	us	to	discard	two	variables:	The	two	variables	in	which
all	four	terms	differ.	In	the	group	of	four	from	the	preceding	example,	we	have	the	following	minterms:	x′y
′z,	x′yz,	xy′z,	and	xyz.	These	all	have	z	in	common,	but	the	x	and	y	variables	differ.	So	we	discard	x	and	y,
leaving	us	with	F(x,y,z)	=	z	as	the	final	reduction.	To	see	how	this	parallels	simplification	using	Boolean
identities,	consider	the	same	reduction	using	identities.	Note	that	the	function	is	represented	originally	as
the	logical	OR	of	the	minterms	with	a	value	of	1.

The	end	result	using	Boolean	identities	is	exactly	the	same	as	the	result	using	map	simplification.
From	time	to	time,	the	grouping	process	can	be	a	little	tricky.	Let’s	look	at	an	example	that	requires

more	scrutiny.

	EXAMPLE	3A.4	F(x,y,z)	=	x′y′z′	+	x′y′z	+	x′yz	+	x′yz′	+	xy′z′	+	xyz′

This	 is	 a	 tricky	 problem	 for	 two	 reasons:	We	 have	 overlapping	 groups,	 and	we	 have	 a	 group	 that
“wraps	 around.”	 The	 leftmost	 1s	 in	 the	 first	 column	 can	 be	 grouped	with	 the	 rightmost	 1s	 in	 the	 last
column,	because	the	first	and	last	columns	are	logically	adjacent	(envision	the	map	as	being	drawn	on	a
cylinder).	The	first	and	last	rows	of	a	Kmap	are	also	logically	adjacent,	which	becomes	apparent	when
we	look	at	four-variable	maps	in	the	next	section.

The	correct	groupings	are	as	follows:

The	first	group	reduces	to	x′	(this	is	the	only	term	the	four	have	in	common),	and	the	second	group	reduces



to	z′,	so	the	final	minimized	function	is	F(x,y,z)	=	x′	+	z′.

	EXAMPLE	3A.5	Suppose	we	have	a	Kmap	with	all	1s:

The	largest	group	of	1s	we	can	find	is	a	group	of	eight,	which	puts	all	of	the	1s	in	the	same	group.	How	do
we	simplify	this?	We	follow	the	same	rules	we	have	been	following.	Remember,	groups	of	two	allowed
us	to	discard	one	variable,	and	groups	of	four	allowed	us	to	discard	two	variables;	therefore,	groups	of
eight	should	allow	us	to	discard	three	variables.	But	that’s	all	we	have!	If	we	discard	all	the	variables,
we	are	left	with	F(x,y,z)	=	1.	If	you	examine	the	truth	table	for	this	function,	you	see	that	we	do	indeed
have	a	correct	simplification.

FIGURE	3A.9	Minterms	and	Kmap	Format	for	Four	Variables

3A.5	KMAP	SIMPLIFICATION	FOR	FOUR	VARIABLES
We	now	extend	the	map	simplification	techniques	to	four	variables.	Four	variables	give	us	16	minterms,
as	shown	in	Figure	3A.9.	Notice	that	the	special	order	of	11	followed	by	10	applies	for	the	rows	as	well
as	the	columns.

Example	3A.6	illustrates	the	representation	and	simplification	of	a	function	with	four	variables.	We
are	only	concerned	with	the	terms	that	are	1s,	so	we	omit	entering	the	0s	into	the	map.

	EXAMPLE	3A.6	F(w,x,y,z)	=	w′x′y′z′	+	w′x′y′z	+	w′x′yz′	+	w′xyz′	+	wx′y′z′	+	wx′y′z	+	wx′yz′

Group	1	is	a	“wraparound”	group,	as	we	saw	previously.	Group	3	is	easy	to	find	as	well.	Group	2
represents	 the	 ultimate	 wraparound	 group:	 It	 consists	 of	 the	 1s	 in	 the	 four	 corners.	 Remember,	 these
corners	are	logically	adjacent.	The	final	result	is	that	F	reduces	to	three	terms,	one	from	each	group:	x′y′
(from	Group	1),	x′z′	(from	Group	2),	and	w′yz′	(from	Group	3).	The	final	reduction	for	F	is	then	F(w,x,y,z)



=	x′y′ +	x′z′	+	w′yz′.
Occasionally,	 there	 are	 choices	 to	 make	 when	 performing	 map	 simplification.	 Consider	 Example

3A.7.

	EXAMPLE	3A.7	A	choice	of	groups

The	 first	 column	 should	 clearly	 be	 grouped.	 Also,	 the	w′x′yz	 and	w′xyz	 terms	 should	 be	 grouped.
However,	we	have	a	choice	as	to	how	to	group	the	w′xyz′	term.	It	could	be	grouped	with	w′xyz	or	with	w
′xy′z′	(as	a	wraparound).	These	two	solutions	are	as	follows.

The	 first	 map	 simplifies	 to	 F(w,x,y,z)	 =	 F1	 =	 y′z′	 +	 w′yz	 +	w′xy.	 The	 second	 map	 simplifies	 to
F(w,x,y,z)	=	F2	=	y′z′	+	w′yz	+	w′xz′.	The	last	terms	are	different.	F1	and	F2,	however,	are	equivalent.	We
leave	it	up	to	you	to	produce	the	truth	tables	for	F1	and	F2	to	check	for	equality.	They	both	have	the	same
number	of	terms	and	variables	as	well.	If	we	follow	the	rules,	Kmap	minimization	results	in	a	minimized
function	(and	thus	a	minimal	circuit),	but	these	minimized	functions	need	not	be	unique	in	representation.

Before	we	move	on	to	the	next	section,	here	are	the	rules	for	Kmap	simplification.

1.		The	groups	can	only	contain	1s,	no	0s.
2.		Only	1s	in	adjacent	cells	can	be	grouped;	diagonal	grouping	is	not	allowed.
3.		The	number	of	1s	in	a	group	must	be	a	power	of	2.
4.		The	groups	must	be	as	large	as	possible	while	still	following	all	rules.
5.		All	1s	must	belong	to	a	group,	even	if	it	is	a	group	of	one.
6.		Overlapping	groups	are	allowed.
7.		Wraparounds	are	allowed.
8.		Use	the	fewest	number	of	groups	possible.

Using	 these	 rules,	 let’s	 complete	one	more	 example	 for	 a	 four-variable	 function.	Example	3A.8	 shows
several	applications	of	the	various	rules.

	EXAMPLE	3A.8



In	this	example,	we	have	one	group	with	a	single	element.	Note	that	there	is	no	way	to	group	this	term
with	any	others	if	we	follow	the	rules.	The	function	represented	by	this	Kmap	simplifies	to	F(w,x,y,z)	=
yz	+	xz	+	w′x′y′z′+	wx′y.

If	you	are	given	a	function	that	is	not	written	as	a	sum	of	minterms,	you	can	still	use	Kmaps	to	help
minimize	 the	function.	However,	you	have	 to	use	a	procedure	 that	 is	somewhat	 the	reverse	of	what	we
have	been	doing	to	set	up	the	Kmap	before	reduction	can	occur.	Example	3A.9	illustrates	this	procedure.

	EXAMPLE	3A.9	A	function	not	represented	as	a	sum	of	minterms
Suppose	 you	 are	 given	 the	 function	 F(w,x,y,z)	 =	w′xy	 +	 w′x′yz	 +	 w′x′yz′.	 The	 last	 two	 terms	 are

minterms,	and	we	can	easily	place	1s	in	the	appropriate	positions	in	the	Kmap.	However,	the	term	w′xy	is
not	a	minterm.	Suppose	this	term	were	the	result	of	a	grouping	you	had	performed	on	a	Kmap.	The	term
that	was	discarded	was	the	z	term,	which	means	this	term	is	equivalent	to	the	two	terms	w′xyz′	+	w′xyz.
You	can	now	use	these	two	terms	in	the	Kmap,	because	they	are	both	minterms.	We	now	get	the	following
Kmap:

So	we	know	the	function	F(w,x,y,z)	=	w′xy	+	w′x′yz	+	w′x′yz′	simplifies	to	F(w,x,y,z)	=	w′y.

3A.6	DON’T	CARE	CONDITIONS
There	 are	 certain	 situations	where	 a	 function	may	 not	 be	 completely	 specified,	meaning	 there	may	 be
some	inputs	that	are	undefined	for	the	function.	For	example,	consider	a	function	with	four	inputs	that	act
as	bits	to	count,	in	binary,	from	0	to	10	(decimal).	We	use	the	bit	combinations	0000,	0001,	0010,	0011,
0100,	0101,	0110,	0111,	1000,	1001,	and	1010.	However,	we	do	not	use	the	combinations	1011,	1100,
1101,	1110,	and	1111.	These	 latter	 inputs	would	be	 invalid,	which	means	 if	we	 look	at	 the	 truth	 table,
these	values	wouldn’t	be	either	0	or	1.	They	should	not	be	in	the	truth	table	at	all.

We	can	use	these	don’t	care	inputs	to	our	advantage	when	simplifying	Kmaps.	Because	they	are	input
values	 that	 should	 not	matter	 (and	 should	 never	 occur),	we	 can	 let	 them	have	 values	 of	 either	 0	 or	 1,
depending	on	which	helps	us	the	most.	The	basic	idea	is	to	set	these	don’t	care	values	in	such	a	way	that
they	either	contribute	to	make	a	larger	group,	or	they	don’t	contribute	at	all.	Example	3A.10	illustrates	this
concept.

	EXAMPLE	3A.10	Don’t	care	conditions
Don’t	care	values	are	 typically	 indicated	with	an	“X”	 in	 the	appropriate	cell.	The	following	Kmap

shows	how	to	use	these	values	to	help	with	minimization.	We	treat	the	don’t	care	values	in	the	first	row	as



1s	to	help	form	a	group	of	four.	The	don’t	care	values	in	rows	01	and	11	are	treated	as	0s.	This	reduces	to
F1(w,x,y,z)	=	w′x′	+	yz.

There	is	another	way	these	values	can	be	grouped:

Using	these	groupings,	we	end	up	with	a	simplification	of	F2(w,x,y,	z)	=	w′z	+	yz.	Notice	that	in	this	case,
F1	and	F2	are	not	equal.	However,	if	you	create	the	truth	tables	for	both	functions,	you	should	see	that	they
are	not	equal	only	in	those	values	for	which	we	“don’t	care.”

3A.7	SUMMARY
In	 this	 section,	 we	 have	 given	 a	 brief	 introduction	 to	 Kmaps	 and	 map	 simplification.	 Using	 Boolean
identities	for	reduction	is	awkward	and	can	be	very	difficult.	Kmaps,	on	the	other	hand,	provide	a	precise
set	of	steps	 to	 follow	to	 find	 the	minimal	 representation	of	a	 function,	and	 thus	 the	minimal	circuit	 that
function	represents.

EXERCISES
1.		Write	a	simplified	expression	for	the	Boolean	function	defined	by	each	of	the	following	Kmaps:

2.		Write	a	simplified	expression	for	the	Boolean	function	defined	by	each	of	the	following	Kmaps:



3.		Create	the	Kmaps	and	then	simplify	for	the	following	functions:
a)			F(x,y,z)	=	x′y′z′	+	x′yz	+	x′yz′
b)		F(x,y,z)	=	x′y′z′	+	x′yz′	+	xy′z′	+	xyz′
c)			F(x,y,z)	=	y′z′	+	y′z	+	xyz′

4.		Write	a	simplified	expression	for	the	Boolean	function	defined	by	each	of	the	following	Kmaps:

5.	 	Write	a	simplified	expression	for	 the	Boolean	function	defined	by	each	of	 the	following	Kmaps
(leave	in	sum-of-products	form):



6.		Create	the	Kmaps	and	then	simplify	for	the	following	functions	(leave	in	sum-of-products	form):
	a)	F(w,x,y,z)	=	w′x′y′z′	+	w′x′yz′	+	w′xy′z	+	w′xyz	+	w′xyz′	+	wx′y′z′	+	wx′yz′
	b)	F(w,x,y,z)	=	w′x′y′z′	+	w′x′y′z	+	wx′y′z	+	wx′yz′	+	wx′y′z′
c)		F(w,x,y,z)	=	y′z	+	wy′ +	w′xy	+	w′x′yz′+	wx′yz′

7.		Create	the	Kmaps	and	then	simplify	for	the	following	functions	(leave	in	sum-of-products	form):
a)		F(w,x,y,z)	=	w′x′y′z	+	w′x′yz′+	w′xy′z	+	w′xyz	+	w′xyz′	+	wxy′z	+	wxyz	+	wx′y′z
b)	F(w,x,y,z)	=	w′x′y′z′	+	w′z	+	w′x′yz′	+	w′xy′z′+	wx′y
c)		F(w,x,y,z)	=	w′x′y′ +	w′xz	+	wxz	+	wx′y′z′

	 8.	 	 Given	 the	 following	 Kmap,	 show	 algebraically	 (using	 Boolean	 identities)	 how	 the	 four	 terms
reduce	to	one	term.

	9.		Write	a	simplified	expression	for	the	Boolean	function	defined	by	each	of	the	following	Kmaps:



10.		Write	a	simplified	expression	for	the	Boolean	function	defined	by	each	of	the	following	Kmaps:

11.		Write	a	simplified	expression	for	the	Boolean	function	defined	by	each	of	the	following	Kmaps:

12.	 	Find	 the	minimized	Boolean	expression	 for	 the	 functions	defined	by	each	of	 the	 following	 truth
tables:





“When	you	wish	to	produce	a	result	by	means	of	an	instrument,	do	not	allow	yourself	to
complicate	it.”

—Leonardo	da	Vinci

CHAPTER	4



MARIE:	An	Introduction	to	a	Simple	Computer

4.1			INTRODUCTION
Designing	a	computer	nowadays	is	a	job	for	a	computer	engineer	with	plenty	of	training.	It	is	impossible
in	 an	 introductory	 textbook	 such	 as	 this	 (and	 in	 an	 introductory	 course	 in	 computer	 organization	 and
architecture)	 to	present	everything	necessary	 to	design	and	build	a	working	computer	such	as	 those	we
can	 buy	 today.	 However,	 in	 this	 chapter,	 we	 first	 look	 at	 a	 very	 simple	 computer	 called	 MARIE:	 a
Machine	Architecture	 that	 is	Really	Intuitive	 and	Easy.	We	 then	 provide	 brief	 overviews	 of	 Intel	 and
MIPs	 machines,	 two	 popular	 architectures	 reflecting	 the	 CISC	 and	 RISC	 design	 philosophies.	 The
objective	of	this	chapter	is	to	give	you	an	understanding	of	how	a	computer	functions.	We	have,	therefore,
kept	the	architecture	as	uncomplicated	as	possible,	following	the	advice	in	the	opening	quote	by	Leonardo
da	Vinci.

4.2			CPU	BASICS	AND	ORGANIZATION
From	our	studies	 in	Chapter	2	 (data	 representation),	we	know	that	a	computer	must	manipulate	binary-
coded	data.	We	also	know	from	Chapter	3	that	memory	is	used	to	store	both	data	and	program	instructions
(also	in	binary).	Somehow,	the	program	must	be	executed	and	the	data	must	be	processed	correctly.	The
central	 processing	 unit	 (CPU)	 is	 responsible	 for	 fetching	 program	 instructions,	 decoding	 each
instruction	 that	 is	 fetched,	 and	performing	 the	 indicated	 sequence	of	operations	on	 the	correct	data.	To
understand	how	computers	work,	you	must	first	become	familiar	with	 their	various	components	and	the
interaction	 among	 these	 components.	 To	 introduce	 the	 simple	 architecture	 in	 the	 next	 section,	we	 first
examine,	in	general,	the	microarchitecture	that	exists	at	the	control	level	of	modern	computers.

All	computers	have	a	CPU	that	can	be	divided	into	two	pieces.	The	first	is	the	datapath,	which	is	a
network	of	storage	units	(registers)	and	arithmetic	and	logic	units	(for	performing	various	operations	on
data)	connected	by	buses	(capable	of	moving	data	from	place	to	place)	where	the	timing	is	controlled	by
clocks.	The	second	CPU	component	is	the	control	unit,	a	module	responsible	for	sequencing	operations
and	making	sure	the	correct	data	are	where	they	need	to	be	at	the	correct	time.	Together,	these	components
perform	the	tasks	of	 the	CPU:	fetching	instructions,	decoding	them,	and	finally	performing	the	indicated
sequence	of	operations.	The	performance	of	a	machine	is	directly	affected	by	the	design	of	the	datapath
and	the	control	unit.	Therefore,	we	cover	these	components	of	the	CPU	in	detail	in	the	following	sections.

4.2.1		The	Registers
Registers	 are	 used	 in	 computer	 systems	 as	 places	 to	 store	 a	wide	 variety	 of	 data,	 such	 as	 addresses,
program	counters,	and	data	necessary	for	program	execution.	Put	simply,	a	register	is	a	hardware	device
that	 stores	 binary	 data.	 Registers	 are	 located	 on	 the	 processor	 so	 information	 can	 be	 accessed	 very
quickly.	We	saw	 in	Chapter	3	 that	D	 flip-flops	 can	be	 used	 to	 implement	 registers.	One	D	 flip-flop	 is
equivalent	 to	a	1-bit	 register,	 so	a	collection	of	D	flip-flops	 is	necessary	 to	store	multi-bit	values.	For
example,	 to	build	a	16-bit	 register,	we	need	 to	connect	16	D	flip-flops	 together.	We	saw	 in	our	binary



counter	figure	from	Chapter	3	that	 these	collections	of	flip-flops	must	be	clocked	to	work	in	unison.	At
each	pulse	of	the	clock,	input	enters	the	register	and	cannot	be	changed	(and	thus	is	stored)	until	the	clock
pulses	again.

Data	 processing	 on	 a	 computer	 is	 usually	 done	 on	 fixed-size	 binary	 words	 stored	 in	 registers.
Therefore,	most	computers	have	registers	of	a	certain	size.	Common	sizes	include	16,	32,	and	64	bits.	The
number	of	registers	in	a	machine	varies	from	architecture	to	architecture,	but	 is	 typically	a	power	of	2,
with	16,	32,	and	64	being	most	common.	Registers	contain	data,	addresses,	or	control	information.	Some
registers	are	specified	as	“special	purpose”	and	may	contain	only	data,	only	addresses,	or	only	control
information.	Other	 registers	are	more	generic	and	may	hold	data,	addresses,	and	control	 information	at
various	times.

Information	 is	 written	 to	 registers,	 read	 from	 registers,	 and	 transferred	 from	 register	 to	 register.
Registers	are	not	addressed	in	the	same	way	memory	is	addressed	(recall	that	each	memory	word	has	a
unique	binary	address	beginning	with	location	0).	Registers	are	addressed	and	manipulated	by	the	control
unit	itself.

In	 modern	 computer	 systems,	 there	 are	 many	 types	 of	 specialized	 registers:	 registers	 to	 store
information,	 registers	 to	 shift	 values,	 registers	 to	 compare	 values,	 and	 registers	 that	 count.	 There	 are
“scratchpad”	 registers	 that	 store	 temporary	 values,	 index	 registers	 to	 control	 program	 looping,	 stack
pointer	registers	to	manage	stacks	of	information	for	processes,	status	(or	flag)	registers	to	hold	the	status
or	mode	of	operation	(such	as	overflow,	carry,	or	zero	conditions),	and	general-purpose	registers	that	are
the	 registers	available	 to	 the	programmer.	Most	computers	have	register	sets,	and	each	set	 is	used	 in	a
specific	way.	For	example,	 the	Pentium	architecture	has	a	data	 register	 set	and	an	address	 register	 set.
Certain	architectures	have	very	large	sets	of	registers	 that	can	be	used	in	quite	novel	ways	to	speed	up
execution	of	instructions.	(We	discuss	this	topic	when	we	cover	advanced	architectures	in	Chapter	9.)

4.2.2		The	ALU
The	arithmetic	logic	unit	 (ALU)	carries	out	 the	 logic	operations	(such	as	comparisons)	and	arithmetic
operations	 (such	as	 add	or	multiply)	 required	during	 the	program	execution.	You	 saw	an	example	of	 a
simple	 ALU	 in	 Chapter	 3.	 Generally,	 an	 ALU	 has	 two	 data	 inputs	 and	 one	 data	 output.	 Operations
performed	 in	 the	ALU	 often	 affect	 bits	 in	 the	 status	 register	 (bits	 are	 set	 to	 indicate	 actions	 such	 as
whether	an	overflow	has	occurred).	The	ALU	knows	which	operations	to	perform	because	it	is	controlled
by	signals	from	the	control	unit.

4.2.3		The	Control	Unit
The	control	unit	 is	 the	 “policeman”	 or	 “traffic	manager”	 of	 the	CPU.	 It	monitors	 the	 execution	 of	 all
instructions	 and	 the	 transfer	 of	 all	 information.	 The	 control	 unit	 extracts	 instructions	 from	 memory,
decodes	these	instructions,	making	sure	data	are	in	the	right	place	at	the	right	time,	tells	the	ALU	which
registers	to	use,	services	interrupts,	and	turns	on	the	correct	circuitry	in	the	ALU	for	the	execution	of	the
desired	 operation.	 The	 control	 unit	 uses	 a	 program	 counter	 register	 to	 find	 the	 next	 instruction	 for
execution	and	a	 status	 register	 to	keep	 track	of	overflows,	carries,	borrows,	and	 the	 like.	Section	4.13
covers	the	control	unit	in	more	detail.

4.3			THE	BUS



The	CPU	communicates	with	the	other	components	via	a	bus.	A	bus	is	a	set	of	wires	that	acts	as	a	shared
but	 common	 datapath	 to	 connect	 multiple	 subsystems	 within	 the	 system.	 It	 consists	 of	 multiple	 lines,
allowing	the	parallel	movement	of	bits.	Buses	are	low	cost	but	very	versatile,	and	they	make	it	easy	to
connect	new	devices	to	each	other	and	to	the	system.	At	any	one	time,	only	one	device	(be	it	a	register,	the
ALU,	 memory,	 or	 some	 other	 component)	 may	 use	 the	 bus.	 However,	 this	 sharing	 often	 results	 in	 a
communications	bottleneck.	The	 speed	of	 the	bus	 is	 affected	by	 its	 length	 as	well	 as	by	 the	number	of
devices	sharing	it.	Quite	often,	devices	are	divided	into	master	and	slave	categories;	a	master	device	is
one	that	initiates	actions	and	a	slave	is	one	that	responds	to	requests	by	a	master.

A	bus	can	be	point-to-point,	connecting	two	specific	components	(as	seen	in	Figure	4.1a)	or	it	can	be
a	common	pathway	that	connects	a	number	of	devices,	requiring	these	devices	to	share	the	bus	(referred
to	as	a	multipoint	bus	and	shown	in	Figure	4.1b).



FIGURE	4.1	a)	Point-to-Point	Buses
b)	Multipoint	Buses

Because	of	this	sharing,	the	bus	protocol	 (set	of	usage	rules)	 is	very	 important.	Figure	4.2	shows	a
typical	bus	consisting	of	data	lines,	address	lines,	control	lines,	and	power	lines.	Often	the	lines	of	a	bus
dedicated	to	moving	data	are	called	the	data	bus.	These	data	lines	contain	the	actual	information	that	must



be	moved	from	one	location	to	another.	Control	lines	indicate	which	device	has	permission	to	use	the	bus
and	for	what	purpose	(reading	or	writing	from	memory	or	from	an	input/output	[I/O]	device,	for	example).
Control	 lines	 also	 transfer	 acknowledgments	 for	 bus	 requests,	 interrupts,	 and	 clock	 synchronization
signals.	Address	lines	indicate	the	location	(e.g.,	in	memory)	that	the	data	should	be	either	read	from	or
written	 to.	 The	 power	 lines	 provide	 the	 electrical	 power	 necessary.	 Typical	 bus	 transactions	 include
sending	an	address	(for	a	read	or	write),	transferring	data	from	memory	to	a	register	(a	memory	read),	and
transferring	data	to	the	memory	from	a	register	(a	memory	write).	In	addition,	buses	are	used	for	I/O	reads
and	writes	from	peripheral	devices.	Each	type	of	transfer	occurs	within	a	bus	cycle,	the	time	between	two
ticks	of	the	bus	clock.

Because	 of	 the	 different	 types	 of	 information	 buses	 transport	 and	 the	 various	 devices	 that	 use	 the
buses,	buses	themselves	have	been	divided	into	different	types.	Processor-memory	buses	are	short,	high-
speed	buses	 that	are	closely	matched	 to	 the	memory	system	on	 the	machine	 to	maximize	 the	bandwidth
(transfer	of	data)	and	are	usually	design	specific.	I/O	buses	are	typically	longer	than	processor-memory
buses	and	allow	for	many	 types	of	devices	with	varying	bandwidths.	These	buses	are	compatible	with
many	different	architectures.	A	backplane	bus	(Figure	4.3)	is	actually	built	into	the	chassis	of	the	machine
and	 connects	 the	 processor,	 the	 I/O	 devices,	 and	 the	 memory	 (so	 all	 devices	 share	 one	 bus).	 Many
computers	have	a	hierarchy	of	buses,	so	it	is	not	uncommon	to	have	two	buses	(e.g.,	a	processor-memory
bus	and	an	I/O	bus)	or	more	in	 the	same	system.	High-performance	systems	often	use	all	 three	types	of
buses.

FIGURE	4.2	The	Components	of	a	Typical	Bus



FIGURE	4.3	Backplane	Bus

Personal	computers	have	 their	own	 terminology	when	 it	comes	 to	buses.	They	have	an	 internal	bus
(called	the	system	bus)	that	connects	the	CPU,	memory,	and	all	other	internal	components.	External	buses
(sometimes	referred	to	as	expansion	buses)	connect	external	devices,	peripherals,	expansion	slots,	and
I/O	ports	to	the	rest	of	the	computer.	Most	PCs	also	have	local	buses,	data	buses	that	connect	a	peripheral
device	 directly	 to	 the	CPU.	 These	 high-speed	 buses	 can	 be	 used	 to	 connect	 only	 a	 limited	 number	 of
similar	devices.	Expansion	buses	 are	 slower	but	 allow	 for	more	generic	 connectivity.	Chapter	7	 deals
with	these	topics	in	great	detail.

Buses	 are	 physically	 little	 more	 than	 bunches	 of	 wires,	 but	 they	 have	 specific	 standards	 for
connectors,	 timing,	 and	 signaling	 specifications	 and	 exact	 protocols	 for	 use.	 Synchronous	 buses	 are
clocked,	and	things	happen	only	at	the	clock	ticks	(a	sequence	of	events	is	controlled	by	the	clock).	Every
device	 is	 synchronized	 by	 the	 rate	 at	 which	 the	 clock	 ticks,	 or	 the	 clock	 rate.	 The	 bus	 cycle	 time
mentioned	is	the	reciprocal	of	the	bus	clock	rate.	For	example,	if	the	bus	clock	rate	is	133MHz,	then	the
length	 of	 the	 bus	 cycle	 is	 1/133,000,000	 or	 7.52	 nanoseconds	 (ns).	 Because	 the	 clock	 controls	 the
transactions,	any	clock	skew	(drift	in	the	clock)	has	the	potential	to	cause	problems,	implying	that	the	bus
must	be	kept	as	short	as	possible	so	the	clock	drift	cannot	get	overly	large.	In	addition,	the	bus	cycle	time
must	not	be	shorter	than	the	length	of	time	it	takes	information	to	traverse	the	bus.	The	length	of	the	bus,
therefore,	imposes	restrictions	on	both	the	bus	clock	rate	and	the	bus	cycle	time.

With	 asynchronous	 buses,	 control	 lines	 coordinate	 the	 operations,	 and	 a	 complex	 handshaking
protocol	must	be	used	to	enforce	timing.	To	read	a	word	of	data	from	memory,	for	example,	the	protocol
would	require	steps	similar	to	the	following:

1.		ReqREAD:	This	bus	control	line	is	activated	and	the	data	memory	address	is	put	on	the	appropriate
bus	lines	at	the	same	time.

2.		ReadyDATA:	This	control	line	is	asserted	when	the	memory	system	has	put	the	required	data	on	the
data	lines	for	the	bus.

3.	 	 ACK:	 This	 control	 line	 is	 used	 to	 indicate	 that	 the	 ReqREAD	 or	 the	 ReadyDATA	 has	 been
acknowledged.

Using	 a	 protocol	 instead	 of	 the	 clock	 to	 coordinate	 transactions	means	 that	 asynchronous	 buses	 scale
better	with	technology	and	can	support	a	wider	variety	of	devices.

To	 use	 a	 bus,	 a	 device	 must	 reserve	 it,	 because	 only	 one	 device	 can	 use	 the	 bus	 at	 a	 time.	 As
mentioned,	bus	masters	are	devices	that	are	allowed	to	initiate	transfer	of	information	(control	bus),	and
bus	slaves	are	modules	that	are	activated	by	a	master	and	respond	to	requests	to	read	and	write	data	(so



only	masters	can	reserve	the	bus).	Both	follow	a	communications	protocol	to	use	the	bus,	working	within
very	 specific	 timing	 requirements.	 In	 a	 very	 simple	 system	 (such	 as	 the	 one	 we	 present	 in	 the	 next
section),	 the	 processor	 is	 the	 only	 device	 allowed	 to	 become	 a	 bus	master.	 This	 is	 good	 in	 terms	 of
avoiding	chaos,	but	bad	because	the	processor	now	is	involved	in	every	transaction	that	uses	the	bus.

In	 systems	with	more	 than	one	master	device,	bus	arbitration	 is	 required.	Bus	 arbitration	 schemes
must	provide	priority	to	certain	master	devices	and,	at	the	same	time,	make	sure	lower	priority	devices
are	not	starved	out.	Bus	arbitration	schemes	fall	into	four	categories:

1.	 	Daisy	chain	arbitration:	This	 scheme	uses	 a	 “grant	bus”	 control	 line	 that	 is	passed	down	 the	bus
from	 the	 highest	 priority	 device	 to	 the	 lowest	 priority	 device.	 (Fairness	 is	 not	 ensured,	 and	 it	 is
possible	that	low-priority	devices	are	“starved	out”	and	never	allowed	to	use	the	bus.)	This	scheme	is
simple	but	not	fair.

2.		Centralized	parallel	arbitration:	Each	device	has	a	request	control	line	to	the	bus	and	a	centralized
arbiter	selects	who	gets	the	bus.	Bottlenecks	can	result	using	this	type	of	arbitration.

3.	 	Distributed	arbitration	using	 self-selection:	 This	 scheme	 is	 similar	 to	 centralized	 arbitration	 but
instead	of	a	central	authority	selecting	who	gets	 the	bus,	 the	devices	 themselves	determine	who	has
highest	priority	and	who	should	get	the	bus.

4.		Distributed	arbitration	using	collision	detection:	Each	device	is	allowed	to	make	a	request	for	the
bus.	If	the	bus	detects	any	collisions	(multiple	simultaneous	requests),	the	device	must	make	another
request.	(Ethernet	uses	this	type	of	arbitration.)

Chapter	7	contains	more	detailed	information	on	buses	and	their	protocols.

4.4			CLOCKS
Every	computer	contains	an	 internal	clock	 that	 regulates	how	quickly	 instructions	can	be	executed.	The
clock	 also	 synchronizes	 all	 of	 the	 components	 in	 the	 system.	 As	 the	 clock	 ticks,	 it	 sets	 the	 pace	 for
everything	 that	happens	 in	 the	system,	much	 like	a	metronome	or	a	symphony	conductor.	The	CPU	uses
this	clock	to	regulate	its	progress,	checking	the	otherwise	unpredictable	speed	of	the	digital	logic	gates.
The	 CPU	 requires	 a	 fixed	 number	 of	 clock	 ticks	 to	 execute	 each	 instruction.	 Therefore,	 instruction
performance	is	often	measured	in	clock	cycles—the	time	between	clock	ticks—instead	of	seconds.	The
clock	frequency	 (sometimes	called	 the	clock	 rate	or	clock	speed)	 is	measured	 in	megahertz	 (MHz)	or
gigahertz	(GHz),	as	we	saw	in	Chapter	1.	The	clock	cycle	time	(or	clock	period)	is	simply	the	reciprocal
of	 the	 clock	 frequency.	For	 example,	 an	800MHz	machine	has	 a	 clock	 cycle	 time	of	1/800,000,000	or
1.25ns.	If	a	machine	has	a	2ns	cycle	time,	then	it	is	a	500MHz	machine.

Most	machines	are	synchronous:	there	is	a	master	clock	signal,	which	ticks	(changing	from	0	to	1	to	0
and	so	on)	at	regular	intervals.	Registers	must	wait	for	the	clock	to	tick	before	new	data	can	be	loaded.	It
seems	reasonable	to	assume	that	if	we	speed	up	the	clock,	the	machine	will	run	faster.	However,	there	are
limits	on	how	short	we	can	make	the	clock	cycles.	When	the	clock	ticks	and	new	data	are	loaded	into	the
registers,	the	register	outputs	are	likely	to	change.	These	changed	output	values	must	propagate	through	all
the	circuits	in	the	machine	until	they	reach	the	input	of	the	next	set	of	registers,	where	they	are	stored.	The
clock	cycle	must	be	long	enough	to	allow	these	changes	to	reach	the	next	set	of	registers.	If	the	clock	cycle
is	 too	 short,	 we	 could	 end	 up	 with	 some	 values	 not	 reaching	 the	 registers.	 This	 would	 result	 in	 an
inconsistent	state	in	our	machine,	which	is	definitely	something	we	must	avoid.	Therefore,	the	minimum



clock	cycle	time	must	be	at	least	as	great	as	the	maximum	propagation	delay	of	the	circuit,	from	each	set
of	register	outputs	to	register	 inputs.	What	if	we	“shorten”	the	distance	between	registers	to	shorten	the
propagation	 delay?	 We	 could	 do	 this	 by	 adding	 registers	 between	 the	 output	 registers	 and	 the
corresponding	input	registers.	But	recall	 that	registers	cannot	change	values	until	 the	clock	ticks,	so	we
have,	in	effect,	increased	the	number	of	clock	cycles.	For	example,	an	instruction	that	would	require	two
clock	 cycles	might	 now	 require	 three	 or	 four	 (or	more,	 depending	 on	where	we	 locate	 the	 additional
registers).

Most	machine	instructions	require	one	or	two	clock	cycles,	but	some	can	take	35	or	more.	We	present
the	following	formula	to	relate	seconds	to	cycles:

It	 is	 important	 to	 note	 that	 the	 architecture	 of	 a	 machine	 has	 a	 large	 effect	 on	 its	 performance.	 Two
machines	with	the	same	clock	speed	do	not	necessarily	execute	instructions	in	the	same	number	of	cycles.
For	example,	a	multiply	operation	on	an	older	Intel	286	machine	required	20	clock	cycles,	but	on	a	new
Pentium,	a	multiply	operation	can	be	done	in	1	clock	cycle,	which	implies	that	the	newer	machine	would
be	 20	 times	 faster	 than	 the	 286,	 even	 if	 they	 both	 had	 the	 same	 internal	 system	 clock.	 In	 general,
multiplication	requires	more	time	than	addition,	floating-point	operations	require	more	cycles	than	integer
ones,	and	accessing	memory	takes	longer	than	accessing	registers.

Generally,	when	we	mention	the	clock,	we	are	referring	to	the	system	clock,	or	the	master	clock	that
regulates	the	CPU	and	other	components.	However,	certain	buses	also	have	their	own	clocks.	Bus	clocks
are	usually	slower	than	CPU	clocks,	causing	bottleneck	problems.

System	components	have	defined	performance	bounds,	indicating	the	maximum	time	required	for	the
components	 to	 perform	 their	 functions.	Manufacturers	 guarantee	 that	 their	 components	 will	 run	 within
these	bounds	in	the	most	extreme	circumstances.	When	we	connect	all	of	the	components	together	serially,
where	one	component	must	complete	 its	 task	before	another	can	function	properly,	 it	 is	 important	 to	be
aware	of	 these	performance	bounds	 so	we	are	able	 to	 synchronize	 the	components	properly.	However,
many	people	push	the	bounds	of	certain	system	components	in	an	attempt	to	improve	system	performance.
Overclocking	is	one	method	people	use	to	achieve	this	goal.

Although	 many	 components	 are	 potential	 candidates,	 one	 of	 the	 most	 popular	 components	 for
overclocking	is	 the	CPU.	The	basic	idea	is	 to	run	the	CPU	at	clock	and/or	bus	speeds	above	the	upper
bound	specified	by	the	manufacturer.	Although	this	can	increase	system	performance,	one	must	be	careful
not	 to	 create	 system	 timing	 faults	 or,	 worse	 yet,	 overheat	 the	 CPU.	 The	 system	 bus	 can	 also	 be
overclocked,	 which	 results	 in	 overclocking	 the	 various	 components	 that	 communicate	 via	 the	 bus.
Overclocking	the	system	bus	can	provide	considerable	performance	improvements,	but	can	also	damage
the	components	that	use	the	bus	or	cause	them	to	perform	unreliably.

4.5			THE	INPUT/OUTPUT	SUBSYSTEM
Input	and	output	(I/O)	devices	allow	us	to	communicate	with	the	computer	system.	I/O	is	the	transfer	of
data	between	primary	memory	and	various	I/O	peripherals.	Input	devices	such	as	keyboards,	mice,	card
readers,	scanners,	voice	recognition	systems,	and	touch	screens	allow	us	to	enter	data	into	the	computer.
Output	 devices	 such	 as	monitors,	 printers,	 plotters,	 and	 speakers	 allow	 us	 to	 get	 information	 from	 the
computer.



These	devices	are	not	connected	directly	 to	 the	CPU.	Instead,	 there	 is	an	 interface	 that	handles	 the
data	transfers.	This	interface	converts	the	system	bus	signals	to	and	from	a	format	that	is	acceptable	to	the
given	device.	The	CPU	communicates	to	these	external	devices	via	I/O	registers.	This	exchange	of	data	is
performed	in	two	ways.	In	memory-mapped	I/O,	the	registers	in	the	interface	appear	in	the	computer’s
memory	map	 and	 there	 is	 no	 real	 difference	 between	 accessing	memory	 and	 accessing	 an	 I/O	 device.
Clearly,	this	is	advantageous	from	the	perspective	of	speed,	but	it	uses	up	memory	space	in	the	system.
With	 instruction-based	 I/O,	 the	 CPU	 has	 specialized	 instructions	 that	 perform	 the	 input	 and	 output.
Although	this	does	not	use	memory	space,	it	requires	specific	I/O	instructions,	which	implies	that	it	can
be	used	only	by	CPUs	that	can	execute	these	specific	instructions.	Interrupts	play	a	very	important	part	in
I/O,	 because	 they	 are	 an	 efficient	way	 to	 notify	 the	CPU	 that	 input	 or	 output	 is	 available	 for	 use.	We
explore	these	I/O	methods	in	detail	in	Chapter	7.

4.6	MEMORY	ORGANIZATION	AND	ADDRESSING
We	saw	an	example	of	a	rather	small	memory	in	Chapter	3.	In	this	chapter,	we	continue	to	refer	to	very
small	memory	sizes	(so	small	 that	any	reasonable	person	today	would	consider	 them	to	be	ridiculously
small	in	any	modern	computing	device).	However,	smaller	memories	make	the	numbers	manageable,	and
the	 principles	 we	 discuss	 in	 this	 chapter	 apply	 to	 small	 and	 large	 memories	 alike.	 These	 principles
include	 how	 memory	 is	 laid	 out	 and	 how	 it	 is	 addressed.	 It	 is	 important	 that	 you	 have	 a	 good
understanding	of	these	concepts	before	we	continue.

You	 can	 envision	memory	 as	 a	 matrix	 of	 bits.	 Each	 row,	 implemented	 by	 a	 register,	 has	 a	 length
typically	equivalent	to	the	addressable	unit	size	of	the	machine.	Each	register	(more	commonly	referred	to
as	 a	memory	 location)	 has	 a	 unique	 address;	 memory	 addresses	 usually	 start	 at	 zero	 and	 progress
upward.	Figure	4.4	illustrates	this	concept.

An	address	is	typically	represented	by	an	unsigned	integer.	Recall	from	Chapter	2	that	four	bits	are	a
nibble	and	eight	bits	are	a	byte.	Normally,	memory	is	byte	addressable,	which	means	that	each	individual
byte	has	a	unique	address.	Some	machines	may	have	a	word	 size	 that	 is	 larger	 than	a	 single	byte.	For
example,	a	computer	might	handle	32-bit	words	(which	means	it	can	manipulate	32	bits	at	a	time	through
various	instructions	and	it	uses	32-bit	registers)	but	still	employ	a	byte-addressable	architecture.	In	this
situation,	when	a	word	uses	multiple	bytes,	the	byte	with	the	lowest	address	determines	the	address	of	the
entire	word.	It	is	also	possible	that	a	computer	might	be	word	addressable,	which	means	each	word	(not
necessarily	each	byte)	has	its	own	address,	but	most	current	machines	are	byte	addressable	(even	though
they	have	32-bit	or	larger	words).	A	memory	address	is	typically	stored	in	a	single	machine	word.

If	all	this	talk	about	machines	using	byte	addressing	with	words	of	different	sizes	has	you	somewhat
confused,	the	following	analogy	may	help.	Memory	is	similar	to	a	street	full	of	apartment	buildings.	Each
building	 (word)	 has	 multiple	 apartments	 (bytes),	 and	 each	 apartment	 has	 its	 own	 address.	 All	 of	 the
apartments	 are	 numbered	 sequentially	 (addressed),	 from	 0	 to	 the	 total	 number	 of	 apartments	 in	 the
complex	minus	one.	The	buildings	themselves	serve	to	group	the	apartments.	In	computers,	words	do	the
same	 thing.	Words	are	 the	basic	unit	of	size	used	 in	various	 instructions.	For	example,	you	may	read	a
word	from	or	write	a	word	to	memory,	even	on	a	byte-addressable	machine.



FIGURE	4.4	a)	N	8-Bit	Memory	Locations
b)	M	16-Bit	Memory	Locations

If	an	architecture	is	byte	addressable,	and	the	instruction	set	architecture	word	is	larger	than	1	byte,
the	 issue	of	alignment	must	 be	 addressed.	 For	 example,	 if	we	wish	 to	 read	 a	 32-bit	word	 on	 a	 byte-
addressable	machine,	we	must	make	sure	that	(1)	the	word	is	stored	on	a	natural	alignment	boundary,	and
(2)	the	access	starts	on	that	boundary.	This	is	accomplished,	in	the	case	of	32-bit	words,	by	requiring	the
address	 to	 be	 a	 multiple	 of	 4.	 Some	 architectures	 allow	 certain	 instructions	 to	 perform	 unaligned
accesses,	where	the	desired	address	does	not	have	to	start	on	a	natural	boundary.

Memory	is	built	from	random	access	memory	(RAM)	chips.	(We	cover	memory	in	detail	in	Chapter
6.)	Memory	is	often	referred	to	using	the	notation	length	×	width	(L	×	W).	For	example,	4M	×	8	means	the
memory	is	4M	long	(it	has	4M	=	22	×	220	=	222	items)	and	each	item	is	8	bits	wide	(which	means	that	each
item	 is	 a	 byte).	 To	 address	 this	 memory	 (assuming	 byte	 addressing),	 we	 need	 to	 be	 able	 to	 uniquely
identify	222	different	items,	which	means	we	need	222	different	addresses.	Because	addresses	are	unsigned
binary	numbers,	we	need	to	count	from	0	to	(222	–	1)	in	binary.	How	many	bits	does	this	require?	Well,	to
count	from	0	to	3	in	binary	(for	a	total	of	four	items),	we	need	2	bits.	To	count	from	0	to	7	in	binary	(for	a
total	of	eight	items),	we	need	3	bits.	To	count	from	0	to	15	in	binary	(for	a	total	of	16	items),	we	need	4
bits.	Do	you	see	a	pattern	emerging	here?	Can	you	fill	in	the	missing	value	for	Table	4.1?

The	correct	answer	to	the	missing	table	entry	is	5	bits.	What	 is	actually	important	when	calculating
how	many	 bits	 a	memory	 address	must	 contain	 is	 not	 the	 length	 of	 the	 addressable	 unit	 but	 rather	 the
number	 of	 addressable	 units.	 The	 number	 of	 bits	 required	 for	 our	 4M	 memory	 is	 22.	 Because	 most
memories	are	byte	 addressable,	we	say	we	need	N	bits	 to	uniquely	address	each	byte.	 In	 general,	 if	 a
computer	has	2N	addressable	units	of	memory,	it	requires	N	bits	to	uniquely	address	each	unit.

To	better	illustrate	the	difference	between	words	and	bytes,	suppose	the	4M	×	8	memory	referred	to	in
the	previous	example	were	word	addressable	 instead	of	byte	addressable	and	each	word	were	16	bits
long.	There	are	222	unique	bytes,	which	implies	there	are	222	÷	2	=	221	total	words,	which	would	require
21,	not	22,	bits	per	address.	Each	word	would	require	two	bytes,	but	we	express	the	address	of	the	entire
word	by	using	the	lower	byte	address.

Although	most	memory	is	byte	addressable	and	8	bits	wide,	memory	can	vary	in	width.	For	example,
a	 2K	×	 16	memory	 holds	 211	 =	 2048	 16-bit	 items.	 This	 type	 of	memory	 is	 typically	 used	 on	 a	word-
addressable	architecture	with	16-bit	words.

Main	memory	 is	usually	 larger	 than	one	RAM	chip.	Consequently,	 these	chips	are	combined	 into	a
single	memory	of	the	desired	size.	For	example,	suppose	you	need	to	build	a	32K	×	8	byte-addressable
memory	and	all	you	have	are	2K	×	8	RAM	chips.	You	could	connect	16	rows	of	chips	together	as	shown
in	Figure	4.5.



TABLE	4.1	Calculating	the	Address	Bits	Required

FIGURE	4.5	Memory	as	a	Collection	of	RAM	Chips

Each	chip	addresses	2K	bytes.	Addresses	for	this	memory	must	have	15	bits	(there	are	32K	=	25	×	210
bytes	 to	access).	But	each	chip	 requires	only	11	address	 lines	 (each	chip	holds	only	211	 bytes).	 In	 this
situation,	a	decoder	is	needed	to	decode	either	the	leftmost	or	rightmost	4	bits	of	the	address	to	determine
which	chip	holds	the	desired	data.	Once	the	proper	chip	has	been	located,	the	remaining	11	bits	are	used
to	determine	the	offset	on	that	chip.	Whether	we	use	the	4	leftmost	or	4	rightmost	bits	depends	on	how	the
memory	is	 interleaved.	(Note:	We	could	also	build	a	16K	×	16	memory	using	8	rows	of	2	RAM	chips
each.	If	this	memory	were	word	addressable,	assuming	16-bit	words,	an	address	for	this	machine	would
have	only	14	bits.)

A	 single	 memory	 module	 causes	 sequentialization	 of	 access	 (only	 one	 memory	 access	 can	 be
performed	at	a	time).	Memory	interleaving,	which	splits	memory	across	multiple	memory	modules	(or
banks),	 in	which	multiple	banks	 can	be	 accessed	 simultaneously,	 can	be	used	 to	help	 relieve	 this.	The
number	of	banks	is	determined	solely	by	how	many	addressable	items	we	have,	not	by	the	size	of	each
addressable	item.	Each	bank,	when	accessed,	will	return	a	word	the	size	of	the	addressable	unit	for	that
architecture.	If	memory	is	8-way	interleaved,	the	memory	is	implemented	using	8	modules,	numbered	0
through	7.	With	low-order	interleaving,	the	low-order	bits	of	the	address	are	used	to	select	the	bank;	in
high-order	interleaving,	the	high-order	bits	of	the	address	are	used.

Suppose	we	have	a	byte-addressable	memory	consisting	of	8	modules	of	4	bytes	each,	for	a	total	of
32	 bytes	 of	 memory.	 We	 need	 5	 bits	 to	 uniquely	 identify	 each	 byte.	 Three	 of	 these	 bits	 are	 used	 to
determine	the	module	(we	have	23	=	8	modules),	and	the	remaining	two	are	used	to	determine	the	offset
within	that	module.	High-order	interleaving,	the	most	intuitive	organization,	distributes	the	addresses	so
that	each	module	contains	consecutive	addresses,	as	we	see	with	the	32	addresses	in	Figure	4.6a.	Module
0	contains	the	data	stored	at	addresses	0,	1,	2,	and	3;	module	1	contains	the	data	stored	at	addresses	4,	5,
6,	 and	 7;	 and	 so	 on.	 We	 see	 the	 address	 structure	 for	 an	 address	 in	 this	 memory	 using	 high-order
interleaving	in	Figure	4.6b.	This	tells	us	that	the	first	three	bits	of	an	address	should	be	used	to	determine
the	memory	module,	whereas	the	two	remaining	bits	are	used	to	determine	the	offset	within	the	module.
Figure	4.6c	shows	us	a	more	detailed	view	of	what	 the	first	 two	modules	of	 this	memory	 look	 like	for
high-order	interleaving.	Consider	address	3,	which	in	binary	(using	our	required	5	bits),	is	00011.	High-
order	interleaving	uses	the	leftmost	three	bits	(000)	to	determine	the	module	(so	the	data	at	address	3	is	in



module	0).	The	remaining	two	bits	(11)	tell	us	that	the	desired	data	is	at	offset	3	(112	is	decimal	value	3),
the	last	address	in	module	0.

FIGURE	4.6	a)	High-Order	Memory	Interleaving
b)	Address	Structure
c)	First	Two	Modules

Low-order	 interleaved	 memory	 places	 consecutive	 addresses	 of	 memory	 in	 different	 memory
modules.	Figure	4.7	shows	low-order	interleaving	on	32	addresses.	We	see	the	address	structure	for	an
address	in	this	memory	using	low-order	interleaving	in	Figure	4.7b.	The	first	two	modules	of	this	memory
are	shown	in	Figure	4.7c.	In	this	figure,	we	see	that	module	0	now	contains	the	data	stored	at	addresses	0,
8,	16,	and	24.	To	locate	address	3	(00011),	low-order	interleaving	uses	the	rightmost	3	bits	to	determine
the	module	(which	points	us	 to	module	3),	and	the	remaining	two	bits,	00,	 tell	us	 to	 look	at	offset	zero
within	that	module.	If	you	check	module	3	in	Figure	4.7,	this	is	precisely	where	we	find	address	3.

For	both	low-	and	high-order	interleaving,	there	is	a	relationship	between	k	(the	number	of	bits	used
to	identify	the	module)	and	the	order	of	inter	leaving:	4-way	interleaving	uses	k	=	2;	8-way	interleaving
uses	k	=	3;	16-way	interleaving	uses	k	=	4;	and	in	general,	for	n-way	interleaving,	we	note	that	n	=	2k.
(This	relationship	is	reinforced	in	Chapter	6.)



FIGURE	4.7	a)	Low-Order	Memory	Interleaving
b)	Address	Structure
c)	First	Two	Modules

With	 the	 appropriate	 buses	 using	 low-order	 interleaving,	 a	 read	or	write	 using	one	module	 can	be
started	 before	 a	 read	 or	 write	 using	 another	 module	 actually	 completes.	 (Reads	 and	 writes	 can	 be
overlapped.)	For	example,	 if	an	array	of	 length	4	 is	 stored	 in	 the	example	of	memory	using	high-order
interleaving	(stored	at	addresses	0,	1,	2,	and	3),	we	are	forced	to	access	each	array	element	sequentially,
as	the	entire	array	is	stored	in	one	module.	If,	however,	low-order	interleaving	is	used	(and	the	array	is
stored	in	modules	0,	1,	2,	and	3	at	offset	0	in	each),	we	can	access	the	array	elements	in	parallel	because
each	array	element	is	in	a	different	module.

	EXAMPLE	4.1	Suppose	we	have	a	128-word	memory	 that	 is	8-way	 low-order	 interleaved	 (please
note	that	the	size	of	a	word	is	not	important	in	this	example),	which	means	it	uses	8	memory	banks;	8	=	23,
so	we	use	the	low-order	3	bits	to	identify	the	bank.	Because	we	have	128	words,	we	need	7	bits	for	each
address	(128	=	27).	Therefore,	an	address	in	this	memory	has	the	following	structure:

Note	that	each	module	must	be	of	size	24.	We	can	reach	this	conclusion	two	ways.	First,	if	memory	is	128
words,	and	we	have	8	modules,	then	128/8	=	27/23	=	24	(so	each	module	holds	16	words).	We	can	also
see	from	the	address	structure	that	the	offset	in	the	module	required	4	bits,	allowing	for	24	=	16	words	per
module.

What	would	change	if	Example	4.1	used	high-order	interleaving	instead?	We	leave	this	as	an	exercise.



Let’s	return	to	the	memory	shown	in	Figure	4.5,	a	32K	×	8	memory	consisting	of	16	chips	(modules)
of	size	2K	×	8	each.	Memory	is	32K	=	25	×	210	=	215	addressable	units	(in	this	case,	bytes),	which	means
we	need	15	bits	for	each	address.	Each	chip	holds	2K	=	211	bytes,	so	11	bits	are	used	to	determine	the
offset	on	the	chip.	There	are	16	=	24	chips,	so	we	need	4	bits	to	determine	the	chip.	Consider	the	address
001000000100111.	Using	high-order	interleaving,	we	use	the	4	leftmost	bits	to	determine	the	chip,	and	the
remaining	11	as	the	offset:

The	data	at	address	001000000100111	is	stored	on	chip	2	(00102)	at	offset	39	(000001001112).	If	we	use
low-order	interleaving,	the	rightmost	4	bits	are	used	to	determine	the	chip:

So	the	data,	using	low-order	interleaving,	is	stored	on	chip	7	(01112)	at	offset	258	(001000000102).
Although	low-order	interleaving	allows	for	concurrent	access	of	data	stored	sequentially	in	memory

(such	as	an	array	or	the	instructions	in	a	program),	high-order	interleaving	is	more	intuitive.	Therefore,
for	the	remainder	of	the	text,	we	assume	high-order	interleaving	is	being	used.

The	 memory	 concepts	 we	 have	 covered	 are	 very	 important	 and	 appear	 in	 various	 places	 in	 the
remaining	chapters,	 in	particular	 in	Chapter	6,	which	discusses	memory	 in	detail.	The	key	 concepts	 to
focus	 on	 are:	 (1)	Memory	 addresses	 are	 unsigned	 binary	 values	 (although	we	 often	 view	 them	 as	 hex
values	 because	 it	 is	 easier),	 and	 (2)	The	number	 of	 items	 to	 be	 addressed,	NOT	 the	 size	 of	 the	 item,
determines	the	numbers	of	bits	that	occur	in	the	address.	Although	we	could	always	use	more	bits	for	the
address	 than	 required,	 that	 is	 seldom	 done	 because	minimization	 is	 an	 important	 concept	 in	 computer
design.

4.7			INTERRUPTS
We	 have	 introduced	 the	 basic	 hardware	 information	 required	 for	 a	 solid	 understanding	 of	 computer
architecture:	the	CPU,	buses,	control	unit,	registers,	clocks,	I/O,	and	memory.	However,	there	is	one	more
concept	we	need	to	cover	that	deals	with	how	these	components	interact	with	the	processor:	Interrupts
are	events	that	alter	(or	interrupt)	the	normal	flow	of	execution	in	the	system.	An	interrupt	can	be	triggered
for	a	variety	of	reasons,	including:



•			I/O	requests
•			Arithmetic	errors	(e.g.,	division	by	0)
•			Arithmetic	underflow	or	overflow
•			Hardware	malfunction	(e.g.,	memory	parity	error)
•			User-defined	break	points	(such	as	when	debugging	a	program)
•			Page	faults	(this	is	covered	in	detail	in	Chapter	6)
•			Invalid	instructions	(usually	resulting	from	pointer	issues)
•			Miscellaneous

The	actions	performed	for	each	of	these	types	of	interrupts	(called	interrupt	handling)	are	very	different.
Telling	the	CPU	that	an	I/O	request	has	finished	is	much	different	from	terminating	a	program	because	of
division	by	0.	But	these	actions	are	both	handled	by	interrupts	because	they	require	a	change	in	the	normal
flow	of	the	program’s	execution.

An	 interrupt	 can	 be	 initiated	 by	 the	 user	 or	 the	 system,	 can	 be	maskable	 (disabled	 or	 ignored)	 or
nonmaskable	 (a	 high-priority	 interrupt	 that	 cannot	 be	 disabled	 and	must	 be	 acknowledged),	 can	occur
within	or	between	 instructions,	may	be	synchronous	 (occurs	at	 the	same	place	every	 time	a	program	is
executed)	or	asynchronous	(occurs	unexpectedly),	and	can	result	in	the	program	terminating	or	continuing
execution	 once	 the	 interrupt	 is	 handled.	 Interrupts	 are	 covered	 in	more	 detail	 in	 Section	 4.9.2	 and	 in
Chapter	7.

Now	that	we	have	given	a	general	overview	of	 the	components	necessary	for	a	computer	system	to
function,	we	proceed	by	introducing	a	simple,	yet	functional,	architecture	to	illustrate	these	concepts.

4.8			MARIE
MARIE,	a	Machine	Architecture	that	is	Really	Intuitive	and	Easy,	 is	a	simple	architecture	consisting	of
memory	(to	store	programs	and	data)	and	a	CPU	(consisting	of	an	ALU	and	several	registers).	It	has	all
the	 functional	 components	 necessary	 to	be	 a	 real	working	 computer.	MARIE	will	 help	 to	 illustrate	 the
concepts	 in	 this	 and	 the	 preceding	 three	 chapters.	We	 describe	MARIE’s	 architecture	 in	 the	 following
sections.

4.8.1		The	Architecture
MARIE	has	the	following	characteristics:

•			Binary,	two’s	complement
•			Stored	program,	fixed	word	length
•			Word	(but	not	byte)	addressable
•			4K	words	of	main	memory	(this	implies	12	bits	per	address)
•			16-bit	data	(words	have	16	bits)
•			16-bit	instructions:	4	for	the	opcode	and	12	for	the	address
•			A	16-bit	accumulator	(AC)
•			A	16-bit	instruction	register	(IR)
•			A	16-bit	memory	buffer	register	(MBR)



•			A	12-bit	program	counter	(PC)
•			A	12-bit	memory	address	register	(MAR)
•			An	8-bit	input	register
•			An	8-bit	output	register

Figure	4.8	shows	the	architecture	for	MARIE.
Before	we	continue,	we	need	to	stress	one	important	point	about	memory.	In	Chapter	3,	we	presented

a	simple	memory	built	using	D	flip-flops.	We	emphasize	again	that	each	location	in	memory	has	a	unique
address	(represented	in	binary)	and	each	location	can	hold	a	value.	These	notions	of	the	address	versus
what	 is	 actually	 stored	 at	 that	 address	 tend	 to	 be	 confusing.	To	help	 avoid	 confusion,	 visualize	 a	 post
office.	There	are	post	office	boxes	with	various	“addresses”	or	numbers.	Inside	the	post	office	box,	there
is	mail.	To	get	the	mail,	 the	number	of	the	post	office	box	must	be	known.	The	same	is	true	for	data	or
instructions	that	need	to	be	fetched	from	memory.	The	contents	of	any	memory	address	are	manipulated	by
specifying	the	address	of	that	memory	location.	We	shall	see	that	there	are	many	different	ways	to	specify
this	address.

FIGURE	4.8	MARIE’s	Architecture

4.8.2		Registers	and	Buses
Registers	are	storage	locations	within	the	CPU	(as	illustrated	in	Figure	4.8).	The	ALU	portion	of	the	CPU
performs	all	 of	 the	processing	 (arithmetic	operations,	 logic	decisions,	 etc.).	The	 registers	 are	used	 for
very	specific	purposes	when	programs	are	executing:	They	hold	values	for	temporary	storage,	data	that	is
being	manipulated	 in	some	way,	or	 results	of	simple	calculations.	Many	 times,	 registers	are	 referenced
implicitly	in	an	instruction,	as	we	see	when	we	describe	the	instruction	set	for	MARIE	in	Section	4.8.3.

In	MARIE,	there	are	seven	registers,	as	follows:



•			AC:	The	accumulator,	which	holds	data	values.	This	is	a	general-purpose	register,	and	it	holds	data
that	the	CPU	needs	to	process.	Most	computers	today	have	multiple	general-purpose	registers.

•			MAR:	The	memory	address	register,	which	holds	the	memory	address	of	the	data	being	referenced.
•		 	MBR:	The	memory	buffer	register,	which	holds	either	 the	data	 just	read	from	memory	or	 the	data

ready	to	be	written	to	memory.
•	 	 	PC:	 The	program	 counter,	 which	 holds	 the	 address	 of	 the	 next	 instruction	 to	 be	 executed	 in	 the

program.
•			IR:	The	instruction	register,	which	holds	the	next	instruction	to	be	executed.
•			InREG:	The	input	register,	which	holds	data	from	the	input	device.
•			OutREG:	The	output	register,	which	holds	data	for	the	output	device.

The	MAR,	MBR,	PC,	and	IR	hold	very	specific	information	and	cannot	be	used	for	anything	other	than
their	stated	purposes.	For	example,	we	could	not	store	an	arbitrary	data	value	from	memory	in	the	PC.	We
must	use	the	MBR	or	the	AC	to	store	this	arbitrary	value.	In	addition,	there	is	a	status	or	flag	register
that	holds	information	indicating	various	conditions,	such	as	an	overflow	in	the	ALU,	whether	or	not	the
result	of	an	arithmetic	or	 logical	operation	 is	zero,	 if	a	carry	bit	 should	be	used	 in	a	computation,	and
when	a	result	is	negative.	However,	for	clarity,	we	do	not	include	that	register	explicitly	in	any	figures.

MARIE	is	a	very	simple	computer	with	a	limited	register	set.	Modern	CPUs	have	multiple	general-
purpose	registers,	often	called	user-visible	registers,	 that	perform	functions	similar	 to	those	of	 the	AC.
Today’s	computers	also	have	additional	registers;	for	example,	some	computers	have	registers	that	shift
data	values	and	other	registers	that,	if	taken	as	a	set,	can	be	treated	as	a	list	of	values.

MARIE	 cannot	 transfer	 data	 or	 instructions	 into	 or	 out	 of	 registers	 without	 a	 bus.	 In	MARIE,	 we
assume	a	common	bus	scheme.	Each	device	connected	to	the	bus	has	a	number,	and	before	the	device	can
use	the	bus,	it	must	be	set	to	that	identifying	number.	We	also	have	some	pathways	to	speed	up	execution.
We	 have	 a	 communication	 path	 between	 the	MAR	 and	 memory	 (the	MAR	 provides	 the	 inputs	 to	 the
address	lines	for	memory	so	the	CPU	knows	where	in	memory	to	read	or	write),	and	a	separate	path	from
the	MBR	to	the	AC.	There	is	also	a	special	path	from	the	MBR	to	the	ALU	to	allow	the	data	in	the	MBR
to	be	used	in	arithmetic	operations.	Information	can	also	flow	from	the	AC	through	the	ALU	and	back	into
the	AC	without	being	put	on	the	common	bus.	The	advantage	gained	using	these	additional	pathways	is
that	information	can	be	put	on	the	common	bus	in	the	same	clock	cycle	in	which	data	are	put	on	these	other
pathways,	 allowing	 these	events	 to	 take	place	 in	parallel.	Figure	4.9	 shows	 the	 datapath	 (the	 path	 that
information	follows)	in	MARIE.

4.8.3		Instruction	Set	Architecture
MARIE	 has	 a	 very	 simple,	 yet	 powerful,	 instruction	 set.	 The	 instruction	 set	 architecture	 (ISA)	 of	 a
machine	specifies	the	instructions	that	the	computer	can	perform	and	the	format	for	each	instruction.	The
ISA	is	essentially	an	 interface	between	 the	software	and	 the	hardware.	Some	ISAs	include	hundreds	of
instructions.	We	mentioned	 previously	 that	 each	 instruction	 for	MARIE	 consists	 of	 16	 bits.	 The	 most
significant	 4	 bits,	 bits	 12	 through	15,	make	up	 the	opcode	 that	 specifies	 the	 instruction	 to	 be	 executed
(which	 allows	 for	 a	 total	 of	 16	 instructions).	 The	 least	 significant	 12	 bits,	 bits	 0	 through	 11,	 form	 an
address,	which	allows	for	a	maximum	memory	address	of	212	–	1.	The	instruction	format	for	MARIE	is
shown	in	Figure	4.10.

Most	 ISAs	 consist	 of	 instructions	 for	 processing	 data,	 moving	 data,	 and	 controlling	 the	 execution



sequence	of	the	program.	MARIE’s	instruction	set	consists	of	the	instructions	shown	in	Table	4.2.
The	Load	instruction	allows	us	to	move	data	from	memory	into	the	CPU	(via	the	MBR	and	the	AC).

All	data	(which	includes	anything	that	is	not	an	instruction)	from	memory	must	move	first	into	the	MBR
and	then	into	either	the	AC	or	the	ALU;	there	are	no	other	options	in	this	architecture.	Notice	that	the	Load
instruction	does	not	have	to	name	the	AC	as	the	final	destination;	this	register	is	implicit	in	the	instruction.
Other	instructions	reference	the	AC	register	in	a	similar	fashion.	The	Store	instruction	allows	us	to	move
data	from	the	CPU	back	to	memory.	The	Add	and	Subt	instructions	add	and	subtract,	respectively,	the	data
value	found	at	address	X	to	or	from	the	value	in	the	AC.	The	data	located	at	address	X	is	copied	into	the
MBR	 where	 it	 is	 held	 until	 the	 arithmetic	 operation	 is	 executed.	 Input	 and	 Output	 allow	 MARIE	 to
communicate	with	the	outside	world.

FIGURE	4.9	Datapath	in	MARIE

FIGURE	4.10	MARIE’s	Instruction	Format



TABLE	4.2	MARIE’s	Instruction	Set

Input	 and	output	 are	complicated	operations.	 In	modern	computers,	 input	 and	output	 are	done	using
ASCII	bytes.	This	means	that	if	you	type	in	the	number	32	on	the	keyboard	as	input,	it	is	actually	read	in
as	 the	ASCII	 characters	 “3”	 followed	by	 “2.”	These	 two	 characters	must	 be	 converted	 to	 the	 numeric
value	32	before	they	are	stored	in	the	AC.	Because	we	are	focusing	on	how	a	computer	works,	we	are
going	 to	 assume	 that	 a	 value	 input	 from	 the	 keyboard	 is	 “automatically”	 converted	 correctly.	We	 are
glossing	 over	 a	 very	 important	 concept:	How	 does	 the	 computer	 know	whether	 an	 I/O	 value	 is	 to	 be
treated	as	numeric	or	ASCII,	if	everything	that	is	input	or	output	is	actually	ASCII?	The	answer	is	that	the
computer	knows	through	the	context	of	how	the	value	is	used.	In	MARIE,	we	assume	numeric	input	and
output	only.	We	also	allow	values	to	be	input	as	decimal	and	assume	there	is	a	“magic	conversion”	to	the
actual	binary	values	that	are	stored.	In	reality,	these	are	issues	that	must	be	addressed	if	a	computer	is	to
work	properly.

The	 Halt	 command	 causes	 the	 current	 program	 execution	 to	 terminate.	 The	 Skipcond	 instruction
allows	us	to	perform	conditional	branching	(as	is	done	with	“while”	loops	or	“if”	statements).	When	the
Skipcond	instruction	is	executed,	the	value	stored	in	the	AC	must	be	inspected.	Two	of	the	address	bits
(let’s	assume	we	always	use	the	two	address	bits	closest	to	the	opcode	field,	bits	10	and	11)	specify	the
condition	to	be	tested.	If	the	two	address	bits	are	00,	this	translates	to	“skip	if	the	AC	is	negative.”	If	the
two	address	bits	are	01	(bit	eleven	is	0	and	bit	ten	is	1),	this	translates	to	“skip	if	the	AC	is	equal	to	0.”
Finally,	if	the	two	address	bits	are	10	(or	2),	this	translates	to	“skip	if	the	AC	is	greater	than	0.”	By	“skip”
we	 simply	 mean	 jump	 over	 the	 next	 instruction.	 This	 is	 accomplished	 by	 incrementing	 the	 PC	 by	 1,
essentially	 ignoring	 the	 following	 instruction,	 which	 is	 never	 fetched.	 The	 Jump	 instruction,	 an
unconditional	branch,	also	affects	the	PC.	This	instruction	causes	the	contents	of	the	PC	to	be	replaced
with	the	value	of	X,	which	is	the	address	of	the	next	instruction	to	fetch.

We	wish	 to	 keep	 the	 architecture	 and	 the	 instruction	 set	 as	 simple	 as	 possible	 and	 yet	 convey	 the
information	necessary	 to	understand	how	a	computer	works.	Therefore,	we	have	omitted	several	useful
instructions.	However,	you	will	see	shortly	that	this	instruction	set	is	still	quite	powerful.	Once	you	gain
familiarity	with	how	the	machine	works,	we	will	extend	the	instruction	set	to	make	programming	easier.

Let’s	 examine	 the	 instruction	 format	 used	 in	 MARIE.	 Suppose	 we	 have	 the	 following	 16-bit
instruction:



The	 leftmost	 four	 bits	 indicate	 the	 opcode,	 or	 the	 instruction	 to	 be	 executed.	 0001	 is	 binary	 for	 1,
which	 represents	 the	Load	 instruction.	The	 remaining	12	bits	 indicate	 the	 address	 of	 the	 value	we	 are
loading,	which	is	address	3	in	main	memory.	This	instruction	causes	the	data	value	found	in	main	memory,
address	3,	to	be	copied	into	the	AC.	Consider	another	instruction:

The	leftmost	four	bits,	0011,	are	equal	 to	3,	which	is	 the	Add	instruction.	The	address	bits	 indicate
address	00D	in	hex	(or	13	decimal).	We	go	to	main	memory,	get	the	data	value	at	address	00D,	and	add
this	 value	 to	 the	AC.	 The	 value	 in	 the	AC	would	 then	 change	 to	 reflect	 this	 sum.	One	more	 example
follows:

The	opcode	for	this	instruction	represents	the	Skipcond	instruction.	Bits	ten	and	eleven	(read	left	to
right,	or	bit	eleven	followed	by	bit	ten)	are	10,	indicating	a	value	of	2.	This	implies	a	“skip	if	AC	greater
than	0.”	If	the	value	in	the	AC	is	less	than	or	equal	to	zero,	this	instruction	is	ignored	and	we	simply	go	on
to	 the	 next	 instruction.	 If	 the	 value	 in	 the	AC	 is	 greater	 than	 zero,	 this	 instruction	 causes	 the	PC	 to	 be
incremented	by	1,	thus	causing	the	instruction	immediately	following	this	instruction	in	the	program	to	be
ignored	(keep	this	in	mind	as	you	read	the	following	section	on	the	instruction	cycle).

These	 examples	 bring	 up	 an	 interesting	 point.	 We	 will	 be	 writing	 programs	 using	 this	 limited
instruction	 set.	Would	 you	 rather	 write	 a	 program	 using	 the	 commands	 Load,	 Add,	 and	 Halt,	 or	 their
binary	 equivalents	 0001,	 0011,	 and	 0111?	 Most	 people	 would	 rather	 use	 the	 instruction	 name,	 or
mnemonic,	for	the	instruction,	instead	of	the	binary	value	for	the	instruction.	Our	binary	instructions	are
called	machine	instructions.	The	corresponding	mnemonic	instructions	are	what	we	refer	to	as	assembly
language	 instructions.	There	 is	a	one-to-one	correspondence	between	assembly	 language	and	machine
instructions.	When	we	type	in	an	assembly	language	program	(i.e.,	using	the	instructions	listed	in	Table
4.2),	we	need	an	assembler	to	convert	it	to	its	binary	equivalent.	We	discuss	assemblers	in	Section	4.11.

4.8.4		Register	Transfer	Notation
We	have	seen	that	digital	systems	consist	of	many	components,	including	arithmetic	logic	units,	registers,
memory,	decoders,	and	control	units.	These	units	are	interconnected	by	buses	to	allow	information	to	flow
through	the	system.	The	instruction	set	presented	for	MARIE	in	the	preceding	section	constitutes	a	set	of
machine-level	instructions	used	by	these	components	to	execute	a	program.	Each	instruction	appears	to	be
very	simplistic;	however,	if	you	examine	what	actually	happens	at	the	component	level,	each	instruction
involves	multiple	operations.	For	example,	 the	Load	instruction	loads	the	contents	of	 the	given	memory
location	 into	 the	AC	register.	But	 if	we	observe	what	 is	happening	at	 the	component	 level,	we	see	 that
multiple	“mini-instructions”	are	being	executed.	First,	the	address	from	the	instruction	must	be	loaded	into
the	MAR.	Then	the	data	in	memory	at	this	location	must	be	loaded	into	the	MBR.	Then	the	MBR	must	be
loaded	 into	 the	 AC.	 These	 mini-instructions	 are	 called	microoperations	 and	 specify	 the	 elementary



operations	that	can	be	performed	on	data	stored	in	registers.
The	symbolic	notation	used	to	describe	the	behavior	of	microoperations	is	called	register	transfer

notation	(RTN)	or	register	transfer	language	(RTL).	We	use	 the	notation	M[X]	 to	 indicate	 the	actual
data	stored	at	location	X	in	memory,	and	←	to	indicate	a	transfer	of	information.	In	reality,	a	transfer	from
one	register	to	another	always	involves	a	transfer	onto	the	bus	from	the	source	register,	and	then	a	transfer
off	 the	 bus	 into	 the	 destination	 register.	However,	 for	 the	 sake	 of	 clarity,	we	 do	 not	 include	 these	 bus
transfers,	assuming	that	you	understand	that	the	bus	must	be	used	for	data	transfer.

We	now	present	the	register	transfer	notation	for	each	of	the	instructions	in	the	ISA	for	MARIE.

Load	X
Recall	that	this	instruction	loads	the	contents	of	memory	location	X	into	the	AC.	However,	the	address	X
must	first	be	placed	into	the	MAR.	Then	the	data	at	location	M[MAR]	(or	address	X)	is	moved	into	the
MBR.	Finally,	this	data	is	placed	in	the	AC.

MAR	←	X

MBR	←	M[MAR]

AC	←	MBR

Because	the	IR	must	use	the	bus	to	copy	the	value	of	X	into	the	MAR,	before	the	data	at	location	X	can
be	placed	into	the	MBR,	this	operation	requires	two	bus	cycles.	Therefore,	these	two	operations	are	on
separate	 lines	 to	 indicate	 that	 they	 cannot	 occur	 during	 the	 same	 cycle.	However,	 because	we	 have	 a
special	connection	between	the	MBR	and	the	AC,	the	transfer	of	 the	data	from	the	MBR	to	the	AC	can
occur	immediately	after	the	data	is	put	into	the	MBR,	without	waiting	for	the	bus.

Store	X
This	instruction	stores	the	contents	of	the	AC	in	memory	location	X:

MAR	←	X,	MBR	←	AC

M[MAR]	←	MBR

Add	X
The	data	value	stored	at	address	X	is	added	to	the	AC.	This	can	be	accomplished	as	follows:

MAR	←	X

MBR	←	M[MAR]

AC	←	AC	+	MBR

Subt	X
Similar	to	Add,	this	instruction	subtracts	the	value	stored	at	address	X	from	the	accumulator	and	places
the	result	back	in	the	AC:

MAR	←	X



MBR	←	M[MAR]

AC	←	AC	–	MBR

Input
Any	input	from	the	input	device	is	first	routed	into	the	InREG.	Then	the	data	is	transferred	into	the	AC.

AC	←	InREG

Output
This	instruction	causes	the	contents	of	the	AC	to	be	placed	into	the	OutREG,	where	it	is	eventually	sent	to
the	output	device.

OutREG	←	AC

Halt
No	operations	are	performed	on	registers;	the	machine	simply	ceases	execution	of	the	program.

Skipcond
Recall	 that	 this	 instruction	 uses	 the	 bits	 in	 positions	 10	 and	 11	 in	 the	 address	 field	 to	 determine	what
comparison	to	perform	on	the	AC.	Depending	on	this	bit	combination,	the	AC	is	checked	to	see	whether	it
is	negative,	equal	to	0,	or	greater	than	0.	If	the	given	condition	is	true,	then	the	next	instruction	is	skipped.
This	is	performed	by	incrementing	the	PC	register	by	1.

If	the	bits	in	positions	ten	and	eleven	are	both	ones,	an	error	condition	results.	However,	an	additional
condition	could	also	be	defined	using	these	bit	values.

Jump	X
This	 instruction	 causes	 an	 unconditional	 branch	 to	 the	 given	 address,	 X.	 Therefore,	 to	 execute	 this
instruction,	X	must	be	loaded	into	the	PC.

PC	←	X

In	 reality,	 the	 lower	 or	 least	 significant	 12	 bits	 of	 the	 instruction	 register	 (or	 IR[11–0])	 reflect	 the
value	of	X.	So	this	transfer	is	more	accurately	depicted	as:

PC	←	IR[11-0]



However,	we	feel	that	the	notation	PC	←	X	is	easier	to	understand	and	relate	to	the	actual	instructions,	so
we	use	this	instead.

Register	transfer	notation	is	a	symbolic	means	of	expressing	what	is	happening	in	the	system	when	a
given	instruction	is	executing.	RTN	is	sensitive	to	the	datapath,	 in	that	 if	multiple	microoperations	must
share	the	bus,	they	must	be	executed	in	a	sequential	fashion,	one	following	the	other.

4.9			INSTRUCTION	PROCESSING
Now	that	we	have	a	basic	language	with	which	to	communicate	ideas	to	our	computer,	we	need	to	discuss
exactly	 how	 a	 specific	 program	 is	 executed.	 All	 computers	 follow	 a	 basic	 machine	 cycle:	 the	 fetch,
decode,	and	execute	cycle.

4.9.1		The	Fetch–Decode–Execute	Cycle
The	 fetch–decode–execute	cycle	 represents	 the	 steps	 that	 a	 computer	 follows	 to	 run	 a	 program.	 The
CPU	 fetches	 an	 instruction	 (transfers	 it	 from	 main	 memory	 to	 the	 instruction	 register),	 decodes	 it
(determines	 the	 opcode	 and	 fetches	 any	 data	 necessary	 to	 carry	 out	 the	 instruction),	 and	 executes	 it
(performs	 the	 operation[s]	 indicated	 by	 the	 instruction).	Notice	 that	 a	 large	 part	 of	 this	 cycle	 is	 spent
copying	data	 from	one	 location	 to	 another.	When	a	program	 is	 initially	 loaded,	 the	 address	of	 the	 first
instruction	must	be	placed	in	the	PC.	The	steps	in	this	cycle,	which	take	place	in	specific	clock	cycles,
are	listed	below.	Note	that	Steps	1	and	2	make	up	the	fetch	phase,	Step	3	makes	up	the	decode	phase,	and
Step	4	is	the	execute	phase.

1.		Copy	the	contents	of	the	PC	to	the	MAR:	MAR	←	PC.
2.		Go	to	main	memory	and	fetch	the	instruction	found	at	the	address	in	the	MAR,	placing	this	instruction

in	the	IR;	increment	PC	by	1	(PC	now	points	to	the	next	instruction	in	the	program):	IR	←	M[MAR]
and	then	PC	←	PC	+	1.	(Note:	Because	MARIE	is	word	addressable,	 the	PC	is	 incremented	by	1,
which	results	in	the	next	word’s	address	occupying	the	PC.	If	MARIE	were	byte	addressable,	the	PC
would	 need	 to	 be	 incremented	 by	 2	 to	 point	 to	 the	 address	 of	 the	 next	 instruction,	 because	 each
instruction	would	require	2	bytes.	On	a	byte-addressable	machine	with	32-bit	words,	the	PC	would
need	to	be	incremented	by	4.)



FIGURE	4.11	The	Fetch–Decode–Execute	Cycle

3.		Copy	the	rightmost	12	bits	of	the	IR	into	the	MAR;	decode	the	leftmost	4	bits	to	determine	the	opcode,
MAR	←	IR[11-0],	and	decode	IR[15–12].

4.	 	If	necessary,	use	the	address	in	the	MAR	to	go	to	memory	to	get	data,	placing	the	data	in	the	MBR
(and	 possibly	 the	AC),	 and	 then	 execute	 the	 instruction	MBR	←	M[MAR]	 and	 execute	 the	 actual
instruction.

This	cycle	is	illustrated	in	the	flowchart	in	Figure	4.11.
Note	that	computers	today,	even	with	large	instruction	sets,	long	instructions,	and	huge	memories,	can

execute	millions	of	these	fetch–decode–execute	cycles	in	the	blink	of	an	eye.

4.9.2		Interrupts	and	the	Instruction	Cycle
All	 computers	 provide	 a	 means	 for	 the	 normal	 fetch–decode–execute	 cycle	 to	 be	 interrupted.	 These
interruptions	 may	 be	 necessary	 for	 many	 reasons,	 including	 a	 program	 error	 (such	 as	 division	 by	 0,
arithmetic	 overflow,	 stack	 overflow,	 or	 attempting	 to	 access	 a	 protected	 area	 of	memory);	 a	 hardware



error	(such	as	a	memory	parity	error	or	power	failure);	an	I/O	completion	(which	happens	when	a	disk
read	is	requested	and	the	data	transfer	is	complete);	a	user	interrupt	(such	as	hitting	Ctrl-C	or	Ctrl-Break
to	stop	a	program);	or	an	interrupt	from	a	timer	set	by	the	operating	system	(such	as	is	necessary	when
allocating	virtual	memory	or	performing	certain	bookkeeping	functions).	All	of	 these	have	something	in
common:	they	interrupt	the	normal	flow	of	the	fetch–decode–execute	cycle	and	tell	the	computer	to	stop
what	it	is	currently	doing	and	go	do	something	else.	They	are,	naturally,	called	interrupts.

The	speed	with	which	a	computer	processes	interrupts	plays	a	key	role	in	determining	the	computer’s
overall	performance.	Hardware	interrupts	can	be	generated	by	any	peripheral	on	the	system,	including
memory,	 the	 hard	 drive,	 the	 keyboard,	 the	 mouse,	 or	 even	 the	 modem.	 Instead	 of	 using	 interrupts,
processors	could	poll	hardware	devices	on	a	regular	basis	to	see	if	they	need	anything	done.	However,
this	would	waste	CPU	time	as	the	answer	would	more	often	than	not	be	“no.”	Interrupts	are	nice	because
they	 let	 the	CPU	know	 the	device	needs	 attention	 at	 a	particular	moment	without	 requiring	 the	CPU	 to
constantly	 monitor	 the	 device.	 Suppose	 you	 need	 specific	 information	 that	 a	 friend	 has	 promised	 to
acquire	for	you.	You	have	two	choices:	call	the	friend	on	a	regular	schedule	(polling)	and	waste	his	or	her
time	 and	 yours	 if	 the	 information	 is	 not	 ready,	 or	 wait	 for	 a	 phone	 call	 from	 your	 friend	 once	 the
information	has	been	acquired.	You	may	be	in	the	middle	of	a	conversation	with	someone	else	when	the
phone	call	“interrupts”	you,	but	the	latter	approach	is	by	far	the	more	efficient	way	to	handle	the	exchange
of	information.

Computers	 also	 employ	 software	 interrupts	 (also	 called	 traps	 or	 exceptions)	 used	 by	 various
software	 applications.	 Modern	 computers	 support	 both	 software	 and	 hardware	 interrupts	 by	 using
interrupt	 handlers.	 These	 handlers	 are	 simply	 routines	 (procedures)	 that	 are	 executed	 when	 their
respective	interrupts	are	detected.	The	interrupts,	along	with	their	associated	interrupt	service	routines
(ISRs),	are	stored	in	an	interrupt	vector	table.

How	do	interrupts	fit	into	the	fetch–decode–execute	cycle?	The	CPU	finishes	execution	of	the	current
instruction	and	checks,	 at	 the	beginning	of	every	 fetch–decode–execute	cycle,	 to	 see	 if	 an	 interrupt	has
been	generated,	as	shown	in	Figure	4.12.	Once	the	CPU	acknowledges	the	interrupt,	it	must	then	process
the	interrupt.

The	details	of	the	“Process	the	Interrupt”	block	are	given	in	Figure	4.13.	This	process,	which	is	the
same	regardless	of	what	type	of	interrupt	has	been	invoked,	begins	with	the	CPU	detecting	the	interrupt
signal.	 Before	 doing	 anything	 else,	 the	 system	 suspends	 whatever	 process	 is	 executing	 by	 saving	 the
program’s	state	and	variable	information.	The	device	ID	or	interrupt	request	number	of	the	device	causing
the	interrupt	 is	 then	used	as	an	index	into	the	interrupt	vector	 table,	which	is	kept	 in	very	low	memory.
The	address	of	the	interrupt	service	routine	(known	as	its	address	vector)	is	retrieved	and	placed	into	the
program	counter,	and	execution	resumes	(the	fetch–decode–execute	cycle	begins	again)	within	the	service
routine.	After	 the	 interrupt	service	has	completed,	 the	system	restores	 the	 information	 it	saved	from	the
program	 that	 was	 running	 when	 the	 interrupt	 occurred,	 and	 program	 execution	 may	 resume—unless
another	interrupt	is	detected,	whereupon	the	interrupt	is	serviced	as	described.



FIGURE	4.12	Fetch–Decode–Execute	Cycle	with	Interrupt	Checking

It	 is	 possible	 to	 suspend	processing	of	 noncritical	 interrupts	 by	use	of	 a	 special	 interrupt	mask	bit
found	 in	 the	 flag	 register.	 This	 is	 called	 interrupt	masking,	 and	 interrupts	 that	 can	 be	 suspended	 are
called	maskable	interrupts.	Nonmaskable	interrupts	cannot	be	suspended,	because	to	do	so,	it	is	possible
that	the	system	would	enter	an	unstable	or	unpredictable	state.

Assembly	languages	provide	specific	instructions	for	working	with	hardware	and	software	interrupts.
When	writing	 assembly	 language	programs,	 one	of	 the	most	 common	 tasks	 is	 dealing	with	 I/O	 through
software	interrupts	(see	Chapter	7	for	additional	information	on	interrupt-driven	I/O).	Indeed,	one	of	the
more	complicated	 functions	 for	 the	novice	assembly	 language	programmer	 is	 reading	 input	and	writing
output,	specifically	because	this	must	be	done	using	interrupts.	MARIE	simplifies	the	I/O	process	for	the
programmer	by	avoiding	the	use	of	interrupts	for	I/O.

4.9.3		MARIE’s	I/O
I/O	processing	is	one	of	the	most	challenging	aspects	of	computer	system	design	and	programming.	Our
model	is	necessarily	simplified,	and	we	provide	it	at	this	point	only	to	complete	MARIE’s	functionality.

MARIE	 has	 two	 registers	 to	 handle	 input	 and	 output.	 One,	 the	 input	 register,	 holds	 data	 being
transferred	from	an	input	device	into	the	computer;	the	other,	the	output	register,	holds	information	ready
to	be	sent	to	an	output	device.	The	timing	used	by	these	two	registers	is	very	important.	For	example,	if
you	 are	 entering	 input	 from	 the	 keyboard	 and	 type	 very	 fast,	 the	 computer	must	 be	 able	 to	 read	 each
character	 that	 is	 put	 into	 the	 input	 register.	 If	 another	 character	 is	 entered	 into	 that	 register	 before	 the
computer	 has	 a	 chance	 to	 process	 the	 current	 character,	 the	 current	 character	 is	 lost.	 It	 is	more	 likely,
because	the	processor	is	very	fast	and	keyboard	input	is	very	slow,	that	the	processor	might	read	the	same
character	from	the	input	register	multiple	times.	We	must	avoid	both	of	these	situations.



FIGURE	4.13	Processing	an	Interrupt

To	get	around	problems	like	these,	MARIE	employs	a	modified	type	of	programmed	I/O	(discussed	in
Chapter	 7)	 that	 places	 all	 I/O	 under	 the	 direct	 control	 of	 the	 programmer.	 MARIE’s	 output	 action	 is
simply	a	matter	of	placing	a	value	into	the	OutREG.	This	register	can	be	read	by	an	output	controller	that
sends	it	to	an	appropriate	output	device,	such	as	a	terminal	display,	printer,	or	disk.	For	input,	MARIE,
being	the	simplest	of	simple	systems,	places	the	CPU	into	a	wait	state	until	a	character	is	entered	into	the
InREG.	 The	 InREG	 is	 then	 copied	 to	 the	 accumulator	 for	 subsequent	 processing	 as	 directed	 by	 the
programmer.	We	observe	that	this	model	provides	no	concurrency.	The	machine	is	essentially	idle	while
waiting	 for	 input.	Chapter	7	 explains	 other	 approaches	 to	 I/O	 that	make	more	 efficient	 use	 of	machine



resources.

4.10			A	SIMPLE	PROGRAM
We	now	present	 a	 simple	 program	written	 for	MARIE.	 In	Section	4.12,	we	present	 several	 additional
examples	 to	 illustrate	 the	power	of	 this	minimal	architecture.	 It	can	even	be	used	 to	run	programs	with
procedures,	various	looping	constructs,	and	different	selection	options.

Our	first	program	adds	two	numbers	together	(both	of	which	are	found	in	main	memory),	storing	the
sum	in	memory.	(We	forgo	I/O	for	now.)

Table	 4.3	 lists	 an	 assembly	 language	 program	 to	 do	 this,	 along	 with	 its	 corresponding	 machine
language	 program.	The	 list	 of	 instructions	 under	 the	 Instruction	 column	 constitutes	 the	 actual	 assembly
language	program.	We	know	that	the	fetch–decode–execute	cycle	starts	by	fetching	the	first	instruction	of
the	program,	which	it	finds	by	loading	the	PC	with	the	address	of	the	first	instruction	when	the	program	is
loaded	for	execution.	For	simplicity,	let’s	assume	our	programs	in	MARIE	are	always	loaded	starting	at
address	100	(in	hex).

The	 list	of	 instructions	under	 the	Binary	Contents	of	Memory	Address	column	constitutes	 the	actual
machine	language	program.	It	is	often	easier	for	humans	to	read	hexadecimal	as	opposed	to	binary,	so	the
actual	contents	of	memory	are	displayed	in	hexadecimal.	To	avoid	using	a	subscript	of	16,	we	use	the
standard	“0x”	notation	to	distinguish	a	hexadecimal	number.	For	example,	instead	of	saying	12316,	we
write	0x123.

TABLE	4.3	A	Program	to	Add	Two	Numbers

This	program	loads	0x0023	(or	decimal	value	35)	 into	 the	AC.	It	 then	adds	0xFFE9	(decimal	–23)
that	it	finds	at	address	0x105.	This	results	in	a	value	of	0x000C,	or	12,	in	the	AC.	The	Store	instruction
stores	 this	value	at	memory	 location	0x106.	When	 the	program	 is	done,	 the	binary	contents	of	 location
0x106	 change	 to	 0000000000001100,	 which	 is	 hex	 000C,	 or	 decimal	 12.	 Figure	 4.14	 indicates	 the
contents	of	the	registers	as	the	program	executes.



FIGURE	4.14	A	Trace	of	the	Program	to	Add	Two	Numbers

The	last	RTN	instruction	in	Figure	4.14c	places	the	sum	at	the	proper	memory	location.	The	statement
“decode	IR[15–12]”	simply	means	the	instruction	must	be	decoded	to	determine	what	is	to	be	done.	This
decoding	 can	 be	 done	 in	 software	 (using	 a	microprogram)	 or	 in	 hardware	 (using	 hardwired	 circuits).
These	two	concepts	are	covered	in	more	detail	in	Section	4.13.

Note	 that	 there	 is	 a	 one-to-one	 correspondence	 between	 the	 assembly	 language	 and	 the	 machine
language	 instructions.	 This	 makes	 it	 easy	 to	 convert	 assembly	 language	 into	 machine	 code.	 Using	 the
instruction	tables	given	in	this	chapter,	you	should	be	able	to	hand	assemble	any	of	our	example	programs.



For	this	reason,	we	look	at	only	the	assembly	language	code	from	this	point	on.	Before	we	present	more
programming	examples,	however,	a	discussion	of	the	assembly	process	is	in	order.

4.11			A	DISCUSSION	ON	ASSEMBLERS
In	the	program	shown	in	Table	4.3,	it	is	a	simple	matter	to	convert	from	the	assembly	language	instruction
Load	104,	for	example,	to	the	machine	language	instruction	0x1104.	But	why	bother	with	this	conversion?
Why	not	just	write	in	machine	code?	Although	it	is	very	efficient	for	computers	to	see	these	instructions	as
binary	numbers,	it	is	difficult	for	human	beings	to	understand	and	program	in	sequences	of	0s	and	1s.	We
prefer	words	and	symbols	over	long	numbers,	so	it	seems	a	natural	solution	to	devise	a	program	that	does
this	simple	conversion	for	us.	This	program	is	called	an	assembler.

4.11.1		What	Do	Assemblers	Do?
An	 assembler’s	 job	 is	 to	 convert	 assembly	 language	 (using	mnemonics)	 into	machine	 language	 (which
consists	 entirely	of	 binary	values,	 or	 strings	of	 0s	 and	1s).	Assemblers	 take	 a	 programmer’s	 assembly
language	program,	which	 is	 really	a	 symbolic	 representation	of	 the	binary	numbers,	and	convert	 it	 into
binary	 instructions,	 or	 the	 machine	 code	 equivalent.	 The	 assembler	 reads	 a	 source	 file	 (assembly
program)	and	produces	an	object	file	(the	machine	code).

Substituting	 simple	 alphanumeric	 names	 for	 the	 opcodes	makes	 programming	much	 easier.	We	 can
also	substitute	labels	(simple	names)	to	identify	or	name	particular	memory	addresses,	making	the	task	of
writing	assembly	programs	even	simpler.	For	example,	in	our	program	to	add	two	numbers,	we	can	use
labels	to	indicate	the	memory	addresses,	thus	making	it	unnecessary	to	know	the	exact	memory	address	of
the	operands	for	instructions.	Table	4.4	illustrates	this	concept.

When	the	address	field	of	an	instruction	is	a	label	instead	of	an	actual	physical	address,	the	assembler
still	must	 translate	 it	 into	a	real,	physical	address	 in	main	memory.	Most	assembly	languages	allow	for
labels.	Assemblers	 typically	 specify	 formatting	 rules	 for	 their	 instructions,	 including	 those	with	 labels.
For	example,	a	label	might	be	limited	to	three	characters	and	may	also	be	required	to	occur	as	the	first
field	in	the	instruction.	MARIE	requires	labels	to	be	followed	by	a	comma.

TABLE	4.4	An	Example	Using	Labels

Labels	are	nice	for	programmers.	However,	they	make	more	work	for	the	assembler.	It	must	make	two
passes	through	a	program	to	do	the	translation.	This	means	the	assembler	reads	the	program	twice,	from
top	to	bottom	each	time.	On	the	first	pass,	the	assembler	builds	a	set	of	correspondences	called	a	symbol
table.	For	 the	above	example,	 it	builds	a	 table	with	 three	symbols:	X,	Y,	and	Z.	Because	an	assembler
goes	through	the	code	from	top	to	bottom,	it	cannot	translate	the	entire	assembly	language	instruction	into
machine	code	 in	one	pass;	 it	does	not	know	where	 the	data	portion	of	 the	 instruction	 is	 located	 if	 it	 is



given	 only	 a	 label.	 But	 after	 it	 has	 built	 the	 symbol	 table,	 it	 can	make	 a	 second	 pass	 and	 “fill	 in	 the
blanks.”

In	the	above	program,	the	first	pass	of	the	assembler	creates	the	following	symbol	table:

It	 also	 begins	 to	 translate	 the	 instructions.	 After	 the	 first	 pass,	 the	 translated	 instructions	 would	 be
incomplete	as	follows:

On	 the	 second	 pass,	 the	 assembler	 uses	 the	 symbol	 table	 to	 fill	 in	 the	 addresses	 and	 create	 the
corresponding	machine	language	instructions.	Thus,	on	the	second	pass,	it	would	know	that	X	is	located	at
address	0x104,	and	would	then	substitute	0x104	for	the	X.	A	similar	procedure	would	replace	the	Y	and	Z,
resulting	in:

Because	most	 people	 are	 uncomfortable	 reading	 hexadecimal,	 most	 assembly	 languages	 allow	 the
data	values	stored	in	memory	to	be	specified	as	binary,	hexadecimal,	or	decimal.	Typically,	some	sort	of
assembler	directive	 (an	 instruction	specifically	 for	 the	assembler	 that	 is	not	 supposed	 to	be	 translated
into	machine	code)	is	given	to	the	assembler	to	specify	which	base	is	to	be	used	to	interpret	the	value.	We
use	DEC	for	decimal	and	HEX	for	hexadecimal	in	MARIE’s	assembly	language.	For	example,	we	rewrite
the	program	in	Table	4.4	as	shown	in	Table	4.5.

TABLE	4.5	An	Example	Using	Directives	for	Constants

Instead	of	 requiring	 the	 actual	 binary	 data	 value	 (written	 in	HEX),	we	 specify	 a	 decimal	 value	 by
using	 the	 directive	 DEC.	 The	 assembler	 recognizes	 this	 directive	 and	 converts	 the	 value	 accordingly
before	storing	it	in	memory.	Again,	directives	are	not	converted	to	machine	language;	they	simply	instruct
the	assembler	in	some	way.

Another	 kind	 of	 directive	 common	 to	 virtually	 every	 programming	 language	 is	 the	 comment



delimiter.	Comment	delimiters	are	special	characters	that	tell	 the	assembler	(or	compiler)	to	ignore	all
text	following	the	special	character.	MARIE’s	comment	delimiter	is	a	front	slash	(“/”),	which	causes	all
text	between	the	delimiter	and	the	end	of	the	line	to	be	ignored.

4.11.2		Why	Use	Assembly	Language?
Our	main	objective	in	presenting	MARIE’s	assembly	language	is	to	give	you	an	idea	of	how	the	language
relates	 to	 the	 architecture.	 Understanding	 how	 to	 program	 in	 assembly	 goes	 a	 long	 way	 toward
understanding	 the	architecture	 (and	vice	versa).	Not	only	do	you	 learn	basic	computer	architecture,	but
you	 also	 can	 learn	 exactly	 how	 the	 processor	 works	 and	 gain	 significant	 insight	 into	 the	 particular
architecture	 on	 which	 you	 are	 programming.	 There	 are	 many	 other	 situations	 where	 assembly
programming	is	useful.

Most	programmers	agree	that	10%	of	the	code	in	a	program	uses	approximately	90%	of	the	CPU	time.
In	 time-critical	 applications,	we	 often	 need	 to	 optimize	 this	 10%	 of	 the	 code.	 Typically,	 the	 compiler
handles	this	optimization	for	us.	The	compiler	takes	a	high-level	language	(such	as	C++)	and	converts	it
into	assembly	language	(which	is	then	converted	into	machine	code).	Compilers	have	been	around	a	long
time,	and	in	most	cases	they	do	a	great	job.	Occasionally,	however,	programmers	must	bypass	some	of	the
restrictions	 found	 in	high-level	 languages	and	manipulate	 the	assembly	code	 themselves.	By	doing	 this,
programmers	 can	make	 the	program	more	 efficient	 in	 terms	of	 time	 (and	 space).	This	hybrid	 approach
(most	 of	 the	 program	 written	 in	 a	 high-level	 language,	 with	 part	 rewritten	 in	 assembly)	 allows	 the
programmer	to	take	advantage	of	the	best	of	both	worlds.

Are	there	situations	in	which	entire	programs	should	be	written	in	assembly	language?	If	the	overall
size	of	the	program	or	response	time	is	critical,	assembly	language	often	becomes	the	language	of	choice.
This	is	because	compilers	tend	to	obscure	information	about	the	cost	(in	time)	of	various	operations	and
programmers	often	find	it	difficult	to	judge	exactly	how	their	compiled	programs	will	perform.	Assembly
language	puts	 the	programmer	closer	 to	the	architecture	and,	 thus,	 in	firmer	control.	Assembly	language
might	actually	be	necessary	if	the	programmer	wishes	to	accomplish	certain	operations	not	available	in	a
high-level	language.

A	 perfect	 example,	 in	 terms	 of	 both	 response	 performance	 and	 space-critical	 design,	 is	 found	 in
embedded	systems.	These	are	systems	in	which	the	computer	is	integrated	into	a	device	that	is	typically
not	 a	 computer.	 Embedded	 systems	 must	 be	 reactive	 and	 often	 are	 found	 in	 time-constrained
environments.	These	systems	are	designed	to	perform	either	a	single	instruction	or	a	very	specific	set	of
instructions.	Chances	are	you	use	some	type	of	embedded	system	every	day.	Consumer	electronics	(such
as	 cameras,	 camcorders,	 cellular	 phones,	 PDAs,	 and	 interactive	 games),	 consumer	 products	 (such	 as
washers,	microwave	ovens,	and	washing	machines),	automobiles	(particularly	engine	control	and	antilock
brakes),	 medical	 instruments	 (such	 as	 CAT	 scanners	 and	 heart	 monitors),	 and	 industry	 (for	 process
controllers	and	avionics)	are	just	a	few	of	the	examples	of	where	we	find	embedded	systems.

The	 software	 for	 an	 embedded	 system	 is	 critical.	 An	 embedded	 software	 program	 must	 perform
within	very	specific	response	parameters	and	is	limited	in	the	amount	of	space	it	can	consume.	These	are
perfect	applications	for	assembly	language	programming.	We	delve	deeper	into	this	topic	in	Chapter	10.

4.12			EXTENDING	OUR	INSTRUCTION	SET
Even	 though	 MARIE’s	 instruction	 set	 is	 sufficient	 to	 write	 any	 program	 we	 wish,	 there	 are	 a	 few
instructions	we	 can	 add	 to	make	 programming	much	 simpler.	We	 have	 4	 bits	 allocated	 to	 the	 opcode,



which	implies	that	we	can	have	16	unique	instructions,	and	we	are	using	only	9	of	them.	Surely,	we	can
make	many	programming	 tasks	much	easier	by	adding	a	 few	well-chosen	 instructions	 to	our	 instruction
set.	Our	new	instructions	are	summarized	in	Table	4.6.

The	 JnS	 (jump-and-store)	 instruction	 allows	 us	 to	 store	 a	 pointer	 to	 a	 return	 instruction	 and	 then
proceeds	to	set	the	PC	to	a	different	instruction.	This	enables	us	to	call	procedures	and	other	subroutines,
and	 then	 return	 to	 the	 calling	point	 in	our	 code	once	 the	 subroutine	has	 finished.	The	Clear	 instruction
moves	all	0s	 into	 the	accumulator.	This	saves	 the	machine	cycles	 that	would	otherwise	be	expended	 in
loading	a	0	operand	from	memory.

With	the	AddI,	JumpI,	LoadI,	and	StoreI	instructions,	we	introduce	a	different	addressing	mode.	All
previous	instructions	assume	that	the	value	in	the	data	portion	of	the	instruction	is	the	direct	address	of
the	operand	required	for	the	instruction.	These	instructions	use	the	indirect	addressing	mode.	Instead	of
using	the	value	found	at	location	X	as	the	actual	address,	we	use	the	value	found	in	X	as	a	pointer	to	a	new
memory	 location	 that	 contains	 the	 data	we	wish	 to	 use	 in	 the	 instruction.	 For	 example,	 to	 execute	 the
instruction	AddI	400,	we	first	go	to	location	0x400.	If	we	find	the	value	0x240	stored	at	location	0x400,
we	would	go	to	location	0x240	to	get	the	actual	operand	for	the	instruction.	We	have	essentially	allowed
for	 pointers	 in	 our	 language,	 giving	 us	 tremendous	 power	 to	 create	 advanced	 data	 structures	 and
manipulate	strings.	(We	delve	more	deeply	into	addressing	modes	in	Chapter	5.)

TABLE	4.6	MARIE’s	Extended	Instruction	Set

Our	six	new	instructions	are	detailed	below	using	register	transfer	notation.



Table	4.7	summarizes	MARIE’s	entire	instruction	set.
Let’s	look	at	some	examples	using	the	full	instruction	set.

	EXAMPLE	4.2	Here	is	an	example	using	a	loop	to	add	five	numbers:



Note:	 Line	 numbers	 in	 program	 are	 given	 for	 information	 only	 and	 are	 not	 used	 in	 the	 MarieSim
environment.

Although	 the	comments	are	 reasonably	explanatory,	 let’s	walk	 through	Example	4.2.	Recall	 that	 the
symbol	table	stores	[label,	location]	pairs.	The	Load	Addr	instruction	becomes	Load	111,	because	Addr
is	located	at	physical	memory	address	0x111.	The	value	of	0x117	(the	value	stored	at	Addr)	is	then	stored
in	Next.	This	is	the	pointer	that	allows	us	to	“step	through”	the	five	values	we	are	adding	(located	at	hex
addresses	117,	118,	119,	11A,	and	11B).	The	Ctr	variable	keeps	track	of	how	many	iterations	of	the	loop
we	have	performed.	Because	we	are	checking	to	see	if	Ctr	is	negative	to	terminate	the	loop,	we	start	by
subtracting	one	from	Ctr.	Sum	(with	an	initial	value	of	0)	is	then	loaded	in	the	AC.	The	loop	begins,	using
Next	as	 the	address	of	 the	data	we	wish	 to	add	 to	 the	AC.	The	Skipcond	statement	 terminates	 the	 loop
when	 Ctr	 is	 negative	 by	 skipping	 the	 unconditional	 branch	 to	 the	 top	 of	 the	 loop.	 The	 program	 then
terminates	when	the	Halt	statement	is	executed.



TABLE	4.7	MARIE’s	Full	Instruction	Set



Example	 4.3	 shows	 how	 you	 can	 use	 the	 Skipcond	 and	 Jump	 instructions	 to	 perform	 selection.
Although	 this	 example	 illustrates	 an	 if/else	 construct,	 you	 can	 easily	modify	 this	 to	 perform	 an	 if/then
structure,	or	even	a	case	(or	switch)	structure.

	EXAMPLE	 4.3	 This	 example	 illustrates	 the	 use	 of	 an	 if/else	 construct	 to	 allow	 for	 selection.	 In
particular,	it	implements	the	following:

	EXAMPLE	 4.4	 This	 program	 demonstrates	 the	 use	 of	 indirect	 addressing	 to	 traverse	 and	 output	 a
string.	The	string	is	terminated	with	a	null.



Example	4.4	demonstrates	 the	use	of	 the	LoadI	and	StoreI	 instructions	by	printing	a	string.	Readers
who	understand	the	C	and	C++	programming	languages	will	recognize	the	pattern:	We	start	by	declaring
the	memory	location	of	the	first	character	of	the	string	and	read	it	until	we	find	a	null	character.	Once	the
LoadI	instruction	places	a	null	in	the	accumulator,	Skipcond	400	evaluates	to	true,	and	the	Halt	instruction
is	 executed.	 You	 will	 notice	 that	 to	 process	 each	 character	 of	 the	 string,	 we	 increment	 the	 “current
character”	pointer,	Chptr,	so	that	it	points	to	the	next	character	to	print.

Example	 4.5	 demonstrates	 how	 JnS	 and	 JumpI	 are	 used	 to	 allow	 for	 subroutines.	 This	 program
includes	an	END	statement,	another	example	of	an	assembler	directive.	This	statement	tells	the	assembler
where	the	program	ends.	Other	potential	directives	include	statements	to	let	the	assembler	know	where	to
find	the	first	program	instruction,	how	to	set	up	memory,	and	whether	blocks	of	code	are	procedures.

	EXAMPLE	4.5	This	example	illustrates	the	use	of	a	simple	subroutine	to	double	the	value	stored	at	X.



Note:	 Line	 numbers	 in	 program	 are	 given	 for	 information	 only	 and	 are	 not	 used	 in	 the	 MarieSim
environment.

Using	MARIE’s	simple	instruction	set,	you	should	be	able	to	implement	any	high-level	programming
language	construct,	such	as	loop	statements	and	while	statements.	These	are	left	as	exercises	at	the	end	of
the	chapter.

4.13	A	DISCUSSION	ON	DECODING:	HARDWIRED	VERSUS
MICROPROGRAMMED	CONTROL

How	does	 the	 control	 unit	 really	 function?	We	have	 done	 some	hand	waving	 and	 simply	 assumed	 that
everything	 works	 as	 described,	 with	 a	 basic	 understanding	 that,	 for	 each	 instruction,	 the	 control	 unit
causes	the	CPU	to	execute	a	sequence	of	steps	correctly.	In	reality,	there	must	be	control	signals	to	assert
lines	 on	 various	 digital	 components	 to	 make	 things	 happen	 as	 described	 (recall	 the	 various	 digital
components	from	Chapter	3).	For	example,	when	we	perform	an	Add	instruction	in	MARIE	in	assembly
language,	we	assume	the	addition	takes	place	because	the	control	signals	for	the	ALU	are	set	to	“add”	and
the	 result	 is	 put	 into	 the	 AC.	 The	 ALU	 has	 various	 control	 lines	 that	 determine	 which	 operation	 to
perform.	The	question	we	need	to	answer	is,	“How	do	these	control	lines	actually	become	asserted?”

The	control	unit,	driven	by	the	processor’s	clock,	is	responsible	for	decoding	the	binary	value	in	the
instruction	register	and	creating	all	necessary	control	signals;	essentially,	the	control	unit	takes	the	CPU
through	a	sequence	of	“control”	steps	for	each	program	instruction.	Each	control	step	results	in	the	control



unit	creating	a	set	of	signals	(called	a	control	word)	that	executes	the	appropriate	microoperation.
There	 are	 two	methods	 by	which	 control	 lines	 can	 be	 set.	 The	 first	 approach,	hardwired	 control,

directly	 connects	 the	 control	 lines	 to	 the	 actual	machine	 instructions.	The	 instructions	 are	 divided	 into
fields,	and	bits	in	the	fields	are	connected	to	input	lines	that	drive	various	digital	logic	components.	The
second	approach,	microprogrammed	control,	employs	software	consisting	of	microinstructions	that	carry
out	 an	 instruction’s	microoperations.	We	 look	at	both	of	 these	 control	methods	 in	more	detail	 after	we
describe	machine	control	in	general.

4.13.1		Machine	Control
In	Sections	4.8	and	4.12,	we	provided	register	transfer	language	for	each	of	MARIE’s	instructions.	The
microoperations	described	by	 the	 register	 transfer	 language	actually	define	 the	operation	of	 the	control
unit.	 Each	 microoperation	 is	 associated	 with	 a	 distinctive	 signal	 pattern.	 The	 signals	 are	 fed	 to
combinational	 circuits	 within	 the	 control	 unit	 that	 carry	 out	 the	 logical	 operations	 appropriate	 to	 the
instruction.

A	schematic	of	MARIE’s	data	path	is	shown	in	Figure	4.9.	We	see	that	each	register	and	main	memory
has	an	address	(0	through	7)	along	the	datapath.	These	addresses,	in	the	form	of	signal	patterns,	are	used
by	the	control	unit	to	enable	the	flow	of	bytes	through	the	system.	For	the	sake	of	example,	we	define	two
sets	of	signals:	P2,	P1,	P0	that	can	enable	reading	from	memory	or	a	register	and	P5,	P4,	P3	that	can	enable
writing	 to	 a	 register	 or	memory.	The	 control	 lines	 that	 convey	 these	 signals	 are	 connected	 to	 registers
through	combinational	logic	circuits.

A	close-up	view	of	 the	connection	of	MARIE’s	MBR	(with	address	3)	 to	 the	datapath	 is	 shown	 in
Figure	4.15.	Because	each	register	is	connected	to	the	datapath	in	a	similar	manner,	we	have	to	make	sure
that	they	are	not	all	“competing”	with	the	bus.	This	is	done	by	introducing	a	tri-state	device.	This	circuit,
the	triangle	with	three	inputs,	uses	one	input	to	allow	the	circuit	to	act	as	a	switch;	if	the	input	is	1,	the
device	is	closed	and	a	value	can	“flow	through.”	If	the	input	is	0,	the	switch	is	open	and	doesn’t	allow
any	values	to	flow	through.	The	input	used	to	control	these	devices	comes	from	the	decoder	AND	gate	that
gets	its	inputs	from	P0,	P1,	and	P2.

In	Figure	4.15,	we	see	that	if	P1	and	P0	are	high,	this	AND	gate	computes	P2′P1P0,	which	outputs	a	1
precisely	when	the	MBR	is	selected	for	reading	(which	means	the	MBR	is	writing	to	 the	bus,	or	D15	–
D0).	Any	other	registers	are	disconnected	from	the	bus	wires	because	their	tri-state	devices	are	receiving
the	value	of	0	from	this	decoder	AND	gate.	We	can	also	see	in	Figure	4.15	how	values	are	written	to	the
MBR	(read	from	the	bus).	When	P4	and	P3	are	high,	the	decoder	AND	gate	for	P3,	P4,	and	P5	outputs	a	1,
resulting	 in	 the	 D	 flipflops	 being	 clocked	 and	 storing	 the	 values	 from	 the	 bus	 in	 the	 MBR.	 (The
combinational	logic	that	enables	the	other	entities	on	the	datapath	is	left	as	an	exercise.)



FIGURE	4.15	Connection	of	MARIE’s	MBR	to	the	Datapath

	

ALU	Control	Signals
ALU	Response

A1 A0

0
0
1
1

0
1
0
1

Do	Nothing
AC	AC	+	MBR
AC	AC	–	MBR
AC	0	(Clear)

TABLE	4.8	ALU	Control	Signals	and	Response

If	 you	 study	 MARIE’s	 instruction	 set,	 you	 will	 see	 that	 the	 ALU	 has	 only	 three	 operations:	 add,
subtract,	and	clear.	We	also	need	to	consider	the	case	where	the	ALU	is	not	involved	in	an	instruction,	so
we’ll	define	“do	nothing”	as	a	fourth	ALU	state.	Thus,	with	only	four	operations,	MARIE’s	ALU	can	be
controlled	using	only	 two	control	signals	 that	we’ll	call	A0	and	A1.	These	control	signals	and	 the	ALU
response	are	given	in	Table	4.8.

A	computer’s	clock	sequences	microoperations	by	raising	the	right	signals	at	the	right	time.	MARIE’s
instructions	 vary	 in	 the	 number	 of	 clock	 cycles	 each	 requires.	 The	 activities	 taking	 place	 during	 each
clock	cycle	are	coordinated	with	signals	 from	a	cycle	counter.	One	way	of	doing	 this	 is	 to	connect	 the
clock	 to	a	synchronous	counter,	and	 the	counter	 to	a	decoder.	Suppose	 that	 the	 largest	number	of	clock
cycles	required	by	any	instruction	is	eight.	Then	we	need	a	3-bit	counter	and	a	3	×	8	decoder.	The	output



of	the	decoder,	signals	T0	through	T7,	is	ANDed	with	combinational	components	and	registers	to	produce
the	behavior	required	by	the	instruction.	If	fewer	than	eight	clock	cycles	are	needed	for	an	instruction,	the
cycle	counter	reset	signal,	Cr,	is	asserted	to	get	ready	for	the	next	machine	instruction.

Before	we	continue,	we	need	to	discuss	two	additional	concepts,	beginning	with	the	RTN	instruction:
PC	←	PC	+	1.	We	have	seen	this	in	the	Skipcond	instruction	as	well	as	in	the	fetch	portion	of	the	fetch–
decode–execute	cycle.	This	is	a	more	complicated	instruction	than	it	first	appears.	The	constant	1	must	be
stored	 somewhere,	 both	 this	 constant	 and	 the	 contents	 of	 the	 PC	must	 be	 input	 into	 the	ALU,	 and	 the
resulting	value	must	be	written	back	to	the	PC.	Because	the	PC,	in	this	context,	is	essentially	a	counter,	we
can	implement	the	PC	using	a	circuit	similar	to	the	counter	in	Figure	3.31.	However,	we	cannot	use	the
simple	counter	as	shown	because	we	must	also	be	able	to	store	values	directly	in	the	PC	(for	example,
when	executing	a	JUMP	statement).	Therefore,	we	need	a	counter	with	additional	input	lines	allowing	us
to	overwrite	any	current	values	with	new	ones.	To	increment	the	PC,	we	introduce	a	new	control	signal
IncrPC	for	this	new	circuit;	when	this	signal	is	asserted	and	the	clock	ticks,	the	PC	is	incremented	by	1.

The	second	issue	we	need	to	address	becomes	clear	if	one	examines	Figure	4.9,	the	MARIE	datapath,
in	more	detail.	Note	that	the	AC	can	not	only	read	a	value	from	the	bus,	but	it	can	also	receive	a	value
from	 the	ALU.	 The	MBR	 has	 a	 similar	 alternative	 source,	 as	 it	 can	 read	 from	 the	 bus	 or	 get	 a	 value
directly	from	the	AC.	Multiplexers	can	be	added	to	Figure	4.15,	using	a	control	line	LALT,	to	select	which
value	each	register	should	load:	the	default	bus	value	(LALT	=	0),	or	the	alternative	source	(LALT	=	1).

To	pull	all	of	this	together,	consider	MARIE’s	Add	instruction.	The	RTN	is:

MAR	←	X

MBR	←	M[MAR]

AC	←	AC	+	MBR

After	 the	Add	 instruction	 is	 fetched,	X	 is	 in	 the	 rightmost	 12	 bits	 of	 the	 IR	 and	 the	 IR’s	 datapath
address	is	7,	so	we	need	to	raise	all	three	datapath	read	signals,	P2P1P0,	to	place	IR	bits	0	through	11	on
the	bus.	The	MAR,	with	an	address	of	1,	is	activated	for	writing	by	raising	only	P3.	In	the	next	statement,
we	must	go	to	memory	and	retrieve	the	data	stored	at	the	address	in	the	MAR	and	write	it	to	the	MBR.
Although	it	appears	that	the	MAR	must	be	read	to	first	get	this	value,	in	MARIE,	we	assume	that	the	MAR
is	hardwired	directly	to	memory.	Because	the	memory	we	depicted	in	Figure	3.32	has	only	a	write	enable
line	(we	denote	this	control	line	as	MW),	memory,	by	default,	can	be	read	without	any	further	control	lines
being	set.	Let	us	now	modify	that	memory	to	include	a	read	enable	line	(MR)	as	well.	This	allows	MARIE
to	deal	with	any	competition	for	the	data	bus	that	memory	might	introduce,	similar	to	the	reason	we	added
tri-state	devices	to	Figure	4.15.	To	retrieve	the	value	fetched	from	memory,	we	assert	P4	and	P3	to	write
to	the	MBR.	Finally,	we	add	the	value	in	the	MBR	to	the	value	in	the	AC,	writing	the	result	in	the	AC.
Because	the	MBR	and	AC	are	directly	connected	to	the	ALU,	the	only	control	required	is	to:	(1)	assert	A0

to	perform	an	addition;	(2)	assert	P5	to	allow	the	AC	to	change;	and	(3)	assert	LALT	to	force	the	AC	to	read
its	value	from	the	ALU	instead	of	the	bus.	Using	the	signals	as	we	have	just	defined	them,	we	can	add	the
signal	patterns	to	our	RTN	as	follows:



Note	that	we	start	the	clock	cycle	at	T3,	as	the	fetch	uses	T0,	T1,	and	T2	(to	copy	the	value	of	the	PC	to
the	MAR,	 to	copy	 the	specified	memory	value	 to	 the	IR,	and	 to	 increment	 the	PC).	The	first	 line	 listed
above	is	actually	the	“get	operand”	operation	(as	it	copies	the	value	in	IR[12-0]	to	the	MAR).	The	last
line	contains	the	control	signal	Cr,	which	resets	the	clock	cycle	counter.

All	signals,	except	for	data	signals	(D0	…	D15),	are	assumed	to	be	low	unless	specified	in	the	RTN.
Figure	4.16	is	a	timing	diagram	that	illustrates	the	sequence	of	signal	patterns	just	described.	As	you	can
see,	at	clock	cycle	C3,	all	signals	except	P0,	P1,	P2,	P3,	and	T3	are	low.	Enabling	P0,	P1,	and	P2	allows	the
IR	to	be	read	from,	and	asserting	P3	allows	the	MAR	to	be	written	to.	This	action	occurs	only	when	T3	is
asserted.	At	clock	cycle	C4,	all	signals	except	P3,	P4,	MR,	and	T4	are	low.	This	machine	state,	occurring	at
time	T4,	 connects	 the	bytes	 read	 from	main	memory	 (address	 zero)	 to	 the	 inputs	on	 the	MBR.	The	 last
microinstruction	of	the	Add	sequence	occurs	at	clock	cycle	T5,	when	the	sum	is	placed	into	the	AC	(so
LALT	is	high)	and	the	clock	cycle	counter	is	reset.

4.13.2		Hardwired	Control
Hardwired	control	uses	the	bits	in	the	instruction	register	to	generate	control	signals	by	feeding	these	bits
into	basic	logic	gates.	There	are	three	essential	components	common	to	all	hardwired	control	units:	 the
instruction	decoder,	the	cycle	counter,	and	the	control	matrix.	Depending	on	the	complexity	of	the	system,
specialized	registers	and	sets	of	status	flags	may	be	provided	as	well.	Figure	4.17	illustrates	a	simplified
control	unit.	Let	us	look	at	it	in	detail.

The	first	essential	component	is	the	 instruction	decoder.	 Its	 job	 is	 to	 raise	 the	unique	output	signal
corresponding	 to	 the	 opcode	 in	 the	 instruction	 register.	 If	 we	 have	 a	 four-bit	 opcode,	 the	 instruction
decoder	could	have	as	many	as	16	output	signal	lines.	(Why?)	A	partial	decoder	for	MARIE’s	instruction
set	is	shown	in	Figure	4.18.

The	next	 important	component	 is	 the	control	unit’s	cycle	counter.	 It	 raises	 a	 single,	 distinct	 timing
signal,	T0,	T1,	T2,	…,	Tn,	for	each	tick	of	the	system	clock.	After	Tn	is	reached,	the	counter	cycles	back	to
T0.	The	maximum	number	of	microoperations	required	to	carry	out	any	of	the	instructions	in	the	instruction
set	determines	 the	number	of	distinct	signals	(i.e.,	 the	value	of	n	 in	Tn).	MARIE’s	 timer	needs	 to	count
only	up	 to	7	 (T0	 through	T6)	 to	 accommodate	 the	 JnS	 instruction.	 (You	can	verify	 this	 statement	with	 a
close	inspection	of	Table	4.7.)



FIGURE	4.16	Timing	Diagram	for	the	Microoperations	of	MARIE’s	Add	Instruction

The	sequential	logic	circuit	that	provides	a	repeated	series	of	timing	signals	is	called	a	ring	counter.
Figure	4.19	shows	one	implementation	of	a	ring	counter	using	D	flip-flops.	Initially,	all	of	 the	flip-flop
inputs	are	low	except	for	the	input	to	D0	(because	of	the	inverted	OR	gate	on	the	other	outputs).	Thus,	in
the	counter’s	initial	state,	output	T0	is	energized.	At	the	next	tick	of	the	clock,	the	output	of	D0	goes	high,
causing	the	input	of	D0	to	go	low	(because	of	the	inverted	OR	gate).	T0	turns	off	and	T1	turns	on.	As	you
can	readily	see,	we	have	effectively	moved	a	“timing	bit”	from	D0	to	D1.	This	bit	circulates	through	the
ring	of	flip-flops	until	it	reaches	Dn,	unless	the	ring	is	first	reset	by	way	of	the	clock	reset	signal,	Cr.



FIGURE	4.17	Hardwired	Control	Unit

FIGURE	4.18	Partial	Instruction	Decoder	for	MARIE’s	Instruction	Set



FIGURE	4.19	Ring	Counter	Using	D	Flip-Flops

Signals	from	the	counter	and	instruction	decoder	are	combined	within	the	control	matrix	to	produce
the	 series	 of	 signals	 that	 result	 in	 the	 execution	 of	microoperations	 involving	 the	 ALU,	 registers,	 and
datapath.

The	sequence	of	control	signals	for	MARIE’s	Add	instruction	is	identical	regardless	of	whether	we
employ	 hardwired	 or	 microprogrammed	 control.	 If	 we	 use	 hardwired	 control,	 the	 bit	 pattern	 in	 the
machine	 instruction	 (Add	 =	 0011)	 feeds	 directly	 into	 combinational	 logic	within	 the	 control	 unit.	 The
control	 unit	 initiates	 the	 sequence	 of	 signal	 events	 that	we	 just	 described.	Consider	 the	 control	 unit	 in
Figure	4.17.	The	most	interesting	part	of	this	diagram	is	the	connection	between	the	instruction	decoder
and	 the	 logic	 inside	 the	 control	 unit.	With	 timing	 being	 key	 to	 all	 activities	 in	 the	 system,	 the	 timing
signals,	along	with	the	bits	in	the	instruction,	produce	the	required	behavior.	The	hardwired	logic	for	the
Add	instruction	is	shown	in	Figure	4.20.	You	can	see	how	each	clock	cycle	is	ANDed	with	the	instruction
bits	 to	 raise	 the	 signals	 as	 appropriate.	With	 each	 clock	 tick,	 a	 different	 group	 of	 combinational	 logic
circuits	is	activated.

The	advantage	of	hardwired	control	is	that	it	is	very	fast.	The	disadvantage	is	that	the	instruction	set
and	the	control	logic	are	tied	together	directly	by	complex	circuits	that	are	difficult	to	design	and	modify.
If	someone	designs	a	hardwired	computer	and	later	decides	to	extend	the	instruction	set	(as	we	did	with
MARIE),	 the	 physical	 components	 in	 the	 computer	 must	 be	 changed.	 This	 is	 prohibitively	 expensive,
because	not	only	must	new	chips	be	fabricated,	but	the	old	ones	must	also	be	located	and	replaced.

4.13.3		Microprogrammed	Control
Signals	control	the	movement	of	bytes	(which	are	actually	signal	patterns	that	we	interpret	as	bytes)	along
the	 datapath	 in	 a	 computer	 system.	 The	 manner	 in	 which	 these	 control	 signals	 are	 produced	 is	 what
distinguishes	 hardwired	 control	 from	 microprogrammed	 control.	 In	 hardwired	 control,	 timing	 signals
from	 the	 clock	 are	 ANDed	 using	 combinational	 logic	 circuits	 to	 raise	 and	 lower	 signals.	 Hardwired
control	results	in	very	complex	logic,	in	which	basic	logic	gates	are	responsible	for	generating	all	control
words.	 For	 a	 computer	 with	 a	 large	 instruction	 set,	 it	 might	 be	 virtually	 impossible	 to	 implement
hardwired	 control.	 In	microprogrammed	control,	 instruction	microcode	 produces	 the	necessary	 control
signals.	A	generic	block	diagram	of	a	microprogrammed	control	unit	is	shown	in	Figure	4.21.



FIGURE	4.20	Combinational	Logic	for	Signal	Controls	of	MARIE’s	Add	Instruction

All	machine	instructions	are	input	into	a	special	program,	the	micro	program,	that	converts	machine
instructions	of	0s	and	1s	 into	control	signals.	The	microprogram	is	essentially	an	 interpreter,	written	in
microcode,	 that	 is	 stored	 in	 firmware	 (ROM,	 PROM,	 or	 EPROM),	 which	 is	 often	 referred	 to	 as	 the
control	 store.	 A	 microcode	 microinstruction	 is	 retrieved	 during	 each	 clock	 cycle.	 The	 particular
instruction	retrieved	is	a	function	of	the	current	state	of	the	machine	and	the	value	of	the	microsequencer,
which	 is	 somewhat	 like	 a	 program	 counter	 that	 selects	 the	 next	 instruction	 from	 the	 control	 store.	 If
MARIE	were	microprogrammed,	 the	microinstruction	 format	might	 look	 like	 the	 one	 shown	 in	 Figure
4.22.



FIGURE	4.21	Microprogrammed	Control	Unit

FIGURE	4.22	MARIE’s	Microinstruction	Format

Each	 microoperation	 corresponds	 to	 specific	 control	 lines	 being	 either	 active	 or	 not	 active.	 For
example,	the	microoperation	MAR	←	PC	must	assert	the	controls	signals	to	put	the	contents	of	the	PC	on
the	 datapath	 and	 then	 transfer	 them	 to	 the	MAR	 (which	would	 include	 raising	 the	 clock	 signal	 for	 the
MAR	to	accept	the	new	value).	The	microoperation	AC	←	AC	+	MBR	generates	the	ALU	control	signals
for	add,	while	also	asserting	the	clock	for	the	AC	to	receive	the	new	value.	The	microoperation	MBR	←



M[MAR]	generates	control	signals	to	enable	the	correct	memory	chip	for	the	address	stored	in	the	MAR
(this	would	include	multiple	control	signals	for	the	appropriate	decoders),	set	memory	to	READ,	place
the	memory	data	on	 the	data	bus,	and	put	 the	data	 into	 the	MBR	(which,	again,	 requires	 that	sequential
circuit	to	be	clocked).	One	microinstruction	might	require	tens	(or	even	hundreds	or	thousands	in	a	more
complex	 architecture)	 of	 control	 lines	 to	 be	 asserted.	 These	 control	 signals	 are	 all	 quite	 complicated;
therefore,	we	will	center	our	discussion	on	the	microoperations	that	create	the	control	signals,	rather	than
the	control	signals	themselves,	assuming	the	reader	understands	that	executing	these	microoperations,	in
reality,	translates	into	generating	all	required	control	signals.	Another	way	to	visualize	what	is	happening
is	to	associate,	with	each	microoperation,	a	control	word	with	one	bit	for	every	control	line	in	the	system
(decoders,	multiplexers,	ALUs,	memory,	shifters,	clocks,	etc.).	Instead	of	“executing”	the	microoperation,
a	microprogrammed	control	unit	simply	locates	the	control	word	associated	with	that	microoperation	and
outputs	it	to	the	hardware.

MicroOp1	and	MicroOp2	are	binary	codes	for	each	unique	microoperation	specified	in	the	RTN	for
MARIE’s	instruction	set.	A	comprehensive	list	of	this	RTN	(as	given	in	Table	4.7)	along	with	the	RTN	for
the	 fetch–decode–execute	 cycle	 reveals	 that	 there	 are	 only	 22	 unique	 microoperations	 required	 to
implement	MARIE’s	 entire	 instruction	 set.	Two	 additional	microoperations	 are	 also	 necessary.	One	of
these	codes,	NOP,	indicates	“no	operation.”	NOP	is	useful	when	the	system	must	wait	for	a	set	of	signals
to	 stabilize,	 when	 waiting	 for	 a	 value	 to	 be	 fetched	 from	 memory,	 or	 when	 we	 need	 a	 placeholder.
Second,	and	most	important,	we	need	a	microoperation	that	compares	the	bit	pattern	in	the	first	4	bits	of
the	instruction	register	(IR[15–12])	to	a	literal	value	that	is	in	the	first	4	bits	of	the	MicroOp2	field.	This
instruction	 is	 crucial	 to	 the	 execution	 control	 of	 MARIE’s	 microprogram.	 Each	 of	 MARIE’s
microoperations	is	assigned	a	binary	code,	as	shown	in	Table	4.9.

MARIE’s	 entire	 microprogram	 consists	 of	 fewer	 than	 128	 statements,	 so	 each	 statement	 can	 be
uniquely	identified	by	seven	bits.	This	means	that	each	microinstruction	has	a	seven-bit	address.	When	the
Jump	bit	is	set,	it	indicates	that	the	Dest	field	contains	a	valid	address.	This	address	is	then	moved	to	the
microsequencer.	Control	then	branches	to	the	address	found	in	the	Dest	field.

MARIE’s	 control	 store	memory	 holds	 the	 entire	microprogram	 in	 contiguous	 space.	 This	 program
consists	of	a	jump	table	and	blocks	of	code	that	correspond	to	each	of	MARIE’s	operations.	The	first	nine
statements	(in	RTL	form)	of	MARIE’s	microprogram	are	given	in	Figure	4.23	(we	have	used	the	RTL	for
clarity;	 the	microprogram	 is	 actually	 stored	 in	 binary).	When	MARIE	 is	 booted	 up,	 hardware	 sets	 the
microsequencer	to	point	to	address	0000000	of	the	microprogram.	Execution	commences	from	this	entry
point.	We	see	that	the	first	four	statements	of	the	microprogram	are	the	first	four	statements	of	the	fetch–
decode–execute	cycle.	The	statements	 starting	at	address	0000100	 that	contain	“ifs”	are	 the	 jump	 table
containing	the	addresses	of	the	statements	that	carry	out	the	machine	instructions.	They	effectively	decode
the	 instruction	 by	 branching	 to	 the	 code	 block	 that	 sets	 the	 control	 signals	 to	 carry	 out	 the	 machine
instruction.



TABLE	4.9	Microoperation	Codes	and	Corresponding	MARIE	RTL

FIGURE	4.23	Selected	Statements	in	MARIE’s	Microprogram

At	 line	 number	 0000111,	 the	 statement	 If	 IR[15-12]	 =	 MicroOp2[4-1]	 compares	 the	 value	 in	 the
leftmost	4	bits	of	the	second	microoperation	field	with	the	value	in	the	opcode	field	of	the	instruction	that
was	fetched	in	the	first	three	lines	of	the	microprogram.	In	this	particular	statement,	we	are	comparing	the
opcode	against	MARIE’s	binary	code	for	the	Add	operation,	0011.	If	we	have	a	match,	the	Jump	bit	is	set



to	true	and	control	branches	to	address	0101100.
At	 address	 0101100,	 we	 see	 the	 microoperations	 (RTN)	 for	 the	 Add	 instruction.	 As	 these

microoperations	 are	 executed,	 control	 lines	 are	 set	 exactly	 as	 described	 in	 Section	 4.13.1.	 The	 last
instruction	for	Add,	at	0101110,	has	the	Jump	bit	set	once	again.	The	setting	of	this	bit	causes	the	value	of
all	0s	(the	jump	Dest)	to	be	moved	to	the	microsequencer.	This	effectively	branches	back	to	the	start	of
the	fetch	cycle	at	the	top	of	the	program.

We	must	emphasize	that	a	microprogrammed	control	unit	works	like	a	system	in	miniature.	To	fetch	an
instruction	from	the	control	store,	a	certain	set	of	signals	must	be	raised.	The	microsequencer	points	at	the
instruction	to	retrieve	and	is	subsequently	incremented.	This	is	why	microprogrammed	control	tends	to	be
slower	than	hardwired	control—all	instructions	must	go	through	an	additional	level	of	interpretation.	But
performance	is	not	everything.	Microprogramming	is	flexible,	simple	in	design,	and	lends	itself	 to	very
powerful	 instruction	sets.	The	great	advantage	of	microprogrammed	control	 is	 that	 if	 the	 instruction	set
requires	modification,	only	the	microprogram	needs	to	be	updated	to	match:	No	changes	to	the	hardware
are	required.	Thus,	microprogrammed	control	units	are	less	costly	to	manufacture	and	maintain.	Because
cost	is	critical	in	consumer	products,	microprogrammed	control	dominates	the	personal	computer	market.

4.14			REAL-WORLD	EXAMPLES	OF	COMPUTER
ARCHITECTURES

The	 MARIE	 architecture	 is	 designed	 to	 be	 as	 simple	 as	 possible	 so	 that	 the	 essential	 concepts	 of
computer	 architecture	would	 be	 easy	 to	 understand	without	 being	 completely	 overwhelming.	Although
MARIE’s	architecture	and	assembly	language	are	powerful	enough	to	solve	any	problems	that	could	be
carried	out	on	a	modern	architecture	using	a	high-level	language	such	as	C++,	Ada,	or	Java,	you	probably
wouldn’t	be	happy	with	the	inefficiency	of	the	architecture	or	with	how	difficult	the	program	would	be	to
write	 and	 to	 debug!	 MARIE’s	 performance	 could	 be	 significantly	 improved	 if	 more	 storage	 were
incorporated	 into	 the	 CPU	 by	 adding	 more	 registers.	 Making	 things	 easier	 for	 the	 programmer	 is	 a
different	matter.	For	example,	suppose	a	MARIE	programmer	wants	to	use	procedures	with	parameters.
Although	MARIE	allows	for	subroutines	(programs	can	branch	to	various	sections	of	code,	execute	 the
code,	and	then	return),	MARIE	has	no	mechanism	to	support	the	passing	of	parameters.	Programs	can	be
written	 without	 parameters,	 but	 we	 know	 that	 using	 them	 not	 only	 makes	 the	 program	 more	 efficient
(particularly	in	the	area	of	reuse),	but	also	makes	the	program	easier	to	write	and	debug.

To	allow	for	parameters,	MARIE	would	need	a	stack,	a	data	structure	that	maintains	a	list	of	items
that	can	be	accessed	from	only	one	end.	A	pile	of	plates	in	your	kitchen	cabinet	is	analogous	to	a	stack:
You	 put	 plates	 on	 the	 top	 and	 you	 take	 plates	 off	 the	 top	 (normally).	 For	 this	 reason,	 stacks	 are	 often
called	last-in-first-out	structures.	(Please	see	Appendix	A	at	the	end	of	this	book	for	a	brief	overview	of
the	various	data	structures.)

We	can	emulate	a	stack	using	certain	portions	of	main	memory	if	we	restrict	the	way	data	is	accessed.
For	example,	 if	we	assume	that	memory	locations	0000	through	00FF	are	used	as	a	stack,	and	we	treat
0000	as	the	top,	then	pushing	(adding)	onto	the	stack	must	be	done	from	the	top,	and	popping	(removing)
from	the	stack	must	be	done	 from	the	 top.	 If	we	push	 the	value	2	onto	 the	stack,	 it	would	be	placed	at
location	0000.	If	we	then	push	the	value	6,	it	would	be	placed	at	location	0001.	If	we	then	performed	a
pop	 operation,	 the	 6	would	 be	 removed.	 A	 stack	 pointer	 keeps	 track	 of	 the	 location	 to	 which	 items
should	be	pushed	or	popped.

MARIE	shares	many	features	with	modern	architectures,	but	is	not	an	accurate	depiction	of	them.	In



the	 next	 two	 sections,	 we	 introduce	 two	 contemporary	 computer	 architectures	 to	 better	 illustrate	 the
features	of	modern	architectures	that,	in	an	attempt	to	follow	Leonardo	da	Vinci’s	advice,	were	excluded
from	MARIE.	We	begin	with	the	Intel	architecture	(the	x86	and	the	Pentium	families)	and	then	follow	with
the	MIPS	architecture.	We	chose	these	architectures	because,	although	they	are	similar	in	some	respects,
they	 are	 built	 on	 fundamentally	 different	 philosophies.	 Each	 member	 of	 the	 x86	 family	 of	 Intel
architectures	 is	 known	 as	 a	CISC	 (complex	 instruction	 set	 computer)	machine,	whereas	 the	 Pentium
family	and	the	MIPS	architectures	are	examples	of	RISC	(reduced	instruction	set	computer)	machines.

CISC	machines	have	a	large	number	of	instructions,	of	variable	length,	with	complex	layouts.	Many	of
these	 instructions	 are	 quite	 complicated,	 performing	 multiple	 operations	 when	 a	 single	 instruction	 is
executed	(e.g.,	it	is	possible	to	do	loops	using	a	single	assembly	language	instruction).	The	basic	problem
with	 CISC	 machines	 is	 that	 a	 small	 subset	 of	 complex	 CISC	 instructions	 slows	 the	 systems	 down
considerably.	Designers	decided	to	return	to	a	less	complicated	architecture	and	to	hardwire	a	small	(but
complete)	 instruction	 set	 that	would	 execute	 extremely	 quickly.	This	meant	 it	would	 be	 the	 compiler’s
responsibility	to	produce	efficient	code	for	the	ISA.	Machines	utilizing	this	philosophy	are	called	RISC
machines.

RISC	is	something	of	a	misnomer.	It	is	true	that	the	number	of	instructions	is	reduced.	However,	the
main	 objective	 of	 RISC	 machines	 is	 to	 simplify	 instructions	 so	 they	 can	 execute	 more	 quickly.	 Each
instruction	performs	only	one	operation,	they	are	all	the	same	size,	they	have	only	a	few	different	layouts,
and	 all	 arithmetic	 operations	must	 be	 performed	between	 registers	 (data	 in	memory	 cannot	 be	 used	 as
operands).	Virtually	all	new	instruction	sets	(for	any	architectures)	since	1982	have	been	RISC,	or	some
sort	of	combination	of	CISC	and	RISC.	We	cover	CISC	and	RISC	in	detail	in	Chapter	9.

4.14.1		Intel	Architectures
The	Intel	Corporation	has	produced	many	different	architectures,	some	of	which	may	be	familiar	to	you.
Intel’s	first	popular	chip,	the	8086,	was	introduced	in	1979	and	was	used	in	the	IBM	PC.	It	handled	16-bit
data	and	worked	with	20-bit	addresses;	thus	it	could	address	a	million	bytes	of	memory.	(A	close	cousin
of	the	8086,	the	8-bit	8088,	was	used	in	many	personal	computers	to	lower	the	cost.)	The	8086	CPU	was
split	 into	two	parts:	 the	execution	unit,	which	 included	 the	general	 registers	and	 the	ALU,	and	 the	bus
interface	unit,	which	included	the	instruction	queue,	the	segment	registers,	and	the	instruction	pointer.

The	8086	had	 four	16-bit	 general-purpose	 registers	named	AX	 (the	primary	accumulator),	BX	 (the
base	 register	 used	 to	 extend	 addressing),	CX	 (the	 count	 register),	 and	DX	 (the	 data	 register).	 Each	 of
these	 registers	was	 divided	 into	 two	 pieces:	 The	most	 significant	 half	was	 designated	 the	 “high”	 half
(denoted	by	AH,	BH,	CH,	and	DH),	and	the	least	significant	was	designated	the	“low”	half	(denoted	by
AL,	BL,	CL,	and	DL).	Various	8086	instructions	required	the	use	of	a	specific	register,	but	the	registers
could	be	used	 for	other	purposes	 as	well.	The	8086	also	had	 three	pointer	 registers:	 the	 stack	pointer
(SP),	which	was	 used	 as	 an	 offset	 into	 the	 stack;	 the	 base	 pointer	 (BP),	which	was	 used	 to	 reference
parameters	 pushed	 onto	 the	 stack;	 and	 the	 instruction	 pointer	 (IP),	 which	 held	 the	 address	 of	 the	 next
instruction	(similar	to	MARIE’s	PC).	There	were	also	two	index	registers:	the	SI	(source	index)	register,
used	as	a	source	pointer	for	string	operations,	and	the	DI	(destination	index)	register,	used	as	a	destination
pointer	for	string	operations.	The	8086	also	had	a	status	flags	register.	 Individual	bits	 in	 this	 register
indicated	various	conditions,	such	as	overflow,	parity,	carry	interrupt,	and	so	on.

An	8086	assembly	language	program	was	divided	into	different	segments,	special	blocks	or	areas	to
hold	specific	types	of	information.	There	was	a	code	segment	(for	holding	the	program),	a	data	segment
(for	 holding	 the	 program’s	 data),	 and	 a	 stack	 segment	 (for	 holding	 the	 program’s	 stack).	 To	 access



information	in	any	of	these	segments,	it	was	necessary	to	specify	that	item’s	offset	from	the	beginning	of
the	 corresponding	 segment.	 Therefore,	 segment	 pointers	 were	 necessary	 to	 store	 the	 addresses	 of	 the
segments.	These	registers	included	the	code	segment	(CS)	register,	the	data	segment	(DS)	register,	and	the
stack	 segment	 (SS)	 register.	 There	 was	 also	 a	 fourth	 segment	 register,	 called	 the	 extra	 segment	 (ES)
register,	 which	 was	 used	 by	 some	 string	 operations	 to	 handle	 memory	 addressing.	 Addresses	 were
specified	using	segment/offset	addressing	in	the	form:	xxx:yyy,	where	xxx	was	 the	value	 in	 the	segment
register	and	yyy	was	the	offset.

In	1980,	Intel	introduced	the	8087,	which	added	floating-point	instructions	to	the	8086	machine	set	as
well	as	an	80-bit-wide	stack.	Many	new	chips	were	introduced	that	used	essentially	the	same	ISA	as	the
8086,	including	the	80286	in	1982	(which	could	address	16	million	bytes)	and	the	80386	in	1985	(which
could	address	up	to	4	billion	bytes	of	memory).	The	80386	was	a	32-bit	chip,	the	first	in	a	family	of	chips
often	called	IA-32	(for	Intel	Architecture,	32-bit).	When	Intel	moved	from	the	16-bit	80286	to	the	32-bit
80386,	 designers	wanted	 these	 architectures	 to	 be	backward	 compatible,	 which	means	 that	 programs
written	for	a	less	powerful	and	older	processor	should	run	on	the	newer,	faster	processors.	For	example,
programs	 that	 ran	 on	 the	 80286	 should	 also	 run	 on	 the	 80386.	 Therefore,	 Intel	 kept	 the	 same	 basic
architecture	 and	 register	 sets.	 (New	 features	 were	 added	 to	 each	 successive	 model,	 so	 forward
compatibility	was	not	guaranteed.)

FIGURE	4.24	EAX	Register,	Broken	into	Parts

The	naming	convention	used	in	the	80386	for	the	registers,	which	had	gone	from	16	to	32	bits,	was	to
include	an	“E”	prefix	 (which	stood	for	“extended”).	So	 instead	of	AX,	BX,	CX,	and	DX,	 the	 registers
became	EAX,	EBX,	ECX,	and	EDX.	This	same	convention	was	used	for	all	other	registers.	However,	the
programmer	 could	 still	 access	 the	original	 registers,	AX,	AL,	 and	AH,	 for	 example,	 using	 the	original
names.	Figure	4.24	illustrates	how	this	worked,	using	the	AX	register	as	an	example.

The	80386	and	80486	were	both	32-bit	machines,	with	32-bit	data	buses.	The	80486	added	a	high-
speed	 cache	 memory	 (see	 Chapter	 6	 for	 more	 details	 on	 cache	 and	 memory),	 which	 improved
performance	significantly.

The	Pentium	series	(see	sidebar	“What’s	 in	a	Name?”	to	find	out	why	Intel	stopped	using	numbers
and	switched	to	the	name	“Pentium”)	started	with	the	Pentium	processor,	which	had	32-bit	registers	and	a
64-bit	data	bus	and	employed	a	superscalar	design.	This	means	the	CPU	had	multiple	ALUs	and	could
issue	more	than	one	instruction	per	clock	cycle	(i.e.,	run	instructions	in	parallel).	The	Pentium	Pro	added
branch	prediction,	 and	 the	Pentium	 II	 added	MMX	 technology	 (which	most	will	 agree	was	 not	 a	 huge
success)	 to	 deal	 with	 multimedia.	 The	 Pentium	 III	 added	 increased	 support	 for	 3D	 graphics	 (using
floating-point	 instructions).	 Historically,	 Intel	 used	 a	 classic	 CISC	 approach	 throughout	 its	 processor
series.	The	more	recent	Pentium	II	and	III	used	a	combined	approach,	employing	CISC	architectures	with
RISC	cores	that	could	translate	from	CISC	to	RISC	instructions.	Intel	was	conforming	to	the	current	trend
by	moving	away	from	CISC	and	toward	RISC.

The	 seventh-generation	 family	 of	 Intel	 CPUs	 introduced	 the	 Intel	Pentium	 IV	 (also	 known	 as	 the
Pentium	4)	processor.	This	processor	differs	from	its	predecessors	in	several	ways,	many	of	which	are



beyond	the	scope	of	 this	 text.	Suffice	 it	 to	say	 that	 the	Pentium	IV	processor	has	clock	rates	of	1.4	and
1.7GHz,	 uses	 no	 less	 than	 42	 million	 transistors	 for	 the	 CPU,	 and	 implements	 a	 NetBurst
microarchitecture.	 (The	 processors	 in	 the	Pentium	 family,	 up	 to	 this	 point,	 had	 all	 been	 based	 on	 the
same	microarchitecture,	a	term	used	to	describe	the	architecture	below	the	instruction	set.)	This	type	of
architecture	includes	four	salient	improvements:	hyperpipelining,	a	wider	instruction	pipeline	(pipelining
is	covered	in	Chapter	5)	to	handle	more	instructions	concurrently;	a	rapid	execution	engine	(the	Pentium
IV	has	two	arithmetic	logic	units);	an	execution	trace	cache,	a	cache	that	holds	decoded	instructions	so	if
they	are	used	again,	they	do	not	have	to	be	decoded	again;	and	a	400MHz	bus.	This	has	made	the	Pentium
IV	an	extremely	useful	processor	for	multimedia	applications.

The	 Pentium	 IV	 processor	 also	 introduced	 hyperthreading	 (HT).	Threads	 are	 tasks	 that	 can	 run
independently	of	one	another	within	the	context	of	the	same	process.	A	thread	shares	code	and	data	with
the	parent	process	but	has	its	own	resources,	including	a	stack	and	instruction	pointer.	Because	multiple
child	threads	share	with	their	parent,	threads	require	fewer	system	resources	than	if	each	were	a	separate
process.	 Systems	 with	 more	 than	 one	 processor	 take	 advantage	 of	 thread	 processing	 by	 splitting
instructions	 so	 that	 multiple	 threads	 can	 execute	 on	 the	 processors	 in	 parallel.	 However,	 Intel’s	 HT
enables	a	single	physical	processor	to	simulate	two	logical	(or	virtual)	processors—the	operating	system
actually	sees	two	processors	where	only	one	exists.	(To	take	advantage	of	HT,	the	operating	system	must
recognize	 thread	 processing.)	 HT	 does	 this	 through	 a	 mix	 of	 shared,	 duplicated,	 and	 partitioned	 chip
resources,	including	registers,	math	units,	counters,	and	cache	memory.

HT	duplicates	the	architectural	state	of	the	processor	but	permits	the	threads	to	share	main	execution
resources.	This	 sharing	 allows	 the	 threads	 to	 utilize	 resources	 that	might	 otherwise	 be	 idle	 (e.g.,	 on	 a
cache	miss),	resulting	in	up	to	a	40%	improvement	in	resource	utilization	and	potential	performance	gains
as	 high	 as	 25%.	 Performance	 gains	 depend	 on	 the	 application,	 with	 computationally	 intensive
applications	 seeing	 the	 most	 significant	 gain.	 Commonplace	 programs,	 such	 as	 word	 processors	 and
spreadsheets,	are	mostly	unaffected	by	HT	technology.

What’s	in	a	Name?
Intel	Corporation	makes	approximately	80%	of	the	CPUs	used	in	today’s	microcomputers.	It	all	started
with	the	4-bit	4004,	which	in	1971	was	the	first	commercially	available	microprocessor,	or	“CPU	on	a
chip.”	 Four	 years	 later,	 Intel’s	 8-bit	 8080	 with	 6000	 transistors	 was	 put	 into	 the	 first	 personal
computer,	 the	 Altair	 8800.	 As	 technology	 allowed	 more	 transistors	 per	 chip,	 Intel	 kept	 pace	 by
introducing	 the	 16-bit	 8086	 in	 1978	 and	 the	 8088	 in	 1979	 (both	 with	 approximately	 29,000
transistors).	These	two	processors	truly	started	the	personal	computer	revolution,	as	they	were	used	in
the	IBM	personal	computer	(later	dubbed	the	XT)	and	became	the	industry	standard.

The	80186	was	 introduced	 in	1980,	and	although	buyers	could	choose	 from	an	8-bit	or	a	16-bit
version,	the	80186	was	never	used	in	personal	computers.	In	1982,	Intel	introduced	the	80286,	a	16-bit
processor	with	134,000	 transistors.	 In	 fewer	 than	5	years,	more	 than	14	million	personal	computers
were	using	the	80286	(which	most	people	shortened	to	simply	“286”).	In	1985,	Intel	came	out	with	the
first	32-bit	microprocessor,	the	80386.	The	386	multitasking	chip	was	an	immediate	success,	with	its
275,000	 transistors	 and	 5	 million	 instructions-per-second	 operating	 speed.	 Four	 years	 later,	 Intel
introduced	 the	 80486,	 which	 had	 an	 amazing	 1.2	million	 transistors	 per	 chip	 and	 operated	 at	 16.9
million	 instructions	 per	 second!	 The	 486,	 with	 its	 built-in	 math	 coprocessor,	 was	 the	 first



microprocessor	to	truly	rival	mainframe	computers.
With	 such	huge	 success	 and	name	 recognition,	why	 then	did	 Intel	 suddenly	 stop	using	 the	80x86

moniker	and	switch	to	Pentium	in	1993?	By	that	time,	many	companies	were	copying	Intel’s	designs
and	 using	 the	 same	 numbering	 scheme.	 One	 of	 the	 most	 successful	 of	 these	 was	 Advanced	Micro
Device	 (AMD).	The	AMD486	processor	had	already	 found	 its	way	 into	many	portable	and	desktop
computers.	Another	was	Cyrix	with	its	486SLC	chip.	Before	introducing	its	next	processor,	Intel	asked
the	U.S.	Patent	and	Trademark	Office	 if	 the	company	could	 trademark	the	name	“586.”	In	 the	United
States,	 numbers	 cannot	 be	 trademarked.	 (Other	 countries	 do	 allow	 numbers	 as	 trademarks,	 such	 as
Peugeot’s	 trademark	 three-digit	model	 numbers	with	 a	 central	 zero.)	 Intel	was	 denied	 its	 trademark
request	and	switched	the	name	to	Pentium.	(The	astute	reader	will	recognize	that	pent	means	five,	as
in	pentagon.)

It	 is	 interesting	 to	 note	 that	 all	 of	 this	 happened	 at	 about	 the	 same	 time	 as	 Intel	 began	 using	 its
ubiquitous	 “Intel	 inside”	 stickers.	 It	 is	 also	 interesting	 that	 AMD	 introduced	what	 it	 called	 the	 PR
rating	 system,	 a	 method	 of	 comparing	 its	 x86	 processor	 to	 Intel’s	 processor.	 PR	 stands	 for
“Performance	 Rating”	 (not	 “Pentium	 Rating”	 as	 many	 people	 believe)	 and	 was	 intended	 to	 guide
consumers	regarding	a	particular	processor’s	performance	as	compared	to	that	of	a	Pentium.

Intel	has	continued	to	manufacture	chips	using	the	Pentium	naming	scheme.	The	first	Pentium	chip
had	3	million	transistors,	operated	at	25	million	instructions	per	second,	and	had	clock	speeds	from	60
to	200MHz.	Intel	produced	many	different	name	variations	of	the	Pentium,	including	the	Pentium	MMX
in	1997,	which	improved	multimedia	performance	using	the	MMX	instruction	set.

Other	manufacturers	have	also	continued	to	design	chips	to	compete	with	the	Pentium	line.	AMD
introduced	the	AMD5x86,	and	later	the	K5	and	K6,	to	compete	with	Pentium	MMX	technology.	AMD
gave	its	5x86	processor	a	“PR75”	rating,	meaning	this	processor	was	as	fast	as	a	Pentium	running	at
75MHz.	Cyrix	introduced	the	6x86	chip	(or	M1)	and	MediaGX,	followed	by	the	Cyrix	6x86MX	(M2),
to	compete	with	the	Pentium	MMX.

Intel	moved	on	to	the	Pentium	Pro	in	1995.	This	processor	had	5.5	million	transistors	but	had	only
a	 slightly	 larger	 die	 than	 the	 4004,	 which	 was	 introduced	 almost	 25	 years	 earlier.	 The	 Pentium	 II
(1997)	 was	 a	 cross	 between	 the	 Pentium	 MMX	 and	 the	 Pentium	 Pro	 and	 contained	 7.5	 million
transistors.	AMD	continued	to	keep	pace	and	introduced	the	K6-2	in	1998,	followed	by	the	K6-3.	In	an
attempt	to	capture	more	of	the	low-end	market,	Intel	introduced	the	Celeron,	an	entry-level	version	of
the	Pentium	II	with	less	cache	memory.

Intel	 released	 the	 Pentium	 III	 in	 1999.	 This	 chip,	 housing	 9.5	million	 transistors,	 used	 the	 SSE
instruction	set	(which	is	an	extension	to	MMX).	Intel	continued	with	improvements	to	this	processor	by
placing	cache	directly	on	the	core,	making	caching	considerably	faster.	AMD	released	the	Athlon	line
of	chips	in	1999	to	compete	with	the	Pentium	III.	(AMD	continues	to	manufacture	the	Athlon	line	to	this
day.)	In	2000,	Intel	released	the	Pentium	IV,	and	depending	on	the	particular	core,	this	chip	has	from	42
to	55	million	transistors.	The	Itanium	2,	in	2002,	had	220	million	transistors,	and	the	new	Itanium	in
2004	had	592	million	transistors.	By	2008,	Intel	had	created	the	Core	i7	with	731	million	transistors.
By	2010,	the	number	of	transistors	on	the	Core	i7	had	topped	a	billion!	In	2011,	the	Xeon	was	released
and	 consisted	 of	more	 than	 2	 billion	 transistors,	 followed	 in	 2012	by	 the	 Itanium	with	more	 than	 3
billion	transistors	and	the	Xeon	with	more	than	5	billion	transistors!

Clearly,	changing	the	name	of	its	processors	from	the	x86	designation	to	the	Pentium-based	series
has	had	no	negative	effects	on	Intel’s	success.	However,	because	Pentium	is	one	of	the	most	recognized
trademarks	in	the	processor	world,	industry	watchers	were	surprised	when	Intel	introduced	its	64-bit
Itanium	processor	without	including	Pentium	as	part	of	the	name.	Some	people	believe	that	this	chip



name	has	backfired,	and	their	comparison	of	this	chip	to	a	sinking	ship	has	prompted	some	to	call	it	the
Itanic.

Although	this	discussion	has	given	a	timeline	of	Intel’s	processors,	it	also	shows	that,	for	the	past
30	years,	Moore’s	law	has	held	with	remarkable	accuracy.	And	we	have	looked	at	only	Intel	and	Intel
clone	processors.	There	are	many	other	microprocessors	we	have	not	mentioned,	including	those	made
by	 Motorola,	 Zilog,	 TI,	 and	 RCA,	 to	 name	 only	 a	 few.	 With	 continually	 increasing	 power	 and
decreasing	costs,	there	is	little	wonder	that	microprocessors	have	become	the	most	prevalent	type	of
processor	in	the	computer	market.	Even	more	amazing	is	that	there	is	no	sign	of	this	trend	changing	at
any	time	in	the	near	future.

The	 introduction	of	 the	Itanium	processor	 in	2001	marked	Intel’s	 first	64-bit	chip	(IA-64).	 Itanium
includes	 a	 register-based	 programming	 language	 and	 a	 very	 rich	 instruction	 set.	 It	 also	 employs	 a
hardware	emulator	 to	maintain	backward	compatibility	with	 IA-32/x86	 instruction	sets.	This	processor
has	 four	 integer	 units,	 two	 floating-point	 units,	 a	 significant	 amount	 of	 cache	memory	 at	 four	 different
levels	 (we	 study	 cache	 levels	 in	 Chapter	 6),	 128	 floating-point	 registers,	 128	 integer	 registers,	 and
multiple	miscellaneous	registers	for	dealing	with	efficient	loading	of	instructions	in	branching	situations.
Itanium	can	address	up	to	16	GB	of	main	memory.	Intel	introduced	its	popular	“core”	micro	architecture
in	2006.

The	assembly	 language	of	an	architecture	 reveals	 significant	 information	about	 that	architecture.	To
compare	MARIE’s	architecture	 to	 Intel’s	architecture,	 let’s	 return	 to	Example	4.2,	 the	MARIE	program
that	 used	 a	 loop	 to	 add	 five	 numbers.	Let’s	 rewrite	 the	 program	 in	 x86	 assembly	 language,	 as	 seen	 in
Example	4.6.	Note	the	addition	of	a	Data	segment	directive	and	a	Code	segment	directive.

	EXAMPLE	4.6	A	program	using	a	loop	to	add	five	numbers	written	to	run	on	a	Pentium.



We	 can	make	 this	 program	 easier	 to	 read	 (which	 also	makes	 it	 look	 less	 like	MARIE’s	 assembly
language)	by	using	the	loop	statement.	Syntactically,	the	loop	instruction	resembles	a	jump	instruction,	in
that	it	requires	a	label.	This	loop	can	be	rewritten	as	follows:

The	 loop	 statement	 in	x86	assembly	 is	 similar	 to	 the	do…while	 construct	 in	C,	C++,	or	 Java.	The
difference	is	that	there	is	no	explicit	loop	variable—the	ECX	register	is	assumed	to	hold	the	loop	counter.
Upon	execution	of	the	loop	instruction,	the	processor	decreases	ECX	by	one,	and	then	tests	ECX	to	see	if
it	is	equal	to	0.	If	it	is	not	0,	control	jumps	to	Start;	if	it	is	0,	the	loop	terminates.	The	loop	statement	is	an
example	of	 the	 types	of	 instructions	 that	 can	be	added	 to	make	 the	programmer’s	 job	easier,	but	aren’t
necessary	for	getting	the	job	done.

4.14.2		MIPS	Architectures
The	MIPS	family	of	CPUs	has	been	one	of	the	most	successful	and	flexible	designs	of	its	class.	The	MIPS
R3000,	R4000,	R5000,	R8000,	 and	R10000	 are	 some	 of	 the	many	 registered	 trademarks	 belonging	 to
MIPS	Technologies,	 Inc.	MIPS	chips	are	used	 in	embedded	systems,	 in	addition	 to	computers	 (such	as
Silicon	Graphics	machines)	 and	 various	 computerized	 toys	 (Nintendo	 and	 Sony	 use	 the	MIPS	CPU	 in
many	of	 their	products).	Cisco,	 a	very	 successful	manufacturer	of	 Internet	 routers,	uses	MIPS	CPUs	as
well.

The	first	MIPS	ISA	was	MIPS	I,	followed	by	MIPS	II	through	MIPS	V.	The	current	ISAs	are	referred
to	as	MIPS32	(for	the	32-bit	architecture)	and	MIPS64	(for	the	64-bit	architecture).	Our	discussion	in	this
section	focuses	on	MIPS32.	It	is	important	to	note	that	MIPS	Technologies	made	a	decision	similar	to	that
of	Intel—as	the	ISA	evolved,	backward	compatibility	was	maintained.	And,	like	Intel,	each	new	version
of	 the	 ISA	 included	operations	and	 instructions	 to	 improve	efficiency	and	handle	 floating-point	values.
The	new	MIPS32	and	MIPS64	architectures	have	significant	improvements	in	VLSI	technology	and	CPU
organization.	The	end	result	is	notable	cost	and	performance	benefits	over	traditional	architectures.

Like	IA-32	and	IA-64,	the	MIPS	ISA	embodies	a	rich	set	of	instructions,	including	arithmetic,	logical,
comparison,	data	transfer,	branching,	jumping,	shifting,	and	multimedia	instructions.	MIPS	is	a	load/store
architecture,	 which	 means	 that	 all	 instructions	 (other	 than	 the	 load	 and	 store	 instructions)	 must	 use
registers	as	operands	(no	memory	operands	are	allowed).	MIPS32	has	168	32-bit	instructions,	but	many
are	similar.	For	example,	there	are	six	different	add	instructions,	all	of	which	add	numbers,	but	they	vary
in	 the	 operands	 and	 registers	 used.	This	 idea	 of	 having	multiple	 instructions	 for	 the	 same	operation	 is
common	in	assembly	language	instruction	sets.	Another	common	instruction	is	the	MIPS	NOP	instruction,
which	does	nothing	except	eat	up	time	(NOPs	are	used	in	pipelining,	as	we	see	in	Chapter	5).

The	 CPU	 in	 a	MIPS32	 architecture	 has	 thirty-two	 32-bit	 general-purpose	 registers	 numbered	 r	 0,
through	r	31.	(Two	of	these	have	special	functions:	r	0	is	hardwired	to	a	value	of	0,	and	r	31	is	the	default
register	for	use	with	certain	instructions,	which	means	it	does	not	have	to	be	specified	in	the	instruction
itself.)	In	MIPS	assembly,	these	32	general-purpose	registers	are	designated	$0,	$1,	…,	$31.	Register	1	is
reserved,	and	registers	26	and	27	are	used	by	the	operating	system	kernel.	Registers	28,	29,	and	30	are
pointer	 registers.	 The	 remaining	 registers	 can	 be	 referred	 to	 by	 number,	 using	 the	 naming	 convention



shown	in	Table	4.10.	For	example,	you	can	refer	to	register	8	as	$8	or	as	$t0.
There	 are	 two	 special-purpose	 registers,	 HI	 and	 LO,	 which	 hold	 the	 results	 of	 certain	 integer

operations.	Of	course,	there	is	a	PC	register	as	well,	giving	a	total	of	three	special-purpose	registers.
MIPS32	 has	 thirty-two	 32-bit	 floating-point	 registers	 that	 can	 be	 used	 in	 single-precision	 floating-

point	operations	(with	double-precision	values	being	stored	in	even–odd	pairs	of	these	registers).	There
are	four	special-purpose	floating-point	control	registers	for	use	by	the	floating-point	unit.

Let’s	 continue	 our	 comparison	 by	 writing	 the	 programs	 from	 Examples	 4.2	 and	 4.6	 in	 MIPS32
assembly	language.

	EXAMPLE	4.7

Naming	Convention Register	Number Value	Put	in	Register

$v0-$v1 2-3 Results,	expressions

$a0-$a3 4-7 Arguments

$t0-$t7 8-15 Temporary	values

$s0-$s7 16-23 Saved	values

$t8-$t9 24-25 More	temporary	values

TABLE	4.10	MIPS32	Register	Naming	Convention



This	is	similar	to	the	Intel	code	in	that	the	loop	counter	is	copied	into	a	register,	decremented	during
each	interation	of	the	loop,	and	then	checked	to	see	if	it	is	less	than	or	equal	to	0.	The	register	names	may
look	formidable,	but	they	are	actually	easy	to	work	with	once	you	understand	the	naming	conventions.

If	 you	 have	 enjoyed	working	with	 the	MARIE	 simulator	 and	 are	 ready	 to	 try	 your	 hand	 at	 a	more
complex	machine,	you	will	 surely	 find	 the	MIPS	Assembler	and	Runtime	Simulator,	MARS,	 to	 your
liking.	MARS	is	a	Java-based	MIPS	R2000	and	R3000	simulator	designed	especially	for	undergraduate
education	by	Kenneth	Vollmar	and	Pete	Sanderson.	It	provides	all	the	essential	MIPS	machine	functions	in
a	 useful	 and	 inviting	 graphical	 interface.	 SPIM	 is	 another	 popular	 MIPS	 simulator	 widely	 used	 by
students	 and	 professionals	 alike.	 Both	 of	 these	 simulators	 are	 freely	 downloadable	 and	 can	 run	 on
Windows	XP	and	Windows	Vista,	Mac	OS	X,	Unix,	and	Linux.	For	more	information,	see	the	references
at	the	end	of	this	chapter.

If	you	examine	Examples	4.2,	4.6,	and	4.7,	you	can	see	that	the	instructions	are	quite	similar.	Registers
are	referenced	in	different	ways	and	have	different	names,	but	the	underlying	operations	are	basically	the
same.	Some	assembly	languages	have	larger	instruction	sets,	allowing	the	programmer	more	choices	for
coding	various	algorithms.	But,	 as	we	have	 seen	with	MARIE,	a	 large	 instruction	 set	 is	not	absolutely
necessary	to	get	the	job	done.

CHAPTER	SUMMARY
This	chapter	presented	a	simple	architecture,	MARIE,	as	a	means	to	understand	the	basic	fetch–decode–
execute	cycle	and	how	computers	actually	operate.	This	simple	architecture	was	combined	with	an	ISA
and	 an	 assembly	 language,	with	 emphasis	 given	 to	 the	 relationship	 between	 these	 two,	 allowing	 us	 to
write	programs	for	MARIE.

The	CPU	is	the	principal	component	in	any	computer.	It	consists	of	a	datapath	(registers	and	an	ALU
connected	by	a	bus)	and	a	control	unit	responsible	for	sequencing	the	operations	and	data	movement	and
creating	the	timing	signals.	All	components	use	these	timing	signals	to	work	in	unison.	The	I/O	subsystem
accommodates	getting	data	into	the	computer	and	back	out	to	the	user.



MARIE	is	a	very	simple	architecture	designed	specifically	 to	 illustrate	 the	concepts	 in	 this	chapter
without	getting	bogged	down	in	too	many	technical	details.	MARIE	has	4K	16-bit	words	of	main	memory,
uses	 16-bit	 instructions,	 and	 has	 seven	 registers.	 There	 is	 only	 one	 general-purpose	 register,	 the	 AC.
Instructions	for	MARIE	use	4	bits	 for	 the	opcode	and	12	bits	 for	an	address.	Register	 transfer	notation
was	introduced	as	a	symbolic	means	for	examining	what	each	instruction	does	at	the	register	level.

The	 fetch–decode–execute	 cycle	 consists	 of	 the	 steps	 a	 computer	 follows	 to	 run	 a	 program.	 An
instruction	is	fetched	and	then	decoded,	any	required	operands	are	then	fetched,	and	finally	the	instruction
is	 executed.	 Interrupts	 are	 processed	 at	 the	 beginning	 of	 this	 cycle,	 returning	 to	 normal	 fetch–decode–
execute	status	when	the	interrupt	handler	is	finished.

A	machine	language	is	a	list	of	binary	numbers	representing	executable	machine	instructions,	whereas
an	assembly	language	program	uses	symbolic	instructions	to	represent	the	numerical	data	from	which	the
machine	language	program	is	derived.	Assembly	language	is	a	programming	language,	but	does	not	offer	a
large	variety	of	data	types	or	instructions	for	the	programmer.	Assembly	language	programs	represent	a
lower-level	method	of	programming.

You	would	 probably	 agree	 that	 programming	 in	MARIE’s	 assembly	 language	 is,	 at	 the	 very	 least,
quite	 tedious.	We	saw	that	most	branching	must	be	explicitly	performed	by	the	programmer,	using	jump
and	branch	statements.	It	is	also	a	large	step	from	this	assembly	language	to	a	high-level	language	such	as
C++	or	Ada.	However,	the	assembler	is	one	step	in	the	process	of	converting	source	code	into	something
the	machine	can	understand.	We	have	not	introduced	assembly	language	with	the	expectation	that	you	will
rush	out	and	become	an	assembly	language	programmer.	Rather,	this	introduction	should	serve	to	give	you
a	 better	 understanding	 of	 machine	 architecture	 and	 how	 instructions	 and	 architectures	 are	 related.
Assembly	language	should	also	give	you	a	basic	idea	of	what	is	going	on	behind	the	scenes	in	high-level
C++,	Java,	or	Ada	programs.	Although	assembly	language	programs	are	easier	to	write	for	x86	and	MIPS
than	for	MARIE,	all	are	more	difficult	to	write	and	debug	than	high-level	language	programs.

Intel	and	MIPS	assembly	 languages	and	architectures	were	 introduced	(but	by	no	means	covered	 in
detail)	for	 two	reasons.	First,	 it	 is	 interesting	to	compare	the	various	architectures,	starting	with	a	very
simple	architecture	and	continuing	with	much	more	complex	and	involved	architectures.	You	should	focus
on	 the	differences	as	well	as	 the	 similarities.	Second,	although	 the	 Intel	and	MIPS	assembly	 languages
looked	 different	 from	 MARIE’s	 assembly	 language,	 they	 are	 actually	 quite	 comparable.	 Instructions
access	memory	and	registers,	and	there	are	instructions	for	moving	data,	performing	arithmetic	and	logic
operations,	and	branching.	MARIE’s	 instruction	set	 is	very	 simple	and	 lacks	many	of	 the	“programmer
friendly”	 instructions	 that	are	present	 in	both	Intel	and	MIPS	instruction	sets.	 Intel	and	MIPS	also	have
more	 registers	 than	 MARIE.	 Aside	 from	 the	 number	 of	 instructions	 and	 the	 number	 of	 registers,	 the
languages	function	almost	identically.

FURTHER	READING
A	 MARIE	 assembly	 simulator	 is	 available	 on	 this	 text’s	 home	 page.	 This	 simulator	 assembles	 and
executes	your	MARIE	programs.

For	more	 detailed	 information	 on	 CPU	 organization	 and	 ISAs,	 you	 are	 referred	 to	 the	 Tanenbaum
(2013)	 and	 Stallings	 (2013)	 books.	 Mano	 and	 Ciletti	 (2006)	 contains	 instructional	 examples	 of
microprogrammed	 architectures.	 Wilkes,	 Renwick,	 and	 Wheeler	 (1958)	 is	 an	 excellent	 reference	 on
microprogramming.

For	more	 information	 regarding	 Intel	 assembly	 language	 programming,	 check	 out	 the	Abel	 (2001),
Dandamudi	(1998),	and	Jones	(2001)	books.	The	Jones	book	takes	a	straightforward	and	simple	approach



to	assembly	language	programming,	and	all	three	books	are	quite	thorough.	If	you	are	interested	in	other
assembly	languages,	you	might	refer	to	Struble	(1975)	for	IBM	assembly;	Gill,	Corwin,	and	Logar	(1987)
for	 Motorola;	 and	 SPARC	 International	 (1994)	 for	 SPARC.	 For	 a	 gentle	 introduction	 to	 embedded
systems,	try	Williams	(2000).

If	 you	 are	 interested	 in	 MIPS	 programming,	 Patterson	 and	 Hennessy	 (2008)	 give	 a	 very	 good
presentation,	 and	 their	 book	 has	 a	 separate	 appendix	 with	 useful	 information.	 Donovan	 (1972)	 and
Goodman	 and	Miller	 (1993)	 also	 have	 good	 coverage	 of	 the	 MIPS	 environment.	 Kane	 and	 Heinrich
(1992)	wrote	the	definitive	text	on	the	MIPS	instruction	set	and	assembly	language	programming	on	MIPS
machines.	The	MIPS	home	page	also	has	a	wealth	of	information.

To	read	more	about	Intel	architectures,	please	refer	to	Alpert	and	Avnon	(1993),	Brey	(2003),	Dulon
(1998),	and	Samaras	(2001).	Perhaps	one	of	the	best	books	on	the	subject	of	the	Pentium	architecture	is
Shanley	(1998).	Motorola,	UltraSparc,	and	Alpha	architectures	are	discussed	in	Circello	and	colleagues
(1995),	 Horel	 and	 Lauterbach	 (1999),	 and	 McLellan	 (1995),	 respectively.	 For	 a	 more	 general
introduction	to	advanced	architectures,	see	Tabak	(1994).

If	you	wish	to	learn	more	about	the	SPIM	simulator	for	MIPS,	see	Patterson	and	Hennessy	(2008)	or
the	 SPIM	home	 page,	which	 has	 documentation,	manuals,	 and	 various	 other	 downloads.	 The	 excellent
MARS	 MIPS	 Simulator	 can	 be	 downloaded	 from	 Vollmar’s	 page	 at	 Missouri	 State	 University,	 at
http://courses.missouristate.edu/KenVollmar/MARS/.	 Waldron	 (1999)	 is	 an	 excellent	 introduction	 to
RISC	assembly	language	programming	and	MIPS	as	well.

REFERENCES
Abel,	P.	IBM	PC	Assembly	Language	and	Programming,	5th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,

2001.
Alpert,	D.,	&	Avnon,	D.	“Architecture	of	the	Pentium	Microprocessor.”	IEEE	Micro	13,	April	1993,	pp.

11–21.
Brey,	B.	Intel	Microprocessors	8086/8088,	80186/80188,	80286,	80386,	80486	Pentium,	and	Pentium

Pro	Processor,	Pentium	II,	Pentium	III,	and	Pentium	IV:	Architecture,	Programming,	and
Interfacing,	6th	ed.	Englewood	Cliffs,	NJ:	Prentice	Hall,	2003.

Circello,	J.,	Edgington,	G.,	McCarthy,	D.,	Gay,	J.,	Schimke,	D.,	Sullivan,	S.,	Duerden,	R.,	Hinds,	C.,
Marquette,	D.,	Sood,	L.,	Crouch,	A.,	&	Chow,	D.	“The	Superscalar	Architecture	of	the	MC68060.”
IEEE	Micro	15,	April	1995,	pp.	10–21.

Dandamudi,	S.	P.	Introduction	to	Assembly	Language	Programming—From	8086	to	Pentium
Processors.	New	York:	Springer	Verlag,	1998.

Donovan.	J.	J.	Systems	Programming.	New	York:	McGraw-Hill,	1972.
Dulon,	C.	“The	IA-64	Architecture	at	Work.”	COMPUTER	31,	July	1998,	pp.	24–32.
Gill,	A.,	Corwin,	E.,	&	Logar,	A.	Assembly	Language	Programming	for	the	68000.	Upper	Saddle	River,

NJ:	Prentice	Hall,	1987.
Goodman,	J.,	&	Miller,	K.	A	Programmer’s	View	of	Computer	Architecture.	Philadelphia:	Saunders

College	Publishing,	1993.
Horel,	T.,	&	Lauterbach,	G.	“UltraSPARC	III:	Designing	Third	Generation	64-Bit	Performance.”	IEEE

Micro	19,	May/June	1999,	pp.	73–85.
Jones,	W.	Assembly	Language	for	the	IBM	PC	Family,	3rd	ed.	El	Granada,	CA:	Scott	Jones,	Inc.,	2001.

http://courses.missouristate.edu/KenVollmar/MARS/


Kane,	G.,	&	Heinrich,	J.	MIPS	RISC	Architecture,	2nd	ed.	Englewood	Cliffs,	NJ:	Prentice	Hall,	1992.
Mano,	M.,	&	Ciletti,	M.	Digital	Design,	3rd	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,	2006.
McLellan,	E.	“The	Alpha	AXP	Architecture	and	21164	Alpha	Microprocessor.”	IEEE	Micro	15,	April

1995,	pp.	33–43.
MIPS	home	page:	www.mips.com.
Patterson,	D.	A.,	&	Hennessy,	J.	L.	Computer	Organization	and	Design:	The	Hardware/Software

Interface,	4th	ed.	San	Mateo,	CA:	Morgan	Kaufmann,	2008.
Samaras,	W.	A.,	Cherukuri,	N.,	&	Venkataraman,	S.	“The	IA-64	Itanium	Processor	Cartridge.”	IEEE

Micro	21,	Jan/Feb	2001,	pp.	82–89.
Shanley,	T.	Pentium	Pro	and	Pentium	II	System	Architecture.	Reading,	MA:	Addison-Wesley,	1998.
SPARC	International,	Inc.	The	SPARC	Architecture	Manual:	Version	9.	Upper	Saddle	River,	NJ:	Prentice

Hall,	1994.
SPIM	home	page:	www.cs.wisc.edu/~larus/spim.html.
Stallings,	W.	Computer	Organization	and	Architecture,	9th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,

2013.
Struble,	G.	W.	Assembler	Language	Programming:	The	IBM	System/360	and	370,	2nd	ed.	Reading,	MA:

Addison	Wesley,	1975.
Tabak,	D.	Advanced	Microprocessors.	2nd	ed.	New	York:	McGraw-Hill,	1994.
Tanenbaum,	A.	Structured	Computer	Organization,	6th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,	2013.
Waldron,	J.	Introduction	to	RISC	Assembly	Language.	Reading,	MA:	Addison	Wesley,	1999.
Wilkes,	M.	V.,	Renwick,	W.,	&	Wheeler,	D.	J.	“The	Design	of	the	Control	Unit	of	an	Electronic	Digital

Computer.”	Proceedings	of	IEEE	105,	1958,	pp.	121–128.
Williams,	A.	Microcontroller	Projects	with	Basic	Stamps.	Gilroy,	CA:	R&D	Books,	2000.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS
1.		What	is	the	function	of	a	CPU?
2.		What	purpose	does	a	datapath	serve?
3.		What	does	the	control	unit	do?
4.		Where	are	registers	located,	and	what	are	the	different	types?
5.		How	does	the	ALU	know	which	function	to	perform?
6.		Why	is	a	bus	often	a	communications	bottleneck?
7.		What	is	the	difference	between	a	point-to-point	bus	and	a	multipoint	bus?
8.		Why	is	a	bus	protocol	important?
9.		Explain	the	differences	between	data	buses,	address	buses,	and	control	buses.
10.		What	is	a	bus	cycle?
11.		Name	three	different	types	of	buses	and	where	you	would	find	them.
12.		What	is	the	difference	between	synchronous	buses	and	nonsynchronous	buses?

http://www.mips.com
http://www.cs.wisc.edu/~larus/spim.html


13.		What	are	the	four	types	of	bus	arbitration?
14.		Explain	the	difference	between	clock	cycles	and	clock	frequency.
15.		How	do	system	clocks	and	bus	clocks	differ?
16.		What	is	the	function	of	an	I/O	interface?
17.		Explain	the	difference	between	memory-mapped	I/O	and	instruction-based	I/O.
18.		What	is	the	difference	between	a	byte	and	a	word?	What	distinguishes	each?
19.		Explain	the	difference	between	byte	addressable	and	word	addressable.
20.		Why	is	address	alignment	important?
21.		List	and	explain	the	two	types	of	memory	interleaving	and	the	differences	between	them.
22.		Describe	how	an	interrupt	works,	and	name	four	different	types.
23.		How	does	a	maskable	interrupt	differ	from	a	nonmaskable	interrupt?
24.		Why	is	it	that	if	MARIE	has	4K	words	of	main	memory,	addresses	must	have	12	bits?
25.		Explain	the	functions	of	all	of	MARIE’s	registers.
26.		What	is	an	opcode?
27.		Explain	how	each	instruction	in	MARIE	works.
28.		How	does	a	machine	language	differ	from	an	assembly	language?	Is	the	conversion	one-to-one	(one

assembly	instruction	equals	one	machine	instruction)?
29.		What	is	the	significance	of	RTN?
30.		Is	a	microoperation	the	same	thing	as	a	machine	instruction?
31.		How	does	a	microoperation	differ	from	a	regular	assembly	language	instruction?
32.		Explain	the	steps	of	the	fetch–decode–execute	cycle.
33.		How	does	interrupt-driven	I/O	work?
34.	 	Explain	how	an	 assembler	works,	 including	how	 it	 generates	 the	 symbol	 table,	what	 it	 does	with

source	and	object	code,	and	how	it	handles	labels.
35.		What	is	an	embedded	system?	How	does	it	differ	from	a	regular	computer?
36.		Provide	a	trace	(similar	to	the	one	in	Figure	4.14)	for	Example	4.1.
37.		Explain	the	difference	between	hardwired	control	and	microprogrammed	control.
38.		What	is	a	stack?	Why	is	it	important	for	programming?
39.		Compare	CISC	machines	to	RISC	machines.
40.		How	does	Intel’s	architecture	differ	from	MIPS?
41.		Name	four	Intel	processors	and	four	MIPS	processors.

EXERCISES
1.		What	are	the	main	functions	of	the	CPU?



2.		How	is	the	ALU	related	to	the	CPU?	What	are	its	main	functions?
3.		Explain	what	the	CPU	should	do	when	an	interrupt	occurs.	Include	in	your	answer	the	method	the

CPU	uses	to	detect	an	interrupt,	how	it	is	handled,	and	what	happens	when	the	interrupt	has	been
serviced.

	4.		How	many	bits	would	you	need	to	address	a	2M	×	32	memory	if
a)		the	memory	is	byte	addressable?
b)		the	memory	is	word	addressable?

5.		How	many	bits	are	required	to	address	a	4M	×	16	main	memory	if
a)		main	memory	is	byte	addressable?
b)		main	memory	is	word	addressable?

6.		How	many	bits	are	required	to	address	a	1M	×	8	main	memory	if
a)		main	memory	is	byte	addressable?
b)		main	memory	is	word	addressable?

7.		Redo	Example	4.1	using	high-order	interleaving	instead	of	low-order	interleaving.
8.	 	 Suppose	 we	 have	 4	 memory	 modules	 instead	 of	 8	 in	 Figures	 4.6	 and	 4.7.	 Draw	 the	 memory

modules	with	the	addresses	they	contain	using:
a)		High-order	interleaving
b)		Low-order	interleaving

9.		How	many	256x8	RAM	chips	are	needed	to	provide	a	memory	capacity	of	4096	bytes?
a)		How	many	bits	will	each	address	contain?
b)		How	many	lines	must	go	to	each	chip?
c)		How	many	lines	must	be	decoded	for	the	chip	select	inputs?	Specify	the	size	of	the	decoder.

	10.	 	Suppose	that	a	2M	×	16	main	memory	is	built	using	256K	×	8	RAM	chips	and	memory	is	word
addressable.
a)		How	many	RAM	chips	are	necessary?
b)		If	we	were	accessing	one	full	word,	how	many	chips	would	be	involved?
c)		How	many	address	bits	are	needed	for	each	RAM	chip?
d)		How	many	banks	will	this	memory	have?
e)		How	many	address	bits	are	needed	for	all	memory?
f)		If	high-order	interleaving	is	used,	where	would	address	14	(which	is	E	in	hex)	be	located?
g)		Repeat	exercise	9f	for	low-order	interleaving.

11.		Redo	exercise	10	assuming	a	16M	×	16	memory	built	using	512K	×	8	RAM	chips.
12.	 	 Suppose	 we	 have	 1G	 ×	 16	 RAM	 chips	 that	 make	 up	 a	 32G	 ×	 64	 memory	 that	 uses	 high

interleaving.	 (Note:	 This	 means	 that	 each	 word	 is	 64	 bits	 in	 size	 and	 there	 are	 32G	 of	 these
words.)
a)		How	many	RAM	chips	are	necessary?
b)		Assuming	four	chips	per	bank,	how	many	banks	are	required?
c)		How	many	lines	must	go	to	each	chip?



d)		How	many	bits	are	needed	for	a	memory	address,	assuming	it	is	word	addressable?
e)	 	For	the	bits	in	part	d,	draw	a	diagram	indicating	how	many	and	which	bits	are	used	for	chip

select,	and	how	many	and	which	bits	are	used	for	the	address	on	the	chip.
f)		Redo	this	problem	assuming	that	low-order	interleaving	is	being	used	instead.

13.	 	A	digital	computer	has	a	memory	unit	with	24	bits	per	word.	The	instruction	set	consists	of	150
different	 operations.	All	 instructions	 have	 an	 operation	 code	 part	 (opcode)	 and	 an	 address	 part
(allowing	for	only	one	address).	Each	instruction	is	stored	in	one	word	of	memory.
a)		How	many	bits	are	needed	for	the	opcode?
b)		How	many	bits	are	left	for	the	address	part	of	the	instruction?
c)		What	is	the	maximum	allowable	size	for	memory?
d)		What	is	the	largest	unsigned	binary	number	that	can	be	accommodated	in	one	word	of	memory?

14.	 	A	digital	computer	has	a	memory	unit	with	32	bits	per	word.	The	instruction	set	consists	of	110
different	operations.	All	instructions	have	an	operation	code	part	(opcode)	and	two	address	fields:
one	 for	 a	memory	 address	 and	one	 for	 a	 register	 address.	This	 particular	 system	 includes	 eight
general-purpose,	user-addressable	registers.	Registers	may	be	loaded	directly	from	memory,	and
memory	may	 be	 updated	 directly	 from	 the	 registers.	 Direct	 memory-to-memory	 data	 movement
operations	are	not	supported.	Each	instruction	is	stored	in	one	word	of	memory.
a)		How	many	bits	are	needed	for	the	opcode?
b)		How	many	bits	are	needed	to	specify	the	register?
c)		How	many	bits	are	left	for	the	memory	address	part	of	the	instruction?
d)		What	is	the	maximum	allowable	size	for	memory?
e)		What	is	the	largest	unsigned	binary	number	that	can	be	accommodated	in	one	word	of	memory?

15.		Assume	a	220	byte	memory.
a)		What	are	the	lowest	and	highest	addresses	if	memory	is	byte	addressable?
b)		What	are	the	lowest	and	highest	addresses	if	memory	is	word	addressable,	assuming	a	16-bit

word?
c)		What	are	the	lowest	and	highest	addresses	if	memory	is	word	addressable,	assuming	a	32-bit

word?
16.		Suppose	the	RAM	for	a	certain	computer	has	256M	words,	where	each	word	is	16	bits	long.

a)		What	is	the	capacity	of	this	memory	expressed	in	bytes?
b)		If	this	RAM	is	byte	addressable,	how	many	bits	must	an	address	contain?
c)		If	this	RAM	is	word	addressable,	how	many	bits	must	an	address	contain?

17.		You	and	a	colleague	are	designing	a	brand	new	microprocessor	architecture.	Your	colleague	wants
the	processor	to	support	509	different	instructions.	You	do	not	agree,	and	would	like	to	have	many
fewer	 instructions.	Outline	 the	argument	 for	 a	position	paper	 to	present	 to	 the	management	 team
that	will	make	the	final	decision.	Try	to	anticipate	the	argument	that	could	be	made	to	support	the
opposing	viewpoint.

18.	 	 Given	 a	memory	 of	 2048	 bytes	 consisting	 of	 several	 64	 ×	 8	 RAM	 chips,	 and	 assuming	 byte-
addressable	memory,	which	of	the	following	seven	diagrams	indicates	the	correct	way	to	use	the
address	bits?	Explain	your	answer.



19.	 	 Explain	 the	 steps	 in	 the	 fetch–decode–execute	 cycle.	 Your	 explanation	 should	 include	 what	 is
happening	in	the	various	registers.

20.		Combine	the	flowcharts	that	appear	in	Figures	4.11	and	4.12	so	that	the	interrupt	checking	appears
at	a	suitable	place.

21.	 	 Explain	 why,	 in	 MARIE,	 the	 MAR	 is	 only	 12	 bits	 wide	 and	 the	 AC	 is	 16	 bits	 wide.	 (Hint:
Consider	the	difference	between	data	and	addresses.)

22.		List	the	hexadecimal	code	for	the	following	program	(hand	assemble	it).

	23.		What	are	the	contents	of	the	symbol	table	for	the	preceding	program?
24.		Consider	the	MARIE	program	below.

a)		List	the	hexadecimal	code	for	each	instruction.



b)		Draw	the	symbol	table.
c)		What	is	the	value	stored	in	the	AC	when	the	program	terminates?

25.		Consider	the	MARIE	program	below.
a)		List	the	hexadecimal	code	for	each	instruction.
b)		Draw	the	symbol	table.
c)		What	is	the	value	stored	in	the	AC	when	the	program	terminates?

26.		Given	the	instruction	set	for	MARIE	in	this	chapter,	do	the	following.
Decipher	 the	 following	 MARIE	 machine	 language	 instructions	 (write	 the	 assembly	 language
equivalent):
	a)	0010000000000111
b)		1001000000001011
c)		0011000000001001

27.		Write	the	assembly	language	equivalent	of	the	following	MARIE	machine	language	instructions:
a)		0111000000000000
b)		1011001100110000



c)		0100111101001111
28.		Write	the	assembly	language	equivalent	of	the	following	MARIE	machine	language	instructions:

a)		0000010111000000
b)		0001101110010010
c)		1100100101101011

29.		Write	the	following	code	segment	in	MARIE’s	assembly	language:

30.		Write	the	following	code	segment	in	MARIE’s	assembly	language:

31.	 	What	are	 the	potential	problems	(perhaps	more	 than	one)	with	 the	 following	assembly	 language
code	fragment	(implementing	a	subroutine)	written	to	run	on	MARIE?	The	subroutine	assumes	the
parameter	to	be	passed	is	in	the	AC	and	should	double	this	value.	The	Main	part	of	the	program
includes	a	sample	call	to	the	subroutine.	You	can	assume	this	fragment	is	part	of	a	larger	program.

32.		Write	a	MARIE	program	to	evaluate	the	expression	A	×	B	+	C	×	D.
33.		Write	the	following	code	segment	in	MARIE	assembly	language:

34.	 	Write	 the	following	code	segment	 in	MARIE	assembly	 language.	 (Hint:	Turn	 the	for	 loop	 into	a
while	loop.)



35.	 	Write	 a	MARIE	 program	 using	 a	 loop	 that	multiplies	 two	 positive	 numbers	 by	 using	 repeated
addition.	For	example,	to	multiply	3	×	6,	the	program	would	add	3	six	times,	or	3	+	3	+	3	+	3	+	3	+
3.

36.		Write	a	MARIE	subroutine	to	subtract	two	numbers.
37.		A	linked	list	is	a	linear	data	structure	consisting	of	a	set	of	nodes,	where	each	one	except	the	last

one	points	to	the	next	node	in	the	list.	(Appendix	A	provides	more	information	about	linked	lists.)
Suppose	 we	 have	 the	 set	 of	 5	 nodes	 shown	 in	 the	 illustration	 below.	 These	 nodes	 have	 been
scrambled	 up	 and	 placed	 in	 a	MARIE	 program	 as	 shown	 below.	Write	 a	MARIE	 program	 to
traverse	the	list	and	print	the	data	in	order	as	stored	in	each	node.

MARIE	program	fragment:

38.		More	registers	appear	to	be	a	good	thing,	in	terms	of	reducing	the	total	number	of	memory	accesses
a	program	might	require.	Give	an	arithmetic	example	to	support	this	statement.	First,	determine	the
number	 of	memory	 accesses	 necessary	 using	MARIE	 and	 the	 two	 registers	 for	 holding	memory
data	values	(AC	and	MBR).	Then	perform	the	same	arithmetic	computation	for	a	processor	that	has
more	than	three	registers	to	hold	memory	data	values.

39.	 	MARIE	saves	the	return	address	for	a	subroutine	in	memory,	at	a	location	designated	by	the	JnS
instruction.	In	some	architectures,	this	address	is	stored	in	a	register,	and	in	many	it	is	stored	on	a
stack.	 Which	 of	 these	 methods	 would	 best	 handle	 recursion?	 Explain	 your	 answer.	 (Hint:
Recursion	implies	many	subroutine	calls.)



40.	 	Write	a	MARIE	program	that	performs	the	three	basic	stack	operations:	push,	peek,	and	pop	(in
that	 order).	 In	 the	 peek	 operation,	 output	 the	 value	 that’s	 on	 the	 top	 of	 the	 stack.	 (If	 you	 are
unfamiliar	with	stacks,	see	Appendix	A	for	more	information.)

41.		Provide	a	trace	(similar	to	the	one	in	Figure	4.14)	for	Example	4.3.
42.		Provide	a	trace	(similar	to	the	one	in	Figure	4.14)	for	Example	4.4.
43.		Suppose	we	add	the	following	instruction	to	MARIE’s	ISA:

IncSZ	Operand
This	 instruction	 increments	 the	 value	 with	 effective	 address	 “Operand,”	 and	 if	 this	 newly
incremented	 value	 is	 equal	 to	 0,	 the	 program	 counter	 is	 incremented	 by	 1.	 Basically,	 we	 are
incrementing	the	operand,	and	if	 this	new	value	 is	equal	 to	0,	we	skip	 the	next	 instruction.	Show
how	this	instruction	would	be	executed	using	RTN.

44.		Suppose	we	add	the	following	instruction	to	MARIE’s	ISA:
JumpOffset	X
This	instruction	will	jump	to	the	address	calculated	by	adding	the	given	address,	X,	to	the	contents
of	the	accumulator.	Show	how	this	instruction	would	be	executed	using	RTN.

45.		Suppose	we	add	the	following	instruction	to	MARIE’s	ISA:
JumpIOffset	X
This	 instruction	will	 jump	to	the	address	calculated	by	going	to	address	X,	 then	adding	 the	value
found	there	to	the	value	in	the	AC.	Show	how	this	instruction	would	be	executed	using	RTN.

46.		Draw	the	connection	of	MARIE’s	PC	to	the	datapath	using	the	format	shown	in	Figure	4.15.
47.		The	table	below	provides	a	summary	of	MARIE’s	datapath	control	signals.	Using	this	information,

Table	4.9,	and	Figure	4.20	as	guides,	draw	the	control	logic	for	MARIE’s	Load	instruction.

48.	 	 The	 table	 in	 exercise	 47	 provides	 a	 summary	 of	MARIE’s	 datapath	 control	 signals.	Using	 this
information,	 Table	 4.9,	 and	 Figure	 4.20	 as	 guides,	 draw	 the	 control	 logic	 for	MARIE’s	 JumpI
instruction.

49.	 	 The	 table	 in	 exercise	 47	 provides	 a	 summary	 of	MARIE’s	 datapath	 control	 signals.	Using	 this
information,	 Table	 4.9,	 and	 Figure	 4.20	 as	 guides,	 draw	 the	 control	 logic	 for	MARIE’s	 StoreI
instruction.

50.	 	 Suppose	 some	 hypothetical	 system’s	 control	 unit	 has	 a	 ring	 (cycle)	 counter	 consisting	 of	 some
number	 of	 D	 flip-flops.	 This	 system	 runs	 at	 1GHz	 and	 has	 a	 maximum	 of	 10
microoperations/instruction.
a)	 	What	 is	 the	maximum	frequency	of	 the	output	 (number	of	 signal	pulses)	output	by	each	 flip-

flop?



b)			How	long	does	it	take	to	execute	an	instruction	that	requires	only	4	microoperations?
51.	 	Suppose	you	are	designing	a	hardwired	control	unit	 for	a	very	small	computerized	device.	This

system	 is	 so	 revolutionary	 that	 the	 system	 designers	 have	 devised	 an	 entirely	 new	 ISA	 for	 it.
Because	 everything	 is	 so	 new,	 you	 are	 contemplating	 including	 one	 or	 two	 extra	 flip-flops	 and
signal	outputs	in	the	cycle	counter.	Why	would	you	want	to	do	this?	Why	would	you	not	want	to	do
this?	Discuss	the	trade-offs.

52.		Building	on	the	idea	presented	in	exercise	51,	suppose	that	MARIE	has	a	hardwired	control	unit
and	we	decide	to	add	a	new	instruction	that	requires	8	clock	cycles	to	execute.	(This	is	one	cycle
longer	than	the	longest	instruction,	JnS.)	Briefly	discuss	the	changes	that	we	would	need	to	make	to
accommodate	this	new	instruction.

53.		Draw	the	timing	diagram	for	MARIE’s	Load	instruction	using	the	format	of	Figure	4.16.
54.		Draw	the	timing	diagram	for	MARIE’s	Subt	instruction	using	the	format	of	Figure	4.16.
55.		Draw	the	timing	diagram	for	MARIE’s	AddI	instruction	using	the	format	of	Figure	4.16.
56.	 	Using	 the	 coding	given	 in	Table	4.9,	 translate	 into	 binary	 the	mnemonic	microcode	 instructions

given	in	Figure	4.23	for	the	fetch–decode	cycle	(the	first	nine	lines	of	the	table).
57.	 	Continuing	from	exercise	56,	write	the	microcode	for	the	jump	table	for	the	MARIE	instructions

for	Jump	X,	Clear,	and	AddI	X.	(Use	all	1s	for	the	Destination	value.)
58.		Using	Figure	4.23	as	a	guide,	write	the	binary	microcode	for	MARIE’s	Load	instruction.	Assume

that	the	microcode	begins	at	instruction	line	number	01100002.

59.		Using	Figure	4.23	as	a	guide,	write	the	binary	microcode	for	MARIE’s	Add	instruction.	Assume
that	the	microcode	begins	at	instruction	line	number	01101002.

60.		Would	you	recommend	a	synchronous	bus	or	an	asynchronous	bus	for	use	between	the	CPU	and	the
memory?	Explain	your	answer.

*61.		Pick	an	architecture	(other	than	those	covered	in	this	chapter).	Do	research	to	find	out	how	your
architecture	deals	with	the	concepts	introduced	in	this	chapter,	as	was	done	for	Intel	and	MIPS.

62.		Which	control	signals	should	contain	a	1	for	each	step	in	executing	the	JumpI	instruction?

63.		Which	control	signals	should	contain	a	1	for	each	step	in	executing	the	StoreI	instruction?



64.		The	PC	←	PC	+	1	microoperation	is	executed	at	the	end	of	every	fetch	cycle	(to	prepare	for	the
next	 instruction	 to	 be	 fetched).	 However,	 if	 we	 execute	 a	 Jump	 or	 a	 JumpI	 instruction,	 the	 PC
overwrites	 the	 value	 in	 the	 PC	 with	 a	 new	 one,	 thus	 voiding	 out	 the	 microoperation	 that
incremented	 the	 PC.	 Explain	 how	 the	microprogram	 for	MARIE	might	 be	modified	 to	 be	more
efficient	in	this	regard.

TRUE	OR	FALSE
1.	 	 If	 a	 computer	 uses	 hardwired	 control,	 the	 microprogram	 determines	 the	 instruction	 set	 for	 the

machine.	This	instruction	set	can	never	be	changed	unless	the	architecture	is	redesigned.
2.		A	branch	instruction	changes	the	flow	of	information	by	changing	the	PC.
3.		Registers	are	storage	locations	within	the	CPU	itself.
4.	 	 A	 two-pass	 assembler	 generally	 creates	 a	 symbol	 table	 during	 the	 first	 pass	 and	 finishes	 the

complete	translation	from	assembly	language	to	machine	instructions	on	the	second.
5.		The	MAR,	MBR,	PC,	and	IR	registers	in	MARIE	can	be	used	to	hold	arbitrary	data	values.
6.		MARIE	has	a	common	bus	scheme,	which	means	a	number	of	entities	share	the	bus.
7.	 	An	 assembler	 is	 a	 program	 that	 accepts	 a	 symbolic	 language	 program	 and	 produces	 the	 binary

machine	 language	 equivalent,	 resulting	 in	 a	 one-to-one	 correspondence	 between	 the	 assembly
language	source	program	and	the	machine	language	object	program.

8.		If	a	computer	uses	microprogrammed	control,	the	microprogram	determines	the	instruction	set	for
the	machine.

9.		The	length	of	a	word	determines	the	number	of	bits	necessary	in	a	memory	address.
10.	 	 If	memory	is	16-way	interleaved,	 it	means	memory	is	 implemented	using	4	banks	(because	24	=

16).



“Every	program	has	at	least	one	bug	and	can	be	shortened	by	at	least	one	instruction—from
which,	by	induction,	one	can	deduce	that	every	program	can	be	reduced	to	one	instruction
which	doesn’t	work.”

—Anonymous

CHAPTER	5



A	Closer	Look	at	Instruction	Set	Architectures

5.1			INTRODUCTION
We	saw	in	Chapter	4	that	machine	instructions	consist	of	opcodes	and	operands.	The	opcodes	specify	the
operations	to	be	executed;	the	operands	specify	register	or	memory	locations	of	data.	Why,	when	we	have
languages	 such	 as	C++,	 Java,	 and	Ada	 available,	 should	we	 be	 concerned	with	machine	 instructions?
When	programming	in	a	high-level	language,	we	frequently	have	little	awareness	of	the	topics	discussed
in	Chapter	4	(or	in	this	chapter)	because	high-level	languages	hide	the	details	of	the	architecture	from	the
programmer.	Employers	frequently	prefer	to	hire	people	with	assembly	language	backgrounds	not	because
they	 need	 an	 assembly	 language	 programmer,	 but	 because	 they	 need	 someone	 who	 can	 understand
computer	architecture	to	write	more	efficient	and	more	effective	programs.

In	this	chapter,	we	expand	on	the	topics	presented	in	the	last	chapter,	the	objective	being	to	provide
you	 with	 a	 more	 detailed	 look	 at	 machine	 instruction	 sets.	We	 look	 at	 different	 instruction	 types	 and
operand	types,	and	how	instructions	access	data	in	memory.	You	will	see	that	the	variations	in	instruction
sets	are	integral	in	distinguishing	different	computer	architectures.	Understanding	how	instruction	sets	are
designed	and	how	they	function	can	help	you	understand	the	more	intricate	details	of	the	architecture	of
the	machine	itself.

5.2			INSTRUCTION	FORMATS
We	know	that	a	machine	instruction	has	an	opcode	and	zero	or	more	operands.	In	Chapter	4,	we	saw	that
MARIE	had	an	instruction	length	of	16	bits	and	could	have,	at	most,	1	operand.	Encoding	an	instruction
set	can	be	done	in	a	variety	of	ways.	Architectures	are	differentiated	from	one	another	by	the	number	of
bits	allowed	per	instruction	(16,	32,	and	64	are	the	most	common),	by	the	number	of	operands	allowed
per	instruction,	and	by	the	types	of	instructions	and	data	each	can	process.	More	specifically,	instruction
sets	are	differentiated	by	the	following	features:

•			Operand	storage	(data	can	be	stored	in	a	stack	structure	or	in	registers	or	both)
•			Number	of	explicit	operands	per	instruction	(zero,	one,	two,	and	three	being	the	most	common)
•	 	 	 Operand	 location	 (instructions	 can	 be	 classified	 as	 register-to-register,	 register-to-memory,	 or

memory-to-memory,	which	simply	refer	to	the	combinations	of	operands	allowed	per	instruction)
•			Operations	(including	not	only	types	of	operations	but	also	which	instructions	can	access	memory	and

which	cannot)
•			Type	and	size	of	operands	(operands	can	be	addresses,	numbers,	or	even	characters)

5.2.1		Design	Decisions	for	Instruction	Sets
When	a	computer	architecture	is	in	the	design	phase,	the	instruction	set	format	must	be	determined	before
many	other	decisions	can	be	made.	Selecting	this	format	is	often	quite	difficult	because	the	instruction	set



must	match	the	architecture,	and	the	architecture,	if	well	designed,	could	last	for	decades.	Decisions	made
during	the	design	phase	have	long-lasting	ramifications.

Instruction	 set	 architectures	 are	measured	 by	 several	 different	 factors,	 including	 (1)	 the	 amount	 of
space	a	program	requires;	 (2)	 the	complexity	of	 the	 instruction	set,	 in	 terms	of	 the	amount	of	decoding
necessary	to	execute	an	instruction,	and	the	complexity	of	the	tasks	performed	by	the	instructions;	(3)	the
length	of	the	instructions;	and	(4)	the	total	number	of	instructions.	Things	to	consider	when	designing	an
instruction	set	include	the	following:

•		 	Short	instructions	are	typically	better	because	they	take	up	less	space	in	memory	and	can	be	fetched
quickly.	 However,	 this	 limits	 the	 number	 of	 instructions,	 because	 there	 must	 be	 enough	 bits	 in	 the
instruction	to	specify	the	number	of	instructions	we	need.	Shorter	instructions	also	have	tighter	limits
on	the	size	and	number	of	operands.

•			Instructions	of	a	fixed	length	are	easier	to	decode	but	waste	space.
•			Memory	organization	affects	instruction	format.	If	memory	has,	for	example,	16-	or	32-bit	words	and	is

not	byte	addressable,	 it	 is	difficult	 to	access	a	 single	character.	For	 this	 reason,	even	machines	 that
have	16-,	32-,	or	64-bit	words	are	often	byte	addressable,	meaning	every	byte	has	a	unique	address
even	though	words	are	longer	than	1	byte.

•			A	fixed-length	instruction	does	not	necessarily	imply	a	fixed	number	of	operands.	We	could	design	an
ISA	with	fixed	overall	instruction	length,	but	allow	the	number	of	bits	in	the	operand	field	to	vary	as
necessary.	(This	is	called	an	expanding	opcode	and	is	covered	in	more	detail	in	Section	5.2.5.)

•			There	are	many	different	types	of	addressing	modes.	In	Chapter	4,	MARIE	used	two	addressing	modes:
direct	and	indirect;	however,	we	see	in	this	chapter	that	a	large	variety	of	addressing	modes	exist.

•		 	If	words	consist	of	multiple	bytes,	in	what	order	should	these	bytes	be	stored	on	a	byte-addressable
machine?	Should	the	least	significant	byte	be	stored	at	the	highest	or	lowest	byte	address?	This	little
versus	big	endian	debate	is	discussed	in	the	following	section.

•			How	many	registers	should	the	architecture	contain,	and	how	should	these	registers	be	organized?	How
should	operands	be	stored	in	the	CPU?

The	 little	 versus	 big	 endian	 debate,	 expanding	 opcodes,	 and	 CPU	 register	 organization	 are	 examined
further	 in	 the	 following	 sections.	 In	 the	 process	 of	 discussing	 these	 topics,	we	 also	 touch	on	 the	 other
design	issues	listed.

5.2.2		Little	Versus	Big	Endian
The	term	endian	refers	to	a	computer	architecture’s	“byte	order,”	or	the	way	the	computer	stores	the	bytes
of	a	multiple-byte	data	element.	Virtually	all	computer	architectures	today	are	byte	addressable	and	must,
therefore,	have	a	standard	for	storing	information	requiring	more	than	a	single	byte.	Some	machines	store
a	two-byte	integer,	for	example,	with	the	least	significant	byte	first	(at	the	lower	address),	followed	by	the
most	significant	byte.	Therefore,	a	byte	at	a	 lower	address	has	 lower	significance.	These	machines	are
called	little	endian	machines.	Other	machines	store	this	same	two-byte	integer	with	the	most	significant
byte	first,	followed	by	the	least	significant	byte.	These	are	called	big	endian	machines	because	they	store
the	most	significant	bytes	at	the	lower	addresses.	Most	UNIX	machines	are	big	endian,	whereas	most	PCs
are	little	endian	machines.	Most	newer	RISC	architectures	are	also	big	endian.

These	two	terms,	little	and	big	endian,	are	from	the	book	Gulliver’s	Travels.	You	may	remember	the



story	in	which	the	Lilliputians	(the	tiny	people)	were	divided	into	two	camps:	those	who	ate	their	eggs	by
opening	 the	 “big”	 end	 (big	 endians)	 and	 those	 who	 ate	 their	 eggs	 by	 opening	 the	 “little”	 end	 (little
endians).	 CPU	manufacturers	 are	 also	 divided	 into	 two	 factions.	 For	 example,	 Intel	 has	 always	 done
things	the	“little	endian”	way,	whereas	Motorola	has	always	done	things	the	“big	endian”	way.	(It	is	also
worth	noting	that	some	CPUs	can	handle	both	little	and	big	endian.)

For	example,	consider	an	integer	requiring	4	bytes:

On	a	little	endian	machine,	this	is	arranged	in	memory	as	follows:

FIGURE	5.1	The	Hex	Value	12345678	Stored	in	Both	Big	and	Little	Endian	Formats

On	a	big	endian	machine,	this	long	integer	would	then	be	stored	as:

Let’s	assume	that	on	a	byte-addressable	machine,	the	32-bit	hex	value	12345678	is	stored	at	address	0.
Each	digit	requires	a	nibble,	so	one	byte	holds	two	digits.	This	hex	value	is	stored	in	memory	as	shown	in
Figure	5.1,	where	the	shaded	cells	represent	the	actual	contents	of	memory.	Example	5.1	shows	multiple
consecutive	numbers	stored	in	both	formats.

	EXAMPLE	 5.1	 Assume	 that	 a	 computer	 has	 32-bit	 integers.	 Let’s	 show	 how	 each	 of	 the	 values
0xABCD1234,	 0x00FE4321,	 and	 0x10	 would	 be	 stored	 sequentially	 in	 memory,	 starting	 at	 address
0x200,	assuming	that	each	address	holds	1	byte.



We	notice	when	using	big	endian	representation	that	the	number	0xABCD1234	reads	“normally”	when	we
start	at	address	0x200;	we	see	the	byte	AB,	which	is	the	high-order	byte	of	the	value,	followed	by	CD,
then	12,	 then	34.	However,	 for	 the	 little	endian	 representation	of	 this	number,	address	0x200	holds	 the
least	significant	byte,	or	34.	Note	that	we	do	NOT	store	the	little	endian	number	as	43,	then	21,	then	DC,
then	 BA;	 this	 is	 a	 reversal	 of	 the	 digits,	 not	 the	 bytes.	 Again,	 little	 and	 big	 endian	 refer	 to	 the	 byte
ordering,	not	the	digit	ordering.	Also	note	that	we	padded	the	final	value	with	zeros	to	get	0x00000010;
this	was	necessary	to	use	the	required	32	bits	(or	8	hex	digits).

There	are	advantages	and	disadvantages	to	each	method,	although	one	method	is	not	necessarily	better
than	the	other.	Big	endian	is	more	natural	to	most	people	and	thus	makes	it	easier	to	read	hex	dumps.	By
having	the	high-order	byte	come	first,	you	can	always	test	whether	the	number	is	positive	or	negative	by
looking	 at	 the	 byte	 at	 offset	 zero.	 (Compare	 this	 to	 little	 endian,	 where	 you	must	 know	 how	 long	 the
number	 is	 and	 then	must	 skip	 over	 bytes	 to	 find	 the	 one	 containing	 the	 sign	 information.)	 Big	 endian
machines	 store	 integers	 and	 strings	 in	 the	 same	 order	 and	 are	 faster	 in	 certain	 string	 operations.	Most
bitmapped	graphics	are	mapped	with	a	“most	significant	bit	on	 the	 left”	scheme,	which	means	working
with	 graphical	 elements	 larger	 than	 one	 byte	 can	 be	 handled	 by	 the	 architecture	 itself.	 This	 is	 a
performance	 limitation	 for	 little	endian	computers	because	 they	must	continually	 reverse	 the	byte	order
when	working	with	large	graphical	objects.	When	decoding	compressed	data	encoded	with	such	schemes
as	Huffman	and	LZW	(discussed	in	Chapter	7),	the	actual	codeword	can	be	used	as	an	index	into	a	lookup
table	if	it	is	stored	in	big	endian	(this	is	also	true	for	encoding).

However,	 big	 endian	 also	has	disadvantages.	Conversion	 from	a	32-bit	 integer	 address	 to	 a	16-bit
integer	 address	 requires	 a	 big	 endian	machine	 to	 perform	 addition.	High-precision	 arithmetic	 on	 little
endian	machines	is	faster	and	easier.	Most	architectures	using	the	big	endian	scheme	do	not	allow	words
to	be	written	on	nonword	address	boundaries	(for	example,	if	a	word	is	2	or	4	bytes,	it	must	always	begin
on	an	even-numbered	byte	address).	This	wastes	space.	Little	endian	architectures,	such	as	Intel,	allow
odd	address	reads	and	writes,	which	makes	programming	on	these	machines	much	easier.	If	a	programmer
writes	an	instruction	to	read	a	nonzero	value	of	the	wrong	word	size,	on	a	big	endian	machine	it	is	always
read	as	an	 incorrect	value;	on	a	 little	endian	machine,	 it	can	sometimes	result	 in	 the	correct	data	being
read.	(Note	that	Intel	finally	has	added	an	instruction	to	reverse	the	byte	order	within	registers.)

Computer	networks	are	big	endian,	which	means	that	when	little	endian	computers	are	going	to	pass
integers	over	the	network	(network	device	addresses,	for	example),	they	need	to	convert	them	to	network
byte	order.	Likewise,	when	they	receive	integer	values	over	the	network,	they	need	to	convert	them	back
to	their	own	native	representation.



Although	you	may	not	 be	 familiar	with	 this	 little	 versus	 big	 endian	debate,	 it	 is	 important	 to	many
current	software	applications.	Any	program	that	writes	data	to	or	reads	data	from	a	file	must	be	aware	of
the	 byte	 ordering	 on	 the	 particular	 machine.	 For	 example,	 the	 Windows	 BMP	 graphics	 format	 was
developed	on	a	little	endian	machine,	so	to	view	BMPs	on	a	big	endian	machine,	the	application	used	to
view	them	must	first	 reverse	 the	byte	order.	Software	designers	of	popular	software	are	well	aware	of
these	byte-ordering	issues.	For	example,	Adobe	Photoshop	uses	big	endian,	GIF	is	little	endian,	JPEG	is
big	endian,	MacPaint	is	big	endian,	PC	Paintbrush	is	little	endian,	RTF	by	Microsoft	is	little	endian,	and
Sun	raster	 files	are	big	endian.	Some	applications	support	both	formats:	Microsoft	WAV	and	AVI	files,
TIF	files,	and	XWD	(X	Windows	Dump)	support	both,	typically	by	encoding	an	identifier	into	the	file.

5.2.3		Internal	Storage	in	the	CPU:	Stacks	Versus	Registers
Once	byte	ordering	in	memory	is	determined,	the	hardware	designer	must	make	some	decisions	on	how
the	CPU	should	store	data.	This	is	the	most	basic	means	to	differentiate	ISAs.	There	are	three	choices:

1.		A	stack	architecture
2.		An	accumulator	architecture
3.		A	general-purpose	register	(GPR)	architecture

Stack	architectures	use	a	stack	to	execute	instructions,	and	the	operands	are	(implicitly)	found	on	top	of
the	stack.	Even	though	stack-based	machines	have	good	code	density	and	a	simple	model	for	evaluation	of
expressions,	a	stack	cannot	be	accessed	randomly,	which	makes	it	difficult	to	generate	efficient	code.	In
addition,	the	stack	becomes	a	bottleneck	during	execution.	Accumulator	architectures	such	as	MARIE,
with	 one	 operand	 implicitly	 in	 the	 accumulator,	 minimize	 the	 internal	 complexity	 of	 the	 machine	 and
allow	for	very	short	instructions.	But	because	the	accumulator	is	only	temporary	storage,	memory	traffic
is	very	high.	General-purpose	register	architectures,	which	use	sets	of	general-purpose	registers,	are
the	 most	 widely	 accepted	 models	 for	 machine	 architectures	 today.	 These	 register	 sets	 are	 faster	 than
memory,	 easy	 for	 compilers	 to	deal	with,	 and	can	be	used	very	effectively	and	efficiently.	 In	addition,
hardware	prices	have	decreased	significantly,	making	it	possible	to	add	a	large	number	of	registers	at	a
minimal	cost.	If	memory	access	is	fast,	a	stack-based	design	may	be	a	good	idea;	if	memory	is	slow,	it	is
often	 better	 to	 use	 registers.	 These	 are	 the	 reasons	most	 computers	 over	 the	 past	 10	 years	 have	 been
general-register	based.	However,	because	all	operands	must	be	named,	using	registers	results	 in	 longer
instructions,	 causing	 longer	 fetch	 and	 decode	 times.	 (A	 very	 important	 goal	 for	 ISA	designers	 is	 short
instructions.)	Designers	choosing	an	ISA	must	decide	which	will	work	best	 in	a	particular	environment
and	examine	the	trade-offs	carefully.

The	 general-purpose	 architecture	 can	 be	 broken	 into	 three	 classifications,	 depending	 on	where	 the
operands	 are	 located.	Memory-memory	 architectures	 may	 have	 two	 or	 three	 operands	 in	 memory,
allowing	 an	 instruction	 to	 perform	 an	 operation	 without	 requiring	 any	 operand	 to	 be	 in	 a	 register.
Register-memory	architectures	require	a	mix,	where	at	least	one	operand	is	in	a	register	and	one	is	in
memory.	Load-store	architectures	require	data	to	be	moved	into	registers	before	any	operations	on	those
data	 are	 performed.	 Intel	 and	 Motorola	 are	 examples	 of	 register-memory	 architectures;	 Digital
Equipment’s	VAX	 architecture	 allows	memory-memory	 operations;	 and	SPARC,	MIPS,	Alpha,	 and	 the
PowerPC	are	all	load-store	machines.

Given	 that	 most	 architectures	 today	 are	 GPR	 based,	 we	 now	 examine	 two	 major	 instruction	 set
characteristics	 that	 divide	 general-purpose	 register	 architectures.	 Those	 two	 characteristics	 are	 the



number	 of	 operands	 and	 how	 the	 operands	 are	 addressed.	 In	 Section	 5.2.4,	we	 look	 at	 the	 instruction
length	and	number	of	operands	an	instruction	can	have.	(Two	or	three	operands	are	the	most	common	for
GPR	architectures,	 and	we	compare	 these	 to	zero-	and	one-operand	architectures.)	We	 then	 investigate
instruction	types.	Finally,	in	Section	5.4,	we	investigate	the	various	addressing	modes	available.

5.2.4		Number	of	Operands	and	Instruction	Length
The	 traditional	 method	 for	 describing	 a	 computer	 architecture	 is	 to	 specify	 the	 maximum	 number	 of
operands,	 or	 addresses,	 contained	 in	 each	 instruction.	 This	 has	 a	 direct	 effect	 on	 the	 length	 of	 the
instruction	 itself.	 MARIE	 uses	 a	 fixed-length	 instruction	 with	 a	 4-bit	 opcode	 and	 a	 12-bit	 operand.
Instructions	on	current	architectures	can	be	formatted	in	two	ways:

•	 	 	 Fixed	 length—Wastes	 space	 but	 is	 fast	 and	 results	 in	 better	 performance	 when	 instruction-level
pipelining	is	used,	as	we	see	in	Section	5.5.

•			Variable	length—More	complex	to	decode	but	saves	storage	space.

Typically,	 the	 real-life	 compromise	 involves	using	 two	 to	 three	 instruction	 lengths,	which	provides	bit
patterns	 that	 are	 easily	 distinguishable	 and	 simple	 to	 decode.	 The	 instruction	 length	 must	 also	 be
compared	to	the	word	length	on	the	machine.	If	the	instruction	length	is	exactly	equal	to	the	word	length,
the	instructions	align	perfectly	when	stored	in	main	memory.	Instructions	always	need	to	be	word	aligned
for	addressing	reasons.	Therefore,	instructions	that	are	half,	quarter,	double,	or	triple	the	actual	word	size
can	waste	space.	Variable	length	instructions	are	clearly	not	the	same	size	and	need	to	be	word	aligned,
resulting	in	loss	of	space	as	well.

The	most	common	instruction	formats	include	zero,	one,	two,	or	three	operands.	We	saw	in	Chapter	4
that	some	 instructions	for	MARIE	have	no	operands,	whereas	others	have	one	operand.	Arithmetic	and
logic	 operations	 typically	 have	 two	 operands,	 but	 can	 be	 executed	 with	 one	 operand	 (as	 we	 saw	 in
MARIE),	if	the	accumulator	is	implicit.	We	can	extend	this	idea	to	three	operands	if	we	consider	the	final
destination	as	a	third	operand.	We	can	also	use	a	stack	that	allows	us	to	have	zero-operand	instructions.
The	following	are	some	common	instruction	formats:

•			OPCODE	only	(zero	addresses)
•			OPCODE	+	1	Address	(usually	a	memory	address)
•			OPCODE	+	2	Addresses	(usually	registers,	or	one	register	and	one	memory	address)
•			OPCODE	+	3	Addresses	(usually	registers,	or	combinations	of	registers	and	memory)

All	architectures	have	a	limit	on	the	maximum	number	of	operands	allowed	per	instruction.	For	example,
in	MARIE,	the	maximum	was	one,	although	some	instructions	had	no	operands	(Halt	and	Skipcond).	We
mentioned	 that	zero-,	one-,	 two-,	and	 three-operand	 instructions	are	 the	most	common.	One-,	 two-,	 and
even	 three-operand	 instructions	are	 reasonably	easy	 to	understand;	an	entire	 ISA	built	on	zero-operand
instructions	can,	at	first,	be	somewhat	confusing.

Machine	 instructions	 that	 have	 no	 operands	 must	 use	 a	 stack	 (the	 last-in,	 first-out	 data	 structure,
introduced	 in	Chapter	4	and	described	 in	detail	 in	Appendix	A,	where	 all	 insertions	 and	deletions	 are
made	 from	 the	 top)	 to	perform	 those	operations	 that	 logically	 require	one	or	 two	operands	 (such	as	an
Add).	Instead	of	using	general-purpose	registers,	a	stack-based	architecture	stores	the	operands	on	the	top
of	 the	 stack,	making	 the	 top	 element	 accessible	 to	 the	CPU.	 (Note	 that	 one	 of	 the	most	 important	 data



structures	in	machine	architectures	is	the	stack.	Not	only	does	this	structure	provide	an	efficient	means	of
storing	intermediate	data	values	during	complex	calculations,	but	it	also	provides	an	efficient	method	for
passing	parameters	during	procedure	calls	as	well	as	a	means	to	save	local	block	structure	and	define	the
scope	of	variables	and	subroutines.)

In	architectures	based	on	stacks,	most	instructions	consist	of	opcodes	only;	however,	there	are	special
instructions	(those	that	add	elements	to	and	remove	elements	from	the	stack)	that	have	just	one	operand.
Stack	architectures	need	a	push	instruction	and	a	pop	instruction,	each	of	which	is	allowed	one	operand.
Push	X	places	the	data	value	found	at	memory	location	X	onto	the	stack;	Pop	X	removes	the	top	element	in
the	stack	and	stores	it	at	 location	X.	Only	certain	instructions	are	allowed	to	access	memory;	all	others
must	use	the	stack	for	any	operands	required	during	execution.

For	operations	requiring	two	operands,	the	top	two	elements	of	the	stack	are	used.	For	example,	if	we
execute	an	Add	instruction,	the	CPU	adds	the	top	two	elements	of	the	stack,	popping	them	both	and	then
pushing	the	sum	onto	the	top	of	the	stack.	For	noncommutative	operations	such	as	subtraction,	the	top	stack
element	is	subtracted	from	the	next-to-the-top	element,	both	are	popped,	and	the	result	is	pushed	onto	the
top	of	the	stack.

This	stack	organization	is	very	effective	for	evaluating	long	arithmetic	expressions	written	in	reverse
Polish	notation	 (RPN),	 a	mathematical	 notation	made	 possible	 by	 logician	 Jan	 Lukasiewicz,	 a	 Polish
mathematician	 who	 invented	 this	 notation	 in	 1924.	 This	 representation	 places	 the	 operator	 after	 the
operands	in	what	is	known	as	postfix	notation,	as	compared	to	infix	notation,	which	places	the	operator
between	 operands,	 and	 prefix	notation	 (Polish),	 which	 places	 the	 operator	 before	 the	 operands.	 For
example:

X	+	Y	is	in	infix	notation

+	X	Y	is	in	prefix	notation

X	Y	+	is	in	postfix	notation

When	 using	 postfix	 (or	 RPN)	 notation,	 every	 operator	 follows	 its	 operands	 in	 any	 expression.	 If	 the
expression	contains	more	than	one	operation,	the	operator	is	given	immediately	after	its	second	operand.
The	infix	expression	“3	+	4”	is	equivalent	to	the	postfix	expression	“3	4	+”;	the	+	operator	is	applied	to
the	two	operands	3	and	4.	If	the	expression	is	more	complex,	we	can	still	use	this	idea	to	convert	 from
infix	to	postfix.	We	simply	need	to	examine	the	expression	and	determine	operator	precedence.

	EXAMPLE	5.2	Consider	the	infix	expression	12/(4	+	2).	We	convert	this	to	postfix	as	follows:
	

Expression Explanation

12	/	4	2	+ The	sum	4	+	2	is	in	parentheses	and	takes	precedence;	we	replace	it	with	4	2	+

12	4	2	+	/ The	two	new	operands	are	12	and	the	sum	of	4	and	2;	we	place	the	first	operand	followed	by	the
second,	followed	by	the	division	operator

Therefore,	the	postfix	expression	12	4	2	+	/	is	equivalent	to	the	infix	expression	12/(4	+	2).	Notice	that
there	was	no	need	to	change	the	order	of	operands,	and	the	need	for	parentheses	to	preserve	precedence
for	the	addition	operator	is	eliminated.



	EXAMPLE	5.3	Consider	 the	following	infix	expression	(2	+	3)	–	6/3.	We	convert	 this	 to	postfix	as
follows:

	

Expression Explanation

2	3	+	–	6/3 The	sum	2	+	3	is	in	parentheses	and	takes	precedence;	we	replace	it	with	2	3	+

2	3	+	–	6	3
/ The	division	operator	takes	precedence,	so	we	replace	6/3	with	6	3	/

2	3	+	6	3	/
–

We	wish	to	subtract	the	quotient	of	6/3	from	the	sum	of	2	+	3,	so	we	move	the	–	operator	to	the
end

Therefore,	the	postfix	expression	2	3	+	6	3	/	–	is	equivalent	to	the	infix	expression	(2	+	3)	–	6/3.

All	 arithmetic	 expressions	 can	 be	 written	 using	 any	 of	 these	 representations.	 However,	 postfix
representation	 combined	 with	 a	 stack	 of	 registers	 is	 the	 most	 efficient	 means	 to	 evaluate	 arithmetic
expressions.	 In	 fact,	 some	 electronic	 calculators	 (such	 as	 Hewlett-Packard)	 require	 the	 user	 to	 enter
expressions	 in	 postfix	 notation.	 With	 a	 little	 practice	 on	 these	 calculators,	 it	 is	 possible	 to	 rapidly
evaluate	long	expressions	containing	many	nested	parentheses	without	ever	stopping	to	think	about	how
terms	are	grouped.

The	algorithm	to	evaluate	an	RPN	expression	using	a	stack	is	quite	simple:	The	expression	is	scanned
from	 left	 to	 right,	 each	 operand	 (variable	 or	 constant)	 is	 pushed	 onto	 the	 stack,	 and	 when	 a	 binary
operator	 is	 encountered,	 the	 top	 two	 operands	 are	 popped	 from	 the	 stack,	 the	 specified	 operation	 is
performed	on	those	operands,	and	then	the	result	is	pushed	onto	the	stack.

	EXAMPLE	5.4	Consider	the	RPN	expression	10	2	3	+	/.	Using	a	stack	to	evaluate	the	expression	and
scanning	left	to	right,	we	would	first	push	10	onto	the	stack,	followed	by	2,	and	then	3,	to	get:

The	“+”	operator	is	next,	which	pops	3	and	2	from	the	stack,	performs	the	operation	(2	+	3),	and	pushes	5
onto	the	stack,	resulting	in:

The	“/”	operator	then	causes	5	and	10	to	be	popped	from	the	stack,	10	is	divided	by	5,	and	then	the	result
2	is	pushed	onto	the	stack.	(Note:	For	noncommutative	operations	such	as	subtraction	and	division,	the	top
stack	element	is	always	the	second	operand.)

	EXAMPLE	5.5	Consider	the	following	infix	expression:

(X	+	Y)	×	(W	–	Z)	+	2



This	expression,	written	in	RPN	notation,	is:

XY	+	WZ	–	×	2	+

To	evaluate	this	expression	using	a	stack,	we	push	X	and	Y,	add	them	(which	pops	them	from	the	stack),
and	store	the	sum	(X	+	Y)	on	the	stack.	Then	we	push	W	and	Z,	subtract	(which	pops	them	both	from	the
stack),	 and	 store	 the	 difference	 (W	 –	Z)	 on	 the	 stack.	 The	 ×	 operator	multiplies	 (X	 +	Y)	 by	 (W	 –	Z),
removes	both	of	these	expressions	from	the	stack,	and	places	the	product	on	the	stack.	We	push	2	onto	the
stack,	resulting	in:

The	+	operator	adds	the	top	two	stack	elements,	pops	them	from	the	stack,	and	pushes	the	sum	onto	the
stack,	resulting	in	(X	+	Y)	×	(W	–	Z)	+	2	stored	on	the	top	of	the	stack.

	EXAMPLE	5.6	Convert	the	RPN	expression:

8	6	+	4	2	–	/

to	infix	notation.
Recall	that	each	operator	follows	its	operands.	Therefore,	the	“+”	operator	has	operands	8	and	6,	and

the	“–”	operator	has	operands	4	and	2.	The	“/”	operator	must	use	the	sum	of	8	and	6	as	the	first	operand
and	the	difference	of	4	and	2	as	the	second.	We	must	use	parentheses	to	express	this	in	infix	notation	(to
ensure	 that	 the	 addition	 and	 subtraction	 are	 performed	 before	 the	 division),	 resulting	 in	 the	 infix
expression:

(8	+	6)	/	(4	–	2)

To	 illustrate	 the	 concepts	 of	 zero,	 one,	 two,	 and	 three	 operands,	 let’s	 write	 a	 simple	 program	 to
evaluate	an	arithmetic	expression,	using	each	of	these	formats.

	EXAMPLE	5.7	Suppose	we	wish	to	evaluate	the	following	expression:

Z	=	(X	×	Y)	+	(W	×	U)

Typically,	when	three	operands	are	allowed,	at	least	one	operand	must	be	a	register,	and	the	first	operand
is	normally	the	destination.	Using	three-address	instructions,	the	code	to	evaluate	the	expression	for	Z	 is
written	as	follows:

When	using	two-address	instructions,	normally	one	address	specifies	a	register	(two-address	instructions
seldom	allow	for	both	operands	to	be	memory	addresses).	The	other	operand	could	be	either	a	register	or
a	memory	address.	Using	two-address	instructions,	our	code	becomes:



Note	that	it	is	important	to	know	whether	the	first	operand	is	the	source	or	the	destination.	In	the	above
instructions,	we	assume	it	is	the	destination.	(This	tends	to	be	a	point	of	confusion	for	those	programmers
who	 must	 switch	 between	 Intel	 assembly	 language	 and	 Motorola	 assembly	 language—Intel	 assembly
specifies	 the	 first	 operand	 as	 the	 destination,	 whereas	 in	Motorola	 assembly,	 the	 first	 operand	 is	 the
source.)

Using	 one-address	 instructions	 (as	 in	 MARIE),	 we	 must	 assume	 that	 a	 register	 (normally	 the
accumulator)	is	implied	as	the	destination	for	the	result	of	the	instruction.	To	evaluate	Z,	our	code	now
becomes:

Note	 that	 as	 we	 reduce	 the	 number	 of	 operands	 allowed	 per	 instruction,	 the	 number	 of	 instructions
required	 to	execute	 the	desired	code	 increases.	This	 is	an	example	of	a	 typical	 space/time	 trade-off	 in
architecture	design—shorter	instructions	but	longer	programs.

What	does	 this	program	 look	 like	on	a	 stack-based	machine	with	 zero-address	 instructions?	Stack-
based	architectures	use	no	operands	for	instructions	such	as	Add,	Subt,	Mult,	or	Divide.	We	need	a	stack
and	two	operations	on	that	stack:	Pop	and	Push.	Operations	that	communicate	with	the	stack	must	have	an
address	field	to	specify	the	operand	to	be	popped	or	pushed	onto	the	stack	(all	other	operations	are	zero
address).	Push	places	the	operand	on	the	top	of	the	stack.	Pop	removes	the	stack	top	and	places	it	in	the
operand.	 This	 architecture	 results	 in	 the	 longest	 program	 to	 evaluate	 our	 equation.	 Assuming	 that
arithmetic	 operations	 use	 the	 two	 operands	 on	 the	 stack	 top,	 pop	 them,	 and	 push	 the	 result	 of	 the
operation,	our	code	is	as	follows:



The	instruction	length	is	certainly	affected	by	the	opcode	length	and	by	the	number	of	operands	allowed	in
the	instruction.	If	the	opcode	length	is	fixed,	decoding	is	much	easier.	However,	to	provide	for	backward
compatibility	and	flexibility,	opcodes	can	have	variable	length.	Variable	length	opcodes	present	the	same
problems	 as	 variable	 versus	 constant	 length	 instructions.	 A	 compromise	 used	 by	 many	 designers	 is
expanding	opcodes.

FIGURE	5.2	Two	Possibilities	for	a	16-Bit	Instruction	Format

5.2.5		Expanding	Opcodes
We	have	 seen	how	 the	number	of	operands	 in	 an	 instruction	 is	dependent	on	 the	 instruction	 length;	we
must	have	enough	bits	for	the	opcode	and	for	the	operand	addresses.	However,	not	all	instructions	require
the	same	number	of	operands.

Expanding	 opcodes	 represent	 a	 compromise	 between	 the	 need	 for	 a	 rich	 set	 of	 opcodes	 and	 the
desire	 to	have	short	opcodes,	and	 thus	 short	 instructions.	The	 idea	 is	 to	make	some	opcodes	short,	but
have	a	means	to	provide	longer	ones	when	needed.	When	the	opcode	is	short,	a	lot	of	bits	are	left	to	hold
operands	(which	means	we	could	have	two	or	three	operands	per	instruction).	When	you	don’t	need	any
space	for	operands	(for	an	instruction	such	as	Halt	or	because	the	machine	uses	a	stack),	all	the	bits	can
be	used	for	the	opcode,	which	allows	for	many	unique	instructions.	In	between,	there	are	longer	opcodes
with	fewer	operands	as	well	as	shorter	opcodes	with	more	operands.

Consider	 a	machine	with	 16-bit	 instructions	 and	16	 registers.	Because	we	now	have	 a	 register	 set
instead	of	one	simple	accumulator	(as	in	MARIE),	we	need	to	use	4	bits	to	specify	a	unique	register.	We
could	 encode	 16	 instructions,	 each	 with	 three	 register	 operands	 (which	 implies	 that	 any	 data	 to	 be
operated	on	must	first	be	loaded	into	a	register),	or	use	4	bits	for	the	opcode	and	12	bits	for	a	memory
address	(as	in	MARIE,	assuming	a	memory	of	size	4K).	However,	if	all	data	in	memory	is	first	loaded
into	a	register	in	this	register	set,	the	instruction	can	select	that	particular	data	element	using	only	4	bits
(assuming	16	registers).	These	two	choices	are	illustrated	in	Figure	5.2.

But	why	limit	the	opcode	to	only	4	bits?	If	we	allow	the	length	of	the	opcode	to	vary,	that	changes	the
number	of	 remaining	bits	 that	 can	be	used	 for	operand	addresses.	Using	 expanding	opcodes,	we	could
allow	for	opcodes	of	8	bits	that	require	two	register	operands;	or	we	could	allow	opcodes	of	12	bits	that
operate	on	one	register;	or	we	could	allow	for	16-bit	opcodes	that	require	no	operands.	These	formats	are
illustrated	in	Figure	5.3.

The	only	 issue	 is	 that	we	need	a	method	 to	determine	when	the	 instruction	should	be	 interpreted	as
having	a	4-bit,	8-bit,	12-bit,	or	16-bit	opcode.	The	trick	is	to	use	an	“escape	opcode”	to	indicate	which
format	should	be	used.	This	idea	is	best	illustrated	with	an	example.



FIGURE	5.3	Three	More	Possibilities	for	a	16-Bit	Instruction	Format

	EXAMPLE	5.8	Suppose	we	wish	to	encode	the	following	instructions:

•			15	instructions	with	three	addresses
•			14	instructions	with	two	addresses
•			31	instructions	with	one	address
•			16	instructions	with	zero	addresses

Can	we	encode	this	instruction	set	in	16	bits?	The	answer	is	yes,	as	long	as	we	use	expanding	opcodes.
The	encoding	is	as	follows:

We	can	see	the	use	of	the	escape	opcode	in	the	first	group	of	three-address	instructions.	When	the	first	4



bits	are	1111,	that	indicates	that	the	instruction	does	not	have	three	operands,	but	instead	has	two,	one	or
none	(which	of	 these	depends	on	 the	following	groups	of	4	bits).	For	 the	second	group	of	 two-address
instructions,	the	escape	opcode	is	11111110	(any	instruction	with	this	opcode	or	higher	cannot	have	more
than	one	operand).	For	 the	 third	group	of	one-address	 instructions,	 the	escape	opcode	 is	111111111111
(instructions	having	this	sequence	of	12	bits	have	zero	operands).

Although	allowing	for	a	wider	variety	of	instructions,	this	expanding	opcode	scheme	also	makes	the
decoding	more	complex.	Instead	of	simply	looking	at	a	bit	pattern	and	deciding	which	instruction	it	is,	we
need	to	decode	the	instruction	something	like	this:

At	each	stage,	one	spare	code—the	escape	code—is	used	to	 indicate	 that	we	should	now	look	at	more
bits.	This	 is	 another	 example	of	 the	 types	of	 trade-offs	 hardware	designers	 continually	 face:	Here,	we
trade	opcode	space	for	operand	space.

How	do	we	know	if	the	instruction	set	we	want	is	possible	when	using	expanding	opcodes?	We	must
first	determine	if	we	have	enough	bits	to	create	the	desired	number	of	bit	patterns.	Once	we	determine	this
is	possible,	we	can	create	the	appropriate	escape	opcodes	for	the	instruction	set.

	EXAMPLE	5.9	Refer	back	to	the	instruction	set	given	in	Example	5.8.	To	show	that	there	are	enough
overall	bit	patterns,	we	need	to	calculate	the	number	of	bit	patterns	each	instruction	format	requires.

•			The	first	15	instructions	account	for	15	*	24	*	24	*	24	=	15	*	212	=	61440	bit	patterns.	(Each	register
address	can	be	one	of	16	different	bit	patterns.)

•			The	next	14	instructions	account	for	14	*	24	*	24	=	14	*	28	=	3584	bit	patterns.
•			The	next	31	instructions	account	for	31	*	24	=	496	bit	patterns.
•			The	last	16	instructions	account	for	16	bit	patterns.

If	we	add	these	up,	we	have	61440	+	3584	+	496	+	16	=	65536.	We	have	a	total	of	16	bits,	which	means
we	can	create	216	=	65536	total	bit	patterns	(an	exact	match	with	no	wasted	bit	patterns).

	EXAMPLE	5.10	Is	it	possible	to	design	an	expanding	opcode	to	allow	the	following	to	be	encoded	in
a	12-bit	instruction?	Assume	that	a	register	operand	requires	3	bits	and	this	instruction	set	does	not	allow
memory	addresses	to	be	directly	used	in	an	instruction.

•			4	instructions	with	three	registers
•			255	instructions	with	one	register
•			16	instructions	with	zero	registers



The	 first	 4	 instructions	 would	 account	 for	 4	 *	 23	 *	 23	 *	 23	 =	 211	 =	 2048	 bit	 patterns.	 The	 next	 255
instructions	would	account	for	255	*	23	=	2040	bit	patterns.	The	last	16	instructions	would	account	for	16
bit	patterns.

12	bits	allow	for	a	total	of	212	=	4096	bit	patterns.	If	we	add	up	what	each	instruction	format	requires,	we
get	2048	+	2040	+	16	=	4104.	We	need	4104	bit	patterns	to	create	this	instruction	set,	but	with	12	bits	we
only	have	4096	bit	patterns	possible.	Therefore,	we	cannot	design	an	expanding	opcode	instruction	set	to
meet	the	specified	requirements.

Let’s	look	at	one	last	example,	from	start	to	finish.

	EXAMPLE	 5.11	 Given	 8-bit	 instructions,	 is	 it	 possible	 to	 use	 expanding	 opcodes	 to	 allow	 the
following	to	be	encoded?	If	so,	show	the	encoding.

•			3	instructions	with	two	3-bit	operands
•			2	instructions	with	one	4-bit	operand
•			4	instructions	with	one	3-bit	operand

First,	we	must	determine	if	the	encoding	is	possible.

•			3	*	23	*	23	=	3	*	26	=	192
•			2	*	24	=	32
•			4	*	23	=	32

If	we	sum	the	required	number	of	bit	patterns,	we	get	192	+	32	+	32	=	256.	8	bits	in	the	instruction	means
a	total	of	28	=	56	bit	patterns,	so	we	have	an	exact	match	(which	means	the	encoding	is	possible,	but	every
bit	pattern	will	be	used	in	creating	it).

The	encoding	we	can	use	is	as	follows:



5.3	INSTRUCTION	TYPES
Most	computer	instructions	operate	on	data;	however,	there	are	some	that	do	not.	Computer	manufacturers
regularly	 group	 instructions	 into	 the	 following	 categories:	 data	 movement,	 arithmetic,	 Boolean,	 bit
manipulation	(shift	and	rotate),	I/O,	transfer	of	control,	and	special	purpose.

We	discuss	each	of	these	categories	in	the	following	sections.

5.3.1		Data	Movement
Data	movement	 instructions	are	 the	most	 frequently	used	 instructions.	Data	 is	moved	from	memory	 into
registers,	from	registers	to	registers,	and	from	registers	to	memory,	and	many	machines	provide	different
instructions	depending	on	 the	 source	and	destination.	For	example,	 there	may	be	a	MOVER	 instruction
that	 always	 requires	 two	 register	 operands,	whereas	 a	MOVE	 instruction	 allows	 one	 register	 and	 one
memory	operand.	Some	architectures,	such	as	RISC,	limit	the	instructions	that	can	move	data	to	and	from
memory	 in	 an	 attempt	 to	 speed	up	 execution.	Many	machines	have	variations	of	 load,	 store,	 and	move
instructions	to	handle	data	of	different	sizes.	For	example,	there	may	be	a	LOADB	instruction	for	dealing
with	bytes	 and	 a	LOADW	 instruction	 for	 handling	words.	Data	movement	 instructions	 include	MOVE,
LOAD,	STORE,	PUSH,	POP,	EXCHANGE,	and	multiple	variations	on	each	of	these.

5.3.2		Arithmetic	Operations
Arithmetic	 operations	 include	 those	 instructions	 that	 use	 integers	 and	 floating-point	 numbers.	 Many
instruction	sets	provide	different	arithmetic	instructions	for	various	data	sizes.	As	with	the	data	movement
instructions,	there	are	sometimes	different	instructions	for	providing	various	combinations	of	register	and
memory	accesses	in	different	addressing	modes.	Instructions	may	exist	for	arithmetic	operations	on	both
signed	 and	 unsigned	 numbers,	 as	 well	 as	 for	 operands	 in	 different	 bases.	 Many	 times,	 operands	 are
implied	in	arithmetic	instructions.	For	example,	a	multiply	instruction	may	assume	that	the	multiplicand	is
resident	in	a	specific	register	so	it	need	not	be	explicitly	given	in	the	instruction.	This	class	of	instructions
also	affects	the	flag	register,	setting	the	zero,	carry,	and	overflow	bits	(to	name	only	a	few).	Arithmetic
instructions	 include	 ADD,	 SUBTRACT,	 MULTIPLY,	 DIVIDE,	 INCREMENT,	 DECREMENT,	 and
NEGATE	(to	change	the	sign).



5.3.3		Boolean	Logic	Instructions
Boolean	logic	instructions	perform	Boolean	operations,	much	in	the	same	way	that	arithmetic	operations
work.	These	instructions	allow	bits	to	be	set,	cleared,	and	complemented.	Logic	operations	are	commonly
used	 to	 control	 I/O	 devices.	 As	 with	 arithmetic	 operations,	 logic	 instructions	 affect	 the	 flag	 register,
including	 the	carry	and	overflow	bits.	There	are	 typically	 instructions	 for	performing	AND,	NOT,	OR,
XOR,	TEST,	and	COMPARE.

5.3.4		Bit	Manipulation	Instructions
Bit	manipulation	 instructions	 are	used	 for	 setting	and	 resetting	 individual	bits	 (or	 sometimes	groups	of
bits)	 within	 a	 given	 data	 word.	 These	 include	 both	 arithmetic	 and	 logical	 SHIFT	 instructions	 and
ROTATE	instructions,	each	to	the	left	and	to	the	right.	Logical	shift	instructions	simply	shift	bits	to	either
the	left	or	the	right	by	a	specified	number	of	bits,	shifting	in	zeros	on	the	opposite	end.	For	example,	if	we
have	an	8-bit	register	containing	the	value	11110000,	and	we	perform	a	logical	shift	left	by	one	bit,	the
result	is	11100000.	If	our	register	contains	11110000	and	we	perform	a	logical	shift	right	by	one	bit,	the
result	is	01111000.

Arithmetic	 shift	 instructions,	 commonly	used	 to	multiply	 or	 divide	 by	2,	 treat	 data	 as	 signed	 two’s
complement	numbers,	and	do	not	shift	the	leftmost	bit,	because	this	represents	the	sign	of	the	number.	On	a
right	arithmetic	shift,	the	sign	bit	is	replicated	into	the	bit	position(s)	to	its	right:	If	the	number	is	positive,
the	leftmost	bits	are	filled	by	zeros;	if	the	number	is	negative,	the	leftmost	bits	are	filled	by	ones.	A	right
arithmetic	 shift	 is	 equivalent	 to	 division	 by	 2.	 For	 example,	 if	 our	 value	 is	 00001110	 (+14)	 and	 we
perform	an	arithmetic	shift	right	by	one	bit,	the	result	is	00000111	(+7).	If	the	value	is	negative,	such	as
11111110	(–2),	 the	result	 is	11111111	(–1).	On	a	left	arithmetic	shift,	bits	are	shifted	left,	and	zeros	are
shifted	 in,	 but	 the	 sign	 bit	 does	 not	 participate	 in	 the	 shifting.	An	 arithmetic	 shift	 left	 is	 equivalent	 to
multiplication	by	2.	For	example,	 if	our	register	contains	00000011	(+3)	and	we	perform	an	arithmetic
shift	 left	 by	 one	 bit,	 the	 result	 is	 00000110	 (+6).	 If	 the	 register	 contains	 a	 negative	 number,	 such	 as
11111111	(–1),	performing	an	arithmetic	shift	left	by	one	bit	yields	11111110	(–2).	If	the	last	bit	shifted	out
(excluding	 the	 sign	 bit)	 does	 not	 match	 the	 sign,	 overflow	 or	 underflow	 occurs.	 For	 example,	 if	 the
number	is	10111111	(–65)	and	we	do	an	arithmetic	shift	left	by	one	bit,	the	result	is	11111110	(–2),	but	the
bit	that	was	“shifted	out”	is	a	zero	and	does	not	match	the	sign;	hence	we	have	overflow.

Rotate	 instructions	 are	 simply	 shift	 instructions	 that	 shift	 in	 the	bits	 that	 are	 shifted	out—a	circular
shift	basically.	For	example,	on	a	rotate	left	one	bit,	the	leftmost	bit	is	shifted	out	and	rotated	around	to
become	the	rightmost	bit.	If	the	value	00001111	is	rotated	left	by	one	bit,	we	have	00011110.	If	00001111
is	rotated	right	by	one	bit,	we	have	10000111.	With	rotate,	we	do	not	worry	about	the	sign	bit.

In	addition	 to	shifts	and	rotates,	some	computer	architectures	have	 instructions	for	clearing	specific
bits,	setting	specific	bits,	and	toggling	specific	bits.

5.3.5		Input/Output	Instructions
I/O	 instructions	 vary	 greatly	 from	 architecture	 to	 architecture.	 The	 input	 (or	 read)	 instruction	 transfers
data	 from	 a	 device	 or	 port	 to	 either	 memory	 or	 a	 specific	 register.	 The	 output	 (or	 write)	 instruction
transfers	 data	 from	 a	 register	 or	 memory	 to	 a	 specific	 port	 or	 device.	 There	 may	 be	 separate	 I/O
instructions	 for	numeric	data	 and	character	data.	Generally,	 character	 and	 string	data	use	 some	 type	of
block	 I/O	 instruction,	 automating	 the	 input	 of	 a	 string.	 The	 basic	 schemes	 for	 handling	 I/O	 are
programmed	I/O,	interrupt-driven	I/O,	and	DMA	devices.	These	are	covered	in	more	detail	in	Chapter	7.



5.3.6		Instructions	for	Transfer	of	Control
Control	 instructions	 are	 used	 to	 alter	 the	 normal	 sequence	 of	 program	 execution.	 These	 instructions
include	 branches,	 skips,	 procedure	 calls,	 returns,	 and	 program	 termination.	 Branching	 can	 be
unconditional	 (such	 as	 jump)	 or	 conditional	 (such	 as	 jump	on	 condition).	 Skip	 instructions	 (which	 can
also	be	conditional	or	unconditional)	are	basically	branch	instructions	with	implied	addresses.	Because
no	operand	is	required,	skip	instructions	often	use	bits	of	the	address	field	to	specify	different	situations
(recall	 the	 Skipcond	 instruction	 used	 by	 MARIE).	 Some	 languages	 include	 looping	 instructions	 that
automatically	combine	conditional	and	unconditional	jumps.

Procedure	calls	are	special	branch	 instructions	 that	automatically	save	 the	 return	address.	Different
machines	 use	 different	methods	 to	 save	 this	 address.	 Some	 store	 the	 address	 at	 a	 specific	 location	 in
memory,	and	others	store	it	in	a	register,	whereas	still	others	push	the	return	address	on	a	stack.

5.3.7		Special-Purpose	Instructions
Special-purpose	 instructions	 include	 those	 used	 for	 string	 processing,	 high-level	 language	 support,
protection,	flag	control,	word/byte	conversions,	cache	management,	register	access,	address	calculation,
no-ops,	and	any	other	instructions	that	don’t	fit	 into	the	previous	categories.	Most	architectures	provide
instructions	for	string	processing,	including	string	manipulation	and	searching.	No-op	instructions,	which
take	up	space	and	time	but	reference	no	data	and	basically	do	nothing,	are	often	used	as	placeholders	for
insertion	of	useful	instructions	at	a	later	time,	or	in	pipelines	(see	Section	5.5).

5.3.8		Instruction	Set	Orthogonality
Regardless	 of	 whether	 an	 architecture	 is	 hard-coded	 or	 microprogrammed,	 it	 is	 important	 that	 the
architecture	 have	 a	 complete	 instruction	 set.	However,	 designers	must	 be	 careful	 not	 to	 add	 redundant
instructions,	as	each	instruction	translates	either	 to	a	circuit	or	a	procedure.	Therefore,	each	instruction
should	 perform	 a	 unique	 function	 without	 duplicating	 any	 other	 instruction.	 Some	 people	 refer	 to	 this
characteristic	 as	 orthogonality.	 In	 actuality,	 orthogonality	 goes	 one	 step	 further.	 Not	 only	 must	 the
instructions	 be	 independent,	 but	 the	 instruction	 set	 must	 be	 consistent.	 For	 example,	 orthogonality
addresses	the	degree	to	which	operands	and	addressing	modes	are	uniformly	(and	consistently)	available
with	various	operations.	This	means	the	addressing	modes	of	the	operands	must	be	independent	from	the
operands	 (addressing	 modes	 are	 discussed	 in	 detail	 in	 Section	 5.4.2).	 Under	 orthogonality,	 the
operand/opcode	 relationship	 cannot	 be	 restricted	 (there	 are	 no	 special	 registers	 for	 particular
instructions).	In	addition,	an	instruction	set	with	a	multiply	command	and	no	divide	instruction	would	not
be	orthogonal.	Therefore,	orthogonality	encompasses	both	independence	and	consistency	in	the	instruction
set.	An	orthogonal	 instruction	set	makes	writing	a	 language	compiler	much	easier;	however,	orthogonal
instruction	 sets	 typically	have	quite	 long	 instruction	words	 (the	operand	 fields	 are	 long	because	of	 the
consistency	requirement),	which	translates	to	larger	programs	and	more	memory	use.

5.4			ADDRESSING
Although	addressing	is	an	instruction	design	issue	and	is	technically	part	of	the	instruction	format,	there
are	so	many	issues	involved	with	addressing	that	it	merits	its	own	section.	We	now	present	the	two	most
important	of	these	addressing	issues:	the	types	of	data	that	can	be	addressed	and	the	various	addressing
modes.	We	 cover	 only	 the	 fundamental	 addressing	modes;	more	 specialized	modes	 are	 built	 using	 the



basic	modes	in	this	section.

5.4.1		Data	Types
Before	we	look	at	how	data	is	addressed,	we	will	briefly	mention	the	various	types	of	data	an	instruction
can	access.	There	must	be	hardware	support	for	a	particular	data	type	if	the	instruction	is	to	reference	that
type.	In	Chapter	2,	we	discussed	data	 types,	 including	numbers	and	characters.	Numeric	data	consist	of
integers	 and	 floating-point	 values.	 Integers	 can	 be	 signed	 or	 unsigned	 and	 can	 be	 declared	 in	 various
lengths.	For	example,	in	C++	integers	can	be	short	(16	bits),	int	(the	word	size	of	the	given	architecture),
or	long	(32	bits).	Floating-point	numbers	have	lengths	of	32,	64,	or	128	bits.	It	is	not	uncommon	for	ISAs
to	have	 special	 instructions	 to	deal	with	numeric	data	of	varying	 lengths,	 as	we	have	 seen	earlier.	For
example,	there	might	be	a	MOVE	for	16-bit	integers	and	a	different	MOVE	for	32-bit	integers.

Nonnumeric	data	types	consist	of	strings,	Booleans,	and	pointers.	String	instructions	typically	include
operations	such	as	copy,	move,	search,	or	modify.	Boolean	operations	include	AND,	OR,	XOR,	and	NOT.
Pointers	are	actually	addresses	in	memory.	Even	though	they	are,	in	reality,	numeric	in	nature,	pointers	are
treated	differently	than	integers	and	floating-point	numbers.	MARIE	allows	for	this	data	type	by	using	the
indirect	 addressing	mode.	The	operands	 in	 the	 instructions	using	 this	mode	are	 actually	pointers.	 In	 an
instruction	using	a	pointer,	the	operand	is	essentially	an	address	and	must	be	treated	as	such.

5.4.2		Address	Modes
We	saw	in	Chapter	4	that	the	12	bits	in	the	operand	field	of	a	MARIE	instruction	can	be	interpreted	in	two
different	ways:	The	12	bits	represent	either	the	memory	address	of	the	operand	or	a	pointer	to	a	physical
memory	 address.	These	12	bits	 can	be	 interpreted	 in	many	other	ways,	 thus	providing	us	with	 several
different	addressing	modes.	Addressing	modes	allow	us	 to	 specify	where	 the	 instruction	operands	are
located.	An	addressing	mode	can	specify	a	constant,	a	register,	or	a	location	in	memory.	Certain	modes
allow	shorter	addresses,	and	some	allow	us	to	determine	the	location	of	the	actual	operand,	often	called
the	effective	address	of	the	operand,	dynamically.	We	now	investigate	the	most	basic	addressing	modes.

Immediate	 addressing	 is	 so	 named	 because	 the	 value	 to	 be	 referenced	 immediately	 follows	 the
operation	code	in	the	instruction.	That	is	to	say,	the	data	to	be	operated	on	is	part	of	the	instruction.	For
example,	if	the	addressing	mode	of	the	operand	is	immediate	and	the	instruction	is	Load	008,	the	numeric
value	8	is	loaded	into	the	AC.	The	12	bits	of	the	operand	field	do	not	specify	an	address;	they	specify	the
actual	operand	 the	 instruction	 requires.	 Immediate	addressing	 is	 fast	because	 the	value	 to	be	 loaded	 is
included	 in	 the	 instruction.	However,	because	 the	value	 to	be	 loaded	 is	 fixed	at	compile	 time,	 it	 is	not
very	flexible.

Direct	 addressing	 is	 so	 named	 because	 the	 value	 to	 be	 referenced	 is	 obtained	 by	 specifying	 its
memory	address	directly	in	the	instruction.	For	example,	if	the	addressing	mode	of	the	operand	is	direct
and	the	instruction	is	Load	008,	the	data	value	found	at	memory	address	008	is	loaded	into	the	AC.	Direct
addressing	 is	 typically	 quite	 fast	 because,	 although	 the	 value	 to	 be	 loaded	 is	 not	 included	 in	 the
instruction,	it	is	quickly	accessible.	It	is	also	much	more	flexible	than	immediate	addressing	because	the
value	to	be	loaded	is	whatever	is	found	at	the	given	address,	which	may	be	variable.

In	register	addressing,	a	register,	instead	of	memory,	is	used	to	specify	the	operand.	This	is	similar	to
direct	addressing,	except	that	instead	of	a	memory	address,	the	address	field	contains	a	register	reference.
The	contents	of	that	register	are	used	as	the	operand.

Indirect	addressing	is	a	powerful	addressing	mode	that	provides	an	exceptional	level	of	flexibility.



In	this	mode,	the	bits	in	the	address	field	specify	a	memory	address	that	is	to	be	used	as	a	pointer.	The
effective	address	of	the	operand	is	found	by	going	to	this	memory	address.	For	example,	if	the	addressing
mode	of	the	operand	is	indirect	and	the	instruction	is	Load	008,	the	data	value	found	at	memory	address
0x008	is	actually	the	effective	address	of	the	desired	operand.	Suppose	we	find	the	value	0x2A0	stored	in
location	0x008.	0x2A0	is	the	“real”	address	of	the	value	we	want.	The	value	found	at	location	0x2A0	is
then	loaded	into	the	AC.

In	a	variation	on	this	scheme,	the	operand	bits	specify	a	register	instead	of	a	memory	address.	This
mode,	known	as	register	indirect	addressing,	works	exactly	the	same	way	as	indirect	addressing	mode,
except	 that	 it	 uses	 a	 register	 instead	 of	 a	 memory	 address	 to	 point	 to	 the	 data.	 For	 example,	 if	 the
instruction	is	Load	R1	and	we	are	using	register	indirect	addressing	mode,	we	would	find	the	effective
address	of	the	desired	operand	in	R1.

In	indexed	addressing	mode,	an	index	register	(either	explicitly	or	implicitly	designated)	is	used	to
store	an	offset	(or	displacement),	which	is	added	to	the	operand,	resulting	in	the	effective	address	of	the
data.	For	example,	if	the	operand	X	of	the	instruction	Load	X	is	to	be	addressed	using	indexed	addressing,
assuming	 that	 R1	 is	 the	 index	 register	 and	 holds	 the	 value	 1,	 the	 effective	 address	 of	 the	 operand	 is
actually	X	+	1.	Based	addressing	mode	 is	similar,	except	a	base	address	 register,	 rather	 than	an	 index
register,	is	used.	In	theory,	the	difference	between	these	two	modes	is	in	how	they	are	used,	not	how	the
operands	are	computed.	An	index	register	holds	an	index	that	is	used	as	an	offset,	relative	to	the	address
given	in	the	address	field	of	the	instruction.	A	base	register	holds	a	base	address,	where	the	address	field
represents	 a	 displacement	 from	 this	 base.	 These	 two	 addressing	modes	 are	 quite	 useful	 for	 accessing
array	elements	as	well	as	characters	 in	strings.	 In	 fact,	most	assembly	 languages	provide	special	 index
registers	 that	 are	 implied	 in	many	 string	 operations.	 Depending	 on	 the	 instruction-set	 design,	 general-
purpose	registers	may	also	be	used	in	this	mode.

If	stack	addressing	mode	is	used,	the	operand	is	assumed	to	be	on	the	stack.	We	have	already	seen
how	this	works	in	Section	5.2.4.

Many	 variations	 on	 the	 above	 schemes	 exist.	 For	 example,	 some	machines	 have	 indirect	 indexed
addressing,	which	uses	both	indirect	and	indexed	addressing	at	the	same	time.	There	is	also	base/offset
addressing,	which	adds	an	offset	to	a	specific	base	register	and	then	adds	this	to	the	specified	operand,
resulting	in	the	effective	address	of	the	actual	operand	to	be	used	in	the	instruction.	There	are	also	auto-
increment	and	auto-decrement	modes.	These	modes	automatically	increment	or	decrement	the	register
used,	 thus	 reducing	 the	code	size,	which	can	be	extremely	 important	 in	applications	 such	as	embedded
systems.	Self-relative	 addressing	 computes	 the	 address	 of	 the	 operand	 as	 an	 offset	 from	 the	 current
instruction.	 Additional	 modes	 exist;	 however,	 familiarity	 with	 immediate,	 direct,	 register,	 indirect,
indexed,	 and	 stack	 addressing	modes	 goes	 a	 long	way	 in	 understanding	 any	 addressing	mode	you	may
encounter.

Let’s	look	at	an	example	to	illustrate	these	various	modes.	Suppose	we	have	the	instruction	Load	800
and	 the	 memory	 and	 register	 R1	 shown	 in	 Figure	 5.4.	 Applying	 the	 various	 addressing	 modes	 to	 the
operand	field	containing	the	0x800,	and	assuming	that	R1	is	implied	in	the	indexed	addressing	mode,	the
value	actually	 loaded	 into	AC	 is	 seen	 in	Table	5.1.	The	 instruction	Load	R1,	using	 register	addressing
mode,	 loads	0x800	into	 the	accumulator	and,	using	register	 indirect	addressing	mode,	 loads	0x900	into
the	accumulator.

We	summarize	the	addressing	modes	in	Table	5.2.



FIGURE	5.4	Contents	of	Memory	When	Load	800	Is	Executed

	

Mode Value	Loaded	into	AC

Immediate 0x800

Direct 0x900

Indirect 0x1000

Indexed 0x700

TABLE	5.1	Results	of	Using	Various	Addressing	Modes	on	Memory	in	Figure	5.4

Addressing
Mode To	Find	Operand

Immediate Operand	value	present	in	the	instruction

Direct Effective	address	of	operand	in	address	field

Register Operand	value	located	in	register

Indirect Address	field	points	to	address	of	the	actual	operand

Register	Indirect Register	contains	address	of	actual	operand

Indexed	or	Based Effective	address	of	operand	generated	by	adding	value	in	address	field	to	contents	of	a
register

Stack Operand	located	on	stack

TABLE	5.2	A	Summary	of	the	Basic	Addressing	Modes

How	 does	 the	 computer	 know	 which	 addressing	 mode	 is	 supposed	 to	 be	 used	 for	 a	 particular
operand?	 We	 have	 already	 seen	 one	 way	 to	 deal	 with	 this	 issue.	 In	 MARIE,	 there	 are	 two	 JUMP
instructions—a	JUMP	and	a	 JUMPI.	There	are	also	 two	add	 instructions—an	ADD	and	an	ADDI.	The
instruction	 itself	contains	 information	 the	computer	uses	 to	determine	 the	appropriate	addressing	mode.
Many	languages	have	multiple	versions	of	the	same	instruction,	where	each	variation	indicates	a	different



addressing	mode	and/or	a	different	data	size.
Encoding	the	address	mode	in	the	opcode	itself	works	well	if	there	is	a	small	number	of	addressing

modes.	However,	if	 there	are	many	addressing	modes,	it	 is	better	 to	use	a	separate	address	specifier,	a
field	in	the	instruction	with	bits	to	indicate	which	addressing	mode	is	to	be	applied	to	the	operands	in	the
instruction.

The	various	addressing	modes	allow	us	to	specify	a	much	larger	range	of	locations	than	if	we	were
limited	 to	using	one	or	 two	modes.	As	always,	 there	are	 trade-offs.	We	sacrifice	 simplicity	 in	address
calculation	and	limited	memory	references	for	flexibility	and	increased	address	range.

5.5			INSTRUCTION	PIPELINING
By	now	you	should	be	reasonably	familiar	with	the	fetch–decode–execute	cycle	presented	in	Chapter	4.
Conceptually,	 each	 pulse	 of	 the	 computer’s	 clock	 is	 used	 to	 control	 one	 step	 in	 the	 sequence,	 but
sometimes	additional	pulses	 can	be	used	 to	 control	 smaller	details	within	one	 step.	Some	CPUs	break
down	 the	 fetch–decode–execute	 cycle	 into	 smaller	 steps,	 where	 some	 of	 these	 smaller	 steps	 can	 be
performed	in	parallel.	This	overlapping	speeds	up	execution.	This	method,	used	by	all	current	CPUs,	is
known	as	pipelining.	 Instruction	pipelining	 is	one	method	used	 to	exploit	 instruction-level	 parallelism
(ILP).	(Other	methods	include	superscalar	and	VLIW.)	We	include	it	in	this	chapter	because	the	ISA	of	a
machine	affects	how	successful	instruction	pipelining	can	be.

Suppose	the	fetch–decode–execute	cycle	were	broken	into	the	following	“ministeps”:

1.		Fetch	instruction
2.		Decode	opcode
3.		Calculate	effective	address	of	operands
4.		Fetch	operands
5.		Execute	instruction
6.		Store	result

Pipelining	is	analogous	to	an	automobile	assembly	line.	Each	step	in	a	computer	pipeline	completes	a
part	of	an	instruction.	Like	the	automobile	assembly	line,	different	steps	are	completing	different	parts	of
different	instructions	in	parallel.	Each	of	the	steps	is	called	a	pipeline	stage.	The	stages	are	connected	to
form	a	pipe.	Instructions	enter	at	one	end,	progress	through	the	various	stages,	and	exit	at	the	other	end.
The	goal	is	to	balance	the	time	taken	by	each	pipeline	stage	(i.e.,	more	or	less	the	same	as	the	time	taken
by	 any	 other	 pipeline	 stage).	 If	 the	 stages	 are	 not	 balanced	 in	 time,	 after	 awhile,	 faster	 stages	will	 be
waiting	on	slower	ones.	To	see	an	example	of	 this	 imbalance	 in	 real	 life,	consider	 the	stages	of	doing
laundry.	 If	 you	 have	 only	 one	 washer	 and	 one	 dryer,	 you	 usually	 end	 up	 waiting	 on	 the	 dryer.	 If	 you
consider	washing	as	the	first	stage	and	drying	as	the	next,	you	can	see	that	the	longer	drying	stage	causes
clothes	to	pile	up	between	the	two	stages.	If	you	add	folding	clothes	as	a	third	stage,	you	soon	realize	that
this	stage	would	consistently	be	waiting	on	the	other,	slower	stages.

Figure	5.5	provides	an	illustration	of	computer	pipelining	with	overlapping	stages.	We	see	each	clock
cycle	and	each	stage	for	each	instruction	(where	S1	represents	the	fetch,	S2	represents	the	decode,	S3	is
the	calculate	state,	S4	is	the	operand	fetch,	S5	is	the	execution,	and	S6	is	the	store).



FIGURE	5.5	Four	Instructions	Going	through	a	6-Stage	Pipeline

We	 see	 from	 Figure	 5.5	 that	 once	 instruction	 1	 has	 been	 fetched	 and	 is	 in	 the	 process	 of	 being
decoded,	we	can	start	the	fetch	on	instruction	2.	When	instruction	1	is	fetching	operands,	and	instruction	2
is	being	decoded,	we	can	start	the	fetch	on	instruction	3.	Notice	that	these	events	can	occur	in	parallel,
very	much	like	an	automobile	assembly	line.

Suppose	we	have	a	k-stage	pipeline.	Assume	that	the	clock	cycle	time	is	tp;	that	is,	it	takes	tp	time	per
stage.	Assume	also	that	we	have	n	instructions	(often	called	tasks)	to	process.	Task	1	(T1)	requires	k	×	tp
time	to	complete.	The	remaining	n	–	1	tasks	emerge	from	the	pipeline	one	per	cycle,	which	implies	a	total
time	for	these	tasks	of	(n	–	1)tp.	Therefore,	to	complete	n	tasks	using	a	k-stage	pipeline	requires:

or	k	+	(n	–	1)	clock	cycles.
Let’s	 calculate	 the	 speedup	we	 gain	 using	 a	 pipeline.	Without	 a	 pipeline,	 the	 time	 required	 is	 ntn

cycles,	where	 tn	=	k	×	 tp.	Therefore,	 the	 speedup	 (time	without	 a	 pipeline	 divided	by	 the	 time	using	 a
pipeline)	is:

If	we	take	the	limit	of	this	as	n	approaches	infinity,	we	see	that	(k	+	n	–	1)	approaches	n,	which	results	in
a	theoretical	speedup	of:

The	theoretical	speedup,	k,	is	the	number	of	stages	in	the	pipeline.
Let’s	look	at	an	example.



	EXAMPLE	5.12	Suppose	we	have	a	4-stage	pipeline,	where:

•			S1	=	fetch	instruction
•			S2	=	decode	and	calculate	effective	address
•			S3	=	fetch	operand
•			S4	=	execute	instruction	and	store	results

FIGURE	5.6	Example	Instruction	Pipeline	with	Conditional	Branch

We	must	also	assume	that	the	architecture	provides	a	means	to	fetch	data	and	instructions	in	parallel.	This
can	be	done	with	separate	instruction	and	data	paths;	however,	most	memory	systems	do	not	allow	this.
Instead,	they	provide	the	operand	in	cache,	which,	in	most	cases,	allows	the	instruction	and	operand	to	be
fetched	simultaneously.	Suppose,	also,	that	instruction	I3	is	a	conditional	branch	statement	that	alters	the
execution	 sequence	 (so	 that	 instead	 of	 I4	 running	 next,	 it	 transfers	 control	 to	 I8).	 This	 results	 in	 the
pipeline	operation	shown	in	Figure	5.6.

Note	that	I4,	I5,	and	I6	are	fetched	and	proceed	through	various	stages,	but	after	the	execution	of	I3
(the	branch),	I4,	I5,	and	I6	are	no	longer	needed.	Only	after	time	period	6,	when	the	branch	has	executed,
can	the	next	instruction	to	be	executed	(I8)	be	fetched,	after	which	the	pipe	refills.	From	time	periods	6
through	 9,	 only	 one	 instruction	 has	 executed.	 In	 a	 perfect	 world,	 for	 each	 time	 period	 after	 the	 pipe
originally	fills,	one	instruction	should	flow	out	of	the	pipeline.	However,	we	see	in	this	example	that	this
is	not	necessarily	true.

Please	note	 that	not	 all	 instructions	must	go	 through	each	 stage	of	 the	pipe.	 If	 an	 instruction	has	no
operand,	there	is	no	need	for	stage	3.	To	simplify	pipelining	hardware	and	timing,	all	instructions	proceed
through	all	stages,	whether	necessary	or	not.

From	 our	 preceding	 discussion	 of	 speedup,	 it	 might	 appear	 that	 the	 more	 stages	 that	 exist	 in	 the
pipeline,	 the	 faster	 everything	will	 run.	This	 is	 true	 to	 a	 point.	 There	 is	 a	 fixed	 overhead	 involved	 in
moving	data	from	memory	to	registers.	The	amount	of	control	logic	for	the	pipeline	also	increases	in	size
proportional	 to	 the	number	of	 stages,	 thus	 slowing	down	 total	 execution.	 In	 addition,	 there	 are	 several
conditions	 that	 result	 in	 “pipeline	 conflicts,”	 which	 keep	 us	 from	 reaching	 the	 goal	 of	 executing	 one
instruction	per	clock	cycle.	These	include:

•			Resource	conflicts
•			Data	dependencies
•			Conditional	branch	statements



Resource	conflicts	(also	called	structural	hazards)	are	a	major	concern	in	instruction-level	parallelism.
For	example,	if	one	instruction	is	storing	a	value	to	memory	while	another	is	being	fetched	from	memory,
both	need	access	 to	memory.	Typically	 this	 is	 resolved	by	allowing	 the	 instruction	execute	 to	continue,
while	 forcing	 the	 instruction	 fetch	 to	 wait.	 Certain	 conflicts	 can	 also	 be	 resolved	 by	 providing	 two
separate	pathways:	one	for	data	coming	from	memory	and	another	for	instructions	coming	from	memory.

Data	dependencies	 arise	when	 the	 result	 of	 one	 instruction,	 not	 yet	 available,	 is	 to	 be	 used	 as	 an
operand	to	a	following	instruction.

For	example,	consider	the	two	sequential	statements	X	=	Y	+	3	and	Z	=	2	*	X.

The	problem	arises	at	time	period	4.	The	second	instruction	needs	to	fetch	X,	but	the	first	instruction	does
not	store	the	result	until	the	execution	is	finished,	so	X	is	not	available	at	the	beginning	of	the	time	period.

There	are	several	ways	to	handle	these	types	of	pipeline	conflicts.	Special	hardware	can	be	added	to
detect	 instructions	whose	source	operands	are	destinations	for	 instructions	farther	up	 the	pipeline.	This
hardware	 can	 insert	 a	 brief	 delay	 (typically	 a	 no-op	 instruction	 that	 does	 nothing)	 into	 the	 pipeline,
allowing	 enough	 time	 to	 pass	 to	 resolve	 the	 conflict.	 Specialized	hardware	 can	 also	be	used	 to	 detect
these	conflicts	and	route	data	through	special	paths	that	exist	between	various	stages	of	the	pipeline.	This
reduces	the	time	necessary	for	the	instruction	to	access	the	required	operand.	Some	architectures	address
this	 problem	 by	 letting	 the	 compiler	 resolve	 the	 conflict.	 Compilers	 have	 been	 designed	 that	 reorder
instructions,	resulting	in	a	delay	of	loading	any	conflicting	data	but	having	no	effect	on	the	program	logic
or	output.

Branch	instructions	allow	us	to	alter	the	flow	of	execution	in	a	program,	which,	in	terms	of	pipelining,
causes	major	problems.	If	instructions	are	fetched	one	per	clock	cycle,	several	can	be	fetched	and	even
decoded	 before	 a	 preceding	 instruction,	 indicating	 a	 branch,	 is	 executed.	 Conditional	 branching	 is
particularly	difficult	 to	deal	with.	Many	architectures	offer	branch	prediction,	 using	 logic	 to	make	 the
best	guess	as	to	which	instructions	will	be	needed	next	(essentially,	they	are	predicting	the	outcome	of	a
conditional	branch).	Compilers	try	to	resolve	branching	issues	by	rearranging	the	machine	code	to	cause	a
delayed	branch.	An	attempt	is	made	to	reorder	and	insert	useful	instructions,	but	if	that	is	not	possible,
no-op	instructions	are	inserted	to	keep	the	pipeline	full.	Another	approach	used	by	some	machines	given	a
conditional	branch	is	to	start	fetches	on	both	paths	of	the	branch	and	save	them	until	the	branch	is	actually
executed,	at	which	time	the	“true”	execution	path	will	be	known.

In	 an	 effort	 to	 squeeze	 even	more	 performance	 out	 of	 the	 chip,	modern	 CPUs	 employ	 superscalar
design	(introduced	in	Chapter	4),	which	is	one	step	beyond	pipelining.	Superscalar	chips	have	multiple
ALUs	 and	 issue	 more	 than	 one	 instruction	 in	 each	 clock	 cycle.	 The	 clock	 cycles	 per	 instruction	 can
actually	go	below	one.	But	the	logic	to	keep	track	of	hazards	becomes	even	more	complex;	more	logic	is
needed	to	schedule	operations	than	to	do	them.	Even	with	complex	logic,	it	is	hard	to	schedule	parallel
operations	“on	the	fly.”

The	limits	of	dynamic	scheduling	have	led	machine	designers	to	consider	a	very	different	architecture,
explicitly	parallel	 instruction	computers	(EPIC),	exemplified	by	 the	Itanium	architecture	discussed	 in
Chapter	4.	EPIC	machines	have	very	large	instructions	(recall	that	the	instructions	for	the	Itanium	are	128
bits),	which	specify	several	operations	to	be	done	in	parallel.	Because	of	the	parallelism	inherent	in	the



design,	the	EPIC	instruction	set	is	heavily	compiler	dependent	(which	means	a	user	needs	a	sophisticated
compiler	to	take	advantage	of	the	parallelism	to	gain	significant	performance	advantages).	The	burden	of
scheduling	operations	is	shifted	from	the	processor	to	the	compiler,	and	much	more	time	can	be	spent	in
developing	a	good	schedule	and	analyzing	potential	pipeline	conflicts.

To	reduce	the	pipelining	problems	caused	by	conditional	branches,	the	IA-64	introduced	predicated
instructions.	Comparison	 instructions	 set	 predicate	 bits,	much	 like	 they	 set	 condition	 codes	 on	 the	 x86
machine	(except	that	there	are	64	predicate	bits).	Each	operation	specifies	a	predicate	bit;	it	is	executed
only	if	the	predicate	bit	equals	1.	In	practice,	all	operations	are	performed,	but	the	result	is	stored	into	the
register	 file	only	 if	 the	predicate	bit	equals	1.	The	result	 is	 that	more	 instructions	are	executed,	but	we
don’t	have	to	stall	the	pipeline	waiting	for	a	condition.

There	are	several	levels	of	parallelism,	varying	from	the	simple	to	the	more	complex.	All	computers
exploit	parallelism	to	some	degree.	Instructions	use	words	as	operands	(where	words	are	 typically	16,
32,	or	64	bits	in	length),	rather	than	acting	on	single	bits	at	a	time.	More	advanced	types	of	parallelism
require	more	specific	and	complex	hardware	and	operating	system	support.

Although	an	 in-depth	study	of	parallelism	 is	beyond	 the	scope	of	 this	 text,	we	would	 like	 to	 take	a
brief	 look	 at	what	we	 consider	 the	 two	 extremes	 of	 parallelism:	 program-level	 parallelism	 (PLP)	 and
instruction-level	 parallelism	 (ILP).	 PLP	 actually	 allows	 parts	 of	 a	 program	 to	 run	 on	 more	 than	 one
computer.	This	may	sound	simple,	but	it	requires	coding	the	algorithm	correctly	so	that	this	parallelism	is
possible,	in	addition	to	providing	careful	synchronization	between	the	various	modules.

ILP	involves	the	use	of	techniques	to	allow	the	execution	of	overlapping	instructions.	Essentially,	we
want	to	allow	more	than	one	instruction	within	a	single	program	to	execute	concurrently.	There	are	two
kinds	 of	 ILP.	 The	 first	 type	 decomposes	 an	 instruction	 into	 stages	 and	 overlaps	 these	 stages.	 This	 is
exactly	what	pipelining	does.	The	second	kind	of	ILP	allows	individual	 instructions	 to	overlap	(that	 is,
instructions	can	be	executed	at	the	same	time	by	the	processor	itself).

In	 addition	 to	 pipelined	 architectures,	 superscalar,	 superpipelining,	 and	 very	 long	 instruction	word
(VLIW)	architectures	exhibit	ILP.	Superscalar	architectures	(as	you	may	recall	from	Chapter	4)	perform
multiple	 operations	 at	 the	 same	 time	 by	 employing	 parallel	 pipelines.	 Examples	 of	 superscalar
architectures	 include	 IBM’s	 PowerPC,	 Sun’s	 UltraSparc,	 and	 DEC’s	 Alpha.	 Superpipelining
architectures	combine	superscalar	concepts	with	pipelining,	by	dividing	the	pipeline	stages	into	smaller
pieces.	The	IA-64	architecture	exhibits	a	VLIW	architecture,	which	means	each	instruction	can	specify
multiple	scalar	operations	(the	compiler	puts	multiple	operations	 into	a	single	 instruction).	Superscalar
and	VLIW	machines	fetch	and	execute	more	than	one	instruction	per	cycle.

5.6			REAL-WORLD	EXAMPLES	OF	ISAS
Let’s	look	at	the	two	architectures	we	discussed	in	Chapter	4,	Intel	and	MIPS,	to	see	how	the	designers	of
these	processors	chose	to	deal	with	the	issues	introduced	in	this	chapter:	instruction	formats,	instruction
types,	number	of	operands,	addressing,	and	pipelining.	We’ll	also	introduce	the	Java	Virtual	Machine	to
illustrate	how	software	can	create	an	ISA	abstraction	that	completely	hides	the	real	ISA	of	the	machine.
Finally,	we	introduce	the	ARM	architecture,	one	you	may	not	have	heard	of	but	most	likely	use	every	day.

5.6.1		Intel
Intel	uses	a	little	endian,	two-address	architecture,	with	variable-length	instructions.	Intel	processors	use
a	register-memory	architecture,	which	means	all	 instructions	can	operate	on	a	memory	 location,	but	 the



other	 operand	must	 be	 a	 register.	 This	 ISA	 allows	 variable-length	 operations,	 operating	 on	 data	 with
lengths	of	1,	2,	or	4	bytes.

The	8086	through	the	80486	are	single-stage	pipeline	architectures.	The	architects	reasoned	that	if	one
pipeline	was	good,	two	would	be	better.	The	Pentium	had	two	parallel	five-stage	pipelines,	called	the	U
pipe	 and	 the	 V	 pipe,	 to	 execute	 instructions.	 Stages	 for	 these	 pipelines	 include	 prefetch,	 instruction
decode,	address	generation,	execute,	and	write	back.	To	be	effective,	these	pipelines	must	be	kept	filled,
which	requires	instructions	that	can	be	issued	in	parallel.	It	is	the	compiler’s	responsibility	to	make	sure
this	parallelism	happens.	The	Pentium	II	increased	the	number	of	stages	to	12,	including	prefetch,	length
decode,	instruction	decode,	rename/resource	allocation,	UOP	scheduling/dispatch,	execution,	write	back,
and	retirement.	Most	of	the	new	stages	were	added	to	address	Intel’s	MMX	technology,	an	extension	to
the	architecture	that	handles	multimedia	data.	The	Pentium	III	increased	the	stages	to	14,	and	the	Pentium
IV	to	24.	Additional	stages	(beyond	those	introduced	in	this	chapter)	included	stages	for	determining	the
length	of	the	instruction,	stages	for	creating	microoperations,	and	stages	to	“commit”	the	instruction	(make
sure	 it	 executes	 and	 the	 results	 become	 permanent).	 The	 Itanium	 contains	 only	 a	 10-stage	 instruction
pipeline:	 Instruction	pointer	 generation,	 fetch,	 rotate,	 expand,	 rename,	word-line	decode,	 register	 read,
execute,	exception	detect,	and	write	back.

Intel	processors	allow	for	the	basic	addressing	modes	introduced	in	this	chapter,	in	addition	to	many
combinations	 of	 those	modes.	The	8086	provided	17	different	ways	 to	 access	memory,	most	 of	which
were	variants	of	the	basic	modes.	Intel’s	more	current	Pentium	architectures	include	the	same	addressing
modes	as	 their	predecessors,	but	also	 introduce	new	modes,	mostly	 to	help	with	maintaining	backward
compatibility.	The	 IA-64	 is	 surprisingly	 lacking	 in	memory-addressing	modes.	 It	has	only	one:	 register
indirect	(with	optional	post-increment).	This	seems	unusually	limiting	but	follows	the	RISC	philosophy.
Addresses	are	calculated	and	stored	in	general-purpose	registers.	The	more	complex	addressing	modes
require	 specialized	 hardware;	 by	 limiting	 the	 number	 of	 addressing	 modes,	 the	 IA-64	 architecture
minimizes	the	need	for	this	specialized	hardware.

5.6.2		MIPS
The	 MIPS	 architecture	 (which	 originally	 stood	 for	 “Microprocessor	 without	 Interlocked	 Pipeline
Stages”)	 is	a	 little	endian,	word-addressable,	 three-address,	 fixed-length	 ISA.	This	 is	a	 load	and	store
architecture,	 which	 means	 that	 only	 the	 load	 and	 store	 instructions	 can	 access	 memory.	 All	 other
instructions	must	use	registers	for	operands,	which	implies	that	this	ISA	needs	a	large	register	set.	MIPS
is	also	limited	to	fixed-length	operations	(those	that	operate	on	data	with	the	same	number	of	bytes).

Some	MIPS	processors	(such	as	the	R2000	and	R3000)	have	five-stage	pipelines	(fetch,	instruction
decode,	 execute,	memory	 access,	 and	write	 back).	The	R4000	and	R4400	have	8-stage	 superpipelines
(instruction	fetch	first	half,	instruction	fetch	second	half,	register	fetch,	execution,	data	fetch	first	half,	data
fetch	second	half,	tag	check,	and	write	back).	The	R10000	is	quite	interesting	in	that	the	number	of	stages
in	the	pipeline	depends	on	the	functional	unit	through	which	the	instruction	must	pass:	there	are	five	stages
for	integer	instructions,	six	for	load/store	instructions,	and	seven	for	floating-point	instructions.	Both	the
MIPS	5000	and	10000	are	superscalar.

MIPS	has	a	straightforward	ISA	with	five	basic	types	of	instructions:	simple	arithmetic	(add,	XOR,
NAND,	shift),	data	movement	(load,	store,	move),	control	(branch,	jump),	multicycle	(multiply,	divide),
and	 miscellaneous	 instructions	 (save	 PC,	 save	 register	 on	 condition).	 MIPS	 programmers	 can	 use
immediate,	register,	direct,	indirect	register,	base,	and	indexed	addressing	modes.	However,	the	ISA	itself
provides	 for	 only	 one	 (base	 addressing).	 The	 remaining	 modes	 are	 provided	 by	 the	 assembler.	 The



MIPS64	has	two	additional	addressing	modes	for	use	in	embedded	systems	optimizations.
The	MIPS	instructions	in	Chapter	4	have	up	to	four	fields:	an	opcode,	two	operand	addresses,	and	one

result	 address.	 Essentially	 three	 instruction	 formats	 are	 available:	 the	 I	 type	 (immediate),	 the	 R	 type
(register),	and	the	J	type	(jump).

R-type	instructions	have	a	6-bit	opcode,	a	5-bit	source	register,	a	second	5-bit	source	register,	a	5-bit
target	register,	a	5-bit	shift	amount,	and	a	6-bit	function.	I-type	instructions	have	a	6-bit	operand,	a	5-bit
source	register,	a	5-bit	target	register	or	branch	condition,	and	a	16-bit	immediate	branch	displacement	or
address	displacement.	J-type	instructions	have	a	6-bit	opcode	and	a	26-bit	target	address.

The	MIPS	ISA	is	different	from	the	Intel	ISA	partially	because	the	design	philosophies	between	the
two	are	so	different.	Intel	created	its	ISA	for	the	8086	when	memory	was	very	expensive,	which	meant
designing	an	instruction	set	 that	would	allow	for	extremely	compact	code.	This	is	 the	main	reason	Intel
uses	variable-length	instructions.	The	small	set	of	registers	used	in	the	8086	did	not	allow	for	much	data
to	be	stored	in	these	registers;	hence	the	two-operand	instructions	(as	opposed	to	three	as	in	MIPS).	When
Intel	moved	to	the	IA32	ISA,	backward	compatibility	was	a	requirement	for	its	large	customer	base.

5.6.3		Java	Virtual	Machine
Java,	a	language	that	is	becoming	quite	popular,	is	very	interesting	in	that	it	is	platform	independent.	This
means	that	if	you	compile	code	on	one	architecture	(say	a	Pentium)	and	you	wish	to	run	your	program	on	a
different	architecture	(say	a	Sun	workstation),	you	can	do	so	without	modifying	or	even	recompiling	your
code.

The	Java	compiler	makes	no	assumptions	about	the	underlying	architecture	of	the	machine	on	which
the	program	will	run,	such	as	the	number	of	registers,	memory	size,	or	I/O	ports,	when	you	first	compile
your	code.	After	compilation,	however,	to	execute	your	program,	you	will	need	a	Java	Virtual	Machine
(JVM)	for	the	architecture	on	which	your	program	will	run.	(A	virtual	machine	is	a	software	emulation
of	a	real	machine.)	The	JVM	is	essentially	a	“wrapper”	that	goes	around	the	hardware	architecture	and	is
very	platform	dependent.	The	JVM	for	a	Pentium	is	different	from	the	JVM	for	a	Sun	workstation,	which
is	different	from	the	JVM	for	a	Macintosh,	and	so	on.	But	once	the	JVM	exists	on	a	particular	architecture,
that	JVM	can	execute	any	Java	program	compiled	on	any	ISA	platform.	It	is	the	JVM’s	responsibility	to
load,	check,	find,	and	execute	bytecodes	at	run	time.	The	JVM,	although	virtual,	 is	a	nice	example	of	a
well-designed	ISA.

The	JVM	for	a	particular	architecture	is	written	in	that	architecture’s	native	instruction	set.	It	acts	as
an	interpreter,	taking	Java	bytecodes	and	interpreting	them	into	explicit	underlying	machine	instructions.
Bytecodes	are	produced	when	a	Java	program	is	compiled.	These	bytecodes	then	become	input	for	the
JVM.	The	JVM	can	be	compared	to	a	giant	switch	(or	case)	statement,	analyzing	one	bytecode	instruction
at	 a	 time.	Each	 bytecode	 instruction	 causes	 a	 jump	 to	 a	 specific	 block	 of	 code,	which	 implements	 the
given	bytecode	instruction.

This	 differs	 significantly	 from	 other	 high-level	 languages	 with	 which	 you	 may	 be	 familiar.	 For
example,	when	you	compile	a	C++	program,	the	object	code	produced	is	for	that	particular	architecture.
(Compiling	a	C++	program	results	in	an	assembly	language	program	that	is	translated	to	machine	code.)	If
you	 want	 to	 run	 your	 C++	 program	 on	 a	 different	 platform,	 you	 must	 recompile	 it	 for	 the	 target
architecture.	 Compiled	 languages	 are	 translated	 into	 runnable	 files	 of	 the	 binary	machine	 code	 by	 the
compiler.	 Once	 this	 code	 has	 been	 generated,	 it	 can	 be	 run	 only	 on	 the	 target	 architecture.	 Compiled
languages	 typically	 exhibit	 excellent	 performance	 and	 give	 very	 good	 access	 to	 the	 operating	 system.
Examples	of	compiled	languages	include	C,	C++,	Ada,	FORTRAN,	and	COBOL.



FIGURE	5.7	The	Java	Programming	Environment

Some	languages,	such	as	LISP,	PhP,	Perl,	Python,	Tcl,	and	most	BASIC	languages,	are	interpreted.	The
source	must	be	reinterpreted	each	time	the	program	is	run.	The	trade-off	for	the	platform	independence	of
interpreted	 languages	 is	slower	performance—usually	by	a	 factor	of	100	 times.	 (We	will	have	more	 to
say	on	this	topic	in	Chapter	8.)

Languages	that	are	a	bit	of	both	(compiled	and	interpreted)	exist	as	well.	These	are	often	called	P-
code	languages.	The	source	code	written	in	these	languages	is	compiled	into	an	intermediate	form,	called
P-code,	and	the	P-code	is	then	interpreted.	P-code	languages	typically	execute	from	5	to	10	times	more
slowly	than	compiled	languages.	Python,	Perl,	and	Java	are	actually	P-code	languages,	even	though	they
are	typically	referred	to	as	interpreted	languages.

Figure	5.7	presents	an	overview	of	the	Java	programming	environment.
Perhaps	more	interesting	than	Java’s	platform	independence,	particularly	in	relationship	to	the	topics

covered	in	this	chapter,	is	the	fact	that	Java’s	bytecode	is	a	stack-based	language,	partially	composed	of
zero-address	 instructions.	 Each	 instruction	 consists	 of	 a	 one-byte	 opcode	 followed	 by	 zero	 or	 more
operands.	The	opcode	itself	indicates	whether	it	 is	followed	by	operands	and	the	form	the	operands	(if
any)	take.	Many	of	these	instructions	require	zero	operands.

Java	 uses	 two’s	 complement	 to	 represent	 signed	 integers	 but	 does	 not	 allow	 for	 unsigned	 integers.
Characters	are	coded	using	16-bit	Unicode.	Java	has	four	registers	that	provide	access	to	five	different
main	memory	 regions.	All	 references	 to	memory	 are	 based	on	offsets	 from	 these	 registers;	 pointers	 or
absolute	memory	addresses	are	never	used.	Because	the	JVM	is	a	stack	machine,	no	general	registers	are
provided.	This	 lack	of	general	 registers	 is	detrimental	 to	performance,	as	more	memory	 references	are
generated.	We	are	trading	performance	for	portability.

Let’s	take	a	look	at	a	short	Java	program	and	its	corresponding	bytecode.	Example	5.13	shows	a	Java
program	that	finds	the	maximum	of	two	numbers.

	EXAMPLE	5.13	Here	is	a	Java	program	to	find	the	maximum	of	two	numbers.



After	we	compile	this	program	(using	javac),	we	can	disassemble	it	to	examine	the	bytecode,	by	issuing
the	following	command:

javap-c	Maximum

You	should	see	the	following:



Each	line	number	represents	an	offset	(or	the	number	of	bytes	that	an	instruction	is	from	the	beginning	of
the	current	method).	Notice	that

Z	=	Max	(X,Y);

gets	compiled	to	the	following	bytecode:

It	 should	 be	 obvious	 that	 Java	 bytecode	 is	 stack	 based.	 For	 example,	 the	 iadd	 instruction	 pops	 two
integers	from	the	stack,	adds	them,	and	then	pushes	the	result	back	to	the	stack.	There	is	no	such	thing	as
“add	r	0,	r1,	f	2”	or	“add	AC,	X”.	The	iload_1	(integer	load)	instruction	also	uses	the	stack	by	pushing
slot	1	onto	the	stack	(slot	1	in	main	contains	X,	so	X	is	pushed	onto	the	stack).	Y	is	pushed	onto	the	stack
by	instruction	15.	The	invokestatic	instruction	actually	performs	the	Max	method	call.	When	the	method
has	finished,	the	istore_3	instruction	pops	the	top	element	of	the	stack	and	stores	it	in	Z.

We	will	explore	the	Java	language	and	the	JVM	in	more	detail	in	Chapter	8.

5.6.4		ARM
ARM	is	a	family	of	RISC-like	(reduced	instruction	set	computer)	processor	cores	found	in	many	portable
devices	today.	In	fact,	it	is	the	most	widely	used	32-bit	instruction	architecture,	found	in	more	than	95%	of



smartphones,	80%	of	digital	cameras,	and	more	than	40%	of	all	digital	television	sets.	Founded	in	1990,
ARM	(Advanced	RISC	Machine)	was	originally	funded	by	Apple,	Acorn,	and	VLSI	and	is	now	licensed
by	ARM	Holdings	in	Britain.	ARM	Holdings	does	not	manufacture	these	processors;	it	sells	the	licenses,
and	 the	cores	are	developed	 independently	by	companies	 that	have	an	architectural	 license	from	ARM.
This	allows	developers	to	extend	the	chip	in	any	way	that	best	fits	their	needs.

There	are	multiple	ARM	families,	including	ARM1,	ARM2,	up	through	ARM11,	with	ARM7,	ARM9,
and	 ARM10	 being	 the	main	 families	 currently	 available	 for	 licensing.	 The	 ARM	 processor	 has	 three
architectural	 profiles,	 or	 series:	 Cortex-A	 (designed	 for	 full	 operating	 systems	 in	 third-party
applications);	Cortex-R	(designed	for	embedded	and	real-time	applications);	and	Cortex-M	(designed	for
microcontroller	situations).	Implementations	for	ARM	processors	vary	significantly.	For	example,	many
of	these	processors	use	a	standard	von	Neumann	architecture,	such	as	 the	ARM7,	whereas	others	use	a
Harvard	architecture,	 like	 the	ARM9.	Although	 the	 latest	ARM	architecture	supports	64-bit	computing,
our	discussion	focuses	on	the	most	common	32-bit	processors.

ARM	 is	 a	 load/store	 architecture	 in	 which	 all	 data	 processing	 must	 be	 performed	 on	 values	 in
registers,	 not	 in	memory.	 It	 uses	 fixed-length,	 three-operand	 instructions	 and	 simple	 addressing	modes,
although	 its	 indexed	 (base	 plus	 offset)	 addressing	 mode	 is	 very	 powerful.	 These	 characteristics,
combined	with	a	large	register	file	of	16	32-bit	general-purpose	registers,	facilitate	pipelining.	All	ARM
processors	have	a	minimum	of	a	 three-stage	pipeline	 (consisting	of	 fetch,	decode,	and	execute);	newer
processors	have	deeper	pipelines	 (more	 stages).	For	 example,	 the	very	popular	ARM9	 typically	has	 a
five-stage	 pipeline	 (similar	 to	 MIPS);	 certain	 implementations	 of	 the	 ARM8	 have	 13-stage	 integer
pipelines	(where	the	fetch	is	broken	into	two	stages,	the	decode	into	five	stages,	and	the	execute	into	six
stages.)

There	 are	 actually	 37	 total	 registers	 in	 the	 ARM	 architecture;	 however,	 because	 these	 are	 shared
among	the	different	processor	modes,	some	are	only	visible	(usable)	when	the	processor	is	in	a	specific
mode.	A	processor	mode	places	rules	and	restrictions	on	the	types	of	operations	that	can	be	performed
and	on	the	scope	of	data	that	can	be	accessed;	the	mode	a	processor	is	running	in	basically	determines	its
operating	 environment.	 Privileged	 modes	 give	 direct	 access	 to	 hardware	 and	 memory;	 nonprivileged
modes	place	restrictions	on	which	registers	and	other	hardware	can	be	utilized.	ARM	processors	support
a	 variety	 of	 different	 processor	 modes,	 depending	 on	 the	 version	 of	 the	 architecture.	 These	 modes
typically	 include	 (1)	 supervisor	 mode,	 a	 protected	 mode	 for	 the	 operating	 system;	 (2)	 FIQ	 mode,	 a
privileged	mode	that	supports	high-speed	data	transfer,	used	to	process	high-priority	interrupts;	(3)	IRQ
mode,	 a	 privileged	mode	 used	 for	 general-purpose	 interrupts;	 (4)	Abort,	 a	 privileged	mode	 that	 deals
with	 memory	 access	 violations;	 (5)	 Undefined,	 a	 privileged	 mode	 used	 when	 undefined	 or	 illegal
instructions	are	encountered;	(6)	System,	a	privileged	mode	that	runs	privileged	operating	system	tasks;
and	(7)	User,	a	nonprivileged	mode	and	the	mode	in	which	most	applications	run.

Several	 of	 the	 restrictions	 associated	 with	 the	 various	 modes	 determine	 how	 registers	 are	 to	 be
utilized.	Registers	0	through	7	are	treated	the	same	in	all	processor	modes.	However,	there	are	multiple
copies,	called	banks,	of	certain	registers,	and	the	copy	that	is	actually	used	is	determined	by	the	current
mode.	 For	 example,	 registers	 13	 and	 14	 are	 “banked”	 in	most	 privileged	modes;	 this	means	 that	 each
mode	 has	 its	 own	 copy	 of	 register	 13	 and	 register	 14.	 These	 registers,	 in	 addition	 to	 register	 15,
essentially	 serve	 dual	 purposes;	 while	 registers	 13,	 14,	 and	 15	 can	 be	 accessed	 directly,	 in	 the
appropriate	mode	register	13	can	be	used	as	the	stack	pointer,	register	14	as	a	link	register,	and	register
15	as	the	program	counter.

All	 ARM	 processors	 perform	 bit-wise	 logic	 and	 comparison	 operations,	 as	 well	 as	 addition,
subtraction,	and	multiplication;	only	a	few	include	instructions	for	division.	ARM	processors	provide	the



standard	 data	 transfer	 instructions,	 including	 those	 that	move	 data	 from	memory	 to	 register,	 register	 to
memory,	 and	 register	 to	 register.	 In	 addition	 to	 the	 usual	 single	 register	 transfer,	 ARM	 also	 allows
multiple	register	transfers.	ARM	can	simultaneously	load	or	store	any	subset	of	the	16	general-purpose
registers	 from/to	 sequential	 memory	 addresses.	 Control	 flow	 instructions	 include	 unconditional	 and
conditional	 branching	 and	 procedure	 calls	 (using	 a	 branch	 and	 link	 instruction	 that	 saves	 the	 return
address	in	register	14).

Most	 ARM	 instructions	 execute	 in	 a	 single	 cycle,	 provided	 there	 are	 no	 pipeline	 hazards	 or
instructions	 that	 must	 access	 memory.	 To	 minimize	 the	 number	 of	 cycles,	 ARM	 utilizes	 various
techniques.	 For	 example,	when	 branch	 statements	 are	 encountered,	 branching	 is	 typically	 conditionally
executed.	ARM	also	supports	auto-indexing	mode,	which	allows	the	value	of	the	index	register	to	change
while	a	 load/store	 instruction	 is	being	executed.	 In	addition,	ARM	has	 several	 “specialty”	 instructions
and	registers.	For	example,	if	an	instruction	specifies	register	15	as	its	destination,	the	result	of	an	ALU
operation	 is	 automatically	 used	 as	 the	 next	 instruction	 address.	 If	 the	 PC	 is	 used	 in	 a	memory	 access
instruction,	the	next	instruction	is	automatically	fetched	from	memory.

A	 sample	ARM	 program	 to	 store	 the	 larger	 of	 two	 integers	 in	 register	 1	 can	 be	 seen	 below.	 The
compare	instruction	(cmp)	basically	subtracts	register	1	from	register	2,	but	instead	of	storing	the	result,	it
uses	the	difference	to	set	flags	in	the	status	register	that	are	later	utilized	by	the	branch	instruction.	The
branch	statement	(bge)	jumps	only	if	the	value	in	register	2	is	greater	than	or	equal	to	the	value	in	register
1.	Note	how	similar	this	assembly	language	is	to	that	of	MARIE,	Intel,	and	MIPS	(as	seen	in	Chapter	4).

Most	ARM	architectures	implement	two	different	instruction	sets:	the	normal	32-bit	ARM	instruction
set	and	the	16-bit	Thumb	instruction	set.	Those	chips	supporting	Thumb	carry	a	“T”	in	the	name.	(Some
cores	are	equipped	with	Jazelle,	which	allows	them	to	execute	Java	bytecode;	 these	processors	have	a
“J”	appended	to	the	CPU	name).	Although	ARM	has	instructions	that	execute	in	a	single	clock	cycle,	these
shorter	 instructions	 result	 in	 longer	 programs,	 thus	 requiring	more	memory.	 In	 all	 but	 those	 situations
where	speed	is	critical,	the	cost	of	memory	outweighs	the	execution	speed	of	the	processor.	Thumb	was
added	as	an	option	to	many	ARM	chips	to	improve	code	density	and	thus	reduce	the	amount	of	storage
space	 required.	We	should	note	 that	ARM	processors	actually	contain	only	one	 instruction	 set;	when	a
processor	 is	 operating	 in	Thumb	mode,	 the	processor	 (via	 dedicated	hardware	on	 the	 chip)	 expands	 a
Thumb	 instruction	 into	 an	 equivalent	ARM	32-bit	 instruction.	 In	 Thumb	mode,	 there	 are	 no	 longer	 16
general-purpose	registers	available;	that	number	is	reduced	to	8	(in	addition	to	the	PC,	stack	pointer,	and
link	pointer	registers).

There	are	actually	two	variations	of	the	Thumb	instruction	set:	Thumb,	which	includes	16-bit	fixed-
length	 instructions,	 and	 Thumb-2	 (introduced	 in	 the	 latest	 cores),	 which	 is	 backward	 compatible	with
Thumb	 but	 allows	 for	 32-bit	 instructions.	 Although	 Thumb	 is	 a	 compact	 and	 condensed	 language	 (it
requires	roughly	40%	less	space	than	ARM	instructions)	and	allows	for	shorter	opcodes	and	better	code



density,	 its	 performance	 does	 not	match	 that	 of	 the	ARM	 instruction	 set.	 Thumb-2	 gives	 roughly	 25%
better	performance	than	Thumb,	while	still	offering	good	code	density	and	energy	efficiency.

ARM	 is	 small	 and	 thus	 requires	 few	 transistors,	which	 in	 turn	means	 it	 requires	 less	 power.	 This
gives	it	a	good	performance-to-watts	ratio	and	makes	it	a	perfect	processor	for	portable	devices.	ARM
processors	 are	 currently	 used	 in	 smartphones,	 digital	 cameras,	GPS	 devices,	 exercise	machines,	 book
readers,	MP3	 players,	 intelligent	 toys,	 appliances,	 vending	machines,	 printers,	 game	 consoles,	 tablets,
wireless	LAN	boxes,	USB	controllers,	Bluetooth	controllers,	medical	scanners,	routers,	and	automobiles,
just	to	name	a	few.	Although	other	companies	have	designed	mobile	processors	that	are	currently	being
used	in	portable	devices	(most	notably	Intel’s	Atom	x86	processor),	we	predict	that	ARM	will	continue
to	dominate	the	mobile	market	for	quite	some	time.

CHAPTER	SUMMARY
The	core	elements	of	an	 instruction	set	architecture	 include	the	memory	model	(word	size	and	how	the
address	space	is	split),	registers,	data	types,	instruction	formats,	addressing,	and	instruction	types.	Even
though	most	computers	today	have	general-purpose	register	sets	and	specify	operands	by	combinations	of
memory	 and	 register	 locations,	 instructions	 vary	 in	 size,	 type,	 format,	 and	 the	 number	 of	 operands
allowed.	Instructions	also	have	strict	requirements	for	the	locations	of	these	operands.	Operands	can	be
located	on	the	stack,	in	registers,	in	memory,	or	a	combination	of	the	three.

Many	 decisions	 must	 be	 made	 when	 ISAs	 are	 designed.	 Larger	 instruction	 sets	 mandate	 longer
instructions,	which	means	a	longer	fetch	and	decode	time.	Instructions	having	a	fixed	length	are	easier	to
decode	 but	 can	waste	 space.	 Expanding	 opcodes	 represent	 a	 compromise	 between	 the	 need	 for	 large
instruction	 sets	 and	 the	 desire	 to	 have	 short	 instructions.	 Perhaps	 the	most	 interesting	 debate	 is	 that	 of
little	versus	big	endian	byte	ordering.

There	are	 three	choices	 for	 internal	storage	 in	 the	CPU:	stacks,	an	accumulator,	or	general-purpose
registers.	 Each	 has	 its	 advantages	 and	 disadvantages,	 which	must	 be	 considered	 in	 the	 context	 of	 the
proposed	 architecture’s	 applications.	The	 internal	 storage	 scheme	has	 a	 direct	 effect	 on	 the	 instruction
format,	particularly	the	number	of	operands	the	instruction	is	allowed	to	reference.	Stack	architectures	use
zero	operands,	which	fits	well	with	RPN	notation.

Instructions	 are	 classified	 into	 the	 following	 categories:	 data	 movement,	 arithmetic,	 Boolean,	 bit
manipulation,	 I/O,	 transfer	 of	 control,	 and	 special	 purpose.	Some	 ISAs	have	many	 instructions	 in	 each
category,	others	have	very	few	in	each	category,	and	many	have	a	mix	of	each.	Orthogonal	instruction	sets
are	consistent,	with	no	restrictions	on	the	operand/opcode	relationship.

The	 advances	 in	 memory	 technology,	 resulting	 in	 larger	 memories,	 have	 prompted	 the	 need	 for
alternative	 addressing	 modes.	 The	 various	 addressing	 modes	 introduced	 included	 immediate,	 direct,
indirect,	register,	indexed,	and	stack.	Having	these	different	modes	provides	flexibility	and	convenience
for	the	programmer	without	changing	the	fundamental	operations	of	the	CPU.

Instruction-level	 pipelining	 is	 one	 example	 of	 instruction-level	 parallelism.	 It	 is	 a	 common	 but
complex	technique	that	can	speed	up	the	fetch–decode–execute	cycle.	With	pipelining,	we	can	overlap	the
execution	of	instructions,	thus	executing	multiple	instructions	in	parallel.	However,	we	also	saw	that	the
amount	of	parallelism	can	be	limited	by	conflicts	in	the	pipeline.	Whereas	pipelining	performs	different
stages	of	multiple	 instructions	at	 the	 same	 time,	 superscalar	 architectures	allow	us	 to	perform	multiple
operations	at	the	same	time.	Super-pipelining,	a	combination	of	superscalar	and	pipelining,	in	addition	to
VLIW,	was	also	briefly	introduced.	There	are	many	types	of	parallelism,	but	at	the	computer	organization
and	architecture	level,	we	are	really	concerned	mainly	with	ILP.



Intel	 and	 MIPS	 have	 interesting	 ISAs,	 as	 we	 have	 seen	 in	 this	 chapter	 as	 well	 as	 in	 Chapter	 4.
However,	 the	Java	Virtual	Machine	is	a	unique	ISA	because	the	ISA	is	built-in	software,	 thus	allowing
Java	programs	to	run	on	any	machine	that	supports	 the	JVM.	Chapter	8	covers	 the	JVM	in	great	detail.
ARM	is	an	example	of	an	architecture	that	supports	multiple	ISAs.

FURTHER	READING
Instruction	 sets,	 addressing,	 and	 instruction	 formats	 are	 covered	 in	 detail	 in	 almost	 every	 computer
architecture	book.	The	books	by	Patterson	and	Hennessy	(2009),	Stallings	(2013),	and	Tanenbaum	(2013)
all	provide	excellent	coverage	in	these	areas.	Many	books,	such	as	Brey	(2003),	Messmer	(2001),	Abel
(2001)	and	Jones	(2001)	are	devoted	to	 the	Intel	x86	architecture.	For	 those	 interested	in	 the	Motorola
68000	series,	we	suggest	Wray,	Greenfield,	and	Bannatyne	(1999)	or	Miller	(1992).

Sohi	 (1990)	 gives	 a	 very	 nice	 discussion	 of	 instruction-level	 pipelining.	 Kaeli	 and	 Emma	 (1991)
provide	 an	 interesting	 overview	 of	 how	 branching	 affects	 pipeline	 performance.	 For	 a	 nice	 history	 of
pipelining,	 see	 Rau	 and	 Fisher	 (1993).	 To	 get	 a	 better	 idea	 of	 the	 limitations	 and	 problems	 with
pipelining,	see	Wall	(1993).

We	 investigated	 specific	 architectures	 in	 Chapter	 4,	 but	 there	 are	 many	 important	 instruction	 set
architectures	worth	mentioning.	Atanasoff’s	ABC	 computer	 (Burks	 and	Burks	 [1988]),	Von	Neumann’s
EDVAC,	 and	Mauchly	 and	 Eckert’s	 UNIVAC	 (Stern	 [1981]	 for	 information	 on	 both)	 had	 very	 simple
instruction	set	architectures	but	required	programming	to	be	done	in	machine	language.	The	Intel	8080	(a
one-address	machine)	was	 the	 predecessor	 to	 the	 80x86	 family	 of	 chips	 introduced	 in	Chapter	 4.	 See
Brey	(2003)	for	a	thorough	and	readable	introduction	to	the	Intel	family	of	processors.	Hauck	and	Dent
(1968)	 provide	 good	 coverage	 of	 the	 Burroughs	 zero-address	 machine.	 Struble	 (1984)	 has	 a	 nice
presentation	 of	 IBM’s	 360	 family.	 Brunner	 (1991)	 gives	 details	 about	 DEC’s	 VAX	 systems,	 which
incorporated	two-address	architectures	with	more	sophisticated	instruction	sets.	SPARC	(1994)	provides
a	great	overview	of	the	SPARC	architecture.	Meyer	and	Downing	(1991),	Lindholm	and	Yellin	(1999),
and	Venners	(2000)	provide	very	interesting	coverage	of	the	JVM.

For	an	interesting	article	that	charts	the	historical	development	from	32	to	64	bits,	see	Mashey	(2009).
The	author	shows	how	architectural	decisions	can	have	unexpected	and	lasting	consequences.

REFERENCES
Abel,	P.	IBM	PC	Assembly	Language	and	Programming,	5th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,

2001.
Brey,	B.	Intel	Microprocessors	8086/8088,	80186/80188,	80286,	80386,	80486	Pentium,	and	Pentium

Pro	Processor,	Pentium	II,	Pentium	III,	and	Pentium	IV:	Architecture,	Programming,	and
Interfacing,	6th	ed.	Englewood	Cliffs,	NJ:	Prentice	Hall,	2003.

Brunner,	R.	A.	VAX	Architecture	Reference	Manual,	2nd	ed.	Herndon,	VA:	Digital	Press,	1991.
Burks,	A.,	&	Burks,	A.	The	First	Electronic	Computer:	The	Atanasoff	Story.	Ann	Arbor,	MI:	University

of	Michigan	Press,	1988.
Hauck,	E.	A.,	&	Dent,	B.	A.	“Burroughs	B6500/B7500	Stack	Mechanism.”	Proceedings	of	AFIPS	SJCC

32,	1968,	pp.	245–251.
Jones,	W.	Assembly	Language	Programming	for	the	IBM	PC	Family,	3rd	ed.	El	Granada,	CA:

Scott/Jones	Publishing,	2001.



Kaeli,	D.,	&	Emma,	P.	“Branch	History	Table	Prediction	of	Moving	Target	Branches	Due	to	Subroutine
Returns.”	Proceedings	of	the	18th	Annual	International	Symposium	on	Computer	Architecture,	May
1991.

Lindholm,	T.,	&	Yellin,	F.	The	Java	Virtual	Machine	Specification,	2nd	ed.,	1999.	Online	at
java.sun.com/docs/books/jvms/index.html.

Mashey,	J.	“The	Long	Road	to	64	Bits.”	CACM	52:1,	January	2009,	pp.	45–53.
Messmer,	H.	The	Indispensable	PC	Hardware	Book.	4th	ed.	Reading,	MA:	Addison-Wesley,	2001.
Meyer,	J.,	&	Downing,	T.	Java	Virtual	Machine.	Sebastopol,	CA:	O’Reilly	&	Associates,	1991.
Miller,	M.	A.	The	6800	Microprocessor	Family:	Architecture,	Programming,	and	Applications,	2nd	ed.

Columbus,	OH:	Charles	E.	Merrill,	1992.
Patterson,	D.	A.,	&	Hennessy,	J.	L.	Computer	Organization	and	Design,	The	Hardware/Software

Interface,	4th	ed.	San	Mateo,	CA:	Morgan	Kaufmann,	2009.
Rau,	B.	R.,	&	Fisher,	J.	A.	“Instruction-Level	Parallel	Processing:	History,	Overview	and	Perspective.”

Journal	of	Supercomputing	7:1,	January	1993,	pp.	9–50.
Sohi,	G.	“Instruction	Issue	Logic	for	High-Performance	Interruptible,	Multiple	Functional	Unit,	Pipelined

Computers.”	IEEE	Transactions	on	Computers,	March	1990.
SPARC	International,	Inc.	The	SPARC	Architecture	Manual:	Version	9.	Upper	Saddle	River,	NJ:	Prentice

Hall,	1994.
Stallings,	W.	Computer	Organization	and	Architecture,	9th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,

2013.
Stern,	N.	From	ENIAC	to	UNIVAC:	An	Appraisal	of	the	Eckert-Mauchly	Computers.	Herndon,	VA:

Digital	Press,	1981.
Struble,	G.	W.	Assembler	Language	Programming:	The	IBM	System/360	and	370,	3rd	ed.	Reading,	MA:

Addison-Wesley,	1984.
Tanenbaum,	A.	Structured	Computer	Organization,	6th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,	2013.
Venners,	B.	Inside	the	Java	2	Virtual	Machine,	2000.	Online	at	www.artima.com.
Wall,	D.	W.	Limits	of	Instruction-Level	Parallelism.	DEC-WRL	Research	Report	93/6,	November	1993.
Wray,	W.	C.,	Greenfield,	J.	D.,	&	Bannatyne,	R.	Using	Microprocessors	and	Microcomputers,	the

Motorola	Family,	4th	ed.	Englewood	Cliffs,	NJ:	Prentice	Hall,	1999.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS
1.	 	 Explain	 the	 difference	 between	 register-to-register,	 register-to-memory,	 and	 memory-to-memory

instructions.
2.		Several	design	decisions	exist	with	regard	to	instruction	sets.	Name	four	and	explain.
3.		What	is	an	expanding	opcode?
4.	 	 If	a	byte-addressable	machine	with	32-bit	words	stores	 the	hex	value	98765432,	 indicate	how	this

value	would	be	stored	on	a	 little	endian	machine	and	on	a	big	endian	machine.	Why	does	“endian-
ness”	matter?

5.	 	 We	 can	 design	 stack	 architectures,	 accumulator	 architectures,	 or	 general-purpose	 register

http://java.sun.com/docs/books/jvms/index.html
http://www.artima.com


architectures.	 Explain	 the	 differences	 between	 these	 choices	 and	 give	 some	 situations	 where	 one
might	be	better	than	another.

6.	 	How	do	memory-memory,	 register-memory,	 and	 load-store	 architectures	 differ?	How	 are	 they	 the
same?

7.		What	are	the	pros	and	cons	of	fixed-length	and	variable-length	instructions?	Which	is	currently	more
popular?

8.		How	does	an	architecture	based	on	zero	operands	ever	get	any	data	values	from	memory?
9.	 	 Which	 is	 likely	 to	 be	 longer	 (have	 more	 instructions):	 a	 program	 written	 for	 a	 zero-address

architecture,	a	program	written	for	a	one-address	architecture,	or	a	program	written	for	a	two-address
architecture?	Why?

10.		Why	might	stack	architectures	represent	arithmetic	expressions	in	reverse	Polish	notation?
11.		Name	the	seven	types	of	data	instructions	and	explain	each.
12.		What	is	the	difference	between	an	arithmetic	shift	and	a	logical	shift?
13.		Explain	what	it	means	for	an	instruction	set	to	be	orthogonal.
14.		What	is	an	address	mode?
15.		Give	examples	of	immediate,	direct,	register,	indirect,	register	indirect,	and	indexed	addressing.
16.		How	does	indexed	addressing	differ	from	based	addressing?
17.		Why	do	we	need	so	many	different	addressing	modes?
18.		Explain	the	concept	behind	instruction	pipelining.
19.		What	is	the	theoretical	speedup	for	a	4-stage	pipeline	with	a	20ns	clock	cycle	if	it	is	processing	100

tasks?
20.		What	are	the	pipeline	conflicts	that	can	cause	a	slowdown	in	the	pipeline?
21.		What	are	the	two	types	of	ILP,	and	how	do	they	differ?
22.		Explain	superscalar,	superpipelining,	and	VLIW	architectures.
23.		List	several	ways	in	which	the	Intel	and	MIPS	ISAs	differ.	Name	several	ways	in	which	they	are	the

same.
24.		Explain	Java	bytecodes.
25.		Give	an	example	of	a	current	stack-based	architecture	and	a	current	GPR-based	architecture.	How	do

they	differ?

EXERCISES
1.		Assume	you	have	a	byte-addressable	machine	that	uses	32-bit	integers	and	you	are	storing	the	hex

value	1234	at	address	0:
	a)	Show	how	this	is	stored	on	a	big	endian	machine.
	b)	Show	how	this	is	stored	on	a	little	endian	machine.
c)	 	 If	 you	wanted	 to	 increase	 the	 hex	 value	 to	 123456,	 which	 byte	 assignment	would	 be	more

efficient,	big	or	little	endian?	Explain	your	answer.



2.		Show	how	the	following	values	would	be	stored	by	byte-addressable	machines	with	32-bit	words,
using	little	endian	and	then	big	endian	format.	Assume	that	each	value	starts	at	address	1016.	Draw
a	diagram	of	memory	for	each,	placing	the	appropriate	values	in	the	correct	(and	labeled)	memory
locations.
a)		0x456789A1
b)		0x0000058A
c)		0x14148888

3.	 	Fill	in	the	following	table	to	show	how	the	given	integers	are	represented,	assuming	that	16	bits
are	used	to	store	values	and	the	machine	uses	two’s	complement	notation.

4.	 	Assume	a	 computer	 that	 has	32-bit	 integers.	Show	how	each	of	 the	 following	values	would	be
stored	sequentially	in	memory,	starting	at	address	0x100,	assuming	that	each	address	holds	1	byte.
Be	sure	to	extend	each	value	to	the	appropriate	number	of	bits.	You	will	need	to	add	more	rows
(addresses)	to	store	all	given	values.

a)		0xAB123456
b)		0x2BF876
c)		0x8B0A1
d)		0x1
e)		0xFEDC1234

5.		Consider	a	32-bit	hexadecimal	number	stored	in	memory	as	follows:
	

Address Value

100 2A



101
102
103

C2
08
1B

a)		If	the	machine	is	big	endian	and	uses	two’s	complement	representation	for	integers,	write	the
32-bit	integer	number	stored	at	address	100	(you	may	write	the	number	in	hex).

b)		If	the	machine	is	big	endian	and	the	number	is	an	IEEE	single-precision	floating-point	value,	is
the	number	positive	or	negative?

c)	 	 If	 the	machine	is	big	endian	and	the	number	is	an	IEEE	single-precision	floating-point	value,
determine	 the	 decimal	 equivalent	 of	 the	 number	 stored	 at	 address	 100	 (you	may	 leave	 your
answer	in	scientific	notation	form,	as	a	number	times	a	power	of	two).

d)		If	the	machine	is	little	endian	and	uses	two’s	complement	representation	for	integers,	write	the
32-bit	integer	number	stored	at	address	100	(you	may	write	the	number	in	hex).

e)		If	the	machine	is	little	endian	and	the	number	is	an	IEEE	single-precision	floating-point	value,
is	the	number	positive	or	negative?

f)		If	the	machine	is	little	endian	and	the	number	is	an	IEEE	single-precision	floating-point	value,
determine	 the	 decimal	 equivalent	 of	 the	 number	 stored	 at	 address	 100	 (you	may	 leave	 your
answer	in	scientific	notation	form,	as	a	number	times	a	power	of	two).

	6.		The	first	two	bytes	of	a	2M	×	16	main	memory	have	the	following	hex	values:
•			Byte	0	is	FE
•			Byte	1	is	01
If	these	bytes	hold	a	16-bit	two’s	complement	integer,	what	is	its	actual	decimal	value	if:
a)		memory	is	big	endian?
b)		memory	is	little	endian?

7.		What	kinds	of	problems	do	you	think	endian-ness	can	cause	if	you	wished	to	transfer	data	from	a
big	endian	machine	to	a	little	endian	machine?	Explain.

8.		The	Population	Studies	Institute	monitors	the	population	of	the	United	States.	In	2008,	this	institute
wrote	a	program	to	create	files	of	 the	numbers	representing	populations	of	 the	various	states,	as
well	 as	 the	 total	 population	 of	 the	 United	 States.	 This	 program,	 which	 runs	 on	 a	 Motorola
processor,	projects	 the	population	based	on	various	rules,	such	as	the	average	numbers	of	births
and	deaths	per	year.	The	institute	runs	the	program	and	then	ships	the	output	files	to	state	agencies
so	 the	 data	 values	 can	 be	 used	 as	 input	 into	 various	 applications.	 However,	 one	 Pennsylvania
agency,	running	all	Intel	machines,	encountered	difficulties,	as	indicated	by	the	following	problem.
When	the	32-bit	unsigned	integer	1D2F37E816	(representing	the	overall	U.S.	population	prediction
for	 2013)	 is	 used	 as	 input,	 and	 the	 agency’s	 program	 simply	 outputs	 this	 input	 value,	 the	 U.S.
population	forecast	for	2014	is	far	too	large.	Can	you	help	this	Pennsylvania	agency	by	explaining
what	might	be	going	wrong?	(Hint:	They	are	run	on	different	processors.)

9.		There	are	reasons	for	machine	designers	to	want	all	instructions	to	be	the	same	length.	Why	is	this
not	a	good	idea	on	a	stack	machine?

	10.	 	 A	 computer	 has	 32-bit	 instructions	 and	 12-bit	 addresses.	 Suppose	 there	 are	 250	 two-address
instructions.	How	many	one-address	instructions	can	be	formulated?	Explain	your	answer.

11.		Convert	the	following	expressions	from	infix	to	reverse	Polish	(postfix)	notation.



a)		(8	–	6)/2
b)		(2	+	3)	×	8/10
c)		(5	×	(4	+	3)	×	2	–	6)

12.		Convert	the	following	expressions	from	infix	to	reverse	Polish	(postfix)	notation.
	a)	X	×	Y	+	W	×	Z	+	V	×	U
b)		W	×	X	+	W	×	(U	×	V	+	Z)
c)		(W	×	(X	+	Y	×	(U	×	V)))/(U	×	(X	+	Y))

13.		Convert	the	following	expressions	from	reverse	Polish	notation	to	infix	notation.
a)		12	8	3	1	+	–	/
b)		5	2	+	2	×	1	+	2	×
c)		3	5	7	+	2	1	–	×	1	+	+

14.		Convert	the	following	expressions	from	reverse	Polish	notation	to	infix	notation.
a)		W	X	Y	Z	–	+	×
b)		U	V	W	X	Y	Z	+	×	+	×	+
c)		X	Y	Z	+	V	W	–	×	Z	+	+

15.		Explain	how	a	stack	is	used	to	evaluate	the	RPN	expressions	from	exercise	13.
16.	 	a)	Write	 the	 following	 expression	 in	 postfix	 (reverse	 Polish)	 notation.	 Remember	 the	 rules	 of

precedence	for	arithmetic	operators!

b)	 	Write	a	program	to	evaluate	the	above	arithmetic	statement	using	a	stack-organized	computer
with	zero-address	instructions	(so	only	Pop	and	Push	can	access	memory).

17.		a)	In	a	computer	instruction	format,	the	instruction	length	is	11	bits	and	the	size	of	an	address	field
is	4	bits.	Is	it	possible	to	have
5	two-address	instructions
45	one-address	instructions
32	zero-address	instructions
using	the	specified	format?	Justify	your	answer.
b)	 	 	Assume	 that	 a	 computer	 architect	has	 already	designed	6	 two-address	 and	24	 zero-address

instructions	using	 the	 instruction	 format	 above.	What	 is	 the	maximum	number	of	one-address
instructions	that	can	be	added	to	the	instruction	set?

18.	 	Suppose	a	computer	has	an	instruction	format	with	space	for	an	opcode	and	either	three	register
values	or	one	register	value	and	an	address.	What	are	the	various	instruction	formats	that	could	be
used	for	an	ADD	instruction	on	this	machine?

19.	 	Given	16-bit	 instructions,	 is	 it	 possible	 to	use	 expanding	opcodes	 to	 allow	 the	 following	 to	be
encoded	assuming	we	have	a	total	of	32	registers?	If	so,	show	the	encoding.	If	not,	explain	why	is
it	not	possible.



•			60	instructions	with	two	register	operands
•			30	instructions	with	one	register	operand
•			3	instructions	with	one	10-bit	address
•			26	instructions	with	zero	operands

20.		What	is	the	difference	between	using	direct	and	indirect	addressing?	Give	an	example.
	21.		Suppose	we	have	the	instruction	Load	1000.	Given	that	memory	and	register	R1	contain	the	values

below:

and	assuming	that	R1	is	implied	in	the	indexed	addressing	mode,	determine	the	actual	value	loaded
into	the	accumulator	and	fill	in	the	table	below:

	

Mode Value	Loaded	into	AC

Immediate 	

Direct 	

Indirect 	

Indexed 	

	
22.		Suppose	we	have	the	instruction	Load	500.	Given	that	memory	and	register	R1	contain	the	values

below:



and	assuming	that	R1	is	implied	in	the	indexed	addressing	mode,	determine	the	actual	value	loaded
into	the	accumulator	and	fill	in	the	table	below:

	

Mode Value	Loaded	into	AC

Immediate 	

Direct 	

Indirect 	

Indexed 	

	
23.	 	A	nonpipelined	system	takes	200ns	to	process	a	task.	The	same	task	can	be	processed	in	a	five-

segment	pipeline	with	a	clock	cycle	of	40ns.	Determine	the	speedup	ratio	of	the	pipeline	for	200
tasks.	 What	 is	 the	 maximum	 speedup	 that	 could	 be	 achieved	 with	 the	 pipeline	 unit	 over	 the
nonpipelined	unit?

24.	 	A	nonpipelined	system	takes	100ns	to	process	a	task.	The	same	task	can	be	processed	in	a	five-
stage	 pipeline	with	 a	 clock	 cycle	 of	 20ns.	Determine	 the	 speedup	 ratio	 of	 the	 pipeline	 for	 100
tasks.	What	 is	 the	 theoretical	 speedup	 that	 could	 be	 achieved	 with	 the	 pipeline	 system	 over	 a
nonpipelined	system?

25.	 	Assuming	 the	same	stages	as	 in	Example	5.12,	explain	 the	potential	pipeline	hazards	 (if	any)	 in
each	of	the	following	code	segments.
a)			X	=	R2	+	Y

R4	=	R2	+	X
b)		R1	=	R2	+	X

X	=	R3	+	Y
Z	=	R1	+	X

26.	 	Write	code	to	implement	the	expression	A	=	(B	+	C)	×	(D	+	E)	on	 three-,	 two-,	one-,	and	zero-
address	machines.	 In	accordance	with	programming	 language	practice,	computing	 the	expression
should	not	change	the	values	of	its	operands.

	27.	 	A	digital	computer	has	a	memory	unit	with	24	bits	per	word.	The	instruction	set	consists	of	150
different	operations.	All	 instructions	have	an	operation	code	part	 (opcode)	and	an	address	part
(allowing	for	only	one	address).	Each	instruction	is	stored	in	one	word	of	memory.
a)		How	many	bits	are	needed	for	the	opcode?
b)		How	many	bits	are	left	for	the	address	part	of	the	instruction?
c)		What	is	the	maximum	allowable	size	for	memory?
d)		What	is	the	largest	unsigned	binary	number	that	can	be	accommodated	in	one	word	of	memory?

28.		The	memory	unit	of	a	computer	has	256K	words	of	32	bits	each.	The	computer	has	an	instruction
format	with	four	fields:	an	opcode	field;	a	mode	field	to	specify	one	of	seven	addressing	modes;	a
register	 address	 field	 to	 specify	 one	 of	 60	 registers;	 and	 a	 memory	 address	 field.	 Assume	 an
instruction	is	32	bits	long.	Answer	the	following:
a)		How	large	must	the	mode	field	be?



b)		How	large	must	the	register	field	be?
c)		How	large	must	the	address	field	be?
d)		How	large	is	the	opcode	field?

29.		Suppose	an	instruction	takes	four	cycles	to	execute	in	a	nonpipelined	CPU:	one	cycle	to	fetch	the
instruction,	one	cycle	to	decode	the	instruction,	one	cycle	to	perform	the	ALU	operation,	and	one
cycle	to	store	the	result.	In	a	CPU	with	a	four-stage	pipeline,	that	instruction	still	takes	four	cycles
to	execute,	so	how	can	we	say	the	pipeline	speeds	up	the	execution	of	the	program?

*	30.		Pick	an	architecture	(other	than	those	covered	in	this	chapter).	Do	research	to	find	out	how	your
architecture	approaches	the	concepts	introduced	in	this	chapter,	as	was	done	for	Intel,	MIPS,	and
Java.

TRUE	OR	FALSE
1.	 	Most	 computers	 typically	 fall	 into	 one	 of	 three	 types	 of	CPU	organization:	 (1)	 general	 register

organization;	(2)	single	accumulator	organization;	or	(3)	stack	organization.
2.	 	 The	 advantage	 of	 zero-address	 instruction	 computers	 is	 that	 they	 have	 short	 programs;	 the

disadvantage	is	that	the	instructions	require	many	bits,	making	them	very	long.
3.	 	An	 instruction	 takes	 less	 time	 to	 execute	on	a	processor	using	an	 instruction	pipeline	 than	on	a

processor	without	an	instruction	pipeline.
4.		The	term	“endian”	refers	to	an	architecture’s	byte	ordering.
5.		Stack	architectures	have	good	code	density	and	a	simple	model	for	evaluation	of	expressions,	but

do	not	allow	random	access,	which	can	cause	a	problem	with	the	generation	of	efficient	code.
6.		Most	architectures	today	are	accumulator	based.
7.	 	 Fixed-length	 instruction	 format	 typically	 results	 in	 better	 performance	 than	 variable-length

instruction	format.
8.		Expanding	opcodes	make	instruction	decoding	much	easier	than	when	it	is	not	used.
9.		Instruction	set	orthogonality	refers	to	the	characteristic	in	an	instruction	set	architecture	where	each

instruction	has	a	“backup”	instruction	that	performs	the	same	operation.
10.		The	effective	address	of	an	operand	is	the	value	of	its	actual	address	in	memory.
11.	 	Resource	conflicts	occur	in	a	pipeline	when	there	are	multiple	instructions	that	require	the	same

resource.
12.		Data	dependencies	occur	in	a	pipeline	when	multiple	instructions	need	the	CPU.



RAM	/abr./:	Rarely	Adequate	Memory,	because	the	more	memory	a	computer	has,	the	faster	it
can	produce	error	messages.

—Anonymous

640K	[of	memory]	ought	to	be	enough	for	anybody.

—Anonymous

CHAPTER	6



Memory

6.1			INTRODUCTION
Most	computers	are	built	using	the	Von	Neumann	model,	which	is	centered	on	memory.	The	programs	that
perform	the	processing	are	stored	in	memory.	We	examined	a	small	4	×	3-bit	memory	in	Chapter	3,	and
we	learned	how	to	address	memory	in	Chapters	4	and	5.	We	know	memory	 is	 logically	structured	as	a
linear	array	of	locations,	with	addresses	from	0	to	the	maximum	memory	size	the	processor	can	address.
In	this	chapter,	we	examine	the	various	types	of	memory	and	how	each	is	part	of	the	memory	hierarchy
system.	We	then	look	at	cache	memory	(a	special	high-speed	memory)	and	a	method	that	utilizes	memory
to	its	fullest	by	means	of	virtual	memory	implemented	via	paging.

6.2			TYPES	OF	MEMORY
A	common	question	many	people	ask	is,	“Why	are	there	so	many	different	types	of	computer	memory?”
The	answer	is	that	new	technologies	continue	to	be	introduced	in	an	attempt	to	match	the	improvements	in
CPU	design—the	speed	of	memory	has	to,	somewhat,	keep	pace	with	the	CPU,	or	the	memory	becomes	a
bottleneck.	Although	we	have	seen	many	improvements	in	CPUs	over	the	past	few	years,	improving	main
memory	to	keep	pace	with	the	CPU	is	actually	not	as	critical	because	of	the	use	of	cache	memory.	Cache
memory	is	a	small,	high-speed	(and	thus	high-cost)	type	of	memory	that	serves	as	a	buffer	for	frequently
accessed	 data.	 The	 additional	 expense	 of	 using	 very	 fast	 technologies	 for	 memory	 cannot	 always	 be
justified	because	slower	memories	can	often	be	“hidden”	by	high-performance	cache	systems.	However,
before	we	discuss	cache	memory,	we	will	explain	the	various	memory	technologies.

Even	though	a	large	number	of	memory	technologies	exist,	there	are	only	two	basic	types	of	memory:
RAM	(random	access	memory)	and	ROM	 (read-only	memory).	RAM	is	somewhat	of	a	misnomer;	a
more	 appropriate	 name	 is	 read-write	 memory.	 RAM	 is	 the	memory	 to	 which	 computer	 specifications
refer;	 if	you	buy	a	computer	with	128	megabytes	of	memory,	 it	has	128MB	of	RAM.	RAM	is	also	 the
“main	memory”	we	have	continually	referred	to	throughout	this	text.	Often	called	primary	memory,	RAM
is	used	to	store	programs	and	data	that	the	computer	needs	when	executing	programs,	but	RAM	is	volatile
and	loses	this	information	once	the	power	is	turned	off.	There	are	two	general	types	of	chips	used	to	build
the	bulk	of	RAM	in	today’s	computers:	SRAM	and	DRAM	(static	and	dynamic	random	access	memory).

Dynamic	RAM	 is	 constructed	 of	 tiny	 capacitors	 that	 leak	 electricity.	 DRAM	 requires	 a	 recharge
every	 few	milliseconds	 to	maintain	 its	 data.	Static	RAM	 technology,	 in	 contrast,	 holds	 its	 contents	 as
long	as	power	is	available.	SRAM	consists	of	circuits	similar	to	the	D	flip-flops	we	studied	in	Chapter	3.
SRAM	 is	 faster	 and	much	more	 expensive	 than	DRAM;	 however,	 designers	 use	DRAM	because	 it	 is
much	denser	 (can	 store	many	bits	per	chip),	uses	 less	power,	 and	generates	 less	heat	 than	SRAM.	For
these	reasons,	both	technologies	are	often	used	in	combination:	DRAM	for	main	memory	and	SRAM	for
cache.	The	 basic	 operation	 of	 all	DRAM	memories	 is	 the	 same,	 but	 there	 are	many	 flavors,	 including
Multibank	DRAM	(MDRAM),	Fast-Page	Mode	(FPM)	DRAM,	Extended	Data	Out	(EDO)	DRAM,
Burst	 EDO	DRAM	 (BEDO	DRAM),	Synchronous	Dynamic	 Random	 Access	 Memory	 (SDRAM),
Synchronous-Link	(SL)	DRAM,	Double	Data	Rate	(DDR)	SDRAM,	Rambus	DRAM	(RDRAM),	and



Direct	Rambus	(DR)	DRAM.	The	different	 types	of	SRAM	include	asynchronous	SRAM,	synchronous
SRAM,	 and	 pipeline	 burst	 SRAM.	 For	 more	 information	 about	 these	 types	 of	 memory,	 refer	 to	 the
references	listed	at	the	end	of	the	chapter.

In	addition	to	RAM,	most	computers	contain	a	small	amount	of	ROM	that	stores	critical	information
necessary	to	operate	the	system,	such	as	the	program	necessary	to	boot	the	computer.	ROM	is	not	volatile
and	always	retains	its	data.	This	type	of	memory	is	also	used	in	embedded	systems	or	any	systems	where
the	programming	does	not	need	to	change.	Many	appliances,	toys,	and	most	automobiles	use	ROM	chips
to	maintain	 information	when	the	power	 is	shut	off.	ROMs	are	also	used	extensively	 in	calculators	and
peripheral	devices	such	as	laser	printers,	which	store	their	fonts	in	ROMs.	There	are	five	basic	types	of
ROM:	 ROM,	 PROM,	 EPROM,	 EEPROM,	 and	 flash	 memory.	 PROM	 (programmable	 read-only
memory)	is	a	variation	on	ROM.	PROMs	can	be	programmed	by	the	user	with	the	appropriate	equipment.
Whereas	 ROMs	 are	 hardwired,	 PROMs	 have	 fuses	 that	 can	 be	 blown	 to	 program	 the	 chip.	 Once
programmed,	 the	 data	 and	 instructions	 in	 PROM	 cannot	 be	 changed.	EPROM	 (erasable	 PROM)	 is
programmable	with	the	added	advantage	of	being	reprogrammable	(erasing	an	EPROM	requires	a	special
tool	that	emits	ultraviolet	light).	To	reprogram	an	EPROM,	the	entire	chip	must	first	be	erased.	EEPROM
(electrically	 erasable	 PROM)	 removes	many	 of	 the	 disadvantages	 of	 EPROM:	No	 special	 tools	 are
required	for	erasure	(this	is	performed	by	applying	an	electric	field)	and	you	can	erase	only	portions	of
the	chip,	one	byte	at	a	time.	Flash	memory	is	essentially	EEPROM	with	the	added	benefit	that	data	can	be
written	or	erased	in	blocks,	removing	the	one-byte-at-a-time	limitation.	This	makes	flash	memory	faster
than	EEPROM.	Flash	memory	has	become	a	very	popular	type	of	storage	and	is	used	in	many	different
devices,	including	cell	phones,	digital	cameras,	and	music	players.	It	is	also	being	used	in	solid-state	disk
drives.	(Chapter	7	contains	more	information	on	flash	memory	devices.)

6.3			THE	MEMORY	HIERARCHY
One	 of	 the	 most	 important	 considerations	 in	 understanding	 the	 performance	 capabilities	 of	 a	 modern
processor	is	the	memory	hierarchy.	Unfortunately,	as	we	have	seen,	not	all	memory	is	created	equal,	and
some	 types	 are	 far	 less	 efficient	 and	 thus	 cheaper	 than	 others.	 To	 deal	 with	 this	 disparity,	 today’s
computer	systems	use	a	combination	of	memory	 types	 to	provide	 the	best	performance	at	 the	best	cost.
This	approach	is	called	hierarchical	memory.	As	a	rule,	the	faster	memory	is,	the	more	expensive	it	is
per	 bit	 of	 storage.	 By	 using	 a	 hierarchy	 of	 memories,	 each	 with	 different	 access	 speeds	 and	 storage
capacities,	 a	 computer	 system	 can	 exhibit	 performance	 above	 what	 would	 be	 possible	 without	 a
combination	of	the	various	types.	The	base	types	that	normally	constitute	the	hierarchical	memory	system
include	registers,	cache,	main	memory,	secondary	memory,	and	off-line	bulk	memory.

Registers	are	storage	locations	available	on	the	processor	itself.	Cache	memory	is	a	very-high-speed
memory	where	 data	 from	 frequently	 used	memory	 locations	may	 be	 temporarily	 stored.	 This	 cache	 is
connected	to	a	much	larger	main	memory,	which	is	typically	a	medium-speed	memory.	This	memory	is
complemented	by	 a	very	 large	 secondary	memory,	 typically	 composed	of	 hard	 disk	 drives	 containing
data	not	directly	accessible	by	the	CPU;	instead,	secondary	memory	must	have	its	contents	transferred	to
main	memory	when	 the	data	 is	needed.	Hard	drives	can	either	be	magnetic	or	solid	state	 (flash-based
hard	 drives	 that	 are	 faster	 and	 sturdier	 than	 rotating	 magnetic	 disks).	Off-line	 bulk	 memory	 (which
includes	tertiary	memory	and	off-line	storage)	requires	either	human	or	robotic	intervention	before	any
data	can	be	accessed;	the	data	must	be	transferred	from	the	storage	media	to	secondary	memory.	Tertiary
memory	 includes	 things	such	as	optical	 jukeboxes	and	 tape	 libraries,	which	are	 typically	under	 robotic



control	(a	robotic	arm	mounts	and	dismounts	the	tapes	and	disks).	It	is	used	for	enterprise	storage	in	large
systems	and	networks	and	is	not	something	an	average	computer	user	sees	often.	These	devices	typically
have	nonuniform	access	times,	as	the	time	to	retrieve	data	depends	on	whether	the	device	is	mounted.	Off-
line	storage	includes	those	devices	that	are	connected,	loaded	with	data,	and	then	disconnected	from	the
system,	such	as	floppy	disks,	flash	memory	devices,	optical	disks,	and	even	removable	hard	drives.	By
using	such	a	hierarchical	scheme,	one	can	improve	the	effective	access	speed	of	the	memory,	using	only	a
small	number	of	fast	(and	expensive)	chips.	This	allows	designers	to	create	a	computer	with	acceptable
performance	at	a	reasonable	cost.

We	 classify	 memory	 based	 on	 its	 “distance”	 from	 the	 processor,	 with	 distance	 measured	 by	 the
number	of	machine	cycles	required	for	access.	The	closer	memory	is	to	the	processor,	the	faster	it	should
be.	As	memory	gets	 farther	 from	 the	main	processor,	we	can	afford	 longer	 access	 times.	Thus,	 slower
technologies	 are	used	 for	 these	memories,	 and	 faster	 technologies	 are	used	 for	memories	 closer	 to	 the
CPU.	 The	 better	 the	 technology,	 the	 faster	 and	 more	 expensive	 the	 memory	 becomes.	 Thus,	 faster
memories	tend	to	be	smaller	than	slower	ones,	because	of	cost.

The	following	terminology	is	used	when	referring	to	this	memory	hierarchy:

•			Hit—The	requested	data	resides	in	a	given	level	of	memory	(typically,	we	are	concerned	with	the	hit
rate	only	for	upper	levels	of	memory).

•			Miss—The	requested	data	is	not	found	in	the	given	level	of	memory.
•			Hit	rate—The	percentage	of	memory	accesses	found	in	a	given	level	of	memory.
•			Miss	rate—The	percentage	of	memory	accesses	not	found	in	a	given	level	of	memory.	Note:	Miss	Rate

=	1	–	Hit	Rate.
•			Hit	time—The	time	required	to	access	the	requested	information	in	a	given	level	of	memory.
•	 	 	Miss	penalty—The	 time	 required	 to	process	 a	miss,	which	 includes	 replacing	a	block	 in	 an	upper

level	of	memory,	plus	the	additional	time	to	deliver	the	requested	data	to	the	processor.	(The	time	to
process	a	miss	is	typically	significantly	larger	than	the	time	to	process	a	hit.)

The	memory	hierarchy	is	illustrated	in	Figure	6.1.	This	is	drawn	as	a	pyramid	to	help	indicate	the	relative
sizes	of	these	various	memories.	Memories	closer	to	the	top	tend	to	be	smaller	in	size.	However,	these
smaller	memories	have	better	performance	and	thus	a	higher	cost	(per	bit)	than	memories	found	lower	in
the	pyramid.	The	numbers	given	to	the	left	of	the	pyramid	indicate	typical	access	times,	which	generally
increase	as	we	progress	from	top	to	bottom.	Register	accesses	typically	require	one	clock	cycle.

There	is	one	exception	to	access	times	increasing	as	we	move	down	the	hierarchy,	in	part	because	of
new	 technologies.	 The	 off-line	 memory	 devices	 typically	 have	 faster	 access	 times	 than	 most	 tertiary
devices.	Of	particular	interest	are	USB	flash	drives.	Both	solid-state	drives	and	USB	flash	drives	use	the
same	 technology;	 thus	 both	 exhibit	 similar	 access	 times	 regarding	 accessing	 the	 data	 on	 the	 device.
However,	USB	flash	drives	have	slower	access	 times	 than	solid-state	hard	drives	because	of	 the	USB
interface.	 Even	 so,	 USB	 flash	 drives	 are	 faster	 than	 the	 other	 nonsolid-state	 types	 of	 off-line	 storage.
Removable	magnetic	hard	drives	have	access	times	of	12–40ms,	and	USB	flash	drives	have	access	times
of	 0.5–33.8ms.	 Based	 only	 on	 access	 times,	 these	 latter	 devices	 do	 not	 belong	 at	 the	 bottom	 of	 our
pyramid.



FIGURE	6.1	The	Memory	Hierarchy

Figure	 6.1	 represents	 not	 only	 a	 memory	 hierarchy,	 but	 also	 a	 storage	 hierarchy.	 We	 are	 most
interested	 in	 the	 memory	 hierarchy	 that	 involves	 registers,	 cache,	 main	memory,	 and	 virtual	 memory
(nonsystem	memory	 that	 acts	 as	 an	 extension	 to	main	memory—this	 is	 discussed	 in	 detail	 later	 in	 this
chapter).	 Virtual	 memory	 is	 typically	 implemented	 using	 a	 hard	 drive;	 it	 gives	 the	 impression	 that	 a
program	may	 have	 a	 large,	 contiguous	working	main	memory,	when	 in	 fact	 the	 program	may	 exist,	 in
fragments,	in	main	memory,	and	on	disk.	Virtual	memory	increases	the	available	memory	your	computer
can	use	by	extending	 the	address	space	from	RAM	to	 the	hard	drive.	Ordinarily,	 the	memory	hierarchy
would	stop	at	the	hard	drive	level.	However,	with	the	advent	of	solid-state	technology,	the	definition	of
virtual	memory	is	changing.	We	previously	mentioned	that	USB	flash	drives	have	very	fast	access	times.
They	are	so	fast,	in	fact,	that	some	operating	systems	(including	some	versions	of	Unix	and	Windows	XP
and	later)	allow	a	user	to	utilize	a	USB	flash	drive	as	virtual	memory.	The	Windows	operating	systems
that	are	mentioned	come	with	software	called	ReadyBoost	that	allows	various	types	of	removable	solid-
state	devices,	such	as	USB	flash	drives	and	SD	cards,	to	augment	virtual	memory	by	acting	as	disk	cache.
These	solidstate	devices	service	requests	up	to	100	times	faster	than	traditional	hard	drives;	although	they
are	not	a	replacement	for	hard	drives,	they	are	quickly	becoming	an	interesting	enhancement.

For	 any	 given	 data,	 the	 processor	 sends	 its	 request	 to	 the	 fastest,	 smallest	 partition	 of	 memory
(typically	cache,	because	registers	tend	to	be	more	special	purpose).	If	the	data	is	found	in	cache,	it	can
be	loaded	quickly	into	the	CPU.	If	it	is	not	resident	in	cache,	the	request	is	forwarded	to	the	next	lower
level	of	the	hierarchy,	and	this	search	process	begins	again.	If	 the	data	is	found	at	 this	level,	 the	whole
block	in	which	the	data	resides	is	transferred	into	cache.	If	the	data	is	not	found	at	this	level,	the	request	is
forwarded	to	 the	next	 lower	 level,	and	so	on.	The	key	idea	 is	 that	when	the	 lower	(slower,	 larger,	and
cheaper)	levels	of	the	hierarchy	respond	to	a	request	from	higher	levels	for	the	content	of	location	X,	they
also	send,	at	 the	same	 time,	 the	data	 located	“around”	X	 (…,	X	–	2,	X	–	1,	X,	X	+	1,	X	 +	 2,	…),	 thus
returning	 an	 entire	 block	 of	 data	 to	 the	 higher-level	memory.	 The	 hope	 is	 that	 this	 extra	 data	 will	 be
referenced	 in	 the	 near	 future,	which,	 in	most	 cases,	 it	 is.	 The	memory	 hierarchy	 is	 functional	 because



programs	 tend	 to	exhibit	a	property	known	as	 locality,	 in	which	 the	processor	 tends	 to	access	 the	data
returned	for	addresses	X	–	2,	X	–	1,	X	+	1,	X	+	2,	and	so	on.	Thus,	although	 there	 is	one	miss	 to,	say,
cache	 for	X,	 there	 may	 be	 several	 hits	 in	 cache	 on	 the	 newly	 retrieved	 block	 afterward,	 because	 of
locality.

6.3.1		Locality	of	Reference
In	 practice,	 processors	 tend	 to	 access	 memory	 in	 a	 patterned	 way.	 For	 example,	 in	 the	 absence	 of
branches,	the	PC	in	MARIE	is	incremented	by	one	after	each	instruction	fetch.	Thus,	if	memory	location	X
is	accessed	at	time	t,	there	is	a	high	probability	that	memory	location	X	+	1	will	also	be	accessed	in	the
near	future.	This	clustering	of	memory	references	into	groups	is	an	example	of	locality	of	reference.	This
locality	can	be	exploited	by	implementing	the	memory	as	a	hierarchy;	when	a	miss	is	processed,	instead
of	 simply	 transferring	 the	 requested	 data	 to	 a	 higher	 level,	 the	 entire	 block	 containing	 the	 data	 is
transferred.	 Because	 of	 locality	 of	 reference,	 it	 is	 likely	 that	 the	 additional	 data	 in	 the	 block	will	 be
needed	in	the	near	future,	and	if	so,	this	data	can	be	loaded	quickly	from	the	faster	memory.

There	are	three	basic	forms	of	locality:

•			Temporal	locality—Recently	accessed	items	tend	to	be	accessed	again	in	the	near	future.
•	 	 	Spatial	 locality—Accesses	 tend	 to	 be	 clustered	 in	 the	 address	 space	 (for	 example,	 as	 in	 arrays	or

loops).
•			Sequential	locality—Instructions	tend	to	be	accessed	sequentially.

The	locality	principle	provides	the	opportunity	for	a	system	to	use	a	small	amount	of	very	fast	memory	to
effectively	 accelerate	 the	 majority	 of	 memory	 accesses.	 Typically,	 only	 a	 small	 amount	 of	 the	 entire
memory	 space	 is	 being	 accessed	 at	 any	 given	 time,	 and	 values	 in	 that	 space	 are	 being	 accessed
repeatedly.	Therefore,	we	can	copy	those	values	from	a	slower	memory	to	a	smaller	but	faster	memory
that	 resides	 higher	 in	 the	 hierarchy.	 This	 results	 in	 a	memory	 system	 that	 can	 store	 a	 large	 amount	 of
information	in	a	large	but	low-cost	memory,	yet	provide	nearly	the	same	access	speeds	that	would	result
from	using	very	fast	but	expensive	memory.

6.4			CACHE	MEMORY
A	computer	 processor	 is	 very	 fast	 and	 is	 constantly	 reading	 information	 from	memory,	which	means	 it
often	 has	 to	wait	 for	 the	 information	 to	 arrive,	 because	 the	memory	 access	 times	 are	 slower	 than	 the
processor	 speed.	 A	 cache	memory	 is	 a	 small,	 temporary,	 but	 fast	memory	 that	 the	 processor	 uses	 for
information	it	is	likely	to	need	again	in	the	very	near	future.

Noncomputer	 examples	 of	 caching	 are	 all	 around	 us.	 Keeping	 them	 in	 mind	 will	 help	 you	 to
understand	computer	memory	caching.	Think	of	a	homeowner	with	a	very	large	tool	chest	in	the	garage.
Suppose	you	are	this	homeowner	and	have	a	home	improvement	project	to	work	on	in	the	basement.	You
know	 this	 project	will	 require	 drills,	wrenches,	 hammers,	 a	 tape	measure,	 several	 types	 of	 saws,	 and
many	different	 types	and	 sizes	of	 screwdrivers.	The	 first	 thing	you	want	 to	do	 is	measure	and	 then	cut
some	wood.	You	run	out	to	the	garage,	grab	the	tape	measure	from	a	huge	tool	storage	chest,	run	down	to
the	basement,	measure	 the	wood,	 run	back	out	 to	 the	garage,	 leave	 the	 tape	measure,	grab	 the	saw,	and
then	return	to	the	basement	with	the	saw	and	cut	the	wood.	Now	you	decide	to	bolt	some	pieces	of	wood
together.	So	you	run	to	the	garage,	grab	the	drill	set,	go	back	down	to	the	basement,	drill	the	holes	to	put



the	bolts	through,	go	back	to	the	garage,	leave	the	drill	set,	grab	one	wrench,	go	back	to	the	basement,	find
out	the	wrench	is	the	wrong	size,	go	back	to	the	tool	chest	in	the	garage,	grab	another	wrench,	run	back
downstairs	…	 wait!	 Would	 you	 really	 work	 this	 way?	 No!	 Being	 a	 reasonable	 person,	 you	 think	 to
yourself,	“If	I	need	one	wrench,	I	will	probably	need	another	one	of	a	different	size	soon	anyway,	so	why
not	just	grab	the	whole	set	of	wrenches?”	Taking	this	one	step	further,	you	reason,	“Once	I	am	done	with
one	certain	tool,	there	is	a	good	chance	I	will	need	another	soon,	so	why	not	just	pack	up	a	small	toolbox
and	take	it	to	the	basement?”	This	way,	you	keep	the	tools	you	need	close	at	hand,	so	access	is	faster.	You
have	just	cached	some	tools	for	easy	access	and	quick	use!	The	tools	you	are	 less	 likely	to	use	remain
stored	in	a	location	that	is	farther	away	and	requires	more	time	to	access.	This	is	all	that	cache	memory
does:	It	stores	data	that	has	been	accessed	and	data	that	might	be	accessed	by	the	CPU	in	a	faster,	closer
memory.

Another	cache	analogy	is	found	in	grocery	shopping.	You	seldom,	if	ever,	go	to	the	grocery	store	to
buy	one	single	item.	You	buy	any	items	you	require	immediately	in	addition	to	items	you	will	most	likely
use	 in	 the	future.	The	grocery	store	 is	similar	 to	main	memory,	and	your	home	is	 the	cache.	As	another
example,	consider	how	many	of	us	carry	around	an	entire	phone	book.	Most	of	us	have	a	small	address
book	instead.	We	enter	 the	names	and	numbers	of	people	we	tend	to	call	more	frequently;	 looking	up	a
number	in	our	address	book	is	much	quicker	than	finding	a	phone	book,	locating	the	name,	and	then	getting
the	number.	We	tend	to	have	the	address	book	close	at	hand,	whereas	the	phone	book	is	probably	located
in	our	home,	hidden	in	an	end	table	or	bookcase	somewhere.	The	phone	book	is	something	we	do	not	use
frequently,	so	we	can	afford	to	store	it	in	a	little	more	out-of-the-way	location.	Comparing	the	size	of	our
address	book	to	the	telephone	book,	we	see	that	the	address	book	“memory”	is	much	smaller	than	that	of	a
telephone	book.	But	 the	probability	 is	 high	 that	when	we	make	 a	 call,	 it	 is	 to	 someone	 in	our	 address
book.

Students	doing	research	offer	another	commonplace	cache	example.	Suppose	you	are	writing	a	paper
on	quantum	computing.	Would	you	go	to	the	library,	check	out	one	book,	return	home,	get	 the	necessary
information	from	that	book,	go	back	to	the	library,	check	out	another	book,	return	home,	and	so	on?	No;
you	would	go	 to	 the	 library	and	check	out	 all	 the	books	you	might	need	and	bring	 them	all	home.	The
library	is	analogous	to	main	memory,	and	your	home	is,	again,	similar	to	cache.

And	as	a	last	example,	consider	how	one	of	your	authors	uses	her	office.	Any	materials	she	does	not
need	(or	has	not	used	for	a	period	of	more	than	six	months)	get	filed	away	in	a	large	set	of	filing	cabinets.
However,	frequently	used	“data”	remains	piled	on	her	desk,	close	at	hand,	and	easy	(sometimes)	to	find.
If	she	needs	something	from	a	file,	she	more	than	likely	pulls	the	entire	file,	not	simply	one	or	two	papers
from	the	folder.	The	entire	 file	 is	 then	added	 to	 the	pile	on	her	desk.	The	filing	cabinets	are	her	“main
memory,”	and	her	desk	(with	its	many	unorganized-looking	piles)	is	the	cache.

Cache	memory	works	on	the	same	basic	principles	as	the	preceding	examples,	by	copying	frequently
used	data	into	the	cache	rather	than	requiring	an	access	to	main	memory	to	retrieve	the	data.	Cache	can	be
as	unorganized	as	your	author’s	desk	or	as	organized	as	your	address	book.	Either	way,	however,	the	data
must	be	accessible	(locatable).	Cache	memory	in	a	computer	differs	from	our	real-life	examples	in	one
important	 way:	 The	 computer	 really	 has	 no	 way	 to	 know,	 a	 priori,	 what	 data	 is	 most	 likely	 to	 be
accessed,	 so	 it	 uses	 the	 locality	 principle	 and	 transfers	 an	 entire	 block	 from	main	memory	 into	 cache
whenever	it	has	to	make	a	main	memory	access.	If	the	probability	of	using	something	else	in	that	block	is
high,	 then	 transferring	 the	 entire	 block	 saves	 on	 access	 time.	 The	 cache	 location	 for	 this	 new	 block
depends	on	two	things:	the	cache	mapping	policy	(discussed	in	the	next	section)	and	the	cache	size	(which
affects	whether	there	is	room	for	the	new	block).

The	size	of	cache	memory	can	vary	enormously.	A	typical	personal	computer’s	level	2	(L2)	cache	is



256K	or	512K.	Level	1	(L1)	cache	is	smaller,	typically	8K	to	64K.	L1	cache	resides	on	the	processor,
whereas	L2	cache	often	resides	between	the	CPU	and	main	memory.	L1	cache	is,	therefore,	faster	than	L2
cache.	The	relationship	between	L1	and	L2	cache	can	be	illustrated	using	our	grocery	store	example:	If
the	store	is	main	memory,	you	could	consider	your	refrigerator	the	L2	cache,	and	the	actual	dinner	table
the	 L1	 cache.	 We	 note	 that	 with	 newer	 processors,	 instead	 of	 incorporating	 L2	 cache	 into	 the
motherboard,	some	CPUs	actually	incorporate	L2	cache	as	well	as	L1	cache.	In	addition,	many	systems
employ	L3	cache;	L3	cache	is	specialized	to	work	in	unison	with	L1	and	L2	caches.

The	purpose	of	cache	is	to	speed	up	memory	accesses	by	storing	recently	used	data	closer	to	the	CPU,
instead	of	storing	it	in	main	memory.	Although	cache	is	not	as	large	as	main	memory,	it	is	considerably
faster.	Whereas	main	memory	 is	 typically	composed	of	DRAM	with,	 say,	a	50ns	access	 time,	cache	 is
typically	composed	 of	 SRAM,	 providing	 faster	 access	with	 a	much	 shorter	 cycle	 time	 than	DRAM	 (a
typical	cache	access	time	is	10ns).	Cache	does	not	need	to	be	very	large	to	perform	well.	A	general	rule
of	thumb	is	to	make	cache	small	enough	so	that	the	overall	average	cost	per	bit	is	close	to	that	of	main
memory,	but	large	enough	to	be	beneficial.	Because	this	fast	memory	is	quite	expensive,	it	is	not	feasible
to	use	the	technology	found	in	cache	memory	to	build	all	of	main	memory.

What	makes	cache	“special”?	Cache	 is	not	accessed	by	address;	 it	 is	accessed	by	content.	For	 this
reason,	cache	 is	sometimes	called	content	addressable	memory	or	CAM.	Under	most	 cache	mapping
schemes,	 the	cache	entries	must	be	checked	or	searched	to	see	if	 the	value	being	requested	is	stored	in
cache.	To	simplify	this	process	of	locating	the	desired	data,	various	cache	mapping	algorithms	are	used.

6.4.1		Cache	Mapping	Schemes
For	cache	to	be	functional,	it	must	store	useful	data.	However,	this	data	becomes	useless	if	the	CPU	can’t
find	it.	When	accessing	data	or	instructions,	the	CPU	first	generates	a	main	memory	address.	If	the	data
has	been	copied	to	cache,	the	address	of	the	data	in	cache	is	not	the	same	as	the	main	memory	address.
For	example,	data	located	at	main	memory	address	0x2E3	could	be	located	in	the	very	first	 location	in
cache.	How,	then,	does	the	CPU	locate	data	when	it	has	been	copied	into	cache?	The	CPU	uses	a	specific
mapping	scheme	that	“converts”	the	main	memory	address	into	a	cache	location.

This	 address	 conversion	 is	 done	 by	 giving	 special	 significance	 to	 the	 bits	 in	 the	 main	 memory
address.	We	first	divide	the	bits	into	distinct	groups	we	call	fields.	Depending	on	the	mapping	scheme,
we	may	have	 two	or	 three	 fields.	How	we	use	 these	 fields	depends	on	 the	particular	mapping	 scheme
being	used.	The	mapping	scheme	determines	where	 the	data	 is	placed	when	it	 is	originally	copied	 into
cache	and	also	provides	a	method	for	the	CPU	to	find	previously	copied	data	when	searching	cache.	The
mapping	schemes	include	direct	mapping,	fully	associative	mapping,	and	set	associative	mapping.

Before	 we	 discuss	 these	 mapping	 schemes,	 it	 is	 important	 to	 understand	 how	 data	 is	 copied	 into
cache.	Main	 memory	 and	 cache	 are	 both	 divided	 into	 the	 same	 size	 blocks	 (the	 size	 of	 these	 blocks
varies).	When	a	memory	address	 is	generated,	cache	is	searched	first	 to	see	 if	 the	required	data	at	 that
address	 exists	 there.	When	 the	 requested	 data	 is	 not	 found	 in	 cache,	 the	 entire	main	memory	 block	 in
which	the	requested	memory	address	resides	is	loaded	into	cache.	As	previously	mentioned,	this	scheme
is	 successful	 because	 of	 the	 principle	 of	 locality—if	 an	 address	was	 just	 referenced,	 there	 is	 a	 good
chance	 addresses	 in	 the	 same	general	 vicinity	will	 soon	be	 referenced	as	well.	Therefore,	 one	missed
address	often	results	in	several	found	addresses.	For	example,	when	you	are	in	the	basement	and	you	first
need	tools,	you	have	a	“miss”	and	must	go	to	the	garage.	If	you	gather	up	a	set	of	tools	that	you	might	need
and	 return	 to	 the	 basement,	 you	 hope	 that	 you’ll	 have	 several	 “hits”	 while	 working	 on	 your	 home
improvement	project	and	don’t	have	 to	make	many	more	 trips	 to	 the	garage.	Because	accessing	data	 in



cache	(a	tool	already	in	the	basement)	is	faster	than	accessing	data	in	main	memory	(going	to	the	garage
yet	again!),	cache	memory	speeds	up	the	overall	access	time.

So	how	do	we	use	fields	in	the	main	memory	address?	One	field	of	the	main	memory	address	points
us	to	a	location	in	cache	in	which	the	data	resides	if	it	is	resident	in	cache	(this	is	called	a	cache	hit),	or
where	it	is	to	be	placed	if	it	is	not	resident	(which	is	called	a	cache	miss).	(This	is	slightly	different	for
associative	mapped	cache,	which	we	discuss	shortly.)	The	cache	block	referenced	is	then	checked	to	see
if	 it	 is	valid.	This	 is	done	by	associating	a	valid	bit	with	each	cache	block.	A	valid	bit	of	0	means	 the
cache	 block	 is	 not	 valid	 (we	have	 a	 cache	miss),	 and	we	must	 access	main	memory.	A	valid	 bit	 of	 1
means	it	is	valid	(we	may	have	a	cache	hit,	but	we	need	to	complete	one	more	step	before	we	know	for
sure).	We	then	compare	the	tag	in	the	cache	block	to	the	tag	field	of	our	address.	 (The	 tag	 is	a	special
group	of	bits	derived	from	the	main	memory	address	that	is	stored	with	its	corresponding	block	in	cache.)
If	the	tags	are	the	same,	then	we	have	found	the	desired	cache	block	(we	have	a	cache	hit).	At	this	point,
we	need	 to	 locate	 the	desired	data	 in	 the	block;	 this	 can	be	done	using	a	different	portion	of	 the	main
memory	address	called	the	offset	field.	All	cache	mapping	schemes	require	an	offset	field;	however,	the
remaining	fields	are	determined	by	the	mapping	scheme.	We	now	discuss	the	three	main	cache	mapping
schemes.	In	these	examples,	we	assume	that	if	the	cache	block	is	empty,	it	is	not	valid;	if	it	contains	data,
it	is	valid.	Therefore,	we	do	not	include	the	valid	bit	in	our	discussions.

Before	we	discuss	the	mapping	schemes,	we	mention	one	very	important	point.	Some	computers	are
byte	 addressable;	others	 are	word	addressable.	Key	 in	determining	how	 the	mapping	 schemes	work	 is
knowing	how	many	addresses	are	contained	in	main	memory,	in	cache,	and	in	each	block.	If	a	machine	is
byte	addressable,	we	are	concerned	with	the	number	of	bytes;	if	it	is	word	addressable,	we	are	concerned
with	the	number	of	words,	regardless	of	the	size	of	the	word.

Direct	Mapped	Cache
Direct	mapped	cache	assigns	cache	mappings	using	a	modular	approach.	Because	 there	are	more	main
memory	blocks	than	there	are	cache	blocks,	it	should	be	clear	that	main	memory	blocks	compete	for	cache
locations.	Direct	mapping	maps	block	X	of	main	memory	to	block	Y	of	cache,	mod	N,	where	N	is	the	total
number	of	blocks	in	cache.	For	example,	if	cache	contains	4	blocks,	then	main	memory	block	0	maps	to
cache	block	0,	main	memory	block	1	maps	to	cache	block	1,	main	memory	block	2	maps	to	cache	block	2,
main	memory	block	3	maps	to	cache	block	3,	main	memory	block	4	maps	to	cache	block	0,	and	so	on.
This	is	illustrated	in	Figure	6.2.	In	Figure	6.2a,	we	see	8	main	memory	blocks	mapping	to	4	cache	blocks,
resulting	in	2	memory	blocks	mapping	to	each	cache	block.	In	Figure	6.2b,	 there	are	16	memory	blocks
mapping	 to	 4	 cache	 blocks;	we	have	 doubled	 the	 size	 of	memory	 and	 doubled	 the	 contention	 for	 each
cache	block.	(We	will	soon	see	that	 this	contention	is	one	of	the	major	disadvantages	of	direct	mapped
cache.)

You	may	be	wondering,	if	main	memory	blocks	0	and	4	both	map	to	cache	block	0,	how	does	the	CPU
know	which	block	actually	resides	in	cache	block	0	at	any	given	time?	The	answer	is	that	each	block	is
copied	to	cache	and	identified	by	the	tag	previously	described.	This	means	the	tag	for	a	particular	block
must	be	stored	in	cache	with	that	block,	as	we	shall	see	shortly.

To	perform	direct	mapping,	 the	binary	main	memory	address	 is	partitioned	 into	 the	fields	shown	in
Figure	6.3.



FIGURE	6.2	Direct	Mapping	of	Main	Memory	Blocks	to	Cache	Blocks

FIGURE	6.3	The	Format	of	a	Main	Memory	Address	Using	Direct	Mapping

The	size	of	each	field	depends	on	the	physical	characteristics	of	main	memory	and	cache.	The	offset
field	 uniquely	 identifies	 an	 address	within	 a	 specific	 block;	 therefore,	 it	must	 contain	 the	 appropriate
number	 of	 bits	 to	 do	 this.	 The	 number	 of	 bytes	 (if	 the	machine	 is	 byte	 addressable)	 or	 words	 (if	 the
machine	is	word	addressable)	in	each	block	dictates	the	number	of	bits	in	the	offset	field.	This	is	also	true
of	the	block	 field—it	must	select	a	unique	block	of	cache.	 (The	number	of	blocks	 in	cache	dictates	 the
number	of	bits	in	the	block	field.)	The	tag	field	is	whatever	is	left	over.	When	a	block	of	main	memory	is
copied	to	cache,	this	tag	is	stored	with	the	block	and	uniquely	identifies	this	block.	The	total	of	all	three
fields	 must,	 of	 course,	 add	 up	 to	 the	 number	 of	 bits	 in	 a	 main	 memory	 address.	 Let’s	 look	 at	 some
examples.



	EXAMPLE	6.1	Consider	a	byte-addressable	main	memory	consisting	of	4	blocks,	and	a	cache	with	2
blocks,	where	each	block	is	4	bytes.	This	means	Block	0	and	2	of	main	memory	map	to	Block	0	of	cache,
and	Blocks	1	and	3	of	main	memory	map	to	Block	1	of	cache.	(This	is	easy	for	us	to	determine	simply	by
using	modular	arithmetic,	because	0	mod	2	=	0,	1	mod	2	=	1,	2	mod	2	=	0,	and	3	mod	2	=	1.	However,	the
computer	must	use	the	fields	in	the	memory	address	itself.)	Using	the	tag,	block,	and	offset	fields,	we	can
see	how	main	memory	maps	to	cache,	as	shown	in	Figure	6.4	and	explained	as	follows.

First,	we	need	to	determine	the	address	format	for	mapping.	Each	block	is	4	bytes,	so	the	offset	field
must	contain	2	bits;	there	are	2	blocks	in	cache,	so	the	block	field	must	contain	1	bit;	this	leaves	1	bit	for
the	tag	(because	a	main	memory	address	has	4	bits	because	there	are	a	total	of	24	=	16	bytes).	The	format
is	shown	in	Figure	6.4a.

Suppose	we	need	to	access	main	memory	address	0x03	(0011	in	binary).	If	we	partition	0011	using
the	address	format	from	Figure	6.4a,	we	get	Figure	6.4b.	This	tells	us	that	the	main	memory	address	0011
maps	 to	cache	block	0	(because	 the	block	field	evaluates	 to	0).	Figure	6.4c	shows	 this	mapping,	along
with	the	tag	that	is	also	stored	with	the	data.

Suppose	we	now	access	main	memory	address	0x0A	=	10102.	Using	the	same	address	format,	we	see
that	it	maps	to	cache	block	0	(see	Figure	6.4d).	However,	if	we	compare	the	tag	from	address	1010	(the
tag	is	1)	to	what	is	currently	stored	in	cache	at	block	0	(that	tag	is	0),	they	do	not	match.	Therefore,	the
data	 currently	 in	 cache	 block	 0	 is	 removed,	 and	 the	 data	 from	main	memory	 block	 3	 replaces	 it	 and
changes	the	tag,	resulting	in	Figure	6.4e.

Let’s	consider	the	memory	format	for	a	larger	example.

	EXAMPLE	6.2	Assume	 that	a	byte-addressable	memory	consists	of	214	bytes,	 cache	has	16	blocks,
and	each	block	has	8	bytes.	From	this,	we	determine	that	 	memory	blocks.	We	know	that	each	main
memory	address	requires	14	bits.	Of	this	14-bit	address	field,	the	rightmost	3	bits	reflect	the	offset	field
(we	need	3	bits	to	uniquely	identify	one	of	8	bytes	in	a	block).	We	need	4	bits	to	select	a	specific	block	in
cache,	so	 the	block	field	consists	of	 the	middle	4	bits.	The	remaining	7	bits	make	up	the	 tag	field.	The
fields	with	sizes	are	illustrated	in	Figure	6.5.

As	mentioned	previously,	the	tag	for	each	block	is	stored	with	that	block	in	the	cache.	In	this	example,
because	main	memory	blocks	0	and	16	both	map	to	cache	block	0,	the	tag	field	would	allow	the	system	to
differentiate	between	block	0	and	block	16.	The	binary	addresses	in	block	0	differ	from	those	in	block	16
in	the	upper	leftmost	7	bits,	so	the	tags	are	different	and	unique.



FIGURE	6.4	Diagrams	for	Example	6.1

FIGURE	6.5	The	Main	Memory	Address	Format	for	Example	6.2



	EXAMPLE	6.3	Let’s	 look	at	a	slightly	 larger	example.	Suppose	we	have	a	byte-addressable	system
using	direct	mapping	with	16	bytes	of	main	memory	divided	into	8	blocks	(so	each	block	has	2	bytes).
Assume	 the	cache	 is	4	blocks	 in	 size	 (for	 a	 total	of	8	bytes).	Figure	6.6	 shows	how	 the	main	memory
blocks	map	to	cache.

We	know:

•			A	main	memory	address	has	4	bits	(because	there	are	24	or	16	bytes	in	main	memory).
•			This	4-bit	main	memory	address	is	divided	into	three	fields:	The	offset	field	is	1	bit	(we	need	only	1
bit	to	differentiate	between	the	two	words	in	a	block);	the	block	field	is	2	bits	(we	have	4	blocks	in
cache	memory	and	need	2	bits	to	uniquely	identify	each	block);	and	the	tag	field	has	1	bit	(this	is	all
that	is	left	over).

The	main	memory	address	is	divided	into	the	fields	shown	in	Figure	6.7.
Suppose	we	generate	the	main	memory	address	0x9.	We	can	see	from	the	mapping	listing	in	Figure	6.6

that	address	0x9	is	in	main	memory	block	4	and	should	map	to	cache	block	0	(which	means	the	contents	of
main	memory	block	4	should	be	copied	into	cache	block	0).	The	computer,	however,	uses	the	actual	main
memory	address	to	determine	the	cache	mapping	block.	This	address,	in	binary,	is	represented	in	Figure
6.8.

FIGURE	6.6	The	Memory	from	Example	6.3	Mapped	to	Cache

FIGURE	6.7	The	Main	Memory	Address	Format	for	Example	6.3

FIGURE	6.8	The	Main	Memory	Address	9	=	10012	Split	into	Fields

When	the	CPU	generates	this	address,	it	first	takes	the	block	field	bits	00	and	uses	these	to	direct	it	to
the	proper	block	in	cache.	00	indicates	that	cache	block	0	should	be	checked.	If	the	cache	block	is	valid,



it	 then	compares	the	tag	field	value	of	1	(in	the	main	memory	address)	to	the	tag	associated	with	cache
block	0.	If	the	cache	tag	is	1,	then	block	4	currently	resides	in	cache	block	0.	If	the	tag	is	0,	then	block	0
from	main	memory	 is	 located	 in	block	0	of	 cache.	 (To	 see	 this,	 compare	main	memory	 address	0x9	=
10012,	 which	 is	 in	 block	 4,	 to	 main	 memory	 address	 0x1	 =	 00012,	 which	 is	 in	 block	 0.	 These	 two
addresses	differ	only	in	the	leftmost	bit,	which	is	the	bit	used	as	the	tag	by	the	cache.)	Assuming	that	the
tags	match,	which	means	that	block	4	from	main	memory	(with	addresses	0x8	and	0x9)	resides	in	cache
block	0,	the	offset	field	value	of	1	is	used	to	select	one	of	the	two	bytes	residing	in	the	block.	Because	the
bit	is	1,	we	select	the	byte	with	offset	1,	which	results	in	retrieving	the	data	copied	from	main	memory
address	0x9.

Suppose	the	CPU	now	generates	address	0x4	=	01002.	The	middle	two	bits	(10)	direct	the	search	to
cache	block	2.	If	the	block	is	valid,	the	leftmost	tag	bit	(0)	would	be	compared	to	the	tag	bit	stored	with
the	cache	block.	If	they	match,	the	first	byte	in	that	block	(of	offset	0)	would	be	returned	to	the	CPU.	To
make	sure	you	understand	this	process,	perform	a	similar	exercise	with	the	main	memory	address	0xC	=
11002.

Let’s	move	on	to	a	larger	example.

	EXAMPLE	6.4	Suppose	we	have	a	byte-addressable	system	using	16-bit	main	memory	addresses	and
64	 blocks	 of	 cache.	 If	 each	 block	 contains	 8	 bytes,	we	 know	 that	 the	main	memory	 16-bit	 address	 is
divided	into	a	3-bit	offset	field,	a	6-bit	block	field,	and	a	7-bit	tag	field.	If	the	CPU	generates	the	main
memory	address:

it	would	look	in	block	0	of	cache,	and	if	it	finds	a	tag	of	0000010,	the	byte	at	offset	4	in	this	block	would
be	returned	to	the	CPU.

So,	to	summarize,	direct	mapped	cache	implements	a	mapping	scheme	that	results	in	main	memory	blocks
being	mapped	 in	 a	modular	 fashion	 to	 cache	 blocks.	 To	 determine	 how	 the	mapping	works,	 you	must
know	several	things:

•			How	many	bits	are	in	the	main	memory	address	(which	is	determined	by	how	many	addresses	exist	in
main	memory)

•			How	many	blocks	are	in	cache	(which	determines	the	size	of	the	block	field)
•			How	many	addresses	are	in	a	block	(which	determines	the	size	of	the	offset	field)

Once	you	know	these	values,	you	can	use	the	direct	mapping	address	format	to	locate	the	block	in	cache
to	which	 a	main	memory	 block	maps.	Once	 you	 find	 the	 cache	 block,	 you	 can	 determine	 if	 the	 block
currently	 in	 cache	 is	 the	one	you	want	by	 checking	 the	 tag.	 If	 the	 tags	match	 (the	 tag	 from	 the	memory
address	field	and	the	tag	in	cache),	use	the	offset	field	to	find	the	desired	data	in	the	cache	block.



Fully	Associative	Cache
Direct	mapped	cache	is	not	as	expensive	as	other	caches	because	the	mapping	scheme	does	not	require
any	searching.	Each	main	memory	block	has	a	specific	location	to	which	it	maps	in	cache;	when	a	main
memory	address	is	converted	to	a	cache	address,	the	CPU	knows	exactly	where	to	look	in	the	cache	for
that	memory	block	by	simply	examining	the	bits	in	the	block	field.	This	is	similar	to	your	address	book:
The	pages	often	have	an	alphabetic	index,	so	if	you	are	searching	for	“Joe	Smith,”	you	would	look	under
the	“S”	tab.

Instead	 of	 specifying	 a	 unique	 location	 for	 each	main	memory	 block,	we	 can	 look	 at	 the	 opposite
extreme:	allowing	a	main	memory	block	to	be	placed	anywhere	in	cache.	The	only	way	to	find	a	block
mapped	this	way	is	to	search	all	of	cache.	(This	is	similar	to	your	author’s	desk!)	This	requires	the	entire
cache	to	be	built	from	associative	memory	so	it	can	be	searched	in	parallel.	That	is,	a	single	search	must
compare	the	requested	tag	to	all	tags	in	cache	to	determine	whether	the	desired	data	block	is	present	in
cache.	Associative	memory	requires	special	hardware	to	allow	associative	searching	and	is,	thus,	quite
expensive.

Let’s	look	at	associative	memory	in	more	detail	so	we	can	better	understand	why	it	is	so	expensive.
We	have	already	mentioned	that	fully	associative	cache	allows	a	memory	block	to	be	placed	anywhere	in
cache,	which	means	we	now	have	to	search	to	find	it,	and	to	make	this	searching	efficient,	we	search	in
parallel.	But	how	do	we	do	this	in	hardware?	First,	there	must	be	a	comparator	circuit	for	each	block	in
cache;	this	circuit	outputs	a	1	if	the	two	input	values	match.

FIGURE	6.9	Associative	Cache



FIGURE	6.10	The	Main	Memory	Address	Format	for	Associative	Mapping

The	tag	field	from	the	main	memory	address	is	compared,	simultaneously,	to	each	tag	from	every	cache
block,	 as	 we	 see	 in	 Figure	 6.9a.	 This	 memory	 is	 expensive	 because	 it	 requires	 not	 only	 a	 set	 of
multiplexers	 to	 select	 the	 appropriate	 data	 once	 the	 correct	 cache	 block	 is	 identified	 but	 also	 the
additional	circuitry	 to	 implement	 the	comparators.	Figure	6.9b	 shows	a	 simplified	view	of	 the	 circuits
required	for	fully	associative	memory.

Using	associative	mapping,	 the	main	memory	address	is	partitioned	into	two	pieces,	 the	tag	and	the
offset.	Recall	Example	6.2,	which	had	a	memory	with	214	bytes,	a	cache	with	16	blocks,	and	blocks	of	8
bytes.	Using	fully	associative	mapping	instead	of	direct	mapping,	we	see	from	Figure	6.10	that	the	offset
field	is	still	3	bits,	but	now	the	tag	field	is	11	bits.	This	tag	must	be	stored	with	each	block	in	cache.	When
the	 cache	 is	 searched	 for	 a	 specific	main	memory	 block,	 the	 tag	 field	 of	 the	main	memory	 address	 is
compared	to	all	the	valid	tag	fields	in	cache;	if	a	match	is	found,	the	block	is	found.	(Remember,	the	tag
uniquely	identifies	a	main	memory	block.)	If	there	is	no	match,	we	have	a	cache	miss	and	the	block	must
be	transferred	from	main	memory.

With	 direct	 mapping,	 if	 a	 block	 already	 occupies	 the	 cache	 location	 where	 a	 new	 block	 must	 be
placed,	the	block	currently	in	cache	is	removed	(it	is	written	back	to	main	memory	if	it	has	been	modified
or	simply	overwritten	if	it	has	not	been	changed).	With	fully	associative	mapping,	when	cache	is	full,	we
need	 a	 replacement	 algorithm	 to	 decide	which	block	we	wish	 to	 throw	out	 of	 cache	 (we	 call	 this	 our
victim	block).	A	simple	first-in,	first-out	algorithm	would	work,	as	would	a	least	recently	used	algorithm.
There	are	many	replacement	algorithms	that	can	be	used;	these	are	discussed	in	Section	6.4.2.

So,	to	summarize,	fully	associative	cache	allows	a	main	memory	block	to	be	mapped	to	any	block	in
cache.	Once	a	main	memory	block	resides	in	cache,	to	locate	a	specific	byte,	the	computer	compares	the
tag	field	of	the	main	memory	address	to	all	tags	stored	in	cache	(in	one	comparison).	Once	the	specific
cache	block	is	located,	the	offset	field	is	used	to	locate	the	required	data	within	that	block.	If	the	tag	of	the
memory	address	doesn’t	match	any	tags	in	cache,	the	memory	block	containing	the	desired	data	must	be
transferred	into	cache.	This	transfer	may	require	picking	a	victim	block	to	transfer	out	of	cache.

Set	Associative	Cache
Because	of	 its	 speed	 and	 complexity,	 associative	 cache	 is	 very	 expensive.	Although	direct	mapping	 is
inexpensive,	it	is	very	restrictive.	To	see	how	direct	mapping	limits	cache	usage,	suppose	we	are	running
a	program	on	the	architecture	described	in	Example	6.3.	Suppose	the	program	is	using	block	0,	then	block
4,	 then	0,	 then	4,	 and	 so	on	as	 it	 executes	 instructions.	Blocks	0	and	4	both	map	 to	 the	 same	 location,
which	means	the	program	would	repeatedly	throw	out	0	to	bring	in	4,	then	throw	out	4	to	bring	in	0,	even
though	there	are	additional	blocks	in	cache	not	being	used.	Fully	associative	cache	remedies	this	problem
by	allowing	a	block	from	main	memory	to	be	placed	anywhere.	However,	 it	requires	a	larger	tag	to	be
stored	 with	 the	 block	 (which	 results	 in	 a	 larger	 cache)	 in	 addition	 to	 requiring	 special	 hardware	 for
searching	 of	 all	 blocks	 in	 cache	 simultaneously	 (which	 implies	 a	 more	 expensive	 cache).	We	 need	 a
scheme	somewhere	in	the	middle.



The	third	mapping	scheme	we	introduce	is	N-way	set	associative	cache	mapping,	a	combination	of
these	two	approaches.	This	scheme	is	similar	to	direct	mapped	cache,	in	that	we	use	the	address	to	map
the	block	to	a	certain	cache	location.	The	important	difference	is	that	instead	of	mapping	to	a	single	cache
block,	an	address	maps	to	a	set	of	several	cache	blocks.	All	sets	in	cache	must	be	the	same	size.	This	size
can	vary	from	cache	to	cache.	For	example,	in	a	2-way	set	associative	cache,	there	are	2	cache	blocks	per
set,	 as	 seen	 in	 Figure	6.11.	 It	 is	 easiest	 to	 view	 set	 associative	 cache	 logically	 as	 a	 two-dimensional
cache.	 In	Figure	6.11a,	we	 see	 a	 2-way	 set	 associative	 cache,	where	 each	 set	 contains	 2	 blocks,	 thus
giving	us	rows	and	columns	in	cache.	However,	cache	memory	is	actually	linear.	In	Figure	6.11b,	we	see
how	set	associative	cache	is	implemented	in	a	linear	memory.	A	4-way	set	associative	cache	has	4	blocks
per	set;	an	8-way	has	8	blocks	per	set,	and	so	on.	Once	the	desired	set	is	located,	the	cache	is	treated	as
associative	memory;	the	tag	of	the	main	memory	address	must	be	compared	to	the	tags	of	each	block	in	the
set.	Instead	of	requiring	a	comparator	circuit	for	each	block	in	cache,	set	associative	cache	only	needs	a
comparator	 for	 each	 block	 in	 a	 set.	 For	 example,	 if	 there	 are	 64	 total	 cache	 blocks,	 using	 4-way	 set
associative	mapping,	the	cache	needs	only	4	total	comparators,	not	64.	Direct	mapped	cache	is	a	special
case	of	N-way	set	associative	cache	mapping	where	the	set	size	is	one.	Fully	associative	cache,	where
cache	has	n	blocks,	is	a	special	case	of	set	associative	mapping	in	which	there	is	only	one	set	of	size	n.

FIGURE	6.11	A	2-Way	Set	Associative	Cache



In	set	associative	cache	mapping,	 the	main	memory	address	 is	partitioned	 into	 three	pieces:	 the	 tag
field,	the	set	field,	and	the	offset	field.	The	tag	and	offset	fields	assume	the	same	roles	as	before;	the	set
field	indicates	into	which	cache	set	the	main	memory	block	maps,	as	we	see	in	the	following	example.

FIGURE	6.12	Format	for	Set	Associative	Mapping	for	Example	6.5

	EXAMPLE	6.5	Suppose	we	are	using	2-way	set	associative	mapping	with	a	byte-addressable	main
memory	of	214	bytes	and	a	cache	with	16	blocks,	where	each	block	contains	8	bytes.	If	cache	consists	of	a
total	of	16	blocks,	and	each	set	has	2	blocks,	then	there	are	8	sets	in	cache.	Therefore,	the	set	field	is	3
bits,	the	offset	field	is	3	bits,	and	the	tag	field	is	8	bits.	This	is	illustrated	in	Figure	6.12.

The	set	 field	of	a	main	memory	address	specifies	a	unique	set	 in	cache	for	 the	given	main	memory
block.	All	blocks	 in	 that	cache	set	are	 then	searched	for	a	matching	tag.	An	associative	search	must	be
performed,	but	the	search	is	restricted	to	the	specified	set	instead	of	the	entire	cache.	This	significantly
reduces	 the	 cost	 of	 the	 specialized	 hardware.	 For	 example,	 in	 a	 2-way	 set	 associative	 cache,	 the
hardware	searches	only	2	blocks	in	parallel.

Let’s	look	at	an	example	to	illustrate	the	differences	among	the	various	mapping	schemes.

	EXAMPLE	6.6	Suppose	a	byte-addressable	memory	contains	1MB	and	cache	consists	of	32	blocks,
where	 each	 block	 contains	 16	 bytes.	 Using	 direct	 mapping,	 fully	 associative	mapping,	 and	 4-way	 set
associative	mapping,	determine	where	the	main	memory	address	0x326A0	maps	to	in	cache	by	specifying
either	the	cache	block	or	cache	set.

First,	we	note	that	a	main	memory	address	has	20	bits.	The	main	memory	format	for	direct	mapped
cache	is	shown	in	Figure	6.13:

FIGURE	6.13	Direct	Mapped	Memory	Format	for	Example	6.6

If	we	represent	our	main	memory	address	0x326A0	in	binary	and	place	the	bits	into	the	format,	we	get
the	fields	shown	in	Figure	6.14:

FIGURE	6.14	The	Address	0x326A0	from	Example	6.6	Divided	into	Fields	for	Direct	Mapping



This	tells	us	that	memory	address	0x326A0	maps	to	cache	block	01010	(or	block	10).
If	we	are	using	fully	associative	cache,	the	memory	address	format	is:

FIGURE	6.15	Fully	Associative	Memory	Format	for	Example	6.6

However,	 dividing	 the	 main	 memory	 address	 into	 these	 fields	 won’t	 help	 us	 determine	 the	 mapping
location	 for	 the	main	memory	 block	 containing	 this	 address	 because	 with	 fully	 associative	 cache,	 the
block	can	map	anywhere.	If	we	are	using	4-way	set	associative	mapping,	the	memory	address	format	is
shown	is	Figure	6.16:

FIGURE	6.16	4-Way	Set	Associative	Mapped	Memory	Format	for	Example	6.6

The	 set	 field	has	3	bits	because	 there	 are	only	8	 sets	 in	 cache	 (where	each	 set	holds	4	blocks).	 If	we
divide	our	main	memory	address	into	these	fields,	we	get:

FIGURE	6.17	The	Address	0x326A0	from	Example	6.6	Divided	into	Fields	for	Set	Associative
Mapping

which	tells	us	that	main	memory	address	0x326A0	maps	to	cache	set	0102	=	2.	However,	the	set	would
still	need	 to	be	searched	(by	comparing	 the	 tag	 in	 the	address	 to	all	 the	 tags	 in	cache	set	2)	before	 the
desired	data	could	be	found.

Let’s	look	at	one	more	example	to	reinforce	the	concepts	of	cache	mapping.

	EXAMPLE	6.7	Suppose	we	have	a	byte-addressable	computer	with	a	cache	that	holds	8	blocks	of	4
bytes	each.	Assuming	that	each	memory	address	has	8	bits	and	cache	is	originally	empty,	for	each	of	the
cache	mapping	techniques,	direct	mapped,	fully	associative,	and	2-way	set	associative,	trace	how	cache
is	used	when	a	program	accesses	 the	 following	 series	of	 addresses	 in	order:	 0x01,	 0x04,	 0x09,	 0x05,
0x14,	0x21,	and	0x01.

We	start	with	direct	mapped.	First,	we	must	determine	 the	address	 format.	Each	block	has	4	bytes,
which	requires	2	bits	in	the	offset	field.	Cache	has	a	total	of	8	blocks,	so	we	need	3	bits	in	the	block	field.
An	address	has	8	bits,	so	that	leaves	3	bits	for	the	tag	field,	resulting	in:



Now	that	we	know	the	address	format,	we	can	begin	tracing	the	program.

A	few	things	to	note:	We	always	copy	an	entire	block	from	memory	to	cache	any	time	there	is	a	miss.
We	don’t	take	4	bytes	beginning	with	the	address	we	missed;	we	must	take	the	4-byte	block	that	contains
the	address	we	missed.	For	example,	when	we	missed	for	memory	address	0x09,	we	brought	in	4	bytes	of
data	 beginning	with	 address	 0x08.	Because	 0x09	 is	 at	 an	 offset	 of	 1	 in	 the	 block,	we	 know	 the	 block
begins	with	 address	0x08.	Also	note	 the	 contention	 for	block	0	of	 cache;	 this	 is	 a	 typical	problem	 for
direct	mapped	cache.	The	final	contents	of	cache	are:

Block Cache	Contents	(represented	by	address) Tag

0 0x00,	0x01,	0x02,	0x03 000

1 0x04,	0x05,	0x06,	0x07 000

2 0x08,	0x09,	0x0A,	0x0B 000

3 	 	

4 	 	

5 0x14,	0x15,	0x16,	0x17 000



6 	 	

7 	 	

How	do	things	change	if	we	use	fully	associative	cache?	First,	the	address	format	becomes:

With	fully	associative	cache,	the	block	from	memory	can	be	stored	anywhere.	Let’s	assume	we	will	store
it	 in	 the	 first	available	 location;	 if	all	 locations	are	 full,	we	will	“roll	over”	 to	 the	beginning	and	start
again.

The	final	contents	of	cache	are:

Block Cache	Contents	(represented	by	address) Tag

0 0x00,	0x01,	0x02,	0x03 000000

1 0x04,	0x05,	0x06,	0x07 000001

2 0x08,	0x09,	0x0A,	0x0B 000010

3 0x14,	0x15,	0x16,	0x17 000101

4 0x20,	0x21,	0x22,	0x23 001000

5 	 	

6 	 	



7 	 	

Now	let’s	take	a	look	at	using	2-way	set	associative	cache.	Because	cache	is	8	blocks,	and	each	set
contains	2	blocks,	cache	has	4	sets.	The	address	format	for	2-way	set	associative	cache	is:

If	we	trace	through	the	memory	references,	we	get	the	following:



Set	associative	cache	mapping	 is	a	good	compromise	between	direct	mapped	and	 fully	associative
cache.	Studies	 indicate	 that	 it	exhibits	good	performance,	and	 that	2-way	up	 to	16-way	caches	perform
almost	 as	 well	 as	 fully	 associative	 cache	 at	 a	 fraction	 of	 the	 cost.	 Therefore,	 most	modern	 computer
systems	use	 some	 form	of	 set	 associative	 cache	mapping,	with	 4-way	 set	 associative	 being	one	 of	 the
most	common.

6.4.2		Replacement	Policies
In	a	direct-mapped	cache,	if	there	is	contention	for	a	cache	block,	there	is	only	one	possible	action:	The
existing	 block	 is	 kicked	 out	 of	 cache	 to	 make	 room	 for	 the	 new	 block.	 This	 process	 is	 called
replacement.	With	direct	mapping,	 there	 is	 no	need	 for	 a	 replacement	 policy	because	 the	 location	 for
each	new	block	is	predetermined.	However,	with	fully	associative	cache	and	set	associative	cache,	we
need	 a	 replacement	 algorithm	 to	 determine	 the	 “victim”	 block	 to	 be	 removed	 from	 cache.	When	 using
fully	associative	cache,	there	are	K	possible	cache	locations	(where	K	is	the	number	of	blocks	in	cache)
to	which	a	given	main	memory	block	may	map.	With	N-way	set	associative	mapping,	a	block	can	map	to
any	 of	N	 different	 blocks	 within	 a	 given	 set.	 How	 do	we	 determine	 which	 block	 in	 cache	 should	 be
replaced?	The	algorithm	for	determining	replacement	is	called	the	replacement	policy.

There	are	 several	popular	 replacement	policies.	One	 that	 is	not	practical	but	 that	 can	be	used	as	a
benchmark	by	which	to	measure	all	others	is	the	optimal	algorithm.	We	like	to	keep	values	in	cache	that
will	be	needed	again	soon,	and	throw	out	blocks	that	won’t	be	needed	again,	or	that	won’t	be	needed	for
some	time.	An	algorithm	that	could	look	into	the	future	to	determine	the	precise	blocks	to	keep	or	eject
based	on	these	two	criteria	would	be	best.	This	is	what	the	optimal	algorithm	does.	We	want	to	replace
the	block	that	will	not	be	used	for	the	longest	period	of	time	in	the	future.	For	example,	if	the	choice	for
the	victim	block	is	between	block	0	and	block	1,	and	block	0	will	be	used	again	in	5	seconds,	whereas
block	1	will	not	be	used	again	for	10	seconds,	we	would	throw	out	block	1.	From	a	practical	standpoint,
we	can’t	look	into	the	future—but	we	can	run	a	program	and	then	rerun	it,	so	we	effectively	do	know	the
future.	We	can	then	apply	the	optimal	algorithm	on	the	second	run.	The	optimal	algorithm	guarantees	the
lowest	possible	miss	rate.	Because	we	cannot	see	the	future	on	every	single	program	we	run,	the	optimal
algorithm	 is	 used	 only	 as	 a	metric	 to	 determine	 how	 good	 or	 bad	 another	 algorithm	 is.	 The	 closer	 an
algorithm	performs	to	the	optimal	algorithm,	the	better.

We	 need	 algorithms	 that	 best	 approximate	 the	 optimal	 algorithm.	 We	 have	 several	 options.	 For
example,	 we	 might	 consider	 temporal	 locality.	We	might	 guess	 that	 any	 value	 that	 has	 not	 been	 used
recently	is	unlikely	to	be	needed	again	soon.	We	can	keep	track	of	the	last	time	each	block	was	accessed
(assign	a	timestamp	to	the	block)	and	select	as	the	victim	block	the	block	that	has	been	used	least	recently.
This	 is	 the	 least	 recently	 used	 (LRU)	 algorithm.	 Unfortunately,	 LRU	 requires	 the	 system	 to	 keep	 a
history	of	accesses	for	every	cache	block,	which	requires	significant	space	and	slows	down	the	operation
of	the	cache.	There	are	ways	to	approximate	LRU,	but	that	is	beyond	the	scope	of	this	text.	(Refer	to	the
references	at	the	end	of	the	chapter	for	more	information.)

First-in,	first-out	(FIFO)	is	another	popular	approach.	With	this	algorithm,	the	block	that	has	been	in
cache	 the	 longest	 (regardless	 of	 how	 recently	 it	 has	 been	used)	would	be	 selected	 as	 the	victim	 to	be
removed	from	cache	memory.

Another	approach	is	to	select	a	victim	at	random.	The	problem	with	LRU	and	FIFO	is	that	there	are
degenerate	referencing	situations	in	which	they	can	be	made	to	thrash	(constantly	throw	out	a	block,	then
bring	 it	 back,	 then	 throw	 it	 out,	 then	 bring	 it	 back,	 repeatedly).	 Some	 people	 argue	 that	 random
replacement,	 although	 it	 sometimes	 throws	 out	 data	 that	 will	 be	 needed	 soon,	 never	 thrashes.



Unfortunately,	it	is	difficult	to	have	truly	random	replacement,	and	it	can	decrease	average	performance.
The	algorithm	selected	often	depends	on	how	the	system	will	be	used.	No	single	(practical)	algorithm

is	best	for	all	scenarios.	For	that	reason,	designers	use	algorithms	that	perform	well	under	a	wide	variety
of	circumstances.

6.4.3		Effective	Access	Time	and	Hit	Ratio
The	 performance	 of	 a	 hierarchical	 memory	 is	 measured	 by	 its	 effective	 access	 time	 (EAT),	 or	 the
average	time	per	access.	EAT	is	a	weighted	average	that	uses	the	hit	ratio	and	the	relative	access	times	of
the	successive	levels	of	 the	hierarchy.	The	actual	access	 time	for	each	level	depends	on	the	technology
and	method	used	for	access.

Before	we	can	determine	the	average	access	time,	we	have	to	know	something	about	how	cache	and
memory	work.	When	data	is	needed	from	cache,	there	are	two	options	for	retrieving	that	data.	We	could
start	an	access	to	cache	and,	at	the	same	time,	start	an	access	to	main	memory	(in	parallel).	If	the	data	is
found	 in	 cache,	 the	 access	 to	 main	 memory	 is	 terminated,	 at	 no	 real	 cost	 because	 the	 accesses	 were
overlapped.	 If	 the	 data	 is	 not	 in	 cache,	 the	 access	 to	 main	 memory	 is	 already	 well	 on	 its	 way.	 This
overlapping	 helps	 reduce	 the	 cost	 (in	 time)	 for	 a	 cache	miss.	The	 alternative	 is	 to	 perform	 everything
sequentially.	First,	cache	 is	checked;	 if	 the	data	 is	found,	we’re	done.	If	 the	data	 is	not	found	in	cache,
then	 an	 access	 is	 started	 to	 retrieve	 the	 data	 from	main	memory.	 The	method	 used	 affects	 the	 average
(effective)	access	time,	as	we	see	below.

For	 example,	 suppose	 the	 cache	 access	 time	 is	 10ns,	main	memory	 access	 time	 is	 200ns,	 and	 the
cache	hit	rate	is	99%.	Using	overlapped	(parallel)	access,	the	average	time	for	the	processor	to	access	an
item	in	this	two-level	memory	would	then	be:

Using	nonoverlapped	(sequential)	access,	the	average	access	time	would	change	to:

What,	 exactly,	 does	 this	mean?	 If	we	 look	 at	 the	 access	 times	 over	 a	 long	 period	 of	 time,	 this	 system
performs	as	if	it	had	a	single	large	memory	with	an	11ns	or	12ns	access	time.	A	99%	cache	hit	rate	allows
the	system	to	perform	very	well,	even	though	most	of	the	memory	is	built	using	slower	technology	with	an
access	time	of	200ns.

The	 formula	 for	 calculating	 effective	 access	 time	 for	 a	 two-level	memory	 consisting	 of	 cache	 and
main	memory	is	given	by:

where	H	=	cache	hit	rate,	AccessC	=	cache	access	time,	and	AccessMM	=	main	memory	access	time.
This	formula	can	be	extended	to	apply	to	three-	or	even	four-level	memories,	as	we	will	see	shortly.

6.4.4		When	Does	Caching	Break	Down?



When	programs	 exhibit	 locality,	 caching	works	 quite	well.	However,	 if	 programs	 exhibit	 bad	 locality,
caching	breaks	down	and	the	performance	of	the	memory	hierarchy	is	poor.	In	particular,	object-oriented
programming	can	cause	programs	to	exhibit	 less	 than	optimal	 locality.	Another	example	of	bad	 locality
can	be	seen	in	two-dimensional	array	access.	Arrays	are	typically	stored	in	row-major	order.	Suppose,
for	purposes	of	this	example,	that	one	row	fits	exactly	in	one	cache	block	and	cache	can	hold	all	but	one
row	 of	 the	 array.	 Assume,	 also,	 that	 cache	 uses	 a	 first-in,	 first-out	 replacement	 policy.	 If	 a	 program
accesses	 the	 array	 one	 row	 at	 a	 time,	 the	 first	 row	 access	 produces	 a	 miss,	 but	 once	 the	 block	 is
transferred	 into	cache,	all	 subsequent	accesses	 to	 that	 row	are	hits.	So	a	5	×	4	array	would	produce	5
misses	 and	 15	 hits	 over	 20	 accesses	 (assuming	 that	we	 are	 accessing	 each	 element	 of	 the	 array).	 If	 a
program	accesses	the	array	in	column-major	order,	the	first	access	to	the	column,	entry	(1,1),	results	in	a
miss,	after	which	an	entire	row	is	transferred	in.	However,	the	second	access	to	the	column,	entry	(2,1),
results	 in	 another	miss.	 The	 access	 to	 entry	 (3,1)	 produces	 a	miss,	 as	 does	 the	 access	 to	 entry	 (4,1).
Reading	entry	(5,1)	produces	a	miss,	but	bringing	in	the	fifth	row	requires	us	to	throw	out	the	first	row.
Because	 we	 have	 removed	 the	 first	 row,	 our	 next	 access	 to	 entry	 (1,2)	 causes	 a	 miss	 as	 well.	 This
continues	throughout	the	entire	array	access;	the	data	being	transferred	in	for	each	row	is	not	being	used
because	the	array	is	being	accessed	by	column.	Because	cache	is	not	large	enough,	this	would	produce	20
misses	on	20	accesses.	A	third	example	would	be	a	program	that	loops	through	a	linear	array	that	does	not
fit	in	cache.	There	would	be	a	significant	reduction	in	the	locality	when	memory	is	used	in	this	manner.

6.4.5		Cache	Write	Policies
In	addition	to	determining	which	victim	to	select	for	replacement,	designers	must	also	decide	what	to	do
with	so-called	dirty	blocks	of	cache,	or	blocks	 that	have	been	modified.	When	 the	processor	writes	 to
main	memory,	the	data	may	be	written	to	the	cache	instead	under	the	assumption	that	the	processor	will
probably	 read	 it	 again	 soon.	 If	 a	cache	block	 is	modified,	 the	cache	write	policy	 determines	when	 the
actual	main	memory	block	is	updated	to	match	the	cache	block.	There	are	two	basic	write	policies:

•			Write-through—A	write-through	policy	updates	both	the	cache	and	the	main	memory	simultaneously
on	every	write.	This	is	slower	than	write-back,	but	ensures	that	the	cache	is	consistent	with	the	main
system	 memory.	 The	 obvious	 disadvantage	 here	 is	 that	 every	 write	 now	 requires	 a	 main	 memory
access.	Using	a	write-through	policy	means	every	write	to	the	cache	necessitates	a	main	memory	write,
thus	 slowing	 the	 system	 (if	 all	 accesses	 are	write,	 this	 essentially	 slows	 down	 the	 system	 to	main
memory	speed).	However,	in	real	applications,	the	majority	of	accesses	are	reads,	so	this	slow-down
is	negligible.

•			Write-back—A	write-back	policy	(also	called	copyback)	only	updates	blocks	in	main	memory	when
the	cache	block	is	selected	as	a	victim	and	must	be	removed	from	cache.	This	is	normally	faster	than
write-through	 because	 time	 is	 not	 wasted	 writing	 information	 to	 memory	 on	 each	 write	 to	 cache.
Memory	traffic	is	also	reduced.	The	disadvantage	is	that	main	memory	and	cache	may	not	contain	the
same	value	at	a	given	instant	of	 time,	and	if	a	process	 terminates	(crashes)	before	 the	write	 to	main
memory	is	done,	the	data	in	cache	may	be	lost.

To	improve	the	performance	of	cache,	one	must	increase	the	hit	ratio	by	using	a	better	mapping	algorithm
(up	to	roughly	a	20%	increase),	better	strategies	for	write	operations	(potentially	a	15%	increase),	better
replacement	 algorithms	 (up	 to	 a	 10%	 increase),	 and	 better	 coding	 practices,	 as	we	 saw	 in	 the	 earlier
example	of	 row	versus	column-major	access	 (up	 to	a	30%	increase	 in	hit	 ratio).	Simply	 increasing	 the



size	of	cache	may	improve	the	hit	ratio	by	roughly	1–4%	but	is	not	guaranteed	to	do	so.

Caching	and	Hashing	and	Bits,	Oh	My!
Suppose	you	have	a	large	set	of	data,	and	you	are	writing	a	program	to	search	that	data	set.	You	could
store	the	data	in	an	array,	at	which	point	you	have	two	options.	If	the	array	is	unsorted,	a	linear	search
could	be	used	to	locate	a	particular	piece	of	information.	If	the	data	is	sorted,	a	binary	search	could	be
used.	However,	 the	 running	 times	of	 both	 types	 of	 searches	 are	 dependent	 on	 the	 data	 set	 size	with
which	you	are	working.

Hashing	 is	 a	 process	 that	 allows	 us	 to	 store	 and	 retrieve	 data	 in	 an	 average	 time	 that	 does	 not
depend	on	the	size	of	the	data	set	we	are	searching.	Hashing	is	simply	the	process	of	putting	an	item
into	a	structure	by	transforming	a	key	value	into	an	address.	Typically,	a	hash	table	is	used	to	store	the
hashed	values,	and	a	hashing	function	performs	the	key-to-address	transformation.	When	we	want	to
look	up	a	value,	the	key	for	the	value	is	input	into	the	hash	function,	and	the	output	is	the	address	in	the
table	 at	which	 the	 value	 is	 stored.	Hash	 tables	were	 invented	 by	 compiler	writers	 in	 the	 1960s	 to
maintain	symbol	tables	(as	discussed	in	Chapter	4).

Suppose	 you	 are	 tired	 of	 looking	 up	 names	 in	 an	 extremely	 large	 phone	 book.	 Even	 though	 the
names	are	sorted,	with	so	many	pages,	it	takes	you	a	long	time	to	find	a	particular	phone	number.	You
could	create	a	hash	function	to	store	those	names	and	numbers	in	a	hash	table	on	your	computer.	When
you	want	 a	 phone	number,	 all	 you	would	 need	 to	 do	 is	 input	 the	 name	 into	 the	 hash	 function	 and	 it
would	 point	 you	 to	 the	 correct	 location	 of	 the	 corresponding	 phone	 number	 in	 the	 hash	 table.
Computerized	dictionaries	often	use	hash	tables	for	storing	words	and	definitions	because	the	lookup
time	is	much	faster	than	it	would	be	with	binary	search.

Hashing	works	because	of	good	hash	 functions—good	hash	 functions	give	a	uniform	distribution
even	if	the	key	values	are	not	distributed	well.	A	perfect	hash	function	is	a	one-to-one	mapping	of	the
values	into	the	table.	However,	perfect	hash	functions	are	difficult	to	construct.	Hash	functions	that	map
most	values	to	unique	locations	are	acceptable,	provided	that	the	number	of	collisions	(cases	in	which
two	values	map	to	the	same	location)	are	minimal.	Collisions	are	handled	in	several	different	ways,
the	easiest	of	which	is	chaining.	Chaining	is	simply	the	process	of	creating	a	list	of	items	that	map	to	a
particular	location.	When	a	key	value	maps	to	a	list,	more	time	is	required	to	find	the	item	because	we
have	to	search	the	entire	list.

Hash	functions	can	be	simple	or	complex.	Examples	of	simple	hash	 functions	with	numeric	keys
include	(1)	modulo	arithmetic,	 in	which	the	number	of	items	in	the	table	is	estimated,	 that	number	is
used	 as	 a	 divisor	 into	 the	 key,	 and	 the	 remainder	 is	 the	 hashed	 value;	 (2)	 radix	 transformation,	 a
process	in	which	the	digital	key’s	number	base	is	changed,	resulting	in	a	different	sequence	of	digits,
and	a	specific	“substring”	of	those	digits	is	used	as	the	hash	value;	(3)	key	transposition,	in	which	the
digits	in	the	portion	of	the	key	are	simply	scrambled,	and	the	new	scrambled	value	is	used	as	the	hash
value;	and	(4)	folding,	a	method	in	which	the	key	is	portioned	into	several	parts,	the	parts	are	added
together,	and	a	portion	of	the	result	is	used	as	the	hash	value.	For	the	above	phone	book	example,	we
could	substitute	a	character’s	ASCII	value	for	each	letter	in	the	name,	and	use	a	radix	transformation
by	selecting	some	base,	multiplying	each	ASCII	value	by	a	power	of	that	base,	and	adding	the	results
to	yield	the	hash	value.	For	example,	if	the	name	is	“Tim”	and	the	base	is	8,	the	hash	value	would	be
(84	×	82)	+	(105	×	81)	+	(109	×	80)	=	6325,	meaning	we	could	find	Tim	in	location	6325	of	our	hash



table.
Hashing	is	used	in	many	computer	science	applications.	For	example,	web	browsers	use	a	hashed

cache	 to	 store	 recently	 viewed	web	 pages.	 Hashing	 is	 used	 to	 store	 and	 retrieve	 items	 in	 indexed
database	 systems.	 There	 are	 several	 well-known	 hash	 functions	 used	 in	 cryptography,	 message
authentication,	and	error	checking.	 In	 large	 file	 systems,	both	caching	and	hashing	 (to	determine	 file
location)	are	used	to	increase	performance.

You	should	notice	a	similarity	between	hashing	and	the	cache	mapping	schemes	discussed	in	this
chapter.	The	“key”	used	for	cache	mapping	is	the	middle	field	of	the	address,	which	is	the	block	field
for	direct	mapped	cache	and	the	set	field	for	set	associative	cache.	The	hash	function	used	by	direct
mapping	and	set	associative	mapping	is	simple	modulo	arithmetic	(fully	associative	mapping	uses	no
hashing	and	requires	a	full	search	of	the	cache	to	find	the	desired	data	element).	In	direct	mapping,	if
we	 have	 a	 collision,	 the	 value	 currently	 in	 cache	 is	 replaced	 by	 the	 incoming	 value.	 With	 set
associative	cache,	the	set	is	similar	to	a	list	in	chaining—if	there	is	a	collision,	depending	on	the	size
of	 the	 set,	 multiple	 values	 that	 hash	 to	 the	 same	 location	 can	 coexist.	 To	 retrieve	 a	 value	 in	 set
associative	 cache,	 once	 the	 middle	 bits	 determine	 the	 location	 (or	 set)	 in	 cache,	 the	 set	 must	 be
searched	for	the	desired	value.	Recall	that	a	tag	is	stored	with	each	value	and	is	used	to	identify	the
correct	item.

Different	items	can	be	used	as	keys	for	hashing.	We	use	the	middle	bits	of	the	physical	address	of	a
desired	 value	 as	 the	 key	 in	 cache	 mapping.	 But	 why	 use	 the	 middle	 bits?	 The	 lower	 bits	 (in	 the
rightmost	word	field)	are	used	to	determine	the	offset	within	the	block.	However,	the	higher	bits	(in	the
leftmost	 tag	 field)	 could	 be	 used	 as	 the	 key	 instead	 of	 the	middle	 bits	 (and	 the	middle	 bits	 could,
correspondingly,	be	used	as	the	tag).	Why	did	designers	choose	the	middle	bits?

There	 are	 two	 options	 for	memory	 interleaving:	 high-order	 interleaving	 and	 low-order	memory
interleaving.	High-order	interleaving	uses	the	high-order	bits	to	determine	the	memory	module	location
and	places	consecutive	memory	addresses	in	the	same	module.	This	is	precisely	what	would	happen	if
we	 used	 the	 high-order	 bits	 of	 the	 memory	 address	 to	 determine	 the	 cache	 location—values	 from
consecutive	memory	addresses	would	map	to	the	same	location	in	cache.	Spatial	locality	tells	us	that
memory	locations	close	to	each	other	tend	to	be	referenced	in	clusters.	If	values	from	adjacent	memory
locations	 are	 mapped	 to	 the	 same	 cache	 block	 or	 set,	 spatial	 locality	 implies	 that	 there	 will	 be
collisions	 (larger	 sets	 result	 in	 fewer	 collisions).	 However,	 if	 the	middle	 bits	 are	 used	 as	 the	 key
instead,	 adjacent	 memory	 locations	 are	 mapped	 to	 different	 cache	 locations,	 resulting	 in	 fewer
collisions,	and,	ultimately,	better	hit	ratios.

6.4.6		Instruction	and	Data	Caches
In	our	discussion	of	cache,	we	have	focused	mainly	on	what	is	called	a	unified	or	integrated	cache,	that
is,	 cache	 that	 holds	 the	 more	 recently	 used	 data	 and	 instructions.	 However,	 many	 modern	 computers
employ	a	Harvard	cache,	which	means	they	have	separate	data	and	instruction	caches.

A	data	cache	 is	 reserved	for	storing	data	only.	When	a	request	 is	made	for	data	from	memory,	 this
cache	is	checked	first.	If	the	data	is	found,	it	is	retrieved	from	data	cache	and	the	execution	continues.	If
not	found,	the	data	is	retrieved	from	memory	and	placed	in	the	data	cache.	Data	that	exhibits	good	locality
yields	 higher	 hit	 rates.	 For	 example,	 data	 accessed	 from	 an	 array	 exhibits	 better	 locality	 than	 data
accessed	from	a	linked	list.	Thus,	the	way	in	which	you	program	can	affect	the	data	cache	hit	rate.

Just	as	high	data	cache	hit	rates	are	desirable,	high	instruction	cache	hit	rates	are	imperative	for	good
performance.	 Most	 program	 instructions	 are	 executed	 sequentially,	 branching	 only	 occasionally	 for



procedure	 calls,	 loops,	 and	 conditional	 statements.	 Therefore,	 program	 instructions	 tend	 to	 have	 high
locality.	Even	when	a	procedure	is	called	or	a	loop	is	executed,	these	modules	are	often	small	enough	to
fit	 in	 one	 block	 of	 an	 instruction	 cache	 (a	 good	 motivator	 for	 small	 procedures!),	 thus	 increasing
performance.

Separating	instructions	from	data	in	cache	allows	the	accesses	to	be	less	random	and	more	clustered.
However,	 some	 designers	 prefer	 an	 integrated	 cache;	 to	 get	 the	 same	 performance	 as	 a	 system	 with
separate	data	and	instruction	caches,	the	integrated	cache	must	be	larger,	thus	introducing	more	latency	in
retrieving	 values.	 In	 addition,	 a	 unified	 cache	 has	 only	 one	 port	 for	 data	 and	 instructions,	 resulting	 in
conflicts	between	the	two.

Some	processors	also	have	what	is	known	as	a	victim	cache,	a	small,	associative	cache	used	to	hold
blocks	that	have	been	thrown	out	of	the	CPU	cache	due	to	conflicts.	The	idea	is	that	if	the	victim	block	is
used	in	the	near	future,	it	can	be	retrieved	from	the	victim	cache	with	less	penalty	than	going	to	memory.
This	basically	gives	the	data	that	was	evicted	from	cache	a	“second	chance”	to	be	used	before	being	sent
to	memory.	Another	 type	of	 specialized	cache,	 trace	cache,	 is	 a	variant	of	an	 instruction	cache.	Trace
caches	are	used	to	store	instruction	sequences	that	have	already	been	decoded,	so	that	if	the	instructions
are	needed	again,	no	decoding	is	required.	In	addition,	the	processor	can	deal	with	blocks	of	instructions
and	not	worry	about	branches	 in	 the	execution	flow	of	 the	program.	This	cache	 is	so	named	because	 it
stores	 traces	 of	 the	 dynamic	 instruction	 stream,	 making	 noncontiguous	 instructions	 appear	 to	 be
contiguous.	The	Intel	Pentium	4	uses	this	type	of	cache	to	increase	performance.

6.4.7		Levels	of	Cache
Clearly,	caching	provides	an	increase	in	performance,	provided	the	hit	rate	is	satisfactory.	Increasing	the
size	of	cache	might	be	your	first	thought	to	produce	a	higher	hit	rate;	however,	larger	caches	are	slower
(the	 access	 time	 is	 larger).	 For	 years,	manufacturers	 have	 been	 trying	 to	 balance	 the	 higher	 latency	 in
larger	caches	with	the	increase	in	hit	rates	by	selecting	just	the	right	size	cache.	However,	many	designers
are	applying	the	concepts	of	levels	of	memory	to	cache	itself,	and	they	are	now	using	a	multilevel	cache
hierarchy	in	most	systems—caches	are	using	caching	for	increased	performance!

As	we	have	seen,	Level	1	(L1)	cache	is	the	term	used	for	cache	that	is	resident	on	the	chip	itself,	and
it	 is	 the	fastest,	smallest	cache.	L1	cache,	often	referred	 to	as	“internal	cache,”	 typically	ranges	 in	size
from	8KB	to	64KB.	When	a	memory	access	is	requested,	L1	is	checked	first,	with	typical	access	speeds
of	approximately	4ns.	If	the	data	is	not	found	in	L1,	the	Level	2	(L2)	cache	is	checked.	The	L2	cache	is
typically	located	external	to	the	processor,	and	it	has	access	speeds	of	15–20ns.	L2	cache	can	be	located
on	the	system	motherboard,	on	a	separate	chip,	or	on	an	expansion	board.	L2	cache	is	larger,	but	slower
than	L1	cache.	Typical	sizes	for	L2	cache	range	from	64KB	to	2MB.	If	data	is	missing	from	L1,	but	found
in	L2,	it	is	loaded	into	L1	cache	(in	some	architectures,	the	data	being	replaced	in	L1	is	swapped	with	the
requested	 data	 in	 L2).	 More	 manufacturers	 have	 begun	 to	 include	 L2	 cache	 in	 their	 architectures	 by
building	L2	cache	onto	the	same	die	as	the	CPU	itself	so	the	cache	runs	at	CPU	speed	(but	not	on	the	same
circuit	with	the	CPU,	such	as	is	the	case	with	L1	cache).	This	reduces	the	access	speed	of	L2	cache	to
approximately	10ns.	L3	cache	is	the	term	now	used	to	refer	to	the	extra	cache	between	the	processor	and
memory	(that	used	to	be	called	L2	cache)	on	processors	that	include	L2	cache	as	part	of	their	architecture.
L3	caches	range	in	size	from	256MB	to	8MB.

Inclusive	caches	 are	 caches	 at	 different	 levels	 that	 allow	 the	 data	 to	 be	 present	 at	multiple	 levels
concurrently.	For	example,	in	the	Intel	Pentium	family,	data	found	in	L1	may	also	exist	in	L2.	A	strictly
inclusive	 cache	 guarantees	 that	 all	 data	 at	 one	 level	 is	 also	 found	 in	 the	 next	 lower	 level.	Exclusive



caches	guarantee	the	data	to	be	in,	at	most,	one	level	of	cache.
We	discussed	separate	data	and	instruction	caches	in	the	previous	section.	Typically,	architectures	use

integrated	caches	at	 levels	L2	and	L3.	However,	many	have	separate	 instruction	and	data	caches	at	L1.
For	 example,	 the	 Intel	Celeron	 uses	 two	 separate	 L1	 caches,	 one	 for	 instructions	 and	 one	 for	 data.	 In
addition	 to	 this	 nice	 design	 feature,	 Intel	 uses	nonblocking	 cache	 for	 its	 L2	 caches.	Most	 caches	 can
process	only	one	request	at	a	time	(so	on	a	cache	miss,	the	cache	has	to	wait	for	memory	to	provide	the
requested	value	and	load	it	into	cache).	Nonblocking	caches	can	process	up	to	four	requests	concurrently.

6.5			VIRTUAL	MEMORY
You	now	know	that	caching	allows	a	computer	 to	access	frequently	used	data	from	a	smaller	but	faster
cache	memory.	Cache	is	found	near	the	top	of	our	memory	hierarchy.	Another	important	concept	inherent
in	the	hierarchy	is	virtual	memory.	The	purpose	of	virtual	memory	is	to	use	the	hard	disk	as	an	extension
of	RAM,	thus	increasing	the	available	address	space	a	process	can	use.	Most	personal	computers	have	a
relatively	small	amount	(typically	around	4GB)	of	main	memory.	This	 is	usually	not	enough	memory	 to
hold	multiple	applications	concurrently,	such	as	a	word	processing	application,	an	email	program,	and	a
graphics	 program,	 in	 addition	 to	 the	 operating	 system	 itself.	 Using	 virtual	 memory,	 your	 computer
addresses	more	main	memory	than	it	actually	has,	and	it	uses	the	hard	drive	to	hold	the	excess.	This	area
on	the	hard	drive	is	called	a	page	file,	because	it	holds	chunks	of	main	memory	on	the	hard	drive.	The
easiest	way	to	think	about	virtual	memory	is	to	conceptualize	it	as	an	imaginary	memory	location	in	which
all	addressing	issues	are	handled	by	the	operating	system.

The	most	 common	way	 to	 implement	 virtual	memory	 is	 by	 using	paging,	 a	method	 in	which	main
memory	is	divided	into	fixed-size	blocks	and	programs	are	divided	into	the	same	size	blocks.	Typically,
chunks	of	the	program	are	brought	into	memory	as	needed.	It	is	not	necessary	to	store	contiguous	chunks	of
the	program	in	contiguous	chunks	of	main	memory.	Because	pieces	of	 the	program	can	be	stored	out	of
order,	 program	 addresses,	 once	 generated	 by	 the	CPU,	must	 be	 translated	 to	main	memory	 addresses.
Remember,	in	caching,	a	main	memory	address	had	to	be	transformed	into	a	cache	location.	The	same	is
true	when	using	virtual	memory;	every	virtual	address	must	be	translated	into	a	physical	address.	How	is
this	done?	Before	delving	further	into	an	explanation	of	virtual	memory,	let’s	define	some	frequently	used
terms	for	virtual	memory	implemented	through	paging:

•			Virtual	address—The	logical	or	program	address	that	the	process	uses.	Whenever	the	CPU	generates
an	address,	it	is	always	in	terms	of	virtual	address	space.

•			Physical	address—The	real	address	in	physical	memory.
•			Mapping—The	mechanism	by	which	virtual	addresses	are	translated	into	physical	ones	(very	similar

to	cache	mapping)
•	 	 	 Page	 frames—The	 equal-size	 chunks	 or	 blocks	 into	 which	 main	 memory	 (physical	 memory)	 is

divided.
•			Pages—The	chunks	or	blocks	into	which	virtual	memory	(the	logical	address	space)	is	divided,	each

equal	in	size	to	a	page	frame.	Virtual	pages	are	stored	on	disk	until	needed.
•			Paging—The	process	of	copying	a	virtual	page	from	disk	to	a	page	frame	in	main	memory.
•			Fragmentation—Memory	that	becomes	unusable.
•			Page	fault—An	event	that	occurs	when	a	requested	page	is	not	in	main	memory	and	must	be	copied



into	memory	from	disk.

Because	 main	 memory	 and	 virtual	 memory	 are	 divided	 into	 equal-size	 pages,	 pieces	 of	 the	 process
address	space	can	be	moved	into	main	memory	but	need	not	be	stored	contiguously.	As	previously	stated,
we	need	not	have	all	of	 the	process	 in	main	memory	at	once;	virtual	memory	allows	a	program	 to	 run
when	only	specific	pieces	are	present	in	memory.	The	parts	not	currently	being	used	are	stored	in	the	page
file	on	disk.

Virtual	memory	 can	be	 implemented	with	different	 techniques,	 including	paging,	 segmentation,	 or	 a
combination	of	both,	but	paging	is	the	most	popular.	(This	topic	is	covered	in	great	detail	in	the	study	of
operating	systems.)	The	success	of	paging,	like	that	of	cache,	is	dependent	on	the	locality	principle.	When
data	is	needed	that	does	not	reside	in	main	memory,	the	entire	block	in	which	it	resides	is	copied	from
disk	to	main	memory,	in	hopes	that	other	data	on	the	same	page	will	be	useful	as	the	program	continues	to
execute.

6.5.1		Paging
The	basic	idea	behind	paging	is	quite	simple:	Allocate	physical	memory	to	processes	in	fixed-size	chunks
(page	frames)	and	keep	track	of	where	the	various	pages	of	the	process	reside	by	recording	information	in
a	page	table.	Every	process	has	its	own	page	table	that	typically	resides	in	main	memory,	and	the	page
table	stores	the	physical	location	of	each	virtual	page	of	the	process.	The	page	table	has	N	rows,	where	N
is	 the	 number	 of	 virtual	 pages	 in	 the	 process.	 If	 there	 are	 pages	 of	 the	 process	 currently	 not	 in	main
memory,	the	page	table	indicates	this	by	setting	a	valid	bit	to	0;	if	the	page	is	in	main	memory,	the	valid
bit	is	set	to	1.	Therefore,	each	entry	of	the	page	table	has	two	fields:	a	valid	bit	and	a	frame	number.

Additional	 fields	are	often	added	 to	 relay	more	 information.	For	example,	a	dirty	bit	 (or	 a	modify
bit)	could	be	added	to	indicate	whether	the	page	has	been	changed.	This	makes	returning	the	page	to	disk
more	 efficient,	 because	 if	 it	 is	 not	modified,	 it	 does	 not	 need	 to	 be	 rewritten	 to	 disk.	Another	 bit	 (the
usage	bit)	can	be	added	to	indicate	the	page	usage.	This	bit	 is	set	 to	1	whenever	the	page	is	accessed.
After	a	certain	time	period,	the	usage	bit	is	set	to	0.	If	the	page	is	referenced	again,	the	usage	bit	is	set	to
1.	However,	if	the	bit	remains	0,	this	indicates	that	the	page	has	not	been	used	for	a	period	of	time,	and	the
system	might	benefit	by	sending	this	page	out	to	disk.	By	doing	so,	the	system	frees	up	this	page’s	location
for	 another	 page	 that	 the	 process	 eventually	 needs	 (we	 discuss	 this	 in	more	 detail	when	we	 introduce
replacement	algorithms).

Virtual	memory	pages	are	the	same	size	as	physical	memory	page	frames.	Process	memory	is	divided
into	 these	 fixed-size	pages,	 resulting	 in	potential	 internal	 fragmentation	when	 the	 last	 page	 is	 copied
into	memory.	The	process	may	not	actually	need	the	entire	page	frame,	but	no	other	process	may	use	it.
Therefore,	 the	unused	memory	 in	 this	 last	 frame	 is	 effectively	wasted.	 It	might	happen	 that	 the	process
itself	requires	less	than	one	page	in	its	entirety,	but	it	must	occupy	an	entire	page	frame	when	copied	to
memory.	 Internal	 fragmentation	 is	 unusable	 space	 within	 a	 given	 partition	 (in	 this	 case,	 a	 page)	 of
memory.

Now	that	you	understand	what	paging	is,	we	will	discuss	how	it	works.	When	a	process	generates	a
virtual	 address,	 the	 operating	 system	must	 dynamically	 translate	 this	 virtual	 address	 into	 the	 physical
address	in	memory	at	which	the	data	actually	resides.	(For	purposes	of	simplicity,	let’s	assume	that	we
have	no	cache	memory	for	the	moment.)	For	example,	from	a	program	viewpoint,	we	see	the	final	byte	of
a	 10-byte	 program	 as	 address	 0x09,	 assuming	 1-byte	 instructions	 and	 1-byte	 addresses,	 and	 a	 starting
address	 of	 0x00.	 However,	 when	 actually	 loaded	 into	 memory,	 the	 logical	 address	 0x09	 (perhaps	 a



reference	 to	 the	 label	 X	 in	 an	 assembly	 language	 program)	 may	 actually	 reside	 in	 physical	 memory
location	0x39,	implying	that	the	program	was	loaded	starting	at	physical	address	0x30.	There	must	be	an
easy	way	to	convert	the	logical,	or	virtual,	address	0x09	to	the	physical	address	0x39.

To	accomplish	this	address	translation,	a	virtual	address	is	divided	into	two	fields:	a	page	field	and
an	offset	field,	to	represent	the	offset	within	that	page	where	the	requested	data	is	located.	This	address
translation	process	is	similar	to	the	process	we	used	when	we	divided	main	memory	addresses	into	fields
for	the	cache	mapping	algorithms.	And	similar	to	cache	blocks,	page	sizes	are	usually	powers	of	2;	this
simplifies	the	extraction	of	page	numbers	and	offsets	from	virtual	addresses.

To	access	data	at	a	given	virtual	address,	the	system	performs	the	following	steps:

1.		Extract	the	page	number	from	the	virtual	address.
2.		Extract	the	offset	from	the	virtual	address.
3.		Translate	the	page	number	into	a	physical	page	frame	number	by	accessing	the	page	table.

A.	Look	up	the	page	number	in	the	page	table	(using	the	virtual	page	number	as	an	index).
B.	Check	the	valid	bit	for	that	page.

1.		If	the	valid	bit	=	0,	the	system	generates	a	page	fault	and	the	operating	system	must	intervene	to
a.	Locate	the	desired	page	on	disk.
b.	 Find	 a	 free	 page	 frame	 (this	may	necessitate	 removing	 a	 “victim”	page	 from	memory	 and
copying	it	back	to	disk	if	memory	is	full).

c.	Copy	the	desired	page	into	the	free	page	frame	in	main	memory.
d.	Update	the	page	table.	(The	virtual	page	just	brought	in	must	have	its	frame	number	and	valid
bit	in	the	page	table	modified.	If	there	was	a	“victim”	page,	its	valid	bit	must	be	set	to	zero.)

e.	Resume	execution	of	the	process	causing	the	page	fault,	continuing	to	Step	B2.
2.		If	the	valid	bit	=	1,	the	page	is	in	memory.

a.	Replace	the	virtual	page	number	with	the	actual	frame	number.
b.	Access	data	at	offset	in	physical	page	frame	by	adding	the	offset	to	the	frame	number	for	the
given	virtual	page.

Please	 note	 that	 if	 a	 process	 has	 free	 frames	 in	 main	 memory	 when	 a	 page	 fault	 occurs,	 the	 newly
retrieved	page	can	be	placed	in	any	of	those	free	frames.	However,	if	the	memory	allocated	to	the	process
is	 full,	 a	 victim	 page	must	 be	 selected.	 The	 replacement	 algorithms	 used	 to	 select	 a	 victim	 are	 quite
similar	 to	 those	 used	 in	 cache.	 FIFO,	 random,	 and	 LRU	 are	 all	 potential	 replacement	 algorithms	 for
selecting	a	victim	page.	(For	more	information	on	replacement	algorithms,	see	the	references	at	the	end	of
this	chapter.)

Let’s	look	at	an	example.

	EXAMPLE	6.8	Suppose	 that	we	have	a	virtual	 address	 space	of	28	 bytes	 for	 a	 given	process	 (this
means	 the	program	generates	 addresses	 in	 the	 range	0x00	 to	0xFF,	which	 is	0	 to	255	 in	base	10),	 and
physical	memory	 of	 4	 page	 frames	 (no	 cache).	Assume	 also	 that	 pages	 are	 32	 bytes	 in	 length.	Virtual
addresses	contain	8	bits,	and	physical	addresses	contain	7	bits	(4	frames	of	32	bytes	each	is	128	bytes,	or
27).	Suppose,	also,	 that	some	pages	from	the	process	have	been	brought	 into	main	memory.	Figure	6.18
illustrates	the	current	state	of	the	system.
Each	virtual	address	has	8	bits	and	is	divided	into	2	fields:	the	page	field	has	3	bits,	indicating	that	there



are	23	pages	of	virtual	memory,	 .	Each	page	is	25	=	32	bytes	in	length,	so	we	need	5	bits	for	the

page	 offset	 (assuming	 a	 byte-addressable	memory).	 Therefore,	 an	 8-bit	 virtual	 address	 has	 the	 format
shown	in	Figure	6.19.

Suppose	the	system	now	generates	the	virtual	address	0x0D	=	000011012.	Dividing	the	binary	address
into	the	page	and	offset	fields	(see	Figure	6.20),	we	see	the	page	field	P	=	0002	and	the	offset	field	equals
011012.	To	continue	the	translation	process,	we	use	the	000	value	of	the	page	field	as	an	index	into	the
page	table.	Going	to	the	0th	entry	in	the	page	table,	we	see	that	virtual	page	0	maps	to	physical	page	frame
2	 =	 102.	 Thus	 the	 translated	 physical	 address	 becomes	 page	 frame	 2,	 offset	 13.	 Note	 that	 a	 physical
address	 has	 only	 7	 bits	 (2	 for	 the	 frame,	 because	 there	 are	 4	 frames,	 and	 5	 for	 the	 offset).	Written	 in
binary,	using	the	two	fields,	this	becomes	10011012,	or	address	0x4D,	and	is	shown	in	Figure	6.21.

FIGURE	6.18	Current	State	Using	Paging	and	the	Associated	Page	Table

FIGURE	6.19	Format	for	an	8-Bit	Virtual	Address	with	25	=	32-Byte	Page	Size

FIGURE	6.20	Format	for	Virtual	Address	000011012	=	0x0D



FIGURE	6.21	Format	for	Physical	Address	10011012	=	4D16

Let’s	look	at	a	complete	example	in	a	real	(but	small)	system	(again,	with	no	cache).

	EXAMPLE	6.9	Suppose	a	program	is	16	bytes	 long,	has	access	 to	an	8-byte	memory	 that	uses	byte
addressing,	and	a	page	is	2	bytes	in	length.	As	the	program	executes,	it	generates	the	following	address
reference	 string:	 0x0,	 0x1,	 0x2,	 0x3,	 0x6,	 0x7,	 0xA,	 0xB.	 (This	 address	 reference	 string	 indicates	 that
address	 0x0	 is	 referenced	 first,	 then	 address	 0x1,	 then	 address	 0x2,	 and	 so	 on.)	 Originally,	 memory
contains	no	pages	for	this	program.	When	address	0x0	is	needed,	both	address	0x0	and	address	0x1	(in
page	 0)	 are	 copied	 to	 page	 frame	 2	 in	main	memory.	 (It	 could	 be	 that	 frames	 0	 and	 1	 of	memory	 are
occupied	 by	 another	 process	 and	 thus	 unavailable.)	 This	 is	 an	 example	 of	 a	 page	 fault,	 because	 the
desired	 page	 of	 the	 program	 had	 to	 be	 fetched	 from	 disk.	When	 address	 0x1	 is	 referenced,	 the	 data
already	exists	in	memory	(so	we	have	a	page	hit).	When	address	0x2	is	referenced,	this	causes	another
page	 fault,	 and	page	1	of	 the	program	 is	 copied	 to	 frame	0	 in	memory.	This	 continues,	 and	 after	 these
addresses	are	referenced	and	pages	are	copied	from	disk	 to	main	memory,	 the	state	of	 the	system	is	as
shown	 in	 Figure	 6.22a.	We	 see	 that	 address	 0x0	 of	 the	 program,	 which	 contains	 the	 data	 value	 “A,”
currently	resides	in	memory	address	0x4	=	1002.	Therefore,	the	CPU	must	translate	from	virtual	address
0x0	to	physical	address	0x4,	and	uses	the	translation	scheme	described	previously	to	do	this.	Note	that
main	memory	 addresses	 contain	 3	 bits	 (there	 are	 8	 bytes	 in	memory),	 but	 virtual	 addresses	 (from	 the
program)	must	have	4	bits	(because	there	are	16	bytes	in	the	virtual	address).	Therefore,	the	translation
must	also	convert	a	4-bit	address	into	a	3-bit	address.



FIGURE	6.22	A	Small	Memory	from	Example	6.9	Using	Paging

Figure	6.22b	depicts	the	page	table	for	this	process	after	the	given	pages	have	been	accessed.	We	can
see	that	pages	0,	1,	3,	and	5	of	the	process	are	valid,	and	thus	reside	in	memory.	Pages	2,	6,	and	7	are	not
valid	and	would	each	cause	page	faults	if	referenced.

Let’s	take	a	closer	look	at	the	translation	process.	Using	the	architecture	from	Example	6.9,	suppose
the	CPU	now	generates	program,	or	virtual,	 address	0xA	=	10102	 for	a	 second	 time.	We	see	 in	Figure
6.22a	 that	 the	 data	 at	 this	 location,	 “K,”	 resides	 in	main	memory	 address	 0x6	 =	 01102.	 However,	 the
computer	must	 perform	 a	 specific	 translation	 process	 to	 find	 the	 data.	 To	 accomplish	 this,	 the	 virtual
address,	10102,	is	divided	into	a	page	field	and	an	offset	field.	The	page	field	is	3	bits	long	because	there
are	8	pages	 in	 the	program.	This	 leaves	1	bit	 for	 the	offset,	which	 is	 correct	because	 there	are	only	2



words	on	each	page.	This	field	division	is	illustrated	in	Figure	6.22c.
Once	the	computer	sees	these	fields,	it	is	a	simple	matter	to	convert	to	the	physical	address.	The	page

field	value	of	1012	is	used	as	an	index	into	the	page	table.	Because	1012	=	5,	we	use	5	as	the	offset	into
the	page	table	(Figure	6.22b)	and	see	that	virtual	page	5	maps	to	physical	frame	3.	We	now	replace	the	5
=	1012	with	 3	=	112,	 but	 keep	 the	 same	offset.	The	 new	physical	 address	 is	 1102,	 as	 shown	 in	 Figure
6.22d.	This	process	successfully	translates	from	virtual	addresses	to	physical	addresses	and	reduces	the
number	of	bits	from	four	to	three	as	required.

Now	that	we	have	worked	with	a	small	example,	we	are	ready	for	a	larger,	more	realistic	example.

	EXAMPLE	6.10	Suppose	we	have	a	virtual	address	space	of	8K	bytes,	a	physical	memory	size	of	4K
bytes	that	uses	byte	addressing,	and	a	page	size	of	1K	bytes.	(There	is	no	cache	on	this	system	either,	but
we	are	getting	closer	to	understanding	how	memory	works	and	eventually	will	use	both	paging	and	cache
in	our	examples.)	A	virtual	address	has	a	total	of	13	bits	(8K	=	213),	with	3	bits	used	for	the	page	field
(there	are	 	virtual	pages),	and	10	used	for	the	offset	(each	page	has	210	bytes).	A	physical	memory
address	has	only	12	bits	(4K	=	212),	with	the	first	2	bits	as	the	page	field	(there	are	22	page	frames	in	main
memory)	and	the	remaining	10	bits	as	the	offset	within	the	page.	The	formats	for	the	virtual	address	and
physical	address	are	shown	in	Figure	6.23a.

For	purposes	of	this	example,	let’s	assume	we	have	the	page	table	indicated	in	Figure	6.23b.	Figure
6.23c	 shows	 a	 table	 indicating	 the	 various	 main	 memory	 addresses	 that	 is	 useful	 for	 illustrating	 the
translation.

Suppose	the	CPU	now	generates	virtual	address	0x1553	=	10101010100112.	Figure	6.23d	 illustrates
how	this	address	is	divided	into	the	page	and	offset	fields	and	how	it	is	converted	to	the	physical	address
0x553	=	0101010100112.	Essentially,	the	page	field	101	of	the	virtual	address	is	replaced	by	the	frame
number	01,	because	page	5	maps	to	frame	1	(as	indicated	in	the	page	table).	Figure	6.23e	illustrates	how
virtual	address	0x802	is	translated	to	physical	address	0x002.	Figure	6.23f	shows	virtual	address	0x1004
generating	a	page	fault;	page	4	=	1002	is	not	valid	in	the	page	table.



FIGURE	6.23	A	Larger	Memory	Example	Using	Paging



FIGURE	6.24	Format	for	Virtual	Address	0x1211232A

FIGURE	6.25	Format	for	Physical	Address	0x3F00F32A

	EXAMPLE	6.11	Suppose	a	computer	has	32-bit	virtual	addresses,	pages	of	size	4K,	and	1GB	of	byte-
addressable	main	memory.	Given	the	partial	page	table	above,	convert	virtual	address	0x0011232A	to	a
physical	address.	The	page	number	and	frame	number	values	for	this	example	are	in	hexadecimal.

The	format	for	virtual	memory	address	0x0011232A	is	shown	in	Figure	6.24.	There	are	32	bits	in	a
virtual	address,	and	12	of	those	must	refer	to	the	offset	within	a	page	(because	pages	are	of	size	4K	=	212).
The	 remaining	 20	 bits	 are	 used	 to	 determine	 the	 virtual	 page	 number:	 0000	 0000	 0001	 0001	 00102	 =
0x00112.	The	format	for	a	physical	address	is	shown	in	Figure	6.25.	The	offset	field	must	still	contain	12
bits,	but	a	physical	address	only	has	30	bits	(1GB	=	230),	so	the	frame	field	has	only	18	bits.	If	we	check
the	page	table	for	virtual	page	00112,	we	see	that	it	is	valid	and	mapped	to	frame	number	3F00F.	If	we
substitute	3F00F	into	the	frame	field,	we	end	up	with	the	physical	address	of	11	1111	0000	0000	11112	=
0x3F00F32A,	as	shown	in	Figure	6.25.

It	is	worth	mentioning	that	selecting	an	appropriate	page	size	is	very	difficult.	The	larger	the	page	size
is,	the	smaller	the	page	table	is,	thus	saving	space	in	main	memory.	However,	if	the	page	is	too	large,	the
internal	 fragmentation	becomes	worse.	Larger	page	sizes	also	mean	fewer	actual	 transfers	 from	disk	 to
main	 memory	 because	 the	 chunks	 being	 transferred	 are	 larger.	 However,	 if	 they	 are	 too	 large,	 the
principle	of	locality	begins	to	break	down	and	we	are	wasting	resources	by	transferring	data	that	may	not
be	necessary.

6.5.2		Effective	Access	Time	Using	Paging
When	we	studied	cache,	we	introduced	the	notion	of	effective	access	time.	We	also	need	to	address	EAT
while	using	virtual	memory.	There	 is	a	 time	penalty	associated	with	virtual	memory:	For	each	memory
access	that	the	processor	generates,	there	must	now	be	two	physical	memory	accesses—one	to	reference
the	page	table	and	one	to	reference	the	actual	data	we	wish	to	access.	It	is	easy	to	see	how	this	affects	the
effective	access	time.	Suppose	a	main	memory	access	requires	200ns	and	the	page	fault	rate	is	1%	(that
is,	99%	of	the	time	we	find	the	page	we	need	in	memory).	Assume	that	it	costs	us	10ms	to	access	a	page
not	in	memory.	(This	time	of	10ms	includes	the	time	necessary	to	transfer	the	page	into	memory,	update



the	page	table,	and	access	the	data.)	The	effective	access	time	for	a	memory	access	is	now:

FIGURE	6.26	Current	State	of	the	TLB	for	Figure	6.23

EAT	=	.99(200ns	+	200ns)	+	.01(10ms)	=	100.396ns

Even	if	100%	of	the	pages	were	in	main	memory,	the	effective	access	time	would	be:

EAT	=	1.00(200ns	+	200ns)	=	400ns,

which	 is	 double	 the	 access	 time	 of	memory.	 Accessing	 the	 page	 table	 costs	 us	 an	 additional	memory
access	because	the	page	table	itself	is	stored	in	main	memory.

We	can	speed	up	the	page	table	lookup	by	storing	the	most	recent	page	lookup	values	in	a	page	table
cache	called	a	translation	look-aside	buffer	(TLB).	Each	TLB	entry	consists	of	a	virtual	page	number
and	its	corresponding	frame	number.	A	possible	state	of	the	TLB	for	the	page	table	from	Example	6.10	is
indicated	in	Figure	6.26.

Typically,	 the	 TLB	 is	 implemented	 as	 associative	 cache,	 and	 the	 virtual	 page/frame	 pairs	 can	 be
mapped	 anywhere.	Here	 are	 the	 steps	 necessary	 for	 an	 address	 lookup	when	using	 a	TLB	 (see	Figure
6.27):

1.		Extract	the	page	number	from	the	virtual	address.
2.		Extract	the	offset	from	the	virtual	address.
3.		Search	for	the	virtual	page	number	in	the	TLB	using	parallel	searching.
4.	 	 If	 the	 (virtual	page	#,	page	 frame	#)	pair	 is	 found	 in	 the	TLB,	add	 the	offset	 to	 the	physical	 frame

number	and	access	the	memory	location.
5.	 	 If	 there	 is	 a	 TLB	miss,	 go	 to	 the	 page	 table	 to	 get	 the	 necessary	 frame	 number.	 If	 the	 page	 is	 in

memory,	use	the	corresponding	frame	number	and	add	the	offset	to	yield	the	physical	address.



FIGURE	6.27	Using	the	TLB

6.		If	the	page	is	not	in	main	memory,	generate	a	page	fault	and	restart	the	access	when	the	page	fault	is
complete.

In	 Section	 6.4,	 we	 presented	 cache	memory.	 In	 our	 discussion	 of	 paging,	 we	 have	 introduced	 yet
another	type	of	cache—the	TLB,	which	caches	page	table	entries.	TLBs	use	associative	mapping.	As	is
the	case	with	L1	cache,	computers	often	have	 two	separate	TLBs—one	for	 instructions	and	another	for
data.



6.5.3		Putting	It	All	Together:	Using	Cache,	TLBs,	and	Paging
Because	 the	 TLB	 is	 essentially	 a	 cache,	 putting	 all	 these	 concepts	 together	 can	 be	 confusing.	 A
walkthrough	of	 the	 entire	process	will	 help	you	 to	grasp	 the	overall	 idea.	When	 the	CPU	generates	 an
address,	it	is	an	address	relative	to	the	program	itself,	or	a	virtual	address.	This	virtual	address	must	be
converted	 into	 a	 physical	 address	 before	 the	 data	 retrieval	 can	 proceed.	 There	 are	 two	 ways	 this	 is
accomplished:	(1)	use	the	TLB	to	find	the	frame	by	locating	a	recently	cached	(page,	frame)	pair;	or	(2)	in
the	event	of	a	TLB	miss,	use	the	page	table	to	find	the	corresponding	frame	in	main	memory	(typically	the
TLB	is	updated	at	 this	point	as	well).	This	 frame	number	 is	 then	combined	with	 the	offset	given	 in	 the
virtual	address	to	create	the	physical	address.

At	 this	 point,	 the	 virtual	 address	 has	 been	 converted	 into	 a	 physical	 address	 but	 the	 data	 at	 that
address	has	not	yet	been	retrieved.	There	are	two	possibilities	for	retrieving	the	data:	(1)	search	cache	to
see	if	the	data	resides	there;	or	(2)	on	a	cache	miss,	go	to	the	actual	main	memory	location	to	retrieve	the
data	(typically	cache	is	updated	at	this	point	as	well).

Figure	6.28	illustrates	the	process	of	using	a	TLB,	paging,	and	cache	memory.

6.5.4		Advantages	and	Disadvantages	of	Paging	and	Virtual	Memory
In	Section	6.5.2,	we	discussed	how	virtual	memory	 implemented	 through	paging	adds	an	extra	memory
reference	when	accessing	data.	This	 time	penalty	 is	partially	 alleviated	by	using	a	TLB	 to	 cache	page
table	 entries.	 However,	 even	 with	 a	 high	 hit	 ratio	 in	 the	 TLB,	 this	 process	 still	 incurs	 translation
overhead.	 Another	 disadvantage	 of	 virtual	 memory	 and	 paging	 is	 the	 extra	 resource	 consumption	 (the
memory	overhead	for	storing	page	tables).	In	extreme	cases	(very	large	programs),	the	page	tables	may
take	up	a	significant	portion	of	physical	memory.	One	solution	offered	for	this	latter	problem	is	to	page
the	 page	 tables,	which	 can	get	 very	 confusing	 indeed!	Virtual	memory	 and	paging	 also	 require	 special
hardware	and	operating	system	support.

The	benefits	of	using	virtual	memory	must	outweigh	these	disadvantages	to	make	it	useful	in	computer
systems.	But	what	are	the	advantages	of	virtual	memory	and	paging?	It	is	quite	simple:	Programs	are	no
longer	 restricted	by	 the	amount	of	physical	memory	 that	 is	available.	Virtual	memory	permits	us	 to	 run
individual	programs	whose	virtual	address	space	is	larger	than	physical	memory.	(In	effect,	this	allows
one	process	to	share	physical	memory	with	itself.)	This	makes	it	much	easier	to	write	programs	because
the	 programmer	 no	 longer	 has	 to	 worry	 about	 the	 physical	 address	 space	 limitations.	 Because	 each
program	requires	less	physical	memory,	virtual	memory	also	permits	us	to	run	more	programs	at	the	same
time.	This	allows	us	to	share	the	machine	among	processes	whose	total	address	space	sizes	exceed	the
physical	memory	size,	resulting	in	an	increase	in	CPU	utilization	and	system	throughput.



FIGURE	6.28	Putting	It	All	Together:	The	TLB,	Page	Table,	Cache,	and	Main	Memory

The	fixed	size	of	frames	and	pages	simplifies	both	allocation	and	placement	from	the	perspective	of
the	operating	system.	Paging	also	allows	the	operating	system	to	specify	protection	(“this	page	belongs	to
User	X	and	you	can’t	access	it”)	and	sharing	(“this	page	belongs	to	User	X	but	you	can	read	it”)	on	a	per
page	basis.

6.5.5		Segmentation
Although	 it	 is	 the	 most	 common	method,	 paging	 is	 not	 the	 only	 way	 to	 implement	 virtual	 memory.	 A
second	method	employed	by	some	systems	is	segmentation.	Instead	of	dividing	the	virtual	address	space
into	 equal,	 fixed-size	 pages,	 and	 the	 physical	 address	 space	 into	 equal-size	 page	 frames,	 the	 virtual
address	space	 is	divided	 into	 logical,	variable-length	units,	or	segments.	Physical	memory	 isn’t	 really
divided	 or	 partitioned	 into	 anything.	 When	 a	 segment	 needs	 to	 be	 copied	 into	 physical	 memory,	 the
operating	system	looks	for	a	chunk	of	free	memory	large	enough	to	store	the	entire	segment.	Each	segment
has	a	base	address,	indicating	where	it	is	located	in	memory,	and	a	bounds	limit,	indicating	its	size.	Each
program,	consisting	of	multiple	segments,	now	has	an	associated	segment	table	instead	of	a	page	table.
This	segment	table	is	simply	a	collection	of	the	base/bounds	pairs	for	each	segment.



Memory	 accesses	 are	 translated	 by	 providing	 a	 segment	 number	 and	 an	 offset	within	 the	 segment.
Error	checking	is	performed	to	make	sure	the	offset	is	within	the	allowable	bound.	If	it	is,	then	the	base
value	 for	 that	 segment	 (found	 in	 the	 segment	 table)	 is	 added	 to	 the	 offset,	 yielding	 the	 actual	 physical
address.	Because	paging	 is	 based	on	 a	 fixed-size	 block	 and	 segmentation	 is	 based	on	 a	 logical	 block,
protection	 and	 sharing	 are	 easier	 using	 segmentation.	 For	 example,	 the	 virtual	 address	 space	might	 be
divided	 into	 a	 code	 segment,	 a	 data	 segment,	 a	 stack	 segment,	 and	 a	 symbol	 table	 segment,	 each	 of	 a
different	size.	It	is	much	easier	to	say,	“I	want	to	share	all	my	data,	so	make	my	data	segment	accessible	to
everyone”	than	it	is	to	say,	“OK,	in	which	pages	does	my	data	reside,	and	now	that	I	have	found	those	four
pages,	let’s	make	three	of	the	pages	accessible,	but	only	half	of	that	fourth	page	accessible.”

As	 with	 paging,	 segmentation	 suffers	 from	 fragmentation.	 Paging	 creates	 internal	 fragmentation
because	a	 frame	can	be	allocated	 to	a	process	 that	doesn’t	need	 the	entire	 frame.	Segmentation,	on	 the
other	 hand,	 suffers	 from	external	 fragmentation.	As	 segments	 are	 allocated	 and	 deallocated,	 the	 free
chunks	that	reside	in	memory	become	broken	up.	Eventually,	there	are	many	small	chunks,	but	none	large
enough	to	store	an	entire	segment.	The	difference	between	external	and	internal	fragmentation	is	that,	with
external	fragmentation,	enough	total	memory	space	may	exist	to	allocate	to	a	process,	but	this	space	is	not
contiguous—it	exists	as	a	large	number	of	small,	unusable	holes.	With	internal	fragmentation,	the	memory
simply	isn’t	available	because	the	system	has	overallocated	memory	to	a	process	that	doesn’t	need	it.	To
combat	external	fragmentation,	systems	use	some	sort	of	garbage	collection.	This	process	simply	shuffles
occupied	chunks	of	memory	to	coalesce	the	smaller,	fragmented	chunks	into	larger,	usable	chunks.	If	you
have	ever	defragmented	a	disk	drive,	you	have	witnessed	a	 similar	process,	 collecting	 the	many	small
free	spaces	on	the	disk	and	creating	fewer,	larger	ones.

6.5.6		Paging	Combined	with	Segmentation
Paging	is	not	the	same	as	segmentation.	Paging	is	based	on	a	purely	physical	value:	The	program	and	main
memory	are	divided	up	into	chunks	of	the	same	physical	size.	Segmentation,	on	the	other	hand,	allows	for
logical	portions	of	the	program	to	be	divided	into	variable-sized	partitions.	With	segmentation,	the	user	is
aware	of	the	segment	sizes	and	boundaries;	with	paging,	the	user	is	unaware	of	the	partitioning.	Paging	is
easier	to	manage:	Allocation,	freeing,	swapping,	and	relocating	are	easy	when	everything’s	the	same	size.
However,	pages	are	typically	smaller	than	segments,	which	means	more	overhead	(in	terms	of	resources
to	 both	 track	 and	 transfer	 pages).	 Paging	 eliminates	 external	 fragmentation,	 whereas	 segmentation
eliminates	internal	fragmentation.	Segmentation	has	the	ability	to	support	sharing	and	protection,	both	of
which	are	very	difficult	to	do	with	paging.

Paging	and	segmentation	both	have	their	advantages;	however,	a	system	does	not	have	to	use	one	or
the	 other—these	 two	 approaches	 can	 be	 combined,	 in	 an	 effort	 to	 get	 the	 best	 of	 both	 worlds.	 In	 a
combined	 approach,	 the	 virtual	 address	 space	 is	 divided	 into	 segments	 of	 variable	 length,	 and	 the
segments	are	divided	into	fixed-size	pages.	Main	memory	is	divided	into	the	same	size	frames.

Each	segment	has	a	page	 table,	which	means	every	program	has	multiple	page	 tables.	The	physical
address	 is	divided	 into	 three	 fields.	The	 first	 field	 is	 the	 segment	 field,	which	points	 the	 system	 to	 the
appropriate	page	 table.	The	 second	 field	 is	 the	page	number,	which	 is	used	as	 an	offset	 into	 this	page
table.	The	third	field	is	the	offset	within	the	page.

Combined	 segmentation	 and	 paging	 is	 advantageous	 because	 it	 allows	 for	 segmentation	 from	 the
user’s	point	of	view	and	paging	from	the	system’s	point	of	view.



6.6			A	REAL-WORLD	EXAMPLE	OF	MEMORY	MANAGEMENT
Because	 the	 Pentium	 exhibits	 fairly	 characteristic	 traits	 of	modern	memory	management,	we	 present	 a
short	overview	of	how	this	processor	deals	with	memory.

The	Pentium	architecture	allows	 for	32-bit	virtual	 addresses	and	32-bit	physical	 addresses.	 It	uses
either	4KB	or	4MB	page	sizes	when	using	paging.	Paging	and	segmentation	can	be	applied	 in	different
combinations,	 including	 unsegmented,	 unpaged	 memory;	 unsegmented,	 paged	 memory;	 segmented,
unpaged	memory;	and	segmented,	paged	memory.

The	 Pentium	 has	 two	 caches,	 L1	 and	 L2,	 both	 utilizing	 a	 32-byte	 block	 size.	 L1	 is	 next	 to	 the
processor,	whereas	L2	is	between	the	processor	and	memory.	The	L1	cache	is	actually	two	caches;	 the
Pentium	(like	many	other	machines)	separates	L1	cache	into	cache	used	to	hold	instructions	(called	the	I-
cache)	and	cache	used	to	hold	data	(called	the	D-cache).	Both	L1	caches	utilize	an	LRU	bit	for	dealing
with	block	replacement.	Each	L1	cache	has	a	TLB;	the	D-cache	TLB	has	64	entries	and	the	I-cache	has
only	 32	 entries.	Both	TLBs	 are	 4-way	 set	 associative	 and	use	 a	 pseudo-LRU	 replacement.	The	L1	D-
cache	and	I-cache	both	use	2-way	set	associative	mapping.	The	L2	cache	can	be	from	512KB	(for	earlier
models)	 up	 to	 1MB	 (in	 later	models).	 The	L2	 cache,	 like	 both	L1	 caches,	 uses	 2-way	 set	 associative
mapping.

To	manage	access	 to	memory,	 the	Pentium	I-cache	and	 the	L2	cache	use	 the	MESI	cache	coherency
protocol.	 Each	 cache	 line	 has	 two	 bits	 that	 store	 one	 of	 the	 following	MESI	 states:	 (1)	M:	modified
(cache	is	different	from	main	memory);	(2)	E:	exclusive	(cache	has	not	been	modified	and	is	the	same	as
memory);	(3)	S:	shared	(this	line/block	may	be	shared	with	another	cache	line/block);	and	(4)	I:	invalid
(the	line/block	is	not	in	cache).	Figure	6.29	presents	an	overview	of	the	Pentium	memory	hierarchy.

FIGURE	6.29	Pentium	Memory	Hierarchy

We	 have	 given	 only	 a	 brief	 and	 basic	 overview	 of	 the	 Pentium	 and	 its	 approach	 to	 memory
management.	If	you	are	interested	in	more	details,	please	check	the	“Further	Reading”	section.



CHAPTER	SUMMARY
Memory	 is	 organized	 as	 a	 hierarchy,	 with	 larger	 memories	 being	 cheaper	 but	 slower,	 and	 smaller
memories	being	faster	but	more	expensive.	In	a	typical	memory	hierarchy,	we	find	a	cache,	main	memory,
and	 secondary	memory	 (usually	 a	 disk	 drive).	 The	 principle	 of	 locality	 helps	 bridge	 the	 gap	 between
successive	layers	of	this	hierarchy,	and	the	programmer	gets	the	impression	of	a	very	fast	and	very	large
memory	without	being	concerned	about	the	details	of	transfers	among	the	various	levels	of	this	hierarchy.

Cache	acts	as	a	buffer	 to	hold	 the	most	 frequently	used	blocks	of	main	memory	and	 is	close	 to	 the
CPU.	One	goal	of	the	memory	hierarchy	is	for	the	processor	to	see	an	effective	access	time	very	close	to
the	access	 time	of	 the	cache.	Achieving	this	goal	depends	on	the	behavioral	properties	of	 the	programs
being	 executed,	 the	 size	 and	 organization	 of	 the	 cache,	 and	 the	 cache	 replacement	 policy.	 Processor
references	that	are	found	in	cache	are	called	cache	hits;	if	not	found,	they	are	cache	misses.	On	a	miss,	the
missing	data	is	fetched	from	main	memory,	and	the	entire	block	containing	the	data	is	loaded	into	cache.	A
unified	cache	holds	both	data	and	instructions,	whereas	a	Harvard	cache	uses	a	separate	cache	for	data
and	a	separate	cache	for	instructions.	A	multilevel	cache	hierarchy	is	used	to	increase	cache	performance.

The	organization	of	cache	determines	the	method	the	CPU	uses	to	search	cache	for	different	memory
addresses.	Cache	can	be	organized	in	different	ways:	direct	mapped,	fully	associative,	or	set	associative.
Direct	mapped	cache	needs	no	replacement	algorithm;	however,	fully	associative	and	set	associative	must
use	FIFO,	LRU,	or	 some	other	placement	policy	 to	determine	 the	block	 to	 remove	 from	cache	 to	make
room	for	a	new	block,	if	cache	is	full.	LRU	gives	very	good	performance	but	is	difficult	to	implement.

Another	goal	of	 the	memory	hierarchy	 is	 to	extend	main	memory	by	using	 the	hard	disk	 itself,	 also
called	virtual	memory.	Virtual	memory	allows	us	to	run	programs	whose	virtual	address	space	is	larger
than	physical	memory.	 It	 also	 allows	more	processes	 to	 run	 concurrently.	The	disadvantages	of	 virtual
memory	implemented	with	paging	include	extra	resource	consumption	(storing	the	page	table)	and	extra
memory	 accesses	 (to	 access	 the	 page	 table),	 unless	 a	 TLB	 is	 used	 to	 cache	 the	 most	 recently	 used
virtual/physical	 address	 pairs.	 Virtual	 memory	 also	 incurs	 a	 translation	 penalty	 to	 convert	 the	 virtual
address	 to	 a	 physical	 one	 as	well	 as	 a	 penalty	 for	 processing	 a	 page	 fault	 should	 the	 requested	 page
currently	 reside	 on	 disk	 instead	 of	 main	memory.	 The	 relationship	 between	 virtual	 memory	 and	main
memory	 is	 similar	 to	 the	 relationship	 between	main	memory	 and	 cache.	Because	of	 this	 similarity,	 the
concepts	of	cache	memory	and	the	TLB	are	often	confused.	In	reality,	the	TLB	is	a	cache.	It	is	important	to
realize	that	virtual	addresses	must	be	translated	to	physical	ones	first,	before	anything	else	can	be	done,
and	this	is	what	the	TLB	does.	Although	cache	and	paged	memory	appear	to	be	similar,	the	objectives	are
different:	Cache	improves	the	effective	access	time	to	main	memory,	whereas	paging	extends	the	size	of
main	memory.

FURTHER	READING
Mano	 (2007)	 has	 a	 nice	 explanation	 of	RAM.	 Stallings	 (2013)	 also	 gives	 a	 very	 good	 explanation	 of
RAM.	 Hamacher,	 Vranesic,	 and	 Zaky	 (2002)	 contains	 an	 extensive	 discussion	 of	 cache.	 For	 good
coverage	 of	 virtual	 memory,	 see	 Stallings	 (2012),	 Tanenbaum	 (2013),	 or	 Tanenbaum	 and	 Woodhull
(2006).	 For	 more	 information	 on	 memory	 management	 in	 general,	 check	 out	 the	 books	 by	 Flynn	 and
McHoes	(2010),	Stallings	(2013),	Tanenbaum	and	Woodhull	(2006),	or	Silberschatz,	Galvin,	and	Gagne
(2013).	Hennessy	and	Patterson	(2012)	discuss	issues	involved	with	determining	cache	performance.	For
an	online	tutorial	on	memory	technologies,	see	www.kingston.com/tools/umg.	George	Mason	University
also	has	a	set	of	workbenches	on	various	computer	topics.	The	workbench	for	virtual	memory	is	located
at	cs.gmu.edu/cne/workbenches/vmemory.html.

http://www.kingston.com/tools/umg
http://cs.gmu.edu/cne/workbenches/vmemory.html


REFERENCES
Flynn,	I.	M.,	&	McHoes,	A.	M.	Understanding	Operating	Systems,	6th	ed.	Boston,	MA:	Thomson	Course

Technology,	2010.
Hamacher,	V.	C.,	Vranesic,	Z.	G.,	&	Zaky,	S.	G.	Computer	Organization,	5th	ed.	New	York:	McGraw-

Hill,	2002.
Hennessy,	J.	L.,	&	Patterson,	D.	A.	Computer	Architecture:	A	Quantitative	Approach,	5th	ed.	San

Francisco:	Morgan	Kaufmann,	2012.
Mano,	M.	Digital	Design,	4th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,	2007.
Silberschatz,	A.,	Galvin,	P.,	&	Gagne,	G.	Operating	System	Concepts,	9th	ed.	New	York,	NY:	John	Wiley

&	Sons,	2013.
Stallings,	W.	Computer	Organization	and	Architecture,	9th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,

2013.
Stallings,	W.	Operating	Systems,	7th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,	2012.
Tanenbaum,	A.	Structured	Computer	Organization,	6th	ed.	Englewood	Cliffs,	NJ:	Prentice	Hall,	2013.
Tanenbaum,	A.,	&	Woodhull,	S.	Operating	Systems,	Design	and	Implementation,	3rd	ed.	Englewood

Cliffs,	NJ:	Prentice	Hall,	2006.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS
1.		Which	is	faster,	SRAM	or	DRAM?
2.		What	are	the	advantages	of	using	DRAM	for	main	memory?
3.		Name	three	different	applications	where	ROMs	are	often	used.
4.	 	 Explain	 the	 concept	 of	 a	 memory	 hierarchy.	 Why	 did	 your	 authors	 choose	 to	 represent	 it	 as	 a

pyramid?
5.		Explain	the	concept	of	locality	of	reference,	and	state	its	importance	to	memory	systems.
6.		What	are	the	three	forms	of	locality?
7.		Give	two	noncomputer	examples	of	the	concept	of	cache.
8.		Which	of	L1	or	L2	cache	is	faster?	Which	is	smaller?	Why	is	it	smaller?
9.		Cache	is	accessed	by	its	________,	whereas	main	memory	is	accessed	by	its	_______.
10.	 	What	are	 the	 three	 fields	 in	a	direct	mapped	cache	address?	How	are	 they	used	 to	access	a	word

located	in	cache?
11.		How	does	associative	memory	differ	from	regular	memory?	Which	is	more	expensive	and	why?
12.		Explain	how	fully	associative	cache	is	different	from	direct	mapped	cache.
13.		Explain	how	set	associative	cache	combines	the	ideas	of	direct	and	fully	associa	tive	cache.
14.	 	Direct	mapped	 cache	 is	 a	 special	 case	 of	 set	 associative	 cache	where	 the	 set	 size	 is	 1.	 So	 fully

associative	cache	is	a	special	case	of	set	associative	cache	where	the	set	size	is	___.
15.	 	What	 are	 the	 three	 fields	 in	 a	 set	 associative	 cache	 address,	 and	 how	 are	 they	 used	 to	 access	 a

location	in	cache?



16.		Explain	the	four	cache	replacement	policies	presented	in	this	chapter.
17.		Why	is	the	optimal	cache	replacement	policy	important?
18.	 	What	 is	 the	worst-case	 cache	 behavior	 that	 can	 develop	 using	LRU	 and	FIFO	 cache	 replacement

policies?
19.		What,	exactly,	is	effective	access	time	(EAT)?
20.		Explain	how	to	derive	an	effective	access	time	formula.
21.		When	does	caching	behave	badly?
22.		What	is	a	dirty	block?
23.		Describe	the	advantages	and	disadvantages	of	the	two	cache	write	policies.
24.		Explain	the	difference	between	a	unified	cache	and	a	Harvard	cache.
25.		What	are	the	advantages	of	a	Harvard	cache?
26.		Why	would	a	system	contain	a	victim	cache?	A	trace	cache?
27.		Explain	the	differences	among	L1,	L2,	and	L3	cache.
28.		Explain	the	differences	between	inclusive	and	exclusive	cache.
29.		What	is	the	advantage	to	a	nonblocking	cache?
30.		What	is	the	difference	between	a	virtual	memory	address	and	a	physical	memory	address?	Which	is

larger?	Why?
31.		What	is	the	objective	of	paging?
32.		Discuss	the	pros	and	cons	of	paging.
33.		What	is	a	page	fault?
34.		What	causes	internal	fragmentation?
35.		What	are	the	components	(fields)	of	a	virtual	address?
36.		What	is	a	TLB,	and	how	does	it	improve	EAT?
37.		What	are	the	advantages	and	disadvantages	of	virtual	memory?
38.		When	would	a	system	ever	need	to	page	its	page	table?
39.		What	causes	external	fragmentation,	and	how	can	it	be	fixed?

EXERCISES
	1.		Suppose	a	computer	using	direct	mapped	cache	has	220	bytes	of	byte-addressable	main	memory	and

a	cache	of	32	blocks,	where	each	cache	block	contains	16	bytes.
a)		How	many	blocks	of	main	memory	are	there?
b)		What	is	the	format	of	a	memory	address	as	seen	by	the	cache;	that	is,	what	are	the	sizes	of	the

tag,	block,	and	offset	fields?
c)		To	which	cache	block	will	the	memory	address	0x0DB63	map?

2.	 	Suppose	a	computer	using	direct	mapped	cache	has	232	bytes	of	byte-addressable	main	memory



and	a	cache	of	1024	blocks,	where	each	cache	block	contains	32	bytes.
a)		How	many	blocks	of	main	memory	are	there?
b)		What	is	the	format	of	a	memory	address	as	seen	by	the	cache;	that	is,	what	are	the	sizes	of	the

tag,	block,	and	offset	fields?
c)		To	which	cache	block	will	the	memory	address	0x000063FA	map?

3.	 	Suppose	a	computer	using	direct	mapped	cache	has	232	bytes	of	byte-addressable	main	memory
and	a	cache	size	of	512	bytes,	and	each	cache	block	contains	64	bytes.
a)		How	many	blocks	of	main	memory	are	there?
b)		What	is	the	format	of	a	memory	address	as	seen	by	cache;	that	is,	what	are	the	sizes	of	the	tag,

block,	and	offset	fields?
c)		To	which	cache	block	will	the	memory	address	0x13A4498A	map?

	4.		Suppose	a	computer	using	fully	associative	cache	has	216	bytes	of	byte-addressable	main	memory
and	a	cache	of	64	blocks,	where	each	cache	block	contains	32	bytes.
a)		How	many	blocks	of	main	memory	are	there?
b)		What	is	the	format	of	a	memory	address	as	seen	by	the	cache;	that	is,	what	are	the	sizes	of	the

tag	and	offset	fields?
c)		To	which	cache	block	will	the	memory	address	0xF8C9	map?

5.		Suppose	a	computer	using	fully	associative	cache	has	224	bytes	of	byte-addressable	main	memory
and	a	cache	of	128	blocks,	where	each	cache	block	contains	64	bytes.
a)		How	many	blocks	of	main	memory	are	there?
b)		What	is	the	format	of	a	memory	address	as	seen	by	the	cache;	that	is,	what	are	the	sizes	of	the

tag	and	offset	fields?
c)		To	which	cache	block	will	the	memory	address	0x01D872	map?

6.		Suppose	a	computer	using	fully	associative	cache	has	224	bytes	of	byte-addressable	main	memory
and	a	cache	of	128	blocks,	where	each	block	contains	64	bytes.
a)		How	many	blocks	of	main	memory	are	there?
b)		What	is	the	format	of	a	memory	address	as	seen	by	cache;	that	is,	what	are	the	sizes	of	the	tag

and	offset	fields?
c)		To	which	cache	block	will	the	memory	address	0x01D872	map?

	7.	 	Assume	 that	 a	 system’s	memory	 has	 128M	bytes.	Blocks	 are	 64	 bytes	 in	 length,	 and	 the	 cache
consists	 of	 32K	 blocks.	 Show	 the	 format	 for	 a	 main	 memory	 address	 assuming	 a	 2-way	 set
associative	cache	mapping	scheme	and	byte	addressing.	Be	sure	 to	 include	 the	fields	as	well	as
their	sizes.

8.		A	2-way	set	associative	cache	consists	of	4	sets.	Main	memory	contains	2K	blocks	of	8	bytes	each
and	byte	addressing	is	used.
a)		Show	the	main	memory	address	format	that	allows	us	to	map	addresses	from	main	memory	to

cache.	Be	sure	to	include	the	fields	as	well	as	their	sizes.
b)	 	Compute	 the	hit	 ratio	 for	 a	program	 that	 loops	3	 times	 from	addresses	0x8	 to	0x33	 in	main

memory.	You	may	leave	the	hit	ratio	in	terms	of	a	fraction.
9.	 	Suppose	a	byte-addressable	computer	using	set	associative	cache	has	216	bytes	of	main	memory



and	a	cache	of	32	blocks,	and	each	cache	block	contains	8	bytes.
a)		If	this	cache	is	2-way	set	associative,	what	is	the	format	of	a	memory	address	as	seen	by	the

cache;	that	is,	what	are	the	sizes	of	the	tag,	set,	and	offset	fields?
b)		If	this	cache	is	4-way	set	associative,	what	is	the	format	of	a	memory	address	as	seen	by	the

cache?
10.	 	Suppose	a	byte-addressable	computer	using	set	associative	cache	has	221	bytes	of	main	memory

and	a	cache	of	64	blocks,	where	each	cache	block	contains	4	bytes.
a)		If	this	cache	is	2-way	set	associative,	what	is	the	format	of	a	memory	address	as	seen	by	the

cache;	that	is,	what	are	the	sizes	of	the	tag,	set,	and	offset	fields?
b)		If	this	cache	is	4-way	set	associative,	what	is	the	format	of	a	memory	address	as	seen	by	the

cache?
*	11.		Suppose	we	have	a	computer	that	uses	a	memory	address	word	size	of	8	bits.	This	computer	has	a

16-byte	 cache	 with	 4	 bytes	 per	 block.	 The	 computer	 accesses	 a	 number	 of	 memory	 locations
throughout	the	course	of	running	a	program.
Suppose	this	computer	uses	direct-mapped	cache.	The	format	of	a	memory	address	as	seen	by	the
cache	is	shown	here:

The	system	accesses	memory	addresses	in	this	exact	order:	0x6E,	0xB9,	0x17,	0xE0,	0x4E,	0x4F,
0x50,	0x91,	0xA8,	0xA9,	0xAB,	0xAD,	0x93,	 and	0x94.	The	memory	addresses	of	 the	 first	 four
accesses	 have	 been	 loaded	 into	 the	 cache	 blocks	 as	 shown	 below.	 (The	 contents	 of	 the	 tag	 are
shown	in	binary,	and	the	cache	“contents”	are	simply	the	address	stored	at	that	cache	location.)

a)		What	is	the	hit	ratio	for	the	entire	memory	reference	sequence	given	above,	assuming	that	we
count	the	first	four	accesses	as	misses?

b)		What	memory	blocks	will	be	in	the	cache	after	the	last	address	has	been	accessed?
12.	 	 Given	 a	 byte-addressable	memory	with	 256	 bytes,	 suppose	 a	memory	 dump	 yields	 the	 results

shown	 below.	 The	 address	 of	 each	 memory	 cell	 is	 determined	 by	 its	 row	 and	 column.	 For
example,	memory	address	0x97	is	in	the	9th	row,	7th	column,	and	contains	the	hexadecimal	value
43.	Memory	location	0xA3	contains	the	hexadecimal	value	58.



The	system	from	which	this	memory	dump	was	produced	contains	4	blocks	of	cache,	where	each
block	consists	of	8	bytes.	Assume	 that	 the	 following	sequence	of	memory	addresses	 takes	place:
0x2C,	0x6D,	0x86,	0x29,	0xA5,	0x82,	0xA7,	0x68,	0x80,	and	0x2B.
a)		How	many	blocks	of	main	memory	are	there?
b)		Assuming	a	direct	mapped	cache:
		i.	Show	the	format	for	a	main	memory	address	assuming	that	the	system	uses	direct	mapped

cache.	Specify	field	names	and	sizes.
ii.	What	does	cache	look	like	after	the	10	memory	accesses	have	taken	place?	Draw	the	cache

and	show	contents	and	tags.
iii.	What	is	the	hit	rate	for	this	cache	on	the	given	sequence	of	memory	accesses?

c)		Assuming	a	fully	associative	cache:
		i.	Show	the	format	for	a	main	memory	address.	Specify	field	names	and	sizes.
ii.	Assuming	that	all	cache	blocks	are	initially	empty,	blocks	are	loaded	into	the	first	available

empty	cache	location,	and	cache	uses	a	first-in,	first-out	replacement	policy,	what	does	cache
look	like	after	the	10	memory	accesses	have	taken	place?

iii.	What	is	the	hit	rate	for	this	cache	on	the	given	sequences	of	memory	accesses?
d)		Assuming	a	2-way	set	associative	cache:
		i.	Show	the	format	for	a	main	memory	address.	Specify	field	names	and	sizes.
ii.	What	does	cache	look	like	after	the	10	memory	accesses	have	taken	place?
iii.	What	is	the	hit	ratio	for	this	cache	on	the	given	sequence	of	memory	accesses?	iv.	If	a	cache

hit	retrieves	a	value	in	5ns,	and	retrieving	a	value	from	main	memory	requires	25ns,	what	is
the	average	effective	access	time	for	this	cache,	assuming	that	all	memory	accesses	exhibit
the	 same	 hit	 rate	 as	 the	 sequence	 of	 10	 given,	 and	 assuming	 that	 the	 system	 uses	 a
nonoverlapped	(sequential)	access	strategy?

13.		A	direct	mapped	cache	consists	of	8	blocks.	Byte-addressable	main	memory	contains	4K	blocks	of
8	bytes	each.	Access	time	for	the	cache	is	22ns,	and	the	time	required	to	fill	a	cache	slot	from	main



memory	 is	 300ns.	 (This	 time	 allows	 us	 to	 determine	 that	 the	 block	 is	missing	 and	 bring	 it	 into
cache.)	Assume	that	a	request	is	always	started	in	parallel	to	both	cache	and	to	main	memory	(so	if
it	is	not	found	in	cache,	we	do	not	have	to	add	this	cache	search	time	to	the	memory	access).	If	a
block	is	missing	from	cache,	the	entire	block	is	brought	into	the	cache	and	the	access	is	restarted.
Initially,	the	cache	is	empty.
a)		Show	the	main	memory	address	format	that	allows	us	to	map	addresses	from	main	memory	to

cache.	Be	sure	to	include	the	fields	as	well	as	their	sizes.
b)		Compute	the	hit	ratio	for	a	program	that	loops	4	times	from	addresses	0x0	to	0x43	in	memory.
c)		Compute	the	effective	access	time	for	this	program.

14.		Consider	a	byte-addressable	computer	with	24-bit	addresses,	a	cache	capable	of	storing	a	total	of
64KB	of	data,	and	blocks	of	32	bytes.	Show	the	format	of	a	24-bit	memory	address	for:
a)		direct	mapped
b)		associative
c)		4-way	set	associative

*	15.	Suppose	a	byte-addressable	computer	using	4-way	set	associative	cache	has	216	words	of	main
memory	 (where	each	word	 is	32	bits)	and	a	cache	of	32	blocks,	where	each	block	 is	4	words.
Show	the	main	memory	address	format	for	 this	machine.	 (Hint:	Because	 this	architecture	 is	byte
addressable,	and	the	number	of	addresses	is	critical	in	determining	the	address	format,	you	must
convert	everything	to	bytes.)

16.		Assume	a	direct	mapped	cache	that	holds	4096	bytes,	in	which	each	block	is	16	bytes.	Assuming
that	an	address	 is	32	bits	and	that	cache	is	 initially	empty,	complete	 the	table	 that	follows.	(You
should	 use	 hexadecimal	 numbers	 for	 all	 answers.)	Which,	 if	 any,	 of	 the	 addresses	will	 cause	 a
collision	 (forcing	 the	block	 that	was	 just	brought	 in	 to	be	overwritten)	 if	 they	are	accessed	one
right	after	the	other?

17.		Redo	exercise	16,	assuming	now	that	cache	is	16-way	set	associative.

18.		Suppose	a	process	page	table	contains	the	entries	shown	below.	Using	the	format	shown	in	Figure
6.17a,	indicate	where	the	process	pages	are	located	in	memory.



Frame Valid	Bit

1 1

- 0

0 1

3 1

- 0

- 0

2 1

- 0

19.		Suppose	a	process	page	table	contains	the	entries	shown	below.	Using	the	format	shown	in	Figure
6.22a,	indicate	where	the	process	pages	are	located	in	memory.

Frame Valid	Bit

- 0

3 1

- 0

- 0

2 1

0 1

- 0

1 1

20.		Suppose	you	have	a	byte-addressable	virtual	address	memory	system	with	eight	virtual	pages	of	64
bytes	each,	and	four	page	frames.	Assuming	the	following	page	table,	answer	the	questions	below:

a)	How	many	bits	are	in	a	virtual	address?
b)		How	many	bits	are	in	a	physical	address?
c)		What	physical	address	corresponds	to	the	following	virtual	addresses?	(If	the	address	causes	a



page	fault,	simply	indicate	this	is	the	case.)
i.	0x0
ii.	0x44
iii.	0xC2
iv.	0x80

21.		Suppose	we	have	210	bytes	of	virtual	memory	and	28	bytes	of	physical	main	memory.	Suppose	the
page	size	is	24	bytes.
a)		How	many	pages	are	there	in	virtual	memory?
b)		How	many	page	frames	are	there	in	main	memory?
c)		How	many	entries	are	in	the	page	table	for	a	process	that	uses	all	of	virtual	memory?

*	 22.	 You	 have	 a	 byte-addressable	 virtual	 memory	 system	 with	 a	 two-entry	 TLB,	 a	 2-way	 set
associative	cache,	and	a	page	table	for	a	process	P.	Assume	cache	blocks	of	8	bytes	and	page	size
of	 16	 bytes.	 In	 the	 system	 below,	 main	 memory	 is	 divided	 into	 blocks,	 where	 each	 block	 is
represented	by	a	letter.	Two	blocks	equal	one	frame.

Given	the	system	state	as	depicted	above,	answer	the	following	questions:
a)		How	many	bits	are	in	a	virtual	address	for	process	P?	Explain.
b)		How	many	bits	are	in	a	physical	address?	Explain.
c)		Show	the	address	format	for	virtual	address	0x12	(specify	field	name	and	size)	that	would	be

used	by	the	system	to	translate	to	a	physical	address	and	then	translate	this	virtual	address	into
the	 corresponding	 physical	 address.	 (Hint:	 Convert	 the	 address	 to	 its	 binary	 equivalent	 and
divide	 it	 into	 the	 appropriate	 fields.)	 Explain	 how	 these	 fields	 are	 used	 to	 translate	 to	 the
corresponding	physical	address.

d)	Given	virtual	address	0x06	converts	to	physical	address	0x36.	Show	the	format	for	a	physical
address	(specify	the	field	names	and	sizes)	that	is	used	to	determine	the	cache	location	for	this
address.	Explain	how	to	use	this	format	to	determine	where	physical	address	0x36	would	be



located	in	cache.	(Hint:	Convert	0x36	to	binary	and	divide	it	into	the	appropriate	fields.)
e)	 	Given	virtual	 address	 0x19	 is	 located	 on	 virtual	 page	 1,	 offset	 9.	 Indicate	 exactly	 how	 this

address	would	be	translated	to	its	corresponding	physical	address	and	how	the	data	would	be
accessed.	 Include	 in	 your	 explanation	 how	 the	 TLB,	 the	 page	 table,	 cache,	 and	memory	 are
used.

23.		Given	a	virtual	memory	system	with	a	TLB,	a	cache,	and	a	page	table,	assume	the	following:
•			A	TLB	hit	requires	5ns.
•			A	cache	hit	requires	12ns.
•			A	memory	reference	requires	25ns.
•			A	disk	reference	requires	200ms	(this	includes	updating	the	page	table,	cache,	and	TLB).
•			The	TLB	hit	ratio	is	90%.
•			The	cache	hit	rate	is	98%.
•			The	page	fault	rate	is	.001%.
•			On	a	TLB	or	cache	miss,	the	time	required	for	access	includes	a	TLB	and/or	cache	update,	but
the	access	is	not	restarted.

•			On	a	page	fault,	the	page	is	fetched	from	disk,	and	all	updates	are	performed,	but	the	access	is
restarted.

•			All	references	are	sequential	(no	overlap,	nothing	done	in	parallel).
For	each	of	the	following,	indicate	whether	or	not	it	is	possible.	If	it	is	possible,	specify	the	time
required	for	accessing	the	requested	data.
a)		TLB	hit,	cache	hit
b)		TLB	miss,	page	table	hit,	cache	hit
c)		TLB	miss,	page	table	hit,	cache	miss
d)		TLB	miss,	page	table	miss,	cache	hit
e)		TLB	miss,	page	table	miss
Write	down	the	equation	to	calculate	the	effective	access	time.

24.		Does	a	TLB	miss	always	indicate	that	a	page	is	missing	from	memory?	Explain.
25.		A	system	implements	a	paged	virtual	address	space	for	each	process	using	a	one-level	page	table.

The	 maximum	 size	 of	 virtual	 address	 space	 is	 16MB.	 The	 page	 table	 for	 the	 running	 process
includes	the	following	valid	entries	(the	→	notation	indicates	that	a	virtual	page	maps	to	the	given
page	frame;	that	is,	it	is	located	in	that	frame):

The	page	size	is	1024	bytes	and	the	maximum	physical	memory	size	of	the	machine	is	2MB.
a)		How	many	bits	are	required	for	each	virtual	address?
b)		How	many	bits	are	required	for	each	physical	address?
c)		What	is	the	maximum	number	of	entries	in	a	page	table?
d)		To	which	physical	address	will	the	virtual	address	0x5F4	translate?



e)		Which	virtual	address	will	translate	to	physical	address	0x400?
26.		a)	If	you	are	a	computer	builder	trying	to	make	your	system	as	price-competitive	as	possible,	what

features	and	organization	would	you	select	for	its	memory	hierarchy?
b)	 	 If	you	are	 a	 computer	buyer	 trying	 to	get	 the	best	performance	 from	a	 system,	what	 features

would	you	look	for	in	its	memory	hierarchy?
*	27.	Consider	a	system	that	has	multiple	processors	where	each	processor	has	its	own	cache,	but	main

memory	is	shared	among	all	processors.
a)		Which	cache	write	policy	would	you	use?
b)		The	Cache	Coherency	Problem.	With	regard	to	the	system	just	described,	what	problems	are

caused	if	a	processor	has	a	copy	of	memory	block	A	in	its	cache	and	a	second	processor,	also
having	a	copy	of	A	 in	 its	cache,	 then	updates	main	memory	block	A?	Can	you	 think	of	a	way
(perhaps	more	than	one)	of	preventing	this	situation,	or	lessening	its	effects?

*	28.	Pick	a	specific	architecture	(other	than	the	one	covered	in	this	chapter).	Do	research	to	find	out
how	your	architecture	approaches	the	concepts	introduced	in	this	chapter,	as	was	done	for	Intel’s
Pentium.

29.		Name	two	ways	that,	as	a	programmer,	you	can	improve	cache	performance.
30.		Look	up	a	specific	vendor’s	specifications	for	memory,	and	report	the	memory	access	time,	cache

access	time,	and	cache	hit	rate	(and	any	other	data	the	vendor	provides).



“Who	is	General	Failure	and	why	is	he	reading	my	disk?”

—Anonymous

CHAPTER	7



Input/Output	and	Storage	Systems

7.1			INTRODUCTION
One	could	easily	argue	 that	computers	are	more	useful	 to	us	as	appliances	 for	 information	storage	and
retrieval	than	they	are	as	instruments	of	computation.	Indeed,	without	having	some	means	of	getting	data
into	the	computer	and	information	out	of	it,	we	have	little	use	at	all	for	a	CPU	and	memory.	We	interact
with	these	components	only	through	the	I/O	devices	connected	to	them.

With	 personal	 systems,	 for	 example,	 a	 keyboard	 and	mouse	 are	 the	 primary	 user	 input	 devices.	A
standard	monitor	is	an	output-only	device	that	presents	results	to	the	user.	Although	most	printers	provide
device	status	information	to	the	host	system	to	which	they	are	connected,	they	are	still	considered	output-
only	devices.	Disk	drives	are	called	input/output	devices	because	data	can	be	written	to	and	read	from
them.	I/O	devices	also	exchange	control	and	status	information	with	the	host	system.	We	observe	that	the
term	I/O	is	commonly	used	both	as	an	adjective	and	as	a	noun:	Computers	have	I/O	devices	connected	to
them,	and	to	achieve	good	performance,	one	endeavors	to	keep	disk	I/O	to	a	minimum.

After	 reading	 this	 chapter,	 you	 will	 understand	 the	 details	 of	 how	 input,	 output,	 and	 I/O	 devices
interact	with	 their	 host	 systems,	 and	 the	 various	ways	 in	which	 I/O	 is	 controlled.	We	 also	 discuss	 the
internals	 of	mass	 storage	 devices	 and	 some	 of	 the	ways	 in	which	 they	 are	 put	 to	work	 in	 large-scale
computer	 systems.	 Enterprise-class	 storage	 systems	 incorporate	 many	 of	 the	 ideas	 presented	 in	 this
chapter,	but	they	also	rely	on	data	network	infrastructures.	We	therefore	defer	our	discussion	of	storage
systems	until	Chapter	13.

7.2	I/O	AND	PERFORMANCE
We	expect	our	computer	systems	to	be	able	to	efficiently	store	and	retrieve	data,	and	to	quickly	carry	out
the	 commands	 we	 give	 them.	When	 processing	 time	 exceeds	 user	 “think	 time,”	 we	 complain	 that	 the
computer	 is	 “slow.”	 Sometimes	 this	 slowness	 can	 have	 a	 substantial	 productivity	 impact,	measured	 in
hard	currency.	More	often	than	not,	the	root	cause	of	the	problem	is	not	in	the	processor	or	the	memory	but
in	how	the	system	processes	its	input	and	output	(I/O).

I/O	 is	more	 than	 just	 file	 storage	 and	 retrieval.	A	poorly	 functioning	 I/O	 system	 can	have	 a	 ripple
effect,	dragging	down	the	entire	computer	system.	In	the	preceding	chapter,	we	described	virtual	memory,
that	 is,	 how	 systems	 page	 blocks	 of	 memory	 to	 disk	 to	 make	 room	 for	 more	 user	 processes	 in	 main
memory.	If	the	disk	system	is	sluggish,	process	execution	slows	down,	causing	backlogs	in	CPU	and	disk
queues.	The	easy	solution	to	the	problem	is	to	simply	throw	more	resources	at	the	system.	Buy	more	main
storage.	Buy	a	faster	processor.	If	we’re	in	a	particularly	Draconian	frame	of	mind,	we	could	simply	limit
the	number	of	concurrent	processes!

Such	measures	are	wasteful,	if	not	plain	irresponsible.	If	we	really	understand	what’s	happening	in	a
computer	system,	we	can	make	the	best	use	of	the	resources	available,	adding	costly	resources	only	when
absolutely	 necessary.	 There	 are	 a	 number	 of	 tools	 we	 can	 use	 to	 determine	 the	 most	 effective	 way
performance	can	be	improved.	Amdahl’s	Law	is	one	of	them.



7.3			AMDAHL’	S	LAW
Each	time	a	(particular)	microprocessor	company	announces	its	latest	and	greatest	CPU,	headlines	sprout
across	the	globe	heralding	this	latest	leap	forward	in	technology.	Cyberphiles	the	world	over	would	agree
that	such	advances	are	laudable	and	deserving	of	fanfare.	However,	when	similar	advances	are	made	in
I/O	technology,	the	story	is	apt	to	appear	on	page	29	of	some	obscure	trade	magazine.	Under	the	glare	of
media	hype,	it	is	easy	to	lose	sight	of	the	integrated	nature	of	computer	systems.	A	40%	speedup	for	one
component	 certainly	 will	 not	 make	 the	 entire	 system	 40%	 faster,	 despite	 media	 implications	 to	 the
contrary.

In	1967,	Gene	Amdahl	recognized	the	interrelationship	of	all	components	with	the	overall	efficiency
of	 a	 computer	 system.	He	 quantified	 his	 observations	 in	 a	 formula,	which	 is	 now	known	 as	Amdahl’s
Law.	In	essence,	Amdahl’s	Law	states	that	the	overall	speedup	of	a	computer	system	depends	on	both	the
speedup	in	a	particular	component	and	how	much	that	component	is	used	by	the	system.	In	symbols:

where

S	is	the	overall	system	speedup;
f	is	the	fraction	of	work	performed	by	the	faster	component;	and
k	is	the	speedup	of	a	new	component.

Let’s	 say	 that	most	 of	 your	 daytime	 processes	 spend	 70%	 of	 their	 time	 running	 in	 the	 CPU	 and	 30%
waiting	 for	 service	 from	 the	 disk.	 Suppose	 also	 that	 someone	 is	 trying	 to	 sell	 you	 a	 processor	 array
upgrade	 that	 is	 50%	 faster	 than	 what	 you	 have	 and	 costs	 $10,000.	 The	 day	 before,	 someone	 called
offering	you	a	set	of	disk	drives	for	$7,000.	These	new	disks	promise	to	be	150%	faster	than	your	existing
disks.	You	know	that	the	system	performance	is	starting	to	degrade,	so	you	need	to	do	something.	Which
would	you	choose	to	yield	the	best	performance	improvement	for	the	least	amount	of	money?

For	the	processor	option,	we	have:

We	therefore	appreciate	a	total	speedup	of	1.3	times,	or	30%,	with	the	new	processor	for	$10,000.
For	the	disk	option,	we	have:

The	disk	upgrade	gives	us	a	speedup	of	1.22	times,	or	22%,	for	$7,000.
All	things	being	equal,	it	is	a	close	decision.	Each	1%	of	performance	improvement	resulting	from	the

processor	upgrade	costs	about	$333.	Each	1%	with	 the	disk	upgrade	costs	about	$318.	This	makes	 the
disk	 upgrade	 a	 slightly	 better	 choice,	 based	 solely	 on	 dollars	 spent	 per	 performance	 improvement
percentage	point.	Certainly,	other	factors	would	influence	your	decision.	For	example,	if	your	disks	are
nearing	the	end	of	their	expected	lives,	or	if	you’re	running	out	of	disk	space,	you	might	consider	the	disk
upgrade	even	if	it	were	to	cost	more	than	the	processor	upgrade.



What	Do	We	Really	Mean	by	“Speedup”?
Amdahl’s	Law	uses	the	variable	K	to	represent	the	speedup	of	a	particular	component.	But	what	do	we
really	mean	by	“speedup”?

There	are	many	different	ways	to	discuss	the	notion	of	“speedup.”	For	example,	one	person	may
say	A	is	twice	as	fast	as	B;	another	may	say	A	is	100%	faster	than	B.	It	is	important	to	understand	the
difference	if	you	want	to	use	Amdahl’s	Law.

It	is	a	common	misconception	to	believe	that	if	A	is	twice	as	fast	as	B	that	A	is	200%	faster	than	B.
However,	 this	 is	not	accurate.	It	 is	easy	to	see	that	 if	A	is	 twice	as	fast	as	B,	 that	a	multiple	of	2	 is
involved.	For	example,	if	Bob	runs	a	race	in	15	seconds,	but	it	takes	Sue	30	seconds,	clearly	Bob	is
twice	as	 fast	as	Sue.	 If	Bob	 is	 running	an	average	of	4mph,	 then	Sue	must	be	 running	an	average	of
2mph.	 The	 error	 occurs	 when	 converting	 it	 to	 “percentage”	 terminology.	 Bob’s	 speed	 does	 not
represent	a	200%	increase	over	Sue’s	speed;	it	is	only	a	100%	increase.	This	becomes	clearer	when
we	look	at	the	definition	for	“%	faster.”

Bob	is	100%	faster	than	Sue	because	30/15	=	1	+	100/100	(N	must	be	100).	The	ratio	of	Bob’s	time	to
Sue’s	time	(30/15)	represents	the	speedup	(Bob	is	2	times	faster	than	Sue).	It	is	this	notion	of	speedup
that	 must	 be	 used	 for	 k	 in	 Amdahl’s’	 equation;	 it	 is	 also	 this	 notion	 of	 speedup	 that	 results	 from
applying	Amdahl’s	Law.

Suppose	we	wish	 to	 use	Amdahl’s	 Law	 to	 find	 the	 overall	 speedup	 for	 a	 system,	 assuming	we
replace	 the	 CPU.	We	 know	 that	 the	 CPU	 is	 used	 80%	 of	 the	 time	 and	 that	 the	 new	 CPU	 we	 are
considering	 is	50%	faster	 than	 the	current	one	 in	 the	system.	Amdahl’s	Law	requires	us	 to	know	the
speedup	of	the	newer	component.	The	variable	k	in	this	case	is	not	50	or	0.5;	instead,	it	is	1.5	(because
the	newer	CPU	is	1.5	times	faster	than	the	old	one):

So,	applying	Amdahl’s	Law,	we	get:

which	means	we	have	an	overall	speedup	of	1.36;	with	the	new	CPU,	the	system	will	be	1.36	times
faster.	The	new	system	is	36%	faster.

In	addition	to	being	used	for	hardware	speedup,	Amdahl’s	Law	can	be	used	in	programming.	It	is
well	known	that,	on	average,	a	program	spends	a	majority	of	its	time	in	a	small	percentage	of	its	code.
Programmers	will	often	focus	on	increasing	the	performance	of	that	small	segment	of	code.	They	can
use	Amdahl’s	Law	to	determine	the	overall	effect	on	the	program’s	running	time.

Suppose	you	have	written	a	program	and	determined	that	80%	of	the	time	is	spent	in	one	segment
of	code.	You	examine	the	code	and	determine	that	you	can	decrease	the	running	time	in	that	segment	of
code	by	half	(i.e.,	a	speedup	of	2).	 If	we	apply	Amdahl’s	Law,	we	see	 that	 the	overall	effect	on	 the
entire	program	is:



which	means	the	program,	as	a	whole,	will	run	1.67	times	faster	with	the	new	code.
Consider	one	last	example.	As	a	programmer,	you	have	an	option	of	making	a	segment	of	code	that

is	 used	 10%	 of	 the	 time	 100	 times	 faster.	 You	 estimate	 the	 cost	 at	 one	month	 (time	 and	wages)	 to
rewrite	 the	code.	You	could	also	make	 it	 1,000,000	 times	 faster	but	 estimate	 that	 it	will	 cost	you	6
months.	What	should	you	do?	If	we	use	Amdahl’s	Law,	we	see	that	a	speedup	of	100	times	yields:

so	 the	 overall	 program	 is	 sped	 up	 1.1	 times	 (roughly	 11%).	 If	 we	 spend	 6	months	 to	 increase	 the
performance	1,000,000	times,	the	overall	program	execution	speedup	is:

The	speedup	is	minimal	at	best.	So	it	is	clear	that	spending	the	additional	time	and	wages	to	speed	up
that	 section	of	 code	 is	 not	worth	 the	 effort.	Programmers	working	on	parallel	 programs	often	 apply
Amdahl’s	Law	to	determine	the	benefit	of	parallelizing	code.

Amdahl’s	Law	is	used	in	many	areas	of	computer	hardware	and	software,	including	programming
in	 general,	 memory	 hierarchy	 design,	 hardware	 replacement,	 processor	 set	 design,	 instruction	 set
design,	and	parallel	programming.	However,	Amdahl’s	Law	is	important	to	any	activity	subject	to	the
notion	of	diminishing	 returns;	even	business	managers	are	applying	Amdahl’s	Law	when	developing
and	comparing	various	business	processes.

Before	you	make	that	disk	decision,	however,	you	need	to	know	your	options.	The	sections	that	follow
will	 help	you	 to	 gain	 an	understanding	of	 general	 I/O	 architecture,	with	 special	 emphasis	 on	disk	 I/O.
Disk	 I/O	 follows	 closely	 behind	 the	 CPU	 and	 memory	 in	 determining	 the	 overall	 effectiveness	 of	 a
computer	system.

7.4	I/O	ARCHITECTURES
We	 will	 define	 input/output	 as	 a	 subsystem	 of	 components	 that	 moves	 coded	 data	 between	 external
devices	and	a	host	 system,	consisting	of	 a	CPU	and	main	memory.	 I/O	subsystems	 include,	but	 are	not
limited	to:

•			Blocks	of	main	memory	that	are	devoted	to	I/O	functions
•			Buses	that	provide	the	means	of	moving	data	into	and	out	of	the	system
•			Control	modules	in	the	host	and	in	peripheral	devices
•			Interfaces	to	external	components	such	as	keyboards	and	disks
•			Cabling	or	communications	links	between	the	host	system	and	its	peripherals

Figure	7.1	shows	how	all	of	these	components	can	fit	together	to	form	an	integrated	I/O	subsystem.	The
I/O	modules	take	care	of	moving	data	between	main	memory	and	a	particular	device	interface.	Interfaces
are	 designed	 specifically	 to	 communicate	 with	 certain	 types	 of	 devices,	 such	 as	 keyboards,	 disks,	 or
printers.	Interfaces	handle	the	details	of	making	sure	that	devices	are	ready	for	the	next	batch	of	data,	or
that	the	host	is	ready	to	receive	the	next	batch	of	data	coming	in	from	the	peripheral	device.



FIGURE	7.1	A	Model	I/O	Configuration

The	 exact	 form	and	meaning	of	 the	 signals	 exchanged	between	 a	 sender	 and	 a	 receiver	 is	 called	 a
protocol.	 Protocols	 include	 command	 signals,	 such	 as	 “Printer	 reset”;	 status	 signals,	 such	 as	 “Tape
ready”;	 or	 data-passing	 signals,	 such	 as	 “Here	 are	 the	 bytes	 you	 requested.”	 In	most	 data-exchanging
protocols,	the	receiver	must	acknowledge	the	commands	and	data	sent	to	it	or	indicate	that	it	is	ready	to
receive	data.	This	type	of	protocol	exchange	is	called	a	handshake.

External	devices	that	handle	large	blocks	of	data	(such	as	printers,	and	disk	and	tape	drives)	are	often
equipped	with	buffer	memory.	Buffers	allow	the	host	system	to	send	large	quantities	of	data	to	peripheral
devices	 in	 the	 fastest	 manner	 possible,	 without	 having	 to	 wait	 until	 slow	 mechanical	 devices	 have
actually	written	the	data.	Dedicated	memory	on	disk	drives	is	usually	of	the	fast	cache	variety,	whereas
printers	are	usually	provided	with	slower	RAM.

Device	control	circuits	take	data	to	or	from	on-board	buffers	and	ensure	that	it	gets	where	it’s	going.
In	the	case	of	writing	to	disks,	this	involves	making	certain	that	the	disk	is	positioned	properly	so	that	the
data	is	written	to	a	particular	location.	For	printers,	these	circuits	move	the	print	head	or	laser	beam	to
the	next	character	position,	fire	the	head,	eject	the	paper,	and	so	forth.

Disk	and	 tape	are	 forms	of	durable	storage,	 so	called	because	data	 recorded	on	 them	 lasts	 longer
than	it	would	in	volatile	main	memory.	However,	no	storage	method	is	permanent.	The	expected	life	of
data	 on	 these	media	 is	 approximately	 5	 to	 30	years	 for	magnetic	media	 and	 as	much	 as	 100	years	 for
optical	media.

7.4.1		I/O	Control	Methods
Because	of	the	great	differences	in	control	methods	and	transmission	modes	among	various	kinds	of	I/O
devices,	it	is	infeasible	to	try	to	connect	them	directly	to	the	system	bus.	Instead,	dedicated	I/O	modules
serve	 as	 interfaces	 between	 the	 CPU	 and	 its	 peripherals.	 These	 modules	 perform	 many	 functions,
including	controlling	device	actions,	buffering	data,	performing	error	detection,	and	communicating	with
the	CPU.	In	this	section,	we	are	most	interested	in	the	method	by	which	these	I/O	modules	communicate
with	 the	CPU,	 thus	controlling	 I/O.	Computer	 systems	employ	any	of	 five	general	 I/O	control	methods,
including	programmed	I/O,	 interrupt-driven	I/O,	memory-mapped	 I/O,	direct	memory	 access,	 and



channel-attached	I/O.	Although	one	method	isn’t	necessarily	better	than	another,	the	manner	in	which	a
computer	controls	its	I/O	greatly	influences	overall	system	design	and	performance.	The	objective	is	to
know	when	 the	 I/O	method	 employed	by	 a	 particular	 computer	 architecture	 is	 appropriate	 to	 how	 that
system	will	be	used.

Programmed	I/O
The	simplest	way	for	a	CPU	to	communicate	with	an	I/O	device	is	through	programmed	I/O,	sometimes
called	polled	I/O	(or	port	I/O).	The	CPU	continually	monitors	(polls)	a	control	register	associated	with
each	I/O	port.	When	a	byte	arrives	in	the	port,	a	bit	in	the	control	register	is	also	set.	The	CPU	eventually
polls	the	port	and	notices	that	the	“data	ready”	control	bit	is	set.	The	CPU	resets	the	control	bit,	retrieves
the	 byte,	 and	 processes	 it	 according	 to	 instructions	 programmed	 for	 that	 particular	 port.	 When	 the
processing	is	complete,	the	CPU	resumes	polling	the	control	registers	as	before.

The	benefit	of	using	 this	approach	 is	 that	we	have	programmatic	control	over	 the	behavior	of	each
device.	By	modifying	a	few	lines	of	code,	we	can	adjust	the	number	and	types	of	devices	in	the	system,	as
well	as	their	polling	priorities	and	intervals.	Constant	register	polling,	however,	is	a	problem.	The	CPU
is	in	a	continual	“busy	wait”	 loop	until	 it	starts	servicing	an	I/O	request.	 It	doesn’t	do	any	useful	work
until	there	is	I/O	to	process.	Another	problem	is	in	deciding	how	frequently	to	poll;	some	devices	might
need	to	be	polled	more	frequently	than	others.	Because	of	these	limitations,	programmed	I/O	is	best	suited
for	 special-purpose	 systems	 such	 as	 automated	 teller	machines	 and	 embedded	 systems	 that	 control	 or
monitor	environmental	events.

Interrupt-Driven	I/O
A	more	common	and	efficient	control	method	is	interrupt-driven	I/O.	Interrupt-driven	I/O	can	be	thought
of	as	the	converse	of	programmed	I/O.	Instead	of	the	CPU	continually	asking	its	attached	devices	whether
they	have	any	input,	the	devices	tell	the	CPU	when	they	have	data	to	send.	The	CPU	proceeds	with	other
tasks	 until	 a	 device	 requesting	 service	 sends	 an	 interrupt	 to	 the	 CPU.	 These	 interrupts	 are	 typically
generated	for	every	word	of	information	that	is	transferred.	In	most	interrupt-driven	I/O	implementations,
this	communication	takes	place	through	an	intermediary	interrupt	controller.	This	circuit	handles	interrupt
signals	from	all	I/O	devices	in	the	system.	Once	this	circuit	recognizes	an	interrupt	signal	from	any	of	its
attached	devices,	 it	 raises	 a	 single	 interrupt	 signal	 that	 activates	 a	 control	 line	on	 the	 system	bus.	The
control	 line	 typically	 feeds	directly	 into	a	pin	on	 the	CPU	chip.	An	example	configuration	 is	 shown	 in
Figure	7.2.	Every	peripheral	device	 in	 the	 system	has	access	 to	an	 interrupt	 request	 line.	The	 interrupt
control	 chip	 has	 an	 input	 for	 each	 interrupt	 line.	Whenever	 an	 interrupt	 line	 is	 asserted,	 the	 controller
decodes	the	interrupt	and	raises	the	Interrupt	(INT)	input	on	the	CPU.	When	the	CPU	is	ready	to	process
the	 interrupt,	 it	asserts	 the	Interrupt	Acknowledge	 (INTA)	signal.	Once	 the	 interrupt	controller	gets	 this
acknowledgment,	it	can	lower	its	INT	signal.	When	two	or	more	I/O	interrupts	occur	simultaneously,	the
interrupt	 controller	 determines	which	 one	 should	 take	 precedence,	 based	 on	 the	 time-criticality	 of	 the
device	requesting	the	I/O.	Keyboard	and	mouse	I/O	are	usually	the	least	critical.



FIGURE	7.2	An	I/O	Subsystem	Using	Interrupts

System	designers	determine	which	devices	 should	 take	precedence	over	 the	others	when	more	 than
one	 device	 raises	 an	 interrupt	 simultaneously.	 The	 interrupt	 priorities	 are	 then	 hardwired	 into	 the	 I/O
controller,	making	 them	 practically	 impossible	 to	 change.	 Each	 computer	 that	 uses	 the	 same	 operating
system	and	interrupt	controller	connects	low-priority	devices	(such	as	a	keyboard)	to	the	same	interrupt
request	line.	The	number	of	interrupt	request	lines	is	necessarily	limited,	and	in	some	cases,	the	interrupt
can	be	shared.	Shared	 interrupts	cause	no	problems	when	 it	 is	clear	 that	no	 two	devices	will	need	 the
same	interrupt	at	the	same	time.	For	example,	a	scanner	and	a	printer	can	usually	coexist	peacefully	using
the	same	interrupt.	This	is	not	always	the	case	with	serial	mice	and	modems,	which	often	do	try	to	share
the	same	interrupt,	causing	bizarre	behavior	in	both.

In	Chapter	 4,	we	 described	 how	 interrupt	 processing	 changes	 the	 fetch–decode–execute	 cycle.	We
have	reproduced	Figure	4.12	in	Figure	7.3,	which	shows	how	the	CPU	finishes	execution	of	the	current
instruction	and	checks	the	status	of	its	interrupt	pins	(not	just	I/O)	at	the	beginning	of	every	fetch–decode–
execute	 cycle.	 Once	 the	 CPU	 acknowledges	 the	 interrupt,	 it	 saves	 its	 current	 state	 and	 processes	 the
interrupt	(as	shown	in	Figure	7.4,	also	taken	from	Chapter	4).

Interrupt-driven	 I/O	 is	 similar	 to	 programmed	 I/O	 in	 that	 the	 service	 routines	 can	 be	 modified	 to
accommodate	hardware	changes.	Because	vectors	for	 the	various	types	of	hardware	are	usually	kept	 in
the	same	locations	in	systems	running	the	same	type	and	level	of	operating	system,	these	vectors	are	easily
changed	 to	point	 to	vendor-specific	 code.	For	 example,	 if	 someone	comes	up	with	 a	new	 type	of	disk
drive	 that	 is	 not	 yet	 supported	 by	 a	 popular	 operating	 system,	 the	 disk’s	manufacturer	 may	 provide	 a
specialized	 device	 driver	 program	 to	 be	 kept	 in	 memory	 along	 with	 code	 for	 the	 standard	 devices.
Installation	of	the	device	driver	code	involves	updating	the	disk	I/O	vector	to	point	to	code	particular	to
the	disk	drive.



FIGURE	7.3	The	Fetch–Decode–Interrupt	Cycle	with	Interrupt	Checking

FIGURE	7.4	Processing	an	Interrupt

We	mentioned	in	Chapter	4	that	I/O	interrupts	are	usually	maskable,	and	an	I/O	device	can	generate	a
nonmaskable	interrupt	if	it	encounters	an	error	that	it	cannot	handle,	such	as	the	removal	or	destruction	of
an	I/O	medium.	We	return	to	this	topic	later	in	the	context	of	embedded	systems	in	Chapter	10.

Memory-Mapped	I/O
The	design	decisions	made	with	 regard	 to	 a	 system’s	 I/O	control	method	are	 enormously	 influential	 in
determining	the	overall	system	architecture.	If	we	decide	to	use	programmed	I/O,	it	is	to	our	advantage	to
establish	separate	buses	for	memory	traffic	and	I/O	traffic	so	that	the	continued	polling	doesn’t	interfere
with	 memory	 access.	 In	 this	 case,	 the	 system	 requires	 a	 set	 of	 distinct	 instructions	 for	 I/O	 control.
Specifically,	the	system	needs	to	know	how	to	check	the	status	of	a	device,	transfer	bytes	to	and	from	the



device,	and	verify	 that	 the	 transfer	has	executed	correctly.	This	approach	has	 some	serious	 limitations.
For	one,	adding	a	new	device	type	to	the	system	may	require	changes	to	the	processor’s	control	store	or
hardwired	control	matrix.

A	 simpler	 and	 more	 elegant	 approach	 is	memory-mapped	 I/O	 in	 which	 I/O	 devices	 and	 main
memory	share	the	same	address	space.	Thus,	each	I/O	device	has	its	own	reserved	block	of	memory.	Data
transfers	to	and	from	the	I/O	device	involve	moving	bytes	to	or	from	the	memory	address	that	is	mapped
to	the	device.	Memory-mapped	I/O	therefore	looks	just	like	a	memory	access	from	the	point	of	view	of
the	CPU.	This	means	we	can	use	the	same	instructions	to	move	data	 to	and	from	both	I/O	and	memory,
greatly	simplifying	system	design.

In	small	systems,	the	low-level	details	of	the	data	transfers	are	offloaded	to	the	I/O	controllers	built
into	the	I/O	devices	themselves,	as	shown	in	Figure	7.1.	The	CPU	does	not	need	 to	concern	 itself	with
whether	a	device	is	ready,	or	counting	the	bytes	in	a	transfer,	or	calculating	error-correcting	codes.

Direct	Memory	Access
With	 both	 programmed	 I/O	 and	 interrupt-driven	 I/O,	 the	CPU	moves	 data	 to	 and	 from	 the	 I/O	 device.
During	I/O,	the	CPU	runs	instructions	similar	to	the	following	pseudocode:

Clearly,	 these	 instructions	 are	 simple	 enough	 to	 be	 programmed	 in	 a	 dedicated	 chip.	 This	 is	 the	 idea
behind	direct	memory	access	(DMA).	When	a	system	uses	DMA,	the	CPU	offloads	execution	of	tedious
I/O	instructions.	To	effect	the	transfer,	the	CPU	provides	the	DMA	controller	with	the	location	of	the	bytes
to	be	 transferred,	 the	number	of	bytes	 to	be	 transferred,	and	 the	destination	device	or	memory	address.
This	 communication	 usually	 takes	 place	 through	 special	 I/O	 registers	 on	 the	 CPU.	 A	 sample	 DMA
configuration	is	shown	in	Figure	7.5.	In	this	configuration,	I/O	and	memory	share	the	same	address	space,
so	it	is	one	type	of	memory-mapped	I/O.

Once	the	proper	values	are	placed	in	memory,	the	CPU	signals	the	DMA	subsystem	and	proceeds	with
its	next	 task,	while	 the	DMA	takes	care	of	 the	details	of	 the	 I/O.	After	 the	 I/O	 is	complete	 (or	ends	 in
error),	the	DMA	subsystem	signals	the	CPU	by	sending	it	another	interrupt.

As	you	can	see	in	Figure	7.5,	the	DMA	controller	and	the	CPU	share	the	bus.	Only	one	of	them	at	a
time	 can	 have	 control	 of	 the	 bus,	 that	 is,	 be	 the	bus	master.	 Generally,	 I/O	 takes	 priority	 over	 CPU
memory	fetches	for	program	instructions	and	data	because	many	I/O	devices	operate	within	tight	timing
parameters.	If	they	detect	no	activity	within	a	specified	period,	they	timeout	and	abort	the	I/O	process.	To
avoid	device	timeouts,	the	DMA	uses	memory	cycles	that	would	otherwise	be	used	by	the	CPU.	This	is
called	cycle	stealing.	Fortunately,	I/O	tends	to	create	bursty	traffic	on	the	bus:	data	is	sent	in	blocks,	or
clusters.	The	CPU	should	be	granted	access	to	the	bus	between	bursts,	though	this	access	may	not	be	of
long	enough	duration	to	spare	the	system	from	accusations	of	“crawling	during	I/O.”



FIGURE	7.5	A	Sample	DMA	Configuration

Figure	7.6	shows	the	activities	of	the	CPU	and	the	DMA.	This	swimlane	diagram	emphasizes	how	the
DMA	offloads	I/O	processing	from	the	CPU.

Channel	I/O
Programmed	I/O	transfers	data	one	byte	at	a	time.	Interrupt-driven	I/O	can	handle	data	one	byte	at	a	time
or	 in	 small	 blocks,	 depending	 on	 the	 type	 of	 device	 participating	 in	 the	 I/O.	 Slower	 devices	 such	 as
keyboards	generate	more	interrupts	per	number	of	bytes	transferred	than	disks	or	printers.	DMA	methods
are	all	block-oriented,	interrupting	the	CPU	only	after	completion	(or	failure)	of	transferring	a	group	of
bytes.	After	 the	DMA	signals	 the	I/O	completion,	 the	CPU	may	give	 it	 the	address	of	 the	next	block	of
memory	 to	be	 read	 from	or	written	 to.	 In	 the	event	of	 failure,	 the	CPU	 is	 solely	 responsible	 for	 taking
appropriate	action.	Thus,	DMA	I/O	requires	only	a	little	less	CPU	participation	than	does	interrupt-driven
I/O.	 Such	 overhead	 is	 fine	 for	 small,	 single-user	 systems;	 however,	 it	 does	 not	 scale	 well	 to	 large,
multiuser	systems	such	as	mainframe	computers.	Most	 large	computer	systems	use	an	intelligent	 type	of
DMA	 interface	 known	 as	 an	 I/O	 channel.	 Although	 channel	 I/O	 is	 traditionally	 used	 on	 mainframe
computers,	it	is	becoming	common	on	file	servers	and	storage	networks.	Storage	networks	and	other	high-
performance	I/O	implementations	are	presented	in	Chapter	13.

With	channel	I/O,	one	or	more	I/O	processors	control	various	I/O	pathways	called	channel	paths.
Channel	 paths	 for	 “slow”	 devices	 such	 as	 terminals	 and	 printers	 can	 be	 combined	 (multiplexed),
allowing	management	 of	 several	 of	 these	 devices	 through	 only	 one	 controller.	 On	 IBM	mainframes,	 a
multiplexed	 channel	 path	 is	 called	 a	multiplexor	 channel.	 Channels	 for	 disk	 drives	 and	 other	 “fast”
devices	are	called	selector	channels.

I/O	channels	are	driven	by	small	CPUs	called	I/O	processors	(IOPs),	which	are	optimized	for	I/O.
Unlike	 DMA	 circuits,	 IOPs	 have	 the	 ability	 to	 execute	 programs	 that	 include	 arithmetic-logic	 and
branching	instructions.	Figure	7.7	shows	a	simplified	channel	I/O	configuration.

IOPs	execute	programs	that	are	placed	in	main	system	memory	by	the	host	processor.	These	programs,
consisting	 of	 a	 series	 of	 channel	 command	 words	 (CCWs),	 include	 not	 only	 the	 actual	 transfer
instructions,	 but	 also	 commands	 that	 control	 the	 I/O	 devices.	 These	 commands	 include	 such	 things	 as
device	 initializations,	 printer	 page	 ejects,	 and	 tape	 rewind	 commands,	 to	 name	 a	 few.	 Once	 the	 I/O
program	has	been	placed	in	memory,	the	host	issues	a	start	subchannel	(SSCH)	command,	informing	the



IOP	of	the	location	in	memory	where	the	program	can	be	found.	After	the	IOP	has	completed	its	work,	it
places	completion	 information	 in	memory	and	sends	an	 interrupt	 to	 the	CPU.	The	CPU	then	obtains	 the
completion	information	and	takes	action	appropriate	to	the	return	codes.

The	principal	distinction	between	standalone	DMA	and	channel	I/O	lies	in	the	intelligence	of	the	IOP.
The	IOP	negotiates	protocols,	issues	device	commands,	and	translates	storage	coding	to	memory	coding,
and	can	transfer	entire	files	or	groups	of	files	independent	of	the	host	CPU.	The	host	has	only	to	create	the
program	instructions	for	the	I/O	operation	and	tell	the	IOP	where	to	find	them.

FIGURE	7.6	Swimlane	Diagram	Showing	the	Interaction	of	a	CPU	and	a	DMA



FIGURE	7.7	A	Channel	I/O	Configuration

Like	 standalone	DMA,	 an	 IOP	must	 steal	memory	 cycles	 from	 the	 CPU.	 Unlike	 standalone	DMA,
channel	 I/O	systems	are	equipped	with	 separate	 I/O	buses,	which	help	 to	 isolate	 the	host	 from	 the	 I/O
operation.	Thus,	channel	I/O	is	a	type	of	isolated	I/O.	When	copying	a	file	from	disk	to	tape,	for	example,
the	IOP	uses	the	system	memory	bus	only	to	fetch	its	instructions	from	main	memory.	The	remainder	of	the
transfer	 is	effected	using	only	 the	 I/O	bus.	Because	of	 its	 intelligence	and	bus	 isolation,	channel	 I/O	 is
used	 in	 high-throughput	 transaction	 processing	 environments,	 where	 its	 cost	 and	 complexity	 can	 be
justified.

7.4.2		Character	I/O	Versus	Block	I/O
Pressing	a	key	on	a	computer	keyboard	sets	in	motion	a	sequence	of	activities	that	process	the	keystroke
as	a	single	event	(no	matter	how	fast	you	type!).	The	reason	for	this	is	found	within	the	mechanics	of	the
keyboard.	Each	key	controls	a	small	switch	that	closes	a	connection	in	a	matrix	of	conductors	that	runs
horizontally	and	vertically	beneath	the	keys.	When	a	key	switch	closes,	a	distinct	scan	code	is	read	by	the
keyboard	circuitry.	The	scan	code	 is	 then	passed	 to	a	 serial	 interface	circuit,	which	 translates	 the	scan
code	into	a	character	code.	The	interface	places	the	character	code	in	a	keyboard	buffer	that	is	maintained
in	low	memory.	Immediately	afterward,	an	I/O	interrupt	signal	is	raised.	The	characters	wait	patiently	in
the	 buffer	 until	 they	 are	 retrieved—one	 at	 a	 time—by	 a	 program	 (or	 until	 the	 buffer	 is	 reset).	 The
keyboard	circuits	are	able	to	process	a	new	keystroke	only	after	the	old	one	is	on	its	way	to	the	buffer.
Although	it	is	certainly	possible	to	press	two	keys	at	once,	only	one	of	the	strokes	can	be	processed	at	a
time.	 Because	 of	 the	 random,	 sequential	 nature	 of	 character	 I/O	 as	 just	 described,	 it	 is	 best	 handled
through	interrupt-driven	I/O	processing.

Magnetic	disks	and	tapes	store	data	in	blocks.	Consequently,	it	makes	sense	to	manage	disk	and	tape
I/O	in	block	units.	Block	I/O	lends	itself	to	DMA	or	channel	I/O	processing.	Blocks	can	be	different	sizes,
depending	on	 the	particular	hardware,	software,	and	applications	 involved.	Determining	an	 ideal	block
size	 can	 be	 an	 important	 activity	 when	 a	 system	 is	 being	 tuned	 for	 optimum	 performance.	 High-
performance	systems	handle	large	blocks	more	efficiently	than	they	handle	small	blocks.	Slower	systems
should	manage	 bytes	 in	 smaller	 blocks;	 otherwise,	 the	 system	may	 become	 unresponsive	 to	 user	 input
during	I/O.



7.4.3		I/O	Bus	Operation
In	Chapter	1,	we	 introduced	you	 to	computer	bus	architecture	using	 the	schematic	shown	in	Figure	7.8.
The	important	ideas	conveyed	by	this	diagram	are:

•			A	system	bus	is	a	resource	shared	among	many	components	of	a	computer	system.
•			Access	to	this	shared	resource	must	be	controlled.	This	is	why	a	control	bus	is	required.

From	our	discussions	in	the	preceding	sections,	it	is	evident	that	the	memory	bus	and	the	I/O	bus	can	be
separate	entities.	In	fact,	it	is	often	a	good	idea	to	separate	them.	One	good	reason	for	having	memory	on
its	own	bus	is	that	memory	transfers	can	be	synchronous,	using	some	multiple	of	the	CPU’s	clock	cycles
to	retrieve	data	from	main	memory.	In	a	properly	functioning	system,	there	is	never	an	issue	of	the	memory
being	offline	 or	 sustaining	 the	 same	 types	 of	 errors	 that	 afflict	 peripheral	 equipment,	 such	 as	 a	 printer
running	out	of	paper.

FIGURE	7.8	High-Level	View	of	a	System	Bus

I/O	buses,	on	the	other	hand,	cannot	operate	synchronously.	They	must	take	into	account	the	fact	that
I/O	devices	cannot	always	be	ready	to	process	an	I/O	transfer.	I/O	control	circuits	placed	on	the	I/O	bus
and	within	the	I/O	devices	negotiate	with	each	other	to	determine	the	moment	when	each	device	may	use
the	 bus.	 Because	 these	 handshakes	 take	 place	 every	 time	 the	 bus	 is	 accessed,	 I/O	 buses	 are	 called
asynchronous.	 We	 often	 distinguish	 synchronous	 from	 asynchronous	 transfers	 by	 saying	 that	 a
synchronous	transfer	requires	both	the	sender	and	the	receiver	 to	share	a	common	clock	for	 timing.	But
asynchronous	bus	protocols	also	 require	a	clock	 for	bit	 timing	and	 to	delineate	 signal	 transitions.	This
idea	will	become	clear	after	we	look	at	an	example.

Consider,	once	again,	the	configuration	shown	in	Figure	7.5.	The	connection	between	the	DMA	circuit
and	the	device	interface	circuits	is	detailed	in	Figure	7.9,	which	shows	the	individual	component	buses.

Figure	7.10	gives	 the	details	of	how	the	disk	 interface	connects	 to	all	 three	buses.	The	address	and
data	buses	consist	of	a	number	of	individual	conductors,	each	of	which	carries	one	bit	of	information.	The
number	of	data	lines	determines	the	width	of	the	bus.	A	data	bus	having	eight	data	lines	carries	one	byte	at
a	time.	The	address	bus	has	a	sufficient	number	of	conductors	to	uniquely	identify	each	device	on	the	bus.

The	 group	 of	 control	 lines	 shown	 in	 Figure	 7.10	 is	 the	minimum	 that	we	 need	 for	 our	 illustrative
purpose.	Real	I/O	buses	typically	have	more	than	a	dozen	control	lines.	(The	original	IBM	PC	had	more
than	20!)	Control	lines	coordinate	the	activities	of	the	bus	and	its	attached	devices.	To	write	data	to	the
disk	drive,	our	example	bus	executes	the	following	sequence	of	operations:



1.		The	DMA	circuit	places	the	address	of	the	disk	controller	on	the	address	lines,	and	raises	(asserts)
the	Request	and	Write	signals.

2.		With	the	Request	signal	asserted,	decoder	circuits	in	the	controller	interrogate	the	address	lines.

FIGURE	7.9	DMA	Configuration	Showing	Separate	Address,	Data,	and	Control	Lines

FIGURE	7.10	A	Disk	Controller	Interface	with	Connections	to	the	I/O	Bus

3.	 	Upon	sensing	its	own	address,	the	decoder	enables	the	disk	control	circuits.	If	the	disk	is	available
for	writing	data,	the	controller	asserts	a	signal	on	the	Ready	line.	At	this	point,	the	handshake	between
the	DMA	and	the	controller	is	complete.	With	the	Ready	signal	raised,	no	other	devices	may	use	the
bus.

4.		The	DMA	circuits	then	place	the	data	on	the	lines	and	lower	the	Request	signal.
5.		When	the	disk	controller	sees	the	Request	signal	drop,	it	transfers	the	byte	from	the	data	lines	to	the

disk	buffer,	and	then	lowers	its	Ready	signal.

To	 make	 this	 picture	 clearer	 and	 more	 precise,	 engineers	 describe	 bus	 operation	 through	 timing
diagrams.	The	timing	diagram	for	our	disk	write	operation	is	shown	in	Figure	7.11.	The	vertical	 lines,
marked	 t0	 through	 t10,	 specify	 the	 duration	 of	 the	 various	 signals.	 In	 a	 real	 timing	 diagram,	 an	 exact
duration	would	be	assigned	to	the	timing	intervals,	usually	in	the	neighborhood	of	50ns.	Signals	on	the	bus
can	change	only	during	a	clock	cycle	transition.	Notice	that	the	signals	shown	in	the	diagram	do	not	rise
and	 fall	 instantaneously.	 This	 reflects	 the	 physical	 reality	 of	 the	 bus.	A	 small	 amount	 of	 time	must	 be
allowed	for	the	signal	level	to	stabilize,	or	“settle	down.”	This	settle	time,	although	small,	contributes	to



a	large	delay	over	long	I/O	transfers.
The	address	and	data	lines	in	a	timing	diagram	are	rarely	shown	individually,	but	usually	as	a	group.

In	 our	 diagram,	 we	 imply	 the	 group	 by	 the	 use	 of	 a	 pair	 of	 lines.	 When	 the	 address	 and	 data	 lines
transition	from	an	active	to	an	inactive	state,	we	show	the	lines	crossing.	When	the	lines	are	inactive,	we
shade	the	space	between	them	to	make	it	clear	that	their	state	is	undefined.

Many	real	I/O	buses,	unlike	our	example,	do	not	have	separate	address	and	data	lines.	Because	of	the
asynchronous	nature	of	an	I/O	bus,	the	data	lines	can	be	used	to	hold	the	device	address.	All	we	need	to
do	is	add	another	control	line	that	indicates	whether	the	signals	on	the	data	lines	represent	an	address	or
data.	 This	 approach	 contrasts	 to	 a	 memory	 bus,	 where	 the	 address	 and	 data	 must	 be	 simultaneously
available.

FIGURE	7.11	A	Bus	Timing	Diagram

7.5			DATA	TRANSMISSION	MODES
Bytes	can	be	transmitted	between	a	host	and	a	peripheral	device	by	sending	one	bit	at	a	time	or	one	byte
at	a	time.	These	are	called,	respectively,	serial	and	parallel	transmission	modes.	Each	transmission	mode
establishes	a	particular	communication	protocol	between	the	host	and	the	device	interface.

BYTES,	DATA,	AND	INFORMATION	…	FOR	THE	RECORD
Far	too	many	people	use	the	word	information	as	a	synonym	for	data,	and	data	as	a	synonym	for	bytes.
In	fact,	we	have	often	used	data	as	a	synonym	for	bytes	in	this	text	for	readability,	hoping	that	the	context



makes	 the	 meaning	 clear.	 We	 are	 compelled,	 however,	 to	 point	 out	 that	 there	 is	 indeed	 a	 world	 of
difference	in	the	meanings	of	these	words.

In	its	most	literal	sense,	the	word	data	 is	plural.	 It	comes	from	the	Latin	singular	datum.	Hence,	 to
refer	 to	 more	 than	 one	 datum,	 one	 properly	 uses	 the	 word	 data.	 It	 is	 in	 fact	 easy	 on	 our	 ears	 when
someone	 says,	 “The	 recent	 mortality	 data	 indicate	 that	 people	 are	 now	 living	 longer	 than	 they	 did	 a
century	ago.”	But	we	are	at	a	loss	to	explain	why	we	wince	when	someone	says	something	like,	“A	page
fault	occurs	when	data	are	swapped	from	memory	to	disk.”	When	we	are	using	data	to	refer	to	something
stored	 in	 a	 computer	 system,	we	 really	 are	 conceptualizing	 data	 as	 an	 “indistinguishable	mass”	 in	 the
same	 sense	 that	we	 think	 of	 air	 and	water.	Air	 and	water	 consist	 of	 various	 d	 iscrete	 elements	 called
molecules.	Similarly,	a	mass	of	data	consists	of	discrete	elements	called	data.	No	educated	person	who	is
fluent	in	English	would	say	that	she	breathes	airs	or	takes	a	bath	in	waters.	So	it	seems	reasonable	to	say,
“…	data	 is	 swapped	 from	memory	 to	disk.”	Most	 scholarly	 sources	 (including	 the	American	Heritage
Dictionary)	now	recognize	data	as	a	singular	collective	noun	when	used	in	this	manner.

Strictly	speaking,	computer	storage	media	don’t	store	data.	They	store	bit	patterns	called	bytes.	For
example,	 if	you	were	 to	use	a	binary	sector	editor	 to	examine	 the	contents	of	a	disk,	you	might	see	 the
pattern	01000100.	So	what	knowledge	have	you	gained	on	seeing	 it?	For	all	you	know,	 this	bit	pattern
could	 be	 the	 binary	 code	 of	 a	 program,	 part	 of	 an	 operating	 system	 structure,	 a	 photograph,	 or	 even
someone’s	bank	balance.	If	you	know	for	a	fact	that	the	bits	represent	some	numeric	quantity	(as	opposed
to	program	code	or	an	image	file,	for	example)	and	that	it	is	stored	in	two’s	complement	binary,	you	can
safely	say	that	it	is	the	decimal	number	68.	But	you	still	don’t	have	a	datum.	Before	you	can	have	a	datum,
someone	must	ascribe	some	context	to	this	number.	Is	it	a	person’s	age	or	height?	Is	it	the	model	number
of	a	can	opener?	If	you	learn	that	01000100	comes	from	a	file	that	contains	the	temperature	output	from	an
automated	weather	 station,	 then	 you	 have	 yourself	 a	 datum.	The	 file	 on	 the	 disk	 can	 then	 be	 correctly
called	a	data	file.

By	now,	you’ve	probably	surmised	that	the	weather	data	is	expressed	in	degrees	Fahrenheit,	because
no	 place	 on	 Earth	 has	 ever	 reached	 68°	 Celsius.	 But	 you	 still	 don’t	 have	 information.	 The	 datum	 is
meaningless:	Is	it	the	current	temperature	in	Amsterdam?	Is	it	the	temperature	that	was	recorded	at	2:00
am	three	years	ago	in	Miami?	The	datum	68	becomes	information	only	when	it	has	meaning	to	a	human
being.

Another	plural	Latin	noun	that	has	recently	become	recognized	in	singular	usage	is	the	word	media.
Formerly,	 educated	 people	 used	 this	word	 only	when	 they	wished	 to	 refer	 to	more	 than	 one	medium.
Newspapers	are	one	kind	of	communication	medium.	Television	is	another.	Collectively,	they	are	media.
But	now	some	editors	accept	the	singular	usage,	as	in,	“At	this	moment,	the	news	media	is	gathering	at	the
Capitol.”

Inasmuch	 as	 artists	 can	 paint	 using	 a	 watercolor	 medium	 or	 an	 oil	 paint	 medium,	 computer	 data
recording	 equipment	 can	 write	 to	 an	 electronic	 medium	 such	 as	 tape	 or	 disk.	 Collectively,	 these	 are
electronic	media.	But	 rarely	will	you	 find	a	practitioner	who	 intentionally	uses	 the	 term	properly.	 It	 is
much	more	common	to	encounter	statements	like,	“Volume	2	ejected.	Please	place	new	media	into	the	tape
drive.”	In	this	context,	it’s	debatable	whether	most	people	would	even	understand	the	directive	“…	place
a	new	medium	into	the	tape	drive.”

Semantic	arguments	such	as	 these	are	symptomatic	of	 the	kinds	of	problems	computer	professionals
face	when	they	try	to	express	human	ideas	in	digital	form,	and	vice	versa.	There	is	bound	to	be	something
lost	in	the	translation.



7.5.1		Parallel	Data	Transmission
Parallel	 communication	 systems	operate	 in	a	manner	analogous	 to	 the	operation	of	a	host	memory	bus.
They	require	at	least	eight	data	lines	(one	for	each	bit)	and	one	line	for	synchronization,	sometimes	called
a	strobe.

Parallel	connections	are	effective	over	short	distances—usually	less	than	30	feet—depending	on	the
strength	of	the	signal,	the	frequency	of	the	signal,	and	the	quality	of	the	cable.	At	longer	distances,	signals
in	the	cable	begin	to	weaken,	because	of	the	internal	resistance	of	the	conductors.	Electrical	signal	loss
over	time	or	distance	is	called	attenuation.	The	problems	associated	with	attenuation	become	clear	by
studying	an	example.

Figure	7.12	 renders	 a	 simplified	 timing	 diagram	 for	 a	 parallel	 printer	 interface.	 The	 lines	marked
nStrobe	and	nAck	are	strobe	and	acknowledgment	signals	that	are	asserted	when	they	carry	low	voltage.
The	Busy	and	Data	signals	are	asserted	when	they	carry	high	voltage.	In	other	words,	Busy	and	Data	are
positive	logic	signals,	whereas	nStrobe	and	nAck	are	negative	logic	signals.	The	data	signal	represents
eight	different	 lines.	Each	of	 these	lines	can	be	either	high	or	 low	(signal	1	or	0).	The	signals	on	these
lines	 are	 meaningless	 (shaded	 in	 diagram)	 before	 the	 nStrobe	 signal	 is	 asserted	 and	 after	 nAck	 is
asserted.	Arbitrary	reference	times	are	listed	across	the	top	of	the	diagram,	t0	through	t6.	The	difference
between	 two	 consecutive	 times,	 Δt,	 determines	 the	 speed	 of	 transmission.	 Typically	 Δt	 will	 range
between	1ms	and	5ms.

FIGURE	7.12	A	Simplified	Timing	Diagram	for	a	Parallel	Printer

The	 signals	 illustrated	 in	 Figure	 7.12	 comprise	 the	 handshake	 that	 takes	 place	 between	 a	 printer
interface	circuit	(on	a	host)	and	the	host	interface	of	a	parallel	printer.	The	process	starts	when	a	bit	is
placed	on	each	of	the	eight	data	lines.	Next,	the	busy	line	is	checked	to	see	that	it	is	low.	Once	the	busy
line	is	low,	the	strobe	signal	is	asserted	so	the	printer	will	know	that	there	is	data	on	the	data	lines.	As
soon	as	the	printer	detects	the	strobe,	it	reads	the	data	lines	while	raising	the	busy	signal	to	prevent	the
host	from	placing	more	data	on	the	data	lines.	After	the	printer	has	read	the	data	lines,	it	lowers	the	busy
signal	and	asserts	the	acknowledgment	signal,	nAck,	to	let	the	host	know	that	the	data	has	been	received.

Notice	 that	 although	 the	 data	 signals	 are	 acknowledged,	 there	 is	 no	 guarantee	 of	 their	 correctness.
Both	the	host	and	the	printer	assume	that	the	signals	received	are	the	same	as	the	signals	that	were	sent.
Over	short	distances,	this	is	a	fairly	safe	assumption.	Over	longer	distances,	this	may	not	be	the	case.

Let’s	 say	 that	 the	 bus	 operates	 on	 a	 voltage	 of	 ±5	 volts.	 Anything	 between	 0	 and	 +5	 volts	 is
considered	“high”	and	anything	between	0	and	–5	volts	is	considered	“low.”	The	host	places	voltages	of
+5	and	–5	volts	on	the	data	lines,	respectively,	for	each	1	and	0	of	the	data	byte.	Then	it	sets	the	strobe
line	to	–5	volts.

With	a	case	of	“mild”	attenuation,	 the	printer	could	be	slow	to	detect	 the	nStrobe	signal	or	 the	host



could	be	slow	to	detect	the	nAck	signal.	This	kind	of	sluggishness	is	hardly	noticeable	when	printers	are
involved,	 but	 horrendously	 slow	 over	 a	 parallel	 disk	 interface,	 where	 we	 typically	 expect	 an
instantaneous	response.

Over	a	very	long	cable,	we	could	end	up	with	entirely	different	voltages	at	the	printer	end.	By	the	time
the	signals	arrive,	“high”	could	be	+1	volt	and	“low”	could	be	–3	volts.	If	1	volt	is	not	sufficiently	above
the	voltage	threshold	for	a	logical	1,	we	could	end	up	with	a	0	where	a	1	should	be,	scrambling	the	output
in	the	process.	Also,	over	long	distances,	it	is	possible	that	the	strobe	signal	gets	to	the	printer	before	the
data	bits	do.	The	printer	 then	prints	whatever	 is	on	 the	data	 lines	at	 the	 time	 it	detects	 the	assertion	of
nStrobe.	(The	extreme	case	is	when	a	text	character	 is	mistaken	for	a	control	character.	This	can	cause
remarkably	bizarre	printer	behavior	and	the	death	of	many	trees.)

7.5.2		Serial	Data	Transmission
We	have	seen	how	a	parallel	data	transmission	moves	one	byte	at	a	time	along	a	data	bus.	A	data	line	is
required	 for	 each	 bit,	 and	 the	 data	 lines	 are	 activated	 by	 pulses	 in	 a	 separate	 strobe	 line.	 Serial	 data
transmission	differs	from	parallel	data	transmission	in	that	only	one	conductor	is	used	for	sending	data,
one	bit	at	a	time,	as	pulses	in	a	single	data	line.	Other	conductors	can	be	provided	for	special	signals,	as
defined	 in	 particular	 protocols.	 RS-232-C	 is	 one	 such	 serial	 protocol	 that	 requires	 separate	 signaling
lines;	the	data,	however,	is	sent	over	only	one	line	(see	Chapter	12).	Serial	storage	interfaces	incorporate
these	special	 signals	 into	protocol	 frames	exchanged	along	 the	data	path.	We	will	examine	some	serial
storage	protocols	in	Chapter	13.	Generally	speaking,	serial	data	streams	can	be	reliably	sent	faster	over
longer	 distances	 than	 parallel	 data.	 This	 makes	 serial	 transmission	 the	 method	 of	 choice	 for	 high-
performance	interfaces.

Serial	 transfer	methods	can	also	be	used	for	 time-sensitive	 isochronous	 data	 transfers.	 Isochronous
protocols	 are	 used	with	 real-time	 data	 such	 as	 voice	 and	 video	 signals.	Because	 voice	 and	 video	 are
intended	 for	 consumption	 by	 human	 senses,	 occasional	 transmission	 errors	 bear	 little	 notice.	 The
approximate	nature	of	 the	data	permits	 less	error	control;	hence,	data	can	 flow	with	minimal	protocol-
induced	latency	from	its	source	to	its	destination.

7.6			MAGNETIC	DISK	TECHNOLOGY
Before	 the	 advent	 of	 disk	 drive	 technology,	 sequential	 media	 such	 as	 punched	 cards	 and	magnetic	 or
paper	tape	were	the	only	kinds	of	durable	storage	available.	If	the	data	that	someone	needed	were	written
at	the	trailing	end	of	a	tape	reel,	the	entire	volume	had	to	be	read—one	record	at	a	time.	Sluggish	readers
and	small	system	memories	made	this	an	excruciatingly	slow	process.	Tape	and	cards	were	not	only	slow,
but	 they	also	degraded	rather	quickly	because	of	 the	physical	and	environmental	stresses	 to	which	 they
were	exposed.	Paper	tape	often	stretched	and	broke.	Open	reel	magnetic	tape	not	only	stretched,	but	also
was	subject	to	mishandling	by	operators.	Cards	could	tear,	get	lost,	and	warp.

In	this	technological	context,	it	is	easy	to	see	how	IBM	fundamentally	changed	the	computer	world	in
1956	when	it	deployed	the	first	commercial	disk-based	computer	called	the	Random	Access	Method	of
Accounting	and	Control	 computer,	 or	RAMAC	 for	 short.	By	 today’s	 standards,	 the	 disk	 in	 this	 early
machine	was	 incomprehensibly	huge	and	slow.	Each	disk	platter	was	24	 inches	 in	diameter,	containing
only	50,000	7-bit	characters	of	data	on	each	surface.	Fifty	two-sided	platters	were	mounted	on	a	spindle
that	 was	 housed	 in	 a	 flashy	 glass	 enclosure	 about	 the	 size	 of	 a	 small	 garden	 shed.	 The	 total	 storage
capacity	per	spindle	was	a	mere	5	million	characters,	and	it	took	one	full	second,	on	average,	to	access



data	on	the	disk.	The	drive	weighed	more	than	a	ton	and	cost	millions	of	dollars	to	lease.	(One	could	not
buy	equipment	from	IBM	in	those	days.)

By	 contrast,	 in	 early	 2000,	 IBM	 began	 marketing	 a	 high-capacity	 disk	 drive	 for	 use	 in	 palmtop
computers	 and	 digital	 cameras.	 These	 disks	 were	 1	 inch	 (2.5cm)	 in	 diameter,	 held	 1GB	 of	 data,	 and
provided	an	average	access	time	of	15ms.	The	drive	weighed	less	than	an	ounce	and	retailed	for	less	than
$300!	Since	then,	other	manufacturers	have	produced	1-inch	drives	that	are	even	less	expensive	and	hold
more	data.

Disk	drives	are	called	random	(sometimes	direct)	access	devices	because	each	unit	of	storage	on	a
disk,	 the	 sector,	 has	 a	 unique	 address	 that	 can	be	 accessed	 independently	 of	 the	 sectors	 around	 it.	As
shown	in	Figure	7.13,	sectors	are	divisions	of	concentric	circles	called	tracks.	On	most	systems,	every
track	contains	exactly	the	same	number	of	sectors.	Each	sector	contains	the	same	number	of	bytes.	Hence,
the	data	 is	written	more	“densely”	at	 the	center	of	 the	disk	 than	at	 the	outer	edge.	Some	manufacturers
pack	more	bytes	onto	their	disks	by	making	all	sectors	approximately	the	same	size,	placing	more	sectors
on	 the	outer	 tracks	 than	on	 the	 inner	 tracks.	This	 is	 called	zoned-bit	 recording.	Zoned-bit	 recording	 is
rarely	used	because	it	requires	more	sophisticated	drive	control	electronics	than	traditional	systems.

FIGURE	7.13	Disk	Sectors	Showing	Intersector	Gaps	and	Logical	Sector	Format

Disk	 tracks	 are	 consecutively	 numbered	 starting	 with	 track	 0	 at	 the	 outermost	 edge	 of	 the	 disk.
Sectors,	however,	may	not	be	in	consecutive	order	around	the	perimeter	of	a	track.	They	sometimes	“skip
around”	to	allow	time	for	the	drive	circuitry	to	process	the	contents	of	a	sector	prior	to	reading	the	next
sector.	This	is	called	 interleaving.	 Interleaving	varies	according	to	 the	speed	of	rotation	of	 the	disk	as
well	as	the	speed	of	the	disk	circuitry	and	its	buffers.	Most	of	today’s	fixed	disk	drives	read	disks	a	track
at	a	time,	not	a	sector	at	a	time,	so	interleaving	is	becoming	less	common.

7.6.1		Rigid	Disk	Drives
Rigid	 (“hard”	 or	 fixed)	 disks	 contain	 control	 circuitry	 and	 one	 or	 more	 metal	 or	 glass	 disks	 called



platters	to	which	a	thin	film	of	magnetizable	material	is	bonded.	Disk	platters	are	stacked	on	a	spindle,
which	is	turned	by	a	motor	located	within	the	drive	housing.	Disks	can	rotate	as	fast	as	15,000	revolutions
per	minute	(rpm),	the	most	common	speeds	being	5,400rpm	and	7,200rpm.	Read/write	heads	are	typically
mounted	on	a	rotating	actuator	arm	 that	is	positioned	in	its	proper	place	by	magnetic	fields	induced	in
coils	surrounding	the	axis	of	the	actuator	arm	(see	Figure	7.14).	When	the	actuator	is	energized,	the	entire
comb	of	read/write	heads	moves	toward	or	away	from	the	center	of	the	disk.

Despite	continual	improvements	in	magnetic	disk	technology,	it	is	still	impossible	to	mass-produce	a
completely	error-free	medium.	Although	 the	probability	of	error	 is	 small,	 errors	must,	nevertheless,	be
expected.	Two	mechanisms	are	used	to	reduce	errors	on	the	surface	of	the	disk:	special	coding	of	the	data
itself	 and	 error-correcting	 algorithms.	 (This	 special	 coding	 and	 some	 error-correcting	 codes	 were
discussed	in	Chapter	2.)	These	tasks	are	handled	by	circuits	built	into	the	disk	controller	hardware.	Other
circuits	in	the	disk	controller	take	care	of	head	positioning	and	disk	timing.

In	a	stack	of	disk	platters,	all	of	the	tracks	directly	above	and	below	each	other	form	a	cylinder.	A
comb	of	read/write	heads	accesses	one	cylinder	at	a	time.	Cylinders	describe	circular	areas	on	each	disk.

Typically,	 there	 is	 one	 read/write	 head	 per	 usable	 surface	 of	 the	 disk.	 (Older	 disks—particularly
removable	 disks—did	 not	 use	 the	 top	 surface	 of	 the	 top	 platter	 or	 the	 bottom	 surface	 of	 the	 bottom
platter.)	Fixed	disk	heads	never	touch	the	surface	of	the	disk.	Instead,	they	float	above	the	disk	surface	on
a	cushion	of	air	only	a	 few	microns	 thick.	When	 the	disk	 is	powered	down,	 the	heads	 retreat	 to	a	safe
place.	This	is	called	parking	the	heads.	 If	a	read/write	head	were	to	 touch	the	surface	of	 the	disk,	 the
disk	would	become	unusable.	This	condition	is	known	as	a	head	crash.

FIGURE	7.14	Rigid	Disk	Actuator	(with	Read/Write	Heads)	and	Disk	Platters

Head	 crashes	 were	 common	 during	 the	 early	 years	 of	 disk	 storage.	 First-generation	 disk	 drive
mechanical	and	electronic	components	were	costly	with	respect	to	the	price	of	disk	platters.	To	provide
the	most	 storage	 for	 the	 least	money,	 computer	manufacturers	made	 disk	 drives	with	 removable	 disks
called	disk	 packs.	When	 the	 drive	 housing	 was	 opened,	 airborne	 impurities,	 such	 as	 dust	 and	 water
vapor,	 would	 enter	 the	 drive	 housing.	 Consequently,	 large	 head-to-disk	 clearances	 were	 required	 to
prevent	these	impurities	from	causing	head	crashes.	(Despite	these	large	head-to-disk	clearances,	frequent
crashes	persisted,	with	some	companies	experiencing	as	much	downtime	as	uptime.)	The	price	paid	for
the	large	head-to-disk	clearance	was	substantially	lower	data	density.	The	greater	 the	distance	between
the	head	and	 the	disk,	 the	 stronger	 the	charge	 in	 the	 flux	coating	of	 the	disk	must	be	 for	 the	data	 to	be
readable.	Stronger	magnetic	charges	require	more	particles	to	participate	in	a	flux	transition,	resulting	in



lower	data	density	for	the	drive.
Eventually,	cost	reductions	in	controller	circuitry	and	mechanical	components	permitted	widespread

use	 of	 sealed	 disk	 units.	 IBM	 invented	 this	 technology,	 which	 was	 developed	 under	 the	 code	 name
“Winchester.”	Winchester	soon	became	a	generic	term	for	any	sealed	disk	unit.	Today,	with	removable-
pack	 drives	 no	 longer	 being	manufactured,	we	 have	 little	 need	 to	make	 the	 distinction.	 Sealed	 drives
permit	 closer	 head-to-disk	 clearances,	 increased	 data	 densities,	 and	 faster	 rotational	 speeds.	 These
factors	constitute	the	performance	characteristics	of	a	rigid	disk	drive.

Seek	time	is	the	time	it	takes	for	a	disk	arm	to	position	itself	over	the	required	track.	Seek	time	does
not	include	the	time	that	it	takes	for	the	head	to	read	the	disk	directory.	The	disk	directory	maps	logical
file	information,	for	example,	my_story.doc,	to	a	physical	sector	address,	such	as	cylinder	7,	surface	3,
sector	72.	Some	high-performance	disk	drives	practically	eliminate	seek	time	by	providing	a	read/write
head	 for	 each	 track	 of	 each	 usable	 surface	 of	 the	 disk.	With	 no	movable	 arms	 in	 the	 system,	 the	 only
delays	in	accessing	data	are	caused	by	rotational	delay.

Rotational	delay	is	the	time	it	takes	for	the	required	sector	to	position	itself	under	a	read/write	head.
The	sum	of	the	rotational	delay	and	seek	time	is	known	as	the	access	time.	If	we	add	to	the	access	time
the	time	it	takes	to	actually	read	the	data	from	the	disk,	we	get	a	quantity	known	as	transfer	time,	which,
of	course,	varies	depending	on	how	much	data	is	read.	Latency	is	a	direct	function	of	rotational	speed.	It
is	a	measure	of	the	amount	of	time	it	takes	for	the	desired	sector	to	move	beneath	the	read/write	head	after
the	disk	arm	has	positioned	itself	over	the	desired	track.	Usually	cited	as	an	average,	it	is	calculated	as:

To	 help	 you	 appreciate	 how	 all	 of	 this	 terminology	 fits	 together,	 we	 have	 provided	 a	 typical	 disk
specification	as	Figure	7.15.

Because	the	disk	directory	must	be	read	prior	to	every	data	read	or	write	operation,	the	location	of	the
directory	can	have	a	significant	effect	on	the	overall	performance	of	the	disk	drive.	Outermost	tracks	have
the	lowest	bit	density	per	areal	measure;	hence,	they	are	less	prone	to	bit	errors	than	the	innermost	tracks.
To	ensure	the	best	reliability,	disk	directories	can	be	placed	at	the	outermost	track,	track	0.	This	means,
for	every	access,	the	arm	has	to	swing	out	to	track	0	and	then	back	to	the	required	data	track.	Performance
therefore	suffers	from	the	wide	arc	made	by	the	access	arms.

Improvements	 in	 recording	 technology	 and	 error-correction	 algorithms	 permit	 the	 directory	 to	 be
placed	in	the	location	that	gives	the	best	performance:	at	the	innermost	track.	This	substantially	reduces
arm	movement,	giving	the	best	possible	throughput.	Some,	but	not	all,	modern	systems	take	advantage	of
center	track	directory	placement.

Directory	 placement	 is	 one	 of	 the	 elements	 of	 the	 logical	 organization	 of	 a	 disk.	 A	 disk’s	 logical
organization	 is	 a	 function	 of	 the	 operating	 system	 that	 uses	 it.	 A	 major	 component	 of	 this	 logical
organization	 is	 the	way	in	which	sectors	are	mapped.	Fixed	disks	contain	so	many	sectors	 that	keeping
tabs	on	 each	one	 is	 infeasible.	Consider	 the	disk	described	 in	our	data	 sheet.	Each	 track	 contains	746
sectors.	There	are	48,000	tracks	per	surface	and	8	surfaces	on	the	disk.	This	means	there	are	more	than
286	million	 sectors	 on	 the	 disk.	 An	 allocation	 table	 listing	 the	 status	 of	 each	 sector	 (the	 status	 being
recorded	in	1	byte)	would	therefore	consume	more	than	200MB	of	disk	space.	Not	only	is	 this	a	 lot	of
disk	space	spent	for	overhead,	but	reading	this	data	structure	would	consume	an	inordinate	amount	of	time
whenever	we	needed	to	check	the	status	of	a	sector.	(This	is	a	frequently	executed	task.)	For	this	reason,
operating	systems	address	sectors	in	groups,	called	blocks	or	clusters,	to	make	file	management	simpler.



The	number	of	sectors	per	block	determines	the	size	of	 the	allocation	table.	The	smaller	 the	size	of	the
allocation	block,	the	less	wasted	space	there	is	when	a	file	doesn’t	fill	the	entire	block;	however,	smaller
block	 sizes	 make	 the	 allocation	 tables	 larger	 and	 slower.	 We	 will	 look	 deeper	 into	 the	 relationship
between	directories	and	file	allocation	structures	in	our	discussion	of	floppy	disks	in	the	next	section.

FIGURE	7.15	A	Typical	Rigid	Disk	Specification	as	Provided	by	a	Disk	Drive	Manufacturer

One	final	comment	about	the	disk	specification	shown	in	Figure	7.15:	You	can	see	that	it	also	includes
estimates	 of	 disk	 reliability	 under	 the	 heading	 of	 “Reliability	 and	 Maintenance.”	 According	 to	 the
manufacturer,	 this	particular	disk	drive	 is	designed	to	operate	for	five	years	and	tolerate	being	stopped
and	started	50,000	times.	Under	the	same	heading,	the	mean	time	to	failure	(MTTF)	is	given	as	300,000
hours.	Surely	this	figure	cannot	be	taken	to	mean	that	the	expected	value	of	the	disk	life	is	300,000	hours
—this	is	just	over	34	years	if	the	disk	runs	continuously.	The	specification	states	that	the	drive	is	designed
to	 last	 only	 five	years.	This	 apparent	 anomaly	owes	 its	 existence	 to	 statistical	 quality	 control	methods
commonly	 used	 in	 the	 manufacturing	 industry.	 Unless	 the	 disk	 is	 manufactured	 under	 a	 government
contract,	the	exact	method	used	for	calculating	the	MTTF	is	at	the	discretion	of	the	manufacturer.	Usually
the	process	involves	taking	random	samples	from	production	lines	and	running	the	disks	under	less-than-



ideal	conditions	for	a	certain	number	of	hours,	typically	more	than	100.	The	number	of	failures	are	then
plotted	against	probability	curves	to	obtain	the	resulting	MTTF	figure.	In	short,	the	“design	life”	number
is	much	more	credible	and	understandable.

7.6.2		Solid	State	Drives
The	 limitations	of	magnetic	disks	are	many.	To	begin	with,	 it	 takes	a	 lot	 longer	 to	 retrieve	data	 from	a
magnetic	disk	than	from	main	memory—around	a	million	times	longer.	Magnetic	disks	are	fragile.	Even
“ruggedized”	models	can	break	under	extreme	shock.	Their	many	moving	parts	are	susceptible	 to	wear
and	failure.	And—particularly	problematic	for	mobile	devices—magnetic	disks	are	power	hungry.

The	clear	solution	to	these	problems	is	to	replace	the	hard	disk	with	nonvolatile	RAM.	Indeed,	this
switch	 happened	 decades	 ago	 in	 ultra-high-performance	 computers.	 Only	 recently	 has	 the	 price	 of
memory	 become	 low	 enough	 to	 make	 this	 an	 attractive	 option	 for	 industrial,	 military,	 and	 consumer
products.

Solid	state	drives	(SSDs)	consist	of	a	microcontroller	and	a	type	of	NAND-	or	NOR-based	memory
arrays	called	flash	memory.	Flash	memory	is	distinguished	from	standard	memory	by	the	fact	that	it	must
be	first	erased	(“in	a	flash”)	before	it	can	be	written	to.	NOR-based	flash	is	byte	addressable,	making	it
more	costly	than	NAND-based	flash	memory,	which	is	instead	organized	in	blocks	(called	pages),	much
like	a	magnetic	disk.

Certainly	 we	 all	 enjoy	 our	 pocket-sized	 memory	 sticks,	 thumb	 drives,	 and	 jump	 drives.	 We	 are
scarcely	awed	by	the	fact	that	these	small	devices	can	store	an	entire	library	on	our	key	rings.	Because	of
their	low	power	consumption	and	durability,	flash	drives	are	now	routinely	replacing	standard	magnetic
disks	 in	portable	devices.	These	applications	also	benefit	 from	a	performance	boost:	Access	 times	and
transfer	rates	of	SSDs	are	typically	100	times	faster	than	traditional	disk	drives.	SSD	accesses,	however,
are	still	slower	than	RAM	by	a	factor	of	100,000.

Although	the	data	capacity	of	SSDs	is	nearing	that	of	magnetic	disks,	SSDs	tend	to	be	roughly	2	to	3
times	as	costly.	One	would	expect	that	the	price	gap	will	close	considerably	with	the	continued	advances
in	SSD	technology.	For	data	centers,	the	increased	cost	of	large	arrays	of	SSDs	may	be	offset	by	reduced
electricity	and	air-conditioning	costs.

Besides	cost,	another	disadvantage	of	SSDs	versus	magnetic	disks	is	that	the	bit	cells	of	flash	storage
wear	out	after	30,000	to	1,000,000	updates	to	a	page.	This	may	seem	like	a	long	duty	cycle,	except	that
SSDs	can	store	highly	volatile	data,	 such	as	virtual	memory	pagefiles.	Standard	magnetic	disks	 tend	 to
reuse	the	same	disk	sectors	repeatedly,	gradually	filling	up	the	disk.	If	this	approach	is	used	with	an	SSD,
parts	 of	 the	 drive	will	 eventually	wear	 out	 and	 become	 unusable.	 So	 to	 extend	 the	 life	 of	 the	 disk,	 a
technique	called	wear	 leveling	 is	used	 to	distribute	data	and	erase/write	cycles	evenly	over	 the	entire
disk.	 The	 drive’s	 built-in	microcontroller	manages	 the	 free	 space	 on	 the	 disk	 to	 ensure	 that	 pages	 are
reused	in	a	round-robin-type	rotation.	This	approach	does	offer	a	slight	performance	advantage;	since	a
page	must	be	erased	before	it	can	be	written	to,	so	the	erasing	and	writing	can	occur	simultaneously	if	the
same	page	is	not	reused.

SSDs	 that	 are	designed	 for	use	 in	 servers	 are	 called	enterprise-grade	SSDs.	 These	SSDs	 include
cache	memory	for	optimal	performance	and	a	small	backup	power	source	so	that	cache	contents	can	be
committed	 to	 flash	 in	 the	event	of	a	power	 failure.	Figure	7.16	 is	a	photograph	of	an	 Intel	910	800GB
SSD.	The	microcontroller	and	flash	memory	chips	dominate	the	card’s	real	estate.	The	drive	mounts	in	a
server	as	simply	as	any	other	bus–attached	card.

SSD	specifications	 share	many	common	elements	with	HDDs.	Figure	7.17	 is	 an	 example	of	 a	 data



sheet	 for	 an	enterprise-grade	SSD.	 In	comparing	 the	 specifications	 in	Figure	7.17	with	 those	 in	Figure
7.15,	you	can	see	that	there	is	no	reference	to	platters,	or	rotational	speed,	or	anything	else	having	to	do
with	 the	 spinning	disk	 form	 factor.	However,	 the	 drive’s	 physical	 characteristics,	 access	 time,	 transfer
rate,	and	power	consumption	are	still	significant	metrics.

FIGURE	7.16	Intel	910	800GB	SSD
Courtesy	Intel	Corporation.

FIGURE	7.17	An	SSD	Data	Sheet

The	Joint	Electron	Devices	Engineering	Council	(JEDEC)	sets	standards	for	SSD	performance	and
reliability	metrics.	Two	of	the	most	important	of	these	are	Unrecoverable	Bit	Error	Ratio	(UBER)	and
terabytes	written	(TBW).	UBER	is	calculated	by	dividing	the	number	of	data	errors	by	the	number	of
bits	read	using	a	simulated	lifetime	workload.	TBW	is	the	number	of	terabytes	that	can	be	written	to	the



disk	 before	 the	 disk	 fails	 to	meet	 specifications	 for	 speed	 and	 error	 rates.	 TBW	 is	 a	measure	 of	 disk
endurance	(or	service	life)	and	UBER	is	a	measure	of	disk	reliability.

The	cost	of	enterprise-grade	SSDs	makes	sense	where	fast	data	retrieval	is	crucial.	It	is	now	common
practice	 to	 push	 HDD	 performance	 to	 its	 limits	 through	 a	 practice	 known	 as	 short	 stroking.	 Short
stroking	involves	the	installation	of	many	extra	disk	drives,	each	of	which	utilizes	only	a	small	percentage
of	 its	 cylinders,	 thus	keeping	 arm	motion	 to	 a	minimum.	With	 less	 arm	motion,	 access	 time	decreases,
saving	a	few	milliseconds	on	each	disk	access.	Thus,	cost	comparisons	between	HDDs	and	SSDs	in	the
enterprise	must	take	into	account	the	number	of	gigabytes	of	useful	storage,	general	reliability,	and	the	low
power	consumption	of	enterprise	SDDs.

As	drive	prices	continue	to	plummet,	SSDs	are	sure	to	start	showing	up	in	less	demanding	business
environments.	By	 some	 estimates,	 SSD	 costs	will	 reach	 parity	with	HDDs	well	 before	 the	 end	 of	 the
2010s.

7.7			OPTICAL	DISKS
Optical	storage	systems	offer	(practically)	unlimited	data	storage	at	a	cost	that	is	competitive	with	tape.
Optical	 disks	 come	 in	 a	 number	 of	 formats,	 the	 most	 popular	 format	 being	 the	 ubiquitous	CD-ROM
(compact	disc-read	only	memory),	which	can	hold	more	than	0.5GB	of	data.	CD-ROMs	are	a	read-only
medium,	making	 them	ideal	 for	software	and	data	distribution.	CD-R	 (CD-recordable),	CD-RW	 (CD-
rewritable),	and	WORM	(write	once	read	many)	disks	are	optical	storage	devices	often	used	for	long-
term	data	archiving	and	high-volume	data	output.	CD-R	and	WORM	offer	unlimited	quantities	of	tamper-
resistant	storage	for	documents	and	data.	For	long-term	archival	storage	of	data,	some	computer	systems
send	output	directly	 to	optical	storage	rather	 than	paper	or	microfiche.	This	 is	called	computer	output
laser	disc	(COLD).	Robotic	storage	libraries	called	optical	jukeboxes	provide	direct	access	to	myriad
optical	disks.	Jukeboxes	can	store	dozens	to	hundreds	of	disks,	for	total	capacities	of	50GB	to	1,200GB
and	beyond.	Proponents	of	optical	storage	claim	that	optical	disks,	unlike	magnetic	media,	can	be	stored
for	100	years	without	noticeable	degradation.	(Who	could	possibly	challenge	this	claim?)

7.7.1		CD-ROM
CD-ROMs	 are	 polycarbonate	 (plastic)	 disks	 120mm	 (4.8	 inches)	 in	 diameter	 to	 which	 a	 reflective
aluminum	 film	 is	 applied.	 The	 aluminum	 film	 is	 sealed	 with	 a	 protective	 acrylic	 coating	 to	 prevent
abrasion	 and	 corrosion.	The	 aluminum	 layer	 reflects	 light	 that	 emits	 from	 a	 green	 laser	 diode	 situated
beneath	the	disk.	The	reflected	light	passes	through	a	prism,	which	diverts	the	light	into	a	photodetector.
The	photodetector	converts	pulses	of	light	into	electrical	signals,	which	it	sends	to	decoder	electronics	in
the	drive	(see	Figure	7.18).

Compact	discs	are	written	from	the	center	to	the	outside	edge	using	a	single	spiraling	track	of	bumps
in	the	polycarbonate	substrate.	These	bumps	are	called	pits	because	they	look	like	pits	when	viewed	from
the	top	surface	of	the	CD.	Lineal	spaces	between	the	pits	are	called	lands.	Pits	measure	0.5μm	wide	and
are	between	0.83μm	and	3.56μm	long.	(The	edges	of	the	pits	correspond	to	binary	1s.)	The	bump	formed
by	the	underside	of	a	pit	 is	as	high	as	one-quarter	of	the	wave-length	of	the	light	produced	by	the	laser
diode.	This	means	that	the	bump	interferes	with	the	reflection	of	the	laser	beam	in	such	a	way	that	the	light
bouncing	off	the	bump	exactly	cancels	out	light	incident	from	the	laser.	This	results	in	pulses	of	light	and
dark,	which	are	interpreted	by	drive	circuitry	as	binary	digits.



FIGURE	7.18	The	Internals	of	a	CD-ROM	Drive

FIGURE	7.19	CD	Track	Spiral	and	Track	Enlargement

The	distance	between	adjacent	turns	of	the	spiral	track,	the	track	pitch,	must	be	at	least	1.6μm	(see
Figure	7.19).	If	you	could	“unravel”	a	CD-ROM	or	audio	CD	track	and	lay	it	on	the	ground,	the	string	of
pits	and	lands	would	extend	nearly	5	miles	(8km).	(Being	only	0.5μm	wide—less	than	half	the	thickness
of	a	human	hair—it	would	be	barely	visible	to	the	unaided	eye.)

Although	a	CD	has	only	one	track,	a	string	of	pits	and	lands	spanning	360°	of	the	disk	is	referred	to	as
a	track	in	most	optical	disk	literature.	Unlike	magnetic	storage,	 tracks	at	 the	center	of	 the	disk	have	the
same	bit	density	as	tracks	at	the	outer	edge	of	the	disk.

CD-ROMs	 were	 designed	 for	 storing	 music	 and	 other	 sequential	 audio	 signals.	 Data	 storage
applications	were	an	afterthought,	as	you	can	see	by	the	data	sector	format	in	Figure	7.20.	Data	is	stored
in	2,352-byte	chunks	called	sectors	that	lie	along	the	length	of	the	track.	Sectors	are	made	up	of	98	588-
bit	 primitive	 units	 called	 channel	 frames.	 As	 shown	 in	 Figure	 7.21,	 channel	 frames	 consist	 of
synchronizing	 information,	 a	 header,	 and	 33	 17-bit	 symbols	 for	 a	 payload.	 The	 17-bit	 symbols	 are
encoded	 using	 an	 RLL(2,	 10)	 code	 called	 EFM	 (eight-to-fourteen	 modulation).	 The	 disk	 drive
electronics	read	and	interpret	(demodulate)	channel	frames	to	create	yet	another	data	structure	called	a
small	 frame.	 Small	 frames	 are	 33	 bytes	 wide,	 32	 bytes	 of	 which	 are	 occupied	 by	 user	 data.	 The
remaining	byte	is	used	for	subchannel	information.	There	are	eight	subchannels,	named	P,	Q,	R,	S,	T,	U,
V,	 and	 W.	 All	 except	 P	 (which	 denotes	 starting	 and	 stopping	 times)	 and	 Q	 (which	 contains	 control
information)	have	meaning	only	for	audio	applications.



Most	compact	discs	operate	at	constant	linear	velocity	 (CLV),	which	means	 that	 the	rate	at	which
sectors	pass	over	the	laser	remains	constant	regardless	of	whether	those	sectors	are	at	the	beginning	or	the
end	 of	 the	 disk.	 The	 constant	 velocity	 is	 achieved	 by	 spinning	 the	 disk	 slower	 when	 accessing	 the
outermost	tracks	than	the	innermost.	A	sector	number	is	addressable	by	the	number	of	minutes	and	seconds
of	 track	 that	 lie	between	 it	and	 the	beginning	(the	center)	of	 the	disk.	These	“minutes	and	seconds”	are
calibrated	under	the	assumption	that	the	CD	player	processes	75	sectors	per	second.	Computer	CD-ROM
drives	are	much	faster	than	that	with	speeds	up	to	52	times	(52×)	the	speed	of	audio	CDs,	7.8MBps	(with
faster	speeds	sure	 to	 follow).	To	 locate	a	particular	sector,	 the	sledge	moves	perpendicular	 to	 the	disk
track,	taking	its	best	guess	as	to	where	a	particular	sector	may	be.	After	an	arbitrary	sector	is	read,	the
head	follows	the	track	to	the	desired	sector.

FIGURE	7.20	CD	Data	Sector	Formats



FIGURE	7.21	CD	Physical	and	Logical	Formats

Sectors	can	have	one	of	three	different	formats,	depending	on	which	mode	is	used	to	record	the	data.
There	are	three	different	modes.	Modes	0	and	2,	intended	for	music	recording,	have	no	error-correction
capabilities.	Mode	1,	 intended	 for	 data	 recording,	 sports	 two	 levels	 of	 error	 detection	 and	 correction.
These	 formats	 are	 shown	 in	 Figure	 7.20.	 The	 total	 capacity	 of	 a	 CD	 recorded	 in	Mode	 1	 is	 650MB.
Modes	0	and	2	can	hold	742MB,	but	cannot	be	used	reliably	for	data	recording.

The	track	pitch	of	a	CD	can	be	more	than	1.6μm	when	multiple	sessions	are	used.	Audio	CDs	have
songs	 recorded	 in	sessions,	which,	when	viewed	from	below,	give	 the	appearance	of	broad	concentric
rings.	When	CDs	began	to	be	used	for	data	storage,	the	idea	of	a	music	“recording	session”	was	extended
(without	modification)	to	include	data	recording	sessions.	There	can	be	as	many	as	99	sessions	on	CDs.
Sessions	are	delimited	by	a	4,500-sector	(1-minute)	lead-in	that	contains	the	table	of	contents	for	the	data
contained	 in	 the	 session	 and	 by	 a	 6,750-	 or	 2,250-sector	 lead-out	 (or	 runout)	 at	 the	 end.	 (The	 first
session	on	the	disk	has	6,750	sectors	of	lead-out.	Subsequent	sessions	have	the	shorter	lead-out.)	On	CD-
ROMs,	 lead-outs	 are	 used	 to	 store	 directory	 information	 pertaining	 to	 the	 data	 contained	 within	 the
session.

7.7.2		DVD
Digital	versatile	discs,	or	DVDs	(formerly	called	digital	video	discs),	can	be	thought	of	as	quad-density
CDs.	DVDs	rotate	at	about	three	times	the	speed	of	CDs.	DVD	pits	are	approximately	half	the	size	of	CD
pits	 (0.4μm	 to	 2.13μm),	 and	 the	 track	 pitch	 is	 0.74μm.	 Like	 CDs,	 they	 come	 in	 recordable	 and



nonrecordable	varieties.	Unlike	CDs,	DVDs	can	be	single	sided	or	double	sided,	single	layer	or	double
layer.	Each	layer	is	accessible	by	refocusing	the	laser,	as	shown	in	Figure	7.22.	Single-layer,	single-sided
DVDs	 can	 store	 4.78GB,	 and	 double-layer,	 double-sided	DVDs	 can	 accommodate	 17GB	 of	 data.	 The
same	 2,048-byte	 DVD	 sector	 format	 supports	 music,	 data,	 and	 video.	 With	 greater	 data	 density	 and
improved	access	time,	one	can	expect	that	DVDs	will	eventually	replace	CDs	for	long-term	data	storage
and	distribution.

DVD	improves	upon	CD	in	many	ways.	One	of	 the	most	 important	 is	 that	DVD	uses	a	650nm	laser
whereas	CD	employs	a	780nm	laser.	This	means	 the	 feature	size	can	be	much	smaller	on	DVD,	so	 the
linear	space	occupied	by	a	single	bit	is	shorter.	The	shortest	pit	length	on	DVD	is	0.4μm	as	opposed	to
the	shortest	pit	length	of	0.83μm	on	CD.	And	DVD	tracks	can	be	placed	much	closer	together.	The	track
pitch	on	DVD	is	0.74μm,	as	opposed	 to	1.6μm	for	CD.	This	means	 the	spiral	 track	 is	 longer	on	DVD.
Remember,	the	track	length	of	a	CD—if	it	could	be	unwound	from	its	spiral—is	about	5	miles	(8km).	By
comparison,	if	you	were	to	unwind	the	track	of	a	DVD,	it	would	span	about	7.35	miles	(11.8km).

FIGURE	7.22	A	Laser	Focusing	on	a)	a	Single-Layer	DVD	and	b)	a	Double-Layer
DVD	One	Layer	at	a	Time

A	 second	 great	 improvement	 is	 that	 DVD’s	 track	 format	 is	 much	 leaner	 than	 CD’s	 track	 format.
Furthermore,	DVD	has	a	much	more	efficient	error-correction	algorithm	than	CD.	DVD’s	error	correction
provides	better	protection	using	a	greatly	reduced	number	of	redundant	bits	over	CD.

With	its	greater	data	density	and	improved	access	times,	DVD	might	be	an	ideal	medium	for	long-term
data	storage	and	retrieval.	There	are,	however,	many	other	media	in	the	running.

7.7.3		Blue-Violet	Laser	Discs
If	DVD’s	 650nm	 laser	 provides	more	 than	 twice	 the	 recording	 density	 of	 CD’s	 750nm	 laser,	 then	 the
405nm	wavelength	of	the	blue-violet	laser	breaks	all	barriers.	Recent	advances	in	laser	technology	have
given	 us	 inexpensive	 blue-violet	 laser	 disc	 drives	 that	 can	 be	 incorporated	 in	 a	 variety	 of	 consumer
products.	 Two	 incompatible	 blue-violet	 disc	 formats,	 Blu-Ray	 and	 HD-DVD,	 fought	 for	 market
dominance	in	the	mid-2000s.	Each	brought	its	own	distinct	advantage:	HD-DVD	is	backward	compatible
with	traditional	DVDs,	but	Blu-Ray’s	storage	capacity	is	greater.

The	 Blu-Ray	 Disc	 format	 was	 developed	 by	 the	 Blu-Ray	 Disc	 Association,	 a	 consortium	 of	 nine
consumer	 electronic	 manufacturers.	 The	 group,	 led	 by	MIT,	 includes	 such	 major	 companies	 as	 Sony,
Samsung,	 and	Pioneer.	A	Blu-Ray	disk	 consists	of	 a	120mm	polycarbonate	disk	with	data	written	 in	 a
single	spiral	track.	The	minimum	pit	length	on	a	track	is	0.13nm,	and	the	track	pitch	is	0.32nm.	The	total
recording	capacity	of	a	single	layer	disk	is	25GB.	Multiple	layers	can	be	“stacked”	on	a	disk	(up	to	six	as
of	 this	 writing),	 although	 only	 double-layer	 disks	 are	 available	 for	 in-home	 use.	 Blu-Ray	 ended	 up



winning	the	blue-violet	disk	format	battle	because	of	 the	dominance	of	Sony	in	 the	movie	 industry	and,
above	all,	 the	 release	of	Sony’s	enormously	popular	PlayStation	3,	which	used	Blu-Ray	disks	 for	data
storage.

For	 industrial-grade	 data	 storage,	 both	 Sony	 and	 the	 Plasmon	 Corporation	 released	 a	 blue	 laser
medium	designed	especially	 for	archival	data	storage.	Both	products	are	 intended	for	use	 in	 large	data
centers,	 and	 thus	 are	 optimized	 for	 transfer	 speed	 (upwards	 of	 6MB/s	 with	 verification).	 Sony’s
Professional	Disc	for	Data	 (PDD)	 and	Plasmon’s	 second-generation	Ultra	Density	Optical	 (UDO-2)
disks	can	store	up	to	23GB	and	60GB,	respectively.

7.7.4		Optical	Disk	Recording	Methods
Various	technologies	are	used	to	enable	recording	on	CDs	and	DVDs.	The	most	inexpensive—and	most
pervasive—method	uses	heat-sensitive	dye.	The	dye	is	sandwiched	between	the	polycarbonate	substrate
and	the	reflective	coating	on	the	CD.	When	struck	by	light	emitting	from	the	laser,	this	dye	creates	a	pit	in
the	polycarbonate	substrate.	This	pit	affects	the	optical	properties	of	the	reflective	layer.

Rewritable	optical	media,	such	as	CD-RW,	replace	the	dye	and	reflective	coating	layers	of	a	CD-R
disk	with	a	metallic	alloy	that	includes	such	exotic	elements	as	indium,	tellurium,	antimony,	and	silver.	In
its	unaltered	state,	 this	metallic	coating	 is	 reflective	 to	 the	 laser	 light.	When	heated	by	a	 laser	 to	about
500°C,	 it	 undergoes	 a	molecular	 change,	making	 it	 less	 reflective.	 (Chemists	 and	physicists	 call	 this	 a
phase	 change.)	 The	 coating	 reverts	 to	 its	 original	 reflective	 state	 when	 heated	 to	 only	 200°C,	 thus
allowing	the	data	to	be	changed	any	number	of	times.	(Industry	experts	have	cautioned	that	phase-change
CD	recording	may	work	for	“only”	1,000	cycles.)

WORM	 drives,	 commonly	 found	 on	 large	 systems,	 employ	 higher-powered	 lasers	 than	 can	 be
reasonably	attached	to	systems	intended	for	individual	use.	Lower-powered	lasers	are	subsequently	used
to	 read	 the	 data.	 The	 higher-powered	 lasers	 permit	 different—and	more	 durable—recording	methods.
Three	of	these	methods	are:

•	 	 	Ablative:	 A	 high-powered	 laser	melts	 a	 pit	 in	 a	 reflective	metal	 coating	 sandwiched	 between	 the
protective	layers	of	the	disk.

•			Bimetallic	Alloy:	Two	metallic	layers	are	encased	between	protective	coatings	on	the	surfaces	of	the
disk.	 Laser	 light	 fuses	 the	 two	 metallic	 layers	 together,	 causing	 a	 reflectance	 change	 in	 the	 lower
metallic	 layer.	Bimetallic	Alloy	WORM	disk	manufacturers	claim	that	 this	medium	will	maintain	 its
integrity	for	100	years.

•			Bubble-Forming:	A	single	layer	of	thermally	sensitive	material	is	pressed	between	two	plastic	layers.
When	hit	by	high-powered	laser	light,	bubbles	form	in	the	material,	causing	a	reflectance	change.

Despite	their	ability	to	use	the	same	frame	formats	as	CD-ROM,	CD-R	and	CD-RW	disks	may	not	be
readable	in	some	CD-ROM	drives.	The	incompatibility	arises	from	the	notion	that	CD-ROMs	would	be
recorded	(or	pressed)	in	a	single	session.	CD-Rs	and	CD-RWs,	on	the	other	hand,	are	most	useful	when
they	can	be	written	incrementally	like	floppy	disks.	The	first	CD-ROM	specification,	ISO	9660,	assumed
single-session	recording	and	has	no	provisions	for	allowing	more	than	99	sessions	on	the	disk.	Cognizant
that	 the	 restrictions	 of	 ISO	 9660	were	 inhibiting	wider	 use	 of	 their	 products,	 a	 group	 of	 leading	CD-
R/CD-RW	manufacturers	 formed	a	consortium	 to	address	 the	problem.	The	 result	of	 their	efforts	 is	 the
Universal	Disk	Format	Specification,	which	allows	an	unlimited	number	of	recording	sessions	for	each
disk.	Key	to	this	new	format	is	the	idea	of	replacing	the	table	of	contents	associated	with	each	session	by



a	 floating	 table	of	 contents.	This	 floating	 table	of	 contents,	 called	a	virtual	 allocation	 table	 (VAT),	 is
written	to	the	lead-out	following	the	last	sector	of	user	data	written	on	the	disk.	As	data	is	appended	to
what	 had	 been	 recorded	 in	 a	 previous	 session,	 the	VAT	 is	 rewritten	 at	 the	 end	 of	 the	 new	 data.	 This
process	continues	until	the	VAT	reaches	the	last	usable	sector	on	the	disk.

7.8	MAGNETIC	TAPE
Magnetic	tape	is	the	oldest	and	most	cost-effective	of	all	mass-storage	devices.	First-generation	magnetic
tapes	were	made	of	 the	same	material	used	by	analog	 tape	recorders.	A	cellulose-acetate	film	one-half
inch	wide	(1.25cm)	was	coated	on	one	side	with	a	magnetic	oxide.	Twelve	hundred	feet	of	this	material
were	wound	 onto	 a	 reel,	which	 then	 could	 be	 hand-threaded	 on	 a	 tape	 drive.	These	 tape	 drives	were
approximately	the	size	of	a	small	refrigerator.	Early	tapes	had	capacities	under	11MB	and	required	nearly
half	an	hour	to	read	or	write	the	entire	reel.

Data	was	written	 across	 the	 tape	one	byte	 at	 a	 time,	 creating	one	 track	 for	 each	bit.	An	additional
track	was	added	for	parity,	making	the	tape	nine	tracks	wide,	as	shown	in	Figure	7.23.	Nine-track	 tape
used	phase	modulation	coding	with	odd	parity.	The	parity	was	odd	to	ensure	that	at	least	one	“opposite”
flux	transition	took	place	during	long	runs	of	zeros	(nulls),	characteristic	of	database	records.

The	evolution	of	tape	technology	over	the	years	has	been	remarkable,	with	manufacturers	constantly
packing	more	bytes	onto	each	linear	inch	of	tape.	Higher-density	tapes	are	not	only	more	economical	to
purchase	and	store,	but	they	also	allow	backups	to	be	made	more	quickly.	This	means	that	if	a	system	must
be	taken	offline	while	its	files	are	being	copied,	downtime	is	reduced.	Further	economies	can	be	realized
when	data	is	compressed	before	being	written	to	the	tape.	(See	“Focus	on	Data	Compression”	at	the	end
of	this	chapter.)

The	 price	 paid	 for	 all	 of	 these	 innovative	 tape	 technologies	 is	 that	 a	 plethora	 of	 standards	 and
proprietary	techniques	have	emerged.	Cartridges	of	various	sizes	and	capacities	have	replaced	nine-track
open-reel	tapes.	Thin	film	coatings	similar	to	those	found	on	digital	recording	tape	have	replaced	oxide
coatings.	Tapes	support	various	track	densities	and	employ	serpentine	or	helical	scan	recording	methods.

FIGURE	7.23	A	Nine-Track	Tape	Format



FIGURE	7.24	Three	Recording	Passes	on	a	Serpentine	Tape

Serpentine	 recording	 methods	 place	 bits	 on	 the	 tape	 in	 series.	 Instead	 of	 the	 bytes	 being
perpendicular	 to	 the	 edges	of	 the	 tape,	 as	 in	 the	nine-track	 format,	 they	 are	written	 “lengthwise,”	with
each	byte	aligning	in	parallel	with	the	edge	of	the	tape.	A	stream	of	data	is	written	along	the	length	of	the
tape	until	the	end	is	reached;	then	the	tape	reverses	and	the	next	track	is	written	beneath	the	first	one	(see
Figure	7.24).	This	process	continues	until	the	track	capacity	of	the	tape	has	been	reached.	Digital	 linear
tape	(DLT)	and	Quarter	Inch	Cartridge	 systems	use	serpentine	recording	with	50	or	more	 tracks	per
tape.

Digital	 audio	 tape	 (DAT)	 and	 8mm	 tape	 systems	 use	 helical	 scan	 recording.	 In	 other	 recording
systems,	the	tape	passes	straight	across	a	fixed	magnetic	head	in	a	manner	similar	to	a	tape	recorder.	DAT
systems	pass	tape	over	a	tilted	rotating	drum	(capstan),	which	has	two	read	heads	and	two	write	heads,
as	shown	in	Figure	7.25.	(During	write	operations,	the	read	heads	verify	the	integrity	of	the	data	just	after
it	has	been	written.)	The	capstan	spins	at	2,000rpm	in	 the	direction	opposite	of	 the	motion	of	 the	 tape.
(This	 configuration	 is	 similar	 to	 the	mechanism	 used	 by	VCRs.)	 The	 two	 read/write	 head	 assemblies
write	data	at	40-degree	angles	to	one	another.	Data	written	by	the	two	heads	overlaps,	thus	increasing	the
recording	density.	Helical	scan	systems	 tend	 to	be	slower,	and	 the	 tapes	are	subject	 to	more	wear	 than
serpentine	systems	with	their	simpler	tape	paths.

LTO:	Linear	Tape	Open
For	many	years,	manufacturers	 carefully	guarded	 the	 technology	 that	went	 into	 their	 tape	drives.	Tapes
made	for	one	brand	of	tape	drive	could	not	be	read	in	another.	Sometimes	even	different	models	of	 the
same	brand	of	tape	drive	were	incompatible.	Realizing	that	this	situation	was	benefiting	no	one,	Hewlett-
Packard,	IBM,	and	Seagate	Technologies	came	together	in	1997	to	formulate	an	open	specification	for	a
best-of-breed	tape	format	called	Linear	Tape	Open,	or	simply	LTO.	In	a	rare	display	of	collaboration
and	 cooperation	 among	 competing	 vendors,	 LTO’s	 track	 format,	 cartridge	 design,	 error-correction
algorithm,	and	compression	method	incorporated	the	best	ideas	presented	by	each	manufacturer.	LTO	was
designed	so	that	it	could	be	refined	through	a	series	of	“generations,”	with	each	generation	doubling	the
capability	of	the	one	before	it.	Generation	5	was	released	in	2010.	These	tapes	can	hold	up	to	1.4TB	with
a	 transfer	 rate	 of	 280MB	 per	 second	 without	 compression.	 Up	 to	 2:1	 compression	 is	 possible,	 thus
doubling	both	the	capacity	and	the	transfer	rate.



FIGURE	7.25	A	Helical	Scan	Recording
a)	The	Read/Write	Heads	on	Capstan
b)	Pattern	of	Data	Written	on	the	Tape

The	 reliability	 and	manageability	 of	 LTO	 far	 surpass	 all	 formats	 that	 came	 before	 it.	 Deep	 error-
correction	 algorithms	 ensure	 that	 burst	 errors	 as	 well	 as	 single-bit	 errors	 are	 recoverable.	 The	 tape
cartridge	 contains	 memory	 circuits	 that	 store	 historical	 information	 including	 the	 number	 of	 times	 the
cartridge	has	been	used,	the	locations	and	types	of	errors	in	the	tape,	and	a	table	of	contents	for	the	data
stored	 on	 the	 volume.	 Like	 DAT,	 LTO	 ensures	 data	 readability	 through	 simultaneous	 read/write
operations.	 Errors	 discovered	 during	 this	 process	 are	 noted	 in	 cartridge	memory	 and	 also	 on	 the	 tape
itself.	 The	 data	 is	 then	 rewritten	 to	 a	 good	 segment	 of	 the	 tape.	With	 its	 superb	 reliability,	 high	 data
density,	and	transfer	rates,	LTO	has	found	wide	acceptance	by	and	support	from	manufacturers	and	buyers
alike.

Tape	storage	has	been	a	staple	of	mainframe	environments	from	the	beginning.	Tapes	appear	to	offer
“infinite”	storage	at	bargain	prices.	They	continue	to	be	the	primary	medium	for	making	file	and	system
backups	on	large	systems.	Although	the	medium	itself	is	inexpensive,	cataloging	and	handling	costs	can	be
substantial,	 especially	 when	 the	 tape	 library	 consists	 of	 thousands	 of	 tape	 volumes.	 Recognizing	 this
problem,	 several	 vendors	have	produced	 a	variety	of	 robotic	 devices	 that	 can	 catalog,	 fetch,	 and	 load
tapes	 in	 seconds.	Robotic	 tape	 libraries,	 also	 known	 as	 tape	 silos,	 can	 be	 found	 in	many	 large	 data
centers.	The	largest	robotic	tape	library	systems	have	capacities	in	the	hundreds	of	terabytes	and	can	load
a	cartridge	at	user	request	in	less	than	half	a	minute.

The	Long	Future	of	Tape
Because	 tape	 is	 perceived	 as	 “old	 technology,”	 some	 people	 think	 that	 it	 has	 no	 place	 in	 the
contemporary	 computing	 landscape.	Moreover,	with	 the	 cost	 of	 some	 tape	 cartridges	 exceeding	US
$100	each,	it’s	increasingly	easy	to	argue	that	disk	storage	is	cheaper	than	tape	in	terms	of	dollars	per
megabyte.	 The	 “obvious”	 conclusion	 is	 that	 a	 good	 deal	 of	money	 can	 be	 saved	 using	 disk-to-disk
backups	instead	of	disk-to-tape	configurations.

Indeed,	 disk-to-disk	 backup,	 in	 the	 form	 of	 “hot”	mirroring,	 is	 the	 only	 solution	 for	 ultra-high-
availability	configurations.	Such	configurations	consist	of	a	set	of	backup	disk	drives	that	is	updated	in
tandem	with	 an	 identical	 set	 of	 primary	 disks.	 The	mirrored	 disks	 can	 even	 be	 placed	 in	 a	 secure
location	miles	from	the	main	data	center.	If	disaster	strikes	the	data	center,	a	copy	of	the	important	data



will	survive.
The	biggest	problem	in	relying	exclusively	on	disk-to-disk	backups	is	that	there	is	no	provision	for

archival	copies	of	the	data.	Tape	backups	generally	follow	a	rotation	schedule.	Two	or	three	sets	of
monthly	backups	are	 taken	and	 rotated	offsite,	along	with	several	 sets	of	weekly	and	daily	backups.
Each	 installation	 determines	 the	 rotation	 schedule	 based	 on	 a	 number	 of	 factors	 including	 the
importance	of	the	data,	how	often	the	data	is	updated	(its	volatility),	and	the	amount	of	time	required	to
copy	the	data	to	tape.	Therefore,	the	oldest	offsite	backup	may	be	an	image	taken	months	earlier.

Such	 “ancient”	 copies	 of	 data	 can	 rescue	 a	 database	 from	 human	 and	 programming	 errors.	 For
example,	 it	 is	 possible	 that	 a	 damaging	 error	 will	 be	 discovered	 only	 after	 a	 program	 has	 been
misbehaving	for	days	or	weeks.	A	mirror	copy	of	the	database	would	contain	the	same	erroneous	data
as	 the	primary	set,	 and	 it	would	be	no	help	 in	 repairing	 the	damage.	 If	backups	have	been	managed
properly,	chances	are	good	that	at	least	some	of	the	data	can	be	recovered	from	an	old	backup	tape.

Some	people	complain	that	it	takes	too	long	to	write	data	to	tape	and	that	there	is	no	time	in	which
transactional	 activity	 can	 be	 stopped	 long	 enough	 to	 copy	 the	 data	 to	 tape:	 the	backup	window	 is
insufficient.	 One	 can’t	 help	 but	 think	 that	 if	 the	 backup	 window	 is	 insufficient	 for	 a	 disk-to-disk
backup,	it	is	probably	also	insufficient	for	a	tape	backup	as	well.	However,	tape	drives	have	transfer
rates	that	are	competitive	with	disk	transfer	rates;	when	the	data	is	compressed	as	it	is	written	to	tape,
tape	 transfer	 rates	 exceed	 those	 of	 disk.	 If	 the	 backup	window	 is	 too	 small	 for	 either	 disk	 or	 tape
backups,	then	a	mirroring	approach—with	backups	taken	from	the	mirror	set—should	be	used.	This	is
known	as	a	disk-to-disk-to-tape	(D2D2T)	backup	method.

Another	 consideration	 is	 the	 idea	of	 information	 lifecycle	management	 (ILM),	which	 seeks	 to
match	the	cost	of	a	storage	medium	with	the	value	of	the	data	that	is	stored	on	it.	The	most	important
data	should	be	stored	on	the	most	accessible	and	reliable	media.	Government	regulations	such	as	the
Sarbanes-Oxley	Act	of	2002	and	Internal	Revenue	Service	codes	in	the	United	States	require	retention
of	large	amounts	of	data	over	long	periods	of	time.	If	there	is	no	compelling	business	need	for	instant
access	 to	 the	 data,	why	 should	 it	 be	 kept	 online?	 ILM	 practices	 tell	 us	 that	 at	 some	 point	 the	 data
should	 be	 encrypted,	 removed	 from	 primary	 storage,	 and	 placed	 in	 a	 vault.	 Most	 corporate
installations	would	be	wise	to	resist	shipping	a	$10,000	disk	array	offsite	for	indefinite	storage.

For	these	reasons,	tape	will	continue	to	be	the	archival	medium	of	choice	for	many	years	to	come.
Its	costs	are	well	justified	the	moment	you	retrieve	data	that	would	have	been	long	ago	overwritten	on
disk	storage.

7.9			RAID
In	the	30	years	following	the	introduction	of	IBM’s	RAMAC	computer,	only	the	largest	computers	were
equipped	 with	 disk	 storage	 systems.	 Early	 disk	 drives	 were	 enormously	 costly	 and	 occupied	 a	 large
amount	 of	 floor	 space	 in	 proportion	 to	 their	 storage	 capacity.	 They	 also	 required	 a	 strictly	 controlled
environment:	Too	much	heat	would	damage	control	circuitry,	and	low	humidity	caused	static	buildup	that
could	 scramble	 the	magnetic	 flux	 polarizations	 on	 disk	 surfaces.	Head	 crashes,	 or	 other	 irrecoverable
failures,	took	an	incalculable	toll	on	business,	scientific,	and	academic	productivity.	A	head	crash	toward
the	 end	 of	 the	 business	 day	meant	 that	 all	 data	 input	 had	 to	 be	 redone	 to	 the	 point	 of	 the	 last	 backup,
usually	the	night	before.

Clearly,	 this	 situation	 was	 unacceptable	 and	 promised	 to	 grow	 even	 worse	 as	 everyone	 became
increasingly	 reliant	on	electronic	data	storage.	A	permanent	 remedy	was	a	 long	 time	coming.	After	all,



weren’t	disks	as	reliable	as	we	could	make	them?	It	turns	out	that	making	disks	more	reliable	was	only
part	of	the	solution.

In	 their	 1988	paper,	 “A	Case	 for	Redundant	Arrays	of	 Inexpensive	Disks,”	David	Patterson,	Garth
Gibson,	 and	Randy	Katz	 of	 the	University	 of	 California	 at	 Berkeley	 coined	 the	 acronym	RAID.	 They
showed	how	mainframe	disk	systems	could	realize	both	reliability	and	performance	improvements	if	they
would	employ	some	number	of	“inexpensive”	small	disks	(such	as	those	used	by	microcomputers)	instead
of	the	single	large	expensive	disks	(SLEDs)	 typical	of	large	systems.	Because	the	term	inexpensive	 is
relative	 and	 can	 be	 misleading,	 the	 proper	 meaning	 of	 the	 acronym	 is	 now	 generally	 accepted	 as
Redundant	Array	of	Independent	Disks.

In	 their	paper,	Patterson,	Gibson,	and	Katz	defined	five	 types	(called	 levels)	of	RAID,	each	having
different	performance	and	 reliability	characteristics.	These	original	 levels	were	numbered	1	 through	5.
Definitions	for	RAID	levels	0	and	6	were	later	recognized.	Various	vendors	have	invented	other	levels,
which	may	in	the	future	become	standards	also.	These	are	usually	combinations	of	the	generally	accepted
RAID	levels.	In	this	section,	we	briefly	examine	each	of	the	seven	RAID	levels	as	well	as	a	few	hybrid
systems	that	combine	different	RAID	levels	to	meet	particular	performance	or	reliability	objectives.

Every	vendor	of	enterprise-class	storage	systems	offers	at	least	one	type	of	RAID	implementation.	But
not	all	storage	systems	are	automatically	protected	by	RAID.	Those	systems	are	often	referred	to	as	just	a
bunch	of	disks	(JBOD).

7.9.1		RAID	Level	0
RAID	Level	0,	or	RAID-0,	places	data	blocks	in	stripes	across	several	disk	surfaces	so	that	one	record
occupies	 sectors	 on	 several	 disk	 surfaces,	 as	 shown	 in	 Figure	7.26.	 This	method	 is	 also	 called	drive
spanning,	block	interleave	data	striping,	or	disk	striping.	(Striping	is	simply	the	segmentation	of	logically
sequential	data	so	that	segments	are	written	across	multiple	physical	devices.	These	segments	can	be	as
small	as	a	single	bit,	as	in	RAID-0,	or	blocks	of	a	specific	size.)

Because	 it	 offers	 no	 redundancy,	 of	 all	RAID	 configurations,	RAID-0	 offers	 the	 best	 performance,
particularly	if	separate	controllers	and	caches	are	used	for	each	disk.	RAID-0	is	also	very	inexpensive.
The	problem	with	RAID-0	 lies	 in	 the	fact	 that	 the	overall	 reliability	of	 the	system	is	only	a	fraction	of
what	would	be	expected	with	a	single	disk.	Specifically,	if	the	array	consists	of	five	disks,	each	with	a
design	life	of	50,000	hours	(about	six	years),	the	entire	system	has	an	expected	design	life	of	50,000	/	5	=
10,000	hours	(about	14	months).	As	the	number	of	disks	increases,	the	probability	of	failure	increases	to
the	point	where	it	approaches	certainty.	RAID-0	offers	no-fault	tolerance	because	there	is	no	redundancy.
Therefore,	 the	only	advantage	offered	by	RAID-0	is	 in	performance.	Its	 lack	of	reliability	 is	downright
scary.	RAID-0	is	recommended	for	noncritical	data	(or	data	 that	changes	 infrequently	and	is	backed	up
regularly)	that	requires	high-speed	reads	and	writes,	is	low	cost,	is	used	in	applications	such	as	video	or
image	editing.



FIGURE	7.26	A	Record	Written	Using	RAID-0,	Block	Interleave	Data	Striping	with	No	Redundancy

FIGURE	7.27	RAID-1,	Disk	Mirroring

7.9.2		RAID	Level	1
RAID	Level	1,	or	RAID-1	(also	known	as	disk	mirroring),	gives	the	best	failure	protection	of	all	RAID
schemes.	Each	time	data	 is	written,	 it	 is	duplicated	onto	a	second	set	of	drives	called	a	mirror	set,	or
shadow	 set	 (as	 shown	 in	 Figure	 7.27).	 This	 arrangement	 offers	 acceptable	 performance,	 particularly
when	 the	 mirror	 drives	 are	 synchronized	 180°	 out	 of	 rotation	 with	 the	 primary	 drives.	 Although
performance	on	writes	is	slower	than	that	of	RAID-0	(because	the	data	has	to	be	written	twice),	reads	are
much	faster,	because	the	system	can	read	from	the	disk	arm	that	happens	to	be	closer	to	the	target	sector.
This	 cuts	 rotational	 latency	 in	 half	 on	 reads.	 RAID-1	 is	 best	 suited	 for	 transaction-oriented,	 high-
availability	 environments	 and	 other	 applications	 requiring	 high-fault	 tolerance,	 such	 as	 accounting	 or
payroll.

7.9.3		RAID	Level	2
The	main	problem	with	RAID-1	is	that	it	is	costly:	You	need	twice	as	many	disks	to	store	a	given	amount
of	data.	A	better	way	might	be	to	devote	one	or	more	disks	to	storing	information	about	the	data	on	the
other	disks.	RAID-2	defines	one	of	these	methods.

RAID-2	takes	 the	 idea	of	data	striping	to	 the	extreme.	Instead	of	writing	data	 in	blocks	of	arbitrary
size,	 RAID-2	 writes	 one	 bit	 per	 strip	 (as	 shown	 in	 Figure	 7.28).	 This	 requires	 a	 minimum	 of	 eight
surfaces	 just	 to	 accommodate	 the	 data.	 Additional	 drives	 are	 used	 for	 error-correction	 information
generated	using	a	Hamming	code.	The	number	of	Hamming	code	drives	needed	to	correct	singlebit	errors
is	proportionate	 to	 the	 log	of	 the	number	of	data	drives	 to	be	protected.	 If	any	one	of	 the	drives	 in	 the
array	 fails,	 the	 Hamming	 code	 words	 can	 be	 used	 to	 reconstruct	 the	 failed	 drive.	 (Obviously,	 the
Hamming	drive	can	be	reconstructed	using	the	data	drives.)

Because	one	bit	is	written	per	drive,	the	entire	RAID-2	disk	set	acts	as	though	it	were	one	large	data
disk.	The	total	amount	of	available	storage	is	the	sum	of	the	storage	capacities	of	the	data	drives.	All	of



the	drives—including	 the	Hamming	drives—must	be	 synchronized	exactly,	 otherwise	 the	data	becomes
scrambled	and	the	Hamming	drives	do	no	good.	Hamming	code	generation	is	time-consuming;	thus	RAID-
2	 is	 too	slow	for	most	commercial	 implementations.	 In	 fact,	most	hard	drives	 today	have	built-in	CRC
error	correction.	RAID-2,	however,	forms	the	theoretical	bridge	between	RAID-1	and	RAID-3,	both	of
which	are	used	in	the	real	world.

FIGURE	7.28	RAID-2,	Bit	Interleave	Data	Striping	with	a	Hamming	Code

7.9.4		RAID	Level	3
Like	RAID-2,	RAID-3	 stripes	 (interleaves)	data	one	bit	 at	 a	 time	across	all	of	 the	data	drives.	Unlike
RAID-2,	however,	RAID-3	uses	only	one	drive	to	hold	a	simple	parity	bit,	as	shown	in	Figure	7.29.	The
parity	calculation	can	be	done	quickly	in	hardware	using	an	exclusive	OR	(XOR)	operation	on	each	data
bit	(shown	as	bn)	as	follows	(for	even	parity):

Parity	=	b0	XOR	b1	XOR	b2	XOR	b3	XOR	b4	XOR	b5	XOR	b6	XOR	b7
Equivalently,

Parity	=	(b0	+	b1	+	b2	+	b3	+	b4	+	b5	+	b6	+	b7)	mod	2

A	 failed	 drive	 can	 be	 reconstructed	 using	 the	 same	 calculation.	 For	 example,	 assume	 that	 drive
number	6	fails	and	is	replaced.	The	data	on	the	other	seven	data	drives	and	the	parity	drive	are	used	as
follows:

b6	=	b0	XOR	b1	XOR	b2	XOR	b3	XOR	b4	XOR	b5	XOR	Parity	XOR	b7
RAID-3	requires	the	same	duplication	and	synchronization	as	RAID-2,	but	is	more	economical	than	either
RAID-1	or	RAID-2	because	 it	uses	only	one	drive	for	data	protection.	RAID-3	has	been	used	 in	some
commercial	systems	over	the	years,	but	it	is	not	well	suited	for	transaction-oriented	applications.	RAID-3
is	most	useful	for	environments	where	large	blocks	of	data	would	be	read	or	written,	such	as	with	image
or	video	processing.



FIGURE	7.29	RAID-3:	Bit	Interleave	Data	Striping	with	Parity	Disk

7.9.5		RAID	Level	4
RAID-4	is	another	“theoretical”	RAID	level	(like	RAID-2).	RAID-4	would	offer	poor	performance	if	it
were	implemented	as	Patterson	et	al.	describe.	A	RAID-4	array,	like	RAID-3,	consists	of	a	group	of	data
disks	and	a	parity	disk.	Instead	of	writing	data	one	bit	at	a	time	across	all	of	the	drives,	RAID-4	writes
data	in	strips	of	uniform	size,	creating	a	stripe	across	all	of	the	drives,	as	described	in	RAID-0.	Bits	in
the	data	strip	are	XORed	with	each	other	to	create	the	parity	strip.

You	 could	 think	 of	 RAID-4	 as	 being	 RAID-0	 with	 parity.	 However,	 adding	 parity	 results	 in	 a
substantial	performance	penalty	caused	by	contention	with	the	parity	disk.	For	example,	suppose	we	want
to	write	to	Strip	3	of	a	stripe	spanning	five	drives	(four	data,	one	parity),	as	shown	in	Figure	7.30.	First
we	must	read	the	data	currently	occupying	Strip	3	as	well	as	the	parity	strip.	The	old	data	is	XORed	with
the	new	data	to	give	the	new	parity.	The	data	strip	is	then	written	along	with	the	updated	parity.

Imagine	what	happens	if	there	are	write	requests	waiting	while	we	are	twiddling	the	bits	in	the	parity
block,	say	one	write	request	for	Strip	1	and	one	for	Strip	4.	If	we	were	using	RAID-0	or	RAID-1,	both	of
these	pending	requests	could	have	been	serviced	concurrently	with	the	write	to	Strip	3.	Thus,	the	parity
drive	 becomes	 a	 bottleneck,	 robbing	 the	 system	of	 all	 potential	 performance	 gains	 offered	 by	multiple
disk	systems.

Some	writers	have	suggested	that	the	performance	of	RAID-4	can	be	improved	if	the	size	of	the	stripe
is	optimized	with	the	record	size	of	the	data	being	written.	Again,	this	might	be	fine	for	applications	(such
as	voice	or	video	processing)	where	 the	data	occupy	records	of	uniform	size.	However,	most	database
applications	involve	records	of	widely	varying	size,	making	it	impossible	to	find	an	“optimum”	size	for
any	substantial	number	of	records	in	the	database.	Because	of	its	expected	poor	performance,	RAID-4	is
not	considered	suitable	for	commercial	implementations.



FIGURE	7.30	RAID-4,	Block	Interleave	Data	Striping	with	One	Parity	Disk

7.9.6		RAID	Level	5
Most	 people	 agree	 that	 RAID-4	 would	 offer	 adequate	 protection	 against	 single-disk	 failure.	 The
bottleneck	caused	by	the	parity	drives,	however,	makes	RAID-4	unsuitable	for	use	in	environments	that
require	high-transaction	throughput.	Certainly,	throughput	would	be	better	if	we	could	effect	some	sort	of
load	 balancing,	writing	 parity	 to	 several	 disks	 instead	 of	 just	 one.	 This	 is	what	 RAID-5	 is	 all	 about.
RAID-5	is	RAID-4	with	the	parity	disks	spread	throughout	the	entire	array,	as	shown	in	Figure	7.31.

Because	some	requests	can	be	serviced	concurrently,	RAID-5	provides	the	best	read	throughput	of	all
the	parity	models	and	gives	acceptable	throughput	on	write	operations.	For	example,	in	Figure	7.31,	 the
array	could	service	a	write	to	drive	4	Strip	6	concurrently	with	a	write	to	drive	1	Strip	7	because	these
requests	involve	different	sets	of	disk	arms	for	both	parity	and	data.	However,	RAID-5	requires	the	most
complex	disk	controller	of	all	levels.

Compared	with	other	RAID	systems,	RAID-5	offers	the	best	protection	for	the	least	cost.	As	such,	it
has	 been	 a	 commercial	 success,	 having	 the	 largest	 installed	 base	 of	 any	 of	 the	 RAID	 systems.
Recommended	 applications	 include	 file	 and	 application	 servers,	 email	 and	 news	 servers,	 database
servers,	and	Web	servers.

FIGURE	7.31	RAID-5,	Block	Interleave	Data	Striping	with	Distributed	Parity

7.9.7		RAID	Level	6
Most	of	the	RAID	systems	just	discussed	can	tolerate	at	most	one	disk	failure	at	a	time.	The	trouble	is	that
disk	drive	failures	in	large	systems	tend	to	come	in	clusters.	There	are	two	reasons	for	 this.	First,	disk
drives	 manufactured	 at	 approximately	 the	 same	 time	 reach	 the	 end	 of	 their	 expected	 useful	 lives	 at
approximately	the	same	time.	So	if	you	are	told	that	your	new	disk	drives	have	a	useful	life	of	about	six
years,	you	can	expect	problems	in	year	six,	possibly	concurrent	failures.

Second,	disk	drive	failures	are	often	caused	by	a	catastrophic	event	such	as	a	power	surge.	A	power
surge	hits	 all	 the	drives	 at	 the	 same	 instant,	 the	weakest	one	 failing	 first,	 followed	closely	by	 the	next
weakest,	and	so	on.	Sequential	disk	failures	like	these	can	extend	over	days	or	weeks.	If	they	happen	to
occur	within	the	Mean	Time	To	Repair	(MTTR),	including	call	time	and	travel	time,	a	second	disk	could
fail	before	the	first	one	is	replaced,	thereby	rendering	the	whole	array	unserviceable	and	useless.

Systems	that	require	high	availability	must	be	able	to	tolerate	more	than	one	concurrent	drive	failure,
particularly	if	the	MTTR	is	a	large	number.	If	an	array	can	be	designed	to	survive	the	concurrent	failure	of
two	drives,	we	effectively	double	the	MTTR.	RAID-1	offers	this	kind	of	survivability;	in	fact,	as	long	as
a	disk	and	its	mirror	aren’t	both	wiped	out,	a	RAID-1	array	could	survive	the	loss	of	half	its	disks.



RAID-6	provides	an	economical	answer	to	the	problem	of	multiple	disk	failures.	It	does	this	by	using
two	 sets	 of	 error-correction	 strips	 for	 every	 rank	 (or	 horizontal	 row)	 of	 drives.	 A	 second	 level	 of
protection	 is	added	with	 the	use	of	Reed-Solomon	error-correcting	codes	 in	addition	 to	parity.	Having
two	errordetecting	strips	per	stripe	does	increase	storage	costs.	If	unprotected	data	could	be	stored	on	N
drives,	adding	the	protection	of	RAID-6	requires	N	+	2	drives.	Because	of	 the	 two-dimensional	parity,
RAID-6	offers	very	poor	write	performance.	A	RAID-6	configuration	is	shown	in	Figure	7.32.

Until	 recently,	 there	were	 no	 commercial	 deployments	 of	RAID-6.	There	 are	 two	 reasons	 for	 this.
First,	there	is	a	sizable	overhead	penalty	involved	in	generating	the	Reed-Solomon	code.	Second,	twice
as	many	read/write	operations	are	required	to	update	the	error-correcting	codes	resident	on	the	disk.	IBM
was	first	to	bring	RAID-6	to	the	marketplace	with	its	RAMAC	RVA	2	Turbo	disk	array.	The	RVA	2	Turbo
array	 eliminates	 the	 write	 penalty	 of	 RAID-6	 by	 keeping	 running	 “logs”	 of	 disk	 strips	 within	 cache
memory	 on	 the	 disk	 controller.	 The	 log	 data	 permits	 the	 array	 to	 handle	 data	 one	 stripe	 at	 a	 time,
calculating	all	parity	and	error	codes	for	 the	entire	stripe	before	 it	 is	written	to	 the	disk.	Data	 is	never
rewritten	 to	 the	 same	 stripe	 it	 occupied	 prior	 to	 the	 update.	 Instead,	 the	 formerly	 occupied	 stripe	 is
marked	as	free	space,	once	the	updated	stripe	has	been	written	elsewhere.

FIGURE	7.32	RAID-6,	Block	Interleave	Data	Striping	with	Dual	Error	Protection

7.9.8		RAID	DP
A	relatively	new	RAID	 technique	employs	a	pair	of	parity	blocks	 that	protect	overlapping	sets	of	data
blocks.	 This	 method	 goes	 by	 different	 names	 depending	 on	 the	 drive	 manufacturer	 (there	 are	 slight
differences	among	the	implementations).	The	most	popular	name	at	this	writing	seems	to	be	double	parity
RAID	(RAID	DP).	Others	that	crop	up	in	the	literature	include	EVENODD,	diagonal	parity	RAID	(also
RAID	DP),	RAID	5DP,	advanced	data	guarding	RAID	(RAID	ADG),	and—erroneously!—RAID	6.

The	general	 idea	 is	 that	 any	 single-disk	data	block	 is	 protected	by	 two	 linearly	 independent	 parity
functions.	Like	RAID-6,	RAID	DP	can	tolerate	the	simultaneous	loss	of	two	disk	drives	without	loss	of
data.	In	the	schematic	in	Figure	7.33,	observe	that	the	contents	of	each	of	the	RAID	surfaces	on	disk	P1	is
a	function	of	all	the	horizontal	surfaces	to	its	immediate	left.	For	example,	AP1	is	a	function	of	A1,	A2,
A3,	and	A4.	The	contents	of	P2	are	functions	of	diagonal	patterns	of	the	surfaces.	For	example,	BP2	is	a
function	of	A2,	B3,	C4,	and	DP1.	Note	that	AP1	and	BP2	overlap	on	A2.	This	overlap	allows	any	two
drives	to	be	reconstructed	by	iteratively	restoring	the	overlapped	surfaces.	This	process	is	illustrated	in
Figure	7.34.



FIGURE	7.33	Error	Recovery	Pattern	for	RAID	DP
The	recovery	of	A2	is	provided	by	the	overlap	of	equations	AP1	and	BP2.



FIGURE	7.34	Restoring	Two	Crashed	Spindles	Using	RAID	DP

Owing	to	the	dual	parity	functions,	RAID	DP	can	be	used	over	arrays	that	contain	many	more	physical
disks	than	can	be	reliably	protected	using	only	the	simple	parity	protection	of	RAID	5.	At	the	choice	of
the	 manufacturer,	 data	 can	 be	 in	 stripes	 or	 blocks.	 The	 simple	 parity	 function	 gives	 much	 better
performance	than	the	Reed-Solomon	correction	of	RAID-6.	However,	the	write	performance	of	RAID	DP
is	still	somewhat	degraded	from	RAID	5	because	of	the	need	for	dual	reads	and	writes,	but	the	trade-off
is	in	having	much-improved	reliability.

7.9.9		Hybrid	RAID	Systems



Many	 large	 systems	 are	 not	 limited	 to	 using	 only	 one	 type	 of	RAID.	 In	 some	 cases,	 it	makes	 sense	 to
balance	high	availability	with	economy.	For	example,	we	might	want	to	use	RAID-1	to	protect	the	drives
that	 contain	our	operating	 system	 files,	whereas	RAID-5	 is	 sufficient	 for	 data	 files.	RAID-0	would	be
good	enough	for	“scratch”	files	used	only	temporarily	during	long	processing	runs	and	could	potentially
reduce	the	execution	time	of	those	runs	because	of	the	faster	disk	access.

Sometimes	RAID	schemes	can	be	combined	 (or	nested)	 to	 form	a	“new”	kind	of	RAID.	RAID-10,
shown	 in	 Figure	 7.35a	 is	 one	 such	 system.	 It	 combines	 the	 striping	 of	 RAID-0	 with	 the	 mirroring	 of
RAID-1.	 Although	 enormously	 expensive,	 RAID-10	 gives	 the	 best	 possible	 read	 performance	 while
providing	 the	 best	 possible	 availability.	 Another	 hybrid	 level	 is	 RAID	 0+1,	 or	 RAID	 01	 (not	 to	 be
confused	 with	 RAID	 1),	 which	 is	 used	 for	 both	 sharing	 and	 replicating	 data.	 Like	 RAID	 10,	 it	 also
combines	mirroring	 and	 striping,	 but	 in	 a	 reversed	 configuration	 as	 shown	 in	 Figure	 7.35b.	 RAID	 01
allows	 the	 disk	 array	 to	 continue	 operating	 if	more	 than	 one	 drive	 fails	 in	 the	 same	mirrored	 set,	 and
offers	 substantially	 improved	 read	 and	 write	 performance.	 RAID	 50,	 shown	 in	 Figure	 7.36,	 is	 a
combination	 of	 striping	 and	distributed	 parity.	This	RAID	configuration	 is	 good	 in	 situations	 that	 need
good	 fault	 tolerance	with	high	capacity.	RAID	 levels	 can	be	 combined	 in	 just	 about	 any	configuration;
although	nesting	is	typically	limited	to	two	levels,	triple-nested	RAID	configurations	are	being	explored
as	viable	candidates.

FIGURE	7.35	Hybrid	RAID	Levels
a)	RAID	10,	Stripe	of	Mirrors
b)	RAID	01,	Mirror	of	Stripes



FIGURE	7.36	RAID	50,	Striping	and	Parity

After	reading	the	foregoing	sections,	it	should	be	clear	to	you	that	higher-numbered	RAID	levels	are
not	necessarily	“better”	RAID	systems.	Nevertheless,	many	people	have	a	natural	tendency	to	think	that	a
higher	number	of	something	always	indicates	something	better	than	a	lower	number	of	something.	For	this
reason,	various	attempts	have	been	made	to	reorganize	and	rename	the	RAID	systems	that	we	have	just
presented.	We	have	chosen	to	retain	the	“Berkeley”	nomenclature	in	this	book	because	it	is	still	the	most
widely	recognized.	Table	7.1	summarizes	the	RAID	levels	just	described.

7.10			THE	FUTURE	OF	DATA	STORAGE
No	one	has	yet	been	so	bold	as	to	assert	a	Moore’s	Law–like	prediction	for	disk	storage.	In	fact,	just	the
opposite	is	true:	Over	the	years,	experts	have	periodically	pronounced	that	the	limits	of	disk	storage	have
been	 reached,	 only	 to	 have	 their	 predictions	 shattered	when	 a	manufacturer	 subsequently	 announces	 a
product	 exceeding	 the	 latest	 “theoretical	 storage	 limit.”	 In	 the	1970s,	 the	density	 limit	 for	disk	 storage
was	 thought	 to	 be	 around	 2MB/in2.	 Today’s	 disks	 typically	 support	 more	 than	 20GB/in2.	 Thus,	 the
“impossible”	has	been	achieved	ten	thousand	times	over.	These	gains	have	been	made	possible	through
advances	 in	 several	 different	 technologies,	 including	 magnetic	 materials	 sciences,	 magneto-optical
recording	 heads,	 and	 the	 invention	 of	 more	 efficient	 error-correcting	 codes.	 But	 as	 data	 densities
increase,	there’s	no	getting	around	the	fact	that	fewer	magnetic	grains	are	available	within	the	boundaries
of	each	bit	cell.	The	smallest	possible	bit	cell	area	 is	 reached	when	 the	 thermal	properties	of	 the	disk
cause	encoded	magnetic	grains	to	spontaneously	change	their	polarity,	causing	a	1	to	change	to	a	0	or	a	0
to	a	1.	This	behavior	is	called	superparamagnetism,	and	the	bit	density	at	which	it	occurs	is	called	the
superparamagnetic	 limit.	 At	 this	 writing,	 the	 superparamagnetic	 limit	 is	 thought	 to	 be	 between
150GB/in2	and	200GB/in2.	Even	if	this	figure	is	in	error	by	a	few	orders	of	magnitude,	it	is	likely	that	the
greatest	increases	in	magnetic	data	density	have	already	been	achieved.	Future	exponential	gains	in	data
densities	will	almost	certainly	be	realized	by	using	entirely	new	storage	technologies.	With	this	in	mind,
research	is	under	way	to	invent	biological,	holographic,	or	mechanical	replacements	for	magnetic	disks.



TABLE	7.1	Summary	of	RAID	Capabilities

Biological	materials	 can	 store	 data	 in	many	different	ways.	Of	 course,	 the	 ultimate	 data	 storage	 is
found	in	DNA,	where	trillions	of	different	messages	can	be	encoded	in	a	small	strand	of	genetic	material.
But	 creating	 a	 practical	 DNA	 storage	 device	 is	 decades	 away.	 Less	 ambitious	 approaches	 combine
inorganic	 magnetic	 materials	 (such	 as	 iron)	 with	 biologically	 produced	 materials	 (such	 as	 oils	 or
proteins).	 Successful	 prototypes	 have	 encouraged	 the	 expectation	 that	 biological	 materials	 will	 be
capable	 of	 supporting	 data	 densities	 of	 1Tb/in2.	 Mass-produced	 biological	 storage	 devices	 might	 be
brought	to	market	in	the	second	or	third	decade	of	the	twenty-first	century.

A	hologram	is	a	three-dimensional	image	rendered	by	the	manipulation	of	laser	beams.	Credit	cards
and	some	copyrighted	CDs	and	DVDs	are	emblazoned	with	iridescent	holograms	to	deter	counterfeiting.
For	at	least	50	years,	the	notion	of	holographic	data	storage	has	ignited	the	imaginations	of	fiction	writers
and	computer	 researchers	 alike.	Thanks	 to	 advances	 in	polymer	 science,	holographic	 storage	 is	 finally
poised	to	leap	from	the	pages	of	pulp	magazines	and	into	the	data	center.

In	holographic	data	 storage,	 as	 shown	 in	 Figure	7.37,	 a	 laser	 beam	 is	 divided	 into	 two	 separate
beams,	an	object	beam	and	a	reference	beam.	The	object	beam	passes	through	a	modulator	to	produce	a
coded	data	pattern.	The	modulated	object	beam	then	intersects	with	 the	reference	beam	 to	produce	an
interference	 pattern	 in	 the	 polymer	 recording	medium.	Data	 is	 recovered	 from	 the	medium	when	 it	 is
illuminated	by	the	reference	beam,	thereby	reproducing	the	original	coded	object	beam.

Holographic	data	storage	is	exciting	for	a	number	of	reasons.	Foremost	is	the	enormous	data	density
made	possible	by	the	use	of	a	three-dimensional	medium.	Initial	experimental	systems	provide	more	than
30GB/in2	with	 transfer	 rates	of	around	1GBps.	Holographic	data	storage	 is	also	unique	 in	 its	ability	 to
provide	 mass	 storage	 that	 is	 content	 addressable.	 This	 implies	 that	 holographic	 storage	 would	 not
necessarily	require	a	directory	system	as	we	find	on	magnetic	disks	today.	All	accesses	would	go	directly
to	where	a	file	is	placed,	without	any	need	to	first	consult	any	file	allocation	tables.



FIGURE	7.37	Holographic	Storage
a)	Writing	Data
b)	Reading	Data

FIGURE	7.38	A	Scanning	Electron	Microscope	Image	of	the	Three-Terminal
Integrated	Cantilevers	of	IBM’s	“Millipede”	Storage	Device	The	cantilevers	are	70	µm	long	and	75	µm	wide.	The	outer	arms	of
the	cantilevers	are	just	10	µm	wide.	Reprint	Courtesy	of	International	Business	Machines	Corporation	©	2006	International
Business	Machines	Corporation.

The	greatest	challenge	in	bringing	holographic	data	storage	to	commercial	production	has	been	in	the
creation	of	a	suitable	polymer	medium.	Although	great	progress	has	been	made,	inexpensive,	rewriteable,
stable	media	still	seem	to	be	several	years	away.

Micro-electro-mechanical	 (MEMS)	 devices	 offer	 another	 approach	 to	 transcending	 the	 limits	 of



magnetic	storage.	One	such	device	is	IBM’s	Millipede.	Millipede	consists	of	thousands	of	microscopic
cantilevers	that	record	a	binary	1	by	pressing	a	heated	microscopic	tip	into	a	polymer	substrate.	The	tip
reads	 a	 binary	 1	 when	 it	 dips	 into	 the	 imprint	 in	 the	 polymer.	 Laboratory	 prototypes	 have	 achieved
densities	 of	 more	 than	 100GB/in2,	 with	 1Tb/in2	 expected	 as	 the	 technology	 is	 refined.	 An	 electron
micrograph	of	a	Millipede	cantilever	is	shown	in	Figure	7.38.

Even	 using	 traditional	 magnetic	 disks,	 enterprise-class	 storage	 continues	 to	 grow	 in	 size	 and
complexity.	 Terabyte-sized	 storage	 systems	 are	 now	 commonplace.	 It	 is	 increasingly	 likely	 that	 the
storage	problem	of	the	future	is	not	in	having	sufficient	capacity,	but	in	finding	the	useful	information	after
the	data	has	been	stored.	This	problem	may	prove	to	be	the	most	intractable	of	all.

Carbon	nanotubes	(CNTs)	are	among	many	recent	discoveries	in	the	field	of	nanotechnology.	As	the
name	suggests,	CNTs	are	a	cylindrical	form	of	elemental	carbon	where	the	walls	of	the	cylinders	are	one
atom	 thick.	 Carbon	 nanotubes	 can	 be	 made	 to	 act	 like	 switches,	 opening	 and	 closing	 to	 store	 bits.
Scientists	have	devised	a	number	of	different	nanotube	memory	configurations.	Figure	7.39	is	a	schematic
of	 the	 configuration	 that	 Nantero,	 Inc.,	 uses	 in	 its	 NRAM	 product.	 The	 nanotube	 is	 suspended	 over	 a
conductor	called	a	gate	(Figure	7.39a).	This	represents	the	zero	state.	To	set	the	gate	to	1,	voltage	that	is
sufficient	 to	 attract	 the	 nanotube	 is	 applied	 to	 the	 gate	 (Figure	 7.39b).	 The	 tube	 stays	 in	 place	 until	 a
release	voltage	is	applied.	Thus,	the	bit	cell	consumes	no	power	at	all	until	it	is	read	from	or	written	to.

FIGURE	7.39	Carbon	Nanotube	BIt	Storage
a)	Set	to	0
b)	Set	to	1

With	 access	 times	measured	 in	 the	 neighborhood	 of	 3ns,	 CNTs	 have	 been	 billed	 as	 a	 nonvolatile
replacement	 for	 volatile	 RAM	 as	 well	 as	 a	 replacement	 for	 flash	 memory.	 Although	 not	 yet	 in	 mass
production	as	of	this	writing,	the	manufacturability	of	CNT	memories	has	been	demonstrated.	It	is	easy	to
see	that	if	large-capacity	CNT	memories	can	be	manufactured	economically,	they	will	effectively	flatten
the	storage	hierarchy	and	might	all	but	eliminate	the	need	for	at	least	one	level	of	cache	memory	in	large
computer	systems.

Like	CNTs,	memristor	memories	are	a	 type	of	nonvolatile	RAM.	Memristors	are	a	 rather	 recently
discovered	electronic	component	that	combines	the	properties	of	a	resistor	with	memory.	This	is	to	say,
the	 component’s	 resistance	 to	 current	 flow	 can	 be	 controlled	 so	 that	 states	 of	 “high”	 and	 “low”	 can
effectively	 store	 data	 bits.	 These	 states	 of	 high	 resistance	 and	 low	 resistance	 are	 controlled	 by	 the
application	 of	 certain	 threshold	 currents	 that	 change	 the	 physical	 properties	 of	 the	 underlying
semiconductive	materials.	Like	CNTs,	memristor	memories	promise	to	replace	flash	memory	and	flatten
the	 storage	 hierarchy.	 This	 goal	 can	 be	 achieved	 only	 if	 large-capacity	 devices	 can	 be	 manufactured
economically.

Corporations	 and	 governments	 are	 investing	 tremendous	 amounts	 of	 research	 money	 to	 bring	 new
storage	technologies	to	market.	There	seems	no	end	to	our	thirst	for	data—accessible	data—with	which
we	 can	 infer	 all	 kinds	 of	 trends	 and	 predictions	 of	 human	 behavior,	 known	 as	 big	 data.	 Big	 data,
however,	is	becoming	increasingly	expensive	as	terabytes	of	disk	storage	spin	24	hours	a	day,	consuming
gigawatts	of	electrical	power	in	the	process.	Even	with	billions	of	investment	dollars	flowing	into	these



new	technologies,	the	payoff	is	expected	to	be	even	greater—by	orders	of	magnitude.

CHAPTER	SUMMARY
This	 chapter	 has	 given	 you	 a	 broad	 overview	 of	 many	 aspects	 of	 computer	 input/output	 and	 storage
systems.	You	 have	 learned	 that	 different	 classes	 of	machines	 require	 different	 I/O	 architectures.	 Large
systems	store	and	access	data	in	ways	that	are	fundamentally	different	from	the	methods	used	by	smaller
computers.	 For	 the	 very	 smallest	 computers—such	 as	 embedded	processors—programmed	 I/O	 is	most
suitable.	It	is	flexible,	but	it	doesn’t	offer	good	performance	in	general-purpose	systems.	For	single-user
systems,	 interrupt-driven	 I/O	 is	 the	best	choice,	particularly	when	multitasking	 is	 involved.	Single-user
and	medium-sized	systems	usually	employ	DMA	I/O,	in	which	the	CPU	offloads	I/O	to	the	DMA	circuits.
Channel	 I/O	 is	best	 for	high-performance	systems.	 It	allocates	separate	high-capacity	paths	 to	 facilitate
large	data	transfers.

I/O	 can	 be	 processed	 character	 by	 character	 or	 in	 blocks.	 Character	 I/O	 is	 best	 for	 serial	 data
transfers.	Block	I/O	can	be	used	in	serial	or	parallel	data	transmission.	The	original	articles	that	describe
IBM’s	RAMAC	system	can	be	found	in	Lesser	&	Haanstra	(2000)	and	Noyes	&	Dickinson	(2000).

You	have	seen	how	data	is	stored	on	a	variety	of	media,	including	magnetic	tape	and	disk	and	optical
media.	Your	understanding	of	magnetic	disk	operations	will	be	particularly	useful	to	you	if	you	are	ever	in
a	 position	 to	 analyze	 disk	 performance	 in	 the	 context	 of	 programming,	 system	 design,	 or	 problem
diagnosis.

Our	discussion	of	RAID	systems	should	help	you	to	understand	how	RAID	can	provide	both	improved
performance	and	increased	availability	for	systems	upon	which	we	all	depend.	The	most	important	RAID
implementations	are	given	in	Table	7.1.

We	hope	that	throughout	our	discussions,	you	have	gained	an	appreciation	for	the	trade-offs	that	are
involved	with	virtually	every	system	decision.	You	have	seen	how	we	must	often	make	choices	between
“better”	and	“faster,”	and	“faster”	and	“cheaper,”	in	so	many	of	the	areas	that	we	have	just	studied.	As
you	 assume	 leadership	 in	 systems	 projects,	 you	 must	 be	 certain	 that	 your	 customers	 understand	 these
trade-offs	as	well.	Often	you	need	the	tact	of	a	diplomat	to	thoroughly	convince	your	clients	that	there	is
no	such	thing	as	a	free	lunch.

FURTHER	READING
You	can	 learn	more	about	Amdahl’s	Law	by	 reading	his	original	paper	 (Amdahl,	1967).	Hennessy	and
Patterson	(2011)	provide	additional	coverage	of	Amdahl’s	Law.	Gustavson’s	tutorial	(1984)	on	computer
buses	is	well	worth	reading.

Rosch	 (1997)	 contains	 a	wealth	 of	 detail	 relevant	 to	many	 of	 the	 topics	 described	 in	 this	 chapter,
although	it	 focuses	primarily	on	small	computer	systems.	It	 is	well	organized,	and	its	style	 is	clear	and
readable.	Anderson’s	 article	 (2003)	 takes	 a	 slightly	 different	 point	 of	 view	of	 topics	 discussed	 in	 this
chapter.

Rosch	 (1997)	 also	 presents	 a	 good	 overview	of	CD	 storage	 technology.	More	 complete	 coverage,
including	CD-ROM’s	physical,	mathematical,	and	electrical	engineering	underpinnings,	can	be	found	 in
Stan	(1998)	and	Williams	(1994).

Patterson,	Gibson,	and	Katz	(1988)	provide	the	foundation	paper	for	the	RAID	architecture.	RAID	DP
is	nicely	explained	in	papers	by	Blaum	et	al.	(1994)	and	Corbett	et	al.	(2004).

The	IBM	Corporation	hosts	what	 is	by	far	 the	best	website	for	detailed	 technical	 information.	 IBM



stands	 alone	 in	 making	 prodigious	 quantities	 of	 excellent	 documentation	 available	 for	 all	 seekers.	 Its
home	page	can	be	found	at	www.ibm.com.	IBM	also	has	a	number	of	sites	devoted	to	specific	areas	of
interest,	 including	 storage	 systems	 (www.storage.ibm.com),	 in	 addition	 to	 its	 server	 product	 lines
(www.ibm.com/eservers).	IBM’s	research	and	development	pages	contain	the	latest	information	relevant
to	 emerging	 technologies	 (www.research.ibm.com).	 High-quality	 scholarly	 research	 journals	 can	 be
found	 through	 this	 site	 at	 www.research.ibm.com/journal.	 Jaquette’s	 LTO	 article	 (2003)	 explains	 this
topic	well.

Holographic	storage	has	been	discussed	with	varying	intensity	over	the	years.	Two	recent	articles	are
Ashley	 et	 al.	 (2000)	 and	 Orlov	 (2000).	 Visitors	 to	 IBM’s	 Zurich	 Research	 Laboratory	 website
(www.zurich.ibm.com/st)	will	be	rewarded	with	fascinating	photographs	and	detailed	descriptions	of	the
MEMS	storage	system.	Two	good	articles	on	the	same	subject	are	Carley,	Ganger,	&	Nagle	(2000)	and
Vettiger	(2000).

Michael	 Cornwell’s	 (2012)	 article	 on	 solid	 state	 drives	 gives	 the	 reader	 some	 good	 general
information.	The	websites	of	various	manufacturers	 are	 loaded	with	 technical	documentation	 regarding
these	 devices.	 SanDisk	 (http://www.sandisk.com),	 Intel	 (http://www.intel.com),	 and	 Hewlett-Packard
(http://www.hp.com/)	are	three	such	sites.

The	article	by	Kryder	and	Kim	(2009)	 is	a	 look	forward	 into	some	of	 the	storage	 technologies	 that
were	discussed	 in	 this	chapter	as	well	as	 some	 interesting	ones	 that	were	not.	More	 information	about
memristor	storage	can	be	found	in	papers	by	Anthes	(2011)	and	Ohta	(2011).	You	can	explore	the	amazing
world	of	CNTs	in	the	papers	by	Bichoutskaia	et	al.	(2008),	Zhou	et	al.	(2007),	and	Paulson	(2004).	We
encourage	you	to	keep	alert	for	breaking	news	in	the	areas	of	memristor	and	CNT	storage.	Both	of	these
technologies	are	well	positioned	to	make	the	spinning	disk	obsolete.

REFERENCES
Amdahl,	G.	M.	“Validity	of	the	Single	Processor	Approach	to	Achieving	Large	Scale	Computing

Capabilities.”	Proceedings	of	AFIPS	1967	Spring	Joint	Computer	Conference	30,	April	1967,
Atlantic	City,	NJ,	pp.	483–485.

Anderson,	D.	“You	Don’t	Know	Jack	about	Disks.”	ACM	Queue,	June	2003,	pp.	20–30.
Anthes,	G.	“Memristors:	Pass	or	Fail?”	Communications	of	the	ACM	54:3,	March	2011,	pp.	22–23.
Ashley,	J.,	et	al.	“Holographic	Data	Storage.”	IBM	Journal	of	Research	and	Development	44:3,	May

2000,	pp.	341–368.
Bichoutskaia,	E.,	Popov,	A.	M.,	&	Lozovik,	Y.	E.	“Nanotube-Based	Data	Storage	Devices.”	Materials

Today	11:6,	June	2008,	pp.	38–43.
Blaum,	M.,	Brady,	J.,	Bruck,	J.,	&	Menon,	J.	“EVENODD:	An	Optimal	Scheme	for	Tolerating	Double

Disk	Failures	in	RAID	Architectures.”	ACM	SIGARCH	Computer	Architecture	News	22:2,	April
1994,	pp.	245–254.

Carley,	R.	L.,	Ganger,	G.	R.,	&	Nagle,	D.	F.	“MEMS-Based	Integrated-Circuit	Mass-Storage	Systems.”
Communications	of	the	ACM	43:11,	November	2000,	pp.	72–80.

Corbett,	P.,	et	al.	“Row-Diagonal	Parity	for	Double	Disk	Failure	Correction.”	Proceedings	of	the	Third
USENIX	Conference	on	File	and	Storage	Technologies.	San	Francisco,	CA,	2004.

Cornwell,	M.	“Anatomy	of	a	Solid-State	Drive.”	CACM	55:12,	December	2012,	pp.	59–63.
Gustavson,	D.	B.	“Computer	Buses—A	Tutorial.”	IEEE	Micro,	August	1984,	pp.	7–22.

http://www.ibm.com
http://www.storage.ibm.com
http://www.ibm.com/eservers
http://www.research.ibm.com
http://www.research.ibm.com/journal
http://www.zurich.ibm.com/st
http://www.sandisk.com
http://www.intel.com
http://www.hp.com/


Hennessy,	J.	L.,	&	Patterson,	D.	A.	Computer	Architecture:	A	Quantitative	Approach,	5th	ed.	San
Francisco,	CA:	Morgan	Kaufmann	Publishers,	2011.

Jaquette,	G.	A.	“LTO:	A	Better	Format	for	Midrange	Tape.”	IBM	Journal	of	Research	and	Development
47:4,	July	2003,	pp.	429–443.

Kryder,	M.	H.	&	Kim,	C.	S.	“After	Hard	Drives—What	Comes	Next?”	IEEE	Transactions	on	Magnetics
45:10,	October	2009,	pp.	3406–3413.

Lesser,	M.	L.,	&	Haanstra,	J.	W.	“The	Random	Access	Memory	Accounting	Machine:	I.	System
Organization	of	the	IBM	305.”	IBM	Journal	of	Research	and	Development	1:1,	January	1957.
Reprinted	in	Vol.	44,	No.	1/2,	January/March	2000,	pp.	6–15.

Noyes,	T.,	&	Dickinson,	W.	E.	“The	Random	Access	Memory	Accounting	Machine:	II.	System
Organization	of	the	IBM	305.”	IBM	Journal	of	Research	and	Development	1:1,	January	1957.
Reprinted	in	Vol.	44,	No.	1/2,	January/March	2000,	pp.	16–19.

Ohta,	T.	“Phase	Change	Memory	and	Breakthrough	Technologies.”	IEEE	Transactions	on	Magnetics
47:3,	March	2011,	pp.	613–619.

Orlov,	S.	S.	“Volume	Holographic	Data	Storage.”	Communications	of	the	ACM	43:11,	November	2000,
pp.	47–54.

Patterson,	D.	A.,	Gibson,	G.,	&	Katz,	R.	“A	Case	for	Redundant	Arrays	of	Inexpensive	Disks	(RAID).”
Proceedings	of	the	ACM	SIGMOD	Conference	on	Management	of	Data,	June	1988,	pp.	109–116.

Paulson,	L.	D.	“Companies	Develop	Nanotech	RAM	Chips.”	IEEE	Computer.	August	2004,	p.	28.
Rosch,	W.	L.	The	Winn	L.	Rosch	Hardware	Bible.	Indianapolis:	Sams	Publishing,	1997.
Stan,	S.	G.	The	CD-ROM	Drive:	A	Brief	System	Description.	Boston:	Kluwer	Academic	Publishers,

1998.
Vettiger,	P.,	et	al.	“The	‘Millipede’—More	than	One	Thousand	Tips	for	Future	AFM	Data	Storage.”	IBM

Journal	of	Research	and	Development	44:3,	May	2000,	pp.	323–340.
Williams,	E.	W.	The	CD-ROM	and	Optical	Recording	Systems.	New	York:	Oxford	University	Press,

1994.
Zhou,	C.,	Kumar,	A.,	&	Ryu,	K.	“Small	Wonder.”	IEEE	Nanotechnology	Magazine	1:1,	September	2007,

pp.	13,	17.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS
1.		State	Amdahl’s	Law	in	words.
2.		What	is	speedup?
3.		What	is	a	protocol,	and	why	is	it	important	in	I/O	bus	technology?
4.		Name	three	types	of	durable	storage.
5.		Explain	how	programmed	I/O	is	different	from	interrupt-driven	I/O.
6.		What	is	polling?
7.		How	are	address	vectors	used	in	interrupt-driven	I/O?
8.		How	does	direct	memory	access	(DMA)	work?



9.		What	is	a	bus	master?
10.		Why	does	DMA	require	cycle	stealing?
11.		What	does	it	mean	when	someone	refers	to	I/O	as	bursty?
12.		How	is	channel	I/O	different	from	interrupt-driven	I/O?
13.		How	is	channel	I/O	similar	to	DMA?
14.		What	is	multiplexing?
15.		What	distinguishes	an	asynchronous	bus	from	a	synchronous	bus?
16.		What	is	settle	time,	and	what	can	be	done	about	it?
17.		Why	are	magnetic	disks	called	direct	access	devices?
18.		Explain	the	relationship	among	disk	platters,	tracks,	sectors,	and	clusters.
19.		What	are	the	major	physical	components	of	a	rigid	disk	drive?
20.		What	is	zoned-bit	recording?
21.		What	is	seek	time?
22.		What	is	the	sum	of	rotational	delay	and	seek	time	called?
23.		Explain	the	differences	between	an	SSD	and	a	magnetic	disk.
24.		By	how	much	is	an	SSD	faster	than	a	magnetic	disk?
25.		What	is	short	stroking,	and	how	does	it	affect	the	relative	cost	per	gigabyte	of	SSDs?
26.		How	do	enterprise	SSDs	differ	from	SSDs	intended	for	laptop	computers?
27.		What	is	wear	leveling,	and	why	is	it	needed	for	SSDs?
28.		What	is	the	name	for	robotic	optical	disk	library	devices?
29.		What	is	the	acronym	for	computer	output	that	is	written	directly	to	optical	media	rather	than	paper	or

microfiche?
30.	 	Magnetic	 disks	 store	bytes	by	 changing	 the	polarity	of	 a	magnetic	medium.	How	do	optical	 disks

store	bytes?
31.		How	is	the	format	of	a	CD	that	stores	music	different	from	the	format	of	a	CD	that	stores	data?	How

are	the	formats	alike?
32.		Why	are	CDs	especially	useful	for	long-term	data	storage?
33.		Do	CDs	that	store	data	use	recording	sessions?
34.		How	do	DVDs	store	so	much	more	data	than	regular	CDs?
35.		Explain	why	Blu-Ray	discs	hold	so	much	more	data	than	regular	DVDs.
36.		Name	the	three	methods	for	recording	WORM	disks.
37.		Why	is	magnetic	tape	a	popular	storage	medium?
38.		Explain	how	serpentine	recording	differs	from	helical	scan	recording.
39.		What	are	two	popular	tape	formats	that	use	serpentine	recording?
40.		Which	RAID	levels	offer	the	best	performance?



41.		Which	RAID	levels	offer	the	best	economy	while	providing	adequate	redundancy?
42.		Which	RAID	level	uses	a	mirror	(shadow)	set?
43.		What	are	hybrid	RAID	systems?
44.		What	is	the	significance	of	the	superparamagnetic	limit?
45.		What	does	the	superparamagnetic	limit	mean	for	disk	drives?
46.		Explain	how	holographic	storage	works.
47.		What	is	the	general	idea	behind	MEMS	storage?
48.		How	does	CNT	storage	work?
49.		What	is	a	memristor,	and	how	does	it	store	data?

EXERCISES
	1.		Calculate	the	overall	speedup	of	a	system	that	spends	65%	of	its	time	on	I/O	with	a	disk	upgrade

that	provides	for	50%	greater	throughput.
2.	 	 Calculate	 the	 overall	 speedup	 of	 a	 system	 that	 spends	 40%	 of	 its	 time	 in	 calculations	 with	 a

processor	upgrade	that	provides	for	100%	greater	throughput.
3.	 	 Suppose	 your	 company	 has	 decided	 that	 it	 needs	 to	 make	 certain	 busy	 servers	 50%	 faster.

Processes	 in	 the	workload	spend	60%	of	 their	 time	using	 the	CPU	and	40%	on	 I/O.	 In	order	 to
achieve	an	overall	system	speedup	of	25%:
a)		How	much	faster	does	the	CPU	need	to	be?
b)		How	much	faster	does	the	disk	need	to	be?

4.	 	 Suppose	 your	 company	 has	 decided	 that	 it	 needs	 to	 make	 certain	 busy	 servers	 30%	 faster.
Processes	 in	 the	workload	spend	70%	of	 their	 time	using	 the	CPU	and	30%	on	 I/O.	 In	order	 to
achieve	an	overall	system	speedup	of	30%:
a)		How	much	faster	does	the	CPU	need	to	be?
b)		How	much	faster	does	the	disk	need	to	be?

5.	 	 Suppose	 that	 you	 are	 designing	 a	 game	 system	 that	 responds	 to	 players’	 pressing	 buttons	 and
toggling	 joysticks.	The	prototype	system	 is	 failing	 to	 react	 in	 time	 to	 these	 input	events,	 causing
noticeable	annoyance	to	the	gamers.	You	have	calculated	that	you	need	to	improve	overall	system
performance	by	50%.	This	is	to	say	that	the	entire	system	needs	to	be	50%	faster	than	it	is	now.
You	know	that	these	I/O	events	account	for	75%	of	the	system	workload.	You	figure	that	a	new	I/O
interface	 card	 should	 do	 the	 trick.	 If	 the	 system’s	 existing	 I/O	 card	 runs	 at	 10kHz	 (pulses	 per
second),	what	is	the	speed	of	the	I/O	card	that	you	need	to	order	from	the	supplier?

6.	 	 Suppose	 that	 you	 are	 designing	 an	 electronic	 musical	 instrument.	 The	 prototype	 system
occasionally	produces	off-key	notes,	causing	listeners	to	wince	and	grimace.	You	have	determined
that	 the	 cause	 of	 the	 problem	 is	 that	 the	 system	 becomes	 overwhelmed	 in	 processing	 the
complicated	 input.	You	are	 thinking	 that	 if	you	could	boost	overall	 system	performance	by	12%
(making	 it	 12%	 faster	 than	 it	 is	 now),	 you	 could	 eliminate	 the	 problem.	One	 option	 is	 to	 use	 a
faster	processor.	If	the	processor	accounts	for	25%	of	the	workload	of	this	system,	and	you	need	to
boost	performance	by	12%,	how	much	faster	does	the	new	processor	need	to	be?



7.	 	Your	 friend	has	 just	bought	a	new	personal	computer.	She	 tells	you	 that	her	new	system	runs	at
1GHz,	which	makes	it	more	than	three	times	faster	than	her	old	300MHz	system.	What	would	you
tell	her?	(Hint:	Consider	how	Amdahl’s	Law	applies.)

8.	 	Suppose	the	daytime	processing	load	consists	of	60%	CPU	activity	and	40%	disk	activity.	Your
customers	are	complaining	that	the	system	is	slow.	After	doing	some	research,	you	learn	that	you
can	upgrade	your	disks	for	$8,000	to	make	them	2.5	times	as	fast	as	they	are	currently.	You	have
also	learned	that	you	can	upgrade	your	CPU	to	make	it	1.4	times	as	fast	for	$5,000.
a)	 	Which	would	you	choose	 to	yield	 the	best	performance	 improvement	 for	 the	 least	amount	of

money?
b)		Which	option	would	you	choose	if	you	don’t	care	about	the	money,	but	want	a	faster	system?
c)		What	is	the	break-even	point	for	the	upgrades?	That	is,	what	price	would	we	need	to	charge	for

the	CPU	(or	 the	disk—change	only	one)	so	the	result	was	the	same	cost	per	1%	increase	for
both?

	9.		How	would	you	answer	exercise	8	if	the	system	activity	consists	of	55%	processor	time	and	45%
disk	activity?

10.		Amdahl’s	Law	is	as	applicable	to	software	as	it	is	to	hardware.	An	oft-cited	programming	truism
states	 that	 a	 program	 spends	 90%	 of	 its	 time	 executing	 10%	 of	 its	 code.	 Thus,	 tuning	 a	 small
amount	 of	 program	 code	 can	 often	 have	 an	 enormous	 effect	 on	 the	 overall	 performance	 of	 a
software	product.	Determine	the	overall	system	speedup	if:
a)		90%	of	a	program	is	made	to	run	10	times	as	fast	(900%	faster).
b)		80%	of	a	program	is	made	to	run	20%	faster.

11.		Name	the	four	types	of	I/O	architectures.	Where	are	each	of	these	typically	used,	and	why	are	they
used	there?

	 12.	 	 A	 CPU	with	 interrupt-driven	 I/O	 is	 busy	 servicing	 a	 disk	 request.	While	 the	 CPU	 is	 midway
through	the	disk-service	routine,	another	I/O	interrupt	occurs.
a)		What	happens	next?
b)	Is	it	a	problem?
c)		If	not,	why	not?	If	so,	what	can	be	done	about	it?

13.		A	generic	DMA	controller	consists	of	the	following	components:
•			Address	generator
•			Address	bus	interface
•			Data	bus	interface
•			Bus	requestor
•			Interrupt	signal	circuits
•			Local	peripheral	controller

The	local	peripheral	controller	is	the	circuitry	that	the	DMA	uses	to	select	among	the	peripherals
connected	to	it.	This	circuit	is	activated	right	after	the	bus	is	requested.	What	is	the	purpose	of	each
of	the	other	components	listed	above,	and	when	are	they	active?	(Use	Figure	7.6	as	a	guide.)

14.	 	 Of	 programmed	 I/O,	 interrupt-driven	 I/O,	 DMA,	 or	 channel	 I/O,	 which	 is	 most	 suitable	 for
processing	the	I/O	of	a:



a)		Mouse
b)		Game	controller
c)		CD
d)		Thumb	drive	or	memory	stick

Explain	your	answers.

15.		Why	are	I/O	buses	provided	with	clock	signals?
16.	 	 If	 an	 address	 bus	 needs	 to	 be	 able	 to	 address	 eight	 devices,	 how	 many	 conductors	 will	 be

required?	What	 if	 each	 of	 those	 devices	 also	 needs	 to	 be	 able	 to	 talk	 back	 to	 the	 I/O	 control
device?

17.	 	The	protocol	for	a	certain	data	bus	is	shown	in	the	table	below.	Draw	the	corresponding	timing
diagram.	You	may	refer	to	Figure	7.11.

Time Salient	Bus	Signal Meaning

t0 Assert	Read Bus	is	needed	for	reading	(not	writing)

t1 Assert	Address Indicates	where	bytes	will	be	written

t2 Assert	Request Request	read	to	address	on	address	lines

t3–t7 Data	Lines Read	data	(requires	several	cycles)

t4 Assert	Ready Acknowledges	read	request,	bytes	placed	on	data	lines

t4 Lower	Request Request	signal	no	longer	needed

t8 Lower	Ready Release	bus

18.		With	regard	to	Figure	7.11	and	exercise	17,	we	have	not	provided	for	any	type	of	error	handling,
such	as	if	the	address	on	the	address	lines	were	invalid,	or	the	memory	couldn’t	be	read	because
of	a	hardware	error.	What	could	we	do	with	our	bus	model	to	provide	for	such	events?

19.	 	We	 pointed	 out	 that	 I/O	 buses	 do	 not	 need	 separate	 address	 lines.	 Construct	 a	 timing	 diagram
similar	to	Figure	7.11	that	describes	the	handshake	between	an	I/O	controller	and	a	disk	controller
for	a	write	operation.	(Hint:	You	will	need	to	add	a	control	signal.)

*20.		If	each	interval	shown	in	Figure	7.11	is	50ns,	how	long	would	it	take	to	transfer	10	bytes	of	data?
Devise	 a	 bus	 protocol,	 using	 as	 many	 control	 lines	 as	 you	 need,	 that	 would	 reduce	 the	 time
required	for	 this	 transfer	 to	 take	place.	What	happens	if	 the	address	 lines	are	eliminated	and	the
data	bus	is	used	for	addressing	instead?	(Hint:	An	additional	control	line	may	be	needed.)

21.		Define	the	terms	seek	time,	rotational	delay,	and	transfer	time.	Explain	their	relationship.
	22.		Why	do	you	think	the	term	random	access	device	is	something	of	a	misnomer	for	disk	drives?
23.		Why	do	differing	systems	place	disk	directories	in	different	track	locations	on	the	disk?	What	are

the	advantages	of	using	each	location	that	you	cited?
	24.		Verify	the	average	latency	rate	cited	in	the	disk	specification	of	Figure	7.15.	Why	is	the	calculation

divided	by	2?
25.	 	By	 inspection	of	 the	disk	specification	 in	Figure	7.15,	what	can	you	say	about	whether	 the	disk

drive	uses	zoned-bit	recording?
26.		The	disk	specification	in	Figure	7.15	gives	a	data	transfer	rate	of	60MB	per	second	when	reading



from	the	disk,	and	320MB	per	second	when	writing	to	the	disk.	Why	are	these	numbers	different?
(Hint:	Think	about	buffering.)

27.		Do	you	trust	disk	drive	MTTF	figures?	Explain.
	28.		Suppose	a	disk	drive	has	the	following	characteristics:

•			4	surfaces
•			1,024	tracks	per	surface
•			128	sectors	per	track
•			512	bytes/sector
•			Track-to-track	seek	time	of	5ms
•			Rotational	speed	of	5,000	rpm
a)		What	is	the	capacity	of	the	drive?
b)		What	is	the	access	time?

29.		Suppose	a	disk	drive	has	the	following	characteristics:
•			5	surfaces
•			1,024	tracks	per	surface
•			256	sectors	per	track
•			512	bytes/sector
•			Track-to-track	seek	time	of	8ms
•			Rotational	speed	of	7,500	rpm
a)	What	is	the	capacity	of	the	drive?
b)		What	is	the	access	time?
c)		Is	this	disk	faster	than	the	one	described	in	exercise	28?	Explain.

30.		Suppose	a	disk	drive	has	the	following	characteristics:
•			6	surfaces
•			16,383	tracks	per	surface
•			63	sectors	per	track
•			512	bytes/sector
•			Track-to-track	seek	time	of	8.5ms
•			Rotational	speed	of	7,200	rpm
a)		What	is	the	capacity	of	the	drive?
b)		What	is	the	access	time?

31.		Suppose	a	disk	drive	has	the	following	characteristics:
•			6	surfaces
•			953	tracks	per	surface
•			256	sectors	per	track
•			512	bytes/sector
•			Track-to-track	seek	time	of	6.5ms
•			Rotational	speed	of	5,400	rpm



a)		What	is	the	capacity	of	the	drive?
b)		What	is	the	access	time?
c)		Is	this	disk	faster	than	the	one	described	in	exercise	30?	Explain.

	32.	 	Transfer	rate	of	a	disk	drive	can	be	no	faster	than	the	bit	density	(bits/track)	times	the	rotational
speed	of	the	disk.	Figure	7.15	gives	a	data	 transfer	rate	of	112GB/sec.	Assume	that	 the	average
track	length	of	the	disk	is	5.5	inches.	What	is	the	average	bit	density	of	the	disk?

33.		What	are	the	advantages	and	disadvantages	of	having	a	small	number	of	sectors	per	disk	cluster?
(Hint:	You	may	want	to	think	about	retrieval	time	and	the	required	lifetime	of	the	archives.)

34.		How	does	the	organization	of	an	optical	disk	differ	from	the	organization	of	a	magnetic	disk?
35.		How	does	the	organization	of	an	SSD	differ	from	a	magnetic	disk?	How	are	they	similar	to	a	disk?
36.		In	Section	7.6.2,	we	said	that	magnetic	disks	are	power	hungry	as	compared	to	main	memory.	Why

do	you	think	this	is	the	case?
37.		Explain	wear	leveling	and	why	it	is	needed	for	SSDs.	We	said	that	wear-leveling	is	important	for

the	continual	updating	of	virtual	memory	pagefiles.	What	problem	does	wear-leveling	aggravate
for	pagefiles?

38.	 	Compare	 the	 disk	 specifications	 for	 the	HDD	and	SSD	 in	Figures	7.15	 and	 7.17,	 respectively.
Which	items	are	the	same?	Why?	Which	items	are	different?	Why?

	39.	 	 If	800GB	server-grade	HDDs	cost	$300,	electricity	costs	$0.10	per	kilowatt	hour,	and	facilities
cost	$0.01	per	GB	per	month,	use	the	disk	specification	in	Figure	7.15	to	determine	how	much	it
costs	 to	 store	8TB	of	data	online	 for	5	years.	Assume	 that	 the	HDD	is	active	25%	of	 the	 time.
What	can	be	done	to	reduce	this	cost?	Hint:	Use	the	“Read/Write”	and	“Idle”	power	requirements
in	Figure	7.15.	Use	the	tables	below	as	a	guide.

40.		The	disk	drives	connected	to	the	servers	in	your	company’s	server	farm	are	nearing	the	end	of	their
useful	 lives.	Management	 is	considering	replacing	8TB	of	disk	capacity	with	SSDs.	Someone	 is
making	the	argument	that	the	difference	in	the	cost	between	the	SSDs	and	traditional	magnetic	disks



will	 be	 offset	 by	 the	 cost	 of	 electricity	 saved	 by	 the	 SSDs.	 The	 800GB	 SSDs	 cost	 $900.	 The
800GB	 server-grade	HDDs	 cost	 $300.	Use	 the	 disk	 specifications	 in	 Figures	 7.15	 and	 7.17	 to
confirm	or	refute	this	claim.	Assume	that	both	the	HDD	and	the	SSD	are	active	25%	of	the	time
and	that	the	cost	of	electricity	is	$0.10	per	kilowatt	hour.	Hint:	Use	the	“Read/Write”	and	“Idle”
power	requirements	in	Figure	7.15.

41.		A	company	that	has	engaged	in	a	business	that	requires	fast	response	times	has	just	received	a	bid
for	 a	 new	 system	 that	 includes	 much	 more	 storage	 than	 was	 specified	 in	 the	 requirements
document.	When	the	company	questioned	the	vendor	about	the	increased	storage,	the	vendor	said
he	was	bidding	a	set	of	the	smallest-capacity	disk	drives	that	the	company	makes.	Why	didn’t	the
vendor	just	bid	fewer	disks?

42.	 	Discuss	 the	difference	between	how	DLT	and	DAT	record	data.	Why	would	you	say	 that	one	 is
better	than	the	other?

43.	 	How	would	the	error-correction	requirements	of	an	optical	document	storage	system	differ	from
the	 error-correction	 requirements	 of	 the	 same	 information	 stored	 in	 textual	 form?	What	 are	 the
advantages	offered	by	having	different	levels	of	error	correction	for	optical	storage	devices?

44.		You	have	a	need	to	archive	a	large	amount	of	data.	You	are	trying	to	decide	whether	to	use	tape	or
optical	 storage	methods.	What	 are	 the	 characteristics	 of	 this	 data	 and	 how	 it	 is	 used	 that	 will
influence	your	decision?

45.		Discuss	the	pros	and	cons	of	using	disk	versus	tape	for	backups.
46.	 	 Suppose	 you	 have	 a	 100GB	 database	 housed	 on	 a	 disk	 array	 that	 supports	 a	 transfer	 rate	 of

60MBps	and	a	 tape	drive	 that	 supports	200GB	cartridges	with	a	 transfer	 rate	of	80MBps.	How
long	will	it	take	to	back	up	the	database?	What	is	the	transfer	time	if	2:1	compression	is	possible?

*47.		A	particular	high-performance	computer	system	has	been	functioning	as	an	e-business	server	on
the	Web.	This	system	supports	$10,000	per	hour	in	gross	business	volume.	It	has	been	estimated
that	the	net	profit	per	hour	is	$1,200.	In	other	words,	if	the	system	goes	down,	the	company	will
lose	$1,200	every	hour	until	repairs	are	made.	Furthermore,	any	data	on	the	damaged	disk	would
be	lost.	Some	of	this	data	could	be	retrieved	from	the	previous	night’s	backups,	but	the	rest	would
be	 gone	 forever.	 Conceivably,	 a	 poorly	 timed	 disk	 crash	 could	 cost	 your	 company	 hundreds	 of
thousands	of	dollars	in	immediate	revenue	loss,	and	untold	thousands	in	permanent	business	loss.
The	fact	that	this	system	is	not	using	any	type	of	RAID	is	disturbing	to	you.

Although	 your	 chief	 concern	 is	 data	 integrity	 and	 system	 availability,	 others	 in	 your	 group	 are
obsessed	with	system	performance.	They	feel	that	more	revenue	would	be	lost	in	the	long	run	if	the
system	slowed	down	after	RAID	is	installed.	They	have	stated	specifically	that	a	system	with	RAID
performing	at	half	 the	speed	of	 the	current	system	would	result	 in	gross	revenue	dollars	per	hour
declining	to	$5,000	per	hour.

In	 total,	 80%	 of	 the	 system	 e-business	 activity	 involves	 a	 database	 transaction.	 The	 database
transactions	consist	of	60%	reads	and	40%	writes.	On	average,	disk	access	time	is	20ms.

The	disks	on	this	system	are	nearly	full	and	are	nearing	the	end	of	their	expected	lives,	so	new	ones
must	be	ordered	soon.	You	feel	 that	 this	 is	a	good	time	to	try	to	install	RAID,	even	though	you’ll
need	 to	 buy	 extra	 disks.	 The	 disks	 that	 are	 suitable	 for	 your	 system	 cost	 $2,000	 for	 each	 10GB
spindle.	The	average	access	time	of	these	new	disks	is	15ms	with	an	MTTF	of	20,000	hours	and	an



MTTR	of	 4	 hours.	You	 have	 projected	 that	 you	will	 need	 60GB	of	 storage	 to	 accommodate	 the
existing	data	as	well	as	 the	expected	data	growth	over	 the	next	5	years.	(All	of	 the	disks	will	be
replaced.)

a)		Are	the	people	who	are	against	adding	RAID	to	the	system	correct	in	their	assertion	that	50%
slower	disks	will	result	in	revenues	declining	to	$5,000	per	hour?	Justify	your	answer.

b)		What	would	be	the	average	disk	access	time	on	your	system	if	you	decide	to	use	RAID-1?

c)		What	would	be	the	average	disk	access	time	on	your	system	using	a	RAID-5	array	with	two	sets
of	four	disks	 if	25%	of	 the	database	transactions	must	wait	behind	one	transaction	for	 the	disk	to
become	free?

d)		Which	configuration	has	a	better	cost	justification,	RAID-1	or	RAID-5?	Explain	your	answer.
48.		a)		Which	of	the	RAID	systems	described	in	this	chapter	cannot	tolerate	a	single	disk	failure?

b)		Which	can	tolerate	more	than	one	simultaneous	disk	failure?
49.	 	Our	 discussion	of	RAID	 is	 biased	 toward	 consideration	of	 standard	 rotating	magnetic	 disks.	 Is

RAID	necessary	for	SSD	storage?	If	not,	does	this	make	SSD	storage	slightly	more	affordable	for
the	enterprise?	If	it	is	necessary,	do	the	redundant	disks	necessarily	also	need	to	be	SSD?

FOCUS	ON	DATA	COMPRESSION

7A.1	INTRODUCTION
No	matter	how	cheap	storage	gets,	no	matter	how	much	of	 it	we	buy,	we	never	seem	to	be	able	 to	get
enough	of	it.	New	huge	disks	fill	rapidly	with	all	the	things	we	wish	we	could	have	put	on	the	old	disks.
Before	long,	we	are	in	the	market	for	another	set	of	new	disks.	Few	people	or	corporations	have	access	to
unlimited	resources,	so	we	must	make	optimal	use	of	what	we	have.	One	way	to	do	this	is	to	make	our
data	more	compact,	 compressing	 it	 before	writing	 it	 to	disk.	 (In	 fact,	we	could	even	use	 some	kind	of
compression	to	make	room	for	a	parity	or	mirror	set,	adding	RAID	to	our	system	for	“free”!)

Data	 compression	 can	 do	 more	 than	 just	 save	 space.	 It	 can	 also	 save	 time	 and	 help	 to	 optimize
resources.	For	example,	 if	 compression	and	decompression	are	done	 in	 the	 I/O	processor,	 less	 time	 is
required	to	move	the	data	to	and	from	the	storage	subsystem,	freeing	the	I/O	bus	for	other	work.

The	 advantages	 offered	 by	 data	 compression	 in	 sending	 information	 over	 communication	 lines	 are
obvious:	less	time	to	transmit	and	less	storage	on	the	host.	Although	a	detailed	study	is	beyond	the	scope
of	 this	 text	 (see	 the	 references	 section	 for	 some	 resources),	 you	 should	 understand	 a	 few	 basic	 data
compression	concepts	to	complete	your	understanding	of	I/O	and	data	storage.

When	we	 evaluate	 various	 compression	 algorithms	 and	 compression	 hardware,	we	 are	 often	most
concerned	with	how	fast	a	compression	algorithm	executes	and	how	much	smaller	a	file	becomes	after	the
compression	algorithm	is	applied.	The	compression	factor	 (sometimes	called	compression	ratio)	 is	 a
statistic	that	can	be	calculated	quickly	and	is	understandable	by	virtually	anyone	who	would	care.	There
are	a	number	of	different	methods	used	to	compute	a	compression	factor.	We	will	use	the	following:



For	example,	 suppose	we	start	with	a	100KB	file	and	apply	some	kind	of	compression	 to	 it.	After	 the
algorithm	 terminates,	 the	 file	 is	 40KB	 in	 size.	We	 can	 say	 that	 the	 algorithm	 achieved	 a	 compression
factor	 of	 (1	 –	 )	 ×	 100%	 =	 60%	 for	 this	 particular	 file.	 An	 exhaustive	 statistical	 study	 should	 be
undertaken	 before	 inferring	 that	 the	 algorithm	would	 always	 produce	 60%	 file	 compression.	We	 can,
however,	 determine	 an	 expected	 compression	 ratio	 for	 particular	messages	 or	message	 types	 once	we
have	a	little	theoretical	background.

The	study	of	data	compression	 techniques	 is	a	branch	of	a	 larger	 field	of	 study	called	 information
theory.	Information	theory	concerns	itself	with	the	way	in	which	information	is	stored	and	coded.	It	was
born	 in	 the	 late	 1940s	 through	 the	work	 of	Claude	 Shannon,	 a	 scientist	 at	 Bell	 Laboratories.	 Shannon
established	a	number	of	 information	metrics,	 the	most	 fundamental	of	which	 is	entropy.	Entropy	 is	 the
measure	of	information	content	in	a	message.	Messages	with	higher	entropy	carry	more	information	than
messages	 with	 lower	 entropy.	 This	 definition	 implies	 that	 a	 message	 with	 lower	 information	 content
would	compress	to	a	smaller	size	than	a	message	with	a	higher	information	content.

Determining	the	entropy	of	a	message	requires	that	we	first	determine	the	frequency	of	each	symbol
within	the	message.	It	is	easiest	to	think	of	the	symbol	frequencies	in	terms	of	probability.	For	example,	in
the	famous	program	output	statement:

HELLO	WORLD!

the	 probability	 of	 the	 letter	 L	 appearing	 is	 ,	 or	 .	 In	 symbols,	 we	 have	 P(L)	 =	 0.25.	 To	 map	 this
probability	to	bits	in	a	code	word,	we	use	the	base-2	log	of	this	probability.	Specifically,	the	minimum
number	 of	 bits	 required	 to	 encode	 the	 letter	L	 is	 –log2	P(L),	 or	 2.	 The	 entropy	 of	 the	message	 is	 the
weighted	 average	 of	 the	 number	 of	 bits	 required	 to	 encode	 each	 of	 the	 symbols	 in	 the	message.	 If	 the
probability	of	a	symbol	x	appearing	in	a	message	is	P(x),	then	the	entropy,	H,	of	the	symbol	x	is:

The	average	entropy	over	the	entire	message	is	the	sum	of	the	weighted	probabilities	of	all	n	symbols	of
the	message:

Entropy	establishes	a	lower	bound	on	the	number	of	bits	required	to	encode	a	message.	Specifically,	 if
we	multiply	the	number	of	characters	in	the	entire	message	by	the	weighted	entropy,	we	get	the	theoretical
minimum	of	the	number	of	bits	that	are	required	to	encode	the	message	without	loss	of	information.	Bits	in
addition	to	this	lower	bound	do	not	add	information.	They	are	therefore	redundant.	The	objective	of	data
compression	is	to	remove	redundancy	while	preserving	information	content.	We	can	quantify	the	average
redundancy	for	each	character	contained	in	a	coded	message	of	length	n	containing	code	words	of	length	l
by	the	formula:

This	formula	is	most	useful	when	we	are	comparing	the	effectiveness	of	one	coding	scheme	over	another
for	a	given	message.	The	code	producing	the	message	with	the	least	amount	of	redundancy	is	 the	better
code	 in	 terms	 of	 data	 compression.	 (Of	 course,	 we	 must	 also	 consider	 such	 things	 as	 speed	 and



computational	complexity	as	well	as	the	specifics	of	the	application	before	we	can	say	that	one	method	is
better	than	another.)

Finding	the	entropy	and	redundancy	for	a	text	message	is	a	straightforward	application	of	the	formula
above.	With	a	fixed-length	code,	such	as	ASCII	or	EBCDIC,	the	left-hand	sum	above	is	exactly	the	length
of	 the	 code,	 usually	 8	 bits.	 In	 our	HELLO	WORLD!	 example	 (using	 the	 right-hand	 sum),	 we	 find	 the
average	symbol	entropy	is	about	3.022.	This	means	that	if	we	reached	the	theoretical	maximum	entropy,
we	would	need	only	3.022	bits	per	character	×	12	characters	=	36.26,	or	37	bits,	 to	encode	 the	entire
message.	The	8-bit	ASCII	version	of	the	message,	therefore,	carries	96	–	37,	or	59,	redundant	bits.

7A.2	STATISTICAL	CODING
The	entropy	metric	just	described	can	be	used	as	a	basis	for	devising	codes	that	minimize	redundancy	in
the	compressed	message.	Generally,	any	application	of	statistical	compression	 is	a	 relatively	slow	and
I/O-intensive	process,	requiring	two	passes	to	read	the	file	before	it	is	compressed	and	written.

Two	 passes	 over	 the	 file	 are	 needed	 because	 the	 first	 pass	 is	 used	 for	 tallying	 the	 number	 of
occurrences	of	each	symbol.	These	tallies	are	used	to	calculate	probabilities	for	each	different	symbol	in
the	source	message.	Values	are	assigned	to	each	symbol	in	the	source	message	according	to	the	calculated
probabilities.	The	 newly	 assigned	 values	 are	 subsequently	written	 to	 a	 file	 along	with	 the	 information
required	to	decode	the	file.	If	the	encoded	file—along	with	the	table	of	values	needed	to	decode	the	file
—is	smaller	than	the	original	file,	we	say	that	data	compression	has	occurred.

Huffman	and	arithmetic	coding	are	two	fundamental	statistical	data	compression	methods.	Variants	of
these	methods	can	be	found	in	a	large	number	of	popular	data	compression	programs.	We	examine	each	of
these	in	the	next	sections,	starting	with	Huffman	coding.

7A.2.1	Huffman	Coding
Suppose	that	after	we	determine	probabilities	for	each	of	the	symbols	in	the	source	message,	we	create	a
variable-length	code	that	assigns	the	most	frequently	used	symbols	to	the	shortest	code	words.	If	the	code
words	are	shorter	than	the	information	words,	it	stands	to	reason	that	the	resulting	compressed	message
will	 be	 shorter	 as	 well.	 David	 A.	 Huffman	 formalized	 this	 idea	 in	 a	 paper	 published	 in	 1952.
Interestingly,	one	form	of	Huffman	coding,	Morse	code,	has	been	around	since	the	early	1800s.

FIGURE	7A.1	The	International	Morse	Code

Morse	code	was	designed	using	typical	letter	frequencies	found	in	English	writing.	As	you	can	see	in
Figure	7A.1,	the	shorter	codes	represent	the	more	frequently	used	letters	in	the	English	language.	These
frequencies	clearly	cannot	apply	to	every	single	message.	A	notable	exception	would	be	a	telegram	from



Uncle	Zachary	vacationing	in	Zanzibar,	requesting	a	few	quid	so	he	can	quaff	a	quart	of	quinine!	Thus,	the
most	 accurate	 statistical	model	 would	 be	 individualized	 for	 each	message.	 To	 accurately	 assign	 code
words,	 the	 Huffman	 algorithm	 builds	 a	 binary	 tree	 using	 symbol	 probabilities	 found	 in	 the	 source
message.	A	 traversal	 of	 the	 tree	 gives	 the	 bit	 pattern	 assignments	 for	 each	 symbol	 in	 the	message.	We
illustrate	 this	process	using	a	 simple	nursery	 rhyme.	For	 clarity,	we	 render	 the	 rhyme	 in	 all	 uppercase
with	no	punctuation,	as	follows:

HIGGLETY	PIGGLETY	POP
THE	DOG	HAS	EATEN	THE	MOP
THE	PIGS	IN	A	HURRY	THE	CATS	IN	A	FLURRY
HIGGLETY	PIGGLETY	POP

We	start	by	tabulating	all	occurrences	of	each	letter	in	the	rhyme.	We	will	use	the	abbreviation	<ws>
(white	space)	for	the	space	characters	between	each	word	as	well	as	the	newline	characters	(see	Table
7A.1).

TABLE	7A.1	Letter	Frequencies

These	letter	frequencies	are	associated	with	each	letter	using	two	nodes	of	a	tree.	The	collection	of
these	trees	(a	forest)	is	placed	in	a	line	ordered	by	the	letter	frequencies	like	this:

We	begin	building	 the	binary	 tree	by	 joining	 the	nodes	with	 the	 two	 smallest	 frequencies.	Because	we
have	 a	 four-way	 tie	 for	 the	 smallest,	 we	 arbitrarily	 select	 the	 leftmost	 two	 nodes.	 The	 sum	 of	 the
combined	frequencies	of	these	two	nodes	is	two.	We	create	a	parent	node	labeled	with	this	sum	and	place
it	back	into	the	forest	in	the	location	determined	by	the	label	on	the	parent	node,	as	shown:

We	repeat	the	process	for	the	nodes	now	having	the	lowest	frequencies:



The	two	smallest	nodes	are	the	parents	of	F,	M,	C,	and	D.	Taken	together,	they	sum	to	a	frequency	of	4,
which	belongs	in	the	fourth	position	from	the	left:

The	leftmost	nodes	add	up	to	5.	They	are	moved	to	their	new	position	in	the	tree	as	shown:

The	two	smallest	nodes	now	add	up	to	7.	Create	a	parent	node	and	move	the	subtree	to	the	middle	of	the
forest	with	the	other	node	with	frequency	7:

The	leftmost	pair	combine	to	create	a	parent	node	with	a	frequency	of	8.	It	is	placed	back	in	the	forest	as
shown:



After	several	more	iterations,	the	completed	tree	looks	like	this:

This	 tree	 establishes	 the	 framework	 for	 assigning	a	Huffman	value	 to	 each	 symbol	 in	 the	message.	We
start	by	labeling	every	right	branch	with	a	binary	1,	then	each	left	branch	with	a	binary	0.	The	result	of
this	step	is	shown	below.	(The	frequency	nodes	have	been	removed	for	clarity.)

TABLE	7A.2	The	Coding	Scheme



All	we	need	 to	do	now	is	 traverse	 the	 tree	 from	its	 root	 to	each	 leaf	node,	keeping	 track	of	 the	binary
digits	encountered	along	the	way.	The	completed	coding	scheme	is	shown	in	Table	7A.2.

As	you	can	see,	the	symbols	with	the	highest	frequencies	end	up	having	the	fewest	bits	in	their	code.
The	 entropy	 of	 this	 message	 is	 approximately	 3.82	 bits	 per	 symbol.	 The	 theoretical	 lower	 bound
compression	for	this	message	is	therefore	110	symbols	×	3.82	bits	=	421	bits.	This	Huffman	code	renders
the	message	in	426	bits,	or	about	1%	more	than	is	theoretically	necessary.

7A.2.2	Arithmetic	Coding
Huffman	coding	cannot	always	achieve	theoretically	optimal	compression	because	it	is	restricted	to	using
an	integral	number	of	bits	in	the	resulting	code.	In	the	nursery	rhyme	in	the	previous	section,	the	entropy	of
the	symbol	S	is	approximately	1.58.	An	optimal	code	would	use	1.58	bits	to	encode	each	occurrence	of	S.
With	Huffman	coding,	we	are	restricted	to	using	at	least	2	bits	for	this	purpose.	This	lack	of	precision	cost
us	a	total	of	5	redundant	bits	in	the	end.	Not	too	bad,	but	it	seems	we	could	do	better.

TABLE	7A.3	Probability	Interval	Mapping	for	HELLO	WORLD!

Huffman	coding	falls	short	of	optimality	because	it	is	trying	to	map	probabilities—which	are	elements
of	 the	 set	of	 real	numbers—to	elements	of	 a	 small	 subset	of	 the	 set	of	 integers.	We	are	bound	 to	have
problems!	So	why	not	devise	some	sort	of	real-to-real	mapping	to	achieve	data	compression?	In	1963,
Norman	Abramson	conceived	of	such	a	mapping,	which	was	subsequently	published	by	Peter	Elias.	This
real-to-real	data	compression	method	is	called	arithmetic	coding.

Conceptually,	arithmetic	coding	partitions	the	real	number	line	in	the	interval	between	0	and	1	using
the	probabilities	in	the	symbol	set	of	the	message.	More	frequently	used	symbols	get	a	larger	chunk	of	the
interval.

Returning	 to	our	 favorite	program	output,	HELLO	WORLD!,	we	see	 that	 there	are	12	characters	 in
this	imperative	statement.	The	lowest	probability	among	the	symbols	is	 .	All	other	probabilities	are	a
multiple	of	 .	Thus,	we	divide	the	0	–	1	interval	into	12	parts.	Each	of	the	symbols	except	L	and	O	are
assigned	 	 of	 the	 interval.	 L	 and	O	 get	 	 and	 ,	 respectively.	Our	 probability-to-interval	mapping	 is
shown	in	Table	7A.3.

We	 encode	 a	 message	 by	 successively	 dividing	 a	 range	 of	 values	 (starting	 with	 0.0	 through	 1.0)
proportionate	 to	 the	 interval	assigned	 to	 the	symbol.	For	example,	 if	 the	“current	 interval”	 is	 	 and	 the
letter	L	gets	 	of	the	current	interval,	as	shown	above,	then	to	encode	the	L,	we	multiply	 	by	 ,	giving	 	as
the	new	current	interval.	If	the	next	character	is	another	L,	 	is	multiplied	by	 ,	yielding	 	for	the	current
interval.	We	proceed	in	this	vein	until	 the	entire	message	is	encoded.	This	process	becomes	clear	after
studying	the	pseudocode	below.	A	trace	of	the	pseudocode	for	HELLO	WORLD!	is	given	in	Figure	7A.2.



FIGURE	7A.2	Encoding	HELLO	WORLD!	with	Arithmetic	Coding

The	message	is	decoded	using	the	same	process	in	reverse,	as	shown	by	the	pseudocode	that	follows.
A	trace	of	the	pseudocode	is	given	in	Figure	7A.3.



FIGURE	7A.3	A	Trace	of	Decoding	HELLO	WORLD!

You	 may	 have	 noticed	 that	 neither	 of	 the	 arithmetic	 coding/decoding	 algorithms	 contains	 any	 error
checking.	We	have	 done	 this	 for	 the	 sake	 of	 clarity.	Real	 implementations	must	 guard	 against	 floating-
point	 underflow	 in	 addition	 to	 making	 sure	 that	 the	 number	 of	 bits	 in	 the	 result	 are	 sufficient	 for	 the
entropy	of	the	information.

Differences	in	floating-point	representations	can	also	cause	the	algorithm	to	miss	the	zero	condition
when	the	message	is	being	decoded.	In	fact,	an	end-of-message	character	is	usually	inserted	at	the	end	of
the	message	during	the	coding	process	to	prevent	such	problems	during	decoding.

7A.3	ZIV-LEMPEL	(LZ)	DICTIONARY	SYSTEMS
Although	 arithmetic	 coding	 can	 produce	 nearly	 optimal	 compression,	 it	 is	 even	 slower	 than	 Huffman
coding	 because	 of	 the	 floating-point	 operations	 that	 must	 be	 performed	 during	 both	 the	 encoding	 and



decoding	processes.	If	speed	is	our	first	concern,	we	might	wish	to	consider	other	compression	methods,
even	if	 it	means	that	we	can’t	achieve	a	perfect	code.	Surely,	we	would	gain	considerable	speed	if	we
could	avoid	scanning	the	input	message	twice.	This	is	what	dictionary	methods	are	all	about.

Jacob	Ziv	 and	Abraham	Lempel	 pioneered	 the	 idea	 of	 building	 a	 dictionary	 during	 the	 process	 of
reading	information	and	writing	encoded	bytes.	The	output	of	dictionary-based	algorithms	contains	either
literals	 or	 pointers	 to	 information	 that	 has	 previously	 been	 placed	 in	 the	 dictionary.	 Where	 there	 is
substantial	 “local”	 redundancy	 in	 the	 data,	 such	 as	 long	 strings	 of	 spaces	 or	 zeros,	 dictionary-based
techniques	 work	 exceptionally	 well.	 Although	 referred	 to	 as	 LZ	 dictionary	 systems,	 the	 name	 “Ziv-
Lempel”	is	preferred	to	“Lempel-Ziv”	when	using	the	authors’	full	names.

Ziv	 and	 Lempel	 published	 their	 first	 algorithm	 in	 1977.	 This	 algorithm,	 known	 as	 the	 LZ77
compression	 algorithm,	 uses	 a	 text	 window	 in	 conjunction	with	 a	 look-ahead	 buffer.	 The	 look-ahead
buffer	contains	the	information	to	be	encoded.	The	text	window	serves	as	the	dictionary.	If	any	characters
inside	 the	 look-ahead	 buffer	 can	 be	 found	 in	 the	 dictionary,	 the	 location	 and	 length	 of	 the	 text	 in	 the
window	is	written	to	the	output.	If	the	text	cannot	be	found,	the	unencoded	symbol	is	written	with	a	flag
indicating	that	the	symbol	should	be	used	as	a	literal.

There	are	many	variants	of	LZ77,	all	of	which	build	on	one	basic	 idea.	We	will	explain	 this	basic
version	through	an	example,	using	another	nursery	rhyme.	We	have	replaced	all	spaces	by	underscores	for
clarity:

STAR_LIGHT_STAR_BRIGHT_
FIRST_STAR_I_SEE_TONIGHT_
I_WISH_I_MAY_I_WISH_I_MIGHT_
GET_THE_WISH_I_WISH_TONIGHT

For	 illustrative	 purposes,	 we	 will	 use	 a	 32-byte	 text	 window	 and	 a	 16-byte	 look-ahead	 buffer.	 (In
practice,	these	two	areas	usually	span	several	kilobytes.)	The	text	is	first	read	into	the	look-ahead	buffer.
Having	nothing	in	the	text	window	yet,	the	S	is	placed	in	the	text	window	and	a	triplet	composed	of:

1.		The	offset	to	the	text	in	the	text	window
2.		The	length	of	the	string	that	has	been	matched
3.		The	first	symbol	in	the	look-ahead	buffer	that	follows	the	phrase

In	the	example	above,	there	is	no	match	in	the	text,	so	the	offset	and	string	length	are	both	zeros.	The	next
character	in	the	look-ahead	buffer	also	has	no	match,	so	it	is	also	written	as	a	literal	with	index	and	length
both	zero.

We	continue	writing	literals	until	a	T	appears	as	the	first	character	of	the	look-ahead	buffer.	This	matches
the	T	that	is	in	position	1	of	the	text	window.	The	character	following	the	T	in	the	look-ahead	buffer	is	an



underscore,	which	is	the	third	item	in	the	triplet	that	is	written	to	the	output.

The	 look-ahead	buffer	now	shifts	by	 two	characters.	STAR_	 is	 now	at	 the	beginning	of	 the	 look-ahead
buffer.	 It	 has	 a	match	 at	 the	 first	 character	 position	 (position	 0)	 of	 the	 text	window.	We	write	 0,	 5,	B
because	B	is	the	character	following	STAR_	in	the	buffer.

We	shift	the	look-ahead	buffer	by	six	characters	and	look	for	a	match	on	the	R.	We	find	one	at	position	3
of	the	text,	writing	3,	1,	I.

GHT	is	now	at	the	beginning	of	the	buffer.	It	matches	four	characters	in	the	text	starting	at	position	7.	We
write	7,	4,	F.

After	a	few	more	iterations,	the	text	window	is	nearly	full:

After	we	match	STAR_	with	the	characters	at	position	0	of	the	text,	the	six	characters,	STAR_I,	shift	out	of
the	buffer	and	into	the	text	window.	In	order	to	accommodate	all	six	characters,	the	text	window	must	shift
to	the	right	by	three	characters	after	we	process	STAR_.

After	writing	the	code	for	STAR_I	and	shifting	the	windows,	_S	 is	at	 the	beginning	of	 the	buffer.	These
characters	match	with	the	text	at	position	7.



Continuing	in	this	manner,	we	ultimately	come	to	the	end	of	the	text.	The	last	characters	to	be	processed
are	IGHT.	These	match	the	text	at	position	4.	Because	there	are	no	characters	after	IGHT	in	the	buffer,	the
last	triple	written	is	tagged	with	an	end	of	file	character,	<EOF>.

A	total	of	36	triples	are	written	to	the	output	in	this	example.	Using	a	text	window	of	32	bytes,	the	index
needs	 only	 5	 bits	 to	 point	 to	 any	 text	 character.	 Because	 the	 look-ahead	 buffer	 is	 16	 bytes	 wide,	 the
longest	string	that	we	can	match	is	16	bytes,	so	we	require	a	maximum	of	4	bits	to	store	the	length.	Using
5	bits	for	the	index,	4	bits	for	the	string	length,	and	7	bits	for	each	ASCII	character,	each	triple	requires	16
bits,	or	2	bytes.	The	rhyme	contains	103	characters,	which	would	have	been	stored	in	103	uncompressed
bytes	 on	 disk.	 The	 compressed	 message	 requires	 only	 72	 bytes,	 giving	 us	 a	 compression	 factor	 of	

.
It	 stands	 to	 reason	 that	 if	 we	make	 the	 text	 window	 larger,	 we	 increase	 the	 likelihood	 of	 finding

matches	with	 the	characters	 in	 the	 look-ahead	buffer.	For	example,	 the	 string	_TONIGHT	 occurs	 at	 the
forty-first	position	of	the	rhyme	and	again	at	position	96.	Because	there	are	48	characters	between	the	two
occurrences	 of	 _TONIGHT,	 the	 first	 occurrence	 cannot	 possibly	 be	 used	 as	 a	 dictionary	 entry	 for	 the
second	occurrence	if	we	use	a	32-character	text	window.	Enlarging	the	text	window	to	64	bytes	allows
the	first	_TONIGHT	 to	be	used	to	encode	the	second	one,	and	it	would	add	only	one	bit	 to	each	coded
triple.	 In	 this	 example,	 however,	 an	 expanded	 64-byte	 text	 window	 decreases	 the	 output	 by	 only	 two
triples:	from	36	to	34.	Because	the	text	window	requires	7	bits	for	the	index,	each	triple	would	consist	of
17	 bits.	 The	 compressed	 message	 then	 occupies	 a	 total	 of	 17	 ×	 34	 =	 578	 bits,	 or	 about	 73	 bytes.
Therefore,	the	larger	text	window	actually	costs	us	a	few	bits	in	this	example.

A	degenerate	condition	occurs	when	there	are	no	matches	whatsoever	between	the	text	and	the	buffer
during	the	compression	process.	For	instance,	if	we	would	have	used	a	36-character	string	consisting	of
all	the	letters	of	the	alphabet	and	the	digits	0	through	9,	ABC	…	XYZ012	…	9,	we	would	have	had	no
matches	 in	our	example.	The	output	of	 the	algorithm	would	have	been	36	triples	of	 the	form,	0,0,?.	We
would	have	ended	up	with	an	output	triple	the	size	of	the	original	string,	or	an	expansion	of	200%.

Fortunately,	exceptional	cases	like	the	one	just	cited	happen	rarely	in	practice.	Variants	of	LZ77	can
be	found	in	a	number	of	popular	compression	utilities,	including	the	ubiquitous	PKZIP.	Several	brands	of
tape	and	disk	drives	implement	LZ77	directly	in	the	disk	control	circuitry.	This	compression	takes	place
at	hardware	speeds,	making	it	completely	transparent	to	users.

Dictionary-based	compression	has	been	an	active	area	of	 research	since	Ziv	and	Lempel	published
their	algorithm	in	1977.	One	year	later,	Ziv	and	Lempel	improved	on	their	own	work	when	they	published
their	second	dictionary-based	algorithm,	now	known	as	LZ78.	LZ78	differs	from	LZ77	in	that	it	removes
the	limitation	of	the	fixed-size	text	window.	Instead,	it	creates	a	special	tree	data	structure	called	a	trie,
which	is	populated	by	tokens	as	they	are	read	from	the	input.	(Each	interior	node	of	the	tree	can	have	as
many	children	as	it	needs.)	Instead	of	writing	characters	to	the	disk	as	in	LZ77,	LZ78	writes	pointers	to



the	 tokens	 in	 the	 trie.	 The	 entire	 trie	 is	written	 to	 disk	 following	 the	 encoded	message,	 and	 read	 first
before	decoding	the	message.	(See	Appendix	A	for	more	information	regarding	tries.)

7A.4	GIF	AND	PNG	COMPRESSION
Efficient	 management	 of	 the	 trie	 of	 tokens	 is	 the	 greatest	 challenge	 for	 LZ78	 implementations.	 If	 the
dictionary	gets	too	large,	the	pointers	can	become	larger	than	the	original	data.	A	number	of	solutions	to
this	problem	have	been	found,	one	of	which	has	been	the	source	of	acrimonious	debate	and	legal	action.

In	1984,	Terry	Welsh,	an	employee	of	 the	Sperry	Computer	Corporation	 (now	Unisys),	published	a
paper	 describing	 an	 effective	 algorithm	 for	 managing	 an	 LZ78-style	 dictionary.	 His	 solution,	 which
involves	 controlling	 the	 sizes	 of	 the	 tokens	 used	 in	 the	 trie,	 is	 called	 LZW	 data	 compression,	 for
Lempel-Ziv-Welsh.	 LZW	 compression	 is	 the	 fundamental	 algorithm	 behind	 the	 graphics	 interchange
format,	GIF	 (pronounced	 “jiff”),	 developed	 by	CompuServe	 engineers	 and	 popularized	 by	 the	World
Wide	Web.	Because	Welsh	devised	his	algorithm	as	part	of	his	official	duties	at	Sperry,	Unisys	exercised
its	right	to	place	a	patent	on	it.	It	has	subsequently	requested	small	royalties	each	time	a	GIF	is	used	by
service	providers	or	high-volume	users.1	LZW	is	not	specific	to	GIF.	It	is	also	used	in	the	tagged	image
file	 format	 (TIFF),	 other	 compression	 programs	 (including	 Unix	 Compress),	 various	 software
applications	 (such	 as	 PostScript	 and	 PDF),	 and	 hardware	 devices	 (most	 notably	 modems).	 Not
surprisingly,	 the	royalty	request	of	Unisys	has	not	been	well	 received	within	 the	Web	community,	some
sites	blazing	with	vows	to	boycott	GIFs	in	perpetuity.	Cooler	heads	have	simply	circumvented	the	issue
by	producing	better	(or	at	least	different)	algorithms,	one	of	which	is	PNG,	portable	network	graphics.

Royalty	 disputes	 alone	 did	 not	 “cause”	 PNG	 (pronounced	 “ping”)	 to	 come	 into	 being,	 but	 they
undoubtedly	 hastened	 its	 development.	 In	 a	 matter	 of	 months	 in	 1995,	 PNG	 went	 from	 a	 draft	 to	 an
accepted	international	standard.	Amazingly,	the	PNG	specification	has	had	only	two	minor	revisions	as	of
2005.

PNG	offers	many	improvements	over	GIF,	including:

•			User-selectable	compression	modes:	“Faster”	or	“better”	on	a	scale	of	0	to	3,	respectively
•			Improved	compression	ratios	over	GIF,	typically	5%	to	25%	better
•			Error	detection	provided	by	a	32-bit	CRC	(ISO	3309/ITU-142)
•			Faster	initial	presentation	in	progressive	display	mode
•			An	open	international	standard,	freely	available	and	sanctioned	by	the	World	Wide	Web	Consortium

(W3C)	and	many	other	organizations	and	businesses

PNG	uses	two	levels	of	compression:	First,	information	is	reduced	using	Huffman	coding.	The	Huffman
code	is	then	followed	by	LZ77	compression	using	a	32KB	text	window.

GIF	can	do	one	thing	that	PNG	cannot:	support	multiple	images	in	the	same	file,	giving	the	illusion	of
animation	(albeit	stiffly).	To	correct	this	limitation,	the	Internet	community	produced	the	multiple-image
network	graphics	algorithm	(or	MNG,	pronounced	“ming”).	MNG	is	an	extension	of	PNG	that	allows
multiple	images	to	be	compressed	into	one	file.	These	files	can	be	of	any	type,	such	as	gray-scale,	true
color,	 or	 even	 JPEGs	 (see	 the	next	 section).	Version	1.0	of	MNG	was	 released	 in	 January	2001,	with
refinements	 and	 enhancements	 sure	 to	 follow.	With	PNG	and	MNG	both	 freely	 available	 (with	 source
code!)	over	the	Internet,	one	is	inclined	to	think	it	is	only	a	matter	of	time	before	the	GIF	issue	becomes
passé.



7A.5	JPEG	COMPRESSION
When	we	see	a	graphic	image	such	as	a	photograph	on	a	printed	page	or	computer	screen,	what	we	are
really	looking	at	is	a	collection	of	small	dots	called	pixels	or	picture	elements.	Pixels	are	particularly
noticeable	 in	 low-image-quality	media	 like	 newspapers	 and	 comic	 books.	When	 pixels	 are	 small	 and
packed	closely	 together,	our	eyes	perceive	a	“good	quality”	 image.	“Good	quality,”	being	a	 subjective
measure,	starts	at	about	300	pixels	per	inch	(120	pixels/cm).	On	the	high	end,	most	people	would	agree
that	an	image	of	1600	pixels	per	inch	(640	pixels/cm)	is	“good,”	if	not	excellent.

Pixels	contain	the	binary	coding	for	the	image	in	a	form	that	can	be	interpreted	by	display	and	printer
hardware.	Pixels	can	be	coded	using	any	number	of	bits.	If,	for	example,	we	are	producing	a	black-and-
white	 line	drawing,	we	can	do	so	using	one	bit	per	pixel.	The	bit	 is	 either	black	 (pixel	=	0)	or	white
(pixel	 =	 1).	 If	we	 decide	 that	we’d	 rather	 have	 a	 grayscale	 image,	we	 need	 to	 think	 about	 how	many
shades	of	gray	will	suffice.	If	we	want	to	have	eight	shades	of	gray,	we	need	three	bits	per	pixel.	Black
would	be	000,	white	111.	Anything	in	between	would	be	some	shade	of	gray.

Color	 pixels	 are	 produced	 using	 a	 combination	 of	 red,	 green,	 and	 blue	 components.	 If	we	want	 to
render	an	image	using	eight	different	shades	each	of	red,	green,	and	blue,	we	must	use	three	bits	for	each
color	component.	Hence,	we	need	nine	bits	per	pixel,	giving	29	–	1	different	colors.	Black	would	still	be
all	zeros:	R	=	000,	G	=	000,	B	=	000;	white	would	still	be	all	ones:	R	=	111,	G	=	111,	B	=	111.	“Pure”
green	would	be	R	=	000,	G	=	111,	B	=	000.	R	=	011,	G	=	000,	B	=	101	would	give	us	some	shade	of
purple.	Yellow	would	be	produced	by	R	=	111,	G	=	111,	B	=	000.	The	more	bits	we	use	to	represent	each
color,	the	closer	we	get	to	the	“true	color”	that	we	see	around	us.	Many	computer	systems	approximate
true	 color	 using	 eight	 bits	 per	 color—rendering	 256	 different	 shades	 of	 each.	These	 24-bit	 pixels	 can
display	about	16	million	different	colors.

Let’s	say	that	we	wish	to	store	a	4in.	×	6in.	(10	cm	×	15	cm)	photographic	image	in	such	a	way	as	to
give	us	“reasonably”	good	quality	when	it	is	viewed	or	printed.	Using	24	bits	(3	bytes)	per	pixel	at	300
pixels	per	inch,	we	need	300	×	300	×	6	×	4	×	3	=	6.48MB	to	store	the	image.	If	this	4in.	×	6in.	photo	is
part	of	a	sales	brochure	posted	on	the	Web,	we	would	risk	losing	customers	with	dial-up	modems	once
they	realize	that	20	minutes	have	passed	and	they	still	have	not	completed	downloading	the	brochure.	At
1,600	pixels	per	inch,	storage	balloons	to	just	under	1.5GB,	which	is	practically	impossible	to	download
and	store.

JPEG	 is	 a	 compression	 algorithm	 designed	 specifically	 to	 address	 this	 problem.	 Fortunately,
photographic	 images	contain	a	considerable	amount	of	redundant	 information.	Furthermore,	some	of	 the
information	having	high	theoretical	entropy	is	often	of	no	consequence	to	the	integrity	of	the	image.	With
these	ideas	in	mind,	the	ISO	and	ITU	together	commissioned	a	group	to	formulate	an	international	image
compression	 standard.	 This	 group	 is	 called	 the	 Joint	 Photographic	 Experts	 Group,	 or	 JPEG,
pronounced	 “jay-peg.”	The	 first	 JPEG	 standard,	 10928-1,	was	 finalized	 in	 1992.	Major	 revisions	 and
enhancements	 to	 this	 standard	 were	 begun	 in	 1997.	 The	 new	 standard	 is	 called	 JPEG2000	 and	 was
finalized	in	December	2000.

JPEG	is	a	collection	of	algorithms	that	provides	excellent	compression	at	the	expense	of	some	image
information	loss.	Up	to	this	point,	we	have	been	describing	lossless	data	compression:	The	data	restored
from	 the	 compressed	 sequence	 is	 precisely	 the	 same	 as	 it	 was	 before	 compression,	 barring	 any
computational	or	media	errors.	Sometimes	we	can	achieve	much	better	compression	if	a	little	information
loss	can	be	tolerated.	Photographic	images	lend	themselves	particularly	well	to	lossy	data	compression
because	of	the	human	eye’s	ability	to	compensate	for	minor	imperfections	in	graphical	images.	Of	course,
some	images	carry	real	information	and	should	be	subjected	to	lossy	compression	only	after	“quality”	has



been	carefully	defined.	Medical	diagnostic	 images	 such	as	x-rays	 and	electrocardiograms	 fall	 into	 this
class.	 Family	 album	 and	 sales	 brochure	 photographs,	 however,	 are	 the	 kinds	 of	 images	 that	 can	 lose
considerable	“information,”	while	retaining	their	illusion	of	visual	“quality.”

FIGURE	7A.4	JPEG	Compression	Using	Different	Quantizations	on	a	7.14KB	Bitmap	File

One	 of	 the	 salient	 features	 of	 JPEG	 is	 that	 the	 user	 can	 control	 the	 amount	 of	 information	 loss	 by
supplying	parameters	prior	to	compressing	the	image.	Even	at	100%	fidelity,	JPEG	produces	remarkable
compression.	At	75%,	the	“lost”	information	is	barely	noticeable	and	the	image	file	is	a	small	fraction	of
its	 original	 size.	 Figure	7A.4	 shows	 a	 grayscale	 image	 compressed	 using	 different	 quality	 parameters.
(The	original	7.14KB	bitmap	was	used	as	input	with	the	stated	quality	parameters.)

As	 you	 can	 see,	 the	 lossiness	 of	 JPEG	 becomes	 problematic	 only	 when	 using	 the	 lowest	 quality
factors.	You’ll	also	notice	how	the	image	takes	on	the	appearance	of	a	crossword	puzzle	when	it	is	at	its
highest	compression.	The	reason	for	this	becomes	clear	once	you	understand	how	JPEG	works.

When	compressing	color	images,	the	first	thing	that	JPEG	does	is	to	convert	the	RGB	components	to
the	 domain	 of	 luminance	 and	 chrominance,	 where	 luminance	 is	 the	 brightness	 of	 the	 color	 and
chrominance	 is	 the	color	 itself.	The	human	eye	 is	 less	 sensitive	 to	 chrominance	 than	 luminance,	 so	 the
resulting	 code	 is	 constructed	 so	 that	 the	 luminance	 component	 is	 least	 likely	 to	 be	 lost	 during	 the
subsequent	compression	steps.	Grayscale	images	do	not	require	this	step.

Next,	the	image	is	divided	into	square	blocks	of	eight	pixels	on	each	side.	These	64-pixel	blocks	are
converted	from	the	spatial	domain	(x,	y)	 to	a	 frequency	domain	(i,	 j)	 using	 a	discrete	 cosine	 transform
(DCT)	as	follows:

The	output	of	this	transform	is	an	8×8	matrix	of	integers	ranging	from	–1,024	to	1,023.	The	pixel	at	i	=	0,	j
=	0	is	called	the	DC	coefficient,	and	it	contains	a	weighted	average	of	the	values	of	the	64	pixels	in	the
original	block.	The	other	63	values	are	called	AC	coefficients.	Because	of	 the	behavior	of	 the	cosine



function	(cos	0	=	1),	the	resulting	frequency	matrix,	the	(i,	j)	matrix,	has	a	concentration	of	low	numbers
and	zeros	in	the	lower	right-hand	corner.	Larger	numbers	collect	toward	the	upper	left-hand	corner	of	the
matrix.	This	pattern	lends	itself	well	to	many	different	compression	methods,	but	we’re	not	quite	ready	for
that	step.

Before	the	frequency	matrix	is	compressed,	each	value	in	the	matrix	is	divided	by	its	corresponding
element	in	a	quantization	matrix.	The	purpose	of	the	quantization	step	is	to	reduce	the	11-bit	output	of
the	DCT	to	an	8-bit	value.	This	is	the	lossy	step	in	JPEG,	the	degree	of	which	is	selectable	by	the	user.
The	JPEG	specification	gives	several	quantization	matrices,	any	of	which	may	be	used	at	the	discretion	of
the	implementer.	All	of	these	standard	matrices	ensure	that	the	frequency	matrix	elements	containing	the
most	 information	 (those	 toward	 the	 upper	 left-hand	 corner)	 lose	 the	 least	 amount	 of	 their	 information
during	the	quantization	step.

Following	the	quantization	step,	 the	frequency	matrix	is	sparse—containing	more	zero	 than	nonzero
entries—in	the	lower	right-hand	corner.	Large	blocks	of	identical	values	can	be	compressed	easily	using
run-length	coding.

Run-length	coding	is	a	simple	compression	method	where	instead	of	coding	XXXXX,	we	code	5,X	to
indicate	a	run	of	five	Xs.	When	we	store	5,X	instead	of	XXXXX,	we	save	three	bytes,	not	including	any
delimiters	 that	 the	method	might	 require.	Clearly,	 the	most	effective	way	of	doing	 this	 is	 to	 try	 to	align
everything	so	that	we	get	as	many	of	the	zero	values	adjacent	to	each	other	as	we	can.	JPEG	achieves	this
by	doing	a	zig-zag	scan	of	 the	frequency	matrix.	The	result	of	 this	step	 is	a	one-dimensional	matrix	 (a
vector)	that	usually	contains	a	long	run	of	zeros.	Figure	7A.5	illustrates	how	the	zig-zag	scan	works.

Each	of	the	AC	coefficients	in	the	vector	is	compressed	using	run-length	coding.	The	DC	coefficient	is
coded	as	the	arithmetic	difference	between	its	original	value	and	the	DC	coefficient	of	the	previous	block,
if	there	is	one.

The	 resulting	 run-length	 encoded	 vector	 is	 further	 compressed	 using	 either	 Huffman	 or	 arithmetic
coding.	 Huffman	 coding	 is	 the	 preferred	 method	 because	 of	 a	 number	 of	 patents	 on	 the	 arithmetic
algorithms.

Figure	7A.6	summarizes	the	steps	we	have	just	described	for	the	JPEG	algorithm.	Decompression	is
achieved	by	reversing	this	process.

JPEG2000	 offers	 a	 number	 of	 improvements	 over	 the	 JPEG	 standard	 of	 1997.	 The	 underlying
mathematics	 are	 more	 sophisticated,	 which	 permits	 greater	 flexibility	 with	 regard	 to	 quantization
parameters	and	the	incorporation	of	multiple	images	into	one	JPEG	file.	One	of	the	most	striking	features
of	JPEG2000	is	its	ability	to	allow	user	definition	of	regions	of	interest.	A	region	of	interest	is	an	area
within	 an	 image	 that	 serves	 as	 a	 focal	 point,	 and	would	 not	 be	 subjected	 to	 the	 same	 degree	 of	 lossy
compression	as	 the	rest	of	 the	 image.	 If,	 for	example,	you	had	a	photograph	of	a	 friend	standing	on	 the
shore	of	a	lake,	you	would	tell	JPEG2000	that	your	friend	is	a	region	of	interest.	The	background	of	the
lake	and	the	trees	could	be	compressed	to	a	great	degree	before	they	would	lose	definition.	The	image	of
your	friend,	however,	would	remain	clear—if	not	enhanced—by	a	lower-quality	background.



FIGURE	7A.5	A	Zig-Zag	Scan	of	a	JPEG	Frequency	Matrix

FIGURE	7A.6	The	JPEG	Compression	Algorithm

JPEG2000	replaces	the	discrete	cosine	transform	of	JPEG	with	a	wavelet	transform.	(Wavelets	are	a
different	way	of	sampling	and	encoding	an	image	or	any	set	of	signals.)	Quantization	in	JPEG2000	uses	a
sine	function	rather	than	the	simple	division	of	the	earlier	version.	These	more	sophisticated	mathematical
manipulations	require	substantially	more	processor	resources	than	JPEG,	causing	noticeable	performance
degradation	 in	 some	 applications.	 Legal	 concerns	 have	 been	 raised	 about	 patent	 rights	 to	 some	 of	 the
JPEG2000	component	algorithms.	Thus,	many	software	suppliers	are	reluctant	to	incorporate	JPEG2000
into	their	products.	It	will	surely	take	time	for	JPEG2000	to	realize	the	popularity	of	JPEG.

7A.6	MP3	COMPRESSION
Although	 there	 are	many	more	 powerful	 audio	 file	 compression	 algorithms,	 such	 as	 AAC,	 OGG,	 and
WMA,	MP3	is	universally	used	and	supported.	MP3	employs	several	different	compression	techniques	as
well	 as	 a	 bit	 of	 human	physiology.	Although	many	others	 helped	 in	 its	 refinement	 and	 implementation,
German	doctoral	student,	Karlheinz	Brandenburg	at	Erlangen-Nuremberg	University	is	widely	recognized
as	the	chief	architect	of	MP3.	In	1987,	the	University	and	the	Fraunhofer	Institute	for	Integrated	Circuits
formed	 an	 alliance	 to	 implement	 Brandenburg’s	 ideas	 in	 electronic	 circuits.	 Fraunhofer-Gesellschaft’s
refinements	of	Brandenburg’s	work	were	subsequently	adopted	by	the	Moving	Picture	Experts	Group
(MPEG)	 for	 compression	 of	 the	 audio	 component	 of	 motion	 pictures.	 One	 of	 several	 related	 audio
compression	standards,	MP3	 is	officially	known	as	MPEG-1	Audio	Layer	III	or	MPEG-1	Part	 3.	 It
was	adopted	in	1993	by	the	International	Organization	for	Standardization	as	ISO/IEC	11172-3-1993.	 It
is	 important	 to	note	 that	 the	 standard	describes	only	 the	compression	methods.	 Its	 implementation—the



electronics	of	the	coders	and	decoders—is	left	to	the	creativity	of	the	manufacturers.	To	fully	appreciate
the	power	of	MP3	compression,	we	must	 first	 understand	how	audio	 signals	 are	 recorded	onto	digital
media.

Sound	is	produced	by	disturbing	air	in	some	way	to	create	a	vibration	that	is	ultimately	detected	by
small	 structures	 in	 the	 human	 ear.	 These	 vibrations	 are	 analog	 waves	 that	 have	 both	 frequency	 and
amplitude.	 Converting	 analog	waves	 to	 a	 digital	 format	 is	 achieved	 by	 sampling	 the	 analog	waves	 at
specified	intervals.	The	more	frequent	the	sampling,	and	the	greater	number	of	bits	used	for	the	encoding,
the	more	accurately	the	sound	approximates	the	analog	wave.

We	illustrate	this	concept	in	Figure	7A.7a–c.	The	y-axes	in	the	figures	consist	of	eight	values	so	that
the	amplitude	of	the	wave	can	be	encoded—modulated	to	a	digital	signal—using	3	bits.	You	can	see	that
the	axis	is	not	evenly	divided,	but	has	more	divisions	in	the	middle	of	the	range.	The	analog	waveform	is
matched,	or	quantized,	 to	its	nearest	 integral	value.	Thus,	we	get	better	resolution,	or	a	closer	fit	 to	the
waveform	 in	 areas	where	most	 sound	 occurs.	This	manner	 of	 converting	 an	 analog	 signal	 to	 digital	 is
known	as	pulse	code	modulation	(PCM).	Standard	audio	pulse	code	modulation	uses	16	bits	along	the	y-
axis.

The	 next	 matter	 to	 address	 is	 the	 sampling	 rate.	 In	 Figure	 7A.7a,	 the	 vertical	 bars	 represent	 the
sampling	intervals	taken	over	the	example	waveform.	It	is	easy	to	see	that	a	great	deal	of	the	waveform
lies	 outside	 the	 rectangles.	 If	 we	 double	 the	 sampling	 rate,	 as	 in	 Figure	 7A.7b,	 we	 get	 closer	 to	 the
waveform.	With	 tripling	 the	 sampling	 rate,	we	 get	 even	 closer,	 as	 in	 Figure	 7A.7c.	As	 any	 student	 of
calculus	knows,	we	can	keep	making	these	rectangles	smaller	(by	increasing	the	sampling	rate)	until	the
difference	between	the	digital	signal	and	the	analog	signal	becomes	too	small	to	measure.	However,	this
“perfection”	is	costly,	as	each	rectangle	requires	2	bytes	to	encode	in	PCM.	At	some	point,	the	encoded
audio	file	becomes	too	large	to	be	of	any	practical	use.



FIGURE	7A.7	Sound	Wave	Sampling
a)	1×	Samples	per	Second
b)	2×	Samples	per	Second
c)	3×	Samples	per	Second

In	 the	 late	 1970s,	 digital	 recording	 established	 a	 sampling	 rate	 of	 44,100	 samples	 per	 second
(44.1kHz).	At	44.1kHz,	an	audio	signal	can	be	conveyed	with	sufficient	accuracy	using	electronic	circuits
that	are	practical	to	implement.	Using	a	44.1kHz	sampling	rate,	and	encoding	each	pulse	using	2	bytes,	the
resulting	 bit	 rate	 is	 44,100	 samples/s	 ×	 16	 bits/sample	=	 705,600	 bits/s	 for	 each	 stereo	 channel.	This
gives	us	a	total	of	705,600	×	2	=	1.41Mb/s	for	a	standard	PCM	digital	signal.	Thus,	a	3-minute	song	(in
stereo)	rendered	as	a	PCM	signal	produces	a	32MB	stream	(with	no	error	detection	or	correction	applied
to	 the	 stream).	 While	 this	 file	 size	 might	 be	 tolerable	 for	 CDs,	 it	 is	 completely	 unacceptable	 for
transmission	 over	 data	 networks.	 In	 1988,	 the	 Moving	 Picture	 Experts	 Group	 was	 formed	 under	 the
auspices	 of	 the	 ISO	 to	 find	 a	 method	 for	 compressing	 audio	 and	 video	 files.	 Several	 compression
standards	emerged	from	this	work,	MP3	being	the	most	powerful	and	widely	known.	MP3	can	provide	the
approximate	quality	of	CD	stereo	using	less	than	2	bits	per	PCM	sample.	Our	31MB	file	can	be	reduced
by	a	factor	of	8,	giving	a	much	more	manageable	file	size	of	about	4MB.2

Karlheinz	 Brandenburg’s	 most	 brilliant	 insight	 in	 his	 compression	 algorithm	 is	 his	 utilization	 of
psychoacoustic	 coding:	 taking	 advantage	 of	 the	 imperfect	 manner	 in	 which	 the	 human	 ear	 perceives
sound.	The	encoding	process	needs	to	identify	the	sounds	that	the	human	ear	won’t	perceive	and	discard
them.	 Thus,	 MP3	 can	 be	 very	 lossy	 without	 having	 any	 noticeable	 effects	 to	 the	 untrained	 listener.



Discarded	sounds	include	those	that	are	at	the	edges	of	auditory	perception	and	sounds	that	are	masked
(dominated)	 by	 other	 sounds.	 In	 addition,	 the	 thresholds	 of	 perception	 of	 sound	 vary	 according	 to
frequency	 as	 well	 as	 volume.	 Low-frequency	 tones	must	 be	 louder	 than	 high-frequency	 sounds.	 Low-
volume,	low-frequency	sounds	can	be	discarded	because	the	listener	can’t	hear	them	anyway.

Psychoacoustic	 coding	 is	 just	 one	 piece—albeit	 the	 most	 powerful	 piece—of	 the	 highly	 complex
process	of	MP3	compression.	Figure	7A.8	provides	a	high-level	depiction	of	MP3	encoding.	Although	a
detailed	discussion	of	each	step	of	 this	process	 is	well	beyond	 the	scope	of	 this	 text,	we	can	describe
each	in	broad	terms.	(The	details	can	be	found	in	various	references	provided	at	the	end	of	this	chapter.)

The	 input	 to	 the	MP3	 encoding	 process	 is	 a	 PCM	audio	 stream	 that	 is	 dispatched	 on	 two	 parallel
paths.	In	one	of	them,	a	bandpass	filterbank	divides	the	stream	into	32	frequency	ranges,	each	of	which	is
then	 subdivided	 into	 18	 subbands,	 thus	 giving	 an	 output	 of	 576	 subbands	 to	 be	 used	 by	 the	modified
discrete	cosine	transform	process.

A	fast	Fourier	transform	preprocesses	the	PCM	stream	to	facilitate	analysis	by	the	psychoacoustic
model.	We	know	that	not	all	of	the	576	subbands	are	necessary	for	producing	good-quality	sound;	only	a
subset	 of	 them	 thus	 needs	 to	 be	 processed.	 The	 psychoacoustic	model	 determines	 which	 sounds	 fall
outside	 the	 range	of	 human	hearing	 and	which	 are	masked	by	other	 sounds	 in	 nearby	 frequency	bands.
(The	masking	 thresholds	are	a	 function	of	 frequency:	The	 thresholds	are	higher	at	 the	middle	 ranges	of
audible	 sound.)	 The	 psychoacoustic	 model	 is	 subsequently	 used	 both	 by	 a	 modified	 discrete	 cosine
transform	and	by	the	quantization	process.

The	modified	discrete	cosine	transform	(MDCT)	process	applies	 the	psychoacoustic	model	 to	 the
576	 subbands	 output	 by	 the	 bandpass	 filterbank.	Generally	 speaking,	 the	 purpose	 of	 a	 discrete	 cosine
transform	(DCT)	 is	 to	map	an	 input	 in	 the	 form	of	 image	 intensity	or	 sound	amplitude	 to	 the	 frequency
domain	expressed	in	terms	of	the	cosine	function.	The	DCT	of	MP3	is	called	modified	because,	unlike	a
“pure”	DCT,	it	processes	the	576	subband	filterbank	output	through	a	set	of	overlapping	windows.	This
overlapping	prevents	the	noise	that	occurs	at	window	boundaries	later	in	the	encoding	process.



FIGURE	7A.8	Generalized	MP3

The	output	of	the	MDCT	in	the	form	of	cosine	functions	is	passed	to	a	quantization	function	that	maps
the	real-valued	cosine	function	into	the	integer	domain.	Such	quantization	always	involves	the	loss	of	data
because,	as	discussed	in	Chapter	2,	real	values	cannot	map	precisely	into	the	integer	domain.	MP3	can
use	 64	 bits	 or	 128	 bits	 per	 second	 in	 its	 quantization,	 with	 128	 bits	 giving	 better	 resolution.	 The
psychoacoustic	model	helps	the	quantizer	find	the	best	fit	onto	the	integer	domain,	thus	reducing	the	loss
of	 important	 sounds.	 Instead	 of	 using	 a	 fixed	 quantization,	 as	 in	 the	 creation	 of	 the	 PCM	 code	 shown
above,	 MP3	 uses	 variable	 scalefactor	 bands	 that	 quantize	 different	 parts	 of	 the	 sound	 differently
depending	on	 the	 sensitivity	of	 the	human	ear	 to	 the	 sound.	Less	 sensitivity	allows	a	wider	 scalefactor
band.	The	scalefactors	are	compressed	along	with	the	quantized	sound	using	a	type	of	Huffman	coding	to
ensure	that	the	sound	is	decompressed	using	the	same	scalefactor.

Side	information	is	a	type	of	MP3	metadata	describing	the	particulars	of	the	Huffman	coding	process,
the	scalefactor	bands,	and	other	information	that	will	be	crucial	to	the	decoding	process.	This	information
is	compressed	and	organized	into	17-	or	32-byte	frames	for	mono	or	stereo	streams,	respectively.

The	 final	 step	 is	 assembly	of	 the	MP3	 frame.	The	MP3	 frame	consists	of	a	32-bit	header,	optional
CRC	block,	 side	 information,	MP3	 data	 payload,	 and	 optional	 ancillary	 data.	 The	 actual	 length	 of	 the
MP3	frame	varies	depending	on	the	PCM	sampling	bitrate	and	scalefactors	used	to	quantize	the	data.

It	is	easy	to	see	that	this	level	of	complexity	requires	implementation	in	hardware	to	be	able	to	encode
audio	 in	real	 time	and	 to	decode	 it	quickly	enough	as	 to	render	output	at	 the	44.1kHz	rate	at	which	 the
original	 PCM	 stream	was	 sampled.	 The	MP3	 encoder–decoders	 (codecs)	 are	 available	 inexpensively
from	several	suppliers.

In	the	end,	it	is	the	marriage	of	advanced	mathematics,	superb	algorithms,	and	digital	circuits	that	has
created	 the	 “miracle”	 of	 MP3.	 It	 has	 changed	 the	 entire	 music	 industry	 by	 enabling	 inexpensive



distribution	 channels	 for	 all	 types	 of	music.	As	 a	 consequence,	 the	 hegemony	 over	 the	music	 industry
enjoyed	by	a	few	large	music	companies	was	ended,	as	many	other	companies	could	inexpensively	enter
the	business.	MP3	has	also	brought	ubiquity	to	the	podcast	medium,	enabling	worldwide	sharing	of	news
and	information.	University	lectures	and	seminars	can	be	delivered	to	any	portable	player	in	a	few	clicks.
MP3’s	mathematics,	 algorithms,	 and	 electronic	 circuits	 are	 indeed	 amazing.	But	 even	more	 amazing	 is
how	they	have	changed	our	world.	We	can’t	imagine	our	world	without	them.

7A.7	SUMMARY
This	special	section	has	presented	you	with	a	brief	survey	of	 information	theory	and	data	compression.
We	 have	 seen	 that	 compression	 seeks	 to	 remove	 redundant	 information	 from	 data	 so	 that	 only	 its
information	content	 is	 stored.	This	 saves	 storage	 space	and	 improves	data	 transfer	 speeds	 for	 archival
storage.	Several	popular	data	compression	methods	were	presented;	including	statistical	Huffman	coding,
Ziv-Lempel	 dictionary	 coding,	 and	 the	 compression	 methods	 of	 the	 Internet,	 JPG,	 GIF,	 and	 MP3.
Dictionary	 systems	 compress	 data	 in	 one	 pass;	 other	methods	 require	 at	 least	 two:	 one	 pass	 to	 gather
information	about	the	data	to	be	compressed,	and	the	second	to	carry	out	the	compression	process.	Most
importantly,	you	now	have	a	sufficient	foundation	in	each	type	of	data	compression	so	that	you	can	select
the	best	method	for	any	particular	application.

FURTHER	READING
Definitive	sources	for	the	theory	and	application	of	data	compression	include	works	by	Salomon	(2006),
Lelewer	and	Hirschberg	(1987),	and	Sayood	(2012).	Sayood’s	work	provides	an	in-depth	description	of
the	entire	suite	of	MPEG	compression	algorithms.	Nelson	and	Gailly’s	(1996)	thorough	treatment—with
source	code—is	clear	and	easy	 to	 read.	They	make	 learning	 the	arcane	art	of	data	compression	a	 truly
pleasurable	experience.	A	wealth	of	information	relevant	to	data	compression	can	be	found	on	the	Web	as
well.	Any	good	search	engine	will	point	you	 to	hundreds	of	 links	when	you	search	any	of	 the	key	data
compression	 terms	 introduced	 in	 this	 chapter.	Wavelet	 theory	 is	 gaining	 importance	 in	 the	 area	of	data
compression	and	data	communications.	If	you	want	 to	delve	into	this	heady	area,	you	may	wish	to	start
with	 Vetterli	 and	 Kovačević	 (1995).	 This	 book	 also	 contains	 an	 exhaustive	 account	 of	 image
compression,	including	JPEG	and,	of	course,	the	wavelet	theory	behind	JPEG2000.

We	 barely	 scratched	 the	 surface	 of	 the	 complexity	 of	 MP3	 in	 this	 section.	 If	 you	 would	 like	 to
understand	the	details,	the	master’s	thesis	by	Sripada	(2006)	contains	a	wonderfully	readable	account	of
the	process.	The	articles	by	Pan	(1995)	and	Noll	(1997)	also	give	a	detailed	treatment	of	the	subject.	A
great	 deal	 of	 information	 concerning	 all	 manner	 of	 MPEG	 coding	 can	 be	 found	 at
http://www.mpeg.org/MPEG/audio.htm1.	 The	 definitive	 history	 of	 MP3	 is	 posted	 at	 http://www.mp3-
history.com.	It	is	well	worth	your	time	to	see	how	the	story	unfolds!

REFERENCES
Lelewer,	D.	A.	and	Hirschberg,	D.	S.	“Data	Compression.”	ACM	Computing	Surveys	19:3,	1987,	pp.

261–297.
Nelson,	M.,	&	Gailly,	J.	The	Data	Compression	Book,	2nd	ed.	New	York:	M&T	Books,	1996.
Noll,	P.	“MPEG	Digital	Audio	Coding,”	IEEE	Signal	Processing	Magazine	14:5,	September	1997,	pp.

59–81.

http://www.mpeg.org/MPEG/audio.htm1
http://www.mp3-history.com


Pan,	D.	“A	Tutorial	on	MPEG/Audio	Compression.”	IEEE	Multimedia	2:2,	Summer	1995,	pp.	60–74.
Salomon,	D.	Data	Compression:	The	Complete	Reference,	4th	ed.	New	York:	Springer,	2006.
Sayood,	K.	Introduction	to	Data	Compression,	4th	ed.	San	Mateo,	CA:	Morgan	Kaufmann,	2012.
Sripada,	P.	“MP3	Decoder	in	Theory	and	Practice.”	Master’s	Thesis:	MEE06:09,	Blekinge	Tekniska

Högskola,	March	2006.	Available	at	http://sea-
mist.se/fou/cuppsats.nsf/all/857e49b9bfa2d753c125722700157b97/$file/Thesis%20report-
%20MP3%20Decoder.pdf.	Retrieved	September	1,	2013.

Vetterli,	M.,	&	Kovačević,	J.	Wavelets	and	Subband	Coding.	Englewood	Cliffs,	NJ:	Prentice	Hall	PTR,
1995.

Welsh,	T.	“A	Technique	for	High-Performance	Data	Compression.”	IEEE	Computer	17:6,	June	1984,	pp.
8–19.

Ziv,	J.,	&	Lempel,	A.	“A	Universal	Algorithm	for	Sequential	Data	Compression.”	IEEE	Transactions	on
Information	Theory	23:3,	May	1977,	pp.	337–343.

Ziv,	J.,	&	Lempel,	A.	“Compression	of	Individual	Sequences	via	Variable-Rate	Coding.”	IEEE
Transactions	on	Information	Theory	24:5,	September	1978,	pp.	530–536.

EXERCISES
1.	 	Who	was	 the	 founder	of	 the	 science	of	 information	 theory?	During	which	decade	did	he	do	his

work?
2.		What	is	information	entropy,	and	how	does	it	relate	to	information	redundancy?
3.		a)		Name	two	types	of	statistical	coding.

b)		Name	an	advantage	and	a	disadvantage	of	statistical	coding.
4.		Use	arithmetic	coding	to	compress	your	name.	Can	you	get	it	back	after	you	have	compressed	it?
5.		Compute	the	compression	factors	for	each	of	the	JPEG	images	in	Figure	7A.4.
6.		Create	a	Huffman	tree	and	assign	Huffman	codes	for	the	“Star	Bright”	rhyme	used	in	Section	7A.3.

Use	<ws>	for	whitespace	instead	of	underscores.
7.		Complete	the	LZ77	data	compression	illustrated	in	Section	7A.3.
8.		JPEG	is	a	poor	choice	for	compressing	line	drawings,	such	as	the	one	shown	in	Figure	7A.4.	Why

do	 you	 think	 this	 is	 the	 case?	 What	 other	 compression	 methods	 would	 you	 suggest?	 Give
justification	for	your	choice(s).

9.		a)		The	LZ77	compression	algorithm	falls	into	which	class	of	data	compression	algorithms?
b)		Name	an	advantage	of	Huffman	coding	over	LZ77.
c)		Name	an	advantage	of	LZ77	over	Huffman	coding.
d)		Which	is	better?

10.	 	State	one	feature	of	PNG	that	you	could	use	to	convince	someone	that	PNG	is	a	better	algorithm
than	GIF.

	
1	The	U.S.	patent	on	Gif	expired	in	2003.
2	Reductions	in	sampling	rate	can	make	the	MP3	file	even	smaller,	but	the	sound	quality	is	reduced.	Popular	sampling	rates	for	digital	audio

http://sea-mist.se/fou/cuppsats.nsf/all/857e49b9bfa2d753c125722700157b97/$file/Thesis%20report-%20MP3%20Decoder.pdf


include	8,000Hz,	11,025Hz,	16,000Hz,	22,050Hz,	44,100Hz,	48,000Hz,	and	96,000Hz.



A	program	is	a	spell	cast	over	a	computer,	turning	input	into	error	messages.

—Anonymous

CHAPTER	8



System	Software

8.1			INTRODUCTION
Over	 the	 course	 of	 your	 career,	 you	may	 find	 yourself	 in	 a	 position	where	 you	 are	 compelled	 to	 buy
“suboptimal”	computer	hardware	because	a	certain	system	is	the	only	one	that	runs	a	particular	software
product	needed	by	your	employer.	Although	you	may	be	tempted	to	see	this	situation	as	an	insult	to	your
better	 judgment,	 you	have	 to	 recognize	 that	 a	 complete	 system	 requires	 software	 as	well	 as	 hardware.
Software	 is	 the	 window	 through	 which	 users	 see	 a	 system.	 If	 the	 software	 can’t	 deliver	 services	 in
accordance	with	users’	expectations,	they	see	the	entire	system	as	inadequate,	regardless	of	the	quality	of
its	hardware.

In	Chapter	1,	we	 introduced	a	computer	organization	 that	consists	of	 six	machine	 levels,	with	each
level	 above	 the	gate	 level	providing	an	abstraction	 for	 the	 layer	below	 it.	 In	Chapter	4,	we	 discussed
assemblers	 and	 the	 relationship	 of	 assembly	 language	 to	 the	 architecture.	 In	 this	 chapter,	 we	 study
software	 found	 at	 the	 third	 level	 and	 tie	 these	 ideas	 to	 software	 at	 the	 fourth	 and	 fifth	 levels.	 The
collection	of	software	at	these	three	levels	runs	below	application	programs	and	just	above	the	instruction
set	architecture	level.	These	are	the	software	components,	 the	“machines,”	with	which	your	application
source	code	interacts.	Programs	at	these	levels	work	together	to	grant	access	to	the	hardware	resources
that	carry	out	the	commands	contained	in	application	programs.	But	to	look	at	a	computer	system	as	if	it
were	 a	 single	 thread	 running	 from	 application	 source	 code	 down	 to	 the	 gate	 level	 is	 to	 limit	 our
understanding	of	what	a	computer	system	is.	We	would	be	ignoring	the	rich	set	of	services	provided	at
each	level.

Although	our	model	of	a	computer	system	places	only	the	operating	system	in	the	“system	software”
level,	the	study	of	system	software	often	includes	compilers	and	other	utilities,	as	well	as	a	category	of
complex	 programs	 sometimes	 called	 middleware.	 Generally	 speaking,	 middleware	 is	 a	 broad
classification	 for	 software	 that	 provides	 services	 above	 the	 operating	 system	 layer,	 but	 below	 the
application	program	 layer.	You	may	 recall	 that	 in	Chapter	1	we	discussed	 the	 semantic	 gap	 that	 exists
between	physical	components	and	high-level	languages	and	applications.	We	know	this	semantic	gap	must
not	be	perceptible	 to	 the	user,	 and	middleware	 is	 the	 software	 that	provides	 the	necessary	 invisibility.
Because	 the	 operating	 system	 is	 the	 foundation	 for	 all	 system	 software,	 virtually	 all	 system	 software
interacts	with	the	operating	system	to	some	extent.	We	start	with	a	brief	introduction	to	the	inner	workings
of	operating	systems,	and	then	we	move	on	to	the	higher	software	layers.

8.2			OPERATING	SYSTEMS
Originally,	 the	 main	 role	 of	 an	 operating	 system	 was	 to	 help	 various	 applications	 interact	 with	 the
computer	hardware.	Operating	systems	provide	a	necessary	set	of	functions	allowing	software	packages
to	control	 the	computer’s	hardware.	Without	an	operating	system,	each	program	you	run	would	need	its
own	driver	for	the	video	card,	the	sound	card,	the	hard	drive,	and	so	on.

Although	 modern	 operating	 systems	 still	 perform	 this	 function,	 users’	 expectations	 of	 operating
systems	have	changed	considerably.	They	assume	that	an	operating	system	will	make	it	easy	for	them	to



manage	the	system	and	its	resources.	This	expectation	has	begotten	“drag	and	drop”	file	management,	as
well	as	“plug	and	play”	device	management.	From	the	programmer’s	perspective,	 the	operating	system
obscures	 the	 details	 of	 the	 system’s	 lower	 architectural	 levels,	 permitting	 greater	 focus	 on	 high-level
problem	 solving.	 We	 have	 seen	 that	 it	 is	 difficult	 to	 program	 at	 the	 machine	 level	 or	 the	 assembly
language	 level.	 The	 operating	 system	works	with	 numerous	 software	 components,	 creating	 a	 friendlier
environment	in	which	system	resources	are	utilized	effectively	and	efficiently	and	where	programming	in
machine	code	is	not	required.	The	operating	system	not	only	provides	 this	 interface	 to	 the	programmer,
but	it	also	acts	as	a	layer	between	application	software	and	the	actual	hardware	of	the	machine.	Whether
looked	at	 through	the	eyes	of	 the	user	or	 the	lines	of	code	of	an	application,	 the	operating	system	is,	 in
essence,	 a	 virtual	 machine	 that	 provides	 an	 interface	 from	 hardware	 to	 software.	 It	 deals	 with	 real
devices	and	real	hardware	so	the	application	programs	and	users	don’t	have	to.

The	operating	system	itself	is	little	more	than	an	ordinary	piece	of	software.	It	differs	from	most	other
software	in	that	it	is	loaded	by	booting	the	computer	and	is	then	executed	directly	by	the	processor.	The
operating	system	must	have	control	of	the	processor	(as	well	as	other	resources),	because	one	of	its	many
tasks	 is	 scheduling	 the	 processes	 that	 use	 the	 CPU.	 It	 relinquishes	 control	 of	 the	 CPU	 to	 various
application	 programs	 during	 the	 course	 of	 their	 execution.	 The	 operating	 system	 is	 dependent	 on	 the
processor	to	regain	control	when	the	application	either	no	longer	requires	the	CPU	or	gives	up	the	CPU	as
it	waits	for	other	resources.

As	we	have	mentioned,	the	operating	system	is	an	important	interface	to	the	underlying	hardware,	both
for	users	and	for	application	programs.	In	addition	to	its	role	as	an	interface,	it	has	three	principal	tasks.
Process	management	 is	 perhaps	 the	most	 interesting	 of	 these	 three.	The	 other	 two	 are	 system	 resource
management	and	protection	of	those	resources	from	errant	processes.	Before	we	discuss	these	duties,	let’s
look	at	a	short	history	of	operating	systems	development	to	see	how	it	parallels	the	evolution	of	computer
hardware.

8.2.1		Operating	Systems	History
Today’s	operating	systems	strive	for	optimum	ease	of	use,	providing	an	abundance	of	graphical	tools	to
assist	 both	 novice	 and	 experienced	 users.	 But	 this	 wasn’t	 always	 the	 case.	 A	 scant	 generation	 ago,
computer	 resources	were	 so	 precious	 that	 every	machine	 cycle	 had	 to	 do	 useful	work.	Because	 of	 the
enormously	high	cost	of	computer	hardware,	computer	time	was	allotted	with	utmost	care.	In	those	days,
if	you	wished	to	use	a	computer,	your	first	step	was	to	sign	up	for	time	on	the	machine.	When	your	time
arrived,	you	fed	in	a	deck	of	punched	cards	yourself,	running	the	machine	in	single-user,	interactive	mode.
Before	loading	your	program,	however,	you	had	to	first	load	the	compiler.	The	initial	set	of	cards	in	the
input	deck	included	the	bootstrap	loader,	which	caused	the	rest	of	the	cards	to	be	loaded.	At	this	point,
you	could	compile	your	program.	If	there	was	an	error	in	your	code,	you	had	to	find	it	quickly,	repunch	the
offending	card	(or	cards)	and	feed	 the	deck	 into	 the	computer	again	 in	another	attempt	 to	compile	your
program.	If	you	couldn’t	quickly	locate	the	problem,	you	had	to	sign	up	for	more	time	and	try	again	later.
If	your	program	compiled,	the	next	step	was	to	link	your	object	code	with	library	code	files	to	create	the
executable	file	that	would	actually	be	run.	This	was	a	terrible	waste	of	expensive	computer—and	human
—time.	In	an	effort	to	make	the	hardware	usable	by	more	people,	batch	processing	was	introduced.

With	batch	processing,	professional	operators	combined	decks	of	cards	into	batches,	or	bundles,	with
the	 appropriate	 instructions,	 allowing	 them	 to	 be	 processed	 with	 minimal	 intervention.	 These	 batches
were	usually	programs	of	similar	types.	For	example,	there	might	be	a	batch	of	Fortran	programs	and	then
a	batch	of	COBOL	programs.	This	allowed	the	operator	to	set	up	the	machine	for	Fortran	programs,	read



and	execute	them	all,	and	then	switch	to	COBOL.	A	program	called	a	resident	monitor	allowed	programs
to	be	processed	without	human	interaction	(other	than	placing	the	decks	of	cards	into	the	card	reader).

Monitors	were	the	precursors	of	modern-day	operating	systems.	Their	role	was	straightforward.	The
monitor	started	the	job,	gave	control	of	the	computer	to	the	job,	and	when	the	job	was	done,	the	monitor
resumed	control	of	 the	machine.	The	work	originally	done	by	people	was	being	done	by	 the	computer,
thus	 increasing	 efficiency	 and	 utilization.	As	 your	 authors	 remember,	 however,	 the	 turnaround	 time	 for
batch	 jobs	was	 quite	 large.	 (We	 recall	 the	 good	 old	 days	 of	 dropping	 off	 decks	 of	 assembly	 language
cards	 for	 processing	 at	 the	 data	 center.	We	were	 thrilled	 if	we	 had	 to	wait	 less	 than	 24	 hours	 before
getting	results	back!)	Batch	processing	made	debugging	difficult	or,	more	correctly,	very	time	consuming.
An	infinite	loop	in	a	program	could	wreak	havoc	in	a	system.	Eventually,	timers	were	added	to	monitors
to	prevent	one	process	from	monopolizing	the	system.	However,	monitors	had	a	severe	limitation	in	that
they	provided	no	additional	protection.	Without	protection,	a	batch	 job	could	affect	pending	 jobs.	 (For
example,	a	“bad”	job	might	read	too	many	cards,	thus	rendering	the	next	program	incorrect.)	Moreover,	it
was	even	possible	for	a	batch	job	to	affect	the	monitor	code!	To	fix	this	problem,	computer	systems	were
provided	with	 specialized	hardware,	 allowing	 the	 computer	 to	 operate	 in	 either	monitor	mode	or	 user
mode.	 Programs	 were	 run	 in	 user	 mode,	 switching	 to	 monitor	 mode	 when	 certain	 system	 calls	 were
necessary.

Increases	in	CPU	performance	made	punched	card	batch	processing	increasingly	less	efficient.	Card
readers	simply	could	not	keep	the	CPU	busy.	Magnetic	tape	offered	one	way	to	process	decks	faster.	Card
readers	and	printers	were	connected	to	smaller	computers,	which	were	used	to	read	decks	of	cards	onto
tape.	One	tape	might	contain	several	jobs.	This	allowed	the	mainframe	CPU	to	continually	switch	among
processes	without	reading	cards.	A	similar	procedure	was	followed	for	output.	The	output	was	written	to
tape,	which	was	then	removed	and	put	on	a	smaller	computer	 that	performed	the	actual	printing.	It	was
necessary	for	the	monitor	to	periodically	check	whether	an	I/O	operation	was	needed.	Timers	were	added
to	 jobs	 to	 allow	 for	 brief	 interruptions	 so	 the	monitor	 could	 send	 pending	 I/O	 to	 the	 tape	 units.	 This
allowed	I/O	and	CPU	computations	to	occur	in	parallel.	This	process,	prevalent	in	the	late	1960s	to	late
1970s,	was	known	as	Simultaneous	Peripheral	Operation	Online,	or	SPOOLing,	and	it	is	the	simplest
form	of	multiprogramming.	The	word	has	 stuck	 in	 the	 computer	 lexicon,	 but	 its	 contemporary	meaning
refers	to	printed	output	that	is	written	to	disk	prior	to	being	sent	to	the	printer.

Multiprogramming	systems	(established	in	the	late	1960s	and	continuing	to	the	present	day)	extend
the	 idea	 of	 spooling	 and	 batch	 processing	 to	 allow	 several	 executing	 programs	 to	 be	 in	 memory
concurrently.	 This	 is	 achieved	 by	 cycling	 through	 processes,	 allowing	 each	 one	 to	 use	 the	 CPU	 for	 a
specific	 slice	of	 time.	Monitors	were	 able	 to	handle	multiprogramming	 to	 a	 certain	 extent.	They	could
start	 jobs,	spool	operations,	perform	I/O,	switch	between	user	 jobs,	and	give	some	protection	between
jobs.	 It	 should	 be	 clear,	 however,	 that	 the	 monitor’s	 job	 was	 becoming	 more	 complex,	 necessitating
software	 that	was	more	elaborate.	 It	was	at	 this	point	 that	monitors	evolved	 into	 the	software	we	now
know	as	operating	systems.

Although	operating	 systems	 relieved	programmers	 (and	operators)	of	 a	 significant	 amount	of	work,
users	wanted	closer	interaction	with	computers.	In	particular,	the	concept	of	batch	jobs	was	unappealing.
Wouldn’t	 it	 be	 nice	 if	 users	 could	 submit	 their	 own	 jobs,	 interactively,	 and	 get	 immediate	 feedback?
Time-sharing	systems	allowed	exactly	this.	Terminals	were	connected	to	systems	that	allowed	access	by
multiple	concurrent	users.	Batch	processing	was	soon	outmoded,	as	 interactive	programming	facilitated
timesharing	 (also	 known	 as	 timeslicing).	 In	 a	 timesharing	 system,	 the	 CPU	 switches	 between	 user
sessions	 very	 quickly,	 giving	 each	 user	 a	 small	 slice	 of	 processor	 time.	 This	 procedure	 of	 switching
between	processes	 is	 called	context	switching.	The	operating	 system	performs	 these	 context	 switches



quickly,	in	essence	giving	the	user	a	personal	virtual	machine.
Timesharing	permits	many	users	to	share	the	same	CPU.	By	extending	this	idea,	a	system	can	allow

many	users	to	share	a	single	application.	Large	interactive	systems,	such	as	airline	reservation	systems,
service	thousands	of	simultaneous	users.	As	with	timesharing	systems,	large	interactive	system	users	are
unaware	of	the	other	users	on	the	system.

The	 introduction	 of	 multiprogramming	 and	 timesharing	 required	 more	 complex	 operating	 system
software.	During	a	context	switch,	all	pertinent	information	about	the	currently	executing	process	must	be
saved,	so	that	when	the	process	is	scheduled	to	use	the	CPU	again,	it	can	be	restored	to	the	exact	state	in
which	 it	was	 interrupted.	This	 requires	 that	 the	operating	 system	know	all	 the	details	of	 the	hardware.
Recall	from	Chapter	6	that	virtual	memory	and	paging	are	used	in	today’s	systems.	Page	tables	and	other
information	associated	with	virtual	memory	must	be	saved	during	a	context	switch.	CPU	registers	must
also	 be	 saved	 when	 a	 context	 switch	 occurs	 because	 they	 contain	 the	 current	 state	 of	 the	 executing
process.	These	context	switches	are	not	cheap	in	terms	of	resources	or	time.	To	make	them	worthwhile,
the	operating	system	must	deal	with	them	quickly	and	efficiently.

It	is	interesting	to	note	the	close	correlation	between	the	advances	in	architecture	and	the	evolution	of
operating	systems.	First-generation	computers	used	vacuum	tubes	and	relays	and	were	quite	slow.	There
was	no	need,	really,	for	an	operating	system,	because	the	machines	could	not	handle	multiple	concurrent
tasks.	Human	 operators	 performed	 the	 required	 task	management	 chores.	 Second-generation	 computers
were	 built	 with	 transistors.	 This	 resulted	 in	 an	 increase	 in	 speed	 and	 CPU	 capacity.	 Although	 CPU
capacity	had	increased,	 it	was	still	costly	and	had	to	be	utilized	to	the	maximum	possible	extent.	Batch
processing	 was	 introduced	 as	 a	 means	 to	 keep	 the	 CPU	 busy.	 Monitors	 helped	 with	 the	 processing,
providing	minimal	protection	and	handling	interrupts.	The	third	generation	of	computers	was	marked	by
the	use	of	integrated	circuits.	This,	again,	resulted	in	an	increase	in	speed.	Spooling	alone	could	not	keep
the	CPU	busy,	so	timesharing	was	introduced.	Virtual	memory	and	multiprogramming	necessitated	a	more
sophisticated	 monitor,	 which	 evolved	 into	 what	 we	 now	 call	 an	 operating	 system.	 Fourth-generation
technology,	VLSI,	allowed	for	the	personal	computing	market	to	flourish.	Network	operating	systems	and
distributed	systems	are	an	outgrowth	of	this	technology.	Minimization	of	circuitry	also	saved	on	chip	real
estate,	allowing	more	room	for	circuits	that	manage	pipelining,	array	processing,	and	multiprocessing.

Early	operating	systems	were	divergent	in	design.	Vendors	frequently	produced	one	or	more	operating
systems	 specific	 to	 a	 given	 hardware	 platform.	Operating	 systems	 from	 the	 same	 vendor	 designed	 for
different	 platforms	 could	 vary	 radically	 both	 in	 their	 operation	 and	 in	 the	 services	 they	 provided.	 It
wasn’t	uncommon	for	a	vendor	to	introduce	a	new	operating	system	when	a	new	model	of	computer	was
introduced.	 IBM	 put	 an	 end	 to	 this	 practice	 in	 the	 mid-1960s	 when	 it	 introduced	 the	 360	 series	 of
computers.	Although	each	 computer	 in	 the	360	 family	of	machines	differed	greatly	 in	performance	 and
intended	audience,	all	computers	ran	the	same	basic	operating	system,	OS/360.

Unix	 is	 another	 operating	 system	 that	 exemplifies	 the	 idea	 of	 one	 operating	 system	 spanning	many
hardware	 platforms.	 Ken	 Thompson,	 of	 AT&T’s	 Bell	 Laboratories,	 began	 working	 on	 Unix	 in	 1969.
Thompson	 originally	 wrote	 Unix	 in	 assembly	 language.	 Because	 assembly	 languages	 are	 hardware
specific,	 any	 code	written	 for	 one	 platform	must	 be	 rewritten	 and	 assembled	 for	 a	 different	 platform.
Thompson	was	discouraged	by	 the	 thought	 of	 rewriting	his	Unix	 code	 for	 different	machines.	With	 the
intention	of	sparing	future	labor,	he	created	a	new	interpreted	high-level	language	called	B.	It	turned	out
that	B	was	too	slow	to	support	operating	system	activities.	Dennis	Ritchie	subsequently	joined	Thompson
to	develop	the	C	programming	 language,	 releasing	 the	first	C	compiler	 in	1973.	Thompson	and	Ritchie
rewrote	 the	 Unix	 operating	 system	 in	 C,	 forever	 dispelling	 the	 belief	 that	 operating	 systems	 must	 be
written	in	assembly	language.	Because	it	was	written	in	a	high-level	language	and	could	be	compiled	for



different	platforms,	Unix	was	highly	portable.	This	major	departure	 from	tradition	has	allowed	Unix	 to
become	 extremely	 popular,	 and	 although	 it	 found	 its	 way	 into	 the	 market	 slowly,	 it	 is	 currently	 the
operating	system	of	choice	for	millions	of	users.	The	hardware	neutrality	exhibited	by	Unix	allows	users
to	select	 the	best	hardware	for	their	applications,	 instead	of	being	limited	to	a	specific	platform.	There
are	 literally	hundreds	of	different	 flavors	of	Unix	available	 today,	 including	Sun’s	Solaris,	 IBM’s	AIX,
Hewlett-Packard’s	HP-UX,	and	Linux	for	PCs	and	servers.

Real-Time,	Multiprocessor,	and	Distributed/Networked	Systems
Perhaps	the	biggest	challenge	to	operating	system	designers	in	recent	years	has	been	the	introduction	of
real-time,	multiprocessor,	 and	distributed/networked	 systems.	Real-time	systems	 are	 used	 for	 process
control	in	manufacturing	plants,	assembly	lines,	robotics,	and	complex	physical	systems	such	as	the	space
station,	 to	name	only	a	few.	Real-time	systems	have	severe	 timing	constraints.	 If	specific	deadlines	are
not	met,	 physical	damage	or	other	undesirable	 effects	 to	persons	or	property	 can	occur.	Because	 these
systems	 must	 respond	 to	 external	 events,	 correct	 process	 scheduling	 is	 critical.	 Imagine	 a	 system
controlling	a	nuclear	power	plant	 that	 couldn’t	 respond	quickly	 enough	 to	 an	alarm	signaling	critically
high	temperatures	in	the	core!	In	hard	real-time	systems	(with	potentially	fatal	results	if	deadlines	aren’t
met),	there	can	be	no	errors.	In	soft	real-time	systems,	meeting	deadlines	is	desirable,	but	does	not	result
in	catastrophic	 results	 if	deadlines	are	missed.	QNX	is	an	excellent	example	of	a	real-time	 operating
system	 (RTOS)	 designed	 to	meet	 strict	 scheduling	 requirements.	QNX	 is	 also	 suitable	 for	 embedded
systems	because	 it	 is	 powerful	 yet	 has	 a	 small	 footprint	 (requires	 very	 little	memory)	 and	 tends	 to	 be
secure	and	reliable.

Multiprocessor	 systems	 present	 their	 own	 set	 of	 challenges,	 because	 they	 have	 more	 than	 one
processor	 that	 must	 be	 scheduled.	 The	 manner	 in	 which	 the	 operating	 system	 assigns	 processes	 to
processors	 is	 a	 major	 design	 consideration.	 Typically,	 in	 a	 multiprocessing	 environment,	 the	 CPUs
cooperate	 with	 each	 other	 to	 solve	 problems,	 working	 in	 parallel	 to	 achieve	 a	 common	 goal.
Coordination	 of	 processor	 activities	 requires	 that	 they	 have	 some	 means	 of	 communicating	 with	 one
another.	System	synchronization	requirements	determine	whether	the	processors	are	designed	using	tightly
coupled	or	loosely	coupled	communication	methods.

Tightly	coupled	multiprocessors	share	a	single	centralized	memory,	which	requires	that	an	operating
system	must	synchronize	processes	carefully	to	ensure	protection.	This	type	of	coupling	is	typically	used
for	multiprocessor	 systems	consisting	of	16	or	 fewer	processors.	Symmetric	multiprocessors	 (SMPs)
are	 a	 popular	 form	 of	 tightly	 coupled	 architecture.	 These	 systems	 have	multiple	 processors	 that	 share
memory	 and	 I/O	 devices.	 All	 processors	 perform	 the	 same	 functions,	 with	 the	 processing	 load	 being
distributed	among	all	of	them.

Loosely	 coupled	 multiprocessors	 have	 a	 physically	 distributed	 memory	 and	 are	 also	 known	 as
distributed	systems.	Distributed	systems	can	be	viewed	in	two	different	ways.	A	distributed	collection
of	workstations	on	a	LAN,	each	with	its	own	operating	system,	is	typically	referred	to	as	a	networked
system.	These	systems	were	motivated	by	a	need	for	multiple	computers	to	share	resources.	A	network
operating	 system	 includes	 the	 necessary	 provisions,	 such	 as	 remote	 command	 execution,	 remote	 file
access,	 and	 remote	 login,	 to	 attach	 machines	 to	 the	 network.	 User	 processes	 also	 have	 the	 ability	 to
communicate	over	 the	network	with	processes	on	other	machines.	Network	 file	 systems	are	one	of	 the
most	 important	applications	of	networked	systems.	These	allow	multiple	machines	 to	share	one	 logical
file	system,	although	the	machines	are	located	in	different	geographical	locations	and	may	have	different
architectures	and	unrelated	operating	systems.	Synchronization	among	these	systems	is	an	important	issue,



but	communication	is	even	more	important,	because	this	communication	may	occur	over	large	networked
distances.	 Although	 networked	 systems	 may	 be	 distributed	 over	 geographical	 areas,	 they	 are	 not
considered	true	distributed	systems.	We	will	have	more	to	say	about	distributed	systems	in	Chapter	9.

A	truly	distributed	system	differs	from	a	network	of	workstations	in	one	significant	way:	A	distributed
operating	 system	 runs	 concurrently	 on	 all	 the	machines,	 presenting	 to	 the	 user	 an	 image	 of	 one	 single
machine.	 In	 contrast,	 in	 a	 networked	 system,	 the	 user	 is	 aware	 of	 the	 existence	 of	 different	machines.
Transparency,	therefore,	is	an	important	issue	in	distributed	systems.	The	user	should	not	be	required	to
use	 different	 names	 for	 files	 simply	 because	 they	 reside	 in	 different	 locations,	 provide	 different
commands	 for	 different	 machines,	 or	 perform	 any	 other	 interaction	 dependent	 solely	 upon	 machine
location.

For	the	most	part,	operating	systems	for	multiprocessors	need	not	differ	significantly	from	those	for
uniprocessor	systems.	Scheduling	is	one	of	the	main	differences,	however,	because	multiple	CPUs	must
be	kept	busy.	If	scheduling	is	not	done	properly,	the	inherent	advantages	of	the	multiprocessor	parallelism
are	not	fully	realized.	In	particular,	 if	 the	operating	system	does	not	provide	the	proper	 tools	 to	exploit
parallelism,	performance	will	suffer.

Real-time	 systems,	 as	we	have	mentioned,	 require	 specially	designed	operating	 systems.	Real-time
and	 embedded	 systems	 require	 an	 operating	 system	 of	 minimal	 size	 and	minimal	 resource	 utilization.
Wireless	networks,	which	combine	 the	compactness	of	embedded	systems	with	 issues	characteristic	of
networked	systems,	have	also	motivated	innovations	in	operating	systems	design.

Operating	Systems	for	Personal	Computers
Operating	systems	 for	personal	computers	have	a	different	goal	 than	 those	 for	 larger	 systems.	Whereas
larger	systems	want	to	provide	for	excellent	performance	and	hardware	utilization	(while	still	making	the
system	easy	to	use),	operating	systems	for	personal	computers	have	one	main	objective:	Make	the	system
user	friendly.

When	Intel	came	out	with	the	8080	microprocessor	in	1974,	the	company	asked	Gary	Kildall	to	write
an	operating	system.	Kildall	built	a	controller	for	a	floppy	disk,	hooked	the	disk	to	the	8080,	and	wrote
the	 software	 for	 the	 operating	 system	 to	 control	 the	 system.	 Kildall	 called	 this	 disk-based	 operating
system	CP/M	(Control	Program	for	Microcomputers).	The	BIOS	(basic	input/output	system)	allowed
CP/M	to	be	exported	to	different	types	of	PCs	easily	because	it	provided	the	necessary	interactions	with
input/output	 devices.	 Because	 the	 I/O	 devices	 are	 the	most	 likely	 components	 to	 vary	 from	 system	 to
system,	by	packaging	the	interfaces	for	these	devices	into	one	module,	the	actual	operating	systems	could
remain	the	same	for	various	machines.	Only	the	BIOS	had	to	be	altered.

Intel	erroneously	assumed	that	disk-based	machines	had	a	bleak	future.	After	deciding	not	to	use	this
new	operating	system,	Intel	gave	Kildall	the	rights	to	CP/M.	In	1980,	IBM	needed	an	operating	system	for
the	 IBM	PC.	Although	 IBM	approached	Kildall	 first,	 the	deal	ended	up	going	 to	Microsoft,	which	had
purchased	a	disk-based	operating	system	named	QDOS	(Quick	and	Dirty	Operating	System)	from	the
Seattle	Computer	Products	Company	for	$15,000.	The	software	was	renamed	MS-DOS,	and	 the	rest	 is
history.

Operating	systems	for	early	personal	computers	operated	on	commands	typed	from	the	keyboard.	Alan
Key,	inventor	of	the	GUI	(graphical	user	interface),	and	Doug	Engelbart,	inventor	of	the	mouse,	both	of
the	Xerox	Palo	Alto	Research	Center,	 changed	 the	 face	 of	 operating	 systems	 forever	when	 their	 ideas
were	 incorporated	 into	 operating	 systems.	 Through	 their	 efforts,	 command	 prompts	 were	 replaced	 by
windows,	 icons,	 and	 dropdown	 menus.	 Microsoft	 popularized	 these	 ideas	 (but	 did	 not	 invent	 them)



through	 its	Windows	 series	 of	 operating	 systems:	Windows	 1.x,	 2.x,	 3.x,	 95,	 98,	ME,	 NT,	 2000,	 XP,
Windows	7,	 and	Windows	8.	The	Macintosh	graphical	operating	 system,	MacOS,	which	 preceded	 the
Windows	GUI	by	several	years,	has	gone	through	numerous	versions	as	well.	Unix	is	gaining	popularity
in	 the	 personal	 computer	 world	 through	 Linux	 and	 OpenBSD.	 There	 are	 many	 other	 disk	 operating
systems	(such	as	DR	DOS,	PC	DOS,	and	OS/2),	but	none	are	as	popular	as	Windows	and	the	numerous
variants	of	Unix.

8.2.2		Operating	System	Design
Because	 the	 single	 most	 important	 piece	 of	 software	 used	 by	 a	 computer	 is	 its	 operating	 system,
considerable	care	must	be	given	 to	 its	design.	The	operating	 system	controls	 the	basic	 functions	of	 the
computer,	including	memory	management	and	I/O,	not	to	mention	the	“look	and	feel”	of	the	interface.	An
operating	system	differs	from	most	other	software	in	that	it	is	event	driven,	meaning	it	performs	tasks	in
response	to	commands,	application	programs,	I/O	devices,	and	interrupts.

Four	main	 factors	 drive	 operating	 system	 design:	 performance,	 power,	 cost,	 and	 compatibility.	 By
now,	 you	 should	 have	 a	 feeling	 for	 what	 an	 operating	 system	 is,	 but	 there	 are	 many	 differing	 views
regarding	what	an	operating	system	should	be,	as	evidenced	by	the	various	operating	systems	available
today.	Most	operating	systems	have	similar	interfaces,	but	vary	greatly	in	how	tasks	are	carried	out.	Some
operating	systems	are	minimalistic	 in	design,	choosing	 to	cover	only	 the	most	basic	 functions,	whereas
others	 try	 to	 include	 every	 conceivable	 feature.	Some	have	 superior	 interfaces	but	 lack	 in	other	 areas,
whereas	others	are	superior	in	memory	management	and	I/O,	but	fall	short	in	the	area	of	user	friendliness.
No	single	operating	system	is	superior	in	all	respects.

Two	 components	 are	 crucial	 in	 operating	 system	 design:	 the	 kernel	 and	 the	 system	 programs.	 The
kernel	is	the	core	of	the	operating	system.	It	is	used	by	the	process	manager,	the	scheduler,	the	resource
manager,	 and	 the	 I/O	 manager.	 The	 kernel	 is	 responsible	 for	 scheduling,	 synchronization,
protection/security,	memory	management,	 and	 dealing	with	 interrupts.	 It	 has	 primary	 control	 of	 system
hardware,	 including	 interrupts,	 control	 registers,	 status	words,	 and	 timers.	 It	 loads	 all	 device	 drivers,
provides	 common	utilities,	 and	 coordinates	 all	 I/O	 activity.	The	 kernel	must	 know	 the	 specifics	 of	 the
hardware	to	combine	all	of	these	pieces	into	a	working	system.

The	 two	 extremes	 of	 kernel	 design	 are	 microkernel	 architectures	 and	 monolithic	 kernels.
Microkernels	 provide	 rudimentary	 operating	 system	 functionality,	 relying	 on	 other	modules	 to	 perform
specific	 tasks,	 thus	moving	many	 typical	 operating	 system	 services	 into	user	 space.	This	permits	many
services	 to	 be	 restarted	 or	 reconfigured	 without	 restarting	 the	 entire	 operating	 system.	 Microkernels
provide	security,	because	services	 running	at	 the	user	 level	have	restricted	access	 to	system	resources.
Microkernels	 can	 be	 customized	 and	 ported	 to	 other	 hardware	 more	 easily	 than	 monolithic	 kernels.
However,	 additional	 communication	 between	 the	 kernel	 and	 the	 other	 modules	 is	 necessary,	 often
resulting	 in	a	slower	and	 less	efficient	system.	Key	features	of	microkernel	design	are	 its	smaller	size,
easy	portability,	and	the	array	of	services	that	run	a	layer	above	the	kernel	instead	of	in	the	kernel	itself.
Microkernel	 development	 has	 been	 significantly	 encouraged	 by	 the	 growth	 in	 SMP	 and	 other
multiprocessor	systems.	Examples	of	microkernel	operating	systems	include	MINIX,	Mach,	and	QNX.

Monolithic	 kernels	 provide	 all	 their	 essential	 functionality	 through	 a	 single	 process.	Consequently,
they	 are	 significantly	 larger	 than	 microkernels.	 Typically	 targeted	 for	 specific	 hardware,	 monolithic
kernels	 interact	directly	with	 the	hardware,	 so	 they	can	be	optimized	more	easily	 than	can	microkernel
operating	 systems.	 It	 is	 for	 this	 reason	 that	 monolithic	 kernels	 are	 not	 easily	 portable.	 Examples	 of
monolithic	kernel	operating	systems	include	Linux,	MacOS,	and	DOS.



Because	 an	 operating	 system	 consumes	 resources,	 in	 addition	 to	 managing	 them,	 designers	 must
consider	 the	 overall	 size	 of	 the	 finished	 product.	 For	 example,	 Ubuntu	 12.04,	 a	 very	 popular	 Linux
distribution,	requires	5MB	of	disk	space	for	a	full	installation;	both	Windows	7	and	Windows	8	require
more	 than	3	 times	 that	 amount.	These	 statistics	 attest	 to	 the	explosion	of	operating	 system	 functionality
over	the	past	two	decades.	MS-DOS	1.0	fit	comfortably	on	a	single	100KB	floppy	diskette.

8.2.3		Operating	System	Services
Throughout	 the	 preceding	 discussion	 of	 operating	 system	 architecture,	we	mentioned	 some	 of	 the	most
important	 services	 that	 operating	 systems	 provide.	 The	 operating	 system	 oversees	 all	 critical	 system
management	tasks,	including	memory	management,	process	management,	protection,	and	interaction	with
I/O	devices.	 In	 its	 role	as	an	 interface,	 the	operating	system	determines	how	the	user	 interacts	with	 the
computer,	serving	as	a	buffer	between	the	user	and	the	hardware.	Each	of	these	functions	is	an	important
factor	 in	 determining	 overall	 system	 performance	 and	 usability.	 In	 fact,	 sometimes	 we	 are	 willing	 to
accept	reduced	performance	if	the	system	is	easy	to	use.	Nowhere	is	this	trade-off	more	apparent	than	in
the	area	of	graphical	user	interfaces.

The	Human	Interface
The	operating	system	provides	a	layer	of	abstraction	between	the	user	and	the	hardware	of	the	machine.
Neither	 users	 nor	 applications	 see	 the	 hardware	 directly,	 because	 the	 operating	 system	 provides	 an
interface	to	hide	the	details	of	the	bare	machine.	Operating	systems	provide	three	basic	interfaces,	each
providing	 a	 different	 view	 for	 a	 particular	 individual.	 Hardware	 developers	 are	 interested	 in	 the
operating	system	as	an	interface	to	the	hardware.	Applications	developers	view	the	operating	system	as
an	 interface	 to	 various	 application	 programs	 and	 services.	 Ordinary	 users	 are	 most	 interested	 in	 the
graphical	interface,	which	is	the	interface	most	commonly	associated	with	the	term	interface.

Operating	 system	 user	 interfaces	 can	 be	 divided	 into	 two	 general	 categories:	 command	 line
interfaces	and	graphical	user	interfaces	(GUIs).	Command	 line	 interfaces	provide	a	prompt	at	which
the	user	enters	various	commands,	including	those	for	copying	files,	deleting	files,	providing	a	directory
listing,	 and	manipulating	 the	directory	 structure.	Command	 line	 interfaces	 require	 the	user	 to	 know	 the
syntax	of	the	system,	which	is	often	too	complicated	for	the	average	user.	However,	for	those	who	have
mastered	a	particular	command	vocabulary,	tasks	are	performed	more	efficiently	with	direct	commands	as
opposed	to	using	a	graphical	interface.	GUIs,	on	the	other	hand,	provide	a	more	accessible	interface	for
the	casual	user.	Modern	GUIs	consist	of	windows	placed	on	desktops.	They	include	features	such	as	icons
and	other	graphical	 representations	of	 files	 that	are	manipulated	using	a	mouse.	Examples	of	command
line	interfaces	include	Unix	shells	and	DOS.	Examples	of	GUIs	include	the	various	flavors	of	Microsoft
Windows	and	MacOS.	The	decreasing	cost	of	equipment,	especially	processors	and	memory,	has	made	it
practical	 to	add	GUIs	 to	many	other	operating	systems.	Of	particular	 interest	 is	 the	generic	X	Window
System	provided	with	many	Unix	operating	systems.

The	user	interface	is	a	program,	or	small	set	of	programs,	that	constitutes	the	display	manager.	This
module	is	normally	separate	from	the	core	operating	system	functions	found	in	the	kernel	of	the	operating
system.	Most	modern	 operating	 systems	 create	 an	 overall	 operating	 system	 package	with	modules	 for
interfacing,	handling	 files,	 and	other	 applications	 that	 are	 tightly	bound	with	 the	kernel.	The	manner	 in
which	these	modules	are	linked	with	one	another	is	a	defining	characteristic	of	today’s	operating	systems.



Process	Management
Process	management	rests	at	the	heart	of	operating	system	services.	It	includes	everything	from	creating
processes	 (setting	 up	 the	 appropriate	 structures	 to	 store	 information	 about	 each	 one),	 to	 scheduling
processes’	 use	of	 various	 resources,	 to	 deleting	processes	 and	 cleaning	up	 after	 their	 termination.	The
operating	 system	 keeps	 track	 of	 each	 process,	 its	 status	 (which	 includes	 the	 values	 of	 variables,	 the
contents	of	CPU	registers,	and	the	actual	state—running,	ready,	or	waiting—of	the	process),	the	resources
it	is	using,	and	those	that	it	requires.	The	operating	system	maintains	a	watchful	eye	on	the	activities	of
each	process	to	prevent	synchronization	problems,	which	arise	when	concurrent	processes	have	access
to	shared	resources.	These	activities	must	be	monitored	carefully	to	avoid	inconsistencies	in	the	data	and
accidental	interference.

At	any	given	time,	the	kernel	is	managing	a	collection	of	processes,	consisting	of	user	processes	and
system	processes.	Most	processes	are	independent	of	each	other.	However,	in	the	event	that	they	need	to
interact	 to	 achieve	 a	 common	 goal,	 they	 rely	 on	 the	 operating	 system	 to	 facilitate	 their	 interprocess
communication	tasks.

Process	scheduling	is	a	large	part	of	the	operating	system’s	normal	routine.	First,	the	operating	system
must	determine	which	processes	to	admit	to	the	system	(often	called	long-term	scheduling).	Then	it	must
determine	 which	 process	 will	 be	 granted	 the	 CPU	 at	 any	 given	 instant	 (short-term	 scheduling).	 To
perform	 short-term	 scheduling,	 the	 operating	 system	 maintains	 a	 list	 of	 ready	 processes,	 so	 it	 can
differentiate	between	processes	that	are	waiting	on	resources	and	those	that	are	ready	to	be	scheduled	and
run.	If	a	running	process	needs	I/O	or	other	resources,	it	voluntarily	relinquishes	the	CPU	and	places	itself
in	a	waiting	 list,	 and	another	process	 is	 scheduled	 for	execution.	This	 sequence	of	events	constitutes	a
context	switch.

During	a	context	switch,	all	pertinent	 information	about	the	currently	executing	process	is	saved,	so
that	when	that	process	resumes	execution,	it	can	be	restored	to	the	exact	state	in	which	it	was	interrupted.
Information	 saved	 during	 a	 context	 switch	 includes	 the	 contents	 of	 all	CPU	 registers,	 page	 tables,	 and
other	 information	 associated	 with	 virtual	 memory.	 Once	 this	 information	 is	 safely	 tucked	 away,	 a
previously	interrupted	process	(the	one	preparing	to	use	the	CPU)	is	restored	to	its	exact	state	prior	to	its
interruption.	(New	processes,	of	course,	have	no	previous	state	to	restore.)

A	process	can	give	up	the	CPU	in	two	ways.	In	nonpreemptive	scheduling,	a	process	relinquishes	the
CPU	voluntarily	(possibly	because	it	needs	another	unscheduled	resource).	However,	if	the	system	is	set
up	with	time	slicing,	the	process	might	be	taken	from	a	running	state	and	placed	into	a	waiting	state	by	the
operating	system.	This	is	called	preemptive	scheduling	because	the	process	is	preempted	and	the	CPU	is
taken	away.	Preemption	also	occurs	when	processes	are	scheduled	and	interrupted	according	to	priority.
For	example,	if	a	low-priority	job	is	running	and	a	high-priority	job	needs	the	CPU,	the	low-priority	job
is	 placed	 in	 the	 ready	 queue	 (a	 context	 switch	 is	 performed),	 allowing	 the	 high-priority	 job	 to	 run
immediately.

The	operating	system’s	main	task	in	process	scheduling	is	to	determine	which	process	should	be	next
in	line	for	the	CPU.	Factors	affecting	scheduling	decisions	include	CPU	utilization,	throughput,	turnaround
time,	 waiting	 time,	 and	 response	 time.	 Short-term	 scheduling	 can	 be	 done	 in	 a	 number	 of	 ways.	 The
approaches	 include	 first-come,	 first-served	 (FCFS),	 shortest	 job	 first	 (SJF),	 round-robin,	 and	 priority
scheduling.	 In	 first-come,	 first-served	scheduling,	 processes	 are	 allocated	 processor	 resources	 in	 the
order	 in	 which	 they	 are	 requested.	 Control	 of	 the	 CPU	 is	 relinquished	 when	 the	 executing	 process
terminates.	 FCFS	 scheduling	 is	 a	 nonpreemptive	 algorithm	 that	 has	 the	 advantage	 of	 being	 easy	 to
implement.	 However,	 it	 is	 unsuitable	 for	 systems	 that	 support	 multiple	 users	 because	 there	 is	 a	 high



variance	in	the	average	time	a	process	must	wait	to	use	the	CPU.	In	addition,	a	process	could	monopolize
the	CPU,	causing	inordinate	delays	in	the	execution	of	other	pending	processes.

In	shortest	job	first	scheduling,	 the	process	with	the	shortest	execution	time	takes	priority	over	all
others	in	the	system.	SJF	is	a	provably	optimal	scheduling	algorithm.	The	main	trouble	with	it	is	that	there
is	no	way	of	knowing	in	advance	exactly	how	long	a	job	is	going	to	run.	Systems	that	employ	SJF	apply
some	heuristics	 in	making	“guesstimates”	of	 job	run	 time,	but	 these	heuristics	are	far	 from	perfect.	SJF
can	be	nonpreemptive	or	preemptive.	(The	preemptive	version	is	often	called	shortest	remaining	time
first.)

Round-robin	scheduling	 is	an	equitable	and	simple	preemptive	scheduling	scheme.	Each	process	is
allocated	 a	 certain	 slice	 of	 CPU	 time.	 If	 the	 process	 is	 still	 running	 when	 its	 timeslice	 expires,	 it	 is
swapped	out	through	a	context	switch.	The	next	process	waiting	in	line	is	then	awarded	its	own	slice	of
CPU	 time.	 Round-robin	 scheduling	 is	 used	 extensively	 in	 timesharing	 systems.	 When	 the	 scheduler
employs	sufficiently	small	timeslices,	users	are	unaware	that	they	are	sharing	the	resources	of	the	system.
However,	the	timeslices	should	not	be	so	small	that	the	context	switch	time	is	large	by	comparison.

Priority	scheduling	associates	a	priority	with	each	process.	When	the	short-term	scheduler	selects	a
process	from	the	ready	queue,	the	process	with	the	highest	priority	is	chosen.	FCFS	gives	equal	priority
to	all	processes.	SJF	gives	priority	to	the	shortest	job.	The	foremost	problem	with	priority	scheduling	is
the	potential	for	starvation,	or	indefinite	blocking.	Can	you	imagine	how	frustrating	it	would	be	to	try	to
run	 a	 large	 job	 on	 a	 busy	 system	 when	 users	 continually	 submit	 shorter	 jobs	 that	 run	 before	 yours?
Folklore	has	it	that	when	a	mainframe	in	a	large	university	was	halted,	a	job	was	found	in	the	ready	queue
that	had	been	trying	to	run	for	several	years!

Some	operating	systems	offer	a	combination	of	scheduling	approaches.	For	example,	a	system	might
use	 a	 preemptive,	 priority-based,	 first-come,	 first-served	 algorithm.	Highly	 complex	 operating	 systems
that	 support	 enterprise	 class	 systems	 allow	 some	 degree	 of	 user	 control	 over	 timeslice	 duration,	 the
number	of	allowable	concurrent	tasks,	and	assignment	of	priorities	to	different	job	classes.

Multitasking	 (allowing	 multiple	 processes	 to	 run	 concurrently)	 and	multithreading	 (allowing	 a
process	 to	 be	 subdivided	 into	 different	 threads	 of	 control)	 provide	 interesting	 challenges	 for	 CPU
scheduling.	 A	 thread	 is	 the	 smallest	 schedulable	 unit	 in	 a	 system.	 Threads	 share	 the	 same	 execution
environment	as	their	parent	process,	including	its	CPU	registers	and	page	table.	Because	of	this,	context
switching	 among	 threads	 generates	 less	 overhead	 so	 they	 can	 occur	much	 faster	 than	 a	 context	 switch
involving	the	entire	process.	Depending	on	the	degree	of	concurrency	required,	it	is	possible	to	have	one
process	 with	 one	 thread,	 one	 process	 with	 multiple	 threads,	 multiple	 single-threaded	 processes,	 or
multiple	multithreaded	processes.	An	operating	system	that	supports	multithreading	must	be	able	to	handle
all	combinations.

Resource	Management
In	 addition	 to	 process	 management,	 the	 operating	 system	 manages	 system	 resources.	 Because	 these
resources	 are	 relatively	 expensive,	 it	 is	 preferable	 to	 allow	 them	 to	 be	 shared.	 For	 example,	multiple
processes	can	share	one	processor,	multiple	programs	can	share	physical	memory,	and	multiple	users	and
files	can	share	one	disk.	There	are	three	resources	that	are	of	major	concern	to	the	operating	system:	the
CPU,	memory,	and	I/O.	Access	to	the	CPU	is	controlled	by	the	scheduler.	Memory	and	I/O	access	require
a	different	set	of	controls	and	functions.

Recall	from	Chapter	6	that	most	modern	systems	have	some	type	of	virtual	memory	that	extends	RAM.
This	implies	that	parts	of	several	programs	may	coexist	in	memory,	and	each	process	must	have	a	page



table.	Originally,	before	operating	systems	were	designed	to	deal	with	virtual	memory,	 the	programmer
implemented	virtual	memory	using	the	overlay	technique.	If	a	program	was	too	large	to	fit	into	memory,
the	programmer	divided	it	into	pieces,	loading	only	the	data	and	instructions	necessary	to	run	at	a	given
moment.	If	new	data	or	instructions	were	needed,	it	was	up	to	the	programmer	(with	some	help	from	the
compiler)	 to	 make	 sure	 the	 correct	 pieces	 were	 in	 memory.	 The	 programmer	 was	 responsible	 for
managing	memory.	Now,	operating	 systems	have	 taken	over	 that	chore.	The	operating	 system	 translates
virtual	 addresses	 to	 physical	 addresses,	 transfers	 pages	 to	 and	 from	disk,	 and	maintains	memory	 page
tables.	 The	 operating	 system	 also	 determines	 main	 memory	 allocation	 and	 tracks	 free	 frames.	 As	 it
deallocates	memory	space,	the	operating	system	performs	“garbage	collection,”	which	is	the	process	of
coalescing	small	portions	of	free	memory	into	larger,	more	usable	chunks.

In	addition	to	processes	sharing	a	single	finite	memory,	they	also	share	I/O	devices.	Most	input	and
output	is	done	at	the	request	of	an	application.	The	operating	system	provides	the	necessary	services	to
allow	input	and	output	to	occur.	It’s	possible	for	applications	to	handle	their	own	I/O	without	using	the
operating	 system,	 but	 in	 addition	 to	 duplicating	 effort,	 this	 presents	 protection	 and	 access	 issues.	 If
several	different	processes	try	to	use	the	same	I/O	device	simultaneously,	the	requests	must	be	mediated.
It	falls	on	the	operating	system	to	perform	this	task.	The	operating	system	provides	a	generic	interface	to
I/O	through	various	system	calls.	These	calls	allow	an	application	to	request	an	I/O	service	through	the
operating	system.	The	operating	system	then	calls	upon	device	drivers	that	contain	software	implementing
a	standard	set	of	functions	relevant	to	particular	I/O	devices.

The	operating	system	also	manages	disk	 files.	The	operating	system	takes	care	of	 file	creation,	 file
deletion,	 directory	 creation,	 and	 directory	 deletion,	 and	 also	 provides	 support	 for	 primitives	 that
manipulate	files	and	directories	and	their	mapping	onto	secondary	storage	devices.	Although	I/O	device
drivers	 take	 care	 of	 many	 of	 the	 particular	 details,	 the	 operating	 system	 coordinates	 device	 driver
activities	that	support	I/O	system	functions.

Security	and	Protection
In	its	role	as	a	resource	and	process	manager,	the	operating	system	has	to	make	sure	that	everything	works
correctly,	fairly,	and	efficiently.	Resource	sharing,	however,	creates	a	multitude	of	exposures,	such	as	the
potential	for	unauthorized	access	or	modification	of	data.	Therefore,	the	operating	system	also	serves	as	a
resource	 protector,	 making	 sure	 “bad	 guys”	 and	 buggy	 software	 don’t	 ruin	 things	 for	 everyone	 else.
Concurrent	 processes	 must	 be	 protected	 from	 each	 other,	 and	 operating	 system	 processes	 must	 be
protected	from	all	user	processes.	Without	this	protection,	a	user	program	could	potentially	wipe	out	the
operating	 system	 code	 for	 dealing	 with,	 say,	 interrupts.	 Multiuser	 systems	 require	 additional	 security
services	 to	 protect	 both	 shared	 resources	 (such	 as	memory	 and	 I/O	 devices)	 and	 nonshared	 resources
(such	as	personal	files).	Memory	protection	safeguards	against	a	bug	in	one	user’s	program	affecting	other
programs	 or	 a	malicious	 program	 taking	 control	 of	 the	 entire	 system.	CPU	protection	makes	 sure	 user
programs	don’t	get	stuck	in	infinite	loops,	consuming	CPU	cycles	needed	by	other	jobs.

The	 operating	 system	 provides	 security	 services	 in	 a	 variety	 of	 ways.	 First,	 active	 processes	 are
limited	 to	 execution	within	 their	 own	memory	 space.	All	 requests	 for	 I/O	 or	 other	 resources	 from	 the
process	 pass	 through	 the	 operating	 system,	 which	 then	 processes	 the	 request.	 The	 operating	 system
executes	most	commands	in	user	mode	and	others	in	kernel	mode.	In	this	way,	the	resources	are	protected
against	unauthorized	use.	The	operating	system	also	provides	facilities	 to	control	user	access,	 typically
through	 login	 names	 and	 passwords.	 Stronger	 protection	 can	 be	 effected	 by	 restricting	 processes	 to	 a
single	subsystem	or	partition.



8.3			PROTECTED	ENVIRONMENTS
To	provide	protection,	multiuser	operating	systems	guard	against	processes	running	amok	in	the	system.
Process	execution	must	be	isolated	from	both	the	operating	system	and	other	processes.	Access	to	shared
resources	must	 be	 controlled	 and	mediated	 to	 avoid	 conflicts.	 There	 are	 a	 number	 of	 ways	 in	 which
protective	barriers	can	be	erected	in	a	system.	In	this	section,	we	examine	three	of	them:	virtual	machines,
subsystems,	and	partitions.

8.3.1		Virtual	Machines
The	 timesharing	systems	of	 the	1950s	and	1960s	continually	wrestled	with	problems	relating	 to	shared
resources	such	as	memory,	magnetic	storage,	card	readers,	printers,	and	processor	cycles.	The	hardware
of	this	era	could	not	support	the	solutions	that	were	on	the	minds	of	many	computer	scientists.	In	a	better
world,	 each	 user	 process	 would	 have	 its	 own	machine—an	 imaginary	machine	 that	 would	 peacefully
coexist	with	many	other	imaginary	machines	inside	the	real	machine.	In	the	late	1960s	and	early	1970s,
hardware	 had	 finally	 become	 sufficiently	 sophisticated	 to	 deliver	 these	 “virtual	machines”	 to	 general-
purpose	time-sharing	computers.

Virtual	machines	are,	 in	concept,	quite	simple.	The	real	hardware	of	 the	real	computer	 is	under	 the
exclusive	command	of	a	controlling	program	 (or	kernel).	The	controlling	program	creates	an	arbitrary
number	of	virtual	machines	that	execute	under	the	kernel	as	if	they	were	ordinary	user	processes,	subject
to	 the	 same	 restrictions	as	 any	program	 that	 runs	 in	user	 space.	The	controlling	program	presents	 each
virtual	machine	with	an	 image	resembling	 the	hardware	of	 the	 real	machine.	Each	virtual	machine	 then
“sees”	an	environment	consisting	of	a	CPU,	registers,	I/O	devices,	and	(virtual)	memory	as	though	these
resources	 were	 dedicated	 to	 the	 exclusive	 use	 of	 the	 virtual	 machine.	 Thus,	 virtual	 machines	 are
imaginary	machines	reflecting	the	resources	of	full-fledged	systems.	As	illustrated	in	Figure	8.1,	a	user
program	 executing	 within	 the	 confines	 of	 the	 virtual	 machine	 can	 access	 any	 system	 resource	 that	 is
defined	to	it.	When	a	program	invokes	a	system	service	to	write	data	to	a	disk,	for	example,	it	executes
the	 same	call	 as	 it	would	 if	 it	were	 running	on	 the	 real	machine.	The	virtual	machine	 receives	 the	 I/O
request	and	passes	it	on	to	the	control	program	for	execution	on	the	real	hardware.

It	 is	 entirely	 possible	 for	 a	 virtual	machine	 to	 be	 running	 an	operating	 system	 that	 differs	 from	 the
kernel’s	operating	system.	It	is	also	possible	for	each	virtual	machine	to	run	an	operating	system	that	is
different	from	the	operating	systems	run	by	other	virtual	machines	in	the	system.	In	fact,	this	is	often	the
case.

If	you	have	ever	opened	an	“MS-DOS”	command	prompt	on	a	Microsoft	Windows	(95	through	XP)
system,	you	have	instantiated	a	virtual	machine	environment.	The	controlling	program	for	these	Windows
versions	is	called	a	Windows	Virtual	Machine	Manager	(VMM).	The	VMM	is	a	32-bit	protected-mode
subsystem	(see	the	next	section)	that	creates,	runs,	monitors,	and	terminates	virtual	machines.	The	VMM
is	loaded	into	memory	at	boot	time.	When	invoked	through	the	command	interface,	the	VMM	creates	an
“MS-DOS”	machine	 running	under	a	virtual	 image	of	a	16-bit	 Intel	8086/8088	processor.	Although	 the
real	 system	 has	 many	 more	 registers	 (which	 are	 32	 bits	 wide),	 tasks	 executing	 within	 the	 DOS
environment	see	only	the	limited	number	of	16-bit	registers	characteristic	of	an	8086/8088	processor.	The
VMM	controlling	program	converts	(or,	in	virtual	machine	jargon,	thunks)	the	16-bit	instructions	to	32-
bit	instructions	before	they	are	executed	on	the	real	system	processor.



FIGURE	8.1	Virtual	Machine	Images	Running	under	a	Control	Program

To	 service	 hardware	 interrupts,	 the	 VMM	 loads	 a	 defined	 set	 of	 virtual	 device	 drivers	 (VxDs)
whenever	Windows	is	booted.	A	VxD	can	simulate	external	hardware,	or	it	can	simulate	a	programming
interface	accessed	through	privileged	instructions.	The	VMM	works	with	32-bit	protected-mode	dynamic
link	libraries	(explained	in	Section	8.4.3),	allowing	virtual	devices	to	intercept	interrupts	and	faults.	 In
this	way,	it	controls	an	application’s	access	to	hardware	devices	and	system	software.

Of	course,	virtual	machines	use	virtual	memory,	which	must	coexist	with	the	memory	of	the	operating
system	 and	with	 other	 virtual	machines	 running	 in	 the	 system.	A	 diagram	 of	 the	Windows	 95	memory
address	 allocation	 is	 shown	 in	 Figure	 8.2.	 Each	 process	 is	 given	 between	 1MB	 and	 1GB	 of	 private
address	space.	This	private	address	space	is	inaccessible	by	other	processes.	If	an	unauthorized	process
attempts	 to	 use	 the	 protected	 memory	 of	 another	 process	 or	 the	 operating	 system,	 a	 protection	 fault
occurs	 (rudely	 announced	by	way	of	 a	message	on	 a	plain	blue	 screen).	The	 shared	memory	 region	 is
provided	to	allow	data	and	program	code	sharing	among	processes.	The	upper	region	holds	components
of	the	system	virtual	machine	in	addition	to	the	DLLs	accessible	to	all	processes.	The	lower	region	is	not
addressable,	which	serves	as	a	way	to	detect	pointer	errors.

When	 modern	 systems	 support	 virtual	 machines,	 they	 are	 better	 able	 to	 provide	 the	 protection,
security,	and	manageability	required	by	large	enterprise-class	computers.	Virtual	machines	also	provide
compatibility	 across	 innumerable	 hardware	 platforms.	One	 such	machine,	 the	 Java	Virtual	Machine,	 is



described	in	Section	8.5.

FIGURE	8.2	Windows	95	Memory	Map

8.3.2		Subsystems	and	Partitions
The	Windows	VMM	 is	 a	 subsystem	 that	 starts	 when	Windows	 is	 booted.	Windows	 also	 starts	 other
special-purpose	 subsystems	 for	 file	 management,	 I/O,	 and	 configuration	 management.	 Subsystems
establish	logically	distinct	environments	that	can	be	individually	configured	and	managed.	Subsystems	run
on	top	of	the	operating	system	kernel,	which	provides	them	with	access	to	fundamental	system	resources,
such	as	the	CPU	scheduler,	that	must	be	shared	among	several	subsystems.

Each	subsystem	must	be	defined	within	the	context	of	the	controlling	system.	These	definitions	include
resource	descriptions	such	as	disk	files,	input	and	output	queues,	and	various	other	hardware	components
such	as	terminal	sessions	and	printers.	The	resources	defined	to	a	subsystem	are	not	always	seen	directly
by	 the	 underlying	 kernel,	 but	 are	 visible	 through	 the	 subsystem	 for	which	 they	 are	 defined.	Resources
defined	to	a	subsystem	may	or	may	not	be	shareable	among	peer	subsystems.	Figure	8.3	is	a	conceptual
rendering	of	the	relationship	of	subsystems	to	other	system	resources.

Subsystems	assist	in	management	of	the	activities	of	large,	highly	complex	computer	systems.	Because
each	 subsystem	 is	 its	 own	 discrete	 controllable	 entity,	 system	 administrators	 can	 start	 and	 stop	 each
subsystem	 individually,	without	 disturbing	 the	 kernel	 or	 any	 of	 the	 other	 subsystems	 that	 happen	 to	 be
running.	Each	subsystem	can	be	 tuned	 individually	by	 reallocating	 system	resources,	 such	as	adding	or
removing	 disk	 space	 or	 memory.	Moreover,	 if	 a	 process	 goes	 out	 of	 control	 within	 a	 subsystem—or
crashes	the	subsystem	itself—usually	only	the	subsystem	in	which	the	process	is	running	is	affected.	Thus,
subsystems	not	only	make	systems	more	manageable,	but	also	make	them	more	robust.



FIGURE	8.3	A	Single	Resource	Can	Be	Defined	to	Multiple	Subsystems

In	very	 large	computer	systems,	subsystems	do	not	go	far	enough	 in	segmenting	 the	machine	and	 its
resources.	 Sometimes	 a	 more	 sophisticated	 barrier	 is	 required	 to	 facilitate	 security	 and	 resource
management.	 In	 these	 instances,	 a	 system	may	 be	 broken	 up	 into	 logical	 partitions,	 sometimes	 called
LPARs,	 as	 illustrated	 in	Figure	8.4.	 LPARs	 create	 distinct	machines	within	 one	 physical	 system,	with
nothing	implicitly	shared	between	them.	The	resources	of	one	partition	are	no	more	accessible	to	another
partition	than	if	the	partitions	were	running	on	physically	separate	systems.	For	example,	if	a	system	has
two	 partitions,	A	 and	B,	 partition	A	 can	 read	 a	 file	 from	 partition	 B	 only	 if	 both	 partitions	 agree	 to
establish	a	mutually	shared	resource,	such	as	a	pipe	or	message	queue.	Generally	speaking,	files	can	be
copied	 between	 partitions	 only	 through	 the	 use	 of	 a	 file	 transfer	 protocol	 or	 a	 utility	 written	 for	 this
purpose	by	the	system	vendor.



FIGURE	8.4	Logical	Partitions	and	Their	Controlling	System:	Resources	Cannot	Be	Shared	Easily
between	the	Partitions

Logical	partitions	are	especially	useful	in	creating	“sandbox”	environments	for	user	training	or	testing
new	programs.	Sandbox	environments	get	their	name	from	the	idea	that	anyone	using	these	environments
is	free	to	“play	around”	to	his	or	her	heart’s	content,	as	long	as	this	playing	is	done	within	the	confines	of
the	sandbox.	Sandbox	environments	place	strict	limits	on	the	accessibility	of	system	resources.	Processes
running	in	one	partition	can	never	intentionally	or	inadvertently	access	data	or	processes	resident	in	other
partitions.	Partitions	thus	raise	the	level	of	security	in	a	system	by	isolating	resources	from	processes	that
are	not	entitled	to	use	them.

Although	subsystems	and	partitions	are	different	from	each	other	in	how	they	define	their	constituent
resources,	you	can	 think	of	both	as	being	mini-models	of	 the	 layered	system	architecture	of	a	computer
system.	 In	 the	 case	 of	 a	 partitioned	 environment,	 the	 levels	would	 look	 like	 adjacent	 layered	 birthday
cakes,	extending	from	the	hardware	level	to	the	application	level.	Subsystems,	on	the	other	hand,	are	not
so	distinct	from	one	another,	with	most	of	the	differences	taking	place	at	the	system	software	level.

8.3.3		Protected	Environments	and	the	Evolution	of	Systems
Architectures

Until	 recently,	 virtual	 machines,	 subsystems,	 and	 logical	 partitions	 were	 considered	 artifacts	 of	 “old
technology”	mainframe	 systems.	 Throughout	 the	 1990s,	 smaller	machines	 were	widely	 believed	 to	 be
more	cost-effective	than	mainframe	systems.	The	“client-server”	paradigm	was	thought	 to	be	more	user
friendly	 and	 responsive	 to	 dynamic	 business	 conditions.	 Application	 development	 for	 small	 systems
quickly	 conscripted	 programming	 talent.	 Office	 automation	 programs,	 such	 as	 word	 processing	 and
calendar	 management,	 found	 homes	 that	 are	 much	 more	 comfortable	 in	 collaborative,	 networked
environments	supported	by	small	file	servers.	Print	servers	controlled	network-enabled	laser	printers	that
produced	 crisp,	 clean	 output	 on	 plain	 paper	 faster	 than	mainframe	 line	 printers	 could	 produce	 smudgy
output	 on	 special	 forms.	 By	 any	measure,	 desktop	 and	 small	 server	 platforms	 provide	 raw	 computing
power	 and	 convenience	 at	 a	 fraction	 of	 the	 cost	 of	 equivalent	 raw	mainframe	 computing	 power.	 Raw
computing	power,	however,	is	only	one	part	of	an	enterprise	computing	system.

When	 office	 automation	 moved	 to	 the	 desktop,	 office	 networks	 were	 built	 to	 connect	 the	 desktop
systems	 to	each	other	and	 to	 file	 servers	 that	were	 repositories	 for	documents	and	other	vital	business
records.	Application	servers	hosted	programs	that	performed	core	business	management	functions.	When
companies	 became	 Internet-enabled,	 email	 and	Web	 servers	were	 added	 to	 the	 network.	 If	 any	 of	 the
servers	became	bogged	down	with	activity,	the	simple	solution	was	to	add	another	server	to	distribute	the
load.	By	the	end	of	the	1990s,	large	enterprises	were	owners	of	huge	server	farms	supporting	hundreds
of	 individual	 servers	 in	 environmentally	 controlled,	 secure	 facilities.	 Server	 farms	 soon	 became
voracious	 consumers	 of	 manpower,	 each	 server	 occasionally	 demanding	 considerable	 attention.	 The
contents	of	each	server	had	to	be	backed	up	onto	tape,	and	the	tapes	were	subsequently	rotated	offsite	for
security.	 Each	 server	 was	 a	 potential	 source	 of	 failure,	 with	 problem	 diagnosis	 and	 software	 patch
application	 becoming	 daily	 tasks.	 Before	 long,	 it	 became	 evident	 that	 the	 smaller,	 cheaper	 systems
weren’t	quite	the	bargain	they	were	once	thought	to	be.	This	is	particularly	true	for	enterprises	that	find
themselves	supporting	hundreds	of	small	server	systems.

Every	 major	 enterprise	 computer	 manufacturer	 is	 now	 offering	 a	 server	 consolidation	 product.
Different	vendors	take	different	approaches	to	the	problem.	One	of	the	most	interesting	of	these	is	the	idea



of	creating	logical	partitions	containing	numerous	virtual	machines	within	a	single	very	large	computer.
The	many	advantages	of	server	consolidation	include	the	following:

•			Managing	one	large	system	is	easier	than	managing	a	multitude	of	smaller	ones.
•	 	 	A	 single	 large	 system	 consumes	 less	 electricity	 than	 a	 group	 of	 smaller	 systems	 having	 equivalent

computational	power.
•			With	less	electrical	power	usage,	less	heat	is	generated,	which	economizes	on	air-conditioning.
•	 	 	 Larger	 systems	 can	 provide	 greater	 failover	 protection.	 (Hot	 spare	 disks	 and	 processors	 are	 often

included	with	the	systems.)
•			A	single	system	is	easier	to	back	up	and	recover.
•			Single	systems	occupy	less	floor	space,	reducing	real	estate	costs.
•			Software	licensing	fees	may	be	lower	for	a	single	large	system	than	for	a	large	number	of	small	ones.
•	 	 	Less	labor	is	 involved	in	applying	system	and	user	program	software	upgrades	to	one	system	rather

than	many.

Large	system	vendors,	such	as	IBM,	Unisys,	and	Hewlett-Packard	(to	name	a	few),	were	quick	to	pounce
on	server	consolidation	opportunities.	IBM’s	mainframe	and	midrange	lines	have	been	recast	as	eSeries
Servers.	 The	 System/390	mainframe	 has	 been	 reincarnated	 as	 the	 zSeries	 Server.	 zSeries	 Servers	 can
support	as	many	as	60	logical	partitions.	Each	partition	that	runs	IBM’s	Virtual	Machine	operating	system
can	define	 thousands	 of	 virtual	Linux	 systems.	 Figure	8.5	 shows	 a	model	 zSeries/Linux	 configuration.
Each	 virtual	 Linux	 system	 is	 equally	 capable	 of	 sustaining	 enterprise	 applications	 and	 e-commerce
activities	as	a	 freestanding	Linux	system,	but	without	 the	management	overhead.	Thus,	a	 football	 field–
sized	 server	 farm	 can	 be	 replaced	 by	 one	 zSeries	 “box,”	 which	 is	 slightly	 larger	 than	 a	 household
refrigerator.	One	could	say	that	the	server	consolidation	movement	epitomizes	operating	system	evolution.
Systems	makers,	by	applying	the	evolving	resources	of	the	machine,	continue	to	make	their	systems	easier
to	manage	even	as	they	become	increasingly	powerful.

FIGURE	8.5	Linux	Machines	within	Logical	Partitions	of	an	IBM	zSeries	Server



8.4			PROGRAMMING	TOOLS
The	 operating	 system	 and	 its	 collection	 of	 applications	 provide	 an	 interface	 between	 the	 user	who	 is
writing	 the	 programs	 and	 the	 system	 that	 is	 running	 them.	 Other	 utilities,	 or	 programming	 tools,	 are
necessary	to	carry	out	the	more	mechanical	aspects	of	software	creation.	We	discuss	them	in	the	sections
below.

8.4.1		Assemblers	and	Assembly
In	our	layered	system	architecture,	the	level	that	sits	directly	on	the	operating	system	layer	is	the	assembly
language	layer.	In	Chapter	4,	we	presented	a	simple,	hypothetical	machine	architecture,	which	we	called
MARIE.	The	architecture	is	so	simple,	in	fact,	that	no	real	machine	would	ever	use	it.	For	one	thing,	the
continual	need	to	fetch	operands	from	memory	would	make	the	system	very	slow.	Real	systems	minimize
memory	 fetches	 by	 providing	 a	 sufficient	 number	 of	 addressable	 on-chip	 registers.	 Furthermore,	 the
instruction	 set	 architecture	 of	 any	 real	 system	 would	 be	 much	 richer	 than	 MARIE’s	 is.	 Many
microprocessors	have	more	than	a	thousand	different	instructions	in	their	repertoires.

Although	the	machine	we	presented	is	quite	different	from	a	real	machine,	the	assembly	process	we
described	is	not.	Virtually	every	assembler	in	use	today	passes	twice	through	the	source	code.	The	first
pass	 assembles	 as	much	 code	 as	 it	 can,	while	 building	 a	 symbol	 table;	 the	 second	pass	 completes	 the
binary	instructions	using	address	values	retrieved	from	the	symbol	table	built	during	the	first	pass.

The	 final	 output	 of	most	 assemblers	 is	 a	 stream	of	relocatable	 binary	 instructions.	Binary	 code	 is
relocatable	when	the	addresses	of	the	operands	are	relative	to	the	location	where	the	operating	system	has
loaded	the	program	in	memory,	and	the	operating	system	is	free	to	load	this	code	wherever	it	wants.	Take,
for	example,	the	following	MARIE	code	from	Table	4.5:

The	assembled	code	output	could	look	similar	to	this:

The	“+”	sign	in	our	example	is	not	to	be	taken	literally.	It	signals	the	program	loader	(component	of	the
operating	 system)	 that	 the	004	 in	 the	 first	 instruction	 is	 relative	 to	 the	 starting	 address	of	 the	program.
Consider	what	happens	if	the	loader	happens	to	put	the	program	in	memory	at	address	0x250.	The	image
in	memory	would	appear	as	shown	in	Table	8.1.

If	the	loader	happened	to	think	that	memory	at	address	0x400	was	a	better	place	for	the	program,	the
memory	image	would	look	like	Table	8.2.

In	contrast	to	relocatable	code,	absolute	code	is	executable	binary	code	that	must	always	be	loaded	at



a	particular	 location	 in	memory.	Nonrelocatable	 code	 is	 used	 for	 specific	purposes	on	 some	computer
systems.	Usually	these	applications	involve	explicit	control	of	attached	devices	or	manipulation	of	system
software,	in	which	particular	software	routines	can	always	be	found	in	clearly	defined	locations.

Address Memory	Contents
0x250 1254
0x251 3255
0x252 2256
0x253 7000
0x254 0023
0x255 FFE9
0x256 0000

TABLE	8.1	Memory	If	Program	Is	Loaded	Starting	at	Address	0x250

Address Memory	Contents
0x400 1404
0x401 3405
0x402 2406
0x403 7000
0x404 0023
0x405 FFE9
0x406 0000

TABLE	8.2	Memory	If	Program	Is	Loaded	Starting	at	0x400

Of	 course,	 binary	 machine	 instructions	 cannot	 be	 provided	 with	 “+”	 signs	 to	 distinguish	 between
relocatable	and	nonrelocatable	code.	The	specific	manner	in	which	the	distinction	is	made	depends	on	the
design	 of	 the	 operating	 system	 that	will	 be	 running	 the	 code.	One	 of	 the	 simplest	 ways	 to	 distinguish
between	the	two	is	to	use	different	file	types	(extensions)	for	this	purpose.	The	MS-DOS	operating	system
uses	 a	 .COM	 (a	 COMmand	 file)	 extension	 for	 nonrelocatable	 code	 and	 .EXE	 (an	 EXEcutable	 file)
extension	for	relocatable	code.	COM	files	always	load	at	address	0x100.	EXE	files	can	load	anywhere,
and	they	don’t	even	have	to	occupy	contiguous	memory	space.	Relocatable	code	can	also	be	distinguished
from	nonrelocatable	code	by	prepending	all	executable	binary	code	with	prefix	or	preamble	information
that	lets	the	loader	know	its	options	while	it	is	reading	the	program	file	from	disk.

When	relocatable	code	is	loaded	into	memory,	special	registers	usually	provide	the	base	address	for
the	program.	All	addresses	in	the	program	are	then	considered	to	be	offsets	from	the	base	address	stored
in	 the	 register.	 In	Table	8.1,	where	we	 showed	 the	 loader	 placing	 the	 code	 at	 address	 0x0250,	 a	 real
system	would	 simply	 store	 0x0250	 in	 the	 program	 base	 address	 register	 and	 use	 the	 program	without
modification,	as	in	Table	8.3,	where	the	address	of	each	operand	becomes	an	effective	address	after	it	has
been	augmented	by	the	0x250	stored	in	the	base	address	register.

Address Memory	Contents



0x250 1004
0x251 3005
0x252 2006
0x253 7000
0x254 0023
0x255 FFE9
0x256 0000

TABLE	8.3	Memory	If	Program	Is	Loaded	at	Address	0x250	Using	Base	Address	Register

Whether	we	have	relocatable	code	or	nonrelocatable	code,	a	program’s	instructions	and	data	must	be
bound	to	actual	physical	addresses.	The	binding	of	instructions	and	data	to	memory	addresses	can	happen
at	 compile	 time,	 load	 time,	 or	 execution	 time.	Absolute	 code	 is	 an	 example	 of	 compile-time	 binding,
where	the	instruction	and	data	references	are	bound	to	physical	addresses	when	the	program	is	compiled.
Compile-time	binding	works	only	if	the	load	memory	location	for	a	process	image	is	known	in	advance.
However,	under	compile-time	binding,	if	the	starting	location	of	the	process	image	changes,	the	code	must
be	recompiled.	If	the	load	memory	location	for	a	process	image	is	not	known	at	compile	time,	relocatable
code	 is	generated,	which	can	be	bound	either	at	 load	 time	or	at	 run	 time.	Load-time	binding	 adds	 the
starting	 address	 of	 the	 process	 image	 to	 each	 reference	 as	 the	 binary	module	 is	 loaded	 into	memory.
However,	 the	 process	 image	 cannot	 be	 moved	 during	 execution,	 because	 the	 starting	 address	 for	 the
process	must	 remain	 the	 same.	Run-time	binding	 (or	execution-time	binding)	 delays	 binding	 until	 the
process	 is	 actually	 running.	This	 allows	 the	 process	 image	 to	 be	moved	 from	one	memory	 location	 to
another	 as	 it	 executes.	 Run-time	 binding	 requires	 special	 hardware	 support	 for	 address	 mapping,	 or
translating	from	a	logical	process	address	to	a	physical	address.	A	special	base	register	stores	the	starting
address	of	 the	program.	This	 address	 is	 added	 to	 each	 reference	generated	by	 the	CPU.	 If	 the	process
image	is	moved,	the	base	register	is	updated	to	reflect	the	new	starting	address	of	the	process.	Additional
virtual	memory	hardware	is	necessary	to	perform	this	translation	quickly.

8.4.2		Link	Editors
On	most	systems,	program	compiler	output	must	pass	 through	a	 link	editor	 (or	 linker)	before	 it	can	be
executed	on	the	target	system.	Linking	is	the	process	of	matching	the	external	symbols	of	a	program	with
all	exported	symbols	from	other	files,	producing	a	single	binary	file	with	no	unresolved	external	symbols.
The	 principal	 job	 of	 a	 link	 editor,	 as	 shown	 in	 Figure	8.6,	 is	 to	 combine	 related	 program	 files	 into	 a
unified	 loadable	 module.	 (The	 example	 in	 the	 figure	 uses	 file	 extensions	 characteristic	 of	 a
DOS/Windows	 environment.)	 The	 constituent	 binary	 files	 can	 be	 entirely	 user-written,	 or	 they	 can	 be
combined	with	standard	system	routines,	depending	on	the	needs	of	the	application.	Moreover,	the	binary
linker	 input	 can	 be	 produced	 by	 any	 compiler.	Among	 other	 things,	 this	 permits	 various	 sections	 of	 a
program	to	be	written	in	different	languages,	so	part	of	a	program	could	be	written	in	C++,	for	ease	of
coding,	and	another	part	might	be	written	 in	assembly	 language	 to	 speed	up	execution	 in	a	particularly
slow	section	of	the	code.

As	 with	 assemblers,	 most	 link	 editors	 require	 two	 passes	 to	 produce	 a	 complete	 load	 module
comprising	all	of	the	external	input	modules.	During	its	first	pass,	the	linker	produces	a	global	external
symbol	 table	containing	 the	names	of	each	of	 the	external	modules	and	 their	 relative	starting	addresses
with	respect	to	the	beginning	of	the	total	linked	module.	During	the	second	pass,	all	references	between



the	(formerly	separate	and	external)	modules	are	replaced	with	displacements	for	those	modules	from	the
symbol	 table.	During	 the	 second	 pass	 of	 the	 linker,	 platform-dependent	 code	 can	 also	 be	 added	 to	 the
combined	module,	producing	a	unified	and	loadable	binary	program	file.

FIGURE	8.6	Linking	and	Loading	Binary	Modules

8.4.3		Dynamic	Link	Libraries
Some	operating	systems,	notably	Microsoft	Windows,	do	not	require	link	editing	of	all	procedures	used
by	a	program	before	creating	an	executable	module.	With	proper	 syntax	 in	 the	 source	program,	certain
external	modules	 can	 be	 linked	 at	 run	 time.	These	 external	modules	 are	 called	dynamic	 link	 libraries
(DLLs),	 because	 the	 linking	 is	 done	 only	when	 the	 program	 or	module	 is	 first	 invoked.	 The	 dynamic
linking	process	is	shown	schematically	in	Figure	8.7.	As	each	procedure	is	loaded,	its	address	is	placed
in	a	cross-reference	table	within	the	main	program	module.

This	 approach	 has	 many	 advantages.	 First,	 if	 an	 external	 module	 is	 used	 repeatedly	 by	 several
programs,	static	linking	would	require	that	each	of	these	programs	include	a	copy	of	the	module’s	binary
code.	Clearly,	it	is	a	waste	of	disk	space	to	have	multiple	copies	of	the	same	code	hanging	around,	so	we
save	space	by	linking	at	run	time.	The	second	advantage	of	dynamic	linking	is	that	if	the	code	in	one	of	the
external	modules	changes,	then	each	module	that	has	been	linked	with	it	does	not	need	to	be	relinked	to
preserve	the	integrity	of	the	program.	Moreover,	keeping	track	of	which	modules	employ	which	particular
external	 modules	 can	 be	 difficult—perhaps	 impossible—for	 large	 systems.	 Thirdly,	 dynamic	 linking
provides	 the	means	whereby	 third	 parties	 can	 create	 common	 libraries,	 the	 presence	 of	which	 can	 be
assumed	by	anyone	writing	programs	for	a	particular	system.	In	other	words,	if	you	are	writing	a	program
for	a	particular	brand	of	operating	system,	you	can	take	for	granted	that	certain	specific	libraries	will	be
available	 on	 every	 computer	 running	 that	 operating	 system.	 You	 need	 not	 concern	 yourself	 with	 the



operating	system’s	version	number,	or	patch	level,	or	anything	else	that	is	prone	to	frequent	changes.	As
long	as	the	library	is	never	deleted,	it	can	be	used	for	dynamic	linking.

FIGURE	8.7	Dynamic	Linking	with	Load-Time	Address	Resolution

Dynamic	 linking	can	 take	place	either	when	a	program	is	 loaded	or	when	an	unlinked	procedure	 is
first	called	by	a	program	while	it	is	running.	Dynamic	linking	at	load	time	causes	program	startup	delays.
Instead	of	simply	reading	the	program’s	binary	code	from	the	disk	and	running	it,	the	operating	system	not
only	loads	the	main	program,	but	also	loads	the	binaries	for	all	modules	that	the	program	uses.	The	loader
provides	 the	 load	 addresses	 of	 each	 module	 to	 the	 main	 program	 prior	 to	 the	 execution	 of	 the	 first
program	 statement.	The	 time	 lag	between	 the	moment	 the	user	 invokes	 the	program	and	when	program
execution	actually	commences	may	be	unacceptable	 for	 some	applications.	On	 the	other	hand,	 run-time
linking	does	not	incur	the	startup	penalties	of	load-time	linking,	because	a	module	is	linked	only	if	it	is
called.	 This	 saves	 a	 considerable	 amount	 of	 work	 when	 relatively	 few	 of	 a	 program’s	 modules	 are
actually	 invoked.	 However,	 some	 users	 object	 to	 perceived	 erratic	 response	 times	 when	 a	 running
program	frequently	halts	to	load	library	routines.

A	less	obvious	problem	with	dynamic	linking	is	that	the	programmer	writing	the	module	has	no	direct
control	over	the	contents	of	the	dynamic	link	library	routine.	Hence,	if	the	authors	of	the	link	library	code
decide	to	change	its	functionality,	they	can	do	so	without	the	knowledge	or	consent	of	the	people	who	use
the	 library.	 In	 addition,	 as	 anyone	 who	 has	 written	 commercial	 programs	 can	 tell	 you,	 the	 slightest
changes	in	these	library	routines	can	cause	rippling	effects	throughout	an	entire	system.	These	effects	can
be	 disruptive	 and	 hard	 to	 track	 down	 to	 their	 source.	 Fortunately,	 such	 surprises	 are	 rare,	 so	 dynamic
linking	continues	to	be	an	approach	favored	for	the	distribution	of	commercial	binary	code	across	entire
classes	of	operating	systems.



8.4.4		Compilers
Assembly	 language	 programming	 can	 do	 many	 things	 that	 higher-level	 languages	 can’t	 do.	 First	 and
foremost,	assembly	language	gives	the	programmer	direct	access	to	the	underlying	machine	architecture.
Programs	used	to	control	and/or	communicate	with	peripheral	devices	are	typically	written	in	assembly
because	of	the	special	instructions	available	in	assembly	that	are	customarily	not	available	in	higher-level
languages.	A	programmer	doesn’t	have	to	rely	on	operating	system	services	to	control	a	communications
port,	for	example.	Using	assembly	language,	you	can	get	the	machine	to	do	anything,	even	those	things	for
which	 operating	 system	 services	 are	 not	 provided.	 In	 particular,	 programmers	 often	 use	 assembly
language	to	take	advantage	of	specialized	hardware,	because	compilers	for	higher-level	languages	aren’t
designed	 to	 deal	 with	 uncommon	 or	 infrequently	 used	 devices.	 Also,	 well-written	 assembly	 code	 is
blazingly	fast.	Each	primitive	instruction	can	be	honed	so	that	 it	produces	the	most	timely	and	effective
action	upon	the	system.

These	 advantages,	 however,	 are	 not	 sufficiently	 compelling	 reasons	 to	 use	 assembly	 language	 for
general	application	development.	The	fact	remains	that	programming	in	assembly	language	is	difficult	and
error-prone.	 It	 is	 even	 more	 difficult	 to	 maintain	 than	 it	 is	 to	 write,	 especially	 if	 the	 maintenance
programmer	 is	 not	 the	 original	 author	 of	 the	 program.	 Most	 importantly,	 assembly	 languages	 are	 not
portable	 to	 different	 machine	 architectures.	 For	 these	 reasons,	 most	 general-purpose	 system	 software
contains	 very	 few,	 if	 any,	 assembly	 instructions.	 Assembly	 code	 is	 used	 only	 when	 it	 is	 absolutely
necessary	to	do	so.

Today,	virtually	all	system	and	application	programs	use	higher-level	 languages	almost	exclusively.
Of	 course,	 “higher-level”	 is	 a	 relative	 term,	 subject	 to	 misunderstanding.	 One	 accepted	 taxonomy	 for
programming	 languages	 starts	 by	 calling	binary	machine	 code	 the	 “first-generation”	 computer	 language
(1GL).	Programmers	of	 this	1GL	formerly	entered	program	instructions	directly	 into	 the	machine	using
toggle	switches	on	the	system	console!	More	“privileged”	users	punched	binary	instructions	onto	paper
tape	or	cards.	Programming	productivity	vaulted	upward	when	 the	 first	assemblers	were	written	 in	 the
early	 1950s.	 These	 “second-generation”	 languages	 (2GLs)	 eliminated	 the	 errors	 introduced	 when
instructions	 were	 translated	 to	 machine	 code	 by	 hand.	 The	 next	 productivity	 leap	 came	 with	 the
introduction	of	compiled	symbolic	languages,	or	“third-generation”	languages	(3GLs),	in	the	late	1950s.
Fortran	(Formula	Translation)	was	the	first	of	these,	released	by	John	Backus	and	his	IBM	team	in	1957.
In	the	years	since,	a	veritable	alphabet	soup	of	3GLs	has	poured	onto	the	programming	community.	Their
names	 are	 sometimes	 snappy	 acronyms,	 such	 as	 COBOL,	 SNOBOL,	 and	 COOL.	 Sometimes	 they	 are
named	after	people,	as	with	Pascal	and	Ada.	Not	infrequently,	3GLs	are	called	whatever	their	designers
feel	like	calling	them,	as	in	the	cases	of	C,	C++,	and	Java.

Each	 “generation”	 of	 programming	 languages	 gets	 closer	 to	 how	 people	 think	 about	 problems	 and
more	distant	from	how	machinery	solves	them.	Some	fourth-	and	fifth-generation	languages	are	so	easy	to
use	that	programming	tasks	formerly	requiring	a	trained	professional	programmer	can	easily	be	done	by
end	users,	 the	key	 idea	being	 that	 the	user	 simply	 tells	 the	computer	what	 to	do,	not	how	 to	do	 it:	The
compiler	figures	out	the	rest.	In	making	things	simpler	for	the	user,	these	latter-generation	languages	place
substantial	overhead	on	computer	systems.	Ultimately,	all	 instructions	must	be	pushed	down	through	the
language	 hierarchy,	 because	 the	 digital	 hardware	 that	 actually	 does	 the	 work	 can	 execute	 only	 binary
instructions.

In	Chapter	4,	we	pointed	out	 that	 there	 is	a	one-to-one	correspondence	between	assembly	 language
statements	and	the	binary	code	that	the	machine	actually	runs.	In	compiled	languages,	this	is	a	one-to-many
relationship.	For	example,	allowing	for	variable	storage	definitions,	the	high-level	language	statement,	x



=	3*y,	would	require	at	least	12	program	statements	in	MARIE’s	assembly	language.	The	ratio	of	source
code	instructions	to	binary	machine	instructions	becomes	smaller	in	proportion	to	the	sophistication	of	the
source	 language.	The	“higher”	 the	 language,	 the	more	machine	 instructions	 each	program	 line	 typically
generates.	This	relationship	is	shown	in	the	programming	language	hierarchy	of	Figure	8.8.

The	science	of	compiler	writing	has	continued	to	improve	since	the	first	compilers	were	written	in	the
late	 1950s.	 Through	 its	 achievements	 in	 compiler	 construction,	 the	 science	 of	 software	 engineering
proved	 its	 ability	 to	 convert	 seemingly	 intractable	 problems	 into	 routine	 programming	 tasks.	 The
intractability	 of	 the	 problem	 lies	 in	 bridging	 the	 semantic	 gap	 between	 statements	 that	 make	 sense	 to
people	and	statements	that	make	sense	to	machines.

Most	compilers	effect	this	transformation	using	a	six-phase	process,	as	shown	in	Figure	8.9.	The	first
step	 in	 code	 compilation,	 called	 lexical	 analysis,	 aims	 to	 extract	 meaningful	 language	 primitives,	 or
tokens,	 from	 a	 stream	 of	 textual	 source	 code.	 These	 tokens	 consist	 of	 reserved	words	 particular	 to	 a
language	 (e.g.,	 if,	 else),	 Boolean	 and	 mathematical	 operators,	 literals	 (e.g.,	 12.27),	 and	 programmer-
defined	 variables.	 While	 the	 lexical	 analyzer	 is	 creating	 the	 token	 stream,	 it	 is	 also	 building	 the
framework	 for	 a	 symbol	 table.	At	 this	point,	 the	 symbol	 table	most	 likely	contains	user-defined	 tokens
(variables	and	procedure	names),	along	with	annotations	as	to	their	location	and	data	type.	Lexical	errors
occur	 when	 characters	 or	 constructs	 foreign	 to	 the	 language	 are	 discovered	 in	 the	 source	 code.	 The
programmer-defined	variable	1DaysPay,	 for	example,	would	produce	a	 lexical	error	 in	most	 languages
because	variable	names	typically	cannot	begin	with	a	digit.	 If	no	lexical	errors	are	found,	 the	compiler
proceeds	to	analyze	the	syntax	of	the	token	stream.

FIGURE	8.8	A	Programming	Language	Hierarchy



FIGURE	8.9	The	Six	Phases	of	Program	Compilation

Syntax	analysis,	or	parsing,	of	the	token	stream	involves	creation	of	a	data	structure	called	a	parse
tree	 or	 syntax	 tree.	 The	 inorder	 traversal	 of	 a	 parse	 tree	 usually	 gives	 the	 expression	 just	 parsed.
Consider,	for	example,	the	following	program	statement:

One	correct	syntax	tree	for	this	statement	is	shown	in	Figure	8.10.
The	parser	checks	 the	symbol	 table	for	 the	presence	of	programmer-defined	variables	 that	populate

the	tree.	If	the	parser	encounters	a	variable	for	which	no	description	exists	in	the	symbol	table,	it	issues
an	error	message.	The	parser	also	detects	illegal	constructions	such	as	A	=	B	+	C	=	D.	What	the	parser
does	not	do,	however,	is	check	that	the	=	or	+	operators	are	valid	for	the	variables	A,	B,	C,	and	D.	The
semantic	analyzer	does	this	in	the	next	phase.	It	uses	the	parse	tree	as	input	and	checks	it	for	appropriate
data	 types	using	 information	from	the	symbol	 table.	The	semantic	analyzer	also	makes	appropriate	data
type	promotions,	such	as	changing	an	integer	to	a	floating-point	value	or	variable,	if	such	promotions	are
supported	by	the	language	rules.

After	the	compiler	has	completed	its	analysis	functions,	it	begins	its	synthesis	phase	using	the	syntax
tree	from	the	semantic	analysis	phase.	The	first	step	in	code	synthesis	is	to	create	a	pseudo-assembly	code
from	the	syntax	tree.	This	code	is	often	referred	to	as	three-address	code,	because	it	supports	statements
such	 as	 A	 =	 B	 +	 C,	 which	 most	 assembly	 languages	 do	 not	 support.	 This	 intermediate	 code	 enables
compilers	to	be	portable	to	many	different	kinds	of	computers.

Once	all	of	the	tokenizing,	tree-building,	and	semantic	analyses	are	done,	it	becomes	a	relatively	easy
task	to	write	a	three-address	code	translator	that	produces	output	for	a	number	of	different	instruction	sets.
Most	systems’	ISAs	use	two-address	code,	so	the	addressing	mode	differences	have	to	be	resolved	during
the	 translation	process.	 (Recall	 that	 the	MARIE	instruction	set	 is	a	one-address	architecture.)	The	final
compiler	phase,	however,	often	does	more	than	just	translate	intermediate	code	to	assembly	instructions.
Good	compilers	make	some	attempt	at	code	optimization,	which	can	take	into	account	different	memory



and	 register	 organizations	 and	 can	 supply	 the	most	 powerful	 instructions	 needed	 to	 carry	 out	 the	 task.
Code	 optimization	 also	 involves	 removing	 unnecessary	 temporary	 variables,	 collapsing	 repeated
expressions	into	single	expressions,	and	flagging	dead	(unreachable)	code.

FIGURE	8.10	A	Syntax	Tree

After	all	the	instructions	have	been	generated	and	optimizations	have	been	made	where	possible,	the
compiler	creates	binary	object	code,	suitable	for	linking	and	execution	on	the	target	system.

8.4.5		Interpreters
Like	compiled	languages,	interpreted	languages	also	have	a	one-to-many	relationship	between	the	source
code	statements	and	executable	machine	 instructions.	However,	unlike	compilers,	which	read	 the	entire
source	code	file	before	producing	a	binary	stream,	interpreters	process	one	source	statement	at	a	time.

With	so	much	work	being	done	“on	the	fly,”	interpreters	are	typically	much	slower	than	compilers.	At
least	five	of	the	six	steps	required	of	compilers	must	also	be	carried	out	in	interpreters,	and	these	steps
are	carried	out	in	“real	time.”	This	approach	affords	no	opportunity	for	code	optimization.	Furthermore,
error	 detection	 in	 interpreters	 is	 usually	 limited	 to	 language	 syntax	 and	 variable	 type	 checking.	 For
example,	very	few	interpreters	detect	possible	illegal	arithmetic	operations	before	they	happen	or	warn
the	programmer	before	exceeding	the	bounds	of	an	array.

Some	early	interpreters	provided	syntax	checking	within	custom-designed	editors.	For	instance,	 if	a
user	were	 to	 type	“esle”	 instead	of	 “else”,	 the	 editor	would	 immediately	 issue	a	 remark	 to	 that	 effect.
Other	 interpreters	 allow	 use	 of	 general-purpose	 text	 editors,	 delaying	 syntax	 checking	 until	 execution
time.	The	latter	approach	is	particularly	risky	when	used	for	business-critical	application	programs.	If	the
application	program	happens	to	execute	a	branch	of	code	that	has	not	been	checked	for	proper	syntax,	the
program	crashes,	leaving	the	hapless	user	staring	at	an	odd-looking	system	prompt,	with	his	files	perhaps
only	partially	updated.

Despite	the	sluggish	execution	speed	and	delayed	error	checking,	there	are	good	reasons	for	using	an
interpreted	 language.	Foremost	among	these	 is	 that	 interpreted	 languages	allow	source-level	debugging,
making	 them	 ideal	 for	 beginning	 programmers	 and	 end	 users.	 This	 is	 why,	 in	 1964,	 two	 Dartmouth
professors,	 John	 G.	 Kemeny	 and	 Thomas	 E.	 Kurtz,	 invented	 BASIC,	 the	 Beginners	 All-purpose
Symbolic	 Instruction	 Code.	 At	 that	 time,	 students’	 first	 programming	 experiences	 involved	 punching
Fortran	instructions	on	80-column	cards.	The	cards	were	then	run	through	a	mainframe	compiler,	which
often	had	a	turnaround	time	measured	in	hours.	Sometimes	days	would	elapse	before	a	clean	compilation
and	 execution	 could	 be	 achieved.	 In	 its	 dramatic	 departure	 from	 compiling	 statements	 in	 batch	mode,
BASIC	allowed	students	 to	 type	program	statements	during	an	interactive	 terminal	session.	The	BASIC
interpreter,	 which	was	 continually	 running	 on	 the	mainframe,	 gave	 students	 immediate	 feedback.	 They



could	 quickly	 correct	 syntax	 and	 logic	 errors,	 thus	 creating	 a	 more	 positive	 and	 effective	 learning
experience.

For	these	same	reasons,	BASIC	was	the	language	of	choice	on	the	earliest	personal	computer	systems.
Many	 first-time	 computer	 buyers	 were	 not	 experienced	 programmers,	 so	 they	 needed	 a	 language	 that
would	make	 it	 easy	 for	 them	 to	 learn	 programming	 on	 their	 own.	 BASIC	was	 ideal	 for	 this	 purpose.
Moreover,	on	a	 single-user,	personal	 system,	very	 few	people	cared	 that	 interpreted	BASIC	was	much
slower	than	a	compiled	language.

8.5			JAVA:	ALL	OF	THE	ABOVE
In	the	early	1990s,	Dr.	James	Gosling	and	his	team	at	Sun	Microsystems	set	out	to	create	a	programming
language	 that	 would	 run	 on	 any	 computing	 platform.	 The	 mantra	 was	 to	 create	 a	 “write	 once,	 run
anywhere”	computer	language.	In	1995,	Sun	released	the	first	version	of	the	Java	programming	language.
Because	of	 its	 portability	 and	open	 specifications,	 Java	has	become	enormously	popular.	 Java	 code	 is
runnable	 on	 virtually	 all	 computer	 platforms,	 from	 the	 smallest	 handheld	 devices	 to	 the	 largest
mainframes.	The	 timing	of	Java’s	arrival	couldn’t	have	been	better:	 It	 is	a	cross-platform	language	 that
was	 deployable	 at	 the	 inception	 of	 wide-scale	 Internet-based	 commerce,	 the	 perfect	 model	 of	 cross-
platform	computing.	Although	Java	and	some	of	its	features	were	briefly	introduced	in	Chapter	5,	we	now
go	into	more	detail.

If	 you	 have	 ever	 studied	 the	 Java	 programming	 language,	 you	 know	 that	 the	 output	 from	 the	 Java
compiler	is	a	binary	class	file.	This	class	file	is	executable	by	a	Java	Virtual	Machine	 (JVM),	which
resembles	a	real	machine	in	many	respects.	It	has	private	memory	areas	addressable	only	by	processes
running	within	 the	machine.	 It	also	has	 its	own	bona	 fide	 instruction	set	architecture.	This	 ISA	is	stack
based	to	keep	the	machine	simple	and	portable	to	practically	any	computing	platform.

Of	course,	a	Java	Virtual	Machine	isn’t	a	real	machine.	It	is	a	layer	of	software	that	sits	between	the
operating	system	and	the	application	program:	a	binary	class	file.	Class	files	include	variables	as	well	as
the	methods	(procedures)	for	manipulating	those	variables.

Figure	8.11	 illustrates	how	the	JVM	is	a	computing	machine	 in	miniature	with	 its	own	memory	and
method	area.	Notice	that	the	memory	heap,	method	code,	and	“native	method	interface”	areas	are	shared
among	all	processes	running	within	the	machine.

The	memory	heap	 is	 main	 memory	 space	 that	 is	 allocated	 and	 deallocated	 as	 data	 structures	 are
created	 and	 destroyed	 through	 thread	 execution.	 Java’s	 deallocation	 of	 heap	memory	 is	 (indelicately)
referred	to	as	garbage	collection,	which	 the	JVM	(instead	of	 the	operating	system)	does	automatically.
The	Java	native	method	area	provides	workspace	for	binary	objects	external	to	Java,	such	as	compiled
C++	or	assembly	language	modules.	The	JVM	method	area	contains	the	binary	code	required	to	run	each
application	 thread	 living	 in	 the	 JVM.	 This	 is	 where	 the	 class	 variable	 data	 structures	 and	 program
statements	 required	 by	 the	 class	 reside.	 Java’s	 executable	 program	 statements	 are	 stored	 in	 an
intermediate	code	called	bytecode,	also	introduced	in	Chapter	5.



FIGURE	8.11	The	Java	Virtual	Machine

Java	method	bytecode	is	executed	in	various	thread	processes.	Several	thread	processes	are	started
automatically	by	the	JVM,	the	main	program	thread	being	one	of	them.	Only	one	method	can	be	active	at	a
time	in	each	thread,	and	programs	may	spawn	additional	threads	to	provide	concurrency.	When	a	thread
invokes	a	method,	 it	creates	a	memory	frame	for	 the	method.	Part	of	 this	memory	frame	is	used	for	 the
method’s	local	variables,	and	another	part	for	its	private	stack.	After	the	thread	has	defined	the	method
stack,	it	pushes	the	method’s	parameters	and	points	its	program	counter	to	the	first	executable	statement	of
the	method.

Each	 Java	 class	 contains	 a	 type	 of	 symbol	 table	 called	 a	 constant	 pool,	 which	 is	 an	 array	 that
contains	 information	about	 the	data	 type	of	each	of	 the	variables	of	a	class	and	 the	 initial	value	of	 the
variable,	as	well	as	access	flags	for	the	variable	(e.g.,	whether	it	is	public	or	private	to	the	class).	The
constant	pool	also	contains	 several	 structures	other	 than	 those	defined	by	 the	programmer.	This	 is	why
Sun	Microsystems	calls	entries	in	the	constant	pool	(the	array	elements)	attributes.	Among	the	attributes
of	 every	 Java	class,	one	 finds	housekeeping	 items	 such	as	 the	name	of	 the	 Java	 source	 file,	part	of	 its
inheritance	hierarchy,	and	pointers	to	other	JVM	internal	data	structures.

FIGURE	8.12	A	Simple	Java	Program

To	 illustrate	 how	 the	 JVM	 executes	method	 bytecode,	 consider	 the	 Java	 program	 shown	 in	 Figure



8.12.
Java	requires	the	source	code	for	 this	class	to	be	stored	in	a	text	file	named	Simple.java.	The	Java

compiler	reads	Simple.java	and	does	all	the	things	that	other	compilers	do.	Its	output	is	a	binary	stream	of
bytecode	named	Simple	.class.	The	Simple.class	file	can	be	run	by	any	JVM	of	equal	or	later	version	than
that	of	the	compiler	that	created	the	class.	These	steps	are	shown	in	Figure	8.13.

At	execution	time,	a	Java	Virtual	Machine	must	be	running	on	the	host	system.	When	the	JVM	loads	a
class	file,	 the	first	 thing	it	does	 is	verify	 the	integrity	of	 the	bytecode	by	checking	the	class	file	format,
checking	 the	 format	 of	 the	 bytecode	 instructions,	 and	making	 sure	 that	 no	 illegal	 references	 are	made.
After	 this	preliminary	verification	 is	 successfully	completed,	 the	 loader	performs	a	number	of	 run-time
checks	as	it	places	the	bytecode	in	memory.

After	 all	 verification	 steps	 have	 been	 completed,	 the	 loader	 invokes	 the	 bytecode	 interpreter.	 This
interpreter	has	six	phases	in	which	it	will:

1.		Perform	a	link	edit	of	the	bytecode	instructions	by	asking	the	loader	to	supply	all	referenced	classes
and	system	binaries,	if	they	are	not	already	loaded.

2.		Create	and	initialize	the	main	stack	frame	and	local	variables.

FIGURE	8.13	Java	Class	Compilation	and	Execution

3.		Create	and	start	execution	thread(s).
4.		While	the	threads	are	executing,	manage	heap	storage	by	deallocating	unused	storage.
5.		As	each	thread	dies,	deallocate	its	resources.
6.		Upon	program	termination,	kill	any	remaining	threads	and	terminate	the	JVM.

Figure	8.14	shows	the	hexadecimal	image	of	the	bytecode	for	Simple.class.	The	address	of	each	byte
can	be	found	by	adding	the	value	in	the	first	(shaded)	column	to	the	row	offset	in	the	first	(shaded)	row.
For	convenience,	we	have	translated	the	bytecode	into	characters	where	the	binary	value	has	a	meaningful
7-bit	ASCII	value.	You	can	see	the	name	of	the	source	file,	Simple.java,	beginning	at	address	0x06D.	The
name	 of	 the	 class	 starts	 at	 0x080.	Readers	 familiar	with	 Java	 are	 aware	 that	 the	 Simple	 class	 is	 also
known	as	.this	class,	and	its	superclass	is	java.lang.Object,	the	name	of	which	starts	at	address	0x089.

Notice	that	our	class	file	begins	with	the	hex	number	CAFEBABE.	It	is	the	magic	number	indicating
the	start	of	a	class	file	(and	yes,	it	is	politically	incorrect!).	An	8-byte	sequence	indicating	the	language
version	of	the	class	file	follows	the	magic	number.	If	this	sequence	number	is	greater	than	the	version	that
the	interpreting	JVM	can	support,	the	verifier	terminates	the	JVM.

The	 executable	 bytecode	 begins	 at	 address	 0x0E6.	 The	 hex	 digits,	 16,	 at	 address	 0x0E5	 let	 the
interpreter	know	that	 the	executable	method	bytecode	 is	22	bytes	 long.	As	 in	assembly	 languages,	each



executable	 bytecode	 has	 a	 corresponding	 mnemonic.	 Java	 currently	 defines	 204	 different	 bytecode
instructions.	Hence,	only	one	byte	is	needed	for	the	entire	range	of	opcodes.	These	small	opcodes	help	to
keep	 classes	 small,	making	 them	 fast	 to	 load	 and	 easily	 convertible	 to	 binary	 instructions	 on	 the	 host
system.

FIGURE	8.14	Binary	Image	of	Simple.class

Because	certain	small	constants	are	used	so	 frequently	 in	computer	programs,	bytecodes	have	been
defined	especially	to	provide	these	constants	where	needed.	For	example,	the	mnemonic	iconst_5	pushes
the	integer	5	onto	the	stack.	In	order	to	push	larger	constants	onto	the	stack,	two	bytecodes	are	required,
the	first	for	the	operation,	the	second	for	the	operand.	As	we	mentioned	above,	local	variables	for	each
class	are	kept	in	an	array.	Characteristically,	the	first	few	elements	of	this	array	are	the	most	active,	so
there	are	bytecodes	particular	to	addressing	these	initial	local	array	elements.	Access	to	other	positions	in
the	 array	 requires	 a	 2-byte	 instruction:	 one	 for	 the	 opcode	 and	 the	 second	 for	 the	 offset	 of	 the	 array
element.

That	being	said,	let	us	look	at	the	bytecode	for	the	main()	method	of	Simple.class.	We	have	extracted
the	bytecode	from	Figure	8.14	and	listed	it	in	Figure	8.15	along	with	mnemonics	and	some	commentary.
The	leftmost	column	gives	the	relative	address	of	each	instruction.	The	thread-specific	program	counter
uses	this	relative	address	to	control	program	flow.	We	now	trace	the	execution	of	this	bytecode	so	you	can
see	how	it	works.

When	 the	 interpreter	 begins	 running	 this	 code,	 the	 PC	 is	 initially	 set	 to	 zero	 and	 the	 iconst_0
instruction	is	executed.	This	is	the	execution	of	the	int	i	=	0;	statement	in	the	third	line	of	the	Simple.java
source	code.	The	PC	is	incremented	by	one	and	subsequently	executes	each	initialization	instruction	until
it	encounters	the	goto	statement	at	instruction	4.	This	instruction	adds	a	decimal	11	to	the	program	counter,
so	its	value	becomes	0x0F,	which	points	to	the	load_1	instruction.

At	 this	 point,	 the	 JVM	has	 assigned	 initial	 values	 to	 i	 and	 j	 and	now	proceeds	 to	 check	 the	 initial
condition	of	 the	while	 loop	 to	see	whether	 the	 loop	body	should	be	executed.	To	do	 this,	 it	places	 the
value	of	i	(from	the	local	variable	array)	onto	the	stack,	and	then	it	pushes	the	comparison	value	0x0A.
Note	that	this	is	a	little	bit	of	code	optimization	that	has	been	done	for	us	by	the	compiler.	By	default,	Java
stores	integer	values	in	32	bits,	thus	occupying	4	bytes.	However,	the	compiler	is	smart	enough	to	see	that



the	decimal	constant	10	is	small	enough	to	store	in	1	byte,	so	it	wrote	code	to	push	a	single	byte	rather
than	4	bytes	onto	the	stack.

The	comparison	operation	instruction,	if_icmplt,	pops	i	and	0x0A	and	compares	their	values	(the	lt	at
the	end	of	the	mnemonic	means	that	it	is	looking	for	the	less	than	condition).	If	i	is	less	than	10,	0x0B	is
subtracted	 from	 the	 PC,	 giving	 7,	 which	 is	 the	 starting	 address	 for	 the	 body	 of	 the	 loop.	 When	 the
instructions	 within	 the	 loop	 body	 have	 been	 completed,	 execution	 falls	 through	 to	 the	 conditional
processing	 at	 address	 0x0F.	 Once	 this	 condition	 becomes	 false,	 the	 interpreter	 returns	 control	 to	 the
operating	system,	after	doing	some	cleanup.

Java	 programmers	who	have	wondered	how	 the	 interpreter	 knows	which	 source	 line	 has	 caused	 a
program	crash	will	 find	 their	answer	starting	at	address	0x108	 in	 the	binary	class	 file	 image	of	Figure
8.14.	 This	 is	 the	 beginning	 of	 the	 line	 number	 table	 that	 associates	 the	 program	 counter	 value	with	 a
particular	line	in	the	source	program.	The	two	bytes	starting	at	address	0x106	tell	the	JVM	that	there	are
seven	entries	 in	 the	 line	number	 table	 that	 follows.	By	filling	 in	a	 few	details,	we	can	build	 the	cross-
reference	shown	in	Figure	8.16.



FIGURE	8.15	Annotated	Bytecode	for	Simple.class

FIGURE	8.16	A	Program	Counter–to–Source	Line	Cross-Reference	for



Simple.class

Notice	that	if	the	program	crashes	when	the	PC	=	9,	for	example,	the	offending	source	program	line
would	be	line	6.	Interpretation	of	the	bytecode	generated	for	source	code	line	number	7	begins	when	the
PC	is	greater	than	or	equal	to	0x0B,	but	less	than	0x0F.

Because	the	JVM	does	so	much	as	it	loads	and	executes	its	bytecode,	its	performance	cannot	possibly
match	the	performance	of	a	compiled	language.	This	is	true	even	when	speedup	software	like	Java’s	Just-
In-Time	(JIT)	compiler	is	used.	The	trade-off,	however,	 is	that	class	files	can	be	created	and	stored	on
one	platform	and	executed	on	a	completely	different	platform.	For	example,	we	can	write	and	compile	a
Java	program	on	an	Alpha	RISC	server	and	it	will	run	just	as	well	on	CISC	Pentium–class	clients	 that
download	the	class	file	bytecode.	This	“write-once,	run-anywhere”	paradigm	is	of	enormous	benefit	for
enterprises	 with	 disparate	 and	 geographically	 separate	 systems.	 Java	 applets	 (bytecode	 that	 runs	 in
browsers)	are	essential	for	Web-based	transactions	and	e-commerce.	Ultimately,	all	that	is	required	of	the
user	is	to	be	running	(reasonably)	current	browser	software.	Given	its	portability	and	relative	ease	of	use,
the	Java	language	and	its	virtual	machine	environment	are	the	ideal	middleware	platform.

8.6			DATABASE	SOFTWARE
By	far,	the	most	precious	assets	of	an	enterprise	are	not	its	offices	or	its	factories,	but	its	data.	Regardless
of	the	nature	of	the	enterprise—be	it	a	private	business,	an	educational	institution,	or	a	government	agency
—the	definitive	record	of	its	history	and	current	state	is	imprinted	on	its	data.	If	the	data	is	inconsistent
with	the	state	of	the	enterprise,	or	if	the	data	is	inconsistent	with	itself,	its	usefulness	is	questionable,	and
problems	are	certain	to	arise.

Any	computer	system	supporting	an	enterprise	 is	 the	platform	for	 interrelated	application	programs.
These	programs	perform	updates	on	 the	data	 in	 accordance	with	 changes	 to	 the	 state	of	 the	 enterprise.
Groups	of	interrelated	programs	are	often	referred	to	as	application	systems,	because	they	work	together
as	an	integrated	whole:	Few	pieces	are	very	useful	standing	on	their	own.	Application	system	components
share	 the	 same	 set	 of	 data	 and	 typically,	 but	 not	 necessarily,	 share	 the	 same	 computing	 environment.
Today,	application	systems	use	many	platforms:	desktop	microcomputers,	 file	 servers,	and	mainframes.
With	 cooperative	 Web-based	 computing	 coming	 into	 vogue,	 sometimes	 we	 don’t	 know	 or	 even	 care
where	the	application	is	running.	Although	each	platform	brings	its	unique	benefits	and	challenges	to	the
science	 of	 data	 management,	 the	 fundamental	 concepts	 of	 database	 management	 software	 have	 been
unchanged	for	more	than	three	decades.

Early	 application	 systems	 recorded	data	using	magnetic	 tape	or	 punched	 cards.	By	 their	 sequential
nature,	tape	and	punched	card	updates	had	to	be	run	as	a	group,	in	batch	processing	mode,	for	efficiency.
Because	any	data	element	on	magnetic	disks	can	be	accessed	directly,	batch	processing	of	updates	against
flat	files	was	no	longer	forced	by	the	systems	architecture.	However,	old	habits	are	hard	 to	break,	and
programs	are	costly	to	rewrite.	Hence,	flat	file	processing	persisted	years	after	most	card	readers	became
museum	pieces.

In	flat	file	systems,	each	application	program	is	free	to	define	whatever	data	objects	it	needs.	For	this
reason,	a	consistent	view	of	 the	system	is	hard	 to	enforce.	For	example,	 let’s	say	we	have	an	accounts
receivable	system,	which	is	an	application	system	that	keeps	track	of	who	owes	us	how	much	money	and
for	 how	 long	 it	 has	 been	 owed.	 The	 program	 that	 produces	 monthly	 invoices	 may	 post	 monthly
transactions	to	a	6-digit	field	(or	data	element)	called	CUST_OWE.	Now,	the	person	doing	the	monthly
reconciliations	could	 just	as	well	call	 this	 field	CUST_BAL,	and	may	be	expecting	 it	 to	be	 five	digits



wide.	It	is	almost	certain	that	somewhere	along	the	line,	information	will	be	lost	and	confusion	will	reign.
Sometime	 during	 the	 month,	 after	 several	 thousand	 dollars	 are	 “unaccounted	 for,”	 the	 debuggers	 will
eventually	figure	out	that	CUST_OWE	is	the	same	data	element	as	CUST_BAL,	and	that	the	problem	was
caused	by	truncation	or	a	field	overflow	condition.

Database	management	systems	(DBMSs)	were	created	to	prevent	these	predicaments.	They	enforce
order	 and	 consistency	 on	 file-based	 application	 systems.	 With	 database	 systems,	 no	 longer	 are
programmers	free	 to	describe	and	access	a	data	element	 in	any	manner	 they	please.	There	 is	one—and
only	one—definition	of	the	data	elements	in	a	database	management	system.	This	definition	is	a	system’s
database	 schema.	 In	 some	 systems,	 a	 distinction	 is	 made	 between	 the	 programmer’s	 view	 of	 the
database,	its	logical	schema,	and	the	computer	system’s	view	of	the	database,	called	its	physical	schema.
The	database	management	system	integrates	the	physical	and	logical	views	of	the	database.	Application
programs	employ	 the	 logical	 schema	presented	by	 the	database	management	 system	 to	 read	and	update
data	 within	 the	 physical	 schema,	 under	 control	 of	 the	 database	 management	 system	 and	 the	 operating
system.	Figure	8.17	illustrates	this	relationship.

FIGURE	8.17	The	Relationship	of	a	Database	Management	System	to	Other	System	Components

The	 individual	 data	 elements	 defined	 by	 a	 database	 schema	 are	 organized	 into	 logical	 structures
called	records,	which	are	grouped	together	into	files.	Related	files	collectively	form	the	database.

Database	architects	are	mindful	of	application	needs	as	well	as	performance	when	they	create	logical
and	 physical	 schemas.	 The	 general	 objective	 is	 to	 minimize	 redundancy	 and	 wasted	 space	 while
maintaining	a	desired	 level	of	performance,	usually	measured	 in	 terms	of	application	 response	 time.	A
banking	system,	for	example,	would	not	place	the	customer’s	name	and	address	on	every	canceled	check
record	 in	 the	 database.	 This	 information	would	 be	 kept	 in	 an	 account	master	 file	 that	 uses	 an	 account
number	as	its	key	field.	Each	canceled	check,	 then,	would	have	 to	bear	only	 the	account	number	along
with	information	particular	to	the	check	itself.

Database	 management	 systems	 vary	 widely	 in	 how	 data	 is	 physically	 organized.	 Virtually	 every
database	vendor	has	 invented	proprietary	methods	for	managing	and	 indexing	files.	Most	systems	use	a



variant	 of	 the	 B+	 tree	 data	 structure.	 (See	 Appendix	 A	 for	 details.)	 Database	 management	 systems
typically	manage	disk	storage	independent	of	the	underlying	operating	system.	By	removing	the	operating
system	layer	from	the	process,	database	systems	can	optimize	reads	and	writes	according	to	the	database
schema	and	index	design.

In	Chapter	7,	we	studied	disk	file	organization.	We	learned	that	most	disk	systems	read	data	in	chunks
from	the	disk,	the	smallest	addressable	unit	being	a	sector.	Most	large	systems	read	an	entire	track	at	a
time.	As	an	index	structure	becomes	very	deep,	the	likelihood	increases	that	we	will	need	more	than	one
read	operation	to	traverse	the	index	tree.	So	how	do	we	organize	the	tree	to	keep	disk	I/O	as	infrequent	as
we	can?	Is	it	better	to	create	very	large	internal	index	nodes	so	that	more	record	values	can	be	spanned
per	node?	This	would	make	the	number	of	nodes	per	level	smaller,	and	perhaps	permit	an	entire	tree	level
to	be	accessed	in	one	read	operation.	Or	is	it	better	to	keep	the	internal	node	sizes	small	so	that	we	can
read	more	layers	of	the	index	in	one	read	operation?	The	answers	to	all	of	these	questions	can	be	found
only	in	the	context	of	the	particular	system	on	which	the	database	is	running.	An	optimal	answer	may	even
depend	 on	 the	 data	 itself.	 For	 example,	 if	 the	 keys	 are	 sparse,	 that	 is,	 if	 there	 are	many	 possible	 key
values	 that	 aren’t	 used,	 we	 may	 choose	 one	 particular	 index	 organization	 scheme.	 But	 with	 densely
populated	index	structures,	we	may	choose	another.	Regardless	of	the	implementation,	database	tuning	is
a	 nontrivial	 task	 that	 requires	 an	 understanding	 of	 the	 database	 management	 software,	 the	 storage
architecture	of	the	system,	and	the	particulars	of	the	data	population	managed	by	the	system.

Database	 files	 often	 carry	more	 than	 one	 index.	 For	 example,	 if	 you	 have	 a	 customer	 database,	 it
would	be	a	good	idea	if	you	could	locate	records	by	the	customer’s	account	number	as	well	as	his	name.
Each	index,	of	course,	adds	overhead	to	the	system,	both	in	terms	of	space	(for	storing	the	index)	and	in
time	(because	all	indices	must	be	updated	at	once	when	records	are	added	or	deleted).	One	of	the	major
challenges	facing	systems	designers	is	in	making	sure	that	there	are	sufficient	indices	to	allow	fast	record
retrieval	 in	most	 circumstances,	 but	not	 so	many	as	 to	burden	 the	 system	with	 an	 inordinate	 amount	of
housekeeping.

The	goal	of	database	management	systems	is	 to	provide	 timely	and	easy	access	 to	 large	amounts	of
data,	 but	 to	 do	 so	 in	 ways	 that	 ensure	 that	 database	 integrity	 is	 always	 preserved.	 This	means	 that	 a
database	management	 system	must	 allow	 users	 to	 define	 and	manage	 rules,	 or	 constraints,	 placed	 on
certain	critical	data	elements.	Sometimes	these	constraints	are	just	simple	rules	such	as,	“The	customer
number	can’t	be	null.”	More	complex	rules	dictate	which	particular	users	can	see	which	data	elements
and	how	files	with	interrelated	data	elements	will	be	updated.	The	definition	and	enforcement	of	security
and	data	integrity	constraints	are	critical	to	the	usefulness	of	any	database	management	system.

Another	core	component	of	a	database	management	system	is	its	transaction	manager.	A	transaction
manager	 controls	 updates	 to	 data	 objects	 in	 such	 a	way	 as	 to	 ensure	 that	 the	 database	 is	 always	 in	 a
consistent	 state.	 Formally,	 a	 transaction	 manager	 controls	 changes	 to	 the	 state	 of	 data	 so	 that	 each
transaction	has	the	following	properties:

•			Atomicity—All	related	updates	take	place	within	the	bounds	of	the	transaction	or	no	updates	are	made
at	all.

•			Consistency—All	updates	comply	with	the	constraints	placed	on	all	data	elements.
•			Isolation—No	transaction	can	interfere	with	the	activities	or	updates	of	another	transaction.
•	 	 	Durability—Successful	 transactions	are	written	 to	“durable”	media	 (e.g.,	magnetic	disk)	as	soon	as

possible.

These	four	 items	are	known	as	 the	ACID	properties	of	 transaction	management.	The	 importance	of	 the



ACID	properties	can	be	understood	easily	through	an	example.
Suppose	you’ve	made	your	monthly	credit	card	payment	and,	soon	after	mailing	it,	you	go	to	a	nearby

store	to	make	another	purchase	with	your	card.	Suppose	also	that	at	the	exact	moment	that	the	sales	clerk
is	swiping	your	plastic	across	a	magnetic	reader,	an	accounting	clerk	at	the	bank	is	entering	your	payment
into	 the	 bank’s	 database.	 Figure	 8.18	 illustrates	 one	 way	 in	 which	 a	 central	 computer	 system	 could
process	these	transactions.

In	the	figure,	the	accounting	clerk	finishes	his	update	before	the	sales	clerk	finishes	hers,	leaving	you
with	a	$300	unpaid	balance.	The	transaction	could	just	as	easily	occur	as	shown	in	Figure	8.19,	where	the
sales	 clerk	 finishes	her	update	 first,	 so	 the	 account	 then	ends	up	with	 a	$0.00	balance	 and	you’ve	 just
gotten	your	stuff	for	free!

Although	getting	free	stuff	probably	would	make	you	happy,	it	is	equally	likely	that	you	would	end	up
paying	 your	 bill	 twice	 (or	 hassling	with	 the	 accounting	 clerk	 until	 your	 records	were	 corrected).	 The
situation	 we	 have	 just	 described	 is	 called	 a	 race	 condition,	 because	 the	 final	 state	 of	 the	 database
depends	not	on	the	correctness	of	the	updates,	but	on	which	transaction	happens	to	finish	last.

Transaction	managers	 prevent	 race	 conditions	 through	 their	 enforcement	 of	 atomicity	 and	 isolation.
They	 do	 this	 by	 placing	 various	 types	 of	 locks	 on	 data	 records.	 In	 our	 example	 in	 Figure	 8.18,	 the
accounting	clerk	should	be	granted	an	“exclusive”	lock	on	your	credit	card	record.	The	lock	is	released
only	 after	 the	 updated	 balance	 is	written	 back	 to	 the	 disk.	While	 the	 accounting	 clerk’s	 transaction	 is
running,	 the	 sales	 clerk	 gets	 a	 message	 saying	 that	 the	 system	 is	 busy.	 When	 the	 update	 has	 been
completed,	the	transaction	manager	releases	the	accounting	clerk’s	lock	and	immediately	places	another
for	the	sales	clerk.	The	corrected	transaction	is	shown	in	Figure	8.20.

FIGURE	8.18	One	Transaction	Scenario

FIGURE	8.19	Another	Transaction	Scenario



There	 is	 some	 risk	with	 this	approach.	Anytime	an	entity	 is	 locked	 in	a	complex	system,	 there	 is	a
potential	for	deadlock.	Systems	can	cleverly	manage	their	locks	to	reduce	the	risk	of	deadlock,	but	each
measure	 taken	 to	prevent	or	 detect	 deadlock	places	more	overhead	on	 the	 system.	With	 too	much	 lock
management,	 transaction	 performance	 suffers.	 In	 general,	 deadlock	 prevention	 and	 detection	 are
secondary	 to	performance	considerations.	Deadlock	situations	happen	rarely,	whereas	performance	 is	a
factor	in	every	transaction.

FIGURE	8.20	An	Isolated,	Atomic	Transaction

Another	 performance	 impediment	 is	 data	 logging.	 During	 the	 course	 of	 updating	 records	 (which
includes	 record	 deletion),	 database	 transaction	managers	write	 images	 of	 the	 transaction	 to	 a	 log	 file.
Hence,	each	update	requires	at	least	two	writes:	one	to	the	primary	file,	and	one	to	the	log	file.	The	log
file	 is	 important	 because	 it	 helps	 the	 system	 maintain	 transaction	 integrity	 if	 the	 transaction	 must	 be
aborted	due	to	an	error.	If,	for	example,	the	database	management	system	captures	an	image	of	the	record
being	 updated	 before	 the	 update	 is	made,	 this	 old	 image	 can	 be	 quickly	written	 back	 to	 disk,	 thereby
erasing	 all	 subsequent	 updates	 to	 the	 record.	 In	 some	 systems,	 both	 “before”	 and	 “after”	 images	 are
captured,	making	error	recovery	relatively	easy.

Database	logs	are	also	useful	as	audit	trails	to	show	who	has	updated	which	files	at	what	time	and
exactly	which	data	elements	were	changed.	Some	cautious	systems	administrators	keep	these	log	files	for
years	in	vaulted	tape	libraries.

Log	files	are	particularly	 important	 tools	for	data	backup	and	recovery.	Some	databases	are	simply
too	large	to	be	backed	up	to	tape	or	optical	disk	every	night—it	takes	too	much	time.	Instead,	full	backups
of	 the	 database	 files	 are	 taken	 only	 once	 or	 twice	 a	week,	 but	 the	 log	 files	 are	 saved	 nightly.	 Should
disaster	strike	sometime	between	these	full	backups,	the	log	files	from	the	other	days’	transactions	would
be	used	for	 forward	recovery,	 rebuilding	each	day’s	 transactions	as	 if	 they	were	rekeyed	by	 the	users
onto	the	full	database	images	taken	days	earlier.

The	 database	 access	 controls	 that	 we	 have	 just	 discussed—security,	 index	 management,	 and	 lock
management—consume	tremendous	system	resources.	In	fact,	this	overhead	was	so	great	on	early	systems
that	 some	 people	 argued	 successfully	 to	 continue	 using	 their	 file-based	 systems,	 because	 their	 host
computers	 could	 not	 handle	 the	 database	 management	 load.	 Even	 with	 today’s	 enormously	 powerful



systems,	throughput	can	suffer	severely	if	the	database	system	isn’t	properly	tuned	and	maintained.	High-
volume	 transaction	 environments	 are	 often	 attended	 to	 by	 systems	 programmers	 and	 database	 analysts
whose	sole	job	is	to	keep	the	system	working	at	optimal	performance.

8.7			TRANSACTION	MANAGERS
One	way	to	improve	database	performance	is	to	simply	ask	the	database	to	do	less	work	by	moving	some
of	 its	 functions	 to	 other	 system	 components.	 Transaction	management	 is	 one	 database	 component	 often
partitioned	 from	 the	 core	 data	 management	 functions	 of	 a	 database	 management	 system.	 Standalone
transaction	managers	 also	 typically	 incorporate	 load	 balancing	 and	other	 optimization	 features	 that	 are
unsuitable	for	inclusion	in	core	database	software,	thus	improving	the	effectiveness	of	the	entire	system.
Transaction	 managers	 are	 particularly	 useful	 when	 business	 transactions	 span	 two	 or	 more	 separate
databases.	None	of	the	participating	databases	can	be	responsible	for	the	integrity	of	their	peer	databases,
but	an	external	transaction	manager	can	keep	all	of	them	in	synch.

One	of	 the	earliest	 and	most	 successful	 transaction	managers	was	 IBM’s	Customer	 Information	and
Control	System	(CICS).	CICS	has	been	around	for	well	over	four	decades,	coming	on	the	market	in	1968.
CICS	 is	 noteworthy	 because	 it	 was	 the	 first	 system	 to	 integrate	 transaction	 processing	 (TP),	 database
management,	and	communications	management	within	a	single	applications	suite.	Yet	the	components	of
CICS	were	 (and	 still	 are)	 loosely	 coupled	 to	 enable	 tuning	 and	management	 of	 each	 component	 as	 a
separate	 entity.	 The	 communications	 management	 component	 of	 CICS	 controls	 interactions,	 called
conversations,	 between	 dumb	 terminals	 and	 a	 host	 system.	 Freed	 from	 the	 burdens	 of	 protocol
management,	the	database	and	the	application	programs	do	their	jobs	more	effectively.

CICS	was	one	of	the	first	application	systems	to	employ	remote	procedure	calls	within	a	client-server
environment.	In	its	contemporary	incarnation,	CICS	can	manage	transaction	processing	between	thousands
of	 Internet	 users	 and	 large	 host	 systems.	 But	 even	 today,	 CICS	 strongly	 resembles	 its	 1960s-vintage
architecture,	which	has	become	the	paradigm	for	virtually	every	transaction	processing	system	invented
since.	The	modern	CICS	architecture	is	shown	schematically	in	Figure	8.21.

As	you	see	from	the	diagram,	a	program	called	the	transaction	processing	monitor	(TP	monitor)	is
the	 pivotal	 component	 of	 the	 system.	 It	 accepts	 input	 from	 the	 telecommunications	 manager	 and
authenticates	 the	 transaction	 against	 data	 files	 containing	 lists	 of	 which	 users	 are	 authorized	 to	 which
transactions.	 Sometimes	 this	 security	 information	 includes	 specific	 information	 such	 as	 defining	which
locations	 can	 run	 particular	 transactions	 (intranet	 versus	 Internet,	 for	 example).	 Once	 the	monitor	 has
authenticated	 the	 transaction,	 it	 initiates	 the	 application	 program	 requested	 by	 the	 user.	When	 data	 is
needed	by	the	application,	the	TP	monitor	sends	a	request	to	the	database	management	software.	It	does
all	of	this	while	maintaining	atomicity	and	isolation	among	many	concurrent	application	processes.

You	may	already	be	thinking	that	there	should	be	no	reason	that	all	of	these	TP	software	components
would	have	to	reside	on	the	same	host	computer.	Indeed,	there	is	no	reason	to	keep	them	together.	Some
distributed	 architectures	 dedicate	 groups	 of	 small	 servers	 to	 running	 TP	 monitors.	 These	 systems	 are
physically	distinct	from	the	systems	containing	the	database	management	software.	There	is	also	no	need
for	systems	running	the	TP	monitors	 to	be	the	same	class	of	system	as	 the	systems	running	the	database
software.	For	example,	you	could	have	Sun	Unix	RISC	systems	 for	communications	management	and	a
Unisys	 ES/7000	 running	 the	 database	 software	 under	 the	 Windows	 Datacenter	 operating	 system.
Transactions	 would	 be	 entered	 through	 desktop	 or	 mobile	 personal	 computers.	 This	 configuration	 is
known	as	a	3-tiered	architecture,	with	each	platform	representing	one	of	the	tiers,	with	the	general	case



being	an	n-tiered,	or	multitiered,	architecture.	With	the	advent	of	Web	computing	and	e-commerce,	n-
tiered	TP	architectures	are	becoming	increasingly	popular.	Many	vendors,	including	Microsoft,	Netscape,
Sybase,	 SAP	 AG,	 and	 IBM’s	 CICS,	 have	 been	 successful	 in	 supporting	 various	 n-tiered	 transaction
systems.	Of	 course,	 it	 is	 impossible	 to	 say	which	 of	 these	 is	 “better”	 for	 a	 particular	 enterprise,	 each
having	its	own	advantages	and	disadvantages.	The	prudent	systems	architect	keeps	all	cost	and	reliability
factors	in	mind	when	designing	a	TP	system	before	deciding	which	architecture	makes	the	most	sense	for
any	particular	environment.

FIGURE	8.21	The	Architecture	of	CICS

CHAPTER	SUMMARY
This	chapter	has	described	the	mutual	dependence	of	computer	hardware	and	software.	System	software
works	 in	 concert	 with	 system	 hardware	 to	 create	 a	 functional	 and	 efficient	 system.	 System	 software,
including	operating	systems	and	application	software,	is	an	interface	between	the	user	and	the	hardware,
allowing	 the	 low-level	 architecture	 of	 a	 computer	 to	 be	 treated	 abstractly.	 This	 gives	 users	 an
environment	in	which	they	can	concentrate	on	problem	solving	rather	than	system	operations.

The	 interaction	 and	 deep	 interdependence	 between	 hardware	 and	 software	 is	 most	 evident	 in
operating	system	design.	In	their	historical	development,	operating	systems	started	with	an	“open	shop”
approach,	 then	 changed	 to	 an	 operator-driven	 batch	 approach,	 and	 then	 evolved	 to	 support	 interactive
multiprogramming	 and	 distributed	 computing.	 Modern	 operating	 systems	 provide	 a	 user	 interface	 in
addition	 to	 an	 assortment	 of	 services,	 including	 memory	 management,	 process	 management,	 general
resource	management,	scheduling,	and	protection.



Knowledge	 of	 operating	 system	 concepts	 is	 critical	 to	 every	 computer	 professional.	 Virtually	 all
system	 activity	 ties	 back	 to	 the	 services	 of	 the	 operating	 system.	When	 the	 operating	 system	 fails,	 the
entire	system	fails.	You	should	realize,	however,	that	not	all	computers	have	or	need	operating	systems.
This	is	particularly	true	of	embedded	systems,	as	we	shall	see	in	Chapter	10.	The	computer	in	your	car	or
microwave	 has	 such	 simple	 tasks	 to	 perform	 that	 an	 operating	 system	 is	 not	 necessary.	 However,	 for
computers	that	go	beyond	the	simplistic	task	of	running	a	single	program,	operating	systems	are	mandatory
for	efficiency	and	ease	of	use.	Operating	systems	are	one	of	many	examples	of	 large	software	systems.
Their	study	provides	valuable	lessons	applicable	to	software	development	in	general.	For	these	reasons
and	many	others,	we	heartily	encourage	further	exploration	of	operating	systems	design	and	development.

Assemblers	 and	 compilers	 provide	 the	 means	 by	 which	 human-readable	 computer	 languages	 are
translated	 into	 the	 binary	 form	 suitable	 for	 execution	 by	 a	 computer.	 Interpreters	 also	 produce	 binary
code,	but	the	code	is	generally	not	as	fast	or	efficient	as	that	which	is	generated	by	an	assembler.

The	 Java	 programming	 language	 produces	 code	 that	 is	 interpreted	 by	 a	 virtual	 machine	 situated
between	its	bytecode	and	the	operating	system.	Java	code	runs	more	slowly	than	binary	programs,	but	it	is
portable	to	a	wide	array	of	platforms.

Database	 system	 software	 controls	 access	 to	 data	 files,	 often	 through	 the	 services	 of	 a	 transaction
processing	 system.	 The	 ACID	 properties	 of	 a	 database	 system	 ensure	 that	 the	 data	 is	 always	 in	 a
consistent	state.

Building	 large,	 reliable	 systems	 is	 a	major	 challenge	 facing	 computer	 science	 today.	 By	 now,	 you
understand	that	a	computer	system	is	much	more	than	hardware	and	programs.	Enterprise-class	systems
are	aggregations	of	interdependent	processes,	each	with	its	own	purpose.	The	failure	or	poor	performance
of	any	of	these	processes	will	have	a	damaging	effect	on	the	entire	system—if	only	in	the	perception	of	its
users.	 As	 you	 continue	 along	 in	 your	 career	 and	 education,	 you	will	 study	many	 of	 the	 topics	 of	 this
chapter	in	more	detail.	If	you	are	a	systems	administrator	or	systems	programmer,	you	will	master	these
ideas	as	they	apply	in	the	context	of	a	particular	operating	environment.

No	matter	how	clever	we	are	 in	writing	our	programs,	we	can	do	 little	 to	compensate	for	 the	poor
performance	of	any	of	 the	system	components	on	which	our	programs	rely.	We	 invite	you	 to	delve	 into
Chapter	11,	where	we	present	a	more	detailed	study	of	system	performance	issues.

FURTHER	READING
The	most	 interesting	material	 in	 the	 area	of	 system	software	 is	 that	which	accompanies	 certain	vendor
products.	In	fact,	you	can	often	judge	the	quality	of	a	vendor’s	product	by	the	quality	and	care	with	which
the	documentation	is	prepared.	A	visit	to	a	vendor’s	website	may	sometimes	reward	you	with	a	first-rate
presentation	of	the	theoretical	basis	for	their	products.	Two	of	the	best	vendor	websites	at	this	writing	are
those	of	IBM	and	Sun:	www.software.ibm.com	and	java.sun.com.	If	you	persevere,	undoubtedly,	you	will
find	others.

Hall’s	(1994)	book	on	client-server	systems	provides	an	excellent	introduction	to	client-server	theory.
It	explores	a	number	of	products	that	were	popular	when	the	book	was	written.

Stallings	(2012),	Tanenbaum	and	Woodhull	 (2006),	and	Silberschatz,	Galvin,	and	Gagne	(2009)	all
provide	excellent	coverage	of	the	operating	systems	concepts	introduced	in	this	chapter,	as	well	as	more
advanced	topics.	Stallings	includes	detailed	examples	of	various	operating	systems	and	their	relationship
to	 the	 actual	 hardware	 of	 the	machine.	An	 illuminating	 account	 of	 the	 development	 of	OS/360	 can	 be
found	in	Brooks	(1995).

Gorsline’s	(1988)	assembly	book	offers	one	of	the	better	treatments	of	how	assemblers	work.	He	also

http://www.software.ibm.com
http://java.sun.com


delves	 into	 the	 details	 of	 linking	 and	 macro	 assembly.	 Aho,	 Sethi,	 and	 Ullman	 (1986)	 wrote	 “the
definitive”	 compiler	 book.	 Often	 called	 “The	 Dragon	 Book”	 because	 of	 its	 cover	 illustration,	 it	 has
remained	 in	 print	 for	 nearly	 two	 decades	 because	 of	 its	 clear,	 comprehensive	 coverage	 of	 compiler
theory.	Every	serious	computer	scientist	should	have	this	book	nearby.

The	May	2005	issue	of	IEEE	Computer	is	devoted	to	virtualization	technologies.	The	article	by	Smith
and	Nair	is	especially	recommended.	Rosenblum	and	Garfinkel	provide	an	interesting	discussion	of	the
challenges	faced	in	the	design	of	virtual	machine	monitors	from	a	historical	viewpoint.

There	 are	 very	 few	 server	 farms	 that	 haven’t	 adopted	 some	 manner	 of	 consolidation	 and
virtualization.	Virtualized	server	operating	systems	 is	a	 lucrative	niche	market.	To	 learn	more,	you	can
visit	 the	 websites	 of	 the	 leading	 VM	 software	 providers,	 including	 Citrix	 (Citrix.com),	 VMWare
(vmware.com),	Microsoft	(microsoft.com/hyper-v-server),	and	IBM	(ibm.com).

Sun	Microsystems	is	the	primary	source	for	anything	concerning	the	Java	language.	Addison-Wesley
publishes	 a	 series	 of	 books	 detailing	 Java’s	 finer	 points.	The	 Java	 Virtual	Machine	 Specification	 by
Lindholm	and	Yellin	(1999)	is	one	of	the	books	in	the	series.	It	will	supply	you	with	some	of	the	specifics
of	class	file	construction	that	we	glossed	over	in	this	introductory	material.	Lindholm	and	Yellin’s	book
also	 includes	 a	 complete	 listing	 of	 Java	 bytecode	 instructions	with	 their	 binary	 equivalents.	A	 careful
study	of	this	work	will	certainly	give	you	a	new	perspective	on	the	language.

Although	somewhat	dated,	Gray	and	Reuter’s	 (1993)	 transaction	processing	book	 is	comprehensive
and	easy	to	read.	It	will	give	you	a	good	foundation	for	further	studies	in	this	area.	A	highly	regarded	and
comprehensive	 treatment	 of	 database	 theory	 and	 applications	 can	 be	 found	 in	 Silberschatz,	Korth,	 and
Sudarshan	(2010).

REFERENCES
Aho,	A.	V.,	Sethi,	R.,	&	Ullman,	J.	D.	Compilers:	Principles,	Techniques,	and	Tools.	Reading,	MA:

Addison-Wesley,	1986.
Brooks,	F.	The	Mythical	Man-Month.	Reading,	MA:	Addison-Wesley,	1995.
Gorsline,	G.	W.	Assembly	and	Assemblers:	The	Motorola	MC68000	Family.	Englewood	Cliffs,	NJ:

Prentice	Hall,	1988.
Gray,	J.,	&	Reuter,	A.	Transaction	Processing:	Concepts	and	Techniques.	San	Mateo,	CA:	Morgan

Kaufmann,	1993.
Hall,	C.	Technical	Foundations	of	Client/Server	Systems.	New	York:	Wiley,	1994.
Lindholm,	T.,	&	Yellin,	F.	The	Java	Virtual	Machine	Specification,	2nd	ed.	Reading,	MA:	Addison-

Wesley,	1999.
Rosenblum,	M.,	&	Garfinkel,	T.	“Virtual	Machine	Monitors:	Current	Technology	and	Future	Trends.”

IEEE	Computer	38:5,	May	2005,	pp.	39–47.
Silberschatz,	A.,	Galvin,	P.,	&	Gagne,	G.	Operating	System	Concepts,	8th	ed.	Reading,	MA:	Addison-

Wesley,	2009.
Silberschatz,	A.,	Korth,	H.	F.,	&	Sudarshan,	S.	Database	System	Concepts,	6th	ed.	Boston,	MA:

McGraw-Hill,	2010.
Smith,	J.	E.,	&	Nair,	R.	“The	Architecture	of	Virtual	Machines.”	IEEE	Computer	38:5,	May	2005,	pp.

32–38.
Stallings,	W.	Operating	Systems,	7th	ed.	New	York:	Macmillan	Publishing	Company,	2012.

http://Citrix.com
http://vmware.com
http://microsoft.com
http://ibm.com


Tanenbaum,	A.,	&	Woodhull,	A.	Operating	Systems,	Design	and	Implementation,	3rd	ed.	Englewood
Cliffs,	NJ:	Prentice	Hall,	2006.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS

1.		What	was	the	main	objective	of	early	operating	systems	as	compared	to	the	goals	of	today’s	systems?
2.		What	improvements	to	computer	operations	were	brought	about	by	resident	monitors?
3.		With	regard	to	printer	output,	how	was	the	word	spool	derived?
4.		Describe	how	multiprogramming	systems	differ	from	timesharing	systems.
5.		What	is	the	most	critical	factor	in	the	operation	of	hard	real-time	systems?
6.	 	 Multiprocessor	 systems	 can	 be	 classified	 by	 the	 way	 in	 which	 they	 communicate.	 How	 are	 they

classified	in	this	chapter?
7.		How	is	a	distributed	operating	system	different	from	a	networked	operating	system?
8.		What	is	meant	by	transparency?
9.		Describe	the	two	divergent	philosophies	concerning	operating	system	kernel	design.
10.		What	are	the	benefits	and	drawbacks	to	a	GUI	operating	system	interface?
11.		How	is	long-term	process	scheduling	different	from	short-term	process	scheduling?
12.		What	is	meant	by	preemptive	scheduling?
13.		Which	method	of	process	scheduling	is	most	useful	in	a	timesharing	environment?
14.		Which	process	scheduling	method	is	provably	optimal?
15.		Describe	the	steps	involved	in	performing	a	context	switch.
16.		Besides	process	management,	what	are	the	other	two	important	functions	of	an	operating	system?
17.		What	is	an	overlay?	Why	are	overlays	no	longer	needed	in	large	computer	systems?
18.		The	operating	system	and	a	user	program	hold	two	different	perceptions	of	a	virtual	machine.	Explain

how	they	differ.
19.		What	is	the	difference	between	a	subsystem	and	a	logical	partition?
20.	 	 Name	 some	 advantages	 of	 server	 consolidation.	 Is	 server	 consolidation	 a	 good	 idea	 for	 every

enterprise?
21.	 	Describe	the	programming	language	hierarchy.	Why	is	a	triangle	a	suitable	symbol	for	representing

this	hierarchy?
22.		How	does	absolute	code	differ	from	relocatable	code?
23.		What	is	the	purpose	of	a	link	editor?	How	is	it	different	from	a	dynamic	link	library?
24.		Describe	the	purpose	of	each	phase	of	a	compiler.
25.		How	does	an	interpreter	differ	from	a	compiler?
26.		What	is	the	salient	feature	of	the	Java	programming	language	that	provides	for	its	portability	across

disparate	hardware	environments?
27.	 	Assemblers	produce	machine	code	 that	 is	 executable	after	 it	has	been	 link	edited.	 Java	compilers



produce	_________	that	is	interpreted	during	its	execution.
28.		What	is	a	magic	number	that	identifies	a	Java	class	file?
29.		How	is	a	logical	database	schema	different	from	a	physical	database	schema?
30.		Which	data	structure	is	most	commonly	used	to	index	databases?
31.		Why	are	database	reorganizations	necessary?
32.		Explain	the	ACID	properties	of	a	database	system.
33.		What	is	a	race	condition?
34.		Database	logs	serve	two	purposes.	What	are	they?
35.		What	services	do	transaction	managers	provide?

EXERCISES
1.		What	do	you	feel	are	the	limitations	of	a	computer	that	has	no	operating	system?	How	would	a	user

load	and	execute	a	program?
2.	 	 Microkernels	 attempt	 to	 provide	 as	 small	 a	 kernel	 as	 possible,	 putting	 much	 of	 the	 operating

system	support	into	additional	modules.	What	do	you	feel	are	the	minimum	services	that	the	kernel
must	provide?

3.	 	 If	 you	were	writing	 code	 for	 a	 real-time	operating	 system,	what	 restrictions	might	 you	want	 to
impose	 on	 the	 system?	 Hint:	 Think	 about	 the	 types	 of	 things	 that	 cause	 unpredictable	 reaction
times.	(How	might	a	memory	access	be	delayed,	for	example?)

4.	 	What	 is	 the	 difference	 between	multiprogramming	 and	multiprocessing?	Multiprogramming	 and
multithreading?

	 5.	 	 Under	 what	 circumstances	 is	 it	 desirable	 to	 collect	 groups	 of	 processes	 and	 programs	 into
subsystems	 running	 on	 a	 large	 computer?	 What	 advantages	 would	 there	 be	 to	 creating	 logical
partitions	on	this	system?

6.	 	What	 advantages	 would	 there	 be	 to	 using	 both	 subsystems	 and	 logical	 partitions	 on	 the	 same
machine?

	7.	 	 When	 is	 it	 appropriate	 to	 use	 nonrelocatable	 binary	 program	 code?	Why	 is	 relocatable	 code
preferred?

8.		Suppose	there	were	no	such	thing	as	relocatable	program	code.	How	would	the	process	of	memory
paging	be	made	more	complex?

	9.		Discuss	the	advantages	and	disadvantages	of	dynamic	linking.
10.		What	problems	does	an	assembler	have	to	overcome	in	order	to	produce	complete	binary	code	in

one	pass	over	the	source	file?	How	would	code	written	for	a	one-pass	assembler	be	different	from
code	written	for	a	two-pass	assembler?

11.	 	 Why	 should	 assembly	 language	 be	 avoided	 for	 general	 application	 development?	 Under	 what
circumstances	is	assembly	language	preferred	or	required?

12.	 	 Under	 what	 circumstances	 would	 you	 argue	 in	 favor	 of	 using	 assembly	 language	 code	 for
developing	an	application	program?



13.	 	 What	 are	 the	 advantages	 of	 using	 a	 compiled	 language	 over	 an	 interpreted	 one?	 Under	 what
circumstances	would	you	choose	to	use	an	interpreted	language?

14.		Discuss	the	following	questions	relative	to	compilers:
a)		Which	phase	of	a	compiler	would	give	you	a	syntax	error?
b)		Which	phase	complains	about	undefined	variables?
c)	 	 If	you	try	 to	add	an	 integer	 to	a	character	string,	which	compiler	phase	would	emit	 the	error

message?
15.		Why	is	the	execution	environment	of	a	Java	class	called	a	virtual	machine?	How	does	this	virtual

machine	compare	to	a	real	machine	running	code	written	in	C?
16.		Why	do	you	suppose	the	method	area	of	a	JVM	is	global	to	all	of	the	threads	running	in	the	virtual

machine	environment?
17.		We	stated	that	only	one	method	at	a	time	can	be	active	within	each	thread	running	in	the	JVM.	Why

do	you	think	this	is	the	case?
18.		The	Java	bytecode	for	access	to	the	local	variable	array	for	a	class	is	at	most	two	bytes	long.	One

byte	is	used	for	the	opcode;	the	other	indicates	the	offset	into	the	array.	How	many	variables	can
be	held	in	the	local	variable	array?	What	do	you	think	happens	when	this	number	is	exceeded?

	19.	 	 Java	 is	 called	 an	 interpreted	 language,	 yet	 Java	 is	 a	 compiled	 language	 that	 produces	 a	 binary
output	stream.	Explain	how	this	language	can	be	both	compiled	and	interpreted.

20.		We	stated	that	the	performance	of	a	Java	program	running	in	the	JVM	cannot	possibly	match	that	of
a	regular	compiled	language.	Explain	why	this	is	so.

	21.		Answer	the	following	with	respect	to	database	processing:
a)		What	is	a	race	condition?	Give	an	example.
b)		How	can	race	conditions	be	prevented?
c)		What	are	the	risks	in	race	condition	prevention?

22.	 	 In	 what	 ways	 are	 n-tiered	 transaction	 processing	 architectures	 superior	 to	 single-tiered
architectures?	Which	usually	costs	more?

23.	 	 To	 improve	 performance,	 your	 company	 has	 decided	 to	 replicate	 its	 product	 database	 across
several	servers	so	 that	not	all	 transactions	go	 through	a	single	system.	What	sorts	of	 issues	will
need	to	be	considered?

24.		We	said	that	the	risk	of	deadlock	is	always	present	anytime	a	system	resource	is	locked.	Describe
a	way	in	which	deadlock	can	occur.

*25.	 	 Research	 various	 command	 line	 interfaces	 (such	 as	 Unix,	 MS-DOS,	 and	 VMS)	 and	 different
windows	interfaces	(such	as	any	Microsoft	Windows	product,	MacOS,	and	KDE).
a)	 	Consider	some	of	 the	major	commands,	such	as	getting	a	directory	 listing,	deleting	a	file,	or

changing	 directories.	 Explain	 how	 each	 of	 these	 commands	 is	 implemented	 on	 the	 various
operating	systems	you	studied.

b)		List	and	explain	some	of	the	commands	that	are	easier	using	a	command	line	interface	versus
using	a	GUI.	List	and	explain	some	of	the	commands	that	are	easier	using	a	GUI	versus	using	a
command	line	interface.



c)		Which	type	of	interface	do	you	prefer?	Why?



Quality	is	never	an	accident;	it	is	always	the	result	of	intelligent	effort.

—John	Ruskin

It	would	appear	that	we	have	reached	the	limits	of	what	it	is	possible	to	achieve	with
computer	technology,	although	one	should	be	careful	with	such	statements,	as	they	tend	to
sound	pretty	silly	in	5	years.

—John	von	Neumann,	1949.
Reprinted	by	permission

of	Marina	von	Neumann	Whitman.

CHAPTER	9



Alternative	Architectures

9.1			INTRODUCTION
Our	 previous	 chapters	 have	 featured	 excursions	 into	 the	 background	 of	 computing	 technology.	 The
presentations	 have	 been	 distinctly	 focused	 on	 uniprocessor	 systems	 from	 a	 computer	 science
practitioner’s	 point	 of	 view.	 We	 hope	 you	 have	 gained	 an	 understanding	 of	 the	 functions	 of	 various
hardware	 components	 and	 can	 see	 how	 each	 contributes	 to	 overall	 system	 performance.	 This
understanding	is	vital	not	only	to	hardware	design,	but	also	to	efficient	algorithm	implementation.	Most
people	gain	familiarity	with	computer	hardware	 through	their	experiences	with	personal	computers	and
workstations.	 This	 leaves	 one	 significant	 area	 of	 computer	 architecture	 untouched:	 that	 of	 alternative
architectures.	Therefore,	 the	 focus	of	 this	 chapter	 is	 to	 introduce	you	 to	 a	 few	of	 the	 architectures	 that
transcend	the	classical	von	Neumann	approach.

This	 chapter	 discusses	 RISC	machines,	 architectures	 that	 exploit	 instruction-level	 parallelism,	 and
multiprocessing	 architectures	 (with	 a	 brief	 introduction	 to	 parallel	 processing).	 We	 begin	 with	 the
notorious	RISC-versus-CISC	debate	to	give	you	an	idea	of	the	differences	between	these	two	ISAs	and
their	 relative	 advantages	 and	 disadvantages.	 We	 then	 provide	 a	 taxonomy	 by	 which	 the	 various
architectures	may	be	classified,	with	a	view	as	to	how	the	parallel	architectures	fit	into	the	classification.
Next,	 we	 consider	 topics	 relevant	 to	 instruction-level	 parallel	 architectures,	 emphasizing	 superscalar
architectures	 and	 reintroducing	 EPIC	 (explicitly	 parallel	 instruction	 computers).	 We	 then	 look	 at
alteratives	 to	 RISC	 and	 CISC	 by	 revisting	 VLIW	 (which	 uses	 instruction-level	 parallelism)	 and
introducing	 vector	 processors.	 Finally,	we	 provide	 a	 brief	 introduction	 to	multiprocessor	 systems	 and
some	 alternative	 approaches	 to	 parallelism,	 including	 systolic	 arrays,	 dataflow	 computing,	 neural
networks,	and	quantum	computing.

Computer	hardware	designers	began	to	reevaluate	various	architectural	principles	in	the	early	1980s.
The	first	 target	of	 this	 reevaluation	was	 the	 instruction	set	architecture.	The	designers	wondered	why	a
machine	needed	an	extensive	set	of	complex	instructions	when	only	about	20%	of	the	instructions	were
used	most	of	the	time.	This	question	led	to	the	development	of	RISC	machines,	which	we	first	introduced
in	Chapters	4	and	5,	and	to	which	we	now	devote	an	entire	section	of	this	chapter.	The	pervasiveness	of
RISC	designs	 has	 led	 to	 a	 unique	marriage	 of	CISC	 and	RISC.	Many	 architectures	 now	 employ	RISC
cores	to	implement	CISC	architectures.

Chapters	4	and	5	described	how	new	architectures,	 such	 as	VLIW,	EPIC,	 and	multiprocessors,	 are
taking	 over	 a	 large	 percentage	 of	 the	 hardware	 market.	 The	 invention	 of	 architectures	 exploiting
instruction-level	 parallelism	 has	 led	 to	 techniques	 that	 accurately	 predict	 the	 outcome	 of	 branches	 in
program	code	before	the	code	is	executed.	Prefetching	instructions	based	on	these	predictions	has	greatly
increased	computer	performance.	 In	addition	 to	predicting	 the	next	 instruction	 to	 fetch,	high	degrees	of
instruction-level	parallelism	have	given	rise	to	ideas	such	as	speculative	execution,	where	the	processor
guesses	the	value	of	a	result	before	it	has	actually	been	calculated.

The	subject	of	alternative	architectures	also	includes	multiprocessor	systems.	For	these	architectures,
we	return	to	the	lesson	we	learned	from	our	ancestors	and	the	friendly	ox.	If	we	are	using	an	ox	to	pull	out
a	 tree,	 and	 the	 tree	 is	 too	 large,	 we	 don’t	 try	 to	 grow	 a	 bigger	 ox.	 Instead,	 we	 use	 two	 oxen.



Multiprocessing	architectures	are	analogous	to	the	oxen.	We	need	them	if	we	are	to	budge	the	stumps	of
intractable	 problems.	However,	multiprocessor	 systems	present	 us	with	unique	 challenges,	 particularly
with	respect	to	cache	coherence	and	memory	consistency.

We	note	that	although	some	of	these	alternative	architectures	are	taking	hold,	their	real	advancement	is
dependent	 on	 their	 incremental	 cost.	 Currently,	 the	 relationship	 between	 the	 performance	 delivered	 by
advanced	 systems	 and	 their	 cost	 is	 nonlinear,	 with	 the	 cost	 far	 exceeding	 performance	 gains	 in	 most
situations.	 This	makes	 it	 cost-prohibitive	 to	 integrate	 these	 architectures	 into	mainstream	 applications.
Alternative	 architectures	 do	 have	 their	 place	 in	 the	 market,	 however.	 Highly	 numerical	 science	 and
engineering	applications	demand	machines	that	outperform	standard	uniprocessor	systems.	For	computers
in	this	league,	cost	is	usually	not	an	issue.

As	you	 read	 this	chapter,	keep	 in	mind	 the	previous	computer	generations	 introduced	 in	Chapter	 1.
Many	 people	 believe	 we	 have	 entered	 a	 new	 generation	 based	 on	 these	 alternative	 architectures,
particularly	in	the	area	of	parallel	processing.

9.2			RISC	MACHINES
We	introduced	RISC	architectures	in	the	context	of	some	example	systems	in	Chapter	4.	RISC	is	not	so
much	an	architecture	as	it	is	a	design	philosophy.	Recall	that	RISC	machines	are	so	named	because	they
originally	offered	a	smaller	instruction	set	as	compared	to	CISC	machines.	As	RISC	machines	were	being
developed,	the	term	“reduced”	became	somewhat	of	a	misnomer,	and	is	even	more	so	now.	The	original
idea	 was	 to	 provide	 a	 set	 of	 minimal	 instructions	 that	 could	 carry	 out	 all	 essential	 operations:	 data
movement,	 ALU	 operations,	 and	 branching.	 Only	 explicit	 load	 and	 store	 instructions	 were	 permitted
access	to	memory.

Complex	instruction	set	designs	were	motivated	by	the	high	cost	of	memory.	Having	more	complexity
packed	 into	 each	 instruction	meant	 that	 programs	 could	 be	 smaller,	 thus	 occupying	 less	 storage.	When
memory	was	small,	it	was	important	to	have	small	programs,	so	CISC	dominated	as	a	natural	outgrowth
of	computer	 technology	at	 the	 time.	CISC	ISAs	employ	variable-length	 instructions,	keeping	 the	simple
instructions	 short,	 while	 also	 allowing	 for	 longer,	 more	 complicated	 instructions.	 Additionally,	 CISC
architectures	include	a	large	number	of	instructions	that	directly	access	memory.	So	what	we	have	at	this
point	is	a	dense,	powerful,	variable-length	set	of	instructions,	which	results	in	a	varying	number	of	clock
cycles	 per	 instruction.	 Some	 complex	 instructions,	 particularly	 those	 instructions	 that	 access	 memory,
require	hundreds	of	cycles.	In	certain	circumstances,	computer	designers	have	found	it	necessary	to	slow
down	 the	 system	 clock	 (making	 the	 interval	 between	 clock	 ticks	 larger)	 to	 allow	 sufficient	 time	 for
instructions	to	complete.	This	all	adds	up	to	longer	execution	time.

Human	 languages	 exhibit	 some	of	 the	 qualities	 of	RISC	 and	CISC	 and	 serve	 as	 a	 good	 analogy	 to
understand	the	differences	between	the	two.	Suppose	you	have	a	Chinese	pen	pal.	Let’s	assume	that	each
of	 you	 speak	 and	write	 fluently	 in	 both	 English	 and	Chinese.	 You	 both	wish	 to	 keep	 the	 cost	 of	 your
correspondence	at	a	minimum,	although	you	both	enjoy	sharing	long	letters.	You	have	a	choice	between
using	expensive	airmail	paper,	which	will	 save	considerable	postage,	or	using	plain	paper	 and	paying
extra	for	stamps.	A	third	alternative	is	to	pack	more	information	onto	each	written	page.

As	 compared	 to	 the	Chinese	 language,	English	 is	 simple	but	 verbose.	Chinese	 characters	 are	more
complex	than	English	words,	and	what	might	require	200	English	letters	might	require	only	20	Chinese
characters.	 Corresponding	 in	 Chinese	 requires	 fewer	 symbols,	 saving	 on	 both	 paper	 and	 postage.
However,	 reading	 and	 writing	 Chinese	 requires	 more	 effort,	 because	 each	 symbol	 contains	 more



information.	 The	English	words	 are	 analogous	 to	RISC	 instructions,	whereas	 the	Chinese	 symbols	 are
analogous	 to	 CISC	 instructions.	 For	 most	 English-speaking	 people,	 “processing”	 the	 letter	 in	 English
would	take	less	time,	but	would	also	require	more	physical	resources.

Although	many	sources	tout	RISC	as	a	new	and	revolutionary	design,	its	seeds	were	sown	in	the	mid-
1970s	 through	 the	 work	 of	 IBM’s	 John	 Cocke.	 Cocke	 started	 building	 his	 experimental	 Model	 801
mainframe	 in	1975.	This	system	initially	 received	 little	attention,	 its	details	being	disclosed	only	many
years	later.	In	the	interim,	David	Patterson	and	David	Ditzel	published	their	widely	acclaimed	“Case	for
a	Reduced	Instruction	Set	Computer”	in	1980.	This	paper	gave	birth	to	a	radically	new	way	of	thinking
about	 computer	 architecture	 and	 brought	 the	 acronyms	CISC	 and	RISC	 into	 the	 lexicon	 of	 computer
science.	The	new	architecture	proposed	by	Patterson	and	Ditzel	advocated	simple	instructions,	all	of	the
same	 length.	Each	 instruction	would	perform	 less	work,	but	 the	 time	 required	 for	 instruction	execution
would	be	constant	and	predictable.

Support	 for	 RISC	machines	 came	 by	way	 of	 programming	 observations	 on	CISC	machines.	 These
studies	 revealed	 that	 data	movement	 instructions	 accounted	 for	 approximately	 45%	 of	 all	 instructions,
ALU	operations	 (including	 arithmetic,	 comparison,	 and	 logical)	 accounted	 for	 25%,	 and	branching	 (or
flow	 control)	 amounted	 to	 30%.	 Although	 many	 complex	 instructions	 existed,	 few	 were	 used.	 This
finding,	 coupled	with	 the	 advent	 of	 cheaper	 and	more	 plentiful	memory,	 and	 the	 development	 of	VLSI
technology,	led	to	a	different	type	of	architecture.	Cheaper	memory	meant	that	programs	could	use	more
storage.	Larger	programs	 consisting	of	 simple,	 predictable	 instructions	 could	 replace	 shorter	 programs
consisting	 of	 complicated	 and	 variable-length	 instructions.	 Simple	 instructions	would	 allow	 the	 use	 of
shorter	 clock	 cycles.	 In	 addition,	 having	 fewer	 instructions	 would	 mean	 that	 fewer	 transistors	 were
needed	on	the	chip.	Fewer	transistors	translated	to	cheaper	manufacturing	costs	and	more	chip	real	estate
available	 for	 other	 uses.	 Instruction	 predictability	 coupled	 with	 VLSI	 advances	 would	 allow	 various
performance-enhancing	tricks,	such	as	pipelining,	to	be	implemented	in	hardware.	CISC	does	not	provide
this	diverse	array	of	performance-enhancement	opportunities.

We	 can	 quantify	 the	 differences	 between	 RISC	 and	 CISC	 using	 the	 basic	 computer	 performance
equation	as	follows:

Computer	performance,	as	measured	by	program	execution	 time,	 is	directly	proportional	 to	clock	cycle
time,	the	number	of	clock	cycles	per	instruction,	and	the	number	of	instructions	in	the	program.	Shortening
the	clock	cycle,	when	possible,	results	in	improved	performance	for	RISC	as	well	as	CISC.	Otherwise,
CISC	 machines	 increase	 performance	 by	 reducing	 the	 number	 of	 instructions	 per	 program.	 RISC
computers	minimize	 the	 number	 of	 cycles	 per	 instruction.	Yet	 both	 architectures	 can	 produce	 identical
results	in	approximately	the	same	amount	of	time.	At	the	gate	level,	both	systems	perform	an	equivalent
quantity	of	work.	So	what’s	going	on	between	the	program	level	and	the	gate	level?

CISC	machines	 rely	 on	microcode	 to	 tackle	 instruction	 complexity.	Microcode	 tells	 the	 processor
how	 to	 execute	 each	 instruction.	 For	 performance	 reasons,	microcode	 is	 compact	 and	 efficient,	 and	 it
certainly	 must	 be	 correct.	 Microcode	 efficiency,	 however,	 is	 limited	 by	 variable-length	 instructions,
which	slow	the	decoding	process,	and	a	varying	number	of	clock	cycles	per	instruction,	which	makes	it
difficult	 to	 implement	 instruction	 pipelines.	 Moreover,	 microcode	 interprets	 each	 instruction	 as	 it	 is
fetched	 from	memory.	This	additional	 translation	process	 takes	 time.	The	more	complex	 the	 instruction
set,	the	more	time	it	takes	to	look	up	the	instruction	and	engage	the	hardware	suitable	for	its	execution.

RISC	architectures	take	a	different	approach.	Most	RISC	instructions	execute	in	one	clock	cycle.	To



accomplish	this	speedup,	microprogrammed	control	is	replaced	by	hardwired	control,	which	is	faster	at
executing	 instructions.	This	makes	 it	 easier	 to	do	 instruction	pipelining,	but	more	difficult	 to	deal	with
complexity	 at	 the	hardware	 level.	 In	RISC	systems,	 the	 complexity	 removed	 from	 the	 instruction	 set	 is
pushed	up	a	level	into	the	domain	of	the	compiler.

To	illustrate,	let’s	look	at	an	instruction.	Suppose	we	want	to	compute	the	product,	5	×	10.	The	code
on	a	CISC	machine	might	look	like	this:

A	minimalistic	RISC	ISA	has	no	multiplication	instructions.	Thus,	on	a	RISC	system,	our	multiplication
problem	would	look	like	this:

The	 CISC	 code,	 although	 shorter,	 requires	 more	 clock	 cycles	 to	 execute.	 Suppose	 that	 on	 each
architecture,	 register-to-register	 moves,	 addition,	 and	 loop	 operations	 each	 consume	 one	 clock	 cycle.
Suppose	 also	 that	 a	 multiplication	 operation	 requires	 30	 clock	 cycles.1	 Comparing	 the	 two	 code
fragments,	we	have:
CISC	instructions:

RISC	instructions:

Add	to	this	the	fact	that	RISC	clock	cycles	are	often	shorter	than	CISC	clock	cycles,	and	it	should	be	clear
that	even	though	there	are	more	instructions,	the	actual	execution	time	is	less	for	RISC	than	for	CISC.	This
is	the	main	inspiration	behind	the	RISC	design.

We	have	mentioned	that	reducing	instruction	complexity	results	in	simpler	chips.	Transistors	formerly
employed	 in	 the	 execution	 of	 CISC	 instructions	 are	 used	 for	 pipelines,	 cache,	 and	 registers.	 Of	 these
three,	 registers	offer	 the	greatest	potential	 for	 improved	performance,	so	 it	makes	sense	 to	 increase	 the
number	 of	 registers	 and	 to	 use	 them	 in	 innovative	 ways.	 One	 such	 innovation	 is	 the	 use	 of	 register
window	sets.	Although	not	as	widely	accepted	as	other	innovations	associated	with	RISC	architectures,
register	windowing	is	nevertheless	an	interesting	idea	and	is	briefly	introduced	here.

High-level	languages	depend	on	modularization	for	efficiency.	Procedure	calls	and	parameter	passing
are	natural	side	effects	of	using	these	modules.	Calling	a	procedure	is	not	a	trivial	task.	It	involves	saving
a	 return	 address,	 preserving	 register	 values,	 passing	 parameters	 (either	 by	 pushing	 them	on	 a	 stack	 or
using	registers),	branching	 to	 the	subroutine,	and	executing	 the	subroutine.	Upon	subroutine	completion,



parameter	 value	 modifications	 must	 be	 saved,	 and	 previous	 register	 values	 must	 be	 restored	 before
returning	execution	 to	 the	calling	program.	Saving	registers,	passing	parameters,	and	restoring	registers
involves	 considerable	 effort	 and	 resources.	 With	 RISC	 chips	 having	 the	 capacity	 for	 hundreds	 of
registers,	the	saving	and	restoring	sequence	can	be	reduced	to	simply	changing	register	environments.

To	 fully	 understand	 this	 concept,	 try	 to	 envision	 all	 registers	 as	 being	 divided	 into	 sets.	When	 a
program	is	executing	in	one	environment,	only	one	certain	register	set	is	visible.	If	the	program	changes	to
a	different	environment	(say	a	procedure	is	called),	the	visible	set	of	registers	for	the	new	environment
changes.	 For	 example,	 while	 the	main	 program	 is	 running,	 perhaps	 it	 sees	 only	 registers	 0	 through	 9.
When	a	certain	procedure	is	called,	perhaps	it	will	see	registers	10	through	19.	Typical	values	for	real
RISC	architectures	include	16	register	sets	(or	windows)	of	32	registers	each.	The	CPU	is	restricted	to
operating	 in	only	one	single	window	at	any	given	 time.	Therefore,	 from	the	programmer’s	perspective,
there	are	only	32	registers	available.

Register	windows,	by	themselves,	do	not	necessarily	help	with	procedure	calls	or	parameter	passing.
However,	if	these	windows	are	overlapped	carefully,	the	act	of	passing	parameters	from	one	module	to
another	 becomes	 a	 simple	matter	 of	 shifting	 from	one	 register	 set	 to	 another,	 allowing	 the	 two	 sets	 to
overlap	 in	 exactly	 those	 registers	 that	 must	 be	 shared	 to	 perform	 the	 parameter	 passing.	 This	 is
accomplished	 by	 dividing	 the	 register	 window	 set	 into	 distinct	 partitions,	 including	 global	 registers
(common	to	all	windows),	local	registers	(local	to	the	current	window),	input	registers	(which	overlap
with	 the	 preceding	 window’s	 output	 registers),	 and	 output	 registers	 (which	 overlap	 with	 the	 next
window’s	 input	 registers).	 When	 the	 CPU	 switches	 from	 one	 procedure	 to	 the	 next,	 it	 switches	 to	 a
different	 register	 window,	 but	 the	 overlapping	 windows	 allow	 parameters	 to	 be	 “passed”	 simply	 by
changing	 from	output	 registers	 in	 the	calling	module	 to	 input	 registers	 in	 the	called	module.	A	current
window	pointer	(CWP)	points	to	the	register	window	set	to	be	used	at	any	given	time.

Consider	a	scenario	 in	which	Procedure	One	is	calling	Procedure	Two.	Of	 the	32	registers	 in	each
set,	assume	that	8	are	global,	8	are	local,	8	are	for	input,	and	8	are	for	output.	When	Procedure	One	calls
Procedure	Two,	any	parameters	 that	need	 to	be	passed	are	put	 into	 the	output	 register	set	of	Procedure
One.	Once	Procedure	Two	begins	execution,	these	registers	become	the	input	register	set	for	Procedure
Two.	This	process	is	illustrated	in	Figure	9.1.

One	more	important	piece	of	information	to	note	regarding	register	windows	on	RISC	machines	is	the
circular	 nature	 of	 the	 set	 of	 registers.	 For	 programs	 having	 a	 high	 degree	 of	 nesting,	 it	 is	 possible	 to
exhaust	the	supply	of	registers.	When	this	happens,	main	memory	takes	over,	storing	the	lowest	numbered
windows,	 which	 contain	 values	 from	 the	 oldest	 procedure	 activations.	 The	 highest	 numbered	 register
locations	(the	most	recent	activations)	then	wrap	around	to	the	lowest	numbered	registers.	As	returns	from
procedures	are	executed,	the	level	of	nesting	decreases,	and	register	values	from	memory	are	restored	in
the	order	in	which	they	were	saved.



FIGURE	9.1	Overlapping	Register	Windows

In	addition	 to	simple,	 fixed-length	 instructions,	efficient	pipelines	 in	RISC	machines	have	provided
these	 architectures	 with	 an	 enormous	 increase	 in	 speed.	 Simpler	 instructions	 have	 freed	 up	 chip	 real
estate,	resulting	in	not	only	more	usable	space,	but	also	in	chips	that	are	easier	and	less	time	consuming	to
design	and	manufacture.

You	 should	 be	 aware	 that	 it	 is	 becoming	 increasingly	 difficult	 to	 categorize	 today’s	 processors	 as
either	RISC	or	CISC,	as	most	CPU	architectures	have	evolved	 into	combinations	of	 the	 two.	The	 lines
separating	 these	 architectures	 have	 blurred.	 Some	 current	 architectures	 use	 both	 approaches.	 If	 you
browse	some	of	the	newer	chip	manuals,	you	will	see	that	today’s	RISC	machines	have	more	extravagant
and	more	complex	instructions	than	some	CISC	machines.	The	RISC	PowerPC,	for	example,	has	a	larger
instruction	 set	 than	 the	 CISC	 Pentium.	 Most	 RISC	 processors	 today	 have	 added	 multiplication	 and
division	 instructions,	 utilizing	microcode	 to	 execute	 these	 instructions.	On	 the	 other	 hand,	most	 recent
CISC	processors	are,	to	some	extent,	RISC	based;	Intel’s	x86	architecture	is	a	prime	example.	The	x86’s
CISC	instructions	are	converted	to	an	internal	RISC	format,	before	being	executed,	by	using	microcode	to
convert	complex	instructions	into	simpler	ones	that	are	then	executed	via	hardware.	As	VLSI	technology
continues	 to	 make	 transistors	 smaller	 and	 cheaper,	 the	 expansiveness	 of	 the	 instruction	 set	 is	 now
becoming	 less	 of	 an	 issue	 in	 the	CISC-versus-RISC	debate,	whereas	 register	 usage	 and	 the	 load/store
architecture	are	becoming	more	prominent.

With	 that	 being	 said,	 we	 cautiously	 provide	 Table	 9.1	 as	 a	 summary	 of	 the	 classical	 differences
between	RISC	and	CISC.

RISC CISC
Multiple	register	sets,	often	consisting	of	more	than	256	registers Single	register	set,	typically	6	to	16	registers	total

Three	register	operands	allowed	per	instruction	(e.g.,	add	R1,	R2,	R3) One	or	two	register	operands	allowed	per	instruction	(e.g.,	add	R1,	R2)

Parameter	passing	through	efficient	on-chip	register	windows Parameter	passing	through	inefficient	off-chip	memory

Single-cycle	instructions	(except	for	load	and	store) Multiple-cycle	instructions

Hardwired	control Microprogrammed	control

Highly	pipelined Less	pipelined

Simple	instructions	that	are	few	in	number Many	complex	instructions

Fixed-length	instructions Variable-length	instructions

Complexity	in	compiler Complexity	in	microcode



Only	load	and	store	instructions	can	access	memory Many	instructions	can	access	memory

Few	addressing	modes Many	addressing	modes

TABLE	9.1	The	Characteristics	of	RISC	Machines	versus	CISC	Machines

We	have	stated	that	RISC	is	somewhat	of	a	misnomer.	Although	the	original	goal	was	to	reduce	the
instruction	set,	the	RISC	design	philosophy	has	evolved.	As	stated	by	Paul	DeMone,	the	major	focus	of
RISC	 can	 now	be	 summarized	 as	 follows:	 “No	 instruction	 or	 addressing	mode	whose	 function	 can	 be
implemented	by	a	sequence	of	other	instructions	should	be	included	in	the	ISA	unless	its	inclusion	can	be
quantitatively	shown	to	improve	performance	by	a	non-trivial	amount,	even	after	accounting	for	the	new
instruction’s	 negative	 impact	 on	 likely	 hardware	 implementations	 in	 terms	 of	 increased	 data	 path	 and
control	 complexity,	 reduction	 in	 clock	 rate,	 and	 conflict	 with	 efficient	 implementation	 of	 existing
instructions.”	A	secondary	design	philosophy	mandates	that	RISC	processors	should	not	execute	anything
at	run	time	via	hardware	that	can	be	done	at	compile	time	via	software.

We	 have	 indicated	 that	 although	 the	 two	 architectures,	 CISC	 and	 RISC,	 originally	 had	 clear-cut
distinctions,	they	have	evolved	toward	each	other	to	such	an	extent	that	computer	architectures	of	today	no
longer	fit	precisely	into	either	category.	In	fact,	the	terms	RISC	and	CISC	had	essentially	lost	most	of	their
significance—until	the	advent	of	embedded	systems,	most	notably	mobile	computing.	Phones	and	tablets
need	 processors	 that	 can	 efficiently	 utilize	 memory,	 CPU	 cycles,	 and	 power,	 in	 addition	 to	 being
relatively	inexpensive	to	make;	the	RISC	design	philosophy	is	a	perfect	fit	for	this	environment.

When	 the	RISC-versus-CISC	 debate	 first	 began,	 the	 focus	was	 on	 chip	 area	 and	 processor	 design
complexity,	but	now	energy	and	power	are	the	focal	points.	There	are	two	competitors	worth	mentioning
who	 are	 vying	 for	 control	 of	 the	 market:	 ARM	 and	 Intel.	 Whereas	 Intel	 has	 typically	 focused	 on
performance,	giving	it	the	lead	in	the	server	market,	ARM	has	focused	on	efficiency,	giving	it	the	lead	in
the	 mobile	 and	 embedded	 systems	market.	 (In	 fact,	 ARM’s	 new	 64-bit	 processor	 is	 given	 significant
credit	for	bringing	relevance	back	to	the	RISC-versus-CISC	debate.)	Intel	is	attempting	to	take	the	lead	in
the	mobile	market	with	 its	Atom	 processor.	However,	 the	Atom	 is	 suffering	 from	 its	 CISC	 legacy	 (in
particular,	 its	 bloated	 ISA),	 which	 is	 why	 RISC	 architectures	 such	 as	 ARM	 and	MIPS	 are	 preferred
choices	 in	 this	 market.	 Even	 though	 Intel	 is	 employing	 a	 few	 other	 tricks	 to	 speed	 up	 execution,
cumbersome	decode	hardware	and	an	instruction	set	filled	with	unused	instructions	are	still	issues.

As	we	have	mentioned,	although	many	sources	praise	the	revolutionary	innovations	of	RISC	design,
many	 of	 the	 ideas	 used	 in	 RISC	 machines	 (including	 pipelining	 and	 simple	 instructions)	 were
implemented	on	mainframes	 in	 the	1960s	and	1970s.	There	are	many	so-called	new	designs	 that	aren’t
really	new,	but	are	simply	recycled.	Innovation	does	not	necessarily	mean	inventing	a	new	wheel;	it	may
be	a	simple	case	of	figuring	out	the	best	way	to	use	a	wheel	that	already	exists.	This	is	a	lesson	that	will
serve	you	well	in	your	career	in	the	computing	field.

9.3			FLYNN’S	TAXONOMY
Over	 the	 years,	 several	 attempts	 have	 been	 made	 to	 find	 a	 satisfactory	 way	 to	 categorize	 computer
architectures.	 Although	 none	 of	 them	 are	 perfect,	 today’s	 most	 widely	 accepted	 taxonomy	 is	 the	 one
proposed	by	Michael	Flynn	in	1972.	Flynn’s	taxonomy	considers	two	factors:	the	number	of	instructions
and	the	number	of	data	streams	that	flow	into	the	processor.	A	machine	can	have	either	one	or	multiple
streams	of	data,	and	can	have	either	one	or	multiple	processors	working	on	this	data.	This	gives	us	four
possible	combinations:	SISD	(single	instruction	stream,	single	data	stream),	SIMD	(single	instruction



stream,	multiple	data	streams),	MISD	(multiple	instruction	streams,	single	data	stream),	and	MIMD
(multiple	instruction	streams,	multiple	data	streams).

Uniprocessors	are	SISD	machines.	SIMD	machines,	which	have	a	single	point	of	control,	execute	the
same	instruction	simultaneously	on	multiple	data	values.	The	SIMD	category	includes	array	processors,
vector	processors,	and	systolic	arrays.	MISD	machines	have	multiple	instruction	streams	operating	on	the
same	data	stream.	MIMD	machines,	which	employ	multiple	control	points,	have	independent	instruction
and	 data	 streams.	 Multiprocessors	 and	 most	 current	 parallel	 systems	 are	 MIMD	 machines.	 SIMD
computers	are	simpler	to	design	than	MIMD	machines,	but	they	are	also	considerably	less	flexible.	All	of
the	 SIMD	 multiprocessors	 must	 execute	 the	 same	 instruction	 simultaneously.	 If	 you	 think	 about	 this,
executing	something	as	simple	as	conditional	branching	could	quickly	become	very	expensive.

Flynn’s	taxonomy	falls	short	in	several	areas.	For	one,	there	seem	to	be	very	few	(if	any)	applications
for	 MISD	 machines.	 Secondly,	 Flynn	 assumed	 that	 parallelism	 was	 homogeneous.	 A	 collection	 of
processors	 can	 be	 homogeneous	 or	 heterogeneous.	 A	 machine	 could	 conceivably	 have	 four	 separate
floating-point	 adders,	 two	multipliers,	 and	 a	 single	 integer	 unit.	 This	machine	 could	 therefore	 execute
seven	operations	in	parallel,	but	it	does	not	readily	fit	into	Flynn’s	classification	system.

Another	 problem	 with	 this	 taxonomy	 is	 with	 the	 MIMD	 category.	 An	 architecture	 with	 multiple
processors	 falls	 into	 this	 category	without	 consideration	 for	how	 the	processors	 are	 connected	or	how
they	view	memory.	There	have	been	 several	 attempts	 to	 refine	 the	MIMD	category.	Suggested	 changes
include	subdividing	MIMD	to	differentiate	systems	that	share	memory	from	those	 that	don’t,	as	well	as
categorizing	processors	according	to	whether	they	are	bus	based	or	switched.

Shared	 memory	 systems	 are	 those	 in	 which	 all	 processors	 have	 access	 to	 a	 global	 memory	 and
communicate	through	shared	variables,	just	as	processes	do	on	a	uniprocessor.	If	multiple	processors	do
not	 share	 memory,	 each	 processor	 must	 own	 a	 portion	 of	 memory.	 Consequently,	 all	 processors	 must
communicate	by	way	of	message	passing,	which	can	be	expensive	and	inefficient.	The	issue	some	people
have	 with	 using	 memory	 as	 a	 determining	 factor	 for	 classifying	 hardware	 is	 that	 shared	 memory	 and
message	 passing	 are	 actually	 programming	 models,	 not	 hardware	 models.	 Thus,	 they	 more	 properly
belong	in	the	domain	of	system	software.

The	two	major	parallel	architectural	paradigms,	symmetric	multiprocessors	(SMPs)	and	massively
parallel	 processors	 (MPPs),	 are	 both	MIMD	 architectures,	 but	 differ	 in	 how	 they	 use	memory.	 SMP
machines,	such	as	a	dual-processor	Intel	PC	and	the	Silicon	Graphics	Origin	3900	(that	scales	up	to	512
processors),	share	memory,	whereas	MPP	processors,	such	as	 the	nCube,	CM5,	and	Cray	T3E,	do	not.
These	particular	MPP	machines	typically	house	thousands	of	CPUs	in	a	single	large	cabinet	connected	to
hundreds	of	gigabytes	of	memory.	The	price	of	these	systems	can	run	into	millions	of	dollars.

Originally,	 the	 term	MPP	 described	 tightly	 coupled	SIMD	multiprocessors,	 such	 as	 the	Connection
Machine	and	Goodyear’s	MPP.	Today,	however,	the	term	MPP	 is	used	to	refer	to	parallel	architectures
that	 have	 multiple	 self-contained	 nodes	 with	 private	 memories,	 all	 of	 which	 have	 the	 ability	 to
communicate	 via	 a	 network.	An	 easy	way	 to	 differentiate	SMP	and	MPP	 (by	 today’s	 definition)	 is	 the
following:

MPP	=	many	processors	+	distributed	memory	+	communication	via	network

and

SMP	=	few	processors	+	shared	memory	+	communication	via	memory

MPP	 computers	 are	 harder	 to	 program	 because	 the	 programmer	must	make	 sure	 that	 the	 pieces	 of	 the
program	 running	 on	 separate	CPUs	 can	 communicate	with	 each	 other.	However,	 SMP	machines	 suffer



from	a	serious	bottleneck	when	all	processors	attempt	to	access	the	same	memory	at	the	same	time.	The
decision	to	use	MPP	or	SMP	depends	on	the	application—if	the	problem	is	easily	partitioned,	MPP	is	a
good	option.	Large	companies	frequently	use	MPP	systems	to	store	customer	data	(data	warehousing)	and
to	perform	data	mining	on	that	data.

Distributed	computing	is	another	example	of	the	MIMD	architecture.	Distributed	computing	(covered
in	 more	 detail	 in	 Section	 9.4.5)	 is	 typically	 defined	 as	 a	 set	 of	 networked	 computers	 that	 work
collaboratively	to	solve	a	problem.	This	collaboration,	however,	can	occur	in	many	different	ways.

A	network	of	workstations	(NOW)	is	a	collection	of	distributed	workstations	that	works	in	parallel
only	while	the	nodes	are	not	being	used	as	regular	workstations.	NOWs	typically	consist	of	heterogeneous
systems,	with	different	processors	and	software,	that	communicate	via	the	Internet.	Individual	users	must
establish	 the	appropriate	connection	 to	 the	network	before	 joining	 the	parallel	computation.	NOWs	are
often	deployed	in	organizations	using	building	or	corporate	intranets,	in	which	all	the	workstations	can	be
controlled.	A	cluster	of	workstations	 (COW)	 is	 a	 collection	 similar	 to	 a	NOW,	but	 it	 requires	 that	 a
single	entity	be	in	charge.	Nodes	typically	have	common	software,	and	a	user	that	can	access	one	node
can	 usually	 access	 all	 nodes.	 A	 dedicated	 cluster	 parallel	 computer	 (DCPC)	 is	 a	 collection	 of
workstations	 specifically	 collected	 to	 work	 on	 a	 given	 parallel	 computation.	 The	 workstations	 have
common	 software	 and	 file	 systems,	 are	managed	 by	 a	 single	 entity,	 communicate	 via	 the	 Internet,	 and
aren’t	used	as	workstations.	A	pile	of	PCs	(PoPC)	is	a	cluster	of	dedicated	heterogeneous	hardware	used
to	build	a	parallel	 system	out	of	mass	market	commodity	components,	or	COTs.	Whereas	a	DCPC	has
relatively	 few	but	 expensive	 and	 fast	 components,	 a	 PoPC	uses	 a	 large	 number	 of	 slow	but	 relatively
cheap	 nodes.	 NOWs,	 COWs,	 DCPCs,	 and	 PoPCs	 are	 all	 examples	 of	 cluster	 computing,	 distributed
computing	in	which	the	resources	are	all	within	the	same	administrative	domain,	working	on	group	tasks.

The	BEOWULF	project,	introduced	in	1994	by	Thomas	Sterling	and	Donald	Becker	of	the	Goddard
Space	 Flight	Center,	 is	 a	 PoPC	 architecture	 that	 has	 successfully	 bundled	 various	 hardware	 platforms
with	 specially	 designed	 software,	 resulting	 in	 an	 architecture	 that	 has	 the	 look	 and	 feel	 of	 a	 unified
parallel	 machine.	 A	 BEOWULF	 cluster	 has	 three	 defining	 characteristics:	 off-the-shelf	 personal
computers,	fast	data	switching,	and	open	source	software.	The	nodes	on	a	BEOWULF	network	are	always
connected	 via	 a	 private	 Ethernet	 or	 fiber	 network.	 If	 you	 have	 an	 old	 Sun	 SPARC,	 a	 couple	 of	 486
machines,	a	DEC	Alpha	(or	simply	a	large	collection	of	dusty	Intel	machines!),	and	a	means	to	connect
them	into	a	network,	you	can	install	the	BEOWULF	software	and	create	your	own	personal,	but	extremely
powerful,	parallel	computer.

Flynn’s	 taxonomy	 has	 recently	 been	 expanded	 to	 include	 SPMD	 (single	 program	 multiple	 data)
architectures.	An	SPMD	consists	 of	multiprocessors,	 each	with	 its	 own	data	 set	 and	program	memory.
The	same	program	is	executed	on	each	processor,	with	synchronization	at	various	global	control	points.
Although	each	processor	loads	the	same	program,	each	may	execute	different	instructions.	For	example,	a
program	may	have	code	that	resembles:

In	 this	way,	different	nodes	execute	different	 instructions	within	 the	same	program.	SPMD	is	actually	a
programming	paradigm	used	on	MIMD	machines	 and	differs	 from	SIMD	 in	 that	 the	processors	 can	do
different	things	at	the	same	time.	Supercomputers	often	use	an	SPMD	design.



FIGURE	9.2	A	Taxonomy	of	Computer	Architectures

At	a	level	above	where	Flynn	begins	his	taxonomy,	we	need	to	add	one	more	characteristic,	and	that
is	whether	the	architecture	is	instruction	driven	or	data	driven.	The	classic	von	Neumann	architecture	is
instruction	 driven.	 All	 processor	 activities	 are	 determined	 by	 a	 sequence	 of	 program	 code.	 Program
instructions	 act	 on	 the	 data.	 Data-driven,	 or	 dataflow,	 architectures	 do	 just	 the	 opposite.	 The
characteristics	of	the	data	determine	the	sequence	of	processor	events.	We	explore	this	idea	in	more	detail
in	Section	9.5.

With	the	addition	of	dataflow	computers	and	some	refinements	to	the	MIMD	classification,	we	obtain
the	taxonomy	shown	in	Figure	9.2.	You	may	wish	to	refer	 to	it	as	you	read	the	sections	that	follow.	We
begin	on	the	left-hand	branch	of	the	tree,	with	topics	relevant	to	SIMD	and	MIMD	architectures.

9.4			PARALLEL	AND	MULTIPROCESSOR	ARCHITECTURES
Since	the	beginning	of	computing,	scientists	have	endeavored	to	make	machines	solve	problems	better	and
faster.	Miniaturization	 technology	 has	 resulted	 in	 improved	 circuitry,	 and	more	 of	 it	 on	 a	 chip.	Clocks
have	become	faster,	 leading	 to	CPUs	 in	 the	gigahertz	 range.	However,	we	know	that	 there	are	physical
barriers	 that	 control	 the	 extent	 to	 which	 single-processor	 performance	 can	 be	 improved.	 Heat	 and
electromagnetic	 interference	 limit	 chip	 transistor	 density.	 Even	 if	 (when?)	 these	 problems	 are	 solved,
processor	speeds	will	always	be	constrained	by	the	speed	of	light.	On	top	of	these	physical	limitations,
there	are	also	economic	 limitations.	At	some	point,	 the	cost	of	making	a	processor	 incrementally	faster
will	exceed	the	price	that	anyone	is	willing	to	pay.	Ultimately,	we	will	be	left	with	no	feasible	way	of
improving	processor	performance	except	to	distribute	the	computational	load	among	several	processors.
For	these	reasons,	parallelism	is	becoming	increasingly	popular.

It	is	important	to	note,	however,	that	not	all	applications	can	benefit	from	parallelism.	For	example,
multiprocessing	 parallelism	 adds	 cost	 (such	 as	 process	 synchronization	 and	 other	 aspects	 of	 process
administration).	If	an	application	isn’t	amenable	to	a	parallel	solution,	generally	it	is	not	cost-effective	to
port	it	to	a	multiprocessing	parallel	architecture.



Implemented	 correctly,	 parallelism	 results	 in	 higher	 throughput,	 better	 fault	 tolerance,	 and	 a	 more
attractive	price/performance	 ratio.	Although	parallelism	can	 result	 in	 significant	 speedup,	 this	 speedup
can	 never	 be	 perfect.	 Given	 n	 processors	 running	 in	 parallel,	 perfect	 speedup	 would	 imply	 that	 a
computational	 job	 could	 complete	 in	 	 time,	 leading	 to	 an	 n-fold	 increase	 in	 power	 (or	 a	 run-time
decrease	by	a	factor	of	n).

We	need	only	recall	Amdahl’s	Law	to	realize	why	perfect	speedup	is	not	possible.	If	two	processing
components	 run	 at	 two	 different	 speeds,	 the	 slower	 speed	 will	 dominate.	 This	 law	 also	 governs	 the
speedup	 attainable	 using	 parallel	 processors	 on	 a	 problem.	 No	 matter	 how	 well	 you	 parallelize	 an
application,	 there	 will	 always	 be	 a	 small	 portion	 of	 work	 done	 by	 one	 processor	 that	 must	 be	 done
serially.	 Additional	 processors	 can	 do	 nothing	 but	 wait	 until	 the	 serial	 processing	 is	 complete.	 The
underlying	 premise	 is	 that	 every	 algorithm	 has	 a	 sequential	 part	 that	 ultimately	 limits	 the	 speedup
achievable	through	a	multiprocessor	implementation.	The	greater	the	sequential	processing,	the	less	cost-
effective	it	is	to	employ	a	multiprocessing	parallel	architecture.

Using	 multiple	 processors	 on	 a	 single	 task	 is	 only	 one	 of	 many	 different	 types	 of	 parallelism.	 In
earlier	 chapters,	 we	 introduced	 a	 few	 of	 these	 including	 pipelining,	 VLIW,	 and	 instruction-level
parallelism	 (ILP),	 giving	 motivations	 for	 each	 particular	 type.	 Other	 parallel	 architectures	 deal	 with
multiple	 (or	 parallel)	 data.	 Examples	 include	 SIMD	 machines	 such	 as	 vector,	 neural,	 and	 systolic
processors.	There	are	many	architectures	that	allow	for	multiple	or	parallel	processes,	characteristic	of
all	MIMD	machines.	 It	 is	 important	 to	note	 that	 “parallel”	 can	have	many	different	meanings,	 and	 it	 is
equally	important	to	be	able	to	differentiate	among	them.

We	begin	this	section	with	a	discussion	of	examples	of	ILP	architectures,	and	then	move	on	to	SIMD
and	MIMD	 architectures.	 The	 last	 section	 introduces	 alternative	 (less	mainstream)	 parallel	 processing
approaches,	including	systolic	arrays,	neural	networks,	and	dataflow	computing.

9.4.1		Superscalar	and	VLIW
In	 this	 section,	 we	 revisit	 the	 concept	 of	 superscalar	 architectures	 and	 compare	 them	 to	 VLIW
architectures.	Superscalar	and	VLIW	architectures	both	exhibit	instruction-level	parallelism,	but	differ	in
their	approach.	To	set	the	stage	for	our	discussion,	we	start	with	a	definition	of	superpipelining.	Recall
that	 pipelining	divides	 the	 fetch–decode–execute	 cycle	 into	 stages,	 in	which	 a	 set	 of	 instructions	 is	 in
different	stages	at	the	same	time.	In	a	perfect	world,	one	instruction	would	exit	the	pipe	every	clock	cycle.
However,	because	of	branching	instructions	and	data	dependencies	in	the	code,	the	goal	of	one	instruction
per	cycle	is	never	quite	achieved.

Superpipelining	occurs	when	a	pipeline	has	stages	that	require	less	than	half	a	clock	cycle	to	execute.
An	internal	clock	can	be	added	that,	when	running	at	double	the	speed	of	the	external	clock,	can	complete
two	tasks	per	external	clock	cycle.	Although	superpipelining	is	equally	applicable	to	both	RISC	and	CISC
architectures,	 it	 is	 most	 often	 incorporated	 in	 RISC	 processors.	 Superpipelining	 is	 one	 aspect	 of
superscalar	design,	and	for	this	reason,	there	is	often	confusion	regarding	which	is	which.

So,	what	exactly	is	a	superscalar	processor?	We	know	that	the	Pentium	processor	is	superscalar,	but
have	 yet	 to	 discuss	what	 this	 really	means.	Superscalar	 is	 a	 design	methodology	 that	 allows	multiple
instructions	to	be	executed	simultaneously	in	each	cycle.	Although	superscalar	differs	from	pipelining	in
several	ways	 that	will	 be	 discussed	 shortly,	 the	 net	 effect	 is	 the	 same.	 The	way	 in	which	 superscalar
designs	 achieve	 speedup	 is	 similar	 to	 the	 idea	 of	 adding	 another	 lane	 to	 a	 busy	 single-lane	 highway.
Additional	“hardware”	is	required,	but	in	the	end,	more	cars	(instructions)	can	get	from	point	A	to	point	B
in	the	same	amount	of	time.



The	superscalar	components	analogous	 to	our	additional	highway	 lanes	are	called	execution	 units.
Execution	units	consist	of	floating-point	adders	and	multipliers,	integer	adders	and	multipliers,	and	other
specialized	 components.	 Although	 the	 units	 may	 also	 work	 independently,	 it	 is	 important	 that	 the
architecture	have	a	sufficient	number	of	these	specialized	units	to	process	several	instructions	in	parallel.
It	 is	 not	 uncommon	 for	 execution	 units	 to	 be	 duplicated;	 for	 example,	 a	 system	 could	 have	 a	 pair	 of
identical	floating-point	units.	Often,	the	execution	units	are	pipelined,	providing	even	better	performance.

A	critical	component	of	 this	architecture	is	a	specialized	 instruction	fetch	unit,	which	can	retrieve
multiple	instructions	simultaneously	from	memory.	This	unit,	in	turn,	passes	the	instructions	to	a	complex
decoding	 unit	 that	 determines	 whether	 the	 instructions	 are	 independent	 (and	 can	 thus	 be	 executed
simultaneously)	or	whether	a	dependency	of	some	sort	exists	 (in	which	case	not	all	 instructions	can	be
executed	at	the	same	time).

As	 an	 example,	 consider	 the	 IBM	RS/6000.	 This	 processor	 had	 an	 instruction	 fetch	 unit	 and	 two
processors,	each	containing	a	6-stage	floating-point	unit	and	a	4-stage	integer	unit.	The	instruction	fetch
unit	was	set	up	with	a	2-stage	pipeline,	where	the	first	stage	fetched	packets	of	four	instructions	each,	and
the	second	stage	delivered	the	instructions	to	the	appropriate	processing	unit.

Superscalar	 computers	 are	 architectures	 that	 exhibit	 parallelism	 through	pipelining	 and	 replication.
Superscalar	 design	 includes	 superpipelining,	 simultaneous	 fetching	 of	multiple	 instructions,	 a	 complex
decoding	unit	capable	of	determining	instruction	dependencies	and	dynamically	combining	instructions	to
ensure	that	no	dependencies	are	violated,	and	sufficient	quantities	of	resources	for	parallel	execution	of
multiple	 instructions.	We	note	 that	 although	 this	 type	of	parallelism	 requires	very	 specific	hardware,	 a
superscalar	architecture	also	requires	a	sophisticated	compiler	to	schedule	operations	that	make	the	best
use	of	machine	resources.

Whereas	 superscalar	 processors	 rely	 on	 both	 the	 hardware	 (to	 arbitrate	 dependencies)	 and	 the
compiler	 (to	 generate	 approximate	 schedules),	 VLIW	 processors	 rely	 entirely	 on	 the	 compiler.	 VLIW
processors	pack	independent	instructions	into	one	long	instruction,	which,	in	turn,	tells	the	execution	units
what	to	do.	Many	argue	that	because	the	compiler	has	a	better	overall	picture	of	dependencies	in	the	code,
this	approach	results	in	better	performance.	However,	the	compiler	cannot	have	an	overall	picture	of	the
run-time	code,	so	it	is	compelled	to	be	conservative	in	its	scheduling.

As	a	VLIW	compiler	 creates	very	 long	 instructions,	 it	 also	arbitrates	 all	dependencies.	These	 long
instructions,	which	are	fixed	at	compile	time,	typically	contain	four	to	eight	regular	instructions.	Because
the	instructions	are	fixed,	any	modification	that	could	affect	scheduling	of	instructions	(such	as	changing
memory	 latency)	 requires	 a	 recompilation	 of	 the	 code,	 potentially	 causing	 a	multitude	 of	 problems	 for
software	 vendors.	 VLIW	 supporters	 point	 out	 that	 this	 technology	 simplifies	 the	 hardware	 by	moving
complexity	to	the	compiler.	Superscalar	supporters	counter	with	the	argument	that	VLIW	can,	in	turn,	lead
to	significant	 increases	 in	 the	amount	of	code	generated.	For	example,	when	program	control	fields	are
not	used,	memory	space	and	bandwidth	are	wasted.	In	fact,	a	typical	Fortran	program	explodes	to	double
and	sometimes	triple	its	normal	size	when	compiled	on	a	VLIW	machine.

Intel’s	Itanium,	IA-64,	is	one	example	of	a	VLIW	processor.	Recall	that	the	IA-64	uses	an	EPIC	style
of	VLIW	processor.	An	EPIC	architecture	holds	some	advantages	over	an	ordinary	VLIW	processor.	Like
VLIW,	EPIC	bundles	its	instructions	for	delivery	to	various	execution	units.	However,	unlike	VLIW,	these
bundles	need	not	be	 the	 same	 length.	A	special	delimiter	 indicates	where	one	bundle	ends	and	another
begins.	Instruction	words	are	prefetched	by	hardware,	which	identifies	and	then	schedules	the	bundles	in
independent	groups	for	parallel	execution.	This	 is	an	attempt	 to	overcome	the	 limitations	 introduced	by
the	compiler’s	lack	of	total	knowledge	of	the	run-time	code.	Instructions	within	bundles	may	be	executed
in	 parallel	 with	 no	 concern	 for	 dependencies,	 and	 thus	 no	 concern	 for	 ordering.	 By	 most	 people’s



definition,	EPIC	is	really	VLIW.	Although	Intel	might	argue	the	point,	and	die-hard	architects	would	cite
the	minor	differences	mentioned	above	(as	well	as	a	few	others),	EPIC	is,	in	reality,	an	enhanced	version
of	VLIW.

9.4.2		Vector	Processors
Often	 referred	 to	 as	 supercomputers,	 vector	 processors	 are	 specialized,	 heavily	 pipelined	 SIMD
processors	 that	 perform	 efficient	 operations	 on	 entire	 vectors	 and	 matrices	 at	 once.	 This	 class	 of
processor	 is	suited	for	applications	 that	can	benefit	 from	a	high	degree	of	parallelism,	such	as	weather
forecasting,	medical	diagnosing,	and	image	processing.

To	 understand	 vector	 processing,	 one	must	 first	 understand	 vector	 arithmetic.	A	 vector	 is	 a	 fixed-
length,	 one-dimensional	 array	 of	 values,	 or	 an	 ordered	 series	 of	 scalar	 quantities.	 Various	 arithmetic
operations	are	defined	over	vectors,	including	addition,	subtraction,	and	multiplication.

Vector	 computers	 are	 highly	 pipelined	 so	 that	 arithmetic	 operations	 can	 be	 overlapped.	 Each
instruction	 specifies	 a	 set	of	operations	 to	be	carried	over	 an	entire	vector.	For	 example,	 let’s	 say	we
want	to	add	vectors	V1	and	V2	and	place	the	results	in	V3.	On	a	traditional	processor,	our	code	would
include	the	following	loop:

However,	on	a	vector	processor,	this	code	becomes

Vector	registers	are	specialized	registers	that	can	hold	several	vector	elements	at	one	time.	The	register
contents	are	sent	one	element	at	a	time	to	a	vector	pipeline,	and	the	output	from	the	pipeline	is	sent	back	to
the	vector	registers	one	element	at	a	time.	These	registers	are,	therefore,	FIFO	queues	capable	of	holding
many	values.	Vector	processors	generally	have	several	of	these	registers.	The	instruction	set	for	a	vector
processor	contains	instructions	for	loading	these	registers,	performing	operations	on	the	elements	within
the	registers,	and	storing	the	vector	data	back	to	memory.

Vector	processors	are	often	divided	into	two	categories	according	to	how	the	instructions	access	their
operands.	Register-register	vector	processors	 require	 that	 all	 operations	 use	 registers	 as	 source	 and
destination	operands.	Memory-memory	vector	processors	 allow	operands	 from	memory	 to	 be	 routed
directly	to	the	arithmetic	unit.	The	results	of	the	operation	are	then	streamed	back	to	memory.	Register-to-
register	processors	are	at	a	disadvantage	in	that	long	vectors	must	be	broken	into	fixed-length	segments
that	are	small	enough	to	fit	into	the	registers.	However,	memory-to-memory	machines	have	a	large	startup
time	because	of	memory	latency.	(Startup	time	is	the	time	between	initializing	the	instruction	and	the	first
result	emerging	from	the	pipeline.)	After	the	pipeline	is	full,	however,	this	disadvantage	disappears.

Vector	 instructions	 are	 efficient	 for	 two	 reasons.	 First,	 the	 machine	 fetches	 significantly	 fewer
instructions,	which	means	 there	 is	 less	decoding,	 control	unit	 overhead,	 and	memory	bandwidth	usage.
Second,	 the	 processor	 knows	 it	 will	 have	 a	 continuous	 source	 of	 data	 and	 can	 begin	 prefetching
corresponding	pairs	of	values.	 If	 interleaved	memory	 is	used,	one	pair	can	arrive	per	clock	cycle.	The
most	 famous	 vector	 processors	 are	 the	 Cray	 series	 of	 supercomputers.	 Their	 basic	 architecture	 has
changed	little	over	the	past	25	years.



9.4.3		Interconnection	Networks
In	 parallel	 MIMD	 systems,	 such	 as	 shared	 memory	 multiprocessors	 and	 distributed	 computing,
communication	is	essential	for	synchronized	processing	and	data	sharing.	The	manner	in	which	messages
are	passed	among	system	components	determines	the	overall	system	design.	The	two	choices	are	to	use
shared	memory	or	an	interconnection	network	model.	Shared	memory	systems	have	one	large	memory	that
is	accessed	identically	by	all	processors.	In	interconnected	systems,	each	processor	has	its	own	memory,
but	processors	are	allowed	to	access	other	processors’	memories	via	the	network.	Both,	of	course,	have
their	strengths	and	weaknesses.

Interconnection	networks	are	often	categorized	according	to	topology,	routing	strategy,	and	switching
technique.	 The	 network	 topology,	 the	 way	 in	 which	 the	 components	 are	 interconnected,	 is	 a	 major
determining	factor	in	the	overhead	cost	of	message	passing.	Message	passing	efficiency	is	limited	by:

•			Bandwidth—The	information-carrying	capacity	of	the	network.
•			Message	latency—The	time	required	for	the	first	bit	of	a	message	to	reach	its	destination.
•			Transport	latency—The	time	the	message	spends	in	the	network.
•			Overhead—Message-processing	activities	in	the	sender	and	receiver.

Accordingly,	network	designs	attempt	to	minimize	both	the	number	of	messages	required	and	the	distances
over	which	they	must	travel.

Interconnection	networks	can	be	either	static	or	dynamic.	Dynamic	networks	allow	the	path	between
two	entities	(either	two	processors	or	a	processor	and	a	memory)	to	change	from	one	communication	to
the	next,	whereas	static	networks	do	not.	Interconnection	networks	can	also	be	blocking	or	nonblocking.
Nonblocking	networks	allow	new	connections	in	the	presence	of	other	simultaneous	connections,	whereas
blocking	networks	do	not.

Static	interconnection	networks	are	used	mainly	for	message	passing	and	include	a	variety	of	types,
many	 of	which	may	 be	 familiar	 to	 you.	 Processors	 are	 typically	 interconnected	 using	 static	 networks,
whereas	processor-memory	pairs	usually	employ	dynamic	networks.

Completely	 connected	 networks	 are	 those	 in	 which	 all	 components	 are	 connected	 to	 all	 other
components.	These	are	very	expensive	to	build,	and	as	new	entities	are	added,	they	become	difficult	 to
manage.	Star-connected	networks	have	a	central	hub	through	which	all	messages	must	pass.	Although	a
hub	can	be	a	central	bottleneck,	it	provides	excellent	connectivity.	Linear	array	or	ring	networks	allow
any	entity	to	directly	communicate	with	its	two	neighbors,	but	any	other	communication	has	to	go	through
multiple	entities	to	arrive	at	its	destination.	(The	ring	is	just	a	variation	of	a	linear	array	in	which	the	two
end	 entities	 are	 directly	 connected.)	 A	 mesh	 network	 links	 each	 entity	 to	 four	 or	 six	 neighbors
(depending	on	whether	 it	 is	 two-dimensional	or	 three-dimensional).	Extensions	of	 this	network	 include
those	that	wrap	around,	similar	to	how	a	linear	network	can	wrap	around	to	form	a	ring.



FIGURE	9.3	Static	Network	Topologies
a)	Completely	Connected
b)	Star
c)	Linear	and	Ring
d)	Mesh	and	Mesh	Ring
e)	Tree
f)	Four-Dimensional	Hypercube

Tree	networks	arrange	entities	 in	noncyclic	structures,	which	have	the	potential	for	communication
bottlenecks	forming	at	the	roots.	Hypercube	networks	are	multidimensional	extensions	of	mesh	networks
in	which	each	dimension	has	two	processors.	(Hypercubes	typically	connect	processors,	not	processor-
memory	sets.)	Two-dimensional	hypercubes	consist	of	pairs	of	processors	that	are	connected	by	a	direct
link	 if,	 and	only	 if,	 the	binary	 representation	of	 their	 labels	 differ	 in	 exactly	one	bit	 position.	 In	 an	n-
dimensional	hypercube,	each	processor	is	directly	connected	to	n	other	processors.	It	is	interesting	to	note
that	the	total	number	of	bit	positions	at	which	two	labels	of	a	hypercube	differ	is	called	their	Hamming
distance,	which	is	also	the	term	used	to	indicate	the	number	of	communication	links	in	the	shortest	path
between	two	processors.	Figure	9.3	illustrates	the	various	types	of	static	networks.

Dynamic	networks	allow	for	dynamic	configuration	of	the	network	in	one	of	two	ways:	either	by	using
a	bus	or	by	using	a	switch	that	can	alter	the	routes	through	the	network.	Bus-based	networks,	illustrated
in	Figure	9.4,	 are	 the	 simplest	 and	most	 efficient	when	 cost	 is	 a	 concern	 and	 the	number	of	 entities	 is
moderate.	 Clearly,	 the	 main	 disadvantage	 is	 the	 bottleneck	 that	 can	 result	 from	 bus	 contention	 as	 the
number	of	entities	grows	large.	Parallel	buses	can	alleviate	this	problem,	but	their	cost	is	considerable.

FIGURE	9.4	A	Bus-Based	Network

Switching	 networks	 use	 switches	 to	 dynamically	 alter	 routing.	 There	 are	 two	 types	 of	 switches:



crossbar	 switches	 and	2	×	2	 switches.	Crossbar	switches	 are	 simply	 switches	 that	 are	 either	 open	or
closed.	 Any	 entity	 can	 be	 connected	 to	 any	 other	 entity	 by	 closing	 the	 switch	 (making	 a	 connection)
between	 them.	 Networks	 consisting	 of	 crossbar	 switches	 are	 fully	 connected	 because	 any	 entity	 can
communicate	 directly	 with	 any	 other	 entity,	 and	 simultaneous	 communications	 between	 different
processor/memory	 pairs	 are	 allowed.	 (A	 given	 processor	 can	 have	 at	most	 one	 connection	 at	 a	 time,
however.)	 No	 transfer	 is	 ever	 prevented	 because	 of	 a	 switch	 being	 closed.	 Therefore,	 the	 crossbar
network	 is	 a	 nonblocking	 network.	However,	 if	 there	 is	 a	 single	 switch	 at	 each	 crosspoint,	 n	 entities
require	 n2	 switches.	 In	 reality,	many	multiprocessors	 require	many	 switches	 at	 each	 crosspoint.	 Thus,
managing	numerous	switches	quickly	becomes	difficult	and	costly.	Crossbar	switches	are	practical	only
in	high-speed	multiprocessor	vector	computers.	A	crossbar	switch	configuration	is	shown	in	Figure	9.5.
The	blue	switches	indicate	closed	switches.	A	processor	can	be	connected	to	only	one	memory	at	a	time,
so	there	will	be	at	most	one	closed	switch	per	column.

The	 second	 type	 of	 switch	 is	 the	2	 ×	2	switch.	 It	 is	 similar	 to	 a	 crossbar	 switch,	 except	 that	 it	 is
capable	of	 routing	 its	 inputs	 to	different	destinations,	whereas	 the	crossbar	 simply	opens	or	 closes	 the
communications	 channel.	 A	 2	 ×	 2	 interchange	 switch	 has	 two	 inputs	 and	 two	 outputs.	 At	 any	 given
moment,	 a	 2	 ×	 2	 switch	 can	 be	 in	 one	 of	 four	 states:	 through,	 cross,	 upper	 broadcast,	 and	 lower
broadcast,	as	shown	in	Figure	9.6.	In	the	through	state,	the	upper	input	is	directed	to	the	upper	output	and
the	lower	input	is	directed	to	the	lower	output.	More	simply,	the	input	is	directed	through	the	switch.	In
the	cross	state,	the	upper	input	is	directed	to	the	lower	output,	and	the	lower	input	is	directed	to	the	upper
output.	 In	 upper	 broadcast,	 the	 upper	 input	 is	 broadcast	 to	 both	 the	 upper	 and	 lower	 outputs.	 In	 lower
broadcast,	the	lower	input	is	broadcast	to	both	the	upper	and	lower	outputs.	The	through	and	cross	states
are	the	ones	relevant	to	interconnection	networks.

FIGURE	9.5	A	Crossbar	Network

FIGURE	9.6	States	of	the	2	×	2	Interchange	Switch
a)	Through
b)	Cross
c)	Upper	Broadcast
d)	Lower	Broadcast

The	most	 advanced	 class	 of	 networks,	multistage	 interconnection	networks,	 is	 built	 using	 2	 ×	 2



switches.	 The	 idea	 is	 to	 incorporate	 stages	 of	 switches,	 typically	 with	 processors	 on	 one	 side	 and
memories	 on	 the	 other,	 with	 a	 series	 of	 switching	 elements	 as	 the	 interior	 nodes.	 These	 switches
dynamically	configure	 themselves	 to	allow	a	path	 from	any	given	processor	 to	any	given	memory.	The
number	of	switches	and	the	number	of	stages	contribute	to	the	path	length	of	each	communication	channel.
A	slight	delay	may	occur	as	the	switch	determines	the	configuration	required	to	pass	a	message	from	the
specified	source	to	the	desired	destination.	These	multistage	networks	are	often	called	shuffle	networks,
alluding	to	the	pattern	of	the	connections	between	the	switches.

Many	topologies	have	been	suggested	for	multistage	switching	networks.	These	networks	can	be	used
to	 connect	 processors	 in	 loosely	 coupled	 distributed	 systems,	 or	 they	 can	 be	 used	 in	 tightly	 coupled
systems	to	control	processor-to-memory	communications.	A	switch	can	be	in	only	one	state	at	a	time,	so	it
is	 clear	 that	 blocking	 can	 occur.	 For	 example,	 consider	 one	 simple	 topology	 for	 these	 networks,	 the
Omega	network	shown	in	Figure	9.7.	It	is	possible	for	CPU	00	to	communicate	with	Memory	Module	00
if	both	Switch	1A	and	Switch	2A	are	set	to	through.	At	the	same	time,	however,	it	is	impossible	for	CPU
10	to	communicate	with	Memory	Module	01.	To	do	this,	both	Switch	1A	and	Switch	2A	would	need	to	be
set	to	cross.	This	Omega	network	is,	therefore,	a	blocking	network.	Nonblocking	multistage	networks	can
be	built	 by	 adding	more	 switches	 and	more	 stages.	 In	general,	 an	Omega	network	of	n	 nodes	 requires
log2n	stages	with	 	switches	per	stage.

It	 is	 interesting	 to	note	 that	 configuring	 the	 switches	 is	not	 really	 as	difficult	 as	 it	might	 seem.	The
binary	 representation	 of	 the	 destination	 module	 can	 be	 used	 to	 program	 the	 switches	 as	 the	 message
travels	 the	 network.	 Using	 one	 bit	 of	 the	 destination	 address	 for	 each	 stage,	 each	 switch	 can	 be
programmed	based	on	the	value	of	that	bit.	If	the	bit	is	a	0,	the	input	is	routed	to	the	upper	output.	If	the	bit
is	a	1,	the	input	is	routed	to	the	lower	output.	For	example,	suppose	CPU	00	wishes	to	communicate	with
Memory	Module	01.	We	can	use	 the	 first	bit	of	 the	destination	 (0)	 to	 set	Switch	1A	 to	 through	 (which
routes	the	input	to	the	upper	output),	and	the	second	bit	(1)	to	set	Switch	2A	to	cross	(which	routes	the
input	 to	 the	 lower	 output).	 If	CPU	11	wishes	 to	 communicate	with	Memory	Module	 00,	we	would	 set
Switch	1B	to	cross,	and	Switch	2A	to	cross	(because	both	inputs	must	be	routed	to	the	upper	outputs).

FIGURE	9.7	A	Two-Stage	Omega	Network

Another	interesting	method	for	determining	the	switch	setting	is	to	compare	the	corresponding	bits	of
the	source	and	destination.	If	the	bits	are	equal,	the	switch	is	set	to	through.	If	the	bits	are	different,	the
switch	is	set	to	cross.	For	example,	suppose	CPU	00	wishes	to	communicate	with	Memory	Module	01.
We	compare	the	first	bits	of	each	(0	to	0),	setting	Switch	1A	to	through,	and	compare	the	second	bits	of
each	(0	to	1),	setting	Switch	2A	to	cross.

Each	method	for	interconnecting	multiprocessors	has	its	advantages	and	disadvantages.	For	example,



bus-based	networks	are	the	simplest	and	most	efficient	solution	when	a	moderate	number	of	processors
are	 involved.	 However,	 the	 bus	 becomes	 a	 bottleneck	 if	 many	 processors	 make	 memory	 requests
simultaneously.	We	compare	bus-based,	crossbar,	and	multistage	interconnection	networks	in	Table	9.2.

TABLE	9.2	Properties	of	the	Various	Interconnection	Networks

9.4.4		Shared	Memory	Multiprocessors
We	 have	mentioned	 that	multiprocessors	 are	 classified	 by	 how	memory	 is	 organized.	 Tightly	 coupled
systems	use	the	same	memory	and	are	thus	known	as	shared	memory	processors.	This	does	not	mean	that
all	processors	must	share	one	large	memory.	Each	processor	could	have	a	local	memory,	but	it	must	be
shared	with	 other	 processors.	 It	 is	 also	 possible	 that	 local	 caches	 could	 be	 used	with	 a	 single	 global
memory.	These	three	ideas	are	illustrated	in	Figure	9.8.

The	 concept	 of	 a	 shared	memory	multiprocessor	 (SMM)	 dates	 back	 to	 the	 1970s.	 The	 first	 SMM
machine	was	built	at	Carnegie-Mellon	University	using	crossbar	switches	to	connect	16	processors	to	16
memory	modules.	The	most	widely	acclaimed	of	the	early	SMM	machines	was	the	cm*	system	with	its	16
PDP-11	processors	and	16	memory	banks,	all	of	which	were	connected	using	a	tree	network.	The	global
shared	memory	was	divided	equally	among	the	processors.	If	a	processor	generated	an	address,	it	would
first	 check	 its	 local	 memory.	 If	 the	 address	 was	 not	 found	 in	 local	 memory,	 it	 was	 passed	 on	 to	 a
controller.	The	controller	would	try	to	locate	the	address	within	the	processors	that	occupied	the	subtree
for	which	it	was	the	root.	If	the	required	address	still	could	not	be	located,	the	request	was	passed	up	the
tree	until	the	data	was	found	or	the	system	ran	out	of	places	to	look.



FIGURE	9.8	Shared	Memory	Configurations

There	are	some	commercial	SMMs	in	existence,	but	they	are	not	extremely	popular.	One	of	the	first
commercial	 SMM	 computers	 was	 the	 BBN	 (Bolt,	 Beranek,	 and	 Newman)	 Butterfly,	 which	 used	 256
Motorola	68000	processors.	The	KSR-1	(from	Kendall	Square	Research)	has	recently	become	available
and	should	prove	quite	useful	for	computational	science	applications.	Each	KSR-1	processor	contains	a
cache,	but	the	system	has	no	primary	memory.	Data	is	accessed	through	cache	directories	maintained	in
each	 processor.	 The	 KSR-1	 processing	 elements	 are	 connected	 in	 a	 unidirectional	 ring	 topology,	 as
shown	in	Figure	9.9.	Messages	and	data	travel	around	the	rings	in	only	one	direction.	Each	first-level	ring
can	 connect	 from	8	 to	32	processors.	A	 second-level	 ring	 can	 connect	 up	 to	34	 first-level	 rings,	 for	 a
maximum	of	 1,088	processors.	When	 a	 processor	 references	 an	 item	 in,	 say,	 location	x,	 the	 processor
cache	that	contains	address	x	places	the	requested	cache	slot	on	the	ring.	The	cache	entry	(containing	the
data)	migrates	 through	 the	 rings	until	 it	 reaches	 the	processor	 that	made	 the	 request.	Distributed	shared
memory	systems	of	this	type	are	called	shared	virtual	memory	systems.

Shared	 memory	 MIMD	 machines	 can	 be	 divided	 into	 two	 categories	 according	 to	 how	 they
synchronize	their	memory	operations.	In	Uniform	Memory	Access	(UMA)	systems,	all	memory	accesses
take	 the	 same	 amount	 of	 time.	A	UMA	machine	has	 one	pool	 of	 shared	memory	 that	 is	 connected	 to	 a
group	 of	 processors	 through	 a	 bus	 or	 switch	 network.	 All	 processors	 have	 equal	 access	 to	 memory,
according	 to	 the	 established	 protocol	 of	 the	 interconnection	 network.	 As	 the	 number	 of	 processors



increases,	a	switched	interconnection	network	(requiring	2n	connections)	quickly	becomes	very	expensive
in	a	UMA	machine.	Bus-based	UMA	systems	saturate	when	the	bandwidth	of	the	bus	becomes	insufficient
for	the	number	of	processors	in	the	system.	Multistage	networks	run	into	wiring	constraints	and	significant
latency	if	the	number	of	processors	becomes	very	large.	Thus	the	scalability	of	UMA	machines	is	limited
by	 the	 properties	 of	 interconnection	 networks.	 Symmetric	 multiprocessors	 are	 well-known	 UMA
architectures.	 Specific	 examples	 of	UMA	machines	 include	 Sun’s	Ultra	 Enterprise,	 IBM’s	 iSeries	 and
pSeries	servers,	the	Hewlett-Packard	900,	and	DEC’s	AlphaServer.

Nonuniform	 memory	 access	 (NUMA)	 machines	 get	 around	 the	 problems	 inherent	 in	 UMA
architectures	 by	 providing	 each	 processor	 with	 its	 own	 piece	 of	 memory.	 The	 memory	 space	 of	 the
machine	 is	distributed	across	all	of	 the	processors,	but	 the	processors	see	 this	memory	as	a	contiguous
addressable	entity.	Although	NUMA	memory	constitutes	a	single	addressable	entity,	its	distributed	nature
is	not	completely	transparent.	Nearby	memory	takes	less	time	to	read	than	memory	that	 is	farther	away.
Thus,	memory	access	time	is	inconsistent	across	the	address	space	of	the	machine.	An	example	of	NUMA
architectures	include	Sequent’s	NUMA-Q	and	the	Origin2000	by	Silicon	Graphics.

FIGURE	9.9	KSR-1	Hierarchical	Ring	Topology

NUMA	machines	 are	 prone	 to	 cache	 coherence	 problems.	 To	 reduce	 memory	 access	 time,	 each
NUMA	processor	maintains	a	private	cache.	However,	when	a	processor	modifies	a	data	element	that	is
in	its	local	cache,	other	copies	of	the	data	become	inconsistent.	For	example,	suppose	Processor	A	and
Processor	B	both	have	a	copy	of	data	element	x	in	their	cache	memories.	Let’s	say	x	has	a	value	of	10.	If
Processor	A	sets	x	to	20,	Processor	B’s	cache	(which	still	contains	a	value	of	10)	has	an	old,	or	stale,
value	of	x.	 Inconsistencies	 in	data	such	as	 this	cannot	be	allowed,	so	mechanisms	must	be	provided	 to
ensure	cache	coherence.	Specially	designed	hardware	units	known	as	snoopy	cache	controllers	monitor



all	caches	on	the	system.	They	implement	the	system’s	cache	consistency	protocol.	NUMA	machines	that
employ	snoopy	caches	and	maintain	cache	consistency	are	referred	to	as	cache	coherent	NUMA	 (CC-
NUMA)	architectures.

The	easiest	approach	to	cache	consistency	is	to	ask	the	processor	having	the	stale	value	to	either	void
x	 from	its	cache	or	 to	update	x	 to	 the	new	value.	When	this	 is	done	immediately	after	 the	value	of	x	 is
changed,	we	say	that	the	system	uses	a	write-through	cache	update	protocol.	With	this	approach,	the	data
is	 written	 to	 cache	 and	 memory	 concurrently.	 If	 the	write-through	 with	 update	 protocol	 is	 used,	 a
message	containing	the	new	value	of	x	is	broadcast	to	all	other	cache	controllers	so	that	they	can	update
their	caches.	If	 the	write-through	with	invalidation	protocol	 is	used,	 the	broadcast	contains	a	message
asking	all	cache	controllers	 to	 remove	 the	stale	value	of	x	 from	 their	caches.	Write-invalidate	uses	 the
network	 only	 the	 first	 time	 x	 is	 updated,	 thus	 keeping	 bus	 traffic	 light.	Write-update	 keeps	 all	 caches
current,	which	reduces	latency;	however,	it	increases	communications	traffic.

A	second	approach	to	maintaining	cache	coherency	is	the	use	of	a	write-back	protocol	that	changes
only	the	data	in	cache	at	the	time	of	modification.	Main	memory	is	not	modified	until	the	modified	cache
block	must	be	replaced	and	thus	written	to	memory.	With	this	protocol,	data	values	are	read	in	the	normal
manner,	but	before	data	can	be	written,	the	processor	performing	the	modification	must	obtain	exclusive
rights	to	the	data.	It	does	so	by	requesting	ownership	of	the	data.	When	ownership	is	granted,	any	copies
of	the	data	at	other	processors	are	invalidated.	If	other	processors	wish	to	read	the	data,	they	must	request
the	value	from	the	processor	that	owns	it.	The	processor	with	ownership	then	relinquishes	its	rights	and
forwards	the	current	data	value	to	main	memory.

9.4.5		Distributed	Computing
Distributed	computing	is	another	form	of	multiprocessing.	Although	it	has	become	an	increasingly	popular
source	of	computational	power,	it	means	different	things	to	different	people.	In	a	sense,	all	multiprocessor
systems	are	also	distributed	systems	because	the	processing	load	is	divided	among	a	group	of	processors
that	work	collectively	to	solve	a	problem.	When	most	people	use	the	term	distributed	system,	 they	are
referring	to	a	very	loosely	coupled	multicomputer	system.	Recall	that	multiprocessors	can	be	connected
using	local	buses	(as	in	Figure	9.8c),	or	they	can	be	connected	through	a	network,	as	indicated	in	Figure
9.10.	Loosely	coupled	distributed	computers	depend	on	a	network	for	communication	among	processors.

This	 idea	 is	 exemplified	by	 the	 recent	 practice	 of	 using	 individual	microcomputers	 and	NOWs	 for
distributed	computing	systems.	These	systems	allow	idle	PC	processors	to	work	on	small	pieces	of	large
problems.	A	 recent	 cryptographic	 problem	was	 solved	 through	 the	 resources	 of	 thousands	 of	 personal
computers,	each	performing	brute-force	cryptanalysis	using	a	small	set	of	possible	message	keys.

Grid	computing	 is	a	great	example	of	distributed	computing.	Grid	computing	uses	 the	 resources	of
many	computers	connected	by	a	network	(generally	the	Internet)	to	solve	computation	problems	that	are
too	 large	 for	 any	 single	 supercomputer.	 Grid	 computers	 make	 use	 of	 unused	 heterogeneous	 resources
(typically	 either	 CPU	 cycles	 or	 disk	 storage)	 located	 in	 different	 places	 and	 belonging	 to	 different
administrative	 domains.	 Essentially,	 grid	 computing	 virtualizes	 computing	 resources.	 The	 major
difference	between	grid	computing	and	the	cluster	computing	discussed	earlier	is	that	the	grid	resources
are	not	all	within	 the	same	administrative	domain,	which	means	 that	 the	grid	must	support	computation
across	 domains	 owned	 and	 controlled	 by	 different	 entities.	 The	 real	 challenge	 is	 establishing	 and
enforcing	the	proper	authorization	techniques	to	allow	remote	users	to	control	computing	resources	out	of
their	domains.



FIGURE	9.10	Multiprocessors	Connected	by	a	Network

Public-resource	computing,	also	known	as	global	computing,	 is	a	specialization	of	grid	computing
where	the	computing	power	is	supplied	by	volunteers,	many	of	whom	may	be	anonymous.	It	endeavors	to
harness	idle	computer	time	from	millions	of	PCs,	workstations,	and	servers	to	solve	intractable	problems.
The	University	 of	 California	 at	 Berkeley	 has	 created	 open	 source	 software	 that	makes	 it	 easy	 for	 the
scientific	community	to	use	donated	processor	and	disk	resources	from	all	over	the	world.	The	Berkeley
Open	 Infrastructure	 for	 Network	 Computing	 (or	 BOINC)	 is	 an	 outgrowth	 of	 Berkeley’s	 famous
SETI@Home	project.	SETI@Home	(which	stands	for	Search	for	Extra	Terrestrial	Intelligence	at	Home)
analyzed	 data	 from	 radiotelescopes	 to	 try	 to	 discern	 patterns	 that	 could	 be	 indicative	 of	 intelligent
communication.	 To	 help	 with	 this	 project,	 PC	 users	 installed	 a	 SETI	 screen	 saver	 on	 their	 home
computers.	 The	 screen	 saver	 was	 part	 of	 a	 program	 that	 analyzed	 signal	 data	 during	 the	 processor’s
normal	idle	time.	When	the	PC	was	idle,	the	SETI	screen	saver	downloaded	data	from	the	SETI	server
(using	disk	space),	analyzed	the	data	searching	for	patterns	(using	CPU	cycles),	reported	the	results	to	the
server,	and	requested	more	data.	If,	during	this	process,	the	PC	became	active,	the	screen	saver	paused,
picking	up	where	it	 left	off	 the	next	 time	the	PC	became	idle.	This	way,	 the	processing	did	not	conflict
with	user	applications.	The	project	has	been	highly	successful,	with	two	million	years	of	CPU	time	and
50TB	 of	 data	 being	 accumulated	 in	 its	 six-year	 run.	 On	 December	 15,	 2005,	 SETI@Home	 was
discontinued,	 with	 the	 SETI	 initiative	 now	 completely	 under	 the	 auspices	 of	 BOINC.	 In	 addition	 to
continuing	SETI	work,	BOINC	projects	include	climate	prediction	and	biomedical	research.

Other	global	and	grid	computing	efforts	have	focused	on	other	tasks,	including	protein	folding,	cancer
research,	 weather	 models,	 molecular	 modeling,	 financial	 modeling,	 earthquake	 simulations,	 and
mathematical	 problems.	 Most	 of	 these	 projects	 employ	 screen	 savers	 that	 use	 idle	 processor	 time	 to
analyze	data	that	would	otherwise	require	enormously	expensive	computing	power	to	crack.	For	example,
SETI	has	millions	of	hours	of	 radiotelescope	data	 to	analyze,	whereas	cancer	 research	has	millions	of
combinations	of	 chemicals	 for	 potential	 cancer	 treatment	methods.	Without	 using	grid	 computing,	 these
problems	would	require	years	to	solve,	even	on	the	fastest	supercomputers.

For	 general-use	 computing,	 the	 concept	 of	 transparency	 is	 very	 important	 in	 distributed	 systems.
Whenever	possible,	details	about	 the	distributed	nature	of	 the	network	should	be	hidden.	Using	 remote
system	 resources	 should	 require	 no	more	 effort	 than	 using	 the	 local	 system.	This	 transparency	 is	most
obvious	in	ubiquitous	computing	(also	called	pervasive	computing)	systems	that	are	totally	embedded
in	 the	 environment,	 simple	 to	 use,	 completely	 connected,	 typically	 mobile,	 and	 often	 invisible.	 Mark
Weiser,	considered	the	father	of	ubiquitous	computing,	said	of	this	topic:

mailto:SETI@Home
mailto:SETI@Home
mailto:SETI@Home


Ubiquitous	 computing	 names	 the	 third	 wave	 in	 computing,	 just	 now	 beginning.	 First	 were
mainframes,	each	shared	by	lots	of	people.	Now	we	are	in	the	personal	computing	era,	person	and
machine	staring	uneasily	at	each	other	across	the	desktop.	Next	comes	ubiquitous	computing,	or
the	age	of	calm	technology,	when	technology	recedes	into	the	background	of	our	lives.

Weiser	 envisioned	 an	 individual	 interacting	 with	 hundreds	 of	 computers	 at	 a	 time,	 each	 computer
invisible	 to	 the	user,	and	communicating	wirelessly	with	 the	others.	Access	 to	 the	Internet	might	be	via
your	telephone	or	a	household	appliance,	instead	of	your	desktop,	with	no	need	to	actively	connect	to	the
Internet—the	device	will	do	that	for	you.	Weiser	compared	devices	such	as	servo	motors	to	computers:
Not	too	long	ago,	these	motors	were	very	large	and	required	dedicated	care.	However,	these	devices	are
now	so	small	and	common	that	we	basically	ignore	their	existence.	The	goal	of	ubiquitous	computing	is
precisely	 that—embed	many	small,	highly	specialized	computers	 in	our	environment	 in	such	a	way	that
they	become	transparent.	Examples	of	ubiquitous	computing	include	wearable	devices,	smart	classrooms,
and	 environmentally	 aware	 homes	 and	 offices.	 Ubiquitous	 computing	 is	 distributed	 computing,	 albeit
quite	different	from	the	systems	previously	discussed.

Distributed	 computing	 is	 supported	 by	 a	 large	 distributed	 computing	 infrastructure.	 Remote
procedure	 calls	 (RPCs)	 extend	 the	 concept	 of	 distributed	 computing	 and	 help	 provide	 the	 necessary
transparency	for	resource	sharing.	Using	RPCs,	a	computer	can	invoke	a	procedure	to	use	the	resources
available	on	another	computer.	The	procedure	itself	resides	on	the	remote	machine,	but	the	invocation	is
done	 as	 if	 the	 procedure	were	 local	 to	 the	 calling	 system.	 RPCs	 are	 used	 by	Microsoft’s	 Distributed
Component	Object	Model	 (DCOM),	 the	Open	Group’s	Distributed	Computing	Environment	 (DCE),	 the
Common	Object	Request	Broker	Architecture	(CORBA),	and	Java’s	Remote	Method	Invocation	(RMI).
Today’s	software	designers	are	leaning	toward	an	object-oriented	view	of	distributed	computing,	which
has	fostered	the	popularity	of	DCOM,	CORBA,	RMI,	and	now	SOAP.	SOAP	(originally	an	acronym	for
Simple	Object	Access	Protocol,	but	dropped	in	recent	revisions	of	 the	protocol)	uses	XML	(extensible
markup	language)	to	encapsulate	data	that	is	sent	to	and	received	from	remote	procedures.	Although	any
mode	of	transport	can	be	used	for	a	SOAP	call,	HTTP	is	proving	to	be	the	most	popular.

An	emerging	variant	of	distributed	computing	is	Cloud	computing,	as	mentioned	in	Chapter	1.	Cloud
computing	concerns	computing	services	provided	by	a	collection	of	loosely	coupled	systems	connected	to
service	 consumers	 via	 the	 Internet	 “cloud.”	 The	 consumer	 of	 the	 computing	 service,	 the	 client,
theoretically	has	no	knowledge	or	interest	in	the	particular	piece	of	hardware	providing	the	service	at	any
given	time.	Thus,	 the	client	sees	the	Cloud	only	in	terms	of	the	services	it	provides.	Inside	a	particular
Cloud,	which	 is	 actually	 at	 a	 server	 farm	 somewhere,	 the	 first	 available	 system	 handles	 each	 service
request	 as	 it	 arrives.	Well-engineered	 Clouds	 provide	 redundancy	 and	 scalability	 among	 the	 systems,
hence,	good	failover	protection	and	response	time.

Cloud	computing	differs	from	classical	distributed	computing	because	the	Cloud	defines	itself	only	in
terms	of	the	services	it	provides,	rather	than	by	a	fixed	hardware	architecture	upon	which	applications	are
deployed.	The	Cloud	provides	separation	between	the	service	provider	and	the	service	consumer.	Thus,	it
facilitates	outsourcing	of	common	business	services	such	as	accounting	and	payroll.	Enterprises	that	have
embraced	this	approach	have	done	so	because	 it	means	 that	 the	company	does	not	need	to	worry	about
buying	and	maintaining	its	own	servers	for	the	applications	that	it	puts	in	the	Cloud.	It	pays	only	for	the
services	 that	 it	 actually	 uses.	Businesses	 that	 have	 shunned	 outsourced	Cloud	 computing	 cite	 concerns
over	security	and	privacy,	which	 loom	large	when	 the	Internet	becomes	a	strategic	part	of	a	computing
infrastructure.



9.5			ALTERNATIVE	PARALLEL	PROCESSING	APPROACHES
Entire	books	have	been	devoted	to	particular	alternative	and	advanced	architectures.	Although	we	cannot
discuss	all	of	them	in	this	brief	section,	we	can	introduce	you	to	a	few	of	the	more	notable	systems	that
diverge	 from	the	 traditional	von	Neumann	architecture.	These	systems	 implement	new	ways	of	 thinking
about	 computers	 and	 computation.	 They	 include	 dataflow	 computing,	 neural	 networks,	 and	 systolic
processing.

9.5.1		Dataflow	Computing
von	Neumann	machines	exhibit	sequential	control	flow.	A	program	counter	determines	the	next	instruction
to	 execute.	Data	 and	 instructions	 are	 segregated.	 The	 only	way	 in	which	 data	may	 alter	 the	 execution
sequence	is	 if	 the	value	 in	 the	program	counter	 is	changed	according	to	 the	outcome	of	a	statement	 that
references	a	data	value.

In	dataflow	 computing,	 the	 control	 of	 the	 program	 is	 directly	 tied	 to	 the	 data	 itself.	 It	 is	 a	 simple
approach:	 An	 instruction	 is	 executed	 when	 the	 data	 necessary	 for	 execution	 becomes	 available.
Therefore,	 the	 actual	 order	 of	 instructions	 has	 no	 bearing	 on	 the	 order	 in	 which	 they	 are	 eventually
executed.	Execution	flow	is	completely	determined	by	data	dependencies.	There	is	no	concept	of	shared
data	 storage	 in	 these	 systems,	 and	 there	 are	 no	 program	 counters	 to	 control	 execution.	 Data	 flows
continuously	and	is	available	to	multiple	instructions	at	the	same	time.	Each	instruction	is	considered	to
be	a	 separate	process.	 Instructions	do	not	 reference	memory;	 instead,	 they	 reference	other	 instructions.
Data	is	passed	from	one	instruction	to	the	next.

We	 can	 understand	 the	 computation	 sequence	 of	 a	 dataflow	 computer	 by	 examining	 its	 dataflow
graph.	 In	 a	dataflow	graph,	nodes	 represent	 instructions,	 and	arcs	 indicate	data	dependencies	between
instructions.	Data	flows	through	this	graph	in	the	form	of	data	tokens.	When	an	instruction	has	all	of	the
data	tokens	it	needs,	the	node	fires.	When	a	node	fires,	it	consumes	the	data	tokens,	performs	the	required
operation,	and	places	the	resulting	data	token	on	an	output	arc.	This	idea	is	illustrated	in	Figure	9.11.

The	dataflow	graph	shown	in	Figure	9.11	is	an	example	of	a	static	data-flow	architecture	in	which	the
tokens	flow	through	the	graph	in	a	staged	pipelined	fashion.	In	dynamic	dataflow	architectures,	tokens	are
tagged	 with	 context	 information	 and	 are	 stored	 in	 a	 memory.	 During	 every	 clock	 cycle,	 memory	 is
searched	for	the	set	of	tokens	necessary	for	a	node	to	fire.	Nodes	fire	only	when	they	find	a	complete	set
of	input	tokens	in	the	same	context.

Programs	for	dataflow	machines	must	be	written	in	languages	that	are	specifically	designed	for	 this
type	 of	 architecture;	 these	 include	 VAL,	 Id,	 SISAL,	 and	 LUCID.	 Compilation	 of	 a	 dataflow	 program
results	in	a	dataflow	graph	much	like	the	one	illustrated	in	Figure	9.11.	The	 tokens	propagate	along	 the
arcs	as	the	program	executes.



FIGURE	9.11	Dataflow	Graph	Computing	N	=	(A	+	B)	*	(B	–	4)

Consider	the	sample	code	that	calculates	N!:

The	corresponding	dataflow	graph	 is	 shown	 in	Figure	9.12.	The	 two	values,	N	 and	1,	 are	 fed	 into	 the
graph.	N	becomes	token	j.	When	j	is	compared	to	1,	if	it	is	greater	than	1,	the	j	token	is	passed	through	and
doubled,	with	one	copy	of	the	token	passed	to	the	“–1	node”	and	one	copy	passed	to	the	multiply	node.	If	j
is	not	greater	than	1,	the	value	of	k	is	passed	through	as	the	output	of	the	program.	The	multiply	node	can
only	fire	when	both	a	new	j	token	and	a	new	k	token	are	available.	The	“right-facing”	triangles	that	N	and
1	feed	into	are	“merge”	nodes	and	fire	whenever	either	input	is	available.	Once	N	and	1	are	fed	into	the
graph,	they	are	“used	up”	and	the	new	j	and	new	k	values	cause	the	merge	nodes	to	fire.

Al	Davis,	of	the	University	of	Utah,	built	the	first	dataflow	machine	in	1977.	The	first	multiprocessor
dataflow	 system	 (containing	 32	 processors)	was	 developed	 at	 CERT-ONERA	 in	 France	 in	 1979.	 The
University	 of	Manchester	 created	 the	 first	 tagged-token	 dataflow	 computer	 in	 1981.	The	 commercially
available	Manchester	 tagged	 dataflow	 model	 is	 a	 powerful	 dataflow	 paradigm	 based	 on	 dynamic
tagging.	This	particular	architecture	is	described	as	tagged	because	data	values	(tokens)	are	tagged	with
unique	 identifiers	 to	specify	 the	current	 iteration	 level.	The	 tags	are	 required	because	programs	can	be
reentrant,	meaning	 the	 same	 code	 can	 be	 used	with	 different	 data.	By	 comparing	 the	 tags,	 the	 system
determines	which	data	to	use	during	each	iteration.	Tokens	that	have	matching	tags	for	the	same	instruction
cause	the	node	to	fire.

A	loop	serves	as	a	good	example	to	explain	the	concept	of	tagging.	A	higher	level	of	concurrency	can
be	achieved	if	each	iteration	of	the	loop	is	executed	in	a	separate	instance	of	a	subgraph.	This	subgraph	is
simply	a	copy	of	the	graph.	However,	if	there	are	many	iterations	of	the	loop,	there	will	be	many	copies
of	the	graph.	Rather	than	copying	the	graph,	it	would	be	more	efficient	to	share	the	nodes	among	different
instances	of	a	graph.	The	tokens	for	each	instance	must	be	identifiable,	and	this	is	done	by	giving	each	of
them	a	tag.	The	tag	for	each	token	identifies	the	instance	to	which	it	belongs.	That	way,	tokens	intended
for,	say,	the	third	iteration,	cannot	cause	nodes	for	the	fourth	iteration	to	fire.

FIGURE	9.12	Dataflow	Graph	Corresponding	to	the	Program	to	Calculate	N!

The	 architecture	 of	 a	 dataflow	 machine	 consists	 of	 a	 number	 of	 processing	 elements	 that	 must
communicate	with	 each	 other.	 Each	 processing	 element	 has	 an	 enabling	 unit	 that	 sequentially	 accepts



tokens	and	stores	them	in	memory.	If	the	node	to	which	this	token	is	addressed	fires,	the	input	tokens	are
extracted	 from	 memory	 and	 are	 combined	 with	 the	 node	 itself	 to	 form	 an	 executable	 packet.	 The
processing	 element’s	 functional	 unit	 computes	 any	 necessary	 output	 values	 and	 combines	 them	 with
destination	addresses	to	form	more	tokens.	These	tokens	are	then	sent	back	to	the	enabling	unit,	at	which
time	they	may	enable	other	nodes.	In	a	tagged-token	machine,	the	enabling	unit	is	split	into	two	separate
stages:	 the	matching	 unit	 and	 the	 fetching	 unit.	 The	 matching	 unit	 stores	 tokens	 in	 its	 memory	 and
determines	whether	 an	 instance	 of	 a	 given	 destination	 node	 has	 been	 enabled.	 In	 tagged	 architectures,
there	must	be	a	match	of	both	 the	destination	node	address	and	 the	 tag.	When	all	matching	 tokens	for	a
node	are	available,	they	are	sent	to	the	fetching	unit,	which	combines	these	tokens	with	a	copy	of	the	node
into	an	executable	packet,	which	is	then	passed	on	to	the	functional	unit.

Because	data	drives	processing	on	dataflow	systems,	dataflow	multiprocessors	do	not	suffer	from	the
contention	 and	 cache	 coherency	 problems	 that	 are	 so	 vexing	 to	 designers	 of	 control-driven
multiprocessors.	 It	 is	 interesting	 to	 note	 that	 von	Neumann,	whose	 name	 is	 given	 to	 the	 von	Neumann
bottleneck	 in	 traditional	 computer	 architectures,	 studied	 the	 possibility	 of	 data-driven	 architectures
similar	in	nature	to	dataflow	machines.	In	particular,	he	studied	the	feasibility	of	neural	networks,	which
are	data	driven	by	nature	and	discussed	in	the	next	section.

9.5.2		Neural	Networks
Traditional	architectures	are	quite	good	at	fast	arithmetic	and	executing	deterministic	programs.	However,
they	 are	 not	 so	 good	 at	 massively	 parallel	 applications,	 fault	 tolerance,	 or	 adapting	 to	 changing
circumstances.	 Neural	 networks,	 on	 the	 other	 hand,	 are	 useful	 in	 dynamic	 situations	 where	 we	 can’t
formulate	an	exact	algorithmic	solution,	and	where	processing	is	based	on	an	accumulation	of	previous
behavior.

Whereas	von	Neumann	computers	are	based	on	the	processor/memory	structure,	neural	networks	are
based	 on	 the	 parallel	 architecture	 of	 human	 brains.	 They	 attempt	 to	 implement	 simplified	 versions	 of
biological	neural	networks.	Neural	networks	represent	an	alternative	form	of	multiprocessor	computing
with	 a	 high	degree	 of	 connectivity	 and	 simple	 processing	 elements.	They	 can	deal	with	 imprecise	 and
probabilistic	information	and	have	mechanisms	that	allow	for	adaptive	interaction	between	the	processing
elements.	Neural	networks	(or	neural	nets),	like	biological	networks,	can	learn	from	experience.

Neural	 network	 computers	 are	 composed	 of	 a	 large	 number	 of	 simple	 processing	 elements	 that
individually	 handle	 one	 piece	 of	 a	 much	 larger	 problem.	 Simply	 stated,	 a	 neural	 net	 consists	 of
processing	elements	 (PEs),	which	multiply	 inputs	by	various	 sets	of	weights,	 yielding	 a	 single	output
value.	The	actual	computation	 involved	 is	deceptively	easy;	 the	 true	power	of	a	neural	network	comes
from	the	parallel	processing	of	the	interconnected	PEs	and	the	adaptive	nature	of	the	sets	of	weights.	The
difficulties	 in	 creating	neural	networks	 lie	 in	determining	which	neurons	 (PEs)	 should	be	 connected	 to
which,	what	weights	should	be	placed	on	the	edges,	and	the	various	thresholds	that	should	be	applied	to
these	weights.	Furthermore,	as	a	neural	network	is	learning,	it	can	make	a	mistake.	When	it	does,	weights
and	thresholds	must	be	changed	to	compensate	for	the	error.	The	network’s	learning	algorithm	is	the	set
of	rules	that	governs	how	these	changes	are	to	be	made.

Neural	 networks	 are	 known	 by	 many	 different	 names,	 including	 connectionist	 systems,	 adaptive
systems,	and	parallel	distributed	processing	systems.	These	systems	are	particularly	powerful	when	a
large	database	of	previous	examples	can	be	used	by	the	neural	net	to	learn	from	prior	experiences.	They
have	been	used	successfully	in	a	multitude	of	real-world	applications	including	quality	control,	weather
forecasting,	financial	and	economic	forecasting,	speech	and	pattern	recognition,	oil	and	gas	exploration,



healthcare	 cost	 reduction,	 bankruptcy	 prediction,	 machine	 diagnostics,	 securities	 trading,	 and	 targeted
marketing.	It	is	important	to	note	that	each	of	these	neural	nets	has	been	specifically	designed	for	a	certain
task,	so	we	cannot	take	a	neural	network	designed	for	weather	forecasting	and	expect	it	to	do	a	good	job
for	economic	forecasting.

The	 simplest	 example	 of	 a	 neural	 net	 is	 the	 perceptron,	 a	 single	 trainable	 neuron.	 A	 perceptron
produces	 a	 Boolean	 output	 based	 on	 the	 values	 that	 it	 receives	 from	 several	 inputs.	 A	 perceptron	 is
trainable	because	 its	 threshold	and	 input	weights	are	modifiable.	Figure	9.13	 shows	 a	 perceptron	with
inputs	x1,	x2,	…,	xn,	which	can	be	Boolean	or	real	values.	Z	is	the	Boolean	output.	The	wi’s	represent	the
weights	of	the	edges	and	are	real	values.	T	is	the	real-valued	threshold.	In	this	example,	the	output	Z	 is
true	(1)	if	the	net	input,	w1x1	+	w2x2	+	…	+	wnxn,	is	greater	than	the	threshold	T.	Otherwise,	Z	is	zero.

A	perceptron	produces	outputs	for	specific	inputs	according	to	how	it	is	trained.	If	the	training	is	done
correctly,	we	should	be	able	to	give	it	any	input	and	get	reasonably	correct	output.	The	perceptron	should
be	able	to	determine	a	reasonable	output	even	if	it	has	never	before	seen	a	particular	set	of	inputs.	The
“reasonableness”	of	the	output	depends	on	how	well	the	perceptron	is	trained.

FIGURE	9.13	A	Perceptron

Perceptrons	are	trained	by	use	of	either	supervised	or	unsupervised	learning	algorithms.	Supervised
learning	assumes	prior	knowledge	of	correct	results,	which	are	fed	to	the	neural	net	during	the	training
phase.	While	it	is	learning,	the	neural	net	is	told	whether	its	final	state	is	correct.	If	the	output	is	incorrect,
the	 network	 modifies	 input	 weights	 to	 produce	 the	 desired	 results.	Unsupervised	 learning	 does	 not
provide	 the	 correct	output	 to	 the	network	during	 training.	The	network	adapts	 solely	 in	 response	 to	 its
inputs,	learning	to	recognize	patterns	and	structure	in	the	input	sets.	We	assume	supervised	learning	in	our
examples.

The	 best	 way	 to	 train	 a	 neural	 net	 is	 to	 compile	 a	 wide	 range	 of	 examples	 that	 exhibit	 the	 very
characteristics	in	which	you	are	interested.	A	neural	network	is	only	as	good	as	the	training	data,	so	great
care	must	be	taken	to	select	a	sufficient	number	of	correct	examples.	For	example,	you	would	not	expect	a
small	child	to	be	able	to	identify	all	birds	if	the	only	bird	he	had	ever	seen	was	a	chicken.	Training	takes
place	 by	 giving	 the	 perceptron	 inputs	 and	 then	 checking	 the	 output.	 If	 the	 output	 is	 incorrect,	 the
perceptron	is	notified	to	change	its	weights	and	possibly	the	threshold	value	to	avoid	the	same	mistake	in
the	future.	Moreover,	if	we	show	a	child	a	chicken,	a	sparrow,	a	duck,	a	hawk,	a	pelican,	and	a	crow,	we
cannot	 expect	 the	 child	 to	 remember	 the	 similarities	 and	 differences	 after	 seeing	 them	 only	 once.
Similarly,	the	neural	net	must	see	the	same	examples	many	times	in	order	to	infer	the	characteristics	of	the
input	data	that	you	seek.

A	perceptron	can	be	trained	to	recognize	the	logical	AND	operator	quite	easily.	Assuming	there	are	n
inputs,	the	output	should	be	1	only	if	all	inputs	are	equal	to	1.	If	the	threshold	of	the	perceptron	is	set	to	n,
and	the	weights	of	all	edges	are	set	 to	1,	 the	correct	output	 is	given.	On	the	other	hand,	 to	compute	 the
logical	OR	of	a	set	of	inputs,	the	threshold	simply	needs	to	be	set	to	1.	In	this	way,	if	at	least	one	of	the



inputs	is	1,	the	output	will	be	1.
For	both	the	AND	and	OR	operators,	we	know	what	the	values	for	the	threshold	and	weights	should

be.	For	complex	problems,	 these	values	are	not	known.	If	we	had	not	known	the	weights	for	AND,	for
example,	 we	 could	 start	 the	 weights	 at	 0.5	 and	 give	 various	 inputs	 to	 the	 perceptron,	 modifying	 the
weights	 as	 incorrect	 outputs	 were	 generated.	 This	 is	 how	 neural	 net	 training	 is	 done.	 Typically,	 the
network	 is	 initialized	 with	 random	weights	 between	 –1	 and	 1.	 Correct	 training	 requires	 thousands	 of
steps.	The	training	time	itself	depends	on	the	size	of	the	network.	As	the	number	of	perceptrons	increases,
the	number	of	possible	“states”	also	increases.

Let’s	 consider	 a	 more	 sophisticated	 example,	 that	 of	 determining	 whether	 a	 tank	 is	 hiding	 in	 a
photograph.	A	neural	net	can	be	configured	so	that	each	output	value	correlates	to	exactly	one	pixel.	If	the
pixel	is	part	of	the	image	of	a	tank,	the	net	should	output	a	one;	otherwise,	the	net	should	output	a	zero.
The	input	information	would	most	likely	consist	of	the	color	of	the	pixel.	The	network	would	be	trained
by	 feeding	 it	 many	 pictures	 with	 and	 without	 tanks.	 The	 training	 would	 continue	 until	 the	 network
correctly	identified	whether	the	photos	included	tanks.

The	U.S.	military	conducted	a	research	project	exactly	like	the	one	we	just	described.	One	hundred
photographs	were	 taken	of	 tanks	hiding	behind	 trees	 and	 in	bushes,	 and	another	100	photographs	were
taken	of	ordinary	landscape	with	no	tanks.	Fifty	photos	from	each	group	were	kept	“secret,”	and	the	rest
were	used	to	train	the	neural	network.	The	network	was	initialized	with	random	weights	before	being	fed
one	picture	at	a	time.	When	the	network	was	incorrect,	it	adjusted	its	input	weights	until	the	correct	output
was	reached.	Following	the	training	period,	the	50	“secret”	pictures	from	each	group	of	photos	were	fed
into	the	network.	The	neural	network	correctly	identified	the	presence	or	absence	of	a	tank	in	each	photo.

The	 real	 question	 at	 this	 point	 has	 to	 do	 with	 the	 training:	 Had	 the	 neural	 net	 actually	 learned	 to
recognize	tanks?	The	Pentagon’s	natural	suspicion	led	to	more	testing.	Additional	photos	were	taken	and
fed	into	the	network,	and	to	the	researchers’	dismay,	the	results	were	quite	random.	The	neural	net	could
not	 correctly	 identify	 tanks	 in	 photos.	 After	 some	 investigation,	 the	 researchers	 determined	 that	 in	 the
original	set	of	200	photos,	all	photos	with	tanks	had	been	taken	on	a	cloudy	day,	whereas	the	photos	with
no	tanks	had	been	taken	on	a	sunny	day.	The	neural	net	had	properly	separated	the	two	groups	of	pictures,
but	 had	 done	 so	 using	 the	 color	 of	 the	 sky	 to	 do	 this	 rather	 than	 the	 existence	 of	 a	 hidden	 tank.	 The
government	was	now	 the	proud	owner	of	 a	very	 expensive	neural	 net	 that	 could	 accurately	distinguish
between	sunny	and	cloudy	days!

This	 is	 a	great	 example	of	what	many	consider	 the	biggest	 issue	with	neural	networks.	 If	 there	are
more	than	10	to	20	neurons,	it	is	impossible	to	understand	how	the	network	is	arriving	at	its	results.	One
cannot	 tell	 if	 the	 net	 is	 making	 decisions	 based	 on	 correct	 information	 or,	 as	 in	 the	 above	 example,
something	 totally	 irrelevant.	Neural	 networks	 have	 a	 remarkable	 ability	 to	 derive	meaning	 and	 extract
patterns	 from	data	 that	 are	 too	 complex	 to	 be	 analyzed	 by	 human	 beings.	However,	 some	 people	 trust
neural	 networks	 to	 be	 experts	 in	 their	 area	 of	 training.	 Neural	 nets	 are	 used	 in	 such	 areas	 as	 sales
forecasting,	 risk	management,	 customer	 research,	 undersea	mine	 detection,	 facial	 recognition,	 and	 data
validation.	Although	neural	networks	are	promising,	and	the	progress	made	in	the	past	several	years	has
led	to	significant	funding	for	neural	net	research,	many	people	are	hesitant	to	put	confidence	in	something
that	no	human	being	can	completely	understand.

9.5.3		Systolic	Arrays
Systolic	array	computers	derive	 their	name	from	drawing	an	analogy	 to	how	blood	rhythmically	 flows
through	a	biological	heart.	They	are	a	network	of	processing	elements	that	rhythmically	compute	data	by



circulating	 it	 through	 the	 system.	 Systolic	 arrays	 are	 a	 variation	 of	 SIMD	 computers	 that	 incorporates
large	arrays	of	simple	processors	that	use	vector	pipelines	for	data	flow,	as	shown	in	Figure	9.14b.	Since
their	introduction	in	the	1970s,	they	have	had	a	significant	effect	on	special-purpose	computing.	One	well-
known	systolic	array	is	CMU’s	iWarp	processor,	which	was	manufactured	by	Intel	in	1990.	This	system
consists	of	a	linear	array	of	processors	connected	by	a	bidirectional	data	bus.

FIGURE	9.14	a)	A	Simple	Processing	Element	(PE)
b)	A	Systolic	Array	Processor

Although	Figure	9.14b	 illustrates	 a	 one-dimensional	 systolic	 array,	 two-dimensional	 arrays	 are	 not
uncommon.	 Three-dimensional	 arrays	 are	 becoming	 more	 prevalent	 with	 the	 advances	 in	 VLSI
technology.

Systolic	arrays	employ	a	high	degree	of	parallelism	(through	pipelining)	and	can	sustain	a	very	high
throughput.	Connections	are	typically	short,	and	the	design	is	simple	and	thus	highly	scalable.	They	tend	to
be	robust,	highly	compact,	efficient,	and	cheap	to	produce.	On	the	down	side,	they	are	highly	specialized
and	thus	inflexible	as	to	the	types	and	sizes	of	problems	they	can	solve.

A	 good	 example	 of	 using	 systolic	 arrays	 can	 be	 found	 in	 polynomial	 evaluation.	 To	 evaluate	 the
polynomial	y	=	a0	+	a1x	+	a2x2	+	…	+	akxk,	we	can	use	Horner’s	Rule:

A	 linear	 systolic	 array,	 in	 which	 the	 processors	 are	 arranged	 in	 pairs,	 can	 be	 used	 to	 evaluate	 a
polynomial	using	Horner’s	Rule,	as	shown	in	Figure	9.15.	One	processor	multiplies	its	input	by	x,	which
is	then	passed	to	the	right	(to	the	other	processor	in	the	pair).	This	processor	adds	the	appropriate	aj	and
passes	this	sum	to	the	right	(to	the	next	processor	pair).	This	continues	until	all	processors	are	busy.	After
an	initial	latency	of	2n	cycles	to	get	started,	a	polynomial	is	computed	in	every	cycle.

Systolic	 arrays	 are	 typically	 used	 for	 repetitive	 tasks,	 including	 Fourier	 transformations,	 image
processing,	 data	 compression,	 shortest	 path	 problems,	 sorting,	 signal	 processing,	 and	 various	 matrix
computations	 (such	 as	 inversion	 and	multiplication).	 In	 short,	 systolic	 array	 computers	 are	 suitable	 for
computational	 problems	 that	 lend	 themselves	 to	 a	 parallel	 solution	 using	 a	 large	 number	 of	 simple
processing	elements.

FIGURE	9.15	Using	a	Systolic	Array	to	Evaluate	a	Polynomial

9.6	QUANTUM	COMPUTING
All	the	classical	computer	architectures	presented	up	to	this	point	have	one	thing	in	common:	They	all	use



Boolean	logic,	dealing	with	bits	that	are	either	on	or	off.	From	the	basic	von	Neumann	architecture	to	the
most	complicated	parallel	processing	systems,	all	are	based	on	binary	mathematics.	In	addition,	each	is
based	on	transistor	technology.	Moore’s	Law,	which	states	that	the	number	of	transistors	on	a	single	chip
doubles	every	18	months,	cannot	hold	forever.	The	law	of	physics	suggests	that	eventually	transistors	will
become	so	tiny	that	distances	between	them	will	permit	electrons	to	jump	from	one	to	the	other,	causing
fatal	short	circuits.	This	suggests	that	we	need	to	look	in	the	direction	of	other	technologies	for	answers.

One	possible	answer	is	optical	or	photonic	computing.	Rather	than	using	electrons	to	perform	logic
in	a	computer,	optical	computers	use	photons	of	laser	light.	The	speed	of	light	in	photonic	circuits	could
approach	the	speed	of	 light	 in	a	vacuum,	with	 the	added	advantage	of	no	heat	dissipation.	The	fact	 that
light	beams	can	travel	in	parallel	would	suggest	an	additional	increase	in	speed	and	performance.	It	may
be	many	years	before	we	see	an	optical	computer	on	our	desktops,	if	at	all—many	people	believe	optical
computing	will	be	reserved	only	for	special-purpose	applications.

One	very	promising	technology	is	biological	computing,	computing	that	uses	components	from	living
organisms	instead	of	inorganic	silicon	ones.	One	such	project	is	the	“leech-ulator,”	a	computer	created	by
U.S.	scientists	that	was	made	of	neurons	from	leeches.	Another	example	is	DNA	computing,	which	uses
DNA	 as	 software	 and	 enzymes	 as	 hardware.	 DNA	 can	 be	 replicated	 and	 programmed	 to	 perform
massively	 parallel	 tasks,	 one	 of	 the	 first	 of	 which	 was	 the	 traveling	 salesman	 problem,	 limited	 in
parallelism	only	by	the	number	of	DNA	strands.	DNA	computers	(also	called	molecular	computers)	are
essentially	 collections	 of	 specially	 selected	DNA	 strands	 that	 test	 all	 solutions	 at	 once	 and	 output	 the
correct	 answer.	Scientists	 are	 also	 experimenting	with	 certain	bacteria	 that	 can	 turn	genes	on	or	off	 in
predictable	 ways.	 Researchers	 have	 already	 successfully	 programmed	E.	 coli	 bacteria	 to	 emit	 red	 or
green	(i.e.,	0	or	1)	fluorescent	light.

Perhaps	 the	 most	 interesting	 technology	 currently	 being	 studied	 is	 quantum	 computing.	 Whereas
classical	computers	use	bits	that	are	either	on	or	off,	quantum	computers	use	quantum	bits	(qubits)	 that
can	be	in	multiple	states	simultaneously.	Recall	from	physics	that	in	a	magnetic	field,	an	electron	can	be	in
two	possible	states:	The	spin	can	be	aligned	with	the	field	or	opposite	to	the	field.	When	we	measure	this
spin,	we	find	the	electron	to	be	in	one	of	these	two	states.	However,	it	is	possible	for	the	particle	to	be	in
a	superposition	of	 the	two	states,	where	each	exists	simultaneously.	Three	qubits	could	evaluate	to	any
one	of	the	numbers	0	to	7	simultaneously	because	each	qubit	can	be	in	a	superposition	of	states.	(To	get	a
single	value	output,	we	must	take	a	measurement	of	the	qubit.)	Therefore,	processing	with	three	qubits	can
perform	calculations	using	all	possible	values	simultaneously,	working	on	eight	calculations	at	the	same
time,	resulting	in	quantum	parallelism.	A	system	with	600	qubits	represents	a	quantum	superpositioning
of	2600	states,	something	impossible	to	simulate	on	a	classical	architecture.	In	addition	to	being	close	to	a
billion	 times	 faster	 than	 their	 silicon-based	 relatives,	 quantum	 computers	 could	 theoretically	 operate
utilizing	no	energy.

Superpositioning	is	not	new;	it	simply	refers	to	the	ability	of	two	things	to	overlap.	In	Chapter	3,	when
we	introduced	clocks,	we	overlapped	(or	superpositioned)	multiple	clocks	to	create	a	clock	with	multiple
stages.	 Sine	 waves	 can	 be	 superpositioned	 to	 create	 a	 new	 wave	 representing	 a	 combination	 of	 its
components.	A	doubly	linked	list	could	be	traversed	by	performing	an	exclusive	OR	on	the	current	pointer
and	the	pointer	on	the	left	(or	right,	depending	on	the	desired	direction),	resulting	in	a	superposition	that
gives	the	address	of	the	next	desired	node.	The	superpositioning	of	clock	signals	and	sine	waves	and	node
pointers	is	exactly	how	qubits	are	able	to	maintain	multiple	states	simultaneously.

D-Wave	Computers	is	 the	first	company	in	the	world	to	manufacture	and	sell	what	it	 identifies	as	a
quantum	 computer.	 (Some	 believe	 this	 particular	 computer	 has	 not	 yet	 reached	 quantum	 status;	 see	 the
reference	article	by	Jones	for	more	on	this	debate.)	The	company’s	goal	is	to	push	the	limits	of	science



and	build	computers	that	exploit	the	newest	research	in	physics.	By	utilizing	quantum	mechanics,	D-Wave
is	 building	 effective	 and	 efficient	 computers,	 with	 hopes	 of	 accelerating	 computing	 beyond	 what	 is
possible	 in	normal	 transistor-based	 technology.	 Instead	of	processors,	 these	computers	use	qubits	 (also
known	as	sqids—superconducting	quantum	interference	devices).	In	these	machines,	a	qubit	is	essentially
a	metal	superconducting	loop,	cooled	to	almost	absolute	zero,	in	which	quantizised	current	can	run	both
clockwise	and	counterclockwise	at	once.	By	allowing	current	to	flow	in	both	directions	around	the	loop,
the	 system	 loses	 the	 ability	 to	 distinguish	 between	 them	 and	 can	 thus	 be	 in	 two	 states	 at	 once.	Qubits
interact	with	other	objects,	ultimately	choosing	a	final	state.

The	 first	 machine	 that	 D-Wave	 sold	 was	 to	 the	 University	 of	 Southern	 California	 for	 its	 USC
Lockheed	 Martin	 Quantum	 Computation	 Center.	 The	 focus	 of	 this	 lab	 is	 to	 research	 how	 quantum
computing	works.	USC	has	been	using	this	computer	for	basic	research	to	determine	answers	to	questions
such	as	what	causes	quantum	computing	errors	when	unexpected	results	are	obtained,	how	the	computer’s
architecture	 affects	 how	 programmers	 reason	 about	 computation,	 and	 how	 increasing	 the	 size	 of	 a
problem	 relates	 to	 how	much	harder	 is	 it	 for	 the	machine	 to	 find	 a	 solution.	USC’s	 quantum	computer
originally	consisted	of	128	qubits;	it	has	since	been	upgraded	to	512	qubits.

In	2013,	Google	purchased	a	D-Wave	computer	for	its	new	NASA-hosted	lab,	the	Quantum	Artificial
Intelligence	Lab.	Unlike	 the	USC	 lab,	 this	 lab	 is	 used	mostly	 for	 running	machine	 learning	 algorithms.
This	D-Wave	quantum	computer	contains	512	superconducting	qubits.	To	program	this	computer,	a	user
assigns	it	a	task;	the	computer	then	utilizes	algorithms	to	map	a	calculation	across	the	qubits.	The	ability
to	be	 in	multiple	 states	 concurrently	makes	 the	D-Wave	 computer	 very	useful	 in	 solving	 combinatorial
optimization	problems,	such	as	 risk	analysis,	vehicle	 routing	and	mapping,	 traffic	 light	synchronization,
and	train	schedules,	to	name	a	few.

This	raises	an	interesting	question:	What	algorithms	can	be	run	on	a	quantum	computer?	The	answer:
Anything	 that	 can	 be	 run	 on	 a	 typical	 von	 Neumann	 machine	 (i.e.,	 a	 “classical	 machine”	 as	 this
architecture	is	known	in	the	quantum	computer	community)	can	be	run	on	a	quantum	computer;	after	all,	as
any	physicist	can	verify,	classical	is	a	subset	of	quantum.	Another	popular	question	deals	with	how	much
more	powerful	a	quantum	computer	actually	is	when	compared	to	a	classical	one.	Although	this	depends
on	the	specifics	of	the	problem,	the	complete	answer	to	this	question	has	evaded	researchers,	as	much	of
what	quantum	computers	can	do	is	beyond	the	limits	of	empirical	testing;	these	computers	are	basically
“too	quantum”	for	any	meaningful	theoretical	analysis.	What	we	do	know,	however,	is	that	the	true	power
of	quantum	computers	lies	in	their	ability	to	successfully	run	quantum	algorithms.	These	are	algorithms
—including	 those	 that	 exploit	 quantum	 parallelism—that	 do	 not	 lend	 themselves	 to	 being	 run	 on	 a
classical	computer,	but	do	exceptionally	well	on	a	quantum	computer.

An	example	of	such	an	algorithm	is	Shor’s	algorithm	for	factoring	products	of	prime	numbers,	which
is	useful	for	cryptography	and	coding.	Peter	Shor	at	Bell	Labs	created	an	algorithm	that	exploits	quantum
parallelism	 to	 factor	 large	 prime	 numbers,	 a	 problem	 so	 difficult	 that	 it	 is	 used	 as	 the	 basis	 for	RSA
encryption,	 the	most	 popular	 form	 of	 public	 key	 encryption	 today.	 This	 is	 unfortunate	 news	 for	 RSA,
because	 a	 quantum	 computer	 could	 break	 the	 encryption	 in	 a	matter	 of	 seconds,	 rendering	 all	 current
encryption	 software	 that	 is	 based	 on	 this	method	 completely	 useless.	 To	 break	 a	 code,	 a	 programmer
simply	asks	the	quantum	machine	to	simulate	every	possible	state	of	the	problem	set	(i.e.,	every	possible
key	for	a	cipher)	and	it	“collapses”	on	the	correct	solution.	In	addition	to	uses	in	quantum	cryptography,
quantum	 computers	 could	 yield	 super-dense	 communications	 and	 improved	 error	 correction	 and
detection.

An	application	for	quantum	computing,	perhaps	more	relevant	to	everyday	programming,	is	the	ability
to	 generate	 truly	 random	 numbers.	 Classical	 computers	 can	 generate	 only	 pseudorandom	 numbers,



because	the	process	is	based	on	an	algorithm	that	always	contains	a	cycle	or	repetition	of	some	type.	In	a
quantum	computer,	the	superpositioning	of	states	of	qubits	is	always	measured	with	a	certain	probability
(i.e.,	 each	 state	 has	 a	 numerical	 coefficient	 representing	 its	 probability).	 In	 our	 example	 using	 three
qubits,	each	of	the	eight	numbers	has	an	equal	probability	of	being	measured,	thus	resulting	in	the	ultimate
random	number	generator.

The	reason	these	computers	perform	well	on	hard	problems	such	as	those	we	have	discussed	is	that
the	 quantum	 computer	 programmer	 has	 access	 to	 operations	 that	 are	 basically	 prohibited	 by	 classical
physics.	The	process	of	programming	on	these	machines	requires	a	completely	different	way	of	thinking,
as	 there	 is	no	sense	of	a	clock	or	a	 fetch–decode–execute	cycle.	 In	addition,	 there	 is	no	 real	notion	of
gates;	 although	 a	 quantum	 computer	 could	 be	 built	 using	 the	 gate	model,	 doing	 so	 appears	 to	 be	more
because	 it	 has	 always	 been	 done	 that	 way,	 and	 less	 about	 creating	 an	 efficient	 machine.	 Quantum
computers	 have	 the	 freedom	 to	 choose	 from	many	 different	 architectures.	 It	 is	 interesting	 to	 note	 that,
similar	 to	 Moore’s	 Law	 (which	 has	 predicted	 the	 transistor	 density	 on	 integrated	 circuits),	 quantum
computing	has	Rose’s	Law	(named	after	Geordie	Rose,	D-Wave’s	founder	and	chief	technology	officer).
Rose’s	Law	states	that	the	number	of	qubits	that	can	be	assembled	to	successfully	perform	computations
will	double	every	12	months;	this	has	been	precisely	the	case	for	the	past	nine	years.

There	 are	 a	 significant	 number	 of	 difficulties	 that	 must	 be	 overcome	 before	 quantum	 computers
become	 common	 desktop	 machines.	 One	 obstacle	 is	 the	 tendency	 for	 qubits	 to	 decay	 into	 a	 single
incoherent	 state	 (called	 decoherence),	 resulting	 in	 a	 breakdown	 of	 information	 and	 unavoidable	 and
uncorrectable	 errors;	 recent	 research	efforts	have	made	 remarkable	 strides	 in	 error-correcting	quantum
coding.	Perhaps	 the	greatest	 limiting	factor	 regarding	 the	development	of	quantum	computing	 is	 that	 the
ability	to	fabricate	to	scale	simply	does	not	exist.	This	is	a	similar	problem	to	the	one	faced	by	Charles
Babbage	so	long	ago:	We	have	the	vision:	we	just	don’t	have	the	necessary	means	to	build	the	machine.	If
these	obstacles	can	be	overcome,	quantum	computers	will	do	 to	silicon	what	 transistors	did	 to	vacuum
tubes,	rendering	them	quaint	artifacts	of	a	bygone	era.

The	 realization	 of	 quantum	 computing	 has	 prompted	 many	 to	 consider	 what	 is	 known	 as	 the
technological	singularity,	a	theoretical	point	in	time	when	human	technology	has	progressed	to	the	point
when	it	will	fundamentally	and	irreversibly	alter	human	development—a	point	when	civilization	changes
to	such	an	extent	that	its	technology	is	incomprehensible	to	previous	generations.	John	von	Neumann	first
coined	the	term	singularity	when	he	spoke	of	an	“ever	accelerating	progress	of	technology	and	changes	in
the	mode	 of	 human	 life,	 which	 gives	 the	 appearance	 of	 approaching	 some	 essential	 singularity	 in	 the
history	of	the	race	beyond	which	human	affairs,	as	we	know	them,	could	not	continue”…	or	the	moment	in
time	when	“technological	progress	became	incomprehensibly	rapid	and	complicated.”	In	the	early	1980s,
Vernor	Vinge	 (a	 computer	 science	professor	 and	author)	 introduced	 the	 term	 technological	 singularity
and	defined	it	as	that	point	in	time	when	we	create	intelligence	greater	than	our	own—essentially	a	point
representing	 that	moment	 in	 time	when	machines	 replace	 humans	 as	 the	 dominant	 force	 on	 the	 planet.
Since	 then,	 many	 have	modified	 this	 definition.	 Ray	 Kurzwell	 (an	 author	 and	 popular	 singularitarian)
defines	 the	 technological	 singularity	as	“a	 future	period	during	which	 the	pace	of	 technological	change
will	be	so	rapid,	its	impact	so	deep,	that	human	life	will	be	irreversibly	transformed.”	James	Martin	(a
computer	scientist	and	author)	defines	the	singularity	as	“a	break	in	human	evolution	that	will	be	caused
by	the	staggering	speed	of	technological	evolution.”	Kevin	Kelly	(co-founder	of	Wired	Magazine)	defines
it	as	the	point	when	“all	the	change	in	the	last	million	years	will	be	superseded	by	the	change	in	the	next
five	minutes.”	No	matter	which	definition	is	used,	many	believe	the	singularity	is	a	 long	way	off;	some
(such	as	D-Wave’s	Geordie	Rose)	feel	that	point	in	technological	development	has	already	occurred.

Quantum	computing	is	a	field	that	presents	both	immense	challenges	and	enormous	promise.	The	field



is	 in	 its	 infancy,	but	 it	 is	progressing	much	 faster	 than	people	anticipated.	Significant	 funding	has	been
given	for	research	in	this	area,	and	many	algorithms	suitable	for	use	on	a	quantum	computer	have	already
been	developed.	We	are	 in	a	unique	situation	to	watch	as	 these	systems	mature	and	become	a	practical
reality,	 significantly	 changing	 what	 we	 know	 about	 computers	 and	 how	 we	 program	 them.	 If	 you	 are
interested	in	trying	your	hand	at	quantum	computing,	you	can	contact	either	the	USC	lab	or	the	Google	lab
and	apply	for	time	on	either	of	their	quantum	computers.

CHAPTER	SUMMARY
This	chapter	has	presented	an	overview	of	some	important	aspects	of	multiprocessor	and	multicomputer
systems.	 These	 systems	 provide	 a	means	 of	 solving	 otherwise	 unmanageable	 problems	 in	 an	 efficient
manner.

The	RISC-versus-CISC	debate	is	becoming	increasingly	more	a	comparison	of	chip	architectures,	not
ISAs.	What	really	matters	is	program	execution	time,	and	both	RISC	and	CISC	designers	will	continue	to
improve	performance.

Flynn’s	taxonomy	categorizes	architectures	depending	on	the	number	of	instructions	and	data	streams.
MIMD	machines	should	be	further	divided	into	those	that	use	shared	memory	and	those	that	do	not.

The	 power	 of	 today’s	 digital	 computers	 is	 truly	 astounding.	 Internal	 processor	 parallelism	 has
contributed	 to	 this	 increased	 power	 through	 superscalar	 and	 superpipelined	 architectures.	 Originally,
processors	 did	 one	 thing	 at	 a	 time,	 but	 it	 is	 now	 common	 for	 them	 to	 perform	 multiple	 concurrent
operations.	Vector	processors	support	vector	operations,	whereas	MIMD	machines	incorporate	multiple
processors.

SIMD	 and	 MIMD	 processors	 are	 connected	 through	 interconnection	 networks.	 Shared	 memory
multiprocessors	treat	the	collection	of	physical	memories	as	a	single	entity,	whereas	distributed	memory
architectures	allow	a	processor	sole	access	 to	 its	memory.	Either	approach	allows	the	common	user	 to
have	supercomputing	capability	at	an	affordable	price.	The	most	popular	multiprocessor	architectures	are
MIMD,	shared	memory,	bus-based	systems.

Some	 highly	 complex	 problems	 cannot	 be	 solved	 using	 our	 traditional	 model	 of	 computation.
Alternative	architectures	are	necessary	for	specific	applications.	Dataflow	computers	allow	data	to	drive
computation,	 rather	 than	 the	other	way	around.	Neural	networks	 learn	 to	 solve	problems	of	 the	highest
complexity.	Systolic	arrays	harness	the	power	of	small	processing	elements,	pushing	data	throughout	the
array	until	the	problem	is	solved.	The	departure	from	silicon-based	computers	to	biological,	optical,	and
quantum	computers	may	very	well	usher	in	a	new	generation	of	computing	technology.

FURTHER	READING
For	more	information	on	the	current	RISC-versus-CISC	debate,	see	Blem	et	al.	(2013).

There	have	been	several	attempts	at	modifying	Flynn’s	taxonomy.	Hwang	(1987),	Bell	(1989),	Karp
(1987),	and	Hockney	and	Jesshope	(1988)	have	all	extended	this	taxonomy	to	varying	degrees.

There	are	many	good	textbooks	on	advanced	architectures,	including	Hennessy	and	Patterson	(2006),
Hwang	 (1993),	 and	 Stone	 (1993).	 Stone	 has	 very	 detailed	 explanations	 of	 pipelining	 and	 memory
organization,	 in	 addition	 to	 vector	 machines	 and	 parallel	 processing.	 For	 a	 detailed	 explanation	 of
superscalar	execution	 in	a	modern	RISC	processor,	 see	Grohoski	 (1990).	For	a	 thorough	discussion	of
RISC	principles	with	a	good	explanation	of	instruction	pipelines,	see	Patterson	(1985)	and	Patterson	and
Ditzel	(1980).



For	an	excellent	article	on	the	interaction	between	VLSI	technology	and	computer	processor	design,
see	Hennessy	(1984).	Leighton	(1982)	has	a	dated	but	very	good	view	of	architectures	and	algorithms	and
is	a	good	reference	for	interconnection	networks.	Omondi	(1999)	provides	an	authoritative	treatment	of
the	implementation	of	computer	microarchitecture.

For	excellent	survey	papers	on	dataflow	architectures,	as	well	as	comparisons	of	various	dataflow
machines,	see	Dennis	(1980),	Hazra	(1982),	Srini	(1986),	Treleaven	et	al.	(1982),	and	Vegdahl	(1984).

Foster	 and	 Kesselman	 (2003)	 provide	 detailed	 information	 on	 grid	 computing,	 as	 does	 Anderson
(2004,	2005).	For	more	 information	on	BOINC,	see	http://boinc.berkeley.edu.	For	 readers	 interested	 in
quantum	 computing,	 Brown	 (2000)	 provides	 a	 wonderful	 introduction	 to	 quantum	 computing,	 quantum
physics,	and	nanotechnology.	Williams	and	Clearwater	(1998)	provide	good	coverage	for	the	beginner,	as
does	Johnson	(2003).

For	 additional	 coverage	 on	 the	 topics	 in	 this	 chapter,	 see	 Stallings	 (2009),	 Goodman	 and	Miller
(1993),	 Patterson	 and	 Hennessy	 (2008),	 and	 Tanenbaum	 (2005).	 For	 a	 historical	 perspective	 and
performance	 information	 on	 interconnection	 networks,	 see	 Byuyan,	 et	 al.	 (1989),	 Reed	 and	Grunwald
(1987),	and	Siegel	 (1985).	Circello,	et	al.	 (1995)	contains	an	overview	of	 the	superscalar	architecture
used	by	Motorola	for	the	MC68060	chip.

Architectural	 decisions,	 challenges,	 and	 trade-offs	 for	 64-bit	machines	 are	 discussed	 in	Horel	 and
Lauterback	(1999);	the	IA-64	architecture,	and	its	use	of	instruction-level	parallelism,	is	explained	well
in	Dulong	(1998).	A	thorough	discussion	of	pipelined	computers	can	be	found	in	Kogge	(1981),	which	is
considered	 the	 first	 formal	 treatise	 on	 pipelining.	 Trew	 and	Wilson	 (1991)	 provide	 an	 older,	 yet	 still
interesting,	survey	of	parallel	machines,	as	well	as	discussions	on	the	various	form	of	parallelism.	Silc,	et
al.	(1999)	offers	a	survey	of	the	various	architectural	approaches	and	implementation	techniques	that	can
be	used	to	exploit	parallelism	in	microprocessors.

REFERENCES
Amdahl,	G.	“The	Validity	of	the	Single	Processor	Approach	to	Achieving	Large	Scale	Computing

Capabilities.”	AFIPS	Conference	Proceedings	30,	1967,	pp.	483–485.
Anderson,	D.	P.	“BOINC:	A	System	for	Public-Resource	Computing	and	Storage.”	5th	IEEE/ACM

International	Workshop	on	Grid	Computing,	November	8,	2004,	Pittsburgh,	PA,	pp.	4–10.
Anderson,	D.	P.,	Korpela,	E.,	&	Walton,	R.	“High-Performance	Task	Distribution	for	Volunteer

Computing.”	IEEE	International	Conference	on	e-Science	and	Grid	Technologies,	5–8	December
2005,	Melbourne.

Bell,	G.	“The	Future	of	High	Performance	Computers	in	Science	and	Engineering.”	Communications	of
the	ACM	32,	1989,	pp.	1091–1101.

Bhuyan,	L.,	Yang,	Q.,	&	Agrawal,	D.	“Performance	of	Multiprocessor	Interconnection	Networks.”
Computer,	22:2,	1989,	pp.	25–37.

Blem,	E.,	Menon,	J.,	&	Sankaralingam,	K.	“Power	Struggles:	Revisting	the	RISC	vs.	CISC	Debate	on
Contemporary	ARM	and	x86	Architectures.”	19th	IEEE	International	Symposium	on	High
Performance	Computer	Architecture	(HPCA),	February	23–27,	2013,	pp.	1–12.

Brown,	J.	Minds,	Machines,	and	the	Multiverse:	The	Quest	for	the	Quantum	Computer.	New	York:
Simon	&	Schuster,	2000.

Circello,	J.,	et	al.	“The	Superscalar	Architecture	of	the	MC68060.”	IEEE	Micro,	15:2,	April	1995,	pp.

http://boinc.berkeley.edu


10–21.
DeMone,	P.	“RISC	vs	CISC	Still	Matters.”	Real	World	Technologies,	February	13,	2000.	Last	accessed

September	1,	2013,	at	http://www.realworldtech.com/risc-vs-cisc/
Dennis,	J.	B.	“Dataflow	Supercomputers.”	Computer	13:4,	November	1980,	pp.	48–56.
Dulong,	C.	“The	IA-64	Architecture	at	Work.”	Computer	31:7,	July	1998,	pp.	24–32.
Flynn,	M.	“Some	Computer	Organizations	and	Their	Effectiveness.”	IEEE	Transactions	on	Computers

C-21,	1972,	p.	94.
Foster,	I.,	&	Kesselman,	C.	The	Grid	2:	Blueprint	for	a	New	Computing	Infrastructure.	San	Francisco:

Morgan-Kaufmann	Publishers,	2003.
Goodman,	J.,	&	Miller,	K.	A	Programmer’s	View	of	Computer	Architecture.	Philadelphia:	Saunders

College	Publishing,	1993.
Grohoski,	G.	F.	“Machine	Organization	of	the	IBM	RISC	System/6000	Processor.”	IBM	J.	Res.	Develop.

43:1,	January	1990,	pp.	37–58.
Hazra,	A.	“A	Description	Method	and	a	Classification	Scheme	for	Dataflow	Architectures.”	Proceedings

of	the	3rd	International	Conference	on	Distributed	Computing	Systems,	October	1982,	pp.	645–
651.

Hennessy,	J.	L.	“VLSI	Processor	Architecture.”	IEEE	Trans.	Comp.	C-33:12,	December	1984,	pp.	1221–
1246.

Hennessy,	J.	L.,	&	Patterson,	D.	A.	Computer	Architecture:	A	Quantitative	Approach,	4th	ed.	San
Francisco:	Morgan	Kaufmann,	2006.

Hockney,	R.,	&	Jesshope,	C.	Parallel	Computers	2.	Bristol,	UK:	Adam	Hilger,	Ltd.,	1988.
Horel,	T.,	&	Lauterbach,	G.	“UltraSPARC	III:	Designing	Third	Generation	64-Bit	Performance.”	IEEE

Micro	19:3,	May/June	1999,	pp.	73–85.
Hwang,	K.	Advanced	Computer	Architecture.	New	York:	McGraw-Hill,	1993.
Hwang,	K.	“Advanced	Parallel	Processing	with	Supercomputer	Architectures.”	Proc.	IEEE	75,	1987,	pp.

1348–1379.
Johnson,	G.	A	Shortcut	Through	Time—The	Path	to	a	Quantum	Computer.	New	York:	Knopf,	2003.
Jones,	N.	&	Nature	Magazine.	“D-Wave’s	Quantum	Computer	Courts	Controversy.”	Scientific	American,

June	19,	2013.
Karp,	A.	“Programming	for	Parallelism.”	IEEE	Computer	20:5,	1987,	pp.	43–57.
Kogge,	P.	The	Architecture	of	Pipelined	Computers.	New	York:	McGraw-Hill,	1981.
Leighton,	F.	T.	Introduction	to	Parallel	Algorithms	and	Architectures.	New	York:	Morgan	Kaufmann,

1982.
MIPS	home	page:	www.mips.com.
Omondi,	A.	The	Microarchitecture	of	Pipelined	and	Superscalar	Computers.	Boston:	Kluwer	Academic

Publishers,	1999.
Patterson,	D.	A.	“Reduced	Instruction	Set	Computers.”	Communications	of	the	ACM	28:1,	January	1985,

pp.	8–20.
Patterson,	D.,	&	Ditzel,	D.	“The	Case	for	the	Reduced	Instruction	Set	Computer.”	ACM	SIGARCH

http://www.realworldtech.com/risc-vs-cisc/
http://www.mips.com


Computer	Architecture	News,	October	1980,	pp.	25–33.
Patterson,	D.	A.,	&	Hennessy,	J.	L.	Computer	Organization	and	Design:	The	Hardware/Software

Interface,	4th	ed.	San	Mateo,	CA:	Morgan	Kaufmann,	2008.
Reed,	D.,	&	Grunwald,	D.	“The	Performance	of	Multicomputer	Interconnection	Networks.”	IEEE

Computer,	June	1987,	pp.	63–73.
Siegel,	H.	Interconnection	Networks	for	Large	Scale	Parallel	Processing:	Theory	and	Case	Studies.

Lexington,	MA:	Lexington	Books,	1985.
Silc,	J.,	Robic,	B.,	&	Ungerer,	T.	Processor	Architecture:	From	Dataflow	to	Superscalar	and	Beyond.

New	York:	Springer-Verlag,	1999.
SPIM	home	page:	www.cs.wisc.edu/~larus/spim.html.
Srini,	V.	P.	“An	Architectural	Comparison	of	Dataflow	Systems.”	IEEE	Computer,	March	1986,	pp.	68–

88.
Stallings,	W.	Computer	Organization	and	Architecture,	8th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,

2009.
Stone,	H.	S.	High	Performance	Computer	Architecture,	3rd	ed.	Reading,	MA:	Addison-Wesley,	1993.
Tanenbaum,	A.	Structured	Computer	Organization,	5th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,	2005.
Treleaven,	P.	C.,	Brownbridge,	D.	R.,	&	Hopkins,	R.	P.	“Data-Driven	and	Demand-Driven	Computer

Architecture.”	Computing	Surveys	14:1,	March	1982,	pp.	93–143.
Trew,	A.,	&	Wilson,	A.,	Eds.	Past,	Present,	Parallel:	A	Survey	of	Available	Parallel	Computing

Systems.	New	York:	Springer-Verlag,	1991.
Vegdahl,	S.	R.	“A	Survey	of	Proposed	Architectures	for	the	Execution	of	Functional	Languages.”	IEEE

Transactions	on	Computers	C-33:12,	December	1984,	pp.	1050–1071.
Williams,	C.,	&	Clearwater,	S.	Explorations	in	Quantum	Computing.	New	York:	Springer-Verlag,	1998.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS
1.		Why	was	the	RISC	architecture	concept	proposed?
2.		Why	is	a	RISC	processor	easier	to	pipeline	than	a	CISC	processor?
3.		Describe	how	register	windowing	makes	procedure	calls	more	efficient.
4.		Flynn’s	taxonomy	classifies	computer	architectures	based	on	two	properties.	What	are	they?
5.		What	is	the	difference	between	MPP	and	SMP	processors?
6.	 	 We	 propose	 adding	 a	 level	 to	 Flynn’s	 taxonomy.	 What	 is	 the	 distinguishing	 characteristic	 of

computers	at	this	higher	level?
7.		Do	all	programming	problems	lend	themselves	to	parallel	execution?	What	is	the	limiting	factor?
8.		Define	superpipelining.
9.		How	is	a	superscalar	design	different	from	a	superpipelined	design?
10.		In	what	way	does	a	VLIW	design	differ	from	a	superpipelined	design?
11.		What	are	the	similarities	and	differences	between	EPIC	and	VLIW?

http://www.cs.wisc.edu/~larus/spim.html


12.		Explain	the	limitation	inherent	in	a	register-register	vector	processing	architecture.
13.		Give	two	reasons	for	the	efficiency	of	vector	processors.
14.		Draw	pictures	of	the	six	principal	interconnection	network	topologies.
15.		There	are	three	types	of	shared	memory	organizations.	What	are	they?
16.		Describe	one	of	the	cache	consistency	protocols	discussed	in	this	chapter.
17.		Describe	grid	computing	and	some	applications	for	which	it	is	suitable.
18.		What	is	SETI,	and	how	does	it	use	the	distributed	computing	model?
19.		What	is	ubiquitous	computing?
20.		What	differentiates	dataflow	architectures	from	“traditional”	computational	architectures?
21.		What	is	reentrant	code?
22.		What	is	the	fundamental	computing	element	of	a	neural	network?
23.		Describe	how	neural	networks	“learn.”
24.		Through	what	metaphor	do	systolic	arrays	get	their	name?	Why	is	the	metaphor	fairly	accurate?
25.		What	kinds	of	problems	are	suitable	for	solution	by	systolic	arrays?
26.		How	does	a	quantum	computer	differ	from	a	classical	computer?	What	are	the	obstacles	that	must	be

overcome	in	quantum	computing?

EXERCISES
	1.		Why	do	RISC	machines	operate	on	registers?
2.	 	Which	characteristics	of	RISC	systems	could	be	directly	 implemented	 in	CISC	systems?	Which

characteristics	 of	 RISC	 machines	 could	 not	 be	 implemented	 in	 CISC	 machines	 (based	 on	 the
defining	characteristics	of	both	architectures	as	listed	in	Table	9.1)?

	3.		What	does	the	“reduced”	in	reduced	instruction	set	computer	really	mean?
4.		Suppose	a	RISC	machine	uses	overlapping	register	windows	with:
•			10	global	registers
•			6	input	parameter	registers
•			10	local	registers
•			6	output	parameter	registers

How	large	is	each	overlapping	register	window?

	5.		A	RISC	processor	has	8	global	registers	and	10	register	windows.	Each	window	has

4	input	registers,	8	local	registers,	and	4	output	registers.	How	many	total	registers	are	in	this	CPU?
(Hint:	Remember,	 because	 of	 the	 circular	 nature	 of	 the	windows,	 the	 output	 registers	 of	 the	 last
window	are	shared	as	the	input	registers	of	the	first	window.)

6.		A	RISC	processor	has	152	total	registers,	with	12	designated	as	global	registers.	The	10	register
windows	each	have	6	input	registers	and	6	output	registers.	How	many	local	registers	are	in	each
register	window	set?



7.		A	RISC	processor	has	186	total	registers,	with	18	globals.	There	are	12	register	windows,	each
with	10	locals.	How	many	input/output	registers	are	in	each	register	window?

8.	 	 Suppose	 a	 RISC	machine	 uses	 overlapping	 register	 windows	 for	 passing	 parameters	 between
procedures.	The	machine	has	298	registers.	Each	register	window	has	32	registers,	of	which	10
are	global	variables	and	10	are	local	variables.	Answer	the	following:
a)	How	many	registers	would	be	available	for	use	by	input	parameters?
b)		How	many	registers	would	be	available	for	use	by	output	parameters?
c)		How	many	register	windows	would	be	available	for	use?
d)	 	By	how	much	would	 the	 current	window	pointer	 (CWP)	be	 incremented	 at	 each	procedure

call?
	9.		Recall	our	discussions	from	Chapter	8	regarding	context	switches.	These	occur	when	one	process

stops	using	the	CPU	and	another	process	begins.	In	this	sense,	register	windows	could	be	viewed
as	a	potential	weakness	of	RISC.	Explain	why	this	is	the	case.

10.		Suppose	that	a	RISC	machine	uses	5	register	windows.
a)		How	deep	can	the	procedure	calls	go	before	registers	must	be	saved	in	memory?	(That	is,	what

is	the	maximum	number	of	“active”	procedure	calls	that	can	be	made	before	we	need	to	save
any	registers	in	memory?)

b)		Suppose	two	more	calls	are	made	after	the	maximum	value	from	part	(a)	is	reached.	How	many
register	windows	must	be	saved	to	memory	as	a	result?

c)		Now	suppose	that	the	most	recently	called	procedure	returns.	Explain	what	occurs.
d)		Now	suppose	one	more	procedure	is	called.	How	many	register	windows	need	to	be	stored	in

memory?
11.		In	Flynn’s	taxonomy:

a)	What	does	SIMD	stand	for?	Give	a	brief	description	and	an	example.
b)		What	does	MIMD	stand	for?	Give	a	brief	description	and	an	example.

12.	 	 Flynn’s	 taxonomy	consists	 of	 four	 primary	models	 of	 computation.	Briefly	describe	 each	of	 the
categories	and	give	an	example	of	a	high-level	problem	for	which	each	of	these	models	might	be
used.

	13.		Explain	the	difference	between	loosely	coupled	and	tightly	coupled	architectures.
14.	 	Describe	 the	characteristics	of	MIMD	multiprocessors	 that	distinguish	 them	from	multicomputer

systems	or	computer	networks.
15.		How	are	SIMD	and	MIMD	similar?	How	are	they	different?	Note:	You	are	not	to	define	the	terms,

but	instead	compare	the	models.
16.		What	is	the	difference	between	SIMD	and	SPMD?
	17.		For	what	type	of	program-level	parallelism	(data	or	control)	is	SIMD	best	suited?	For	what	type	of

program-level	parallelism	is	MIMD	best	suited?
18.		Describe	briefly	and	compare	the	VLIW	and	superscalar	models	with	respect	to	instruction-level

parallelism.
	19.		Which	model,	VLIW	or	superscalar,	presents	the	greater	challenge	for	compilers?	Why?



	20.		Compare	and	contrast	the	superscalar	architecture	to	the	VLIW	architecture.
	21.		Why	are	distributed	systems	desirable?
22.		What	is	the	difference	between	UMA	and	NUMA?
	23.		What	are	the	main	problems	with	using	crossbars	for	interconnection	networks?	What	problems	do

buses	present	in	interconnection	networks?
24.		Given	the	following	Omega	network,	which	allows	8	CPUs	(P0	through	P7)	to	access	8	memory

modules	(M0	through	M7):

a)	 	 Show	 how	 the	 following	 connections	 through	 the	 network	 are	 achieved	 (explain	 how	 each
switch	must	be	set).	Refer	to	the	switches	as	1A,	2B,	etc.:
		i)		P0	→	M2
	ii)		P4	→	M4
iii)		P6	→	M3

b)		Can	these	connections	occur	simultaneously,	or	do	they	conflict?	Explain.
c)	 	List	a	processor-to-memory	access	that	conflicts	(is	blocked)	by	the	access	P0	→	M2	and	is

not	listed	in	part	(a).
d)		List	a	processor-to-memory	access	that	is	not	blocked	by	the	access	P0	→	M2	and	is	not	listed

in	part	(a).
	25.	 	 Describe	write-through	 and	write-back	 cache	modification	 as	 they	 are	 used	 in	 shared	memory

systems,	and	the	advantages	and	disadvantages	of	both	approaches.
26.		Should	the	memory	of	a	dataflow	system	be	associative	or	address	based?	Explain.
	27.		Do	neural	networks	process	information	sequentially?	Explain.
28.	 	 Compare	 and	 contrast	 supervised	 learning	 and	 unsupervised	 learning	 with	 regard	 to	 neural

networks.
	29.		Describe	the	process	of	supervised	learning	in	neural	networks	from	a	mathematical	perspective.
30.		These	two	questions	deal	with	a	single	perceptron	of	a	neural	network.

a)		The	logical	NOT	is	a	little	trickier	than	AND	or	OR,	but	can	be	done.	In	this	case,	there	is	only
one	Boolean	input.	What	would	the	weight	and	threshold	be	for	this	perceptron	to	recognize	the



logical	NOT	operator?
b)		Show	that	it	is	not	possible	to	solve	the	binary	XOR	problem	for	two	inputs,	x1	and	x2,	using	a

single	perceptron.
31.	 	Explain	 the	 differences	 between	SIMD	and	 systolic	 array	 computing	when	 the	 systolic	 array	 is

one-dimensional.
32.	 	 With	 respect	 to	 Flynn’s	 taxonomy,	 where	 do	 systolic	 arrays	 fit?	 What	 about	 clusters	 of

workstations?
33.		Indicate	whether	each	of	the	following	applies	to	CISC	or	RISC	by	placing	either	a	C	(for	CISC)

or	an	R	(for	RISC)	in	the	blank.

_____	1.	Simple	instructions	averaging	one	clock	cycle	to	execute.

_____	2.	Single	register	set.

_____	3.	Complexity	is	in	the	compiler.

_____	4.	Highly	pipelined.

_____	5.	Any	instruction	can	reference	memory.

_____	6.	Instructions	are	interpreted	by	the	microprogram.

_____	7.	Fixed	length,	easily	decoded	instruction	format.

_____	8.	Highly	specialized,	infrequently	used	instructions.

_____	9.	Use	of	overlapping	register	windows.

_____	10.	Relatively	few	addressing	modes.

34.		Research	quantum	computing	and	provide	a	summary	of	a	recent	article	on	the	topic.
	
1	This	is	not	an	unrealistic	number—a	multiplication	on	an	Intel	8088	requires	133	clock	cycles	for	two	16-bit	numbers.



[General-purpose]	microprocessors	will	[someday	cease	to	exist].	You	will	not	see	sockets
anymore.	This	will	happen	first	in	the	embedded	space.	It’s	about	delivering	a	system,	not	a
processor.

—Greg	Papadopoulos
Sun	Microsystems	Chief	Technology	Officer

at	the	2003	Microprocessor	Forum,	San	Jose,	California

CHAPTER	10



Topics	in	Embedded	Systems

10.1			INTRODUCTION
Greg	 Papadopoulos	 is	 among	 many	 who	 believe	 that	 embedded	 processors	 are	 the	 next	 big	 thing	 in
computer	hardware.	Proponents	of	general-purpose	microprocessors	may	find	this	statement	provocative
—if	not	downright	inflammatory.	It	is,	however,	easy	to	see	how	someone	could	come	to	this	conclusion,
given	 that	 practically	 every	 device	 that	 interacts	 with	 the	 physical	 world	 includes	 some	 sort	 of
computerized	 control.	 As	 we	 conduct	 our	 daily	 activities,	 we	 encounter	 literally	 scores	 of	 embedded
processors,	whereas	we	might	use	only	one	or	two	general-purpose	systems.

An	exact	definition	of	embedded	systems	is	hard	to	come	by.	In	every	sense,	they	are	real	computers,
having	a	CPU,	memory,	and	some	sort	of	I/O	capabilities.	But	they	differ	from	general-purpose	computers
because	they	carry	out	a	limited	set	of	tasks	within	the	domain	of	a	larger	system.	Most	often,	the	larger
system	 is	 something	 other	 than	 a	 computer.	 Embedded	 systems	 can	 be	 found	 in	 devices	 as	 simple	 and
innocuous	as	coffeemakers	and	tennis	shoes,	and	as	complex	and	critical	as	commercial	aircraft.	Many	of
today’s	 automobiles	 contain	 dozens	 of	 embedded	 processors,	 each	 of	 which	 manages	 a	 particular
subsystem.	 These	 subsystems	 include	 fuel	 injection,	 emissions	 control,	 antilock	 brakes,	 and	 cruise
control,	to	name	only	a	few.	Moreover,	automotive	processors	communicate	with	one	another	so	that	their
efforts	 are	 coordinated	 and	 appropriate	 to	 the	 state	 of	 the	 automobile.	 For	 example,	 the	 cruise	 control
disengages	when	the	antilock	brakes	engage.	Embedded	systems	are	also	found	in	other	computers.	A	disk
drive	controller	is	an	example	of	a	computer	within	a	computer.	The	controller	positions	the	disk	arm	and
encodes	and	decodes	data	as	it	is	written	and	read	from	the	disk	surface.

The	design	and	programming	of	embedded	systems	 requires	us	 to	 think	 in	new	dimensions.	We	see
first	 that	 the	 distinction	 between	 hardware	 and	 software	 is	 fuzzy	 and	 mutable.	 In	 general-purpose
computing,	 we	 know	 in	 advance	 the	 capabilities	 of	 the	 hardware	 that	 run	 the	 programs	 we	 write.	 In
embedded	systems	design,	this	is	not	always	the	case.	The	capabilities	of	the	hardware	can	change	while
the	 system	 is	 under	 development.	 The	 principle	 of	 equivalence	 of	 hardware	 and	 software	 becomes	 a
profound	guiding	tenet	of	system	development.	The	functional	partitioning	of	the	hardware	and	software	is
a	major—and	sometimes	contentious—issue.

The	 second	 way	 in	 which	 embedded	 system	 development	 differs	 greatly	 from	 general-purpose
computing	 is	 that	 a	 deep	 comprehension	 of	 the	 underlying	 hardware	 is	 required.	A	person	who	writes
application	 programs	 in	 high-level	 languages	 such	 as	 Java	 or	C++	may	 never	 know	 or	 care	 about	 the
endianness	 of	 a	 system’s	 data	 storage,	 or	whether	 an	 interrupt	 occurs	 at	 any	 particular	 time.	Yet	 these
considerations	are	paramount	in	the	mind	of	an	embedded	systems	programmer.

Along	 these	 same	 lines	 are	 the	 tremendous	 constraints	 under	 which	many	 embedded	 systems	must
function.	 These	 constraints	 include	 limited	 CPU	 speed,	 limited	 memory,	 weight	 restrictions,	 limited
power	 consumption,	 uncontrolled	 and	 often	 harsh	 operating	 environments,	 limited	 physical	 space,	 and
unforgiving	 requirements	 as	 to	 the	 responsiveness	 demanded	 of	 the	 embedded	 system.	 Moreover,
embedded	systems	designers	constantly	struggle	under	the	burden	of	stringent	cost	requirements	for	both
design	and	implementation!	Enhancements	or	bug	fixes	made	to	an	embedded	system’s	programming	may
cause	 the	 entire	 system	 to	 go	 over	 budget	 with	 respect	 to	 power	 consumption	 or	 memory	 footprint.



Today’s	embedded	systems	programmer,	much	like	his	or	her	grandfather	who	programmed	a	mainframe
in	the	1950s,	may	spend	a	good	part	of	the	day	counting	machine	cycles—because	every	machine	cycle
counts.

Of	 the	 aforementioned	 constraints,	 limited	 power	 consumption	 is	 often	 at	 the	 forefront	 during	 the
design	process.	Low	power	consumption	means	lower	heat	dissipation,	which	in	turn	means	fewer	heat
sinks—which	means	 less	money	for	components	and	a	smaller	overall	size.	Lower	power	consumption
also	means	battery	backup	is	more	feasible,	thus	providing	uninterruptible	and	reliable	operation.

Most	 embedded	 systems	 can	 be	 divided	 into	 three	 categories,	 based	 on	 their	 power	 requirements:
battery-operated,	fixed	power,	and	high-density	systems.	Battery-operated	systems,	such	as	those	found	in
portable	audio	devices,	need	 to	maximize	battery	 life	but	minimize	size.	Fixed	power	systems,	such	as
those	found	in	payphones	and	caller	ID	boxes,	have	limited	power	supplies	(such	as	phone	lines),	and	the
goal	is	to	offer	maximal	performance	within	the	constraints	of	the	limited	power	available.	High-density
systems	 (high-performance	 and	 multiprocessor	 systems)	 are	 more	 concerned	 with	 power	 efficiency
primarily	because	of	heat	dissipation	issues.	For	example,	voice	over	IP	(VOIP)	systems	integrate	data
with	voice	signals	and	require	a	significant	number	of	components,	and	this	translates	into	significant	heat
generation.	These	systems	often	have	unlimited	power	supplies,	but	must	limit	power	consumption	so	they
do	not	overheat.

The	 fourth,	 and	 possibly	most	 difficult,	 aspect	 of	 embedded	 systems	 is	 the	matter	 of	 signal	 timing.
Embedded	systems	designers	hold	a	precise	and	unambiguous	awareness	of	the	interrelationship	between
signals	generated	by	events	in	the	outside	world	and	signals	routinely	taking	place	within	the	embedded
system.	Any	set	of	events	can	take	place	at	any	time	and	in	any	order.	Moreover,	 the	reactions	 to	 these
events	 often	 take	place	within	milliseconds.	 In	 hard	 real-time	 systems,	 a	 late	 reaction	 is	 tantamount	 to
failure.

Embedded	systems	must	be	functional	and	flexible,	yet	small	and	inexpensive	(both	to	develop	and	to
manufacture).	Power	consumption	is	always	a	major	concern.	We	expand	on	all	these	ideas	in	the	sections
that	follow,	beginning	with	a	look	at	embedded	hardware.

10.2			AN	OVERVIEW	OF	EMBEDDED	HARDWARE
The	embedded	processors	that	control	airliner	telemetry	are	radically	different	from	those	that	control	the
quality	of	a	cup	of	coffee	produced	by	a	sophisticated	coffeemaker.	These	applications	differ	in	both	their
complexity	and	 their	 timing	models.	Accordingly,	 they	require	vastly	divergent	hardware	solutions.	For
the	simplest	control	applications,	off-the-shelf	microcontrollers	are	often	quite	suitable.	Applications	of
higher	 complexity	 can	 exceed	 the	 capabilities	 of	 standard	 components	 in	 terms	of	 performance,	 power
consumption,	or	cost.	Possibly,	a	configurable	manufactured	circuit	might	be	adapted	to	the	task.	In	cases
where	the	application	is	highly	specialized,	or	responsiveness	is	critical,	a	chip	must	be	designed	from
scratch.	 We	 therefore	 place	 embedded	 processors	 into	 three	 broad	 classifications:	 standardized
processors,	 configurable	 processors,	 and	 full-custom	 processors.	 After	 describing	 each	 type,	 we	 will
examine	the	trade-offs	that	are	considered	in	selecting	one	approach	over	another.

10.2.1		Off-the-Shelf	Embedded	System	Hardware
Advances	 in	VLSI	 technology	 are	most	 obvious	 to	 us	when	we	 think	 about	 the	 ever-increasing	 power
available	to	us	in	desktop,	laptop,	and	PDA	systems.	The	computing	power	of	yesteryear’s	million-dollar
water-cooled	mainframe	fits	into	a	shirt	pocket	today,	and	this	computational	power	costs	less	than	a	good



business	 suit.	But	 some	 of	 the	most	 striking	 applications	 of	VLSI	 technology	 go	 practically	 unnoticed,
despite	being	quite	literally	under	our	noses	every	day.

Microcontrollers
Many	of	the	embedded	processors	that	we	routinely	(and	unwittingly)	rely	on	for	our	daily	convenience
and	safety	are	derivatives	of	yesterday’s	leading-edge	general-purpose	processors.	Although	these	early
processors	 are	 not	 powerful	 enough	 to	 run	 today’s	 common	 desktop	 software,	 they	 possess	more	 than
enough	power	for	simple	control	applications.	Furthermore,	these	processors	are	now	sold	at	a	fraction	of
their	original	prices,	because	 their	makers	 long	ago	 recovered	 the	costs	of	developing	 them	when	 they
were	 widely	 used	 in	 personal	 computers.	 Motorola’s	 enormously	 popular	 68HC12	 shares	 common
ancestry	with	 its	 6800,	 the	 chip	 that	was	 at	 the	 heart	 of	 the	 first	Apple	 computers.	Motorola	 has	 sold
billions	 of	 the	 68HC12	 and	 its	 less-sophisticated	 predecessors.	 In	 large	 quantities,	 the	MC68H12	 can
today	be	purchased	for	less	money	than	the	first	Apple	users	shelled	out	for	a	decent	printer	cable.	Intel’s
8051	is	an	offspring	of	the	8086,	the	processor	that	was	the	heart	of	the	first	IBM	PC.

Microcontrollers	 have	 a	 great	 deal	 in	 common	 with	 general-purpose	 processors.	 Like	 a	 general-
purpose	processor,	a	microcontroller	is	programmable	and	can	access	a	variety	of	peripherals.	Unlike	a
general-purpose	 processor,	 a	 microcontroller	 runs	 at	 a	 much	 slower	 clock	 speed,	 has	 much	 smaller
memory	address	space,	and	its	software	cannot	be	changed	by	the	consumer.

A	simplified	example	of	a	microcontroller	is	shown	in	Figure	10.1.	It	consists	of	a	CPU	core,	memory
for	programs	and	data,	I/O	ports,	controllers	for	I/O	and	the	system	bus,	a	clock,	and	a	watchdog	timer.	Of
these	 components,	 the	 watchdog	 timer	 is	 the	 only	 one	 that	 we	 haven’t	 discussed	 at	 length	 in	 earlier
chapters.

As	 the	 name	 implies,	 watchdog	 timers	 keep	 an	 eye	 on	 things	 within	 the	 microcontroller.	 They
provide	a	fail-safe	mechanism	that	engages	when	a	problem	is	detected.	General-purpose	computers	do
not	need	watchdog	timers	because	they	interact	directly	with	human	beings.	If	the	system	hangs	or	crashes,
a	human	being	corrects	the	situation,	usually	by	rebooting	the	computer.	It	is	impossible	for	humans	to	pay
such	 close	 attention	 to	 the	myriad	 embedded	 systems	 all	 around	 us.	Moreover,	 embedded	 systems	 are
often	installed	in	places	where	we	cannot	get	to	them.	Who	can	hit	the	reset	button	of	a	deep	space	probe?
How	would	one	reset	a	cardiac	pacemaker?	Might	it	take	too	long	to	realize	such	action	is	necessary?

FIGURE	10.1	A	Simplified	Microcontroller



Conceptually,	the	design	and	operation	of	watchdog	timers	are	simple.	The	timer	is	initialized	with	an
integer	value	 from	which	1	 is	 subtracted	 after	 a	given	number	of	milliseconds	 elapse.	The	 application
program	running	 in	 the	microcontroller	periodically	“kicks”	or	“tickles”	 the	 timer,	causing	 the	count	 to
revert	to	its	initial	value.	Should	the	timer	ever	reach	zero,	the	watchdog	circuit	may	issue	a	system	reset
signal.	Timer	tickling	is	the	responsibility	of	the	application	program	running	in	the	microcontroller.	The
program	may	have	a	structure	that	resembles	the	following:

If	 any	 one	 of	 the	 functions,	 function1	 through	 function3,	 becomes	 stuck	 in	 an	 infinite	 loop,	 or	 just
hangs,	the	watchdog	timer	count	will	run	out.	One	of	the	tricks	involved	in	this	type	of	programming	is	to
ensure	that	no	function	runs	longer	than	the	watchdog	timeout	interval,	including	any	interrupts	that	might
take	place	along	the	way.

There	 are	 literally	 hundreds	 of	 different	 kinds	 of	 microcontrollers,	 some	 of	 which	 are	 built	 with
specific	applications	in	mind.	Some	of	the	most	popular	are	Intel’s	8051;	Microchip’s	16F84A,	one	of	the
PIC	(Programmable	Intelligent	Computer)	family;	and	Motorola’s	68HC12,	one	of	the	many	chips	in	the
so-called	 68000	 (68K)	 series.	 Microcontrollers	 can	 have	 analog	 interfaces	 that	 are	 suitable	 for
nondiscrete	physical	control	applications	and	I/O	buffers	designed	for	continuous	high-volume	throughput.
Microcontroller	I/O	control	may	be	through	any	of	the	methods	described	in	Chapter	7.	Unlike	general-
purpose	systems,	however,	programmed	I/O	control	is	feasible	for	embedded	control	applications.

Microcontroller	CPUs	can	be	as	small	as	4	bits	and	as	large	as	64	bits,	with	memory	ranging	from	a
few	 kilobytes	 to	 several	 megabytes.	 To	 make	 their	 circuitry	 as	 small	 and	 as	 fast	 as	 possible,
microcontroller	 ISAs	 are	 generally	 stack	 based	 and	 can	 be	 optimized	 for	 a	 particular	 area	 of
specialization.	Despite	their	“old	technology,”	microcontrollers	continue	to	be	widely	used	in	a	vast	array
of	consumer	products	and	industrial	machinery.	One	has	every	reason	to	believe	that	this	will	continue	to
be	the	case	for	many	years	to	come.

Watchdog	Timer	Engineering	Decisions
Embedded	systems	designers	may	spend	a	good	amount	of	time	debating	whether	an	expired	watchdog
timer	should	immediately	issue	a	reset	or	whether	 it	should	instead	invoke	an	interrupt	routine.	If	an
interrupt	 is	 issued,	 valuable	 debugging	 information	 can	 be	 captured	 prior	 to	 issuing	 the	 reset.



Debugging	 information	 often	 exposes	 the	 root	 cause	 of	 the	 timeout,	 permitting	 the	 problem	 to	 be
analyzed	and	corrected.	If	the	system	is	simply	reset,	most	of	the	diagnostic	information	is	lost.

On	the	other	hand,	it	is	possible	for	a	failing	system	to	become	so	hobbled	that	it	cannot	reliably
execute	 any	 code,	 including	 interrupt	 processing	 code.	Thus,	 the	 reset	might	 never	 be	 issued	 by	 the
interrupt	routine.	Such	irrecoverable	errors	can	be	caused	by	something	as	simple	as	a	corrupted	stack
pointer,	or	an	errant	signal	 in	an	I/O	port.	 If	we	simply	 issue	a	reset,	we	are	certain	 that—barring	a
catastrophic	hardware	failure—the	system	will	return	to	a	consistent	state	within	milliseconds.

Unlike	personal	computer	reboots,	embedded	controller	resets	take	very	little	time.	In	fact,	resets
can	 happen	 so	 quickly	 that	 it	 is	 not	 always	 possible	 to	 know	 whether	 a	 reset	 has	 occurred.	 This
problem	lends	weight	to	the	argument	that	the	interrupt	approach	is	superior	to	the	reset	approach.	The
other	side	of	the	argument	is	that	there	is	a	hardware	solution:	Prudent	engineers	connect	a	latch	and	a
light-emitting	diode	(LED)	to	the	processor’s	reset	line.	After	a	reset,	the	LED	will	stay	illuminated	to
indicate	that	a	problem	has	occurred.	Assuming	that	the	LED	is	situated	in	a	location	where	a	human
can	see	it,	the	reset	event	will	sooner	or	later	be	noticed.

It	 is,	of	course,	possible	 to	combine	both	approaches.	We	might	 initialize	 the	 timer	with	a	small
value	prior	to	invoking	the	debugging	interrupt.	If	the	count	expires,	it	 is	certain	that	the	system	is	in
trouble,	and	a	reset	would	subsequently	be	issued	by	the	watchdog.	A	company	that	seeks	to	deliver	a
“quality”	product	would	do	well	to	give	this	technique	some	consideration.

However,	a	company	 that	seeks	 to	go	beyond	delivering	a	“quality”	product	 to	produce	a	“high-
reliability”	 system	has	 to	 think	 a	 little	 deeper.	Watchdog	 timers	 usually	 share	 the	 silicon	 space	 and
resources	of	the	systems	they	are	supposed	to	be	watching.	What	happens	if	a	catastrophic	hardware
failure	occurs	in	the	chip	itself?	What	if	the	system	clock	stops?	Engineers	plan	for	this	contingency	by
providing	a	backup	watchdog	timer	on	a	separate	chip.	The	extra	circuit	adds	only	a	few	dollars	to	the
cost	of	a	system,	but	may	save	thousands	of	dollars—or	human	lives—if	it	is	ever	needed.	So	now	the
discussion	moves	 to	 whether	 the	 backup	watchdog	 timer	 should	 issue	 a	 reset	 or	 whether	 it	 should
instead	process	the	timeout	through	an	interrupt	routine.

Systems	on	a	Chip
We	 have	 observed	 that	 microcontrollers	 are	 computer	 systems	 in	 miniature.	 They	 consist	 of	 a	 CPU,
memory,	 and	 I/O	 ports.	 They	 are	 not,	 however,	 called	 systems	 on	 a	 chip.	 That	 designation	 is	 usually
reserved	for	devices	that	are	much	more	complex.

Systems	on	a	chip	(SOCs)	are	distinguished	from	microcontrollers	by	their	complexity	and	increased
on-chip	resources.	Microcontrollers	often	require	supporting	circuits	such	as	signal	processors,	decoders,
and	signal	converters,	to	name	only	a	few.	A	system	on	a	chip	is	a	single	piece	of	silicon	that	contains	all
circuits	 required	 to	 deliver	 a	 set	 of	 functions.	A	 system	 on	 a	 chip	 can	 even	 consist	 of	more	 than	 one
processor.	These	loosely	coupled	processors	do	not	necessarily	share	the	same	clock	or	memory	space.
The	 individual	 processor	 functions	 can	 be	 specialized	 to	 the	 extent	 that	 they	 are	 provided	 with	 ISAs
designed	 specifically	 for	 efficient	 programming	 in	 a	 particular	 application	 domain.	 For	 example,	 an
Internet	 router	 may	 have	 several	 RISC	 processors	 that	 handle	 communications	 traffic,	 and	 a	 CISC
processor	 for	 configuration	 and	 management	 of	 the	 router	 itself.	 Although	 microcontroller	 memory	 is
usually	measured	 in	kilobytes,	SOCs	can	 include	memory	on	 the	order	of	megabytes.	With	 their	 larger
memories,	 SOCs	 accommodate	 full-featured	 real-time	 operating	 systems	 (which	we	 discuss	 in	Section
10.3.2).	The	great	 advantage	of	SOCs	 is	 that	 they	 are	 faster,	 smaller,	more	 reliable,	 and	 consume	 less
power	than	the	several	chips	they	replace.



Although	there	are	many	off-the-shelf	SOCs	available,	customization	is	sometimes	required	to	support
a	particular	application.	Rather	than	absorb	the	cost	of	designing	an	SOC	from	scratch,	a	semicustom	chip
may	 be	 assembled	 from	 intellectual	 property	 (IP)	 circuits	 licensed	 from	 companies	 that	 specialize	 in
creating	and	testing	circuit	designs.	Licensed	IP	module	designs	are	combined	with	customized	circuits	to
produce	a	circuit	mask.	The	completed	mask	is	subsequently	sent	to	a	circuit	fabrication	facility	(a	fab)	to
be	etched	in	silicon.	This	process	is	very	expensive.	Mask	costs	are	now	approaching	$1	million	(US).
The	 economic	 benefits	 of	 this	 approach	 must	 therefore	 be	 considered	 carefully.	 If	 a	 standard	 SOC
provides	 the	 same	 functionality—even	 with	 lesser	 performance—the	 $1	 million	 expenditure	 is	 not
justifiable.	We	return	to	this	idea	in	a	later	section.

10.2.2		Configurable	Hardware
Some	applications	are	so	specialized	that	no	off-the-shelf	microcontroller	can	do	the	job.	When	designers
find	themselves	in	this	situation,	they	can	choose	between	two	alternatives:	They	can	elect	to	create	a	chip
from	scratch,	or	they	can	employ	a	programmable	logic	device	(PLD).	When	speed	and	die	size	are	not
primary	concerns,	 a	PLD	may	be	 a	good	choice.	PLDs	come	 in	 three	general	 varieties:	 programmable
array	logic,	programmable	logic	arrays,	and	field-programmable	gate	arrays.	Any	of	these	three	types	of
circuits	 can	 be	 used	 as	 glue	 logic,	 or	 customized	 circuits	 that	 interconnect	 prefabricated	 IP	 circuit
elements.	 Programmable	 logic	 devices	 are	 usually	 presented	 along	 with	 the	 combinational	 logic
components	we	described	in	Chapter	3.	We	have	deferred	this	discussion	until	now	because	it	is	helpful
to	understand	the	functional	context	in	which	these	chips	are	most	useful.

FIGURE	10.2	Programmable	Array	Logic	(PAL)
a)	Detailed	logic	diagram	for	a	PAL
b)	A	shorthand	version	of	the	same	PAL

Programmable	Array	Logic
Programmable	 Array	 Logic	 (PAL)	 chips	 were	 the	 first	 logic	 devices	 that	 could	 be	 configured	 to
provide	a	variety	of	logic	functions.	PALs	consist	of	a	set	of	inputs	and	a	set	of	outputs	that	are	connected
by	an	array	of	programmable	AND	gates	and	a	fixed	array	of	OR	gates,	as	shown	in	Figure	10.2.	A	PAL
chip’s	outputs	give	a	sum-of-products	function	of	its	inputs.	The	circuit	is	programmed	by	blowing	fuses



or	 throwing	 switches	within	a	 conductor	grid	 that	 interconnects	 the	 inputs	 and	 the	AND	gates.	When	a
PAL	fuse	is	blown,	the	AND	gate	input	to	which	it	is	connected	becomes	a	logical	0.1	OR	gates	collect	the
outputs	from	the	AND	gates	to	complete	the	function.

Figure	10.3	illustrates	a	3-input,	2-output	PAL.	Standard	commercial	PALs	provide	several	inputs	and
dozens	 of	 outputs.	 In	 the	 figure,	 it	 is	 easy	 to	 see	 that	 it	 is	 not	 possible	 to	 provide	 an	 output	 for	 every
possible	function	of	the	inputs.	It	is	also	not	possible	to	use	the	same	product	term	in	more	than	one	OR
gate,	so	a	product	term	may	have	to	be	repeated	across	more	than	one	OR	gate.

FIGURE	10.3	A	Programmed	PAL

Figure	10.3	shows	a	PAL	programmed	to	provide	the	functions	 .	and	 	The
connections	 between	 the	 logic	 devices	 are	 indicated	 as	 “blown”	 using	 an	 ×.	 (Sometimes	we	 see	 PAL
illustrations	use	×	to	indicate	a	connection,	that	is,	a	fuse	that	is	not	blown.)	As	you	can	see,	the	minterm	

	 is	 repeated.	 It	 would	 seem	 that	 we	 could	 make	 more	 efficient	 use	 of	 our	 gates	 if	 arbitrary
connections	 were	 also	 allowed	 between	 the	 OR	 gates.	 Programmable	 logic	 arrays	 are	 devices	 that
provide	this	additional	level	of	configurability.

Programmable	Logic	Arrays	(PLAs)
It	is	easy	to	see	that	the	outputs	of	a	PAL	are	always	the	logical	sum	of	all	the	logical	products	provided
by	the	AND	gates	 in	 the	array.	In	our	 illustration	above,	each	output	function	consists	of	 two	minterms,
regardless	of	whether	we	need	them	both.	PLAs	remove	this	restriction	by	providing	fuses	or	switches	for
the	OR	gates	and	the	AND	gates,	as	shown	in	Figure	10.4.	The	blown	fuses	or	thrown	switches	provide
logical	0s	as	inputs	to	the	AND	gates	and	to	the	OR	gates.

PLAs	are	more	flexible	than	PALs,	but	they	also	tend	to	be	slower	and	more	costly	than	PALs.	Thus,
the	occasional	redundancy	among	PAL	minterms	is	only	a	minor	inconvenience	when	speed	and	cost	are
important	considerations.	To	maximize	 functionality	and	 flexibility,	PLA	and	PAL	chips	usually	 include
several	arrays	on	one	silicon	die.	Both	 types	are	 referred	 to	as	complex	programmable	 logic	devices
(CPLDs).



FIGURE	10.4	a)	A	programmable	logic	array
b)	A	PLA	reusing	a	minterm

Field-Programmable	Gate	Arrays
A	third	type	of	PLD,	the	field-programmable	gate	array	 (FPGA),	provides	programmable	 logic	using
lookup	tables	instead	of	changing	the	wiring	of	the	chip.

Figure	10.5	shows	a	 typical	FPGA	logic	element	consisting	of	memory	cells	and	multiplexers.	The
inputs	of	the	multiplexers	(labeled	MUX)	are	selected	according	to	the	values	of	the	logic	function	inputs,
x	 and	y.	 These	 inputs	 trigger	multiplexer	 selection	 of	 the	 appropriate	memory	 cell,	 labeled	 “?”	 in	 the
diagram.	The	value	stored	in	the	memory	cell	is	then	raised	on	the	appropriate	output	of	the	multiplexer.

As	a	simple	example,	consider	the	XOR	function	discussed	in	Chapter	3.	The	truth	 table	for	a	 two-
input	XOR	is	shown	at	the	left	in	Figure	10.6a.	The	table	has	been	programmed	into	the	FPGA	as	shown
at	the	right.	You	can	see	the	direct	correspondence	between	the	values	in	the	truth	table	and	the	values	in
the	memory	cells.	For	example,	when	the	y	signal	is	high	(logical	1),	the	lower	memory	cell	value	of	each
pair	is	selected	by	the	leftmost	pair	of	multiplexers.	When	the	x	value	is	high,	the	input	from	the	lower	y
multiplexer	is	selected,	giving	a	logical	0	for	the	value	on	the	output	of	the	x	multiplexer.	This	agrees	with
the	truth	table:	1	XOR	1	=	0.	Figure	10.6b	shows	FPGA	programming	for	the	AND	function.

FPGA	logic	elements	are	 interconnected	through	a	routing	architecture	 that	consists	of	switches	and
connection	multiplexers.	A	typical	configuration,	called	an	island	architecture,	is	shown	in	Figure	10.7.
Each	connection	multiplexer	and	switch	block	is	programmed	to	connect	the	outputs	of	one	logic	element
to	the	inputs	of	another.	A	good	portion	of	the	chip	area,	usually	about	70%,	is	devoted	to	connection	and
routing	functions.	This	is	one	of	the	many	things	that	make	FPGAs	slow	and	costly.



FIGURE	10.5	Logic	Diagram	for	a	Field	Programmable	Gate	Array	Logic	Element

FIGURE	10.6	Logic	Diagram	for	a	Field	Programmable	Gate	Array

To	 help	 reduce	 cost	 and	 improve	 speed	 and	 functionality,	 some	 FPGAs	 are	 also	 equipped	 with
microprocessor	 cores.	 It	 would	 seem	 that	 such	 chips	 give	 designers	 the	 best	 of	 everything:	 The
microprocessor	 can	 carry	 out	 the	 functions	 that	 it	 does	 best	 and	 fastest.	 Where	 the	 microprocessor
functionality	 falls	 short,	 the	 FPGA	 can	 be	 programmed	 to	 make	 up	 the	 difference.	 Moreover,	 the
programming	process	can	be	iterative.	An	FPGA	permits	continual	changes	while	the	circuit	is	debugged
and	tuned	for	performance.



FIGURE	10.7	An	“Island	Style”	FPGA	Configuration

FPGAs	provide	a	multitude	of	 logic	 functions	at	 a	 reasonable	cost	with	acceptable	performance	 in
many	applications.	Because	they	can	be	reprogrammed	as	many	times	as	needed,	FPGAs	are	especially
useful	for	prototyping	customized	circuit	designs.	In	fact,	FPGAs	can	even	be	programmed	to	reprogram
themselves!	Because	of	this,	FPGA-based	systems	are	considered	by	many	to	be	the	first	of	a	new	breed
of	 computers	 that	 can	 dynamically	 reconfigure	 themselves	 in	 response	 to	 variations	 in	 workload	 or
component	 failures.	 They	 have	 the	 potential	 to	 bring	 new	 levels	 of	 reliability	 to	 critical	 embedded
processors	that	operate	in	hostile	or	safety-critical	environments.	They	can	repair	themselves	whenever	a
human	can’t	get	to	them—or	can’t	get	to	them	quickly	enough	to	avert	catastrophe.

Reconfigurable	Computers
It	hardly	escapes	anyone’s	notice	that	our	world	is	awash	in	electronic	gizmos	and	gadgets.	The	well-
equipped	college	student	 is	 laden	with	a	notebook	computer,	a	cellular	 telephone,	a	personal	digital
assistant,	a	CD	player,	and	possibly	an	electronic	book	reader.	So	how	does	one	deal	with	having	so
much	electronic	stuff	to	lug	around?

Clothing	 manufacturers	 have	 addressed	 the	 problem	 by	 providing	 clothing	 and	 backpacks	 with
ample	specialized	pockets.	At	least	one	clothier	has	gone	so	far	as	to	create	garments	having	built-in
“personal	area	networks”!

The	“engineering	solution”	to	the	problem	of	the	gadget	glut	is	just	to	make	fewer	gadgets,	giving
each	 greater	 functionality.	 The	 greatest	 challenges	 lie	 in	 overcoming	 the	 barriers	 presented	 by	 the
power	and	cost	constraints	of	portable	consumer	electronics.	Certainly,	a	notebook	computer	can	do
just	 about	 anything	 we	 want	 it	 to,	 but	 it	 all	 happens	 at	 the	 expense	 of	 weight	 and	 high	 power



consumption.	 Thus,	 we	 have	 the	 Holy	 Grail	 of	 reconfigurable	 electronics:	 a	 single,	 affordable,
electronic	device	that	can	be	a	cell	phone,	a	PDA,	a	camera,	and	even	a	music	playback	device,	with
sufficient	battery	life	to	be	useful.

There	 is	 no	 doubt	 that	 this	 vision	 lies	 far	 past	 today’s	 horizons.	 The	 reconfigurable	 devices	 of
today	 consist	 mainly	 of	 FPGAs.	 Today’s	 FPGAs	 are	 too	 slow,	 too	 power	 hungry,	 and	 much	 too
expensive	 for	wide	 deployment	 in	 consumer	 electronics.	Research	 in	 this	 area	 is	 following	 several
tracks.	The	first	approach	concerns	the	routing	architecture	of	FPGA	chips.	Different	topologies	have
been	found	to	be	more	effective	than	others	in	certain	applications.	Most	notably,	linear	configurations
are	 better	 for	 shifters,	 because	 bit	 shifting	 is	 inherently	 a	 linear	 operation.	 A	 three-dimensional
approach	is	also	under	study	by	several	companies.	This	topology	places	the	control	elements	beneath
the	logic	elements,	making	the	entire	package	denser	and	the	routes	shorter.

Another	 concern	 related	 to	 topology	 is	 inconsistent	 signal	 response	 within	 the	 chip.	 Signals
traveling	 a	 longer	 distance	 through	 the	 routing	 structure	 take	 longer	 to	 get	where	 they’re	 going	 than
signals	traveling	only	a	short	distance.	This	tends	to	slow	down	the	whole	chip,	because	there	seems
no	way	to	know	in	advance	whether	an	operation	will	use	a	logic	element	that	is	nearby	or	one	that	is
far	away.	Clock	speed	is	limited	by	the	worst	case.	Electronic	design	language	compilers	(see	below)
optimized	for	FPGA	implementations	are	helping	to	make	progress	in	this	area.

Logic	cell	memory	power	consumption	is	an	active	area	of	FPGA	research.	This	memory	is	usually
SRAM,	which	is	volatile.	This	means	that	the	FPGA	must	be	configured	each	time	it	is	powered	on,
and	 the	 configuration	 has	 to	 be	 stored	 in	 ROM	 or	 flash.	 Various	 nonvolatile	 memories	 have	 been
created	 from	materials	 that	 are	 (for	 now)	 too	 exotic	 for	 the	 general	market.	 If	 these	 new	memories
show	promise	in	the	general	market,	mass	production	will	eventually	drive	down	their	cost.

It	 is	 also	possible	 to	 create	 hybrid	FPGA	chips	 that	 contain	 islands	of	 generic	 circuits	 (such	 as
adders	or	shifters)	that	are	common	to	all	functions	served	by	the	device.	The	rest	of	the	chip	is	then
available	for	function-specific	logic	that	can	be	paged	on	and	off	the	circuit	as	needed.

In	the	short	term,	reconfigurable	circuits	may	be	incorporated	in	specialized	applications	such	as
cell	 phone	 communications	 protocol	 modules.	 Cell	 phones	 equipped	 with	 flexible	 modules	 could
operate	efficiently	across	areas	that	employ	differing	protocols	within	a	national	(or	international)	cell
phone	network.	Although	this	idea	is	certainly	appealing	to	the	consumer’s	wallet,	it	also	means	fewer
discarded	 phones	 ending	 up	 in	 solid	 waste	 landfills,	 ameliorating	 an	 environmental	 problem	 of
growing	importance.

10.2.3		Custom-Designed	Embedded	Hardware
To	command	 the	 largest	market	 for	 their	 products,	 embedded	processor	manufacturers	 load	 their	 chips
with	 as	 many	 features	 as	 possible.	 The	 chief	 disadvantage	 in	 purchasing	 these	 complex,	 ready-made
processors	is	that	some	of	the	functionality	of	the	chip	may	not	be	needed.	Unused	circuits	not	only	cause
the	 chip	 to	 run	 slower,	 but	 they	 also	 generate	 heat	 and	waste	 precious	 power.	 In	 a	 tightly	 constrained
application,	 programmable	 logic	 devices	 are	 not	much	 help	 because	 they	 tend	 to	 be	 slow	 and	 power
hungry.	In	short,	 there	are	situations	where	the	only	reasonable	approach	is	to	create	a	fully	customized
application-specific	integrated	circuit	(ASIC).

Designing	full-custom	ASICs	requires	thinking	of	the	chip	from	three	perspectives:	From	a	behavioral
perspective,	we	define	exactly	what	the	chip	is	supposed	to	do.	How	do	we	produce	the	desired	outputs
as	functions	of	the	inputs?	From	a	structural	perspective,	we	determine	which	logic	components	provide
the	desired	behavior.	From	a	physical	perspective,	we	think	of	how	the	components	should	be	placed	on



the	 silicon	die	 to	make	 the	best	use	of	 chip	 real	 estate	and	minimize	connection	distances	between	 the
components.

Each	perspective	is	a	unique	problem	domain	requiring	a	distinct	set	of	tools.	The	interrelationship	of
these	 ideas	 is	made	clear	by	 the	 logic	 synthesis	Y-chart	developed	by	Daniel	Gajski,	 shown	 in	Figure
10.8.

Each	of	the	three	axes	in	Gajski’s	chart	is	labeled	to	show	the	levels	of	detail	for	each	dimension	of
chip	design.	As	an	example,	consider	a	binary	counter.	At	 the	highest	behavioral	 level	 (the	algorithmic
level),	we	know	that	the	counter	increments	its	current	value,	producing	a	new	value.	At	the	next	lower
level,	we	understand	that	to	carry	out	this	function,	some	sort	of	register	is	needed	to	hold	the	value	of	the
counter.	We	can	state	this	idea	using	a	register	transfer	statement	such	as	AC	←	AC	+	1.

On	the	structural	side,	we	specify	how	large	the	register	will	be.	The	register	consists	of	gates	and
flip-flops,	which	themselves	consist	of	transistors.	To	make	a	silicon	chip	that	contains	the	counter,	each
storage	cell	is	positioned	and	connected	to	make	the	best	use	of	die	space.

FIGURE	10.8	Gajski’s	Logic	Synthesis	Y-Chart

Direct	manual	synthesis	of	logic	components	is	feasible	only	for	very	small	circuits.	Today’s	ASICs
consist	 of	 hundreds	 of	 thousands	 of	 gates	 and	 millions	 of	 transistors.	 The	 complexity	 of	 these	 chips
escapes	human	comprehension.	Various	 tools	and	design	 languages	help	manage	 the	complexity,	but	 the
constantly	increasing	gate	densities	are	forcing	the	design	process	to	a	higher	plane	of	abstraction.	One	of
the	 tools	used	 in	dealing	with	 this	 complexity	 is	 the	hardware	definition	 language	 (HDL).	 Hardware
definition	 languages	 allow	 a	 designer	 to	 specify	 circuit	 behavior	 on	 an	 algorithmic	 level.	 Instead	 of
thinking	 about	 the	 circuit	 in	 terms	 of	 gates	 and	 wires,	 a	 designer	 works	 with	 variables	 and	 control
structures	 in	 a	 manner	 similar	 to	 working	 with	 a	 second-	 or	 third-generation	 programming	 language.
Instead	of	creating	a	stream	of	binary	machine	code,	 the	HDL	source	code	produces	a	specification	for
gates	and	wires	called	a	netlist.	The	netlist	is	suitable	input	for	the	software	that	ultimately	produces	the
silicon	die	layout.

HDLs	have	been	around	for	a	few	decades.	The	earliest	of	these	were	proprietary	languages	supplied
by	chip	 fabricators.	One	of	 these	 languages,	Verilog,	 created	by	Gateway	Design	Automation	 in	1983,
became	one	of	 the	 two	 leading	design	 languages	by	 the	end	of	 the	 twentieth	century.	 In	1989,	Cadence
Design	Systems	bought	Gateway,	and	in	the	next	year,	it	released	Verilog	into	the	public	domain.	Verilog
became	an	IEEE	standard	in	1995,	the	latest	version	of	which	is	IEEE	1364-2001.

Because	it	was	patterned	after	the	C	programming	language,	Verilog	is	considered	an	easy	language	to



learn.	 With	 C	 being	 a	 popular	 language	 for	 writing	 embedded	 systems	 software,	 engineers	 can	 shift
between	writing	 software	 and	 designing	 hardware	with	 relative	 ease.	Verilog	 produces	 netlists	 at	 two
levels	of	abstraction.	The	highest	 level,	 the	 register	 transfer	 level	 (RTL),	uses	constructs	akin	 to	any	C
language	 program,	with	 variables	 replaced	 by	 registers	 and	 signals.	When	necessary,	Verilog	 can	 also
model	circuits	at	the	gate	and	transistor	levels.

The	 second	 dominant	 HDL	 is	 VHDL,	 which	 is	 an	 abbreviation	 for	 Very	 (high-speed	 integrated
circuit)	Hardware	Design	Language.	VHDL	came	into	existence	under	a	U.S.	Defense	Advanced	Research
Program	Agency	(DARPA)	contract	awarded	 in	1983	 to	 Intermetrics,	 IBM,	and	Texas	 Instruments.	The
language	was	 released	 in	August	 1985,	 and	 it	 became	 an	 IEEE	 standard	 in	 1987.	 Its	 latest	 revision	 is
IEEE	1097-2002.

VHDL	 syntax	 is	 similar	 to	 the	 Ada	 programming	 language,	 which	 was	 once	 the	 only	 language
authorized	 for	 use	 in	 any	 Defense	 Department	 projects.	 VHDL	models	 circuits	 at	 a	 higher	 level	 than
Verilog.	Like	Ada,	it	is	a	strongly	typed	language	that	permits	user-defined	types.	Unlike	Verilog,	VHDL
supports	concurrent	procedure	calls,	which	are	essential	for	multiprocessor	designs.

Increasingly,	VHDL	and	Verilog	are	strained	to	keep	up	with	advances	in	VLSI	technology.	Modeling
and	testing	the	latest	multimillion-gate	circuits	with	these	languages	is	tedious,	error	prone,	and	costly.	It
has	 become	 evident	 that	 the	 level	 of	 abstraction	 in	 chip	 design	 must	 be	 raised	 once	 again	 to	 allow
designers	 to	 think	 in	 terms	 of	 functions,	 processes,	 and	 systems,	 as	 opposed	 to	worrying	 about	 gates,
signals,	 and	 wires.	 Several	 system-level	 design	 languages	 have	 been	 proposed	 to	 fill	 this	 need.	 Two
competing	languages	have	emerged	as	leaders	of	the	pack:	SystemC	and	SpecC.

SystemC	is	an	extension	of	C++	that	includes	classes	and	libraries	geared	specifically	for	modeling
timing,	 events,	 reactive	 behavior,	 and	 concurrency	 in	 embedded	 systems.	 It	 was	 the	 product	 of	 the
combined	 efforts	 of	 several	 electronic	 design	 automation	 (EDA)	 and	 embedded	 software	 companies.
Among	 its	 strongest	 proponents	were	 Synopsys,	 CoWare,	 and	 Frontier	 Design.	 They	 garnered	 support
from	virtually	every	other	major	player	in	the	industry.	A	consortium	of	business	and	academic	experts,
the	Open	SystemC	Initiative,	oversees	the	evolution	and	promotion	of	the	language.

The	 principal	 aim	 for	 the	 invention	 of	 SystemC	 was	 to	 create	 an	 architecture-independent
specification	 language	 that	 would	 be	 widely	 disseminated	 and	 supported	 within	 the	 electronic	 design
community.	To	this	end,	anyone	agreeing	to	the	terms	of	the	SystemC	license	may	download	the	language
source	code	and	its	requisite	class	libraries.	Any	ANSI-compliant	C++	compiler	can	produce	executable
SystemC	modules.

SystemC	 models	 designs	 at	 two	 levels	 of	 abstraction.	 At	 the	 highest	 level,	 only	 the	 circuit
functionality	 is	 specified.	 This	 specification	 is	 sufficient	 for	 production	 of	 simulation	 test	 suites	 and
netlists.	 If	 finer	 granularity	 is	 required,	 SystemC	 can	 produce	 a	 system	 or	 module	 at	 the	 hardware
implementation	level	using	either	a	functional	or	an	RTN	style.

SpecC	 is	 another	 system-level	 design	 language	 arousing	 some	 interest	 in	 the	EDA	 industry.	SpecC
was	originally	developed	at	the	University	of	California	at	Irvine	by	Daniel	Gajski,	Jianwen	Zhu,	Rainer
Dömer,	Andreas	Gerstlauer,	and	Shuqing	Zhao.	It	has	since	been	placed	under	the	control	of	the	SpecC
Open	Consortium,	which	consists	of	a	number	of	academic	and	industry	leaders.	The	SpecC	compiler	and
its	related	tools	and	documentation	are	available	from	the	SpecC	website.

The	SpecC	language	differs	from	SystemC	in	two	fundamental	ways.	First,	SpecC	is	a	modification	of
the	C	programming	language	that	is	tailored	to	the	needs	of	embedded	system	design.	Designers	of	SpecC
found	that	their	objectives	could	not	be	met	through	the	simple	addition	of	libraries	(as	is	the	case	with
SystemC).

The	second—and	most	remarkable—difference	between	SpecC	and	SystemC	is	that	SpecC	includes	a



design	 methodology	 as	 part	 of	 the	 package.	 The	 methodology	 guides	 engineers	 through	 four	 facets	 of
system	development:	its	specification,	architecture,	communication	channels,	and	implementation.

Indeed,	 using	 any	 of	 the	 several	 system-level	 specification	 languages	 requires	 some	 degree	 of
departure	 from	 the	 embedded	 system	 design	 methodologies	 that	 have	 been	 in	 use	 for	 decades.	 The
traditional	approach	typically	follows	the	paths	shown	in	Figure	10.9.	The	process	flows	as	follows:

•	 	 	A	detailed	specification	 is	derived	 from	a	 functional	description	articulated	by	 the	designers	of	 the
product	 in	 which	 the	 embedded	 system	 will	 be	 installed.	 Product	 improvement	 ideas	 based	 on
customer	feedback	can	be	put	forth	by	the	marketing	department	at	this	stage.

•			Based	on	the	specification	and	sales	estimates,	engineers	decide	whether	an	off-the-shelf	processor	is
suitable,	or	whether	creating	a	custom-designed	processor	makes	more	sense.

•	 	 	 The	 next	 step	 is	 to	 partition	 the	 system	 into	 a	 hardware	 component	 and	 a	 software	 component.
Consideration	 is	 given	 to	 the	 availability	 of	 intellectual	 property	 designs	 and	 to	 the	 footprint	 and
power	requirements	of	the	proposed	processor.

FIGURE	10.9	A	Traditional	Embedded	System	Design	Cycle

•			With	the	system	partitioning	complete,	general	software	and	detailed	hardware	design	begins.	Software
design	proceeds	to	the	point	where	the	underlying	machine	architecture	of	the	finished	product	makes	a
difference.	After	the	underlying	machine	structure	is	finalized,	the	programming	can	be	completed.

•			A	hardware	prototype	may	be	created	allowing	the	software	to	be	tested	in	the	prototype.	If	for	some
reason	a	prototype	cannot	be	created,	a	software	simulation	of	the	completed	processor	is	produced.
Integration	testing	usually	involves	creating	test	vectors	that	contain	the	binary	state	of	the	signals	on
each	 pin	 of	 the	 processor	 as	 it	 executes	 its	 program.	 Simulation	 testing	 consumes	 many	 hours	 of
execution	time	in	the	simulator,	because	each	clock	tick	of	the	new	processor	must	be	simulated	using
the	test	vectors	as	inputs	and	outputs	of	a	complex	program.

•	 	 	When	 testing	 is	 completed	 to	 everyone’s	 satisfaction,	 the	 finalized	 design	 is	 sent	 to	 a	 fabrication
facility,	which	produces	the	finished	microprocessor.

At	 any	 rate,	 this	 is	 how	 things	 are	 supposed	 to	 work.	 However,	 this	 is	 not	 always	 the	 case.	 The



reverse	arrows	in	the	diagram	are	two	of	the	paths	that	can	be	taken	when	an	error	is	discovered.	Because
hardware	 and	 software	 are	 developed	 by	 two	 different	 teams,	 it	 is	 easy	 for	 a	 critical	 function	 to	 be
overlooked	 or	 for	 a	 requirement	 to	 be	misunderstood.	Misunderstandings	 in	 requirements	 can,	 in	 fact,
ripple	back	through	the	whole	process,	causing	redesign	after	the	fabrication	step	has	been	completed.	In
the	worst	 case,	 a	 design	 flaw	would	be	detected	 after	 the	processor	 is	 placed	 in	 the	 finished	product.
Errors	 found	 this	 late	 in	 the	 process	 are	 enormously	 costly	 to	 correct,	 both	 in	 terms	 of	 retooling	 the
hardware	or	software	(or	both),	and	in	terms	of	lost	opportunity	in	the	marketplace.

Today’s	chip	complexity	is	exponentially	greater	than	it	was	when	Verilog	and	VHDL	were	invented.
The	 traditional	model	 for	 embedded	 system	 development	 is	 increasingly	 error	 prone	 and	 unsuited	 for
today’s	shrinking	product	development	time	frames.	The	potential	competitive	edge	offered	by	processor-
enabled	 consumer	 products	 is	 lost	when	 the	 time	 to	market	 increases	 because	 of	 protracted	 processor
design	time	frames.	This	gives	similar	products	without	complex	processors	command	of	the	market	until
the	more	sophisticated	product	is	introduced.	In	order	for	manufacturers	of	processor-enabled	products	to
stay	competitive,	it	is	clear	that	the	embedded	systems	methodology	must	change.	System-level	languages
like	SystemC	and	SpecC	are	the	facilitators	of	this	change.	Not	only	do	these	languages	raise	the	level	of
design	abstraction,	but	they	also	remove	many	of	the	barriers	that	are	so	vexing	in	traditional	embedded
processor	development	projects.

The	first	 limitation	 inherent	 in	 the	 traditional	design	 life	cycle	 is	 that	development	 teams	do	not	all
speak	 the	 same	 language.	 The	 “idea	 people”	 state	 their	 requirements	 in	 plain	 English.	 A	 structured
system-level	 design	 is	 then	 derived	 from	 their	 requirements.	 The	 specification	 is	 next	 translated	 into
Verilog	or	VHDL	 for	 the	hardware	design.	The	hardware	design	 is	 then	“thrown	over	 the	wall”	 to	 the
software	designers,	who	are	usually	doing	their	work	in	C,	C++,	or	assembly.	Multiple	iterations	through
this	disjointed	process	can	result	in	reworking	the	design	in	at	least	two	different	languages.

How	much	simpler	life	would	be	if	everyone	spoke	the	same	language,	and	if	everyone	were	working
on	the	same	models	throughout	the	design	life	of	the	processor!	Indeed,	one	of	the	greatest	benefits	offered
by	SystemC	or	SpecC	is	that	they	both	present	a	uniform,	high-level	view	of	the	system.	Such	consistency
permits	codevelopment,	where	hardware	and	software	are	designed	simultaneously.	The	product	design
life	cycle	can	thus	be	shortened	appreciably	while	improving	processor	design	quality.

A	 streamlined	 codesign	methodology	 life	 cycle	 is	 shown	 in	 Figure	 10.10.	 As	 you	 can	 see,	 fewer
distinct	steps	are	involved:

•			A	system-level	processor	simulation	is	drawn	up	in	SpecC	or	SystemC,	using	the	inputs,	outputs,	and
other	constraints	derived	from	the	detailed	specification.	This	is	the	behavioral	model	of	the	system.
The	behavioral	model	 validates	 the	designers’	 understanding	of	 the	 functions	of	 the	processor.	This
model	will	also	be	used	to	validate	the	behavior	of	the	completed	design.

•	 	 	Next,	 during	 the	 system	 codesign	phase,	 software	 development	 and	 virtual	 hardware	 development
proceed	 concurrently	 through	 stepwise	 decomposition	 and	 refinement	 of	 the	 system	 specification.
Partitioning	decisions	take	into	consideration	the	usual	array	of	concerns,	including	time–space	trade-
offs.	However,	 because	 the	 hardware	 design	 is	 only	 simulated	 at	 this	 point,	 partitioning	 becomes	 a
dynamic	activity	instead	of	one	where	the	objective	is	to	force	the	software	to	work	in	a	(fairly)	static
hardware	prototype.



FIGURE	10.10	Embedded	Processor	Codevelopment

•	 	 	Through	 each	 refinement	 step,	 the	behavioral	model	 of	 the	 system	 is	 checked	 against	 the	 simulated
processor	in	a	process	called	coverification.	Design	corrections	are	expedited	because	the	hardware
design	is	only	a	computer	simulation	of	the	final	product.	Additionally,	because	of	the	close	proximity
of	the	development	teams,	the	number	of	iterations	is	usually	decreased.

•	 	 	 Once	 the	 programming	 and	 virtual	 hardware	 models	 are	 complete,	 their	 functions	 are	 tested
simultaneously	using	a	virtual	model	of	the	processor.	This	activity	is	called	cosimulation.

•	 	 	 With	 the	 functionality	 of	 both	 the	 hardware	 and	 software	 verified	 against	 the	 original	 behavioral
model,	a	netlist	can	be	synthesized	and	sent	for	layout	and	fabrication.

Although	they	were	the	first,	neither	SystemC	nor	SpecC	is	the	last	word	on	system-level	development
languages.	Efforts	are	also	under	way	to	adapt	Java	and	UML	for	this	purpose.	Support-tool	vendors	and
their	customers	will	determine	which	of	these	wins	out.	Clearly,	the	sun	is	setting	on	the	era	when	circuits
are	designed	exclusively	with	VHDL	or	Verilog.	Moreover,	if	a	standard	language	could	be	agreed	upon,
intellectual	property	designs	could	be	exchanged	economically.	Vendors	should	be	relieved	of	the	risk	in
choosing	a	single	design	language,	or	the	costs	of	supporting	several	of	them.	Intellectual	effort	could	be
spent	in	developing	better	designs,	rather	than	translating	designs	from	one	language	to	another.

Embedded	System	Trade-offs
The	costly	 task	of	designing	a	 full-custom	die	 is	undertaken	only	when	no	off-the-shelf	 chip	has	 the
desired	functionality,	power	consumption	profile,	or	speed—or,	if	such	a	chip	is	available,	the	cost	of
using	it	cannot	be	justified.

Because	embedded	systems	are	sold	as	an	unnoticed	part	of	 some	other	product,	 the	decision	 to
build	or	buy	is	rarely	made	without	considerable	market	analysis.	Two	questions	weigh	heavily	in	the
decision:	What	is	the	expected	market	demand	for	the	product,	and	how	long	will	it	take	to	bring	the
product	to	market	if	a	custom	processor	is	built?



Although	it	is	enormously	expensive	to	design	and	fabricate	a	processor,	in	very	large	quantities,
the	economics	may	favor	a	customized	solution.	This	idea	is	captured	by	the	following	processor	cost
formula:

Total	processor	cost	=	Fixed	cost	+	(unit	cost	×	number	of	units)

Fixed	costs	are	the	non-recurring	engineering	(NRE)	expenses	that	include	designing	and	testing
the	processor,	producing	the	masks,	and	production	setup.	Unit	cost	is	the	amount	of	money	required	to
produce	each	unit	after	all	the	setup	is	complete.

As	an	example,	suppose	we	are	in	the	video	game	business.	Let’s	say	that	the	hottest	new	game	is
expected	to	be	spawned	by	a	movie	version	of	Gulliver’s	Travels	to	be	released	in	June.	(One	plays
the	 game	by	 controlling	 the	 antics	 of	 the	Lilliputians.)	Our	marketing	 staff	 believes	 that	with	 timely
release	of	our	game,	we	can	sell	50,000	units,	which	will	be	priced	to	give	us	a	profit	of	$12	per	unit.
From	 previous	 experience,	 we	 know	 that	 our	 total	 NRE	 expenses	 for	 such	 a	 product	 would	 be
$750,000,	 and	 each	 processor	 would	 cost	 $10	 to	 produce.	 Thus,	 the	 total	 cost	 for	 the	 game	 unit
processors	is:

Game	unit	processor	cost	=	$750,000	+	(50,000	×	$10)	=	$1,250,000

The	alternative	is	to	purchase	a	processor	that	is	a	little	slower	and	more	expensive	(per	unit)	than
the	 custom	 processor.	 If	 such	 processors	 cost	 $30	 each	 in	 lots	 of	 10,000,	 the	 total	 cost	 for	 the
processors	in	the	game	is:

Game	unit	processor	cost	=	$0	+	(50,000	×	$30)	=	$1,500,000

Thus,	 the	 custom-design	 approach	 would	 save	 $250,000	 in	 processor	 costs.	 This	 means	 we	 could
charge	the	customer	less	per	unit,	or	increase	our	per-unit	profit,	or	have	some	combination	of	both.

Clearly,	our	cost	model	rests	on	the	assumption	that	we	will	sell	50,000	units.	If	that	assumption
holds	true,	the	choice	seems	obvious.	One	thing	we	have	not	considered,	however,	is	the	length	of	time
it	will	take	to	build	the	processor.

Suppose	that	the	marketing	department	has	come	up	with	monthly	sales	projections	as	shown	in	the
chart	below.	Based	on	their	experience	with	movie-themed	games,	the	marketing	staff	knows	that	some
units	will	be	sold	before	the	movie	is	released.	Sales	will	peak	the	month	following	the	movie	release
and	will	then	decline	steadily	over	the	subsequent	six	months.



To	sell	50,000	units,	the	product	must	be	on	store	shelves	by	May	1.	If	the	design	and	manufacture
of	the	customized	processor	causes	us	to	miss	the	May	product	release	by	three	months	or	more,	 the
best	 choice	 becomes	 one	 of	 using	 an	 off-the-shelf	 processor	 despite	 its	 higher	 unit	 cost	 and	 lower
performance.

Our	 (greatly)	 simplified	 example	 illustrates	 the	 trade-offs	 that	 take	 place	 when	 the	 timing	 of
product	release	is	essential	to	profitability.	Another	reason	for	choosing	an	off-the-shelf	processor	or
an	FPGA	might	also	be	when	sales	data	are	unclear.	In	other	words,	if	market	demand	is	uncertain,	it
makes	 sense	 to	minimize	 the	 initial	 investment	 by	 using	 a	 standard	 part	 rather	 than	 incur	 the	 NRE
expenses	of	a	customized	processor.	If	the	product	proves	to	be	a	hot	seller,	the	NRE	expenses	would
be	justified	in	releasing	a	subsequent	“new	and	improved”	model	of	the	product	(containing	a	faster,
customized	processor)	that	would	generate	even	more	sales.

10.3			AN	OVERVIEW	OF	EMBEDDED	SOFTWARE
Thanks	 to	virtual	memory	and	gigahertz	processor	 clocks,	 a	general	 applications	programmer	 typically
doesn’t	 have	 to	 give	much	 thought	 to	 the	 hardware	 that	 runs	 the	 programs.	Moreover,	when	 he	 or	 she
writes	an	application	program,	perhaps	in	C	or	Java,	performance	problems	are	usually	addressed	only
after	several	user	complaints	have	been	made.	Sometimes	the	problem	is	solved	by	an	adjustment	to	the
program	code;	sometimes	it	is	solved	by	adding	hardware	components	to	the	machine	that	is	running	the
slow	application.	The	embedded	systems	programmer	typically	writes	programs	exclusively	in	assembly
language	and	does	not	have	the	luxury	of	after-the-fact	performance	tuning.	Performance	problems	must	be
identified	 and	 corrected	 long	 before	 the	 consumer	 sees	 the	 program	 in	 operation.	 Algorithms	 are
intimately	intertwined	with	the	hardware	that	runs	the	program.	In	short,	embedded	systems	programming
requires	us	to	think	differently	about	the	code	we	write,	and	to	think	deeply	about	where	and	how	it	will
be	run.

10.3.1		Embedded	Systems	Memory	Organization
There	are	two	principal	ways	in	which	embedded	system	memory	organization	differs	from	the	memory
organization	of	general-purpose	computers.	First,	embedded	systems	rarely	employ	virtual	memory.	The
main	 reason	 for	 this	 is	 that	 most	 embedded	 systems	 are	 time	 constrained.	 Proper	 system	 operation



requires	that	all	activities	take	place	within	clearly	defined	time	frames.	Given	that	virtual	memory	access
times	can	vary	by	several	orders	of	magnitude,	the	timing	model	becomes	unacceptably	nondeterministic
for	embedded	systems	 implementations.	Furthermore,	virtual	memory	page	 table	maintenance	consumes
precious	memory	and	machine	cycles	that	could	be	put	to	better	use.

The	second	distinctive	aspect	of	embedded	system	memory	is	the	variability	and	diversity	of	memory
architectures.	Unlike	general	systems	programmers,	embedded	programmers	are	continually	aware	of	the
sizes	 and	 types	 of	 available	 memory.	 A	 single	 embedded	 system	 can	 contain	 random	 access	 memory
(RAM),	ROM,	and	flash	memory.	Memory	space	 is	not	always	continuous,	so	some	memory	addresses
may	 be	 invalid.	 Figure	 10.11	 shows	 a	model	 execution	 environment,	 consisting	 of	 several	 predefined
address	blocks.	The	reserved	system	memory	space	contains	interrupt	vectors	that	hold	interrupt	service
routine	(ISR)	addresses.	ISR	programs	are	invoked	in	response	to	various	signals	as	they	are	raised	on
the	 pins	 of	 the	 processor.	 (The	 programmer	 has	 no	 control	 over	 which	 pins	 are	 connected	 to	 which
vector.)

FIGURE	10.11	An	Embedded	System	Memory	Model

You	will	also	notice	 that	our	memory	space	distinguishes	between	program	memory,	writeable	data
memory,	and	read-only	memory.	Read-only	memory	contains	constants	and	literals	used	by	the	embedded
program.	 Because	 small	 embedded	 systems	 usually	 run	 only	 one	 program,	 constants	 can	 be	 stored	 in
ROM,	 thus	 protecting	 them	 from	 accidental	 overwrites.	 In	 many	 embedded	 systems,	 the	 designer
determines	 the	placement	 of	 program	code,	 and	whether	 the	 code	will	 reside	 in	RAM,	ROM,	or	 flash
memory.	The	stack	and	the	heap	are	often	implemented	in	static	RAM	to	eliminate	the	need	for	DRAM
refresh	 cycles.	 An	 embedded	 system	may	 or	 may	 not	 use	 a	 heap.	 Some	 programmers	 avoid	 dynamic
memory	 allocation	 altogether	 for	 the	 same	 reasons	 that	 virtual	 memory	 is	 avoided:	 Memory	 cleanup
incurs	overhead	that	can	cause	unpredictable	access	delays.	More	importantly,	memory	cleanup	should	be
performed	routinely	to	avoid	the	risk	of	running	out	of	heap	space.	Embedded	systems	memory	leaks	are
serious	 business	 because	 some	 systems	 may	 operate	 for	 months	 or	 years	 without	 rebooting.	 Without
explicit	 cleanup	 or	 restarts,	 even	 the	 smallest	 memory	 leak	 will	 eventually	 consume	 the	 entire	 heap,
causing	a	system	crash	that	could	be	catastrophic.

10.3.2		Embedded	Operating	Systems
Simple	microcontrollers	typically	run	a	single	application	that	tends	to	be	of	low	to	medium	complexity.
As	such,	microcontrollers	require	no	task	or	resource	management	beyond	that	which	is	provided	by	its
program.	As	 the	 capabilities	 of	 embedded	hardware	 continue	 to	 grow,	 embedded	 applications	become
more	diverse	and	complex.	Today’s	high-end	embedded	processors	 are	 capable	of	 supporting	multiple
concurrent	programs.	As	we	explained	 in	Chapter	8,	 it	 is	difficult	 to	exploit	 the	capabilities	of	 today’s
powerful	processors	without	sophisticated	multitasking	and	other	resource	management	 that	 is	 routinely
provided	by	an	operating	system—but	not	just	any	operating	system.	Embedded	operating	systems	differ



from	general-purpose	operating	systems	in	two	important	ways.	First,	embedded	operating	systems	allow
direct	hardware	access,	unlike	general-purpose	operating	systems,	which	aim	to	prevent	 it.	Second	and
more	 importantly,	 an	 embedded	 operating	 system’s	 responsiveness	 to	 events	 is	 clearly	 defined	 and
understood.

Embedded	 operating	 systems	 are	 not	 necessarily	 real-time	 operating	 systems.	 In	 Chapter	 8,	 we
mentioned	 that	 there	are	 two	 types	of	 real-time	systems.	“Hard”	 real-time	means	 that	 system	responses
take	place	within	 strictly	defined	 timing	parameters.	 “Soft”	 real-time	systems	have	more	 lenient	 timing
constraints,	but	a	soft	real-time	system	is	still	reactive	to	its	environment	within	clearly	defined	bounds.

Embedded	 devices	 that	 carry	 out	 activities	 based	 solely	 on	 human	 interactions	 with	 them	 are	 no
stricter	 in	 their	 timing	 requirements	 than	 ordinary	 desktop	 computers.	A	 sluggish	 response	 from	 a	 cell
phone	or	PDA	is	an	annoyance,	but	usually	not	a	crisis.	In	a	real-time	system,	however,	responsiveness	is
an	essential	factor	in	determining	its	correct	behavior.	In	short,	if	the	response	from	a	realtime	system	is
late,	it’s	wrong.

Two	of	the	most	important	metrics	in	the	evaluation	of	real-time	operating	systems	are	context	switch
time	and	interrupt	latency.	Interrupt	latency	 is	 the	elapsed	time	between	the	occurrence	of	an	interrupt
and	the	execution	of	the	first	instruction	of	the	interrupt	service	routine.

Interrupt	 handling	 lies	 at	 the	 heart	 of	 real-time	 systems	 design.	 Programmers	 must	 be	 continually
mindful	 of	 the	 fact	 that	 interrupts	 can	 occur	 at	 any	 time,	 even	while	 other	 critical	 activities	 are	 taking
place.	Thus,	 if	 the	highest-priority	 user	 thread	 is	 executing	when	 a	 high-priority	 interrupt	 occurs,	what
should	 the	 operating	 system	 do?	 Some	 systems	 continue	 to	 process	 the	 user	 thread	 while	 keeping	 the
interrupt	in	queue	until	the	user	thread	processing	is	complete.	This	approach	may	or	may	not	present	a
problem	depending	on	the	application	and	the	speed	of	the	hardware.

In	hard	real-time	applications,	the	system	must	quickly	respond	to	external	events.	Therefore,	a	hard
real-time	 scheduler	must	 be	 preemptive.	 The	 best	 realtime	 embedded	 operating	 systems	 allow	 a	wide
range	 of	 values	 in	 the	 assignment	 of	 task	 and	 interrupt	 priorities.	 However,	 priority	 inversion	 can	 be
problematic.	Thread	priority	inversion	occurs	when	a	higher-priority	task	needs	the	services	provided	by
a	task	that	runs	at	a	lower	priority,	or	when	a	lower-priority	task	holds	a	resource	that	a	higher-priority
task	requires	 in	order	 to	complete.	When	one	of	 these	conditions	exists,	 the	higher-priority	 task	can	do
nothing	but	wait	for	the	lower-priority	task	to	complete.	Conceivably,	the	system	could	deadlock.	Some
embedded	operating	systems	deal	with	priority	inversion	through	priority	inheritance:	Once	the	situation
is	recognized,	the	priorities	are	equalized	so	that	all	competing	tasks	can	complete.

The	second	type	of	priority	inversion	pertains	to	interrupts.	Interrupts	can	be	disabled	during	interrupt
processing.	 This	 avoids	 a	 situation	 called	 interrupt	 nesting,	 where	 interrupt	 service	 routines	 are
interrupted	 to	 process	 other	 interrupts,	 potentially	 causing	 stack	 overflow	 in	 the	 extreme	 case.	 The
problem	 arises	 with	 this	 approach	 whenever	 a	 high-priority	 interrupt	 occurs	 while	 a	 low-priority
interrupt	is	being	serviced.	When	interrupts	are	disabled,	the	high-priority	interrupt	ends	up	sitting	in	the
queue	until	 the	 lower-priority	 interrupt	 service	 routine	completes.	High-quality	 systems	allow	 interrupt
nesting	and	will	recognize	the	occurrence	of	a	high-priority	interrupt,	subsequently	preempting	the	lower-
priority	interrupt	service	routine.

After	responsiveness,	 the	next	most	 important	consideration	 in	operating	system	selection	 is	usually
memory	 footprint.	 Using	 a	 small,	 efficient	 operating	 system	 kernel	 means	 that	 less	 memory	 has	 to	 be
installed	in	each	device.	This	gives	us	a	cost	model	that	pits	operating	system	license	fees	against	memory
chip	prices.	If	memory	is	expensive,	you	can	afford	to	pay	more	for	a	small,	optimized	operating	system.
If	memory	is	very	expensive,	or	most	of	it	is	needed	for	the	application	program,	the	effort	of	hand	coding
a	 totally	 customized	 operating	 system	may	 be	 justified.	With	 cheap	memory,	 a	 larger	 operating	 system



with	good	tool	support	may	be	the	better	choice.
Embedded	operating	systems	vendors	aim	to	strike	a	balance	between	offering	a	variety	of	features

and	small	footprint	by	making	their	systems	as	modular	as	possible.	The	kernel	typically	consists	of	little
more	than	a	scheduler,	an	interprocess	communications	manager,	primitive	I/O	facilities,	and	a	collection
of	 protection	 mechanisms,	 such	 as	 semaphores.	 All	 other	 operating	 system	 features,	 such	 as	 file
management,	 network	 support,	 and	 a	 user	 interface,	 are	 optional.	 If	 they	 are	 not	 needed,	 they	 aren’t
installed.

The	extent	to	which	an	operating	system	adheres	to	standards	can	be	critical	in	selecting	one	operating
system	over	another.	One	of	 the	most	 important	 standards	 is	 the	 IEEE	1003.1-2001	Portable	Operating
System	Interface,	POSIX	(pronounced	paw-zicks),	which	 is	 a	 standardized	Unix	 specification	 that	now
includes	 real-time	 extensions.	 POSIX	 real-time	 specifications	 include	 provisions	 for	 timers,	 signals,
shared	memory,	scheduling,	and	mutexes.	A	POSIX-compliant	real-time	operating	system	must	implement
these	functions	through	interfaces	as	specified	in	the	standard.	Many	major	embedded	operating	systems
manufacturers	 have	had	 their	 products	 certified	 as	POSIX	compliant	 by	 the	 IEEE.	This	 certification	 is
required	for	work	performed	under	U.S.	government	and	military	contracts.

There	 are	 literally	 dozens	 of	 embedded	 operating	 systems	 available.	 Among	 the	most	 popular	 are
QNX,	Windows	8	Embedded,	and	Embedded	Linux.	QNX	is	the	oldest	of	this	group,	and	at	less	than	10
kilobytes,	 it	 has	 the	 smallest	 memory	 footprint.	 QNX	 is	 POSIX	 compliant	 with	 installable	 GUI,	 file
system,	 and	 I/O	 systems,	 including	 PCI,	 SCSI,	 USB,	 serial	 ports,	 parallel	 ports,	 and	 Internet
communications.	 For	 more	 than	 20	 years,	 QNX	 has	 been	 running	 scientific	 and	 medical	 systems	 on
PowerPC,	MIPS,	and	Intel	architectures.

Linux	was	 POSIX	 compliant	 from	 the	 start,	 but	 it	was	 unsuitable	 (without	modifications)	 for	 hard
real-time	systems	because	it	did	not	have	a	preemptive	scheduler.	In	September	2003,	Linus	Torvalds	and
Andrew	 Morton	 released	 version	 2.6	 of	 the	 Linux	 kernel.	 This	 version	 includes	 a	 more	 efficient
scheduling	 algorithm	 that	 is	 preemptive.	 Some	 kernel	 processes	 (i.e.,	 “system	 calls”)	 can	 also	 be
preempted.	Virtual	memory	is	an	installable	option.	(Many	embedded	systems	designers	won’t	install	it.)
Its	minimal	footprint	for	basic	functionality	is	only	250KB.	A	full-featured	installation	requires	500KB.
Nearly	 everything	 outside	 the	 Linux	 kernel	 is	 installable—even	 support	 for	 a	 keyboard,	 mouse,	 and
display.	 Embedded	Linux	 distributions	 are	 available	 for	 every	major	 processor	 architecture,	 including
several	popular	microcontrollers.

Microsoft	offers	several	embedded	operating	systems,	each	aimed	at	different	classes	of	embedded
systems	 and	mobile	 devices.	 In	 a	 break	with	 its	 past,	 the	Windows	Embedded	 suite	 supports	ARM	as
well	 as	 x86-class	 processors.	 Adding	 ARM	 support	 was	 a	 crucial	 step	 in	 order	 to	 keep	 Microsoft
competitive	 in	 this	 arena.	 Microsoft’s	 enormous	 investments	 in	 the	 embedded	 space	 have	 brought	 a
dizzying	array	of	products	and	licensing	terms	to	market.	These	offerings	include	the	following:

•	 	 	Windows	Embedded	8	Standard,	 a	modular	version	of	Windows	8	 that	 allows	designers	 to	 select
only	the	features	that	are	needed	for	any	particular	application.	Selectable	features	include	networking,
multimedia	support,	and	security.

•			Windows	Embedded	8	Pro,	a	full	Windows	8	version	with	a	modified	licensing	model	suited	to	the
embedded	market.

•			Windows	Embedded	8	Industry,	a	Windows	8	version	tailored	specifically	to	the	needs	of	the	retail,
financial	 services,	 and	hospitality	 industries.	Enhanced	 support	 is	 provided	 for	 point-of-sale	 (POS)
devices,	branding,	and	security.

•	 	 	Windows	Phone	8,	 a	 lean	version	of	Windows	8	with	 features	 specific	 to	 supporting	 the	Windows



phone	platform.
•	 	 	Windows	Embedded	 8	Handheld,	 a	 version	 of	Windows	 Phone	 8	 tailored	 to	 industrial	 handheld

devices,	such	as	scanners	and	manufacturing	control	products.
•			Windows	Embedded	Compact	2013,	a	modular	version	of	Windows	8	that	is	even	more	streamlined

from	Windows	8	Compact.	The	entire	operating	system	is	typically	stored	in	ROM.
•	 	 	Windows	Embedded	Automotive	7,	 a	 specialization	of	Windows	7	Compact	 specifically	aimed	at

automotive	applications.

When	 not	 operating	 in	 highly	 resource-constrained	 applications,	 the	Windows	 Embedded	 8	 series
provides	traditional	software	developers	an	easy	transition	into	the	embedded	space.	The	tools,	to	which
developers	 have	 become	 accustomed,	 such	 as	 Visual	 Studio,	 can	 be	 used	 for	Windows	 Embedded	 8
development	without	modification.	Microsoft	has	thus	opened	the	door	for	many	traditional	applications
to	be	ported	to	mobile	environments,	a	space	that	heretofore	had	been	dominated	by	Android	and	iOS.	In
theory,	an	embedded	Windows-based	product	could	be	brought	to	market	sooner	than	competing	systems
because	Windows	 tools	make	 the	 programming	much	 easier.	Getting	 to	market	 faster	means	 cash	 flow
starts	sooner.	This	implies	that	more	money	is	available	for	memory	chips	and	operating	system	licensing
fees.	Of	course,	cost	models	are	never	quite	that	simple.

Another	operating	system	that	is	widely	used	in	embedded	systems	is	MS-DOS.	Although	it	was	never
intended	 to	 support	 real-time	 hardware,	 MS-DOS	 provides	 access	 to	 underlying	 hardware	 and
responsiveness	 that	 is	adequate	for	many	applications.	If	multitasking	is	not	required,	 its	small	memory
footprint	 (approximately	 64KB)	 and	 inexpensive	 licensing	 fees	 make	 MS-DOS	 a	 very	 attractive
embedded	operating	system	option.	Additionally,	because	MS-DOS	has	been	around	for	so	long,	tool	and
driver	support	 is	 readily	available.	After	all,	 it	 stands	 to	 reason	 that	 if	obsolescent	desktop	processors
find	new	life	in	embedded	systems,	there	is	nothing	wrong	with	bringing	their	operating	systems	along	for
the	ride.

10.3.3		Embedded	Systems	Software	Development
The	development	of	general	application	programs	tends	to	be	a	highly	iterative	process.	Some	of	the	most
successful	 development	 methodologies	 involve	 prototyping	 wherein	 a	 semifunctional	 mockup	 of	 the
application	is	produced	and	presented	to	the	system	users	for	their	review	and	comment.	In	accordance
with	the	user	input,	the	prototype	is	then	modified	and	presented	once	again.	This	process	can	repeat	itself
for	 quite	 some	 time.	 What	 makes	 this	 approach	 so	 successful	 is	 that	 it	 eventually	 produces	 a	 set	 of
unambiguous	functional	requirements	that	can	be	stated	in	a	manner	suitable	to	software	implementation.

Although	 iterative	 approaches	 are	 good	 for	 general	 applications	 development,	 embedded	 systems
development	requires	a	much	more	rigorous	and	linear	path.	Functional	requirements	must	be	spelled	out
in	great	detail	before	work	begins	on	either	the	hardware	or	the	software.	To	this	end,	formal	languages
are	 useful	 in	 specifying	 embedded	 program	 behavior,	 because	 these	 languages	 are	 unambiguous	 and
testable.	 Furthermore,	 unlike	 general	 applications,	 where	 a	 little	 schedule	 “slippage”	 is	 tolerable,
embedded	development	schedules	must	be	carefully	planned	and	monitored	to	ensure	coordination	with
the	 hardware	 development	 schedule.	 Unfortunately,	 even	 with	 the	 most	 rigorous	 development	 efforts,
requirements	can	be	overlooked,	causing	a	flurry	of	last-minute	“crunch	time”	programming	activity.

Developing	software	for	complex	general	applications	usually	requires	the	work	to	be	partitioned	and
delegated	 to	 teams	of	programmers.	Without	 this	division	of	 labor,	 it	would	be	nearly	 impossible	for	a
large	project	to	meet	its	deadlines.	Assuming	that	the	system	and	its	modules	have	been	properly	analyzed



and	specified,	it	is	usually	not	too	hard	to	figure	out	which	modules	to	assign	to	which	teams.
By	 contrast,	 embedded	 software	 is	 difficult	 to	 partition	 into	 team-sized	 chunks.	 Many	 embedded

programs	“jump	to	main()”	right	after	the	system	boots.	The	programs	then	run	“forever”	in	a	super	loop
(or	grand	loop)	polling	for	signals	raised	by	external	events.

One	area	of	perennial	debate	among	embedded	programmers	concerns	the	use	of	global	variables	and
unstructured	code.	As	you	probably	know,	global	variables	are	named	memory	space	that	is	visible	from
any	point	in	the	program.	The	risk	in	using	global	variables	is	that	of	side	effects:	They	may	be	updated	in
ways	 that	 the	 programmer	 does	 not	 expect	 through	 variations	 in	 the	 program’s	 execution	 path.	 Global
variables	make	it	practically	impossible	to	be	certain	of	the	value	of	a	variable	at	any	given	time.

The	advantage	offered	by	global	variables	 is	 that	of	performance.	When	 the	 scope	of	a	variable	 is
limited	 to	 a	 particular	 procedure	 or	 function,	 every	 time	 the	 subprogram	 is	 invoked,	 the	 variable	 is
created	in	the	program’s	namespace.	This	activity	causes	negligible	execution	delay	in	a	general-purpose
system,	but	when	every	cycle	counts,	the	overhead	of	local	variable	creation	can	be	problematic.	This	is
especially	true	if	a	function	or	subroutine	is	called	frequently,	as	in	processing	a	routine	event.

The	same	people	who	advocate	the	use	of	global	variables	are	often	the	same	people	who	condone
the	use	of	unstructured	(“spaghetti”)	code	in	embedded	systems.	Structured	programs	consist	of	a	mainline
that	calls	a	sequence	of	procedures	or	functions,	which	in	turn	may	call	more	procedures	or	functions.	The
program	 fragment	 given	 in	 our	 discussion	 of	 microcontrollers	 in	 Section	 10.2.1	 is	 an	 example	 of	 a
structured	program	mainline.	In	unstructured	code,	most—if	not	all—of	the	code	provided	by	each	of	the
modules	 is	 inside	 the	main	 loop	 of	 the	 program.	 Instead	 of	 controlling	 execution	 by	 calling	modules,
unstructured	code	controls	execution	using	branch	(goto)	statements.

The	problem	with	unstructured	code	 is	 that	 it	can	be	hard	 to	maintain.	This	 is	especially	 true	 if	 the
program	 is	 long	 and	 involves	 a	 lot	 of	 branching.	Mistakes	 are	 easy	 to	make,	 especially	 if	 there	 is	 no
obvious	way	 to	discern	 the	execution	path	 for	any	particular	block	of	code.	Multiple	entrance	and	exit
points	can	create	a	debugger’s	nightmare.

Advocates	 of	 unstructured	 embedded	 programming	 point	 out	 that	 subprogram	 calls	 involve
considerable	overhead.	The	return	address	is	placed	on	a	stack,	the	subprogram	address	is	retrieved	from
memory,	 local	 variables	 (if	 any)	 are	 created,	 and	 the	 return	 address	 is	 popped	 from	 the	 stack.
Furthermore,	if	program	address	space	is	large,	subprogram	and	return	addresses	can	span	two	or	more
bytes,	 causing	multiple	 stack	pushes	and	pops	at	both	ends	of	 the	call.	 In	hearing	 these	arguments,	one
can’t	help	but	wonder	that	if	resources	are	that	tight,	why	wouldn’t	one	just	move	up	to	a	more	powerful
processor?	Software	engineering	 instinct	 implores	us	 to	 find	some	way	other	 than	global	variables	and
spaghetti	code	to	help	us	to	optimize	performance.

One	of	the	greatest	challenges	to	the	embedded	programmer	is	dealing	with	events.	Events	can	happen
asynchronously	 and	 can	 occur	 in	 any	 order.	 It	 is	 virtually	 impossible	 to	 test	 all	 possible	 sequences	 of
events.	There	is	always	the	risk	that	after	successfully	processing	n	events,	the	arrival	of	event	n	+	1	will
cause	a	failure.	Consequently,	embedded	systems	designers	carefully	craft	formal	test	plans	to	facilitate
rigorous	 and	 detailed	 testing.	 To	 the	 extent	 possible,	 proper	 operation	 of	 the	 product	must	 be	 ensured
before	it	is	released	to	the	field.	It	is	difficult	enough	to	apply	patches	to	standard	desktop	software,	but	it
is	 nearly	 impossible	 to	 patch	 software	 that	 conceivably	 could	 be	 running	 on	 millions	 of	 devices,	 the
whereabouts	of	which	may	be	unknown	and	untraceable.

Debugging	 embedded	 systems	 usually	 requires	 more	 than	 setting	 a	 few	 breakpoints	 and	 stepping
through	code.	Indeed,	when	event	timing	is	suspected	as	a	problem,	stepping	through	code	may	not	be	the
best	way	to	approach	the	problem.	Many	embedded	processors	are	provided	with	integrated	debugging
facilities	 that	 reveal	 some	 of	 the	 inner	 workings	 of	 the	 chip.	Motorola	 provides	Background	 Debug



Mode	(BDM)	for	its	embedded	processors.	The	output	of	BDM	can	be	connected	to	a	diagnostic	system
via	a	special	“n-wire”	connector.	The	IEEE	1149.1	Joint	Test	Action	Group	(JTAG)	interface	samples
signals	 through	 a	 serial	 loop	 connected	 to	 all	 signals	 of	 interest	 on	 a	 chip.	Nexus	 (IEEE-5001)	 is	 a
specialized	 debugger	 for	 automotive	 systems.	 People	 who	 debug	 embedded	 software	 often	 find
themselves	 working	 with	 oscilloscopes	 and	 logic	 analyzers	 equally	 as	 much	 as	 they	 use	 traditional
debugging	tools.

An	in-circuit	emulator	(ICE)	has	helped	many	embedded	system	designers	out	of	tight	spots.	An	ICE
is	 a	 test	 instrument	 that	 integrates	microprocessor	 execution	 control,	memory	 access	 (read/write),	 and
real-time	 trace,	 among	 other	 things.	 It	 consists	 of	 a	 microprocessor,	 shadow	 memory,	 and	 logic	 that
provide	control	over	 the	emulator’s	operations.	 ICE	boards	vary	 in	 their	design	and	capabilities.	They
can	be	expensive	 to	buy	and	build,	and	hard	 to	 learn	 to	use.	 In	 the	 long	run,	however,	 they	can	pay	for
themselves	many	times	over	in	the	time	and	frustration	they	save.

As	 in	 general	 applications	 development,	 tool	 support	 in	 the	 form	 of	 compilers,	 assemblers,	 and
debuggers	 is	 important	 in	embedded	system	work.	In	fact,	 tool	support	can	be	a	major	consideration	in
selecting	 one	 processor	 over	 another.	 Because	 of	 their	 varied	 architectures,	 each	 processor	 offers	 a
unique	set	of	tools	that	is	not	necessarily	compatible	across	processor	types.	Furthermore,	simply	porting
a	 compiler	 from	one	processor	 to	 another	might	 not	 produce	 a	 compiler	 that	makes	optimal	 use	of	 the
underlying	architecture	in	order	to	produce	optimized	code.	For	example,	porting	a	compiler	from	a	CISC
system	to	a	RISC	system	will	probably	not	result	in	a	compiler	that	takes	advantage	of	the	larger	register
set	of	RISC	systems.

There	may	be	no	tool	support	at	all	for	custom-developed	processors.	These	systems	tend	to	be	the
most	 resource	 constrained,	 requiring	 considerable	 hand	 optimization	 to	 squeeze	maximum	work	 out	 of
every	cycle.	If	the	processor	is	power	constrained,	its	designers	will	want	the	clock	to	run	as	slowly	as
possible,	 thus	 making	 optimization	 even	 more	 important	 to	 the	 success	 of	 the	 implementation.
Accordingly,	creating	systems	without	the	benefit	of	a	compiler,	assembler,	or	source-level	debugger	is
the	most	tedious	and	costly	approach	to	embedded	software	development.	The	results,	however,	can	be
magnificently	efficient	and	robust	if	done	properly.

CHAPTER	SUMMARY
We	encounter	hundreds	of	embedded	systems	every	day.	Their	diversity	defies	any	effort	to	define	them.
The	 design	 and	 programming	 of	 these	 systems	 require	 us	 to	 think	 in	 different	 ways	 about	 hardware,
software,	and	operating	systems.	The	principle	of	equivalence	of	hardware	and	software	gives	designers
maximum	 flexibility	 in	 engineering	 for	 performance	 and	 economy.	 Programming	 embedded	 systems
requires	 a	 deep	 understanding	 of	 hardware,	 and	 the	 ability	 to	 think	 in	 terms	 of	 timing	 and	 events.
Embedded	systems	designers	draw	on	every	aspect	of	 their	computer	science	or	engineering	education.
Mastery	of	the	principles	of	computer	organization	and	architecture	is	essential	to	success	in	this	field.	A
deep	understanding	of	operating	systems	concepts	helps	 in	 resource	management	and	event	handling.	A
good	education	in	the	discipline	of	software	engineering	provides	a	foundation	for	writing	solid	code	and
ensuring	its	quality.	A	firm	foundation	in	 the	study	of	algorithms	helps	an	embedded	system	designer	 to
write	 efficient	 programs	without	 resorting	 to	 dangerous	 shortcuts,	 such	 as	 global	 variables.	Embedded
systems	 require	 a	 change	 in	 thinking	 about	 all	 aspects	 of	 computing,	 including	 the	 division	 between
hardware	and	software.

Many	processors	and	operating	systems	long	considered	“obsolete”	for	desktop	computing	continue	to
live	 on	 within	 embedded	 systems.	 They	 are	 easy	 to	 program	 and	 inexpensive.	 The	 simplest	 of	 these



devices	 is	 the	microcontroller,	which	 usually	 consists	 of	 a	CPU	 core,	memory	 (ROM	and	RAM),	 I/O
ports,	controllers	for	I/O,	and	a	system	bus,	clock,	and	watchdog	timer.

More	sophisticated	embedded	processors,	called	systems	on	a	chip	 (SOCs),	contain	more	 than	one
CPU.	These	processors	don’t	necessarily	share	the	same	clock	or	instruction	set.	Each	processor	can	be
specialized	to	a	particular	role	within	the	system.	Some	SOCs	are	assembled	from	intellectual	property
(IP)	 circuits	 licensed	 from	 companies	 that	 specialize	 in	 creating	 and	 testing	 special-purpose	 circuit
designs.

The	cost	of	embedded	system	development	and	prototyping	can	be	 reduced	by	using	programmable
logic	 devices.	 They	 come	 in	 three	 general	 varieties:	 programmable	 array	 logic	 (PAL),	 programmable
logic	arrays	(PLAs),	and	field-programmable	gate	arrays	(FPGAs).	PALs	and	PLAs	are	programmed	by
blowing	 fuses.	 Their	 outputs	 are	 sum-of-products	 and	 product-of-sums	 functions	 of	 their	 respective
inputs.	FPGAs,	consisting	of	memory	elements	and	multiplexers,	can	implement	any	logic	function	based
on	the	values	supplied	in	their	memory	cells.	FPGAs	can	even	be	programmed	to	reprogram	themselves.

It	 can	 be	 more	 economical	 to	 buy	 than	 to	 build	 the	 microcontroller	 or	 microprocessor	 for	 an
embedded	system.	It	usually	makes	more	sense	to	build	rather	than	buy	when	large	quantities	of	the	chip
are	required	or	responsiveness	or	power	constraints	are	so	tight	that	only	a	customized	ASIC	will	suffice.
Traditionally,	hardware	and	software	design	activities	 followed	different	paths	 in	 the	development	 life
cycle.	 Software	 was	 designed	 using	 C,	 C++,	 or	 assembly.	 Hardware	 was	 designed	 using	 Verilog	 or
VHDL.	New	system-level	specification	languages	are	enabling	collaborative	codesign	and	coverification
by	cross-functional	teams	of	hardware	and	software	designers.	A	dominant	system-level	language	has	yet
to	emerge,	although	SystemC	and	SpecC	are	gaining	widespread	support.

The	memory	organization	of	an	embedded	system	can	be	quite	different	from	the	memory	organization
of	a	general-purpose	computer.	In	particular,	large	blocks	of	memory	addresses	may	not	be	valid.	Virtual
memory	is	rarely	used.	Programs	and	constant	values	are	usually	stored	in	read-only	memory.

Not	all	embedded	systems	require	an	operating	system.	For	those	that	do,	the	important	considerations
in	operating	system	selection	include	memory	footprint,	responsiveness,	licensing	fees,	and	adherence	to
standards.	 Hard	 real-time	 embedded	 systems	 require	 operating	 systems	 with	 clearly	 defined
responsiveness	 limits.	 This	 implies	 that	 they	 employ	 preemptive	 scheduling	 and	 make	 provisions	 for
priority	 manipulation,	 particularly	 with	 regard	 to	 interrupt	 processing.	 There	 are	 literally	 dozens	 of
embedded	operating	systems	on	the	market.	Among	the	most	popular	are	QNX,	Windows	CE,	Windows
Embedded	8,	and	Embedded	Linux.

Embedded	 system	 software	 development	 is	 typically	 more	 controlled	 and	 linear	 than	 general
application	software	development,	and	 it	 requires	a	 thorough	understanding	of	 the	underlying	hardware
architecture.	Embedded	systems	are	subjected	to	rigorous	testing	because	the	costs	associated	with	their
failure	are	so	great.

FURTHER	READING
Many	 books	 provide	 detailed	 coverage	 of	 embedded	 design	 and	 development.	 Berger	 (2002)	 is	 an
excellent	 and	 comprehensive	 beginner’s	 introduction	 to	 embedded	 design	 activities.	 Heath	 (2003)	 is
strong	in	its	coverage	of	embedded	programming.	Vahid	and	Givargis	(2002)	is	noteworthy	in	its	exacting
descriptions	 of	 embedded	 system	 components,	 including	 an	 entire	 chapter	 on	 embedded	 control
applications	(PID	controllers)	that	is	remarkably	well	done.

Embedded	Systems	Programming	magazine	published	three	very	good	watchdog	timer	articles.	Two
were	 written	 by	 Jack	 Ganssle	 (2003),	 and	 the	 third	 is	 by	 Niall	 Murphy	 (2000).	 All	 three	 are	 worth



reading.
Reconfigurable	 and	 adaptive	 systems	 loom	 large	 in	 the	 future	 of	 embedded	 systems	 as	well	 as	 the

future	of	general-purpose	computers.	Among	many	good	articles	on	this	subject	are	those	by	Andrews	et
al.	 (2004),	 Compton	 and	Hauck	 (2002),	 Prophet	 (2004),	 Tredennick	 and	 Shimato	 (2003),	 and	Verkest
(2003).

Berger	(2002)	provides	a	detailed	account	of	the	traditional	embedded	system	design	life	cycle.	His
exposition	describes	 the	many	ways	 in	which	 the	development	process	can	go	off	 track.	Later	chapters
describe	testing	and	debugging	activities	that	are	beyond	the	scope	of	this	chapter.	Articles	by	Goddard
(2003),	Neville-Neil	(2003),	Shahri	(2003),	and	Whitney	(2003)	present	clear	pictures	of	two	of	the	most
challenging	aspects	of	programming	customized	processors:	hardware-software	partitioning	and	the	lack
of	 development	 tool	 support.	 Similarly,	 Daniel	 Gajski	 (1997)	 provides	 a	 great	 deal	 of	 information
regarding	the	details	of	circuit	creation.

Owing	 to	 ever-increasing	 circuit	 complexity,	 embedded	 system	 codesign	 and	 coverification	 is	 a
growing	area	of	interest.	Good	introductory	papers	are	those	by	De	Micheli	and	Gupta	(1997)	and	Ernst
(1998).	Wolf	 (2003)	 traces	a	 ten-year	history	of	hardware/software	codesign,	 and	Benini	 et	 al.	 (2003)
describe	the	use	of	SystemC	in	codesign.	Information	on	the	specifics	of	the	various	hardware	definition
languages	can	be	obtained	from	the	following	websites:

SpecC:	www.specc.org
SystemC:	www.systemc.org
Real-time	UML:	www.omg.org
Verilog	and	VHDL:	www.accellera.org

Bruce	Douglass	(1999,	2000)	has	written	the	definitive	real-time	UML	books.
Reading	 them	will	 give	you	a	new	and	deeper	understanding	of	 real-time	 software	development	 and	 a
new	perspective	on	UML.	Stephen	J.	Mellor	(2003)	describes	how	Executable	and	Translatable	UML	can
be	used	in	the	development	of	realtime	systems.	Lee’s	(2005)	article	outlines	the	ways	in	which	computer
science	thinking	is	challenged	by	embedded	systems	development.

The	 best	 sources	 for	 up-to-the-minute	 embedded	 systems	 information	 is	 found	on	 vendor	websites.
Among	the	best	are:

ARM:	www.arm.com
Cadence	Corporation:	www.cadence.com
Ilogix:	www.ilogix.com
Mentor	Graphics:	www.mentor.com
Motorola	Corporation:	www.motorola.com
Synopsis	Corporation:	www.synopsis.com
Wind	River	Systems:	www.windriver.com
Xilinx	Incorporated:	www.xilinx.com

Good	general	information	sites	include:

EDN	(Electronic	Design	News):	www.edn.com
Embedded	Systems	Journal:	www.embedded.com

Embedded	operating	systems	sites	include:

http://www.specc.org
http://www.systemc.org
http://www.omg.org
http://www.accellera.org
http://www.arm.com
http://www.cadence.com
http://www.ilogix.com
http://www.mentor.com
http://www.motorola.com
http://www.synopsis.com
http://www.windriver.com
http://www.xilinx.com
http://www.edn.com
http://www.embedded.com


Embedded	Linux:	www.embeddedlinux.com
Microsoft	operating	systems:	www.embeddedwindows.com	and	www.microsoft.com
POSIX:	www.opengroup.org

If	you	find	that	the	subject	of	embedded	systems	sufficiently	excites	you	to	pursue	it	as	a	career,	in	his
article	“Breaking	into	Embedded,”	Jack	Ganssle	(2002)	provides	a	number	of	steps	that	you	should	take
to	get	yourself	 started	along	 this	path.	One	activity	 that	he	 stresses	 as	 the	best	way	 to	 learn	embedded
programming	 is	 to	do	 embedded	 programming.	 He	 urges	 aspiring	 embedded	 system	 designers	 to	 visit
www.stampsinclass.com	for	information	on	purchasing	microcontroller	kits	and	manuals	that	are	designed
for	 educational	 purposes.	 A	 recent	 addition	 to	 their	 offerings	 is	 the	 Javelin	 Stamp,	 which	 is	 a	 PIC
microcontroller	programmable	in	Java.	(Other	languages	are	also	available.)

REFERENCES
Andrews,	D.,	Niehaus,	D.,	&	Ashenden,	P.	“Programming	Models	for	Hybrid	CPU/FPGA	Chips.”	IEEE

Computer,	January	2004,	pp.	118–120.
Benini,	L.,	Bertozzi,	D.,	Brunni,	D.,	Drago,	N.,	Fummi,	F.,	&	Poncino,	M.	“SystemC	Cosimulation	and

Emulation	of	Multiprocessor	SoC	Designs.”	IEEE	Computer,	April	2003,	pp.	53–59.
Berger,	A.	Embedded	Systems	Design:	An	Introduction	to	Processes,	Tools,	&	Techniques.	Lawrence,

KS:	CMP	Books,	2002.
Compton,	K.,	&	Hauck,	S.	“Reconfigurable	Computing:	A	Survey	of	Systems	and	Software.”	ACM

Computing	Surveys	34:2,	June	2002,	pp.	171–210.
De	Micheli,	G.,	&	Gupta,	R.	K.	“Hardware/Software	Co-Design.”	Proceedings	of	the	IEEE	85:3,	March

1997,	pp.	349–365.
Douglass,	B.	P.	Real-Time	UML:	Developing	Efficient	Objects	for	Embedded	Systems,	2nd	ed.	Upper

Saddle	River,	NJ:	Addison-Wesley,	2000.
Douglass,	B.	P.	Doing	Hard	Time:	Developing	Real-Time	Systems	with	UML,	Objects,	Frameworks,

and	Patterns.	Upper	Saddle	River,	NJ:	Addison-Wesley,	1999.
Ernst,	E.	“Codesign	of	Embedded	Systems:	Status	and	Trends.”	IEEE	Design	and	Test	of	Computers,

April–June	1998,	pp.	45–54.
Gajski,	D.	D.	Principles	of	Logic	Design.	Englewood	Cliffs,	NJ:	Prentice-Hall,	1997.
Ganssle,	J.	“Breaking	into	Embedded.”	Embedded	Systems	Programming,	August	2002.
Ganssle,	J.	“L’il	Bow	Wow.”	Embedded	Systems	Programming,	January	2003.
Ganssle,	J.	“Watching	the	Watchdog.”	Embedded	Systems	Programming,	February	2003.
Goddard,	I.	“Division	of	Labor	in	Embedded	Systems.”	ACM	Queue,	April	2003,	pp.	32–41.
Heath,	S.	Embedded	Systems	Design,	2nd	ed.	Oxford,	England:	Newnes,	2003.
Lee,	E.	A.	“Absolutely,	Positively	on	Time:	What	Would	It	Take?”	IEEE	Computer,	July	2005,	pp.	85–

87.
Mellor,	S.	J.	“Executable	and	Translatable	UML.”	Embedded	Systems	Programming,	January	2003.
Murphy,	N.	“Watchdog	Timers.”	Embedded	Systems	Programming,	November	2000.
Neville-Neil,	G.	V.	“Programming	Without	a	Net.”	ACM	Queue,	April	2003,	pp.	17–22.

http://www.embeddedlinux.com
http://www.embeddedwindows.com
http://www.microsoft.com
http://www.opengroup.org
http://www.stampsinclass.com


Prophet,	G.	“Reconfigurable	Systems	Shape	Up	for	Diverse	Application	Tasks.”	EDN	Europe,	January
2004,	pp.	27–34.

Shahri,	H.	“Blurring	Lines	between	Hardware	and	Software.”	ACM	Queue,	April	2003,	pp.	42–48.
Tredennick,	N.,	&	Shimato,	B.	“Go	Reconfigure.”	IEEE	Spectrum,	December	2003,	pp.	37–40.
Vahid,	F,,	&	Givargis,	T.	Embedded	System	Design:	A	Unified	Hardware/Software	Introduction.	New

York:	John	Wiley	&	Sons,	2002.
Verkest,	D.	“Machine	Camelion:	A	Sneak	Peek	Inside	the	Handheld	of	the	Future.”	IEEE	Spectrum,

December	2003,	pp.	41–46.
Whitney,	T.,	&	Neville-Neil,	G.	V.	“SoC:	Software,	Hardware,	Nightmare,	or	Bliss.”	ACM	Queue,	April

2003,	pp.	25–31.
Wolf,	W.	“A	Decade	of	Hardware/Software	Codesign.”	IEEE	Computer,	April	2003,	pp.	38–43.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS

1.		In	which	ways	do	embedded	systems	differ	from	general-purpose	computers?
2.		How	is	embedded	systems	programming	different	from	general	applications	development?
3.		Why	are	watchdog	timers	necessary	in	many	embedded	systems?
4.		What	is	the	difference	between	a	microcontroller	and	a	system-on-a-chip?
5.		What	is	the	difference	between	a	PLA	and	a	PAL?
6.		How	does	one	program	an	FPGA?
7.		Name	the	three	aspects	of	digital	synthesis	as	articulated	by	Gajski.
8.		Discuss	the	reasons	that	one	might	choose	SystemC	over	Verilog.
9.		In	what	ways	does	SpecC	differ	from	SystemC?
10.		Why	is	virtual	memory	not	often	used	in	embedded	systems?
11.		Why	is	the	prevention	of	memory	leaks	so	important	in	embedded	systems?
12.		How	do	real-time	operating	systems	differ	from	non-real-time	operating	systems?
13.		What	are	the	major	considerations	in	selecting	an	operating	system	for	an	embedded	system?
14.	 	 How	 is	 embedded	 systems	 software	 development	 different	 from	 general-purpose	 software

development?

EXERCISES
1.		What	happens	if	an	infinite	loop	includes	a	watchdog	timer	reset?	Name	one	thing	that	can	be	done

to	guard	against	this.
	 2.	 	 In	 the	 sidebar	 concerning	 watchdog	 timer	 engineering	 decisions,	 we	 stated	 that	 rebooting	 an

embedded	system	typically	takes	less	time	than	rebooting	a	personal	computer.	Why	do	you	think
this	is	so?

3.		a)		Show	how	a	two-input	XOR	gate	can	be	implemented	in	the	PAL	shown	below.
b)		Show	how	a	two-input	NAND	gate	can	be	implemented	in	the	PLA	shown	below.



4.	 	Use	the	FPGA	illustrated	below	to	implement	a	full	adder.	Label	the	outputs	clearly.	Draw	lines
between	the	cells	to	indicate	a	connection	between	the	logic	functions.

5.		Provide	a	detailed	logic	diagram	for	a	multiplexer	that	could	be	used	in	an	FPGA.
6.		Present	arguments	for	and	against	the	use	of	dynamic	memory	in	embedded	systems.	Should	it	be

banned	for	use	under	all	circumstances?	Why	or	why	not?
7.		We	say	that	in	embedded	operating	systems,	if	the	highest-priority	user	thread	is	executing	when	a

high-priority	interrupt	occurs,	most	operating	systems	will	continue	to	process	the	user	thread	and
keep	the	interrupt	in	queue	until	processing	is	completed.	Under	what	circumstances	would	this	be
and	would	this	not	be	a	problem?	Give	an	example	of	each.

	8.		Explain	interrupt	latency.	How	is	it	related	to	context	switch	time?
9.	 	 In	 an	 ideal	 embedded	 operating	 system,	 would	 all	 nonkernel	 threads	 always	 execute	 at	 lower

priority	than	interrupts?
10.	 	 Explain	 the	 challenges	 of	 embedded	 software	 development.	 How	 do	 designers	 answer	 these

challenges?
	
1	There	are	 two	 types	of	PLD	fuses.	The	 first	 type	 requires	a	higher	 than	normal	voltage	on	 the	 fuse	 that	causes	 it	 to	blow,	 severing	any



connection.	The	 second	 type	of	 fuse	 is	 sometimes	 referred	 to	as	an	antifuse	because	 its	 initial	 state	 is	open.	When	an	antifuse	 is	blown,	a
conductive	 path	 is	 created	 by	melting	 a	 thin	 insulating	 layer	 between	 two	 conducting	 lines,	 thus	 completing	 a	 circuit.	 This	 is	 the	 opposite
behavior	that	we	normally	expect	from	a	fuse.	In	our	discussions	in	this	chapter,	we	refer	to	the	first	type	of	technology—so	blowing	a	fuse
indicates	severing	the	connection.



If	you	can’t	measure	it,	you	can’t	manage	it.

—Peter	Drucker

Figures	are	not	always	facts.

—American	saying

CHAPTER	11



Performance	Measurement	and	Analysis

11.1			INTRODUCTION
The	two	quotations	with	which	we	introduce	this	chapter	highlight	the	dilemma	of	computer	performance
evaluation.	One	must	have	quantitative	tools	with	which	to	gauge	performance,	but	how	can	one	be	certain
that	 the	 tools	chosen	 for	 the	 task	meet	 the	objectives	of	 the	assessment?	 In	 fact,	one	cannot	 always	be
certain	 that	 this	 is	 the	 case.	 Furthermore,	 system	 purveyors	 are	 strongly	 motivated	 to	 slant	 otherwise
truthful	numbers	so	that	their	system	looks	better	than	its	competitors.

You	can	defend	yourself	against	most	statistical	chicanery	by	cultivating	a	thorough	understanding	of
the	basics	of	computer	performance	assessment.	The	 foundation	 that	we	present	 in	 this	chapter	will	be
useful	 to	 you	 whether	 you	 are	 called	 upon	 to	 help	 select	 a	 new	 system	 or	 are	 trying	 to	 improve	 the
performance	of	an	existing	system.

This	chapter	also	presents	 some	of	 the	 factors	 that	affect	 the	performance	of	processors,	programs,
and	magnetic	disk	storage.	The	ideas	presented	in	these	sections	are	of	primary	concern	in	system	tuning.
Good	 system	 performance	 tools	 (usually	 supplied	 by	 the	 manufacturer)	 are	 an	 indispensable	 aid	 in
keeping	 a	 system	 running	 at	 its	 best.	After	 completing	 this	 chapter,	 you	will	 know	what	 to	 look	 for	 in
system	 tuning	 reports,	 and	 how	 each	 piece	 of	 information	 fits	 into	 the	 big	 picture	 of	 overall	 system
performance.

11.2	COMPUTER	PERFORMANCE	EQUATIONS
You	 have	 seen	 the	 basic	 computer	 performance	 equation	 several	 times	 in	 previous	 chapters.	 This
equation,	which	is	fundamental	to	measuring	computer	performance,	measures	the	CPU	time:

where	 the	 time	 per	 program	 is	 the	 required	 CPU	 time.	 Analysis	 of	 this	 equation	 reveals	 that	 CPU
optimization	 can	 have	 a	 dramatic	 effect	 on	 performance.	We	 have	 already	 discussed	 several	 ways	 to
increase	 performance	 based	 on	 this	 equation.	 RISC	machines	 try	 to	 reduce	 the	 number	 of	 cycles	 per
instruction,	and	CISC	machines	try	to	reduce	the	number	of	instructions	per	program.	Vector	processors
and	parallel	processors	also	 increase	performance	by	reducing	CPU	time.	Other	ways	to	 improve	CPU
performance	are	discussed	later	in	this	chapter.

CPU	optimization	 is	not	 the	only	way	to	 increase	system	performance.	Memory	and	I/O	also	weigh
heavily	on	system	throughput.	The	contribution	of	memory	and	I/O,	however,	is	not	accounted	for	in	the
basic	equation.	For	increasing	the	overall	performance	of	a	system,	we	have	the	following	options:

•	 	 	CPU	 optimization—Maximize	 the	 speed	 and	 efficiency	 of	 operations	 performed	 by	 the	 CPU	 (the
performance	equation	addresses	this	optimization).

•			Memory	optimization—Maximize	the	efficiency	of	a	code’s	memory	management.



•			I/O	optimization—Maximize	the	efficiency	of	input/output	operations.

An	 application	whose	 overall	 performance	 is	 limited	 by	 one	 of	 the	 above	 is	 said	 to	 be	CPU	 bound,
memory	bound,	or	I/O	bound,	respectively.	In	this	chapter,	we	address	optimization	at	all	three	levels.

Before	examining	optimization	techniques,	we	first	ask	you	to	recall	Amdahl’s	Law,	which	places	a
limit	 on	 the	 potential	 speedup	 one	 can	 obtain	 by	 any	means.	 The	 equation	 states	 that	 the	 performance
improvement	to	be	gained	from	using	some	faster	mode	of	execution	is	limited	by	the	fraction	of	the	time
that	the	faster	mode	is	used:

where	S	is	the	overall	system	speedup;	f	is	the	fraction	of	work	performed	by	the	faster	component	(or	the
enhancement);	and	k	is	the	speedup	of	a	new	component	(or	the	enhancement).

Accordingly,	the	most	dramatic	improvement	in	system	performance	is	realized	when	the	performance
of	the	most	frequently	used	components	is	improved.	In	short,	our	efforts	at	improving	performance	reap
the	greatest	rewards	by	making	the	common	case	faster.	Knowing	whether	a	system	or	application	is	CPU
bound,	memory	bound,	or	I/O	bound	is	the	first	step	toward	improving	system	performance.	Keep	these
ideas	in	mind	as	you	read	the	discussions	on	improving	performance.	We	begin	with	a	discussion	of	the
various	measures	of	overall	system	performance	and	then	describe	factors	relating	to	the	performance	of
individual	 system	 components.	 Before	 beginning	 any	 of	 these	 topics,	 however,	 we	 first	 introduce	 the
necessary	mathematical	concepts	for	understanding	general	computer	performance	measurement.

11.3			MATHEMATICAL	PRELIMINARIES
Computer	 performance	 assessment	 is	 a	 quantitative	 science.	Mathematical	 and	 statistical	 tools	 give	 us
many	ways	 in	which	 to	 rate	 the	overall	performance	of	a	system	and	 the	performance	of	 its	constituent
components.	 In	 fact,	 there	 are	 so	many	ways	 to	 quantify	 system	 performance	 that	 selecting	 the	 correct
statistic	 becomes	 a	 challenge	 in	 itself.	 In	 this	 section,	 we	 describe	 the	 most	 common	 measures	 of
“average”	computer	performance	and	 then	provide	 situations	where	 the	use	of	 each	 is	 appropriate	 and
inappropriate.	In	the	second	part	of	this	section,	we	present	other	ways	in	which	quantitative	information
can	 be	misapplied	 through	 erroneous	 reasoning.	Before	 proceeding,	 however,	 a	 few	 definitions	 are	 in
order.

Measures	of	system	performance	depend	on	one’s	point	of	view.	A	computer	user	is	most	concerned
with	response	time:	How	long	does	it	take	for	the	system	to	carry	out	a	task?	System	administrators	are
most	concerned	with	throughput:	How	many	concurrent	tasks	can	the	system	carry	out	without	adversely
affecting	response	time?	These	two	points	of	view	are	inversely	related.	Specifically,	if	a	system	carries
out	a	task	in	k	seconds,	its	throughput	is	1/k	of	these	tasks	per	second.

In	comparing	the	performance	of	two	systems,	we	measure	the	time	it	takes	for	each	system	to	perform
the	same	amount	of	work.	If	the	same	program	is	run	on	two	systems,	System	A	and	System	B,	System	A	is
n	times	faster	than	System	B	if:

System	A	is	x%	faster	than	System	B	if:



Consider	 the	 performance	 of	 two	 race	 cars.	 Car	A	 completes	 a	 10-mile	 run	 in	 3	minutes,	 and	 Car	 B
completes	the	same	10-mile	course	in	4	minutes.	Using	our	performance	formulas,	the	performance	of	Car
A	is	1.33	times	faster	than	Car	B:

Car	A	is	also	33%	faster	than	Car	B:

These	 formulas	 are	 useful	 in	 comparing	 the	 average	 performance	 of	 one	 system	 with	 the	 average
performance	of	another.	However,	the	number	that	we	end	up	with	is	as	much	dependent	on	our	definition
of	“average”	as	it	is	on	the	actual	performance	of	the	systems.

11.3.1		What	the	Means	Mean
The	 science	of	 statistics	 tells	us	 that	 if	we	want	meaningful	 information,	we	must	 conduct	 an	 adequate
number	 of	 tests	 in	 order	 to	 justify	making	 inferences	 based	 on	 the	 results	 of	 the	 tests.	 The	 greater	 the
variability	in	the	test,	the	larger	the	sample	size	must	be.	After	we	have	conducted	a	“sufficient”	number
of	tests,	we	are	left	with	the	task	of	combining,	or	averaging,	the	data	in	a	way	that	makes	sense,	forming	a
concise	measure	of	central	tendency.	Measures	of	central	tendency	indicate	to	us	the	expected	behavior
of	 the	 sampled	 system	 (population).	 But	 not	 all	methods	 of	 averaging	 data	 are	 equal.	 The	method	we
choose	depends	on	the	nature	of	the	data	itself	as	well	as	the	statistical	distribution	of	the	test	results.

The	Arithmetic	Mean
The	arithmetic	mean	is	the	one	with	which	everyone	is	most	familiar.	If	we	have	five	measurements,	and
we	add	them	together	and	divide	by	five,	then	the	result	is	the	arithmetic	mean.	When	people	refer	to	the
average	 results	 of	 some	metric—for	 example,	 the	 cost	 of	 gasoline	 in	 the	 past	 year—they	 are	 usually
referring	to	the	arithmetic	average	of	the	price	sampled	at	some	given	frequency.

An	arithmetic	average	should	not	be	used	when	the	data	are	highly	variable	or	skewed	toward	lower
or	higher	values.	Consider	 the	performance	numbers	 for	 three	computers,	 as	 shown	 in	Table	11.1.	 The
values	given	are	the	running	times	for	five	programs	as	measured	on	each	of	the	three	systems.	Looking	at
the	running	times,	we	see	that	the	performance	of	these	three	systems	is	obviously	different.	This	fact	is
completely	hidden	if	we	report	only	the	arithmetic	average	of	the	running	times.

When	it	is	used	properly,	the	weighted	arithmetic	mean	improves	on	the	arithmetic	average	because
it	can	give	us	a	clear	picture	of	the	expected	behavior	of	the	system.	If	we	have	some	indication	of	how
frequently	each	of	the	five	programs	is	run	during	the	daily	processing	on	these	systems,	we	can	use	the
execution	mix	to	calculate	relative	expected	performance	for	each	of	the	systems.	The	weighted	average
is	 found	 by	 taking	 the	 products	 of	 the	 frequency	 with	 which	 the	 program	 is	 run	 and	 its	 running	 time.
Averaging	the	weighted	running	times	produces	the	weighted	arithmetic	mean.



TABLE	11.1	The	Arithmetic	Average	Running	Time	in	Seconds	of	Five	Programs	on	Three	Systems

The	running	times	for	System	A	and	System	C	from	Table	11.1	are	 restated	 in	Table	11.2.	We	have
supplemented	 the	 running	 times	with	 execution	 frequencies	 for	 each	 of	 the	 programs.	 For	 example,	 on
System	A,	for	every	100	of	the	combined	executions	of	programs	v,	w,	x,	y,	and	z,	program	y	runs	5	times.
The	weighted	average	of	the	execution	times	for	these	five	programs	running	on	System	A	is:

(50	×	0.5)	+	(200	×	0.3)	+	(250	×	0.1)	+	(400	×	0.05)	+	(5,000	×	0.05)	=	380.

A	 similar	 calculation	 reveals	 that	 the	weighted	 average	of	 the	 execution	 times	 for	 these	 five	 programs
running	on	System	B	is	695	seconds.	Using	the	weighted	average,	we	now	see	clearly	that	System	A	is
about	83%	faster	than	System	C	for	this	particular	workload.

One	of	 the	 easiest	ways	 to	get	 into	 trouble	with	weighted	 averages	 is	 using	 assumptions	 that	 don’t
hold	over	 time.	Let’s	 assume	 that	 the	 computer	workload	profile	 for	 a	 particular	 company	 exhibits	 the
execution	mix	shown	in	Table	11.2.	Based	on	 this	 information,	 the	company	purchases	System	A	rather
than	System	C.	Suppose	a	sharp	user	(we	can	call	him	Wally)	figures	out	that	Program	z	will	give	him	the
same	 results	 as	 running	 Program	 v,	 and	 then	 using	 its	 result	 as	 an	 input	 to	 Program	w.	 Furthermore,
because	Program	z	takes	such	a	long	time	to	run,	Wally	has	a	good	excuse	to	take	an	extra	coffee	break.
Before	long,	word	of	Wally’s	discovery	spreads	throughout	the	office	and	practically	everyone	in	Wally’s
unit	 begins	 capitalizing	on	his	 idea.	Within	 days,	 the	workload	profile	 of	System	A	 looks	 like	 the	 one
shown	in	Table	11.3.	The	folks	in	the	executive	suite	are	certain	to	be	at	a	loss	to	explain	why	their	brand
new	system	is	suddenly	offering	such	poor	performance.

TABLE	11.2	The	Execution	Mix	for	Five	Programs	on	Two	Systems	and	the	Weighted	Average	of	the
Running	Times

Program Execution	Time Execution	Frequency
v 				50 25%
w 		200 		5%



x 		250 10%
y 		400 		5%
z 5,000 55%

Weighted	Average 2,817.5	seconds

TABLE	11.3	The	Weighted	Average	Running	Times	for	System	A	Using	a	Revised	Execution	Mix

The	Geometric	Mean
We	know	from	the	previous	discussion	that	we	cannot	use	the	arithmetic	mean	if	our	measurements	exhibit
a	 great	 deal	 of	 variability.	 Furthermore,	 unless	 we	 have	 a	 clear	 view	 of	 a	 static	 and	 representative
workload,	the	weighted	arithmetic	mean	is	of	no	help	either.	The	geometric	mean	gives	us	a	consistent
number	with	which	to	perform	comparisons	regardless	of	the	distribution	of	the	data.

Formally,	 the	geometric	mean	 is	defined	as	 the	nth	 root	of	 the	product	of	 the	n	measurements.	 It	 is
represented	by	the	following	formula:

The	geometric	mean	is	more	helpful	to	us	than	the	arithmetic	average	when	we	are	comparing	the	relative
performance	of	two	systems.	Performance	results	are	easy	to	compare	when	they	are	stated	in	relation	to
the	performance	of	a	common	machine	used	only	as	a	reference.	We	say	that	the	systems	under	evaluation
are	normalized	 to	 the	 reference	machine	when	we	 take	 the	 ratio	 of	 the	 run	 time	 of	 a	 program	 on	 the
reference	machine	to	the	run	time	of	the	same	program	on	the	system	being	evaluated.

To	find	the	geometric	mean	of	the	normalized	ratios,	we	take	the	nth	root	of	the	product	of	the	n	ratios.
The	geometric	means	for	System	A	and	System	C	normalized	to	System	B	are	calculated	as	follows:

TABLE	11.4	The	Geometric	Means	for	This	Sample	of	Five	Programs,	Found	by	Taking	the	Fifth	Root	of
the	Products	of	the	Normalized	Execution	Times	for	Each	System



TABLE	11.5	The	Geometric	Means	When	System	C	Is	Used	as	a	Reference	System

The	details	of	this	calculation	are	shown	in	Table	11.4.
One	of	the	nice	properties	of	the	geometric	mean	is	that	we	get	the	same	results	regardless	of	which

system	we	pick	for	a	reference.	Table	11.5	shows	 the	results	when	System	C	is	 the	reference	machine.
Notice	 that	 the	 ratio	 of	 the	 geometric	 means	 is	 consistent	 no	 matter	 which	 system	we	 choose	 for	 the
reference	machine:

We	would	find	the	same	ratios	if	we	used	System	A	as	a	reference.
The	 geometric	 mean	 bears	 out	 our	 intuition	 concerning	 the	 relative	 performance	 of	 System	A	 and

System	C.	By	taking	the	ratios	of	their	geometric	means,	we	see	that	System	A	gives	a	much	poorer	result
than	System	B.	However,	the	geometric	mean	is	not	linear.	Although	the	ratio	of	the	geometric	means	of
System	A	to	System	C	is	2.43,	this	does	not	imply	that	System	C	is	2.43	times	as	fast	as	System	A.	This
fact	 is	 evident	 by	 the	 raw	 data.	 So	 anyone	 who	 buys	 System	 C	 thinking	 that	 it	 will	 give	 double	 the
performance	of	System	A	is	sure	to	be	disappointed.	Unlike	the	weighted	arithmetic	mean,	the	geometric
mean	 gives	 us	 absolutely	 no	 help	 in	 formulating	 a	 statistical	 expectation	 of	 the	 actual	 behavior	 of	 the
systems.

A	second	problem	with	the	geometric	mean	is	that	small	values	have	a	disproportionate	influence	in
the	 overall	 result.	 For	 example,	 if	 the	 makers	 of	 System	 C	 improve	 the	 performance	 of	 the	 fastest
(probably	simplest)	program	in	the	test	set	by	20%,	so	that	it	runs	in	400	seconds	instead	of	500	seconds,
the	normalized	geometric	mean	improves	by	more	than	4.5%.	If	we	improve	it	by	40%	(so	that	it	runs	in
300	seconds),	the	normalized	geometric	mean	improves	by	more	than	16%.	No	matter	which	program	we
improve	by	20%	or	40%,	we	see	the	same	reduction	in	the	relative	geometric	mean.	One	would	expect
that	it’s	much	more	difficult	to	shave	700	seconds	from	a	large,	complex	program	than	it	is	to	pare	200
seconds	from	the	execution	of	a	smaller,	simpler	program.	In	the	real	world	(by	Amdahl’s	Law),	it	is	our
largest,	most	time-consuming	programs	that	have	the	greatest	influence	on	system	performance.

The	Harmonic	Mean
Neither	the	geometric	mean	nor	the	arithmetic	mean	is	appropriate	when	our	data	are	expressed	as	a	rate,



such	as	operations	per	 second.	For	 averaging	 rates	or	 ratios,	 the	harmonic	mean	 should	be	used.	The
harmonic	mean	allows	us	 to	form	a	mathematical	expectation	of	 throughput	and	to	compare	 the	relative
throughput	of	systems	or	system	components.	To	find	the	harmonic	mean,	we	add	the	reciprocals	of	 the
data	and	then	divide	this	sum	into	the	number	of	data	elements	in	the	sample.	Stated	mathematically:

H	=	n	÷	(1/x1	+	1/x2	+	1/x3	+	…	+	1/xn)

To	 see	 how	 the	 harmonic	 mean	 applies	 to	 rates,	 consider	 the	 simple	 example	 of	 an	 automobile	 trip.
Suppose	we	make	a	30-mile	journey,	traveling	the	first	10	miles	at	30	miles	per	hour,	the	second	10	miles
at	40	miles	per	hour,	and	the	last	10	miles	at	60	miles	per	hour.	Taking	the	arithmetic	mean	of	these	rates,
the	average	speed	of	the	trip	is	43.3	miles	per	hour.	This	is	incorrect.	The	time	required	to	travel	the	first
10	miles	was	 	hour.	The	second	10	miles	took	 	hour,	and	the	third	10	miles	was	traveled	in	 	hour.	The
total	time	of	the	journey	was	 	hour,	making	the	average	speed	30	miles	÷	 	hour	=	40	miles	per	hour.	The
harmonic	mean	gives	us	the	correct	answer	succinctly:

3	÷	(1/30	+	1/40	+	1/60)	=	40	miles	per	hour.

In	order	for	our	example	to	work	out	with	respect	to	the	average	speed	over	a	given	distance,	we	had	to
be	 careful	 that	 the	 same	 amount	 of	 distance	 was	 covered	 on	 each	 leg	 of	 the	 journey.	 Otherwise,	 the
harmonic	mean	would	have	been	the	same	if	the	car	had	traveled	100	miles	(instead	of	10)	at	60	miles	per
hour.	A	harmonic	mean	does	not	tell	us	how	much	work	was	done,	only	the	average	rate	at	which	it	was
done.

TABLE	11.6	Data	Characteristics	and	Suitability	of	Means

The	 harmonic	 mean	 holds	 two	 advantages	 over	 the	 geometric	 mean.	 First,	 a	 harmonic	 mean	 is	 a
suitable	 predictor	 of	 machine	 behavior.	 The	 result,	 therefore,	 has	 usefulness	 outside	 the	 realm	 of
performance	 comparison.	 Secondly,	 more	 time-consuming	 programs	 have	 greater	 influence	 on	 the
harmonic	 mean	 than	 less	 time-consuming	 ones.	 Not	 only	 does	 this	 fact	 weigh	 against	 “quick	 fix”
optimizations,	 but	 it	 also	 reflects	 reality.	 Large,	 slow	 tasks	 have	 the	 potential	 of	 eating	more	machine
cycles	than	smaller,	faster	ones.	Consequently,	we	have	more	to	gain	by	improving	their	performance.

As	 with	 the	 geometric	 mean,	 the	 harmonic	 mean	 can	 be	 used	 with	 relative	 performance	 ratios.
However,	the	harmonic	mean	is	more	sensitive	to	the	choice	of	the	reference	machine.	In	other	words,	the
ratios	of	the	harmonic	means	are	not	as	consistent	as	those	of	the	geometric	means.	Before	the	geometric
mean	can	be	used	to	compare	machine	performance,	however,	a	definition	of	“work”	must	be	established.
Later	in	this	chapter,	you	will	see	what	a	slippery	idea	this	is.



We	showed	that	the	arithmetic	mean	is	inappropriate	for	averaging	rates,	using	an	example	road	trip.	It
is	 also	 incorrect	 to	 use	 the	 arithmetic	 mean	 with	 results	 expressed	 as	 normalized	 ratios.	 The	 proper
application	of	each	of	the	means	that	we	have	presented	is	summarized	in	Table	11.6.

Occasionally,	 misapplied	 statistics	 turn	 up	 in	 places	 where	 we	 least	 expect	 to	 find	 them.
Misapplication	of	the	means	is	only	one	of	several	pitfalls	that	lie	in	the	path	of	equitable	and	objective
system	performance	assessment.

11.3.2		The	Statistics	and	Semantics
Human	nature	impels	us	to	cast	ourselves	and	our	beliefs	in	the	best	way	possible.	For	persons	trying	to
sell	 their	 products	 to	 us,	 their	motivations	 are	 tied	 to	 survival	 as	much	 as	 ego.	 It	 can	 be	 exceedingly
difficult	 to	 see	 a	 product	 in	 its	 true	 light	 when	 it	 is	 surrounded	 by	 the	 fog	 of	 slick	 presentations	 and
advertisements—even	 when	 the	 product	 is	 very	 good.	 Readers	 who	 have	 had	 some	 exposure	 to	 the
concepts	of	rhetorical	logic	understand	the	ways	in	which	fallacious	reasoning	can	be	used	in	sales	and
advertising.	A	 classic	 example	 is	where	 an	 actor	 “who	 plays	 a	 doctor	 on	 TV”	 recommends	 a	 certain
remedy	 for	 a	 vexing	 ailment.	 In	 rhetorical	 logic,	 this	 is	 called	 the	 argumentum	 ad	 verecundiam,	 or
“appeal	to	unqualified	authority”	fallacy.	An	actor,	unless	he	also	has	a	medical	degree,	is	not	qualified	to
make	assertions	as	to	the	suitability	of	any	treatment	for	any	malady.	Although	we	don’t	often	see	actors
“who	play	computer	scientists	on	TV”	recommending	mainframes,	some	computer	vendors’	sales	pitches
can	be	a	source	of	considerable	amusement	for	people	who	know	what	to	watch	for.

Computer	 buyers	 are	 often	 intimidated	 by	 the	 numbers	 cited	 in	 computer	 sales	 literature.	We	 have
mentioned	how	averages	can	be	misapplied.	Even	when	the	correct	statistics	are	used,	they	are	not	easy
for	many	people	to	understand.	The	“quantitative”	information	supplied	by	vendors	always	lends	an	aura
of	credibility	 to	 the	vendors’	claims	of	 superior	performance.	 In	Section	11.4,	we	discuss	a	number	of
objective	 measures	 of	 computer	 performance.	 Reputable	 vendors	 cite	 these	 measurements	 without
distortion.	But	even	excellent	metrics	are	subject	to	misuse.	In	the	sections	that	follow,	we	present	three
of	the	prevalent	rhetorical	fallacies	that	you	are	likely	to	encounter	if	you	are	ever	tasked	with	purchasing
new	 hardware	 or	 system	 software.	 We	 supply	 them	 as	 much	 for	 your	 entertainment	 as	 for	 your
enlightenment.

Incomplete	Information
In	early	2002,	a	full-page	advertisement	was	running	in	major	business	and	trade	magazines.	The	gist	of
the	ad	was,	“We	ran	a	test	of	our	product	and	published	the	results.	Vendor	X	did	not	publish	results	for
the	same	test	for	his	product;	therefore,	our	product	is	faster.”	Huh?	All	you	really	know	are	the	statistics
cited	in	the	ad.	It	says	absolutely	nothing	about	the	relative	performance	of	the	products.

Sometimes,	the	fallacy	of	incomplete	information	takes	the	form	of	a	vendor	citing	only	the	good	test
results	while	failing	to	mention	that	less	favorable	test	results	were	also	obtained	on	the	same	system	at
the	same	time.	An	example	of	this	is	the	“single	figure	of	merit.”	Vendors	focus	on	a	single	performance
metric	 that	 gives	 their	 systems	 a	 marketing	 advantage	 over	 the	 competition	 when,	 in	 reality,	 these
individual	metrics	are	not	representative	of	the	actual	workloads	of	the	systems	in	question.	Another	way
incomplete	 information	 manifests	 itself	 is	 when	 a	 vendor	 cites	 only	 “peak”	 performance	 numbers,
omitting	the	average	or	more	commonly	expected	case.

Vague	Information	and	Inappropriate	Measurements



Imprecise	words	 such	 as	 “more,”	 “less,”	 “nearly,”	 “practically,”	 “almost,”	 and	 their	 synonyms	 should
always	raise	immediate	alarm	when	cited	in	the	context	of	assessing	the	relative	performance	of	systems.
If	these	terms	are	supported	with	appropriate	data,	their	use	may	be	justified.	However,	observant	readers
may	learn	that	“nearly”	can	mean	“only”	a	50%	difference	in	performance	between	Product	A	and	Product
B.

A	recent	pamphlet	extolling	a	certain	brand	of	system	software	compounded	imprecision	with	the	use
of	 inappropriate	and	 incomparable	measurements.	The	 flier	 said	 roughly,	 “Software	A	and	Software	B
were	run	using	Test	X.	We	have	results	 for	Software	B	running	Test	Y.	We	show	that	Test	X	is	almost
equivalent	to	Test	Y.	From	this,	we	conclude	that	Software	A	is	faster.”	And	by	how	much	are	Tests	X	and
Y	not	equivalent?	Is	it	possible	that	Test	X	is	contrived	to	make	Software	A	look	better?	In	this	case,	not
only	is	the	(probably	well-paid)	writer	comparing	apples	to	oranges,	he	or	she	can’t	even	say	whether	the
total	volume	of	these	fruits	amounts	to	a	bushel!

Appeal	to	Popularity
This	fallacy	is	by	far	the	most	common,	and	usually	the	hardest	to	defend	against	in	a	crowd	(such	as	a
computer	procurement	committee).	The	pitch	is,	“Our	product	is	used	by	X%	of	the	Fortune	500	list	of	the
largest	companies	in	America.”	This	often	irrefutable	fact	shows	that	the	company	is	well	established	and
is	probably	trustworthy	and	stable.	These	nonquantitative	considerations	are	indeed	important	factors	in
systems	and	software	selection.	However,	just	because	X%	of	the	Fortune	500	companies	use	the	product,
it	doesn’t	mean	that	the	product	is	suitable	for	your	business.	That	is	a	much	more	complicated	matter.

11.4			BENCHMARKING
Performance	benchmarking	 is	 the	science	of	making	objective	assessments	of	 the	performance	of	one
system	over	 another.	Benchmarks	 are	 also	useful	 for	 assessing	performance	 improvements	 obtained	by
upgrading	a	computer	or	its	components.	Good	benchmarks	enable	us	to	cut	through	advertising	hype	and
statistical	tricks.	Ultimately,	good	benchmarks	will	identify	the	systems	that	provide	good	performance	at
the	most	reasonable	cost.

Although	 the	 issue	 of	 “reasonable”	 cost	 is	 usually	 self-evident	 after	 you’ve	 done	 some	 careful
shopping,	the	matter	of	“good”	performance	is	elusive,	defying	all	attempts	at	definition	for	decades.	Yet
good	performance	is	one	of	those	things	where	you	“know	it	when	you	see	it,”	and	bad	performance	is
certain	to	make	your	life	miserable	until	the	problem	is	corrected.	In	a	few	words,	optimum	performance
is	achieved	when	a	computer	system	runs	your	application	using	the	least	possible	amount	of	elapsed	(or
wall	clock)	time.	That	same	computer	system	will	not	necessarily	run	someone	else’s	application	in	the
shortest	possible	time.

Life	would	be	easy	for	the	computer	buyer	if	there	were	some	way	to	classify	systems	according	to	a
single	performance	number,	or	metric.	The	obvious	advantage	of	this	approach	is	that	people	with	little
or	no	understanding	of	computers	would	know	when	they	were	getting	good	value	for	their	money.	If	we
had	a	simple	metric,	we	could	use	a	price-performance	ratio	to	indicate	which	system	was	the	best	buy.

For	 example,	 let’s	 define	 a	 fictional	 all-encompassing	 system	metric	 called	 a	 “zing.”	 A	 $150,000
system	offering	150	zings	would	be	a	better	buy	than	a	$125,000	system	offering	120	zings.	The	price-
performance	ratio	of	the	first	system	is:



MIPS	…	OR	…	OOPS?
During	 the	1970s	 and	1980s,	 competition	was	 fierce	between	 two	 leading	 computer	makers:	 IBM	and
Digital	Equipment	Corporation	(DEC).
Although	DEC	 did	 not	manufacture	 huge	mainframe	 systems,	 its	 largest	 systems	were	 suitable	 for	 the
customers	that	might	be	served	by	IBM’s	smaller	systems.

To	 help	market	 their	 brand-new	VAX	11/780,	DEC	 engineers	 ran	 some	 small	 synthetic	 benchmark
programs	 on	 an	 IBM	370/158	 and	 on	 their	VAX.	 IBM	had	 traditionally	marketed	 the	 370/158	 as	 a	 “1
MIPS”	machine.	So	when	the	benchmarks	ran	in	the	same	elapsed	time	on	the	VAX	11/780,	DEC	began
selling	its	system	as	a	competitive	“1	MIPS”	system.

The	VAX	11/780	was	a	commercial	success.	The	system	was	so	popular	that	it	became	the	standard	1
MIPS	system.	For	many	years,	the	VAX	11/780	was	the	reference	system	for	numerous	benchmarks.	The
results	of	 these	benchmarks	could	be	extrapolated	 to	 infer	 an	“approximate	MIPS”	 rating	 for	whatever
system	was	tested.

There	is	no	doubt	that	the	VAX	11/780	had	comparable	computing	power	to	that	of	the	IBM	370/158.
But	the	notion	of	it	being	a	“1	MIPS”	machine	didn’t	hold	up	under	closer	scrutiny.	It	turns	out	that	to	run
the	 benchmarks,	 the	 VAX	 11/780	 executed	 only	 about	 500,000	 machine	 instructions,	 owing	 to	 its
particular	 ISA.	 Thus,	 the	 “1	MIPS	 standard	 system”	was,	 in	 fact,	 a	 0.5	MIPS	 system,	 after	 all.	 DEC
subsequently	marketed	its	machines	by	specifying	VUPs	(VAX	Units	of	Performance),	which	indicates	the
relative	speed	of	a	machine	to	the	VAX	11/780.
whereas	the	second	is:

The	question	becomes	whether	you	can	live	with	120	zings	and	save	$25,000	or	if	it	is	better	to	buy	the
“large	economy	size,”	knowing	it	will	be	a	while	before	you	exhaust	the	system’s	capacity.

The	 trouble	with	 this	approach	 is	 that	 there	can	be	no	universal	measure	of	computer	performance,
such	as	“zings,”	that	is	applicable	to	all	systems	under	all	types	of	workloads.	So	if	you	are	looking	for	a
system	 to	 handle	 heavy	 (I/O-bound)	 transaction	 processing,	 such	 as	 an	 airline	 reservation	 system,	 you
should	be	more	concerned	with	I/O	performance	than	with	CPU	speed.	Similarly,	if	your	system	will	be
tasked	with	computationally	intense	(CPU-bound)	applications,	such	as	weather	forecasting	or	computer-
aided	drafting,	your	main	focus	should	be	on	CPU	power	rather	than	on	I/O.

11.4.1		Clock	Rate,	MIPS,	and	FLOPS
CPU	speed,	by	itself,	is	a	misleading	metric	that	(unfortunately)	is	most	often	used	by	computer	vendors
touting	their	systems’	alleged	superiority	to	all	others.	In	architecturally	identical	systems,	a	CPU	running
at	 double	 the	 clock	 speed	 of	 another	 is	 likely	 to	 give	 better	 CPU	 throughput.	 But	 when	 comparing
offerings	from	different	vendors,	 the	systems	will	probably	not	be	architecturally	identical.	(Otherwise,
neither	could	claim	a	competitive	performance	edge	over	another.)

A	widely	cited	metric	related	to	clock	rate	is	the	millions	of	instructions	per	second	(MIPS)	metric.
(Many	people,	 however,	 believe	MIPS	actually	 stands	 for	 “Meaningless	 Indicators	of	Performance	 for



Salesmen”!)	This	measures	 the	rate	at	which	 the	system	can	execute	a	 typical	mix	of	floating-point	and
integer	arithmetic	instructions,	as	well	as	logical	operations.	Again,	the	greatest	weakness	in	this	metric	is
that	different	machine	architectures	often	require	a	different	number	of	machine	cycles	to	carry	out	a	given
task.	 The	MIPS	metric	 does	 not	 take	 into	 account	 the	 number	 of	 instructions	 necessary	 to	 complete	 a
specific	task.

The	most	glaring	contrast	can	be	seen	when	we	compare	RISC	systems	to	CISC	systems.	Let’s	say	that
we	ask	both	of	these	systems	to	perform	an	integer	division	operation.	The	CISC	system	may	carry	out	20
binary	 machine	 instructions	 before	 delivering	 a	 final	 answer.	 The	 RISC	 system	 may	 execute	 60
instructions.	 If	 both	 of	 these	 systems	 deliver	 the	 answer	 in	 one	 second,	 the	MIPS	 rating	 of	 the	 RISC
system	would	be	triple	that	of	the	CISC	system.	Can	we	honestly	say	that	the	RISC	system	is	three	times
as	fast	as	the	CISC	system?	Of	course	not:	In	both	cases,	we	received	our	answer	in	one	second.

There	is	a	similar	problem	with	the	FLOPS	(floating-point	operations	per	second)	metric.	Megaflops,
or	MFLOPS,	is	a	metric	that	was	originally	used	in	describing	the	power	of	supercomputers	but	is	now
cited	 in	 personal	 computer	 literature.	 The	 FLOPS	 metric	 is	 even	 more	 vexing	 than	 the	 MIPS	 metric
because	 there	 is	 no	 agreement	 as	 to	 what	 constitutes	 a	 floating-point	 operation.	 In	 Chapter	 2,	 we
explained	 how	 computers	 perform	 multiplication	 and	 division	 operations	 through	 a	 series	 of	 partial
products,	 arithmetic	 shifts,	 and	 additions.	 During	 each	 of	 these	 primitive	 operations,	 floating-point
numbers	are	manipulated.	So	can	we	say	that	calculating	an	intermediate	partial	sum	is	a	floating-point
operation?	 If	 so,	 and	 our	metric	 is	 FLOPS,	 then	we	 punish	 the	 vendor	who	 uses	 efficient	 algorithms.
Efficient	algorithms	arrive	at	the	same	result	using	fewer	steps.	If	the	amount	of	time	consumed	in	finding
the	answer	 is	 the	same	amount	of	 time	consumed	using	 less	efficient	algorithms,	 the	FLOPS	rate	of	 the
more	efficient	system	is	lower.	If	we	say	we’re	not	going	to	count	partial-sum	addition	steps,	then	how
can	we	 justify	 counting	 other	 floating-point	 addition	 operations?	 Furthermore,	 some	 computers	 use	 no
floating-point	 instructions	 at	 all.	 (Early	 Cray	 supercomputers	 and	 IBM	 PCs	 emulated	 floating-point
operations	 using	 integer	 routines.)	 Because	 the	 FLOPS	 metric	 takes	 into	 account	 only	 floating-point
operations,	 based	 solely	 on	 this	 metric,	 these	 systems	 would	 be	 utterly	 worthless!	 Nevertheless,
MFLOPS,	like	MIPS,	is	a	popular	metric	with	marketing	people	because	it	sounds	like	a	“hard”	value	that
represents	a	simple	and	intuitive	concept.

Despite	 their	 shortcomings,	 clock	 speed,	 MIPS,	 and	 FLOPS	 can	 be	 useful	 metrics	 in	 comparing
relative	performance	across	a	line	of	similar	computers	offered	by	the	same	vendor.	So	if	a	vendor	offers
to	upgrade	your	system	from	its	present	x	MIPS	rating	to	a	2x	MIPS	rating,	you	have	a	fairly	good	idea	of
the	performance	improvement	that	you	will	be	getting	for	your	money.	In	fact,	a	number	of	manufacturers
have	 their	 own	 sets	 of	 metrics	 for	 this	 singular	 purpose.	 Ethical	 salespeople	 will	 avoid	 using	 their
companies’	 proprietary	 metrics	 to	 characterize	 their	 competitors’	 systems.	 When	 one	 manufacturer’s
proprietary	metrics	are	used	to	describe	the	performance	of	competing	systems,	potential	customers	have
no	way	of	knowing	whether	the	proprietary	metric	is	contrived	to	focus	on	the	strong	points	of	a	particular
type	of	system,	while	ignoring	its	weaknesses.

Clearly,	 any	 metric	 that	 is	 dependent	 on	 a	 particular	 system’s	 organization	 or	 its	 instruction	 set
architecture	misses	the	point	of	what	computer	buyers	are	looking	for.	They	need	some	objective	means	of
knowing	which	system	offers	the	maximum	throughput	for	their	workloads	at	the	lowest	cost.

11.4.2		Synthetic	Benchmarks:	Whetstone,	Linpack,	and	Dhrystone
Computer	researchers	have	long	sought	to	define	a	single	benchmark	that	would	allow	fair	and	reliable
performance	comparisons	yet	be	independent	of	the	organization	and	architecture	of	any	type	of	system.



The	quest	for	the	ideal	performance	measure	started	in	earnest	in	the	late	1980s.	The	prevailing	idea	at
the	time	was	that	one	could	independently	compare	the	performance	of	many	different	systems	through	a
standardized	benchmarking	application	program.	It	follows	that	one	could	write	a	program	using	a	third-
generation	language	(such	as	C),	compile	it	and	run	it	on	various	systems,	and	then	measure	the	elapsed
time	for	each	run	of	the	program	on	various	systems.	The	resulting	execution	time	would	lead	to	a	single
performance	 metric	 across	 all	 of	 the	 systems	 tested.	 Performance	 metrics	 derived	 in	 this	 manner	 are
called	 synthetic	 benchmarks,	 because	 they	 don’t	 necessarily	 represent	 any	 particular	 workload	 or
application.	Three	of	the	better-known	synthetic	benchmarks	are	the	Whetstone,	Linpack,	and	Dhrystone
metrics.

The	Whetstone	 benchmarking	program	was	published	 in	1976	by	Harold	 J.	Curnow	and	Brian	A.
Wichman	of	 the	British	National	Physical	Laboratory.	Whetstone	 is	 floating-point	 intensive,	with	many
calls	to	library	routines	for	computation	of	trigonometric	and	exponential	functions.	Results	are	reported
in	Kilo-Whetstone	Instructions	per	Second	or	Mega-Whetstone	Instructions	per	Second.

Another	 source	 for	 floating-point	performance	 is	 the	Linpack	benchmark.	Linpack,	a	contraction	of
LINear	 algebra	 PACKage,	 is	 a	 collection	 of	 subroutines	 called	 Basic	 Linear	 Algebra	 Subroutines
(BLAS),	which	solve	systems	of	linear	equations	using	double-precision	arithmetic.	Jack	Dongarra,	Jim
Bunch,	Cleve	Moler,	and	Pete	Stewart	of	the	Argonne	National	Laboratory	developed	Linpack	in	1984	to
measure	the	performance	of	supercomputers.	It	was	originally	written	in	Fortran	77	and	has	subsequently
been	rewritten	 in	C	and	Java.	Although	 it	has	some	serious	shortcomings,	one	of	 the	good	 things	about
Linpack	is	that	it	sets	a	standard	measure	for	FLOPS.	A	system	that	has	no	floating-point	circuitry	at	all
can	obtain	a	FLOPS	rating	if	it	properly	carries	out	the	Linpack	benchmark.

High-speed	floating-point	calculations	certainly	aren’t	important	to	every	computer	user.	Recognizing
this,	 Reinhold	 P.	Weicker	 of	 Siemens	 Nixdorf	 Information	 Systems	 wrote	 a	 benchmarking	 program	 in
1984	 that	 focused	on	string	manipulation	and	 integer	operations.	He	called	his	program	 the	Dhrystone
benchmark,	reportedly	as	a	pun	on	the	Whetstone	benchmark.	The	program	is	CPU	bound,	performing	no
I/O	or	system	calls.	Unlike	WIPS,	Dhrystone	results	are	reported	simply	as	Dhrystones	per	second	(the
number	of	times	the	test	program	can	be	run	in	one	second),	not	in	DIPS	or	Mega-DIPS!

With	 respect	 to	 their	 algorithms	 and	 their	 reported	 results,	 the	Whetstone,	 Linpack,	 and	Dhrystone
benchmarks	have	the	advantage	of	being	simple	and	easy	to	understand.	Unfortunately,	 that	 is	also	 their
major	limitation.	Because	the	operations	of	these	programs	are	so	clearly	defined,	it	is	easy	for	compiler
writers	to	equip	their	products	with	“Whetstone,”	“Linpack,”	or	“Dhrystone”	compilation	switches.	When
set,	 these	 compiler	options	 invoke	 special	 code	 that	 is	optimized	 for	 the	benchmarks.	Furthermore,	 the
compiled	objects	are	so	small	that	the	largest	portion	of	the	program	stays	in	the	cache	of	today’s	systems.
This	just	about	eliminates	any	chance	of	assessing	a	system’s	memory	management	capabilities.

Designing	compilers	and	systems	so	that	they	perform	optimally	when	running	benchmarking	programs
is	a	practice	as	old	as	the	synthetic	benchmarks	themselves.	So	long	as	there	is	an	economic	advantage	in
being	able	to	report	good	numbers,	manufacturers	will	do	whatever	they	can	to	make	their	numbers	look
good.	When	 their	numbers	 are	better	 than	 those	of	 their	 competition,	 they	waste	no	 time	 in	 advertising
their	“superior”	systems.	This	widespread	practice	has	become	known	as	benchmarketing.	Of	course,	no
matter	how	good	 the	numbers	are,	 the	only	 thing	 that	benchmark	 results	 really	 tell	you	 is	how	well	 the
tested	system	runs	the	benchmark,	and	not	necessarily	how	well	it	will	run	anything	else—especially	your
particular	workload.

11.4.3		Standard	Performance	Evaluation	Corporation	Benchmarks



The	 science	 of	 computer	 performance	 measurement	 benefited	 greatly	 by	 the	 contributions	 of	 the
Whetstone,	Linpack,	and	Dhrystone	benchmarks.	For	one	thing,	these	programs	gave	merit	to	the	idea	of
having	 a	 common	 standard	 by	 which	 all	 systems	 could	 be	 compared.	 More	 importantly,	 although
unintentionally,	 they	 demonstrated	 how	 easy	 it	 is	 for	 manufacturers	 to	 optimize	 their	 products’
performance	when	a	contrived	benchmark	is	small	and	simple.	The	obvious	response	to	this	problem	is	to
devise	 a	more	 complex	benchmark	 that	 also	produces	 easily	understood	 results.	This	 is	 the	 aim	of	 the
SPEC	CPU	benchmarks.

SPEC	 (Standard	Performance	Evaluation	Corporation)	was	founded	 in	1988	by	a	consortium	of
computer	manufacturers	in	cooperation	with	the	Electrical	Engineering	Times.	SPEC’s	main	objective	is
to	 establish	 equitable	 and	 realistic	methods	 for	 computer	 performance	measurement.	Today,	 this	 group
encompasses	more	 than	60	member	companies	 and	 three	constituent	 committees.	These	committees	 are
the:

•	 	 	 Open	 Systems	 Group	 (OSG),	 which	 addresses	 workstation,	 file	 server,	 and	 desktop	 computing
environments

•	 	 	 High-Performance	 Group	 (HPG),	 which	 focuses	 on	 enterprise-level	 multiprocessor	 systems	 and
supercomputers

•	 	 	 Graphics	 and	 Workstation	 Performance	 Group	 (GWPG),	 which	 concentrates	 on	 development	 of
graphics	and	workstation	benchmarks

These	groups	work	with	computer	users	to	identify	applications	that	represent	typical	workloads,	or	those
applications	that	can	distinguish	a	superior	system	from	the	rest.	When	I/O	routines	and	other	non-CPU-
intensive	code	are	pared	away	from	these	applications,	the	resulting	program	is	called	a	kernel.	A	SPEC
committee	carefully	selects	kernel	programs	from	submissions	by	various	application	communities.	The
final	collection	of	kernel	programs	is	called	a	benchmark	suite.

The	most	widely	 known	 (and	 respected)	 of	 SPEC’s	 benchmarks	 is	 its	 CPU	 suite,	which	measures
CPU	 throughput,	 cache	 and	memory	 access	 speed,	 and	 compiler	 efficiency.	 The	 latest	 version	 of	 this
benchmark	is	CPU2006.	It	consists	of	two	parts:	CINT2006,	which	measures	how	well	a	system	performs
integer	processing,	and	CFP2006,	which	measures	floating-point	performance	(see	Table	11.7).	(The	“C”
in	CINT	and	CFP	stands	for	“component.”	This	designation	underscores	the	fact	that	the	benchmark	tests
only	one	component	of	the	system.)

CINT2006	consists	of	12	applications,	9	of	which	are	written	in	C	and	3	in	C++.	The	CFP2006	suite
consists	 of	 17	 applications,	 6	 of	which	 are	written	 in	Fortran,	 3	 in	C,	 4	 in	C++,	 and	4	 in	 both	C	 and
Fortran.	The	results	(system	throughput)	obtained	by	running	these	programs	are	reported	as	a	ratio	of	the
time	it	takes	the	system	under	test	to	run	the	kernel	to	the	time	it	takes	a	reference	machine	to	run	the	same
kernel.	For	CPU2006,	the	reference	machine	is	a	Sun	Ultra	Enterprise	2	workstation	with	a	296MHz	Ultra
SPARC	2	processor.	A	system	under	 test	will	almost	certainly	be	 faster	 than	 the	Sun	Ultra,	 so	you	can
expect	to	see	large	positive	numbers	cited	by	vendors.	The	larger,	the	better.	A	complete	run	of	the	entire
SPEC	CPU2006	 suite	 requires	 just	 over	 two	24-hour	days	 to	 complete	on	most	 systems.	The	 reported
CINT2006	 and	CFP2006	 result	 is	 a	 geometric	mean	 of	 the	 ratios	 for	 all	 component	 kernels.	 (See	 the
sidebar	“Calculating	the	SPEC	CPU	Benchmark”	for	details.)

With	 system	 sales	 so	 heavily	 dependent	 on	 favorable	 benchmark	 results,	 one	 would	 expect	 that
computer	manufacturers	would	do	everything	in	their	power	to	find	ways	of	circumventing	SPEC’s	rules
for	running	the	benchmark	programs.	The	first	trick	was	the	use	of	compiler	“benchmark	switches,”	as	had
become	traditional	with	 the	Whetstone,	Linpack,	and	Dhrystone	programs.	However,	finding	the	perfect



set	 of	 compiler	 options	 to	 use	with	 the	 SPEC	 suite	wasn’t	 quite	 as	 simple	 as	 it	 was	with	 the	 earlier
synthetic	 benchmarks.	 Different	 settings	 are	 often	 necessary	 to	 optimize	 each	 kernel	 in	 the	 suite,	 and
finding	the	settings	is	a	time-consuming	and	tedious	chore.



TABLE	11.7	The	Constituent	Kernels	of	the	SPEC	CPU2006	Benchmark	Suite

SPEC	became	aware	of	 the	use	of	“benchmark	special”	compiler	options	prior	 to	 the	release	of	 its
CPU95	 benchmark	 suite.	 It	 attempted	 to	 put	 an	 end	 to	 the	 benchmark	 specials	 by	 mandating	 that	 all
programs	in	the	suite	written	in	the	same	language	must	be	compiled	using	the	same	set	of	compiler	flags.
This	 stance	 evoked	 immediate	 criticism	 from	 the	 vendor	 community,	 arguing	 that	 their	 customers	were
entitled	 to	 know	 the	 best	 possible	 performance	 attainable	 from	 a	 system.	 Furthermore,	 if	 a	 customer’s
application	were	similar	to	one	of	the	kernel	programs,	the	customer	would	have	much	to	gain	by	knowing
the	optimal	compiler	options.

These	arguments	were	sufficiently	compelling	for	SPEC	to	allow	the	use	of	different	compiler	flags
for	each	program	in	a	suite.	In	 the	interest	of	fairness	 to	all,	however,	manufacturers	report	 two	sets	of
results	 for	SPEC	CPU2006.	One	set	 is	 for	 tests	where	all	compiler	settings	are	 the	same	for	 the	entire
suite	 (the	 base	metric),	 and	 the	 second	 set	 gives	 results	 obtained	 through	 optimized	 settings	 (the	 peak
metric).	Both	numbers	are	reported	in	the	benchmark	compilations,	along	with	complete	disclosure	of	the
compiler	settings	for	each	run.

Users	of	the	SPEC	benchmarks	pay	an	administrative	fee	for	the	suite’s	source	code	and	instructions
for	 its	 installation	and	compilation.	Manufacturers	are	encouraged	(but	not	 required)	 to	submit	a	 report



that	includes	the	results	of	the	benchmarks	to	SPEC	for	review.	After	SPEC	is	satisfied	that	the	tests	were
run	 in	 accordance	with	 its	 guidelines,	 it	 publishes	 the	 benchmark	 results	 and	 configuration	 disclosure
reports	on	its	website.	SPEC’s	oversight	ensures	that	the	manufacturer	has	used	the	benchmark	software
correctly	and	that	the	system’s	configuration	is	completely	revealed.

Although	processor	wars	generate	reams	of	coverage	in	the	computer	trade	press,	Amdahl’s	Law	tells
us	that	a	useful	system	requires	more	than	simply	a	fast	CPU.	Computer	buyers	are	interested	in	how	well
an	entire	 system	will	perform	under	 their	particular	workloads.	Toward	 this	end,	SPEC	has	created	an
array	of	other	metrics,	 including	SPEC	Web	for	Web	servers,	SPEC	Power	for	electrical	power	versus
performance,	and	SPEC	JVM	for	client-side	Java	performance.	SPEC	JVM	is	complemented	by	SPEC
JBB	 (Java	 Business	 Benchmark)	 for	 Java	 server	 performance.	 Each	 of	 these	 benchmarks	 adheres	 to
SPEC’s	philosophy	of	establishing	fair	and	objective	system	performance	measurements.

11.4.4		Transaction	Processing	Performance	Council	Benchmarks
SPEC’s	CPU	benchmarks	are	helpful	to	computer	buyers	whose	principal	concern	is	CPU	performance.
They	are	not	quite	so	beneficial	to	buyers	of	enterprise	transaction-processing	servers.	For	systems	in	this
class,	 buyers	 are	most	 interested	 in	 the	 server’s	 ability	 to	process	 a	great	 number	of	 concurrent	 short-
duration	activities,	where	each	transaction	involves	communications	and	disk	I/O	to	some	extent.

Sluggish	transaction-processing	systems	can	be	enormously	costly	to	businesses,	causing	far-reaching
problems.	When	a	customer-service	system	is	slow,	long	lines	of	grumpy	customers	are	detrimental	to	a
retail	store’s	image.	Customers	standing	in	slow-moving	lines	at	checkout	counters	don’t	care	that	a	credit
authorization	system	is	bogging	things	down.	Lethargic	automated	teller	machines	and	unresponsive	point-
of-sale	debit	systems	can	alienate	customers	in	droves	if	their	waits	are	too	long.	Transaction-processing
systems	 aren’t	 merely	 important	 to	 the	 customer	 service	 sector;	 they	 are	 its	 lifeblood.	Wise	 business
leaders	are	willing	to	invest	small	fortunes	to	keep	their	customers	satisfied.	With	so	much	at	stake,	it	is
essential	 to	 find	 some	method	of	 objectively	 evaluating	 the	 overall	 performance	of	 systems	 supporting
these	critical	business	processes.

Computer	manufacturers	 have	 always	 had	ways	 of	 gauging	 the	 performance	 of	 their	 own	 systems.
These	measurements	are	not	intended	for	public	consumption,	but	are	instead	for	internal	use	by	engineers
seeking	 ways	 to	 make	 their	 systems	 (or	 parts	 of	 them)	 perform	 better.	 In	 the	 early	 1980s,	 the	 IBM
Corporation	invented	such	a	benchmark	to	help	with	the	design	of	its	mainframe	systems.
This	benchmark,	which	was	called	TP1	(TP	for	transaction	processing),	eventually	found	its	way	into	the
public	 domain.	A	number	 of	 competing	 vendors	 began	 using	 it	 and	 announcing	 their	 (amazing)	 results.
Transaction	processing	experts	were	critical	of	 this	practice	because	the	benchmark	wasn’t	designed	to
simulate	 a	 real	 transaction-processing	 environment.	 For	 one	 thing,	 it	 ignored	 network	 delays	 and	 the
variability	of	user	“think	time.”	Stated	another	way,	all	that	TP1	could	do	was	measure	peak	throughput
under	 ideal	 conditions.	 Although	 this	 measurement	 was	 useful	 to	 system	 designers,	 it	 didn’t	 give	 the
computer	buyer	much	to	go	on.

In	1985,	 Jim	Gray,	one	of	 the	more	vocal	 critics	of	TP1,	worked	with	 a	 large	group	of	his	 fellow
dissenters	 to	 propose	 a	 benchmark	 that	 would	 address	 the	 shortcomings	 of	 TP1.	 They	 called	 their
benchmark	 DebitCredit	 to	 emphasize	 its	 focus	 on	 business	 transaction	 processing	 performance.	 In
addition	to	specifying	how	this	benchmark	would	work,	Gray	and	his	group	proposed	that	the	outcome	of
the	system	tests	should	be	reported	along	with	the	total	cost	of	the	system	configuration	that	was	tested.
They	offered	ways	in	which	the	benchmark	could	be	scaled	proportionately	to	make	the	tests	fair	across
various	sizes	of	systems.



CALCULATING	THE	SPEC	CPU	BENCHMARK
As	we	stated	in	the	text,	the	first	step	in	calculating	SPEC	benchmark	results	is	to	normalize	the	time	it
takes	for	a	reference	machine	to	run	a	benchmark	kernel	to	the	time	it	takes	for	the	system	under	test	to	run
the	 same	 kernel	 program.	 The	 kernel	 is	 run	 three	 times,	 and	 the	 median	 run	 time	 is	 used	 in	 the
calculations.	For	example,	suppose	a	hypothetical	system	runs	the	401.bzip2	kernel	in	907,	920,	and	928
seconds.	The	median	 is	920.	The	 reference	machine	 took	9,650	 seconds	 to	 run	 the	 same	program.	The
normalized	ratio	is	9,650	÷	920	=	10.5	(rounded	to	one	decimal	place).	The	final	SPECint	result	is	the
geometric	mean	of	all	the	normalized	ratios	in	the	integer	program	suite.	Consider	the	results	shown	in	the
Table	11.8.

TABLE	11.8	A	Set	of	Hypothetical	SPECInt2006	Results

To	determine	the	geometric	mean,	first	find	the	product	of	all	12	normalized	benchmark	times:

Then	take	the	twelfth	root	of	this	product:

(7.68	×	1012)1/12	≈	11.8

Thus,	 the	CINT	metric	 for	 this	 system	 is	 (a	 fairly	 impressive)	 11.8.	 If	 this	 result	were	 obtained	when
running	benchmarks	compiled	with	standard	(conservative)	compiler	settings,	it	would	be	reported	as	the
“base”	metric,	SPECint_base_2006.	Otherwise,	it	is	the	SPECint2006	rating	for	this	system.

The	CINT	2006	and	CFP	2006	suites	measure	a	CPU’s	capabilities	when	running	only	one	image	of
each	benchmark	at	a	 time.	This	single-thread	model	doesn’t	 tell	us	anything	about	how	well	 the	system
handles	 concurrent	 processes.	 SPEC	 CPU	 “rate”	 metrics	 give	 us	 some	 insight	 here.	 Calculation	 of
SPECint_rate	metrics	is	a	bit	more	complicated	than	calculating	single-thread	SPECint	metrics.

To	find	a	rate	metric,	a	number	of	identical	benchmark	kernel	processes	are	started	in	the	host.	For	the
sake	of	example,	let’s	say	we	start	4	concurrent	401	.bzip2	processes.	After	all	instances	of	the	401.bzip2
program	terminate,	we	find	the	elapsed	time	by	subtracting	the	time	that	the	first	instance	starts	from	the
time	 that	 the	 last	 instance	 finishes.	As	with	 the	base	metric,	we	do	 this	 three	 times	and	use	 the	median
result	 in	 the	calculations.	Suppose	our	median	 result	 is	1,049	seconds.	We	 then	multiply	 the	number	of



copies	 run	 by	 the	 reference	 time	 for	 the	 benchmark	 and	 divide	 by	 the	 median	 elapsed	 seconds.	 The
reference	time	for	the	401.bzip2	benchmark	is	9,650,	so	we	have:

4	copies	×	9,650	÷	1,049	≈	36.8

This	gives	us	the	rate	in	jobs	per	unit	time	for	the	401.bzip2	benchmark.
The	SPECint_rate2006	metric	 that	will	be	 reported	for	 this	system	is	 the	geometric	mean	of	all	 the

component	CINT2006	kernels.	The	same	process	is	used	in	determining	the	SPECfp_rate	results.
DebitCredit	 was	 welcomed	 by	 the	 vendor	 community	 because	 it	 delivered	 a	 clear	 and	 objective

performance	measurement.	Before	 long,	most	vendors	were	using	 it,	announcing	 their	good	results	with
reckless	 abandon.	Unfortunately,	no	 formal	mechanism	was	 in	place	 to	verify	or	 refute	 their	 claims.	 In
essence,	manufacturers	could	cite	whatever	results	they	thought	would	give	them	an	advantage	over	their
competition.	Clearly,	 some	means	 of	 independent	 review	 and	 control	was	 desperately	 needed.	 To	 this
end,	 in	 1988,	 Omri	 Serlin	 persuaded	 eight	 computer	 manufacturers	 to	 join	 together	 to	 form	 the
independent	 Transaction	 Processing	 Performance	 Council	 (TPC).	 Today,	 the	 TPC	 consists	 of
approximately	30	member	companies,	including	makers	of	system	software	as	well	as	hardware.

The	 first	 task	 before	 the	 TPC	 was	 to	 release	 a	 benchmark	 suite	 bearing	 its	 official	 stamp.	 This
benchmark,	released	in	1990,	was	called	TPC-A.	In	keeping	with	the	pace	of	technological	innovation,	as
well	 as	 the	 advances	 of	 benchmarking	 science,	 TPC-A	 is	 now	 in	 the	 fifth	 version	 of	 its	 third	 major
revision,	TPC-C	Version	5.

The	TPC-C	benchmarking	 suite	models	 the	 activities	 of	 a	wholesale	 product	 distribution	 company.
The	suite	is	a	controlled	mix	of	five	transaction	types	that	are	typical	of	order	fulfillment	systems.	These
transactions	 include	 new	 order	 initiation,	 stock	 level	 inquiries,	 order	 status	 inquiries,	 goods	 delivery
postings,	and	payment	processing.	The	most	resource-intensive	of	these	transactions	is	the	order	initiation
transaction,	which	must	constitute	at	least	45%	of	the	transaction	mix.

TPC-C	 employs	 remote	 terminal	 emulation	 software	 that	 simulates	 a	 user’s	 interaction	 with	 the
system.	 Each	 interaction	 takes	 place	 through	 a	 formatted	 data	 entry	 screen	 that	 would	 be	 usable	 by	 a
human	data	entry	clerk.	The	emulator	program	picks	 its	 transactions	from	a	menu,	 just	as	a	 real	person
would	 do.	 The	 choices,	 however,	 are	 statistically	 randomized	 so	 that	 the	 correct	 transaction	 mix	 is
executed.	Input	values,	such	as	customer	names	and	part	numbers,	are	also	randomized	to	avoid	repeated
cache	hits	on	the	data	values,	thus	forcing	frequent	disk	I/O.

TPC-C’s	end-to-end	response	time	is	measured	from	the	instant	the	“user”	has	completed	the	required
entries	 to	 the	 instant	 the	 system	presents	 the	 required	 response	at	 the	 terminal.	Under	 the	 latest	TPC-C
rules,	90%	of	all	 transactions,	except	 the	stock	 level	 inquiry,	must	be	accurately	completed	within	five
seconds.	The	stock	inquiry	is	excepted	from	the	five-second	rule	because	stock	levels	may	be	checked	in
a	number	of	different	warehouses	in	a	single	inquiry	transaction.	This	task	is	more	I/O	intensive	than	the
others.

Keeping	in	mind	that	the	TPC-C	suite	simulates	a	real	business	that	uses	a	real	system,	every	update
transaction	must	support	the	ACID	properties	of	a	production	database.	(These	properties	were	described
in	Chapter	8.)	TPC-C’s	ACID	properties	 include	record	 locking	and	unlocking,	as	well	as	 the	rollback
capability	provided	by	logging	updates	to	a	database	journal	file.

The	TPC-C	metric	is	the	number	of	new	order	transactions	completed	per	minute	(tpmC),	while	a	mix
of	 the	 other	 transactions	 is	 concurrently	 executing	 on	 the	 same	 system.	 Reported	 TPC-C	 results	 also
include	a	price-performance	 ratio,	which	 is	 found	by	dividing	 the	 cost	of	 the	 system	by	 the	 throughput
metric.	Hence,	if	a	$90,000	system	provides	a	throughput	of	15,000tpmC,	its	price-performance	ratio	is



$6tpmC.	The	system	cost	includes	all	hardware,	software,	and	network	components	that	are	required	to
execute	the	TPC-C	transactions.	Each	component	used	in	the	test	must	be	available	for	sale	to	the	general
public	at	the	time	the	results	are	reported.	This	rule	is	intended	to	prevent	the	use	of	benchmark	special
components.	All	 the	 system	components	 involved	 in	producing	 the	 reported	benchmark	 results	must	 be
listed	(in	great	detail)	on	a	full-disclosure	report	submitted	to	the	TPC.	The	disclosed	configuration	must
also	include	all	tuning	parameters1	(e.g.,	compiler	switches)	in	effect	during	the	test.	The	full-disclosure
report	 also	 includes	 “total	 cost	 of	 ownership”	 figures	 that	 take	 into	 account	 the	 cost	 of	 three	 years	 of
maintenance	and	support	for	the	entire	system.

The	 TPC	 has	 recently	 improved	 (but	 not	 yet	 replaced)	 the	 TPC-C	 benchmark	 with	 the	 TPC-E
benchmark	 that	 simulates	 an	 online	 brokerage.	 The	 intention	 of	 this	 new	 benchmark	 is	 to	 reflect,	 as
realistically	 as	 possible,	 a	 contemporary	 OLTP	 system	 configuration.	 The	 benchmark	 uses	 a	 fictional
online	brokerage	that	manages	customer	accounts	and	executes	stock	trades	on	behalf	of	those	customers.
The	data	tables	are	preloaded	with	realistic	census	data	gathered	from	the	United	States	and	Canada,	and
the	American	NYSE	and	NASDAQ	stock	exchanges.	The	workload	can	be	varied	based	on	the	number	of
“customers”	using	 the	system	under	 test.	The	 resulting	metrics	are	 transactions	per	second	E,	 tpsE,	 the
price-performance	dollars	per	tpsE,	$/tpsE,	and	watts	(power	consumed)	per	tpsE,	Watts/tpsE.	As	with
all	other	TPC	benchmarks,	 the	TPC-E	 results	 are	 subject	 to	 the	 strictest	 auditing	and	 truth-in-reporting
requirements.

When	a	vendor	submits	its	TPC-C	or	TPC-E	results	to	the	TPC,	all	of	the	information	in	the	reports	is
audited	by	an	independent	auditing	firm	to	ensure	its	completeness	and	accuracy.	(Of	course,	the	auditor
cannot	rerun	the	 test,	so	 the	 throughput	figures	are	usually	 taken	at	 face	value	 if	 the	 test	was	performed
correctly.)	Once	 the	 reports	are	accepted	by	 the	TPC,	 they	are	published	on	 the	Web	 for	 inspection	by
customers	and	competitors	alike.	On	occasion,	a	competitor	or	the	TPC	itself	challenges	a	manufacturer’s
results.	 In	 these	 situations,	 the	manufacturer	may	 either	 withdraw	 or	 defend	 its	 report.	 Sometimes	 the
report	is	quietly	withdrawn	because	the	cost	of	defending	the	results	is	prohibitive,	even	if	a	manufacturer
is	 well	 founded	 in	 its	 claims.	 A	 vendor	 may	 also	 choose	 to	 withdraw	 its	 results	 because	 the	 tested
configuration	is	no	longer	available	or	the	next	model	of	the	system	is	greatly	improved	over	the	old	one.

TPC-C	 and	 TPC-E	 are	 just	 two	 of	 several	 benchmarks	 sponsored	 by	 the	 Transaction	 Processing
Council.	 When	 the	 TPC	 was	 founded,	 the	 world	 of	 business	 computation	 consisted	 primarily	 of
transaction-processing	systems	that	also	supported	financial	processes	such	as	bookkeeping	and	payroll.
These	systems	took	a	clearly	defined	set	of	inputs	and	produced	a	clearly	defined	output,	usually	in	the
form	of	printed	reports	and	forms.	This	deterministic	model	lacks	the	flexibility	needed	to	provide	deep
data	analysis	tools	required	in	today’s	business	environment.	Many	companies	have	replaced	their	static
reports	 with	 decision	 support	 tools.	 These	 applications	 access	 enormous	 quantities	 of	 input	 data	 to
produce	 business	 intelligence	 information	 for	 marketing	 guidance	 and	 business	 logistics.	 In	 a	 sense,
decision	 support	 applications	 are	 the	 complete	 opposite	 of	 transaction-processing	 applications.	 They
require	a	different	breed	of	computer	system.	Whereas	transaction-processing	environments	handle	large
numbers	of	 short-duration	processes,	 decision	 support	 systems	handle	 a	 small	 number	of	 long-duration
processes.

No	 one	 can	 reasonably	 expect	 decision	 support	 systems	 to	 produce	 the	 instantaneous	 results
characteristic	of	a	simple	online	order	status	inquiry.	However,	there	are	limits	to	the	amount	of	time	one
is	willing	to	wait,	no	matter	how	useful	the	end	result	will	be.	In	fact,	if	a	decision	support	system	is	“too
slow,”	executives	will	be	reluctant	to	use	it,	thus	defeating	its	purpose.	So	even	in	the	cases	where	we	are
willing	to	wait	“a	while”	for	our	answers,	performance	remains	an	issue.



TPC	BENCHMARKS:	A	REALITY	CHECK
The	Transaction	Processing	Performance	Council	has	made	every	attempt	to	model	real-world	scenarios
with	its	TPC-C,	TPC-H,	and	TPC-R	benchmarks.	It	has	taken	great	pains	to	ensure	that	 the	benchmarks
contain	a	realistic	mix	of	common	business	transactions	and	activities.	These	activities	are	randomized	to
generate	as	much	I/O	activity	as	possible.	Specifically,	data	should	be	fetched	most	often	directly	from
disk	rather	than	from	cache	or	other	fast	memory.

The	thinking	behind	this	is	that	the	tests	shouldn’t	be	biased	toward	one	particular	type	of	architecture.
If	the	data	weren’t	randomized,	the	benchmark	would	favor	systems	with	large	cache	memories	that	may
not	perform	(proportionately)	as	well	in	real	environments.

For	many	years,	this	idea	was	unchallenged	until	a	doctoral	student	intern	at	IBM,	Windsor	W.	Hsu,
conducted	a	series	of	empirical	studies.	Under	the	auspices	of	IBM’s	Almaden	Research	Center,	Hsu	and
his	 fellow	 researchers	 monitored	 millions	 of	 transactions	 on	 systems	 owned	 by	 ten	 of	 IBM’s	 largest
customers.	Hsu’s	work	 validated	many	 aspects	 of	 the	TPC	 benchmarks,	 including	 their	workload	mix.
However,	Hsu	found	that	real-world	activity	differed	from	the	TPC	models	in	two	important	ways.

First,	 the	 TPC	 benchmarks	 exhibit	 a	 sustained	 and	 constant	 transaction	 rate.	 This	 is	what	 they	 are
designed	to	do	in	order	to	fully	stress	a	system	at	peak	workload	rates.	But	Hsu	found	that	real	workloads
are	bursty.	A	 flurry	of	 activity	occurs,	 and	 then	 there	 is	 a	 lull	before	 the	next	 flurry	of	 activity	occurs.
What	this	means	to	designers	is	that	overall	performance	could	be	improved	if	effective	dynamic	resource
allocation	facilities	were	incorporated	into	the	system	software	and	hardware.	Although	many	vendors	do
in	fact	use	dynamic	resource	allocation,	their	efforts	are	not	rewarded	in	the	TPC	benchmarks.

Hsu’s	second	major	result	challenges	the	notion	of	randomizing	the	data	and	the	workload	in	the	TPC
benchmarks.	He	found	that	real	systems	exhibit	significantly	greater	“pseudo-sequentiality”	than	the	TPC
programs	do.	This	finding	is	important	because	many	systems	prefetch	data	from	disk	and	memory.	Real
workloads	benefit	greatly	when	prefetching	is	used.	Furthermore,	the	pseudo-sequentiality	of	data	access
patterns	lends	itself	well	to	least	recently	used	(LRU)	cache	and	memory	page	replacement	policies.	The
TPC	benchmarks	do	not.

Hsu’s	work	is	not	an	indictment	against	the	TPC	benchmarks.	Instead,	it	amplifies	the	folly	of	thinking
that	 one	 can	 extrapolate	 benchmark	 results	 into	 particular	 real-world	 situations.	 Although	 the	 TPC
benchmarks	don’t	model	 the	 real	world	as	well	as	some	would	 like,	 they	continue	 to	be	an	honest	and
fairly	reliable	yardstick	to	use	when	comparing	performance	among	different	systems’	architectures.

In	response	to	this	relatively	new	area	of	computing,	the	TPC	produced	two	benchmarks,	TPC-H	and
TPC-R,	to	describe	the	performance	of	decision	support	systems.	Although	both	of	these	benchmarks	are
directed	 at	 decision	 support	 systems,	 the	TPC-R	benchmark	measures	 performance	when	 the	 reporting
parameters	 of	 the	 system	 are	 known	 in	 advance	 (the	 database	 can	 be	 indexed	 and	 optimized	 for	 the
reporting).	The	TPC-H	benchmark	measures	how	well	a	system	can	produce	ad	hoc	query	results,	which
are	queries	where	the	parameters	of	the	query	are	not	known	in	advance.	Results	of	TPC-H	tests	are	given
in	queries	per	hour,	QphH,	and	those	of	TPC-R	as	QphR.	The	TPC	categorizes	these	results	according	to
the	 size	 of	 the	 databases	 against	 which	 the	 queries	 were	 run,	 because	 running	 a	 query	 against	 100
gigabytes	of	data	is	a	far	different	task	than	running	a	query	against	a	terabyte	of	data.

The	TPC	benchmarks	are	 trustworthy	aids	 in	 selecting	systems	 to	 serve	 the	computing	needs	of	 the
enterprise.	The	principal	 pitfall	 in	 the	 use	 of	 these	metrics	 is	 assuming	 that	 the	 benchmarks	 accurately
predict	 the	 performance	 of	 a	 system	 under	 anyone’s	 particular	 workload.	 This	 is	 not	 TPC’s	 claim	 or
intent.	Research	has	shown	the	ways	one	particular	set	of	real	workloads	differs	from	the	TPC	workloads
(see	sidebar).	Computer	benchmarks,	when	used	correctly,	are	indispensable	tools.	Used	incorrectly,	they



can	lead	us	down	paths	where	we	would	rather	not	venture.

11.4.5		System	Simulation
The	 TPC	 benchmarks	 differ	 from	 the	 SPEC	 benchmarks	 in	 that	 they	 endeavor	 to	 simulate	 a	 complete
computing	environment.	Although	 the	purpose	of	 the	TPC	benchmarks	 is	 to	measure	performance,	 their
simulated	 environment	 may	 also	 be	 useful	 to	 predict,	 and	 hence	 optimize,	 performance	 under	 various
conditions.	In	general,	simulations	give	us	tools	that	we	can	use	to	model	and	predict	aspects	of	system
behavior	without	the	use	of	the	exact	live	environment	that	the	simulator	is	modeling.

Simulation	is	very	useful	for	estimating	the	performance	of	systems	or	system	configurations	that	do
not	yet	exist.	Prudent	system	designers	always	conduct	simulation	studies	of	new	hardware	and	software
prior	 to	 building	 commercial	 versions	 of	 their	 products.	 The	 wisdom	 of	 this	 approach	 was	 shown
dramatically	 in	1967	by	Stanford	doctoral	candidate	Norman	R.	Nielson	 in	his	 thesis	“The	Analysis	of
General	Purpose	Computer	Time-Sharing	Systems.”	Nielson’s	thesis	documented	his	simulation	study	of
IBM’s	 yet-to-be-released	 360/67	 Time-Sharing	 System	 (TSS).	 Using	 IBM’s	 published	 specifications,
Nielson’s	work	 revealed	 serious	 flaws	 in	 the	 360/67	TSS.	His	 findings	 impelled	 IBM	 to	 improve	 the
system’s	design	prior	to	its	widespread	release.

Simulations	are	models	of	particular	aspects	of	full	systems.	They	give	system	designers	the	luxury	of
performing	 “what	 if”	 testing	 in	 a	 controlled	 environment	 separate	 from	 the	 live	 system.	 Suppose,	 for
example,	that	you	are	interested	in	maximizing	the	number	of	concurrent	tasks	a	system	can	sustain.	The
tuning	parameters	include	the	memory	allocation	for	each	task	and	its	CPU	timeslice	duration.	Based	on
what	you	know	about	the	characteristics	of	each	task,	the	tuning	values	could	be	adjusted	until	an	optimal
balance	is	found.	Such	tinkering	in	a	live	environment	having	real	tasks	and	real	users	incurs	some	real
risks,	the	worst	of	which	might	be	that	no	one	gets	any	work	done.

One	 of	 the	 major	 challenges	 of	 system	 simulation	 lies	 in	 determining	 the	 characteristics	 of	 the
workload.	 The	 workload	 mix	 should	 correspond	 to	 the	 system	 components	 that	 are	 modeled.	 One
approach	starts	by	examining	system	logs	to	derive	a	synthetic,	yet	statistically	sound,	workload	profile.
This	is	the	method	used	by	the	TPC	in	producing	the	workload	mix	for	its	TPC-W	benchmark.

Capturing	 the	 behavior	 of	 an	 entire	 system	 or	 its	 entire	workload	will	 not	 produce	 sufficient	 data
granularity	 if	 a	 simulator	 is	 focused	 on	 only	 one	 component	 of	 the	 system.	Say,	 for	 example,	 a	 system
designer	 is	 trying	 to	determine	an	 ideal	 set-associative	memory	cache	configuration.	This	configuration
includes	the	sizes	of	the	level	1	and	level	2	caches,	as	well	as	the	set	size	for	each	cache	block.	For	this
type	of	simulation,	the	simulator	needs	detailed	memory	access	data.	This	kind	of	information	is	usually
derived	from	system	traces.

System	 traces	 gather	 detailed	 behavior	 information	 using	 hardware	 or	 software	 probes	 into	 the
activity	 of	 the	 component	 of	 interest.	 Probes	 trace	 every	 detail	 of	 the	 component’s	 actual	 behavior,
possibly	including	binary	instructions	and	memory	references.	Traces	gathered	by	probes	consist	of	only	a
few	 seconds	 of	 system	 activity	 because	 the	 data	 set	 output	 is	 very	 large.	 In	 producing	 a	 statistically
meaningful	model,	several	traces	are	required.

When	designing	a	 simulator,	 a	 clear	definition	of	 the	purpose	of	 the	 simulator	must	be	established.
Good	 engineering	 judgment	 is	 required	 to	 separate	 the	 important	 from	 the	 unimportant	 system
characteristics.	A	model	that	is	too	detailed	is	costly	and	time-consuming	to	write.	Conversely,	simulators
that	 are	 so	 simplistic	 that	 they	 ignore	 key	 factors	 produce	misleading	 results.	 System	 simulation	 is	 an
excellent	 tool,	 but	 like	 any	 tool,	 we	 must	 have	 some	 assurance	 of	 its	 suitability	 for	 the	 job.	 System
simulators	must	be	validated	to	affirm	the	assumptions	around	which	the	model	was	built.	The	simplest



models	are	the	easiest	to	validate.

11.5			CPU	PERFORMANCE	OPTIMIZATION
CPU	performance	has	long	been	the	principal	focus	of	system	optimization	efforts.	There	is	no	single	way
to	enhance	CPU	performance,	because	CPU	throughput	is	affected	by	a	multitude	of	factors.	For	instance,
program	 code	 affects	 the	 instruction	 count;	 the	 compiler	 influences	 both	 the	 instruction	 count	 and	 the
average	 clock	 cycles	 per	 instruction;	 the	 ISA	 determines	 the	 instruction	 count	 and	 the	 average	 clock
cycles	per	 instruction;	and	 the	actual	hardware	organization	establishes	 the	clock	cycles	per	 instruction
and	the	clock	cycle	time.

Potential	CPU	optimization	techniques	include	integrated	floating-point	units,	parallel	execution	units,
specialized	instructions,	instruction	pipelining,	branch	prediction,	and	code	optimization.	Because	all	but
the	last	two	items	have	been	addressed	in	previous	chapters,	we	focus	our	attention	on	branch	prediction
and	user	code	optimization.

11.5.1		Branch	Optimization
At	this	point,	you	should	be	very	familiar	with	the	fetch–decode–execute	cycle.	Instruction	pipelining	has
a	significant	influence	on	performance	and	is	incorporated	in	most	contemporary	architectures.	However,
branching	 imposes	 a	 penalty	 on	 this	 pipeline.	 Consider	 a	 conditional	 branching	 situation	 in	which	 the
address	of	the	next	instruction	is	not	known	until	the	current	instruction	execution	is	complete.	This	forces
a	 delay	 in	 the	 flow	 of	 instructions	 through	 the	 pipeline	 because	 the	 processor	 does	 not	 know	 which
instruction	comes	next	until	it	has	finished	executing	the	branch	instruction.	In	fact,	the	longer	the	pipeline
is	(the	more	stages	it	has),	the	more	time	the	pipeline	must	wait	before	it	knows	which	instruction	to	feed
next	into	the	pipeline.

Modern	 processors	 have	 increasingly	 longer	 pipelines.	 Typically,	 20%	 to	 30%	 of	 machine
instructions	 involve	 branching,	 and	 studies	 indicate	 that	 approximately	 65%	of	 the	 branches	 are	 taken.
Additionally,	programs	average	about	 five	 instructions	between	branches,	 forcing	many	pipeline	 stalls,
thus	creating	a	growing	need	 to	 reduce	 the	penalties	 imposed	by	branching.	The	 factors	contributing	 to
pipeline	stalls	are	called	hazards.	They	include	such	things	as	data	dependencies,	resource	conflicts,	and
fetch	access	delays	from	memory.	Aside	from	stopping	the	pipeline	upon	detection	of	a	hazard,	there	is
little	that	can	be	done	about	them.	Branch	optimization,	however,	is	within	the	scope	of	our	control.	For
this	reason,	branch	prediction	has	been	the	focus	of	recent	efforts	toward	improving	CPU	performance.

Delayed	 branching	 is	 one	 method	 of	 dealing	 with	 the	 effects	 branching	 has	 on	 pipelines.	 When
performing	 a	 conditional	 branch,	 for	 example,	 one	 or	more	 instructions	 after	 the	 branch	 are	 executed
regardless	of	 the	outcome	of	 the	branching.	The	 idea	 is	 to	utilize	otherwise	wasted	cycles	 following	a
branch.	This	is	accomplished	by	inserting	an	instruction	behind	the	branch	and	then	executing	it	before	the
branch.	 The	 net	 effect	 is	 that	 the	 instruction	 following	 the	 branch	 is	 executed	 before	 the	 branch	 takes
effect.

This	concept	is	best	explained	by	way	of	an	example.	Consider	the	following	program:



This	results	in	the	following	trace	for	the	fetch	(F),	decode	(D),	and	execute	(E)	pipeline:

The	divide	 instruction	 represents	a	wasted	 instruction	slot,	because	 the	 instruction	 is	 fetched	but	never
decoded	or	executed	due	to	the	branch.	This	slot	could	be	filled	with	another	instruction	by	reversing	the
execution	sequence	of	the	branch	instruction	and	another	instruction	that	will	be	executed	anyway:

It	should	be	clear	that	delayed	branching,	although	it	uses	otherwise	wasted	branch	delay	slots,	actually
reorders	 the	 execution	 sequence	 of	 the	 instructions.	 The	 compiler	 must,	 therefore,	 perform	 a	 data
dependency	analysis	to	determine	whether	delayed	branching	is	possible.	Situations	may	arise	in	which
no	 instruction	can	be	moved	after	 the	branch	 (into	 the	delay	 slot).	 In	 this	case,	 a	NOP	(“no	operation”
instruction	that	does	nothing)	is	placed	after	the	branch.	Clearly,	the	penalty	for	branching	in	this	case	is
the	same	as	if	delayed	branching	were	not	employed.

A	compiler	can	choose	the	instruction	to	place	in	the	delay	slot	in	a	number	of	ways.	The	first	choice
is	a	useful	instruction	that	executes	regardless	of	whether	the	branch	occurs.	The	instructions	before	the
branch	 statement	 are	 the	 prime	 candidates.	 Other	 possibilities	 include	 instructions	 that	 execute	 if	 the
branch	 occurs	 but	 do	 no	 harm	 if	 the	 branch	 does	 not	 occur.	 The	 reverse	 of	 this	 is	 also	 considered:
statements	that	execute	if	the	branch	does	not	occur	but	do	no	harm	if	the	branch	does	occur.	Candidates
also	include	those	statements	that	do	no	harm	regardless	of	whether	the	branch	occurs.	Delayed	branching
has	the	advantage	of	low	hardware	cost	and	is	dependent	on	the	compiler	to	fill	the	delay	slots.

Another	approach	to	minimizing	the	penalty	introduced	with	branching	is	branch	prediction.	Branch
prediction	is	the	process	of	attempting	to	guess	the	next	instruction	in	the	instruction	stream,	thus	avoiding
pipeline	stalls	due	to	branching.	If	the	prediction	is	successful,	no	delay	is	introduced	into	the	pipeline.	If
the	 prediction	 is	 unsuccessful,	 the	 pipeline	 must	 be	 flushed	 and	 all	 calculations	 caused	 by	 this
miscalculation	 must	 be	 discarded.	 Branch	 prediction	 techniques	 vary	 depending	 on	 the	 branch
characterization:	loop	control	branching,	if/then/else	branching,	or	subroutine	branching.

To	 take	 full	 advantage	 of	 branch	 prediction,	 the	 pipeline	 must	 be	 kept	 full.	 Therefore,	 once	 a
prediction	is	made,	the	instruction	is	fetched	and	execution	begins.	This	is	called	speculative	execution.
These	instructions	are	executed	before	it	is	known	for	sure	whether	they	will	need	to	execute.	This	work
must	be	undone	if	a	prediction	is	found	to	be	incorrect.

Branch	prediction	is	like	a	black	box	into	which	we	feed	various	input	data,	getting	a	predicted	target
instruction	as	output.	When	the	code	in	question	is	simply	fed	into	this	black	box,	this	is	known	as	static
prediction.	 If,	 in	 addition	 to	 the	 code,	we	 feed	 in	 state	 history	 (previous	 information	 about	 the	branch
instruction	and	 its	outcomes	 in	 the	past),	 the	black	box	is	using	dynamic	prediction.	Fixed	predictions
are	 those	 that	 are	 always	 the	 same:	Either	 the	 branch	will	 be	 taken	 or	 it	will	 not,	 and	 every	 time	 the
branch	is	encountered,	the	prediction	is	the	same.	True	predictions	have	two	potential	outcomes,	either



“take	branch”	or	“do	not	take	branch.”
In	fixed	prediction,	when	the	assumption	is	that	the	branch	is	not	taken,	the	idea	is	to	assume	that	the

branch	will	not	occur	and	continue	on	the	normal	sequential	path.	However,	processing	is	done	in	parallel
in	 case	 the	 branch	 occurs.	 If	 the	 prediction	 is	 correct,	 the	 preprocessing	 information	 is	 deleted	 and
execution	 continues.	 If	 the	 prediction	 is	 incorrect,	 the	 speculative	 processing	 is	 deleted	 and	 the
preprocessing	information	is	used	to	continue	on	the	correct	path.

In	fixed	prediction,	when	the	assumption	is	that	the	branch	is	always	taken,	preparation	is	also	made
for	 an	 incorrect	 prediction.	 State	 information	 is	 saved	 before	 the	 speculative	 processing	 begins.	 If	 the
guess	 is	 correct,	 this	 saved	 information	 is	 deleted.	 If	 the	 prediction	 is	 incorrect,	 the	 speculative
processing	 is	deleted	and	 the	 saved	 information	 is	used	 to	 restore	 the	execution	environment,	 at	which
time	the	proper	path	is	taken.

Dynamic	 prediction	 increases	 the	 accuracy	 of	 branch	 prediction	 by	 using	 a	 recorded	 history	 of
previous	branches.	This	information	is	then	combined	with	the	code	and	fed	into	the	branch	predictor	(our
black	box).	The	principal	component	used	for	branch	prediction	is	a	branch	prediction	buffer.	This	high-
speed	buffer	is	indexed	by	the	lower	portion	of	the	address	of	the	branch	instruction,	with	additional	bits
indicating	whether	 the	branch	was	 recently	 taken.	Branch	prediction	buffers	always	 return	a	prediction
using	a	 small	number	of	bits.	One-bit	dynamic	prediction	 uses	 a	 single	bit	 to	 record	whether	 the	 last
occurrence	of	the	branch	was	taken.	Two-bit	prediction	retains	the	history	of	the	two	previous	branches
for	a	given	branch	 instruction.	The	extra	bit	helps	 reduce	mispredictions	at	 the	end	of	 loops	 (when	 the
loop	exits	instead	of	branching	as	before).	The	two	branch	prediction	bits	can	represent	state	information
in	 various	ways.	 For	 example,	 the	 four	 possible	 bit	 patterns	 can	 indicate	 the	 historical	 probability	 of
taking	the	branch	(11:	strongly	taken;	10:	weakly	taken;	01:	weakly	not	taken;	and	00:	strongly	not	taken).
The	probabilities	are	changed	only	if	a	misprediction	occurs	twice.

Early	implementations	of	branch	prediction	were	almost	exclusively	of	the	static	variety.	Most	newer
processors	 (including	 the	 Pentium,	 PowerPC,	 Ultra-Sparc,	 and	Motorola	 68060)	 use	 two-bit	 dynamic
branch	 prediction,	which	 has	 resulted	 in	 higher	 accuracy	 and	 fewer	mispredictions.	 Some	 superscalar
processors	mandate	 its	 use,	whereas	 others	 offer	 it	 as	 an	 option.	A	 number	 of	 systems	 offload	 branch
prediction	processing	to	specialized	circuits,	which	produce	more	timely	and	accurate	predictions.

PROGRAM	OPTIMIZATION	TIPS
•			Give	the	compiler	as	much	information	as	possible	about	what	you	are	doing.	Use	constants	and	local

variables	 where	 possible.	 If	 your	 language	 permits	 them,	 define	 prototypes	 and	 declare	 static
functions.	Use	arrays	instead	of	pointers	when	you	can.

•			Avoid	unnecessary	typecasting	and	minimize	floating-point-to-integer	conversions.
•			Avoid	overflow	and	underflow.
•			Use	a	suitable	data	type	(e.g.,	float,	double,	int).
•			Consider	using	multiplication	instead	of	division.
•			Eliminate	all	unnecessary	branches.
•			Use	iteration	instead	of	recursion	when	possible.
•			Build	conditional	statements	(e.g.,	if,	switch,	case)	with	the	most	probable	cases	first.
•			Declare	variables	in	a	structure	in	order	of	size	with	the	largest	ones	first.
•			When	a	program	is	having	performance	problems,	profile	the	program	before	beginning	optimization



procedures.	(Profiling	is	the	process	of	breaking	your	code	into	small	chunks	and	timing	each	of	these
chunks	to	determine	which	of	them	take	the	most	time.)

•			Never	discard	an	algorithm	based	solely	on	its	original	performance.	A	fair	comparison	can	occur	only
when	all	algorithms	are	fully	optimized.

11.5.2		Use	of	Good	Algorithms	and	Simple	Code
The	world’s	best	processor	hardware	and	optimizing	compilers	can	go	only	so	far	 in	making	programs
faster.	 They	will	 never	 be	 equal	 to	 a	 human	who	 has	mastered	 the	 science	 of	 effective	 algorithm	 and
coding	design.	Recall	from	Chapter	6	the	example	of	accessing	an	array	row	major	versus	column	major.
The	basic	 idea	was	 that	matching	 the	 access	of	 the	data	more	closely	 to	how	 it	 is	 stored	can	 increase
performance.	If	an	array	is	stored	row	major,	and	you	access	it	 in	column-major	order,	 the	principle	of
locality	 is	 weakened,	 potentially	 resulting	 in	 degraded	 performance.	 Although	 compilers	 can	 improve
performance	 to	 some	 extent,	 their	 scope	 is	 primarily	 limited	 to	 low-level	 code	 optimization.	 Program
code	can	have	a	monumental	effect	on	all	aspects	of	performance,	from	pipelining	to	memory	to	I/O.	This
section	 is	 devoted	 to	 those	 mechanisms	 that	 you,	 as	 a	 programmer,	 can	 employ	 to	 achieve	 optimal
performance	from	your	computer.

Operation	counting	is	one	way	to	enhance	the	performance	of	your	program.	With	this	method,	you
estimate	the	number	of	instruction	types	that	are	executed	in	a	loop,	then	determine	the	number	of	machine
cycles	required	for	each	instruction	type.	This	information	can	then	be	used	to	achieve	a	better	instruction
balance.	 The	 idea	 is	 to	 attempt	 to	 write	 your	 loops	 with	 the	 best	 mix	 of	 instructions	 for	 a	 given
architecture	(e.g.,	loads,	stores,	integer	operations,	floating-point	operations,	system	calls).	Keep	in	mind
that	a	good	instruction	mix	for	one	hardware	platform	may	not	be	a	good	mix	for	a	different	platform.

Loops	are	used	extensively	in	programs	and	are	excellent	candidates	for	optimization.	In	particular,
nested	loops	present	a	number	of	interesting	optimization	opportunities.	With	some	investigation,	you	can
improve	 memory	 access	 patterns	 and	 increase	 instruction-level	 parallelism.	 Loop	 unrolling	 is	 one
approach	easily	employed	by	any	programmer.	Loop	unrolling	is	the	process	of	expanding	a	loop	so	that
each	new	iteration	contains	several	of	the	original	iterations,	thus	performing	more	computations	per	loop
iteration.	In	this	way,	several	loop	iterations	are	processed	each	time	through	the	loop.	For	example:

when	unrolled	(twice)	becomes:

Upon	first	inspection,	this	appears	to	be	a	bad	way	to	write	code.	But	it	reduces	loop	overhead	(such	as
the	maintenance	of	 the	 index	variable)	and	helps	with	control	hazards	 in	pipelines.	 It	 typically	enables
operations	from	different	loop	iterations	to	execute	in	parallel.	In	addition,	it	allows	for	better	instruction
scheduling	due	to	less	data	dependence	and	better	register	usage.	Clearly	the	amount	of	code	is	increased,
so	 this	 is	 not	 a	 technique	 that	 should	 be	 employed	 for	 every	 loop	 in	 your	 program.	 It	 is	 best	 used	 in
sections	of	code	that	account	for	a	significant	portion	of	the	execution	time.	Optimization	efforts	give	the
greatest	reward	when	applied	to	those	parts	of	the	program	that	will	yield	the	greatest	improvement.	This



technique	is	also	suitable	for	while	loops,	although	its	application	is	not	so	straightforward.
Another	useful	 loop	optimization	technique	is	 loop	fusion.	Loop	fusion	combines	 loops	 that	use	 the

same	data	items.	This	can	result	in	increased	cache	performance,	increased	instruction-level	parallelism,
and	reduced	loop	overhead.	Loop	fusion	on	the	following	loops:

results	in:

Sometimes,	 the	 potential	 for	 loop	 fusion	 is	 not	 as	 obvious	 as	 it	 is	 in	 the	 above	 code.	Given	 the	 code
segment:

it	isn’t	clear	how	to	fuse	these	loops	because	the	second	one	uses	a	value	from	array	A	that	is	one	ahead
of	the	loop	counter.	However,	we	could	easily	rewrite	this	code:

Now	we	are	ready	to	fuse	the	loops:

Loop	fission,	splitting	large	loops	into	smaller	ones,	also	has	a	place	in	loop	optimization,	because	it	can
eliminate	 data	 dependencies	 and	 reduce	 cache	 delays	 resulting	 from	 conflicts.	 One	 example	 of	 loop
fission	is	loop	peeling,	the	process	of	removing	the	beginning	or	ending	statements	from	a	loop.	These	are
the	statements	that	usually	contain	the	loop’s	boundary	conditions.	For	example,	the	code:



becomes:

This	example	of	loop	peeling	results	in	more	instruction-level	parallelism	because	it	removes	branching
from	the	loop.

We	 have	 already	 alluded	 to	 loop	 interchange,	 which	 is	 the	 process	 of	 rearranging	 loops	 so	 that
memory	 is	accessed	more	closely	 to	 the	way	 in	which	 the	data	 is	 stored.	 In	most	 languages,	 loops	are
stored	 in	 row-major	 order.	 Accessing	 data	 in	 row-major	 versus	 column-major	 order	 results	 in	 fewer
cache	misses	and	better	locality	of	reference.

Loop	optimization	 is	an	 important	 tool	 for	 improving	program	performance.	 It	exemplifies	how	you
can	use	your	knowledge	of	computer	organization	and	architecture	to	write	superior	programs.	We	have
provided	 a	 sidebar	 containing	 a	 list	 of	 things	 to	 keep	 in	mind	while	 you	 are	 optimizing	 your	 program
code.	We	invite	you	to	ponder	the	ways	each	of	these	tips	takes	various	system	components	into	account.
You	should	be	able	to	explain	the	rationale	behind	each	of	them.

The	more	things	you	try,	the	more	successful	you	will	be.	Keep	in	mind	that	often	a	tweak	that	should
result	 in	 increased	performance	 isn’t	 immediately	 successful.	Many	 times,	 these	 ideas	must	 be	used	 in
combination	for	their	effects	to	be	apparent.

11.6			DISK	PERFORMANCE
Although	 CPU	 and	 memory	 performance	 are	 important	 factors	 in	 system	 performance,	 optimal	 disk
performance	is	crucial	to	system	throughput.	The	vast	majority	of	user	interactions	with	a	system	involve
some	kind	of	disk	input	or	output.	Furthermore,	this	disk	I/O	can	happen	through	a	page	fault,	its	timing
and	duration	being	beyond	the	control	of	either	the	user	or	the	programmer.	With	a	properly	functioning
I/O	subsystem,	total	system	throughput	can	be	an	order	of	magnitude	better	than	when	the	I/O	subsystem	is
functioning	poorly.	Because	the	performance	stakes	are	so	high,	disk	systems	must	be	well	designed	and
well	configured	from	the	outset.	Throughout	 the	 life	of	 the	system,	disk	subsystems	must	be	continually
monitored	and	tuned.	In	this	section,	we	introduce	the	principal	aspects	of	I/O	system	performance.	The
generic	concepts	introduced	here	will	be	useful	to	you	whether	you	are	selecting	a	new	system	or	trying	to
keep	an	existing	system	running	at	its	best.

11.6.1		Understanding	the	Problem
Disk	drive	performance	issues	loom	large	in	overall	system	performance	because	retrieving	an	item	from
a	disk	takes	such	a	long	time,	relative	to	CPU	or	memory	speed.	A	CPU	needs	only	a	few	nanoseconds	to
execute	 an	 instruction	 when	 all	 operands	 are	 in	 its	 registers.	 When	 the	 CPU	 needs	 an	 operand	 from
memory	before	it	can	complete	a	task,	the	execution	time	may	rise	to	tens	of	nanoseconds.	But	when	the
operand	must	be	fetched	from	the	disk,	the	time	required	to	complete	the	task	soars	to	tens	of	milliseconds
—a	millionfold	 increase!	Moreover,	 because	 the	CPU	can	dispatch	 I/O	 requests	much	 faster	 than	 disk
drives	 can	 keep	 up	with	 them,	 disk	 drives	 can	 become	 throughput	 bottlenecks.	 In	 fact,	when	 a	 system
exhibits	 “low”	 CPU	 utilization,	 it	 can	 be	 because	 the	 CPU	 is	 continually	 waiting	 for	 I/O	 requests	 to
complete.	Such	a	system	is	I/O	bound.



One	 of	 the	 most	 important	 metrics	 of	 I/O	 performance	 is	 disk	 utilization,	 the	 measure	 of	 the
percentage	of	time	that	the	disk	is	busy	servicing	I/O	requests.	Stated	another	way,	disk	utilization	gives
the	probability	that	the	disk	is	busy	when	another	I/O	request	arrives	in	the	disk	service	queue.	Utilization
is	determined	by	the	speed	of	the	disk	and	the	rate	at	which	requests	arrive	in	the	service	queue.	Stated
mathematically:

where	the	arrival	rate	is	given	in	requests	per	second	and	the	disk	service	rate	is	given	in	I/O	operations
per	second	(IOPS).

For	example,	consider	a	particular	disk	drive	that	can	complete	an	I/O	operation	in	15ms.	This	means
that	its	service	rate	is	about	67	I/O	operations	per	second	(0.015	seconds	per	operation	=	66.7	operations
per	second).	If	this	disk	gets	33	I/O	requests	per	second,	it	is	about	50%	utilized.	Utilization	of	50%	gives
good	performance	on	practically	any	system.	But	what	happens	if	this	system	starts	seeing	a	sustained	I/O
request	 rate	 of	 60	 requests	 per	 second?	Or	 64	 requests	 per	 second?	We	 can	model	 the	 effects	 of	 the
increasing	load	using	a	result	from	queuing	theory.	Simply	stated,	the	amount	of	time	that	a	request	spends
in	 the	 queue	 is	 directly	 related	 to	 the	 service	 time	 and	 the	 probability	 that	 the	 disk	 is	 busy,	 and	 it	 is
indirectly	related	to	the	probability	that	the	disk	is	idle.	In	formula	form,	we	have:

By	substitution,	it	is	easy	to	see	that	when	the	I/O	request	arrival	rate	is	60	requests	per	second,	with	a
service	time	of	15ms,	the	utilization	is	90%.	Hence,	a	request	will	have	to	wait	135ms	in	the	queue.	This
brings	 total	 service	 time	 for	 the	 request	 to	 135	+	15	=	150ms.	At	 64	 requests	 per	 second	 (only	 a	 7%
increase),	completion	time	soars	to	370ms	(a	147%	increase).	At	65	requests	per	second,	service	time	is
more	than	a	half-second	…	from	our	15ms	disk	drive!

The	relationship	between	queue	time	and	utilization	(from	the	formula	above)	is	shown	in	Figure	11.1.
As	you	can	see,	the	“knee”	of	the	curve	(the	point	at	which	the	slope	changes	most	drastically)	is	at	about
78%.	This	is	why	80%	utilization	is	the	rule-of-thumb	upper	limit	for	most	disk	drives.

You	can	readily	see	by	our	model	how	things	could	get	wildly	out	of	control.	If	we	have	a	sustained
request	rate	of	68	I/O	requests	per	second,	this	disk	becomes	overwhelmed.	And	what	happens	if	25%	of
the	 requests	 generate	 two	 disk	 operations?	 These	 scenarios	 result	 in	 more	 complex	 models,	 but	 the
ultimate	solution	to	the	problem	lies	in	finding	ways	to	keep	service	time	at	an	absolute	minimum.	This	is
what	disk	performance	optimization	is	all	about.



FIGURE	11.1	Disk	Queue	Time	Plotted	Against	Utilization	Percentage

11.6.2		Physical	Considerations
In	Chapter	7,	we	introduced	the	metrics	that	determine	the	physical	performance	of	a	disk.	These	metrics
include	rotational	delay	(a	function	of	 the	rpm	rating	of	 the	disk),	seek	time	(the	 time	that	 it	 takes	for	a
disk	arm	to	position	itself	over	a	particular	disk	track),	and	transfer	rate	(the	rate	at	which	the	read/write
head	transfers	data	from	the	surface	of	the	disk	to	the	system	bus).	The	sum	of	rotational	delay	and	seek
time	represents	the	access	time	for	the	disk.

Lower	access	time	and	a	higher	transfer	rate	contribute	to	lower	total	service	time.	Service	time	also
can	be	reduced	by	adding	platters	to	a	disk,	or	by	adding	more	disks	to	a	system.	Doubling	the	number	of
disks	 in	 an	 I/O	 system	 typically	 increases	 throughput	 by	 50%.	Replacing	 existing	 disks	with	 the	 same
number	 of	 faster	 disks	 can	 also	 result	 in	 a	marked	 performance	 improvement.	 For	 example,	 replacing
7,200rpm	disks	with	10,000rpm	disks	can	bring	a	10%	to	50%	performance	improvement.	Physical	disk
performance	 metrics	 are	 usually	 disclosed	 in	 specification	 sheets	 provided	 by	 manufacturers.
Comparisons	between	brands,	therefore,	are	usually	straightforward.	But	as	the	saying	goes,	your	mileage
may	vary.	Performance	has	as	much	to	do	with	how	a	disk	is	used	as	it	does	with	its	inherent	capabilities.
Raw	speed	has	its	limits.

11.6.3		Logical	Considerations
Sometimes	the	only	cure	for	a	slow	system	is	to	add	or	replace	disks.	But	this	step	should	be	taken	only
after	 all	 other	measures	 have	 failed.	 In	 the	 following	 sections,	we	 discuss	 a	 number	 of	 the	 aspects	 of
logical	 disk	 performance.	 Logical	 considerations	 in	 disk	 performance	 are	 those	 that	 present	 us	 with
opportunities	for	tuning	and	adjustment,	tasks	that	should	be	a	routine	part	of	system	operations.

Disk	Scheduling



Disk	 arm	 motion	 is	 the	 greatest	 consumer	 of	 service	 time	 in	 most	 disk	 configurations.	 The	 average
rotational	delay—the	time	it	takes	for	the	desired	sector	to	move	under	the	read/write	head—is	about	4ms
for	a	7,200rpm	disk,	and	about	3ms	for	a	10,000rpm	disk	(this	delay	is	calculated	as	the	time	required	for
half	 a	 revolution).	 For	 this	 same	 class	 of	 disk,	 average	 seek	 time—the	 time	 required	 to	 position	 the
read/write	head	over	the	desired	track—ranges	from	5	to	10ms.	In	many	cases,	this	is	twice	the	rotational
latency	of	the	disk.	Furthermore,	actual	seek	times	can	be	much	worse	than	the	average.	As	much	as	15	to
20ms	can	be	consumed	during	a	 full-stroke	seek	 (moving	 the	disk	arm	from	the	 innermost	 track	 to	 the
outermost,	or	vice	versa).

Clearly,	one	road	to	better	disk	performance	involves	finding	ways	to	minimize	disk	arm	motion.	This
can	 be	 done	 by	 optimizing	 the	 order	 in	 which	 requests	 for	 sectors	 on	 the	 disk	 are	 serviced.	 Disk
scheduling	can	be	a	function	of	either	the	disk	controller	or	the	host	operating	system,	but	it	should	not	be
done	by	both,	because	conflicting	schedules	will	probably	result,	thus	reducing	throughput.

The	most	naïve	disk	scheduling	policy	is	first-come,	first-served	(FCFS).	As	 its	name	 implies,	all
I/O	requests	are	serviced	in	the	order	in	which	they	arrive	in	the	disk	service	queue.	The	easiest	way	to
see	 the	 problem	with	 this	 approach	 is	 through	 an	 example.	Let’s	 say	we	 have	 a	 disk	with	 100	 tracks,
numbered	0	through	99.	Processes	running	in	the	system	issue	requests	to	read	tracks	from	the	disk	in	the
following	order:

28,	35,	52,	6,	46,	62,	19,	75,	21

With	the	FCFS	scheduling	policy,	assuming	we	are	currently	servicing	track	40,	 the	disk	arm	traces	the
pattern	shown	in	Figure	11.2.	As	you	can	see	by	the	diagram,	the	disk	arm	changes	direction	six	times	and
traverses	a	total	of	291	tracks	before	completing	this	series	of	requests.

Surely,	arm	motion	could	be	reduced	substantially	if	requests	were	ordered	so	that	the	disk	arm	moves
only	to	the	track	nearest	 its	current	location.	This	is	 the	idea	employed	by	the	shortest	seek	time	first
(SSTF)	scheduling	algorithm.	Using	the	same	disk	track	requests	as	listed	above,	assuming	that	the	disk
arm	starts	at	track	40,	the	disk	schedule	using	SSTF	would	be	carried	out	as	follows:

35,	28,	21,	19,	6,	46,	52,	62,	75

The	pattern	for	this	schedule	is	shown	in	Figure	11.3.	As	you	can	see,	the	disk	arm	changes	direction	only
once	and	 traverses	a	 total	of	only	103	 tracks.	One	shortcoming	of	SSTF	is	 that	starvation	 is	 possible:
Theoretically,	a	track	requested	at	a	“remote”	part	of	the	disk	could	keep	getting	shoved	to	the	back	of	the
queue	when	requests	for	tracks	closer	to	the	present	arm	position	arrive.	Interestingly,	this	problem	is	at
its	worst	with	low	disk	utilization	rates.



FIGURE	11.2	Disk	Track	Seeks	Using	the	First-Come,	First-Served	Disk	Scheduling	Policy

FIGURE	11.3	Disk	Arm	Motion	for	the	Shortest	Seek	Time	First	Scheduling	Algorithm

To	avoid	the	starvation	risk	of	SSTF,	some	fairness	mechanism	must	be	designed	into	the	system.	An
easy	way	to	do	this	is	to	have	the	disk	arm	continually	sweep	over	the	surface	of	the	disk,	stopping	when
it	 reaches	a	 track	 for	which	 it	has	a	 request	 in	 its	 service	queue.	This	approach	 is	called	 the	elevator
algorithm,	because	of	its	similarity	to	how	skyscraper	elevators	service	their	passengers.	In	the	context	of
disk	scheduling,	the	elevator	algorithm	is	known	as	SCAN	(which	is	not	an	acronym).	To	illustrate	how
SCAN	works,	let’s	say	that	in	our	example,	the	disk	arm	happens	to	be	positioned	at	track	40,	and	is	in	the
process	of	sweeping	toward	the	inner,	higher-numbered	tracks.	With	the	same	series	of	requests	as	before,
SCAN	reads	the	disk	tracks	in	the	following	order:

46,	52,	62,	75,	35,	28,	21,	19,	6

The	disk	arm	passes	over	track	99	between	reading	tracks	75	and	35,	and	then	travels	to	track	zero	after
reading	 track	6,	 as	 shown	 in	Figure	11.4.	SCAN	has	a	variant,	 called	C-SCAN,	 for	 circular	SCAN,	 in
which	track	zero	is	treated	as	if	it	is	adjacent	to	track	99.	In	other	words,	the	arm	reads	in	one	direction
only,	as	shown	in	Figure	11.5.	Once	it	passes	track	99,	it	moves	to	track	zero	without	stopping.	Thus,	in
our	example,	C-SCAN	would	read	disk	tracks	as	follows:

46,	52,	62,	75,	6,	19,	21,	28,	35

The	disk	arm	motion	of	SCAN	and	C-SCAN	is	reduced	even	further	through	the	use	of	the	LOOK	and	C-
LOOK	algorithms.	In	our	example,	SCAN	and	C-SCAN	continually	sweep	over	all	100	disk	tracks.	But,
in	fact,	the	lowest	required	track	is	6	and	the	highest	is	75.	Thus,	if	the	disk	arm	changes	direction	only
when	the	highest-	and	lowest-numbered	tracks	are	read,	the	arm	will	traverse	only	69	tracks.	This	gives
an	arm-motion	savings	of	about	30%	over	SCAN	and	C-SCAN.



FIGURE	11.4	Disk	Arm	Motion	for	the	SCAN	Disk	Scheduling	Algorithm

FIGURE	11.5	Disk	Arm	Motion	for	the	C-SCAN	Disk	Scheduling	Algorithm

Interestingly,	at	high	utilization	rates,	SSTF	performs	slightly	better	than	SCAN	or	LOOK.	But	the	risk
of	starving	an	individual	request	persists.	Under	very	low	utilization	(under	20%),	the	performance	of	any
of	these	algorithms	is	acceptable.

In	 light	 of	 the	 preceding	 discussion	 of	 disk	 scheduling	 algorithms,	 a	 few	 words	 concerning	 file
placement	are	in	order.	Maximum	performance	is	realized	if	the	most	frequently	used	files	are	placed	at
the	center	of	the	disk.	Of	particular	importance	are	the	disk	directory	and	memory	page	(swap)	files.	A
central	 position	 provides	 the	 least	 head	 motion	 and,	 hence,	 the	 best	 access	 time	 for	 both	 SSTF	 and
SCAN/LOOK.	A	worst-case	situation	presents	itself	when	files	are	badly	fragmented,	that	is,	when	a	file
is	located	in	more	than	one	contiguous	disk	location.	If	SCAN/LOOK	is	the	scheduling	method	of	the	disk,
it	is	possible	that	several	full-stroke	head	movements	will	occur	before	the	end	of	the	file	is	encountered.
For	 this	 reason,	disks	should	be	defragmented,	or	 reorganized,	on	a	 regular	basis.	Additionally,	disks
should	not	be	allowed	to	get	too	full.	Another	rule	of	thumb	is	that	when	a	disk	is	80%	full,	it	is	time	to
start	removing	some	files.	If	no	files	can	be	removed,	it’s	time	to	get	another	disk.

Disk	Caching	and	Prefetching
Certainly,	 the	 best	 way	 to	 reduce	 disk	 arm	 motion	 is	 to	 avoid	 using	 the	 disk	 to	 the	 maximum	 extent
possible.	With	 this	goal	 in	mind,	many	disk	drives,	or	disk	drive	controllers,	 are	provided	with	cache
memory.	 This	 memory	 may	 be	 supplemented	 by	 a	 number	 of	 main	 memory	 pages	 set	 aside	 for	 the



exclusive	use	of	the	I/O	subsystem.	Disk	cache	memory	is	usually	associative.	Because	associative	cache
searches	 are	 somewhat	 time-consuming,	 performance	 can	 actually	 be	 better	 with	 smaller	 disk	 caches
because	hit	rates	are	usually	low.

Main	memory	pages	dedicated	 to	 the	 I/O	subsystem	serve	as	a	second-level	cache	 for	 the	disk.	On
large	 servers,	 the	 number	 of	 pages	 set	 aside	 for	 this	 purpose	 is	 a	 tunable	 system	 parameter.	 If	 main
memory	 utilization	 is	 high,	 the	 number	 of	 pages	 allocated	 to	 the	 I/O	 subsystem	 must	 be	 reduced.
Otherwise,	 an	 excessive	 number	 of	 page	 faults	will	 result,	 defeating	 the	whole	 purpose	 of	 using	main
memory	as	an	I/O	cache.

Main	memory	I/O	caches	can	be	managed	by	operating	system	software	running	on	the	host,	or	they
may	be	managed	by	applications	that	generate	the	I/O.	Application-level	cache	management	usually	offers
superior	 performance	because	 it	 can	 capitalize	on	 the	 characteristics	 particular	 to	 the	 application.	The
best	applications	give	 the	user	 some	control	over	 the	 size	of	 the	cache,	 so	 that	 it	 can	be	adjusted	with
respect	to	the	host’s	memory	utilization	in	an	effort	to	prevent	excessive	page	faulting.

Many	 disk	 drive–based	 caches	 use	prefetching	 techniques	 to	 reduce	 disk	 accesses.	 Prefetching	 is
conceptually	 similar	 to	 CPU-to-memory	 caching:	 Both	 leverage	 the	 principles	 of	 locality	 for	 better
performance.	When	using	prefetching,	a	disk	reads	a	number	of	sectors	subsequent	to	the	one	requested
with	the	expectation	that	one	or	more	of	the	subsequent	sectors	will	be	needed	“soon.”	Empirical	studies
have	shown	that	more	than	50%	of	disk	accesses	are	sequential	in	nature,	and	that	prefetching	increases
performance	by	40%	on	average.

The	downside	of	prefetching	is	the	phenomenon	of	cache	pollution.	Cache	pollution	occurs	when	the
cache	is	filled	with	data	that	no	process	needs,	leaving	less	room	for	useful	data.	As	with	main	memory
caches,	 various	 replacement	 algorithms	 are	 employed	 to	 help	 keep	 the	 cache	 clean.	 These	 strategies
include	the	same	ones	used	by	CPU-to-memory	caches	(LRU,	LFU,	and	random).	Additionally,	because
disk	 caches	 serve	 as	 a	 staging	 area	 for	 data	 to	 be	 written	 to	 the	 disk,	 some	 disk	 cache	 management
schemes	simply	evict	all	bytes	after	they	have	been	written	to	the	disk.

The	 fundamental	 difference	 between	 reading	data	 from	and	writing	 data	 to	 the	 disk	 gives	 rise	 to	 a
number	of	 thorny	cache	 issues.	First	 and	 foremost	 is	 the	problem	 that	 cache	 is	volatile	memory.	 In	 the
event	of	a	massive	system	failure,	data	 in	 the	cache	 is	 lost.	Suppose	an	application	running	on	 the	host
believes	that	the	data	has	been	committed	to	the	disk,	when	it	really	is	resident	only	in	the	cache.	If	the
cache	fails,	the	data	just	disappears.	This,	of	course,	can	lead	to	serious	data	inconsistencies,	such	as	an
ATM	dispensing	money	without	debiting	the	customer’s	account.

To	 defend	 against	 power	 loss	 to	 the	 cache,	 some	 disk	 controller-based	 caches	 are	mirrored	 and
supplied	with	a	battery	backup.	When	a	cache	is	mirrored,	 the	controller	contains	 two	identical	caches
that	 operate	 in	 tandem,	 both	 containing	 the	 same	 data	 at	 all	 times.	Another	 approach	 is	 to	 employ	 the
write-through	cache	discussed	in	Chapter	6,	where	a	copy	of	the	data	is	retained	in	the	cache	in	case	it	is
needed	again	“soon,”	but	it	is	simultaneously	written	to	the	disk.	The	operating	system	is	signaled	that	the
I/O	is	complete	only	after	the	data	has	actually	been	placed	on	the	disk.	Performance	is	compromised	to
some	extent	to	provide	better	reliability.

When	throughput	is	more	important	than	reliability,	a	system	may	employ	the	write-back	cache	policy.
Recall	 that	 there	are	two	types	of	write-back	policies.	The	simplest	 is	where	the	disk	simply	reads	the
cache	 periodically	 (usually	 twice	 a	 minute),	 and	 writes	 any	 dirty	 blocks	 that	 it	 finds	 to	 the	 disk.	 If
reliability	is	a	concern,	the	commitment	interval	can	be	made	shorter	(at	the	expense	of	performance).	A
more	complex	write-back	algorithm	uses	opportunistic	writes.	With	 this	approach,	dirty	blocks	wait	 in
the	 cache	 until	 the	 arrival	 of	 a	 read	 request	 for	 the	 same	 cylinder.	 The	 write	 operation	 is	 then
“piggybacked”	onto	the	read	operation.	This	approach	has	 the	effect	of	reducing	performance	on	reads,



but	improving	it	for	writes.	Many	systems	combine	periodic	and	opportunistic	write-back	policies	to	try
to	strike	a	balance	between	efficiency	and	reliability.

The	 trade-offs	 involved	 in	 optimizing	 disk	 performance	 present	 difficult	 choices.	 Our	 first
responsibility	 is	 to	 ensure	data	 reliability	 and	 consistency.	But	 the	highest	 throughput	 is	 realized	when
volatile	caches	compensate	for	access	time	delays.	Caches	with	battery	backups	are	costly.	Adding	disks
to	 increase	 throughput	 is	 also	 an	 expensive	 option.	 Removing	 cache	 intermediaries	 from	 disk	 write
operations	may	result	in	performance	degradation,	particularly	if	disk	utilization	rates	are	high.	Users	will
soon	 complain	 of	 lengthy	 response	 times,	 and	 financial	 people	 will	 complain	 when	 you	 ask	 them	 for
money	 for	 a	 disk	 upgrade.	Keep	 in	mind	 that	 no	matter	what	 its	 price,	 upgrading	 a	 disk	 subsystem	 is
always	cheaper	than	replacing	lost	data.

CHAPTER	SUMMARY
This	 chapter	 has	 presented	 the	 two	 aspects	 of	 computer	 performance:	 performance	 assessment	 and
performance	 optimization.	You	 should	 come	 away	 from	 this	 chapter	 knowing	 the	 key	measurements	 of
computer	 performance	 and	 how	 to	 correctly	 summarize	 them.	 Specifically,	 you	 should	 know	 that
arithmetic	 averages	 are	 not	 appropriate	 for	 highly	 variable	 data	 and	 should	 not	 be	 used	with	 rates	 or
ratios.	 The	 geometric	 mean	 is	 useful	 when	 data	 are	 highly	 variable,	 but	 this	 mean	 cannot	 be	 used	 to
predict	performance.	The	harmonic	mean	is	appropriate	when	comparing	rates,	and	it	is	also	useful	as	a
performance	 predictor.	 However,	 when	 the	 harmonic	 mean	 is	 used	 to	 compare	 relative	 system
performance,	it	is	more	sensitive	to	the	choice	of	a	reference	machine	than	the	geometric	mean.

We	have	explained	a	number	of	the	more	popular	benchmarking	programs	and	suites	in	this	chapter.
The	 most	 reliable	 of	 these	 are	 the	 benchmarks	 that	 are	 formulated	 and	 administrated	 by	 impartial
oversight	bodies	such	as	SPEC	and	the	TPC.	Regardless	of	which	ones	you	use,	benchmarks	should	be
interpreted	in	terms	of	your	specific	application.	Remember,	there	is	no	single	metric	that	is	universally
applicable	to	all	situations.

Computer	performance	is	directly	dependent	on	computer	component	optimization.	We	examined	the
factors	that	influence	the	performance	of	the	principal	computer	system	components.	Amdahl’s	Law	gives
us	a	tool	for	determining	the	potential	speedup	due	to	various	optimization	techniques	and	places	a	ceiling
on	 performance	 enhancements.	 Areas	 to	 consider	 for	 optimization	 include	 CPU	 performance,	 memory
performance,	and	I/O.	CPU	performance	is	dependent	on	the	program	code,	the	compiler	technology,	the
ISA,	 and	 the	 underlying	 technology	 of	 the	 hardware.	 Branch	 instructions	 have	 a	 dramatic	 effect	 on
pipeline	performance,	which	 in	 turn	has	a	 significant	 effect	on	CPU	performance.	Branch	prediction	 is
one	 way	 to	 offset	 the	 complications	 introduced	 by	 branching.	 Fixed	 and	 static	 methods	 of	 branch
prediction	are	less	accurate	than	dynamic	techniques,	but	are	attainable	at	a	lower	cost.

I/O	performance	is	a	function	of	both	the	logical	and	physical	characteristics	of	disk	drives.	Short	of
replacing	the	hardware,	we	are	unable	to	improve	physical	disk	performance.	But	many	aspects	of	logical
disk	performance	lend	themselves	to	tuning	and	optimization.	These	factors	include	disk	utilization,	file
placement,	 and	memory	 cache	 sizes.	Good	 performance	 reporting	 tools	 not	 only	 provide	 thorough	 I/O
statistics,	but	they	also	offer	tuning	suggestions.

System	 performance	 evaluation	 and	 optimization	 are	 two	 of	 the	 most	 important	 tasks	 of	 system
managers.	In	this	chapter,	we	have	presented	only	general	platform-independent	information.	Some	of	the
most	 helpful	 and	 interesting	 information	 is	 found	 in	 vendor-provided	 manuals	 and	 training	 seminars.
These	resources	are	essential	to	the	continued	effectiveness	of	your	system-tuning	efforts.



FURTHER	READING
In	the	context	of	overall	computer	design,	one	of	the	most	respected	treatments	of	computer	performance
is	 presented	 in	 Hennessy	 and	 Patterson	 (2011).	 Their	 book	 integrates	 performance	 considerations
throughout	its	exposition	of	all	facets	of	computer	architecture.	For	a	comprehensive	text	devoted	solely
to	computer	performance,	Lilja	(2005)	is	readable	and	thorough	in	its	coverage	of	the	design	and	analysis
of	system	metrics.	Its	introduction	to	the	mathematics	performance	assessment	is	particularly	noteworthy
for	 its	 clarity.	 For	 detailed	 information	 on	 high-performance	 computing,	 with	 excellent	 coverage	 of
programming	and	tuning	software,	as	well	as	benchmarking,	see	Severance	and	Dowd	(1998).	Musumeci
and	Loukides	(2002)	also	provide	excellent	coverage	of	system	performance	tuning.

In	addition	 to	 the	books	cited	above,	 the	papers	by	Fleming	and	Wallace	 (1996)	and	Smith	 (1998)
provide	 the	 solid	 mathematical	 basis	 for	 selection	 of	 correct	 statistical	 means.	 They	 also	 give	 some
insight	into	the	controversial	nature	of	performance	metrics.

In	our	discussion	of	statistical	pitfalls	and	fallacies,	we	did	not	discuss	how	graphical	representations
of	statistics	can	also	lead	us	to	incorrect	conclusions	and	assumptions.	For	an	eloquent	look	at	the	art	of
conveying	 (and	obscuring)	 statistical	 information	 through	graphical	devices,	we	 recommend	a	 thorough
reading	of	Tufte	(2001).	You	will	be	amazed,	delighted,	and	confounded.	We	also	recommend	the	classic
from	Huff	(1993).	This	thin	book	(originally	copyrighted	in	1954)	has	been	entertaining	readers	with	its
information	and	illustrations	for	nearly	60	years.

Price’s	 article	 (1989)	 contains	 a	 good	 description	 of	 many	 early	 synthetic	 benchmarks,	 including
Whetstone,	Dhrystone,	 and	many	others	not	 covered	 in	 this	 chapter.	Another	 comprehensive	 account	of
early	 benchmarks	 can	 be	 found	 in	 Serlin’s	 article	 (1986).	 Weicker	 (1984)	 contains	 the	 original
presentation	 of	 his	 Dhrystone	 benchmark.	 Weicker’s	 later	 work	 in	 1990	 also	 includes	 LINPACK,
Whetstone,	and	some	of	the	benchmarks	that	had	emerged	in	the	1980s,	including	the	SPEC	suite.	Grace
(1996)	is	encyclopedic	in	its	descriptions	of	practically	every	major	benchmark.	His	coverage	includes
all	of	the	ones	discussed	in	this	chapter	and	many	others,	including	benchmarks	specific	to	Windows	and
Unix	environments.

Surprisingly,	the	MFLOPS	figure	derived	from	standard	benchmark	programs	correlated	well	with	the
early	floating-point	SPEC	benchmarks.	You	will	find	a	good	discussion	of	this	anomaly	in	Giladi	(1996),
which	 also	 provides	 a	 thorough	 discussion	 of	 the	 Linpack	 floating-point	 benchmark.	 For	 a	 detailed
explanation	 of	 the	 SPEC	 CPU	 benchmark,	 see	 Henning	 (2006).	 Current	 comprehensive	 information
regarding	all	of	the	the	SPEC	benchmarks	can	be	found	at	SPEC’s	website:	www.spec.org.

The	 seminal	 article	 for	 the	TPC	benchmarks	was	published	anonymously	by	 Jim	Gray	 (1985).	 (He
credits	many	others	for	influencing	its	final	form	because	he	passed	the	paper	to	a	cast	of	thousands	for
their	 input.	He	 refuses	 to	 take	 sole	 authorship	 and	 published	 the	 paper	 anonymously.	 Therefore,	many
people	reference	this	source	as	“Anon.	et	al.”)	It	gives	the	background	and	philosophy	of	the	Transaction
Processing	Council.	More	current	information	can	be	found	at	the	TPC	website:	www.tpc.org.

Hsu,	 Smith,	 and	 Young	 (2001)	 provide	 great	 detail	 of	 an	 investigation	 of	 real	 workloads	 in
comparison	 to	 the	TPC	benchmarks.	This	article	also	 illustrates	performance	data	gathering	using	 trace
analysis.

There	 is	 no	 shortage	 of	 information	 concerning	 the	 performance	 of	 I/O	 systems.	 Hennessy	 and
Patterson’s	book	(2011)	explores	 this	 topic	 in	great	detail.	An	excellent	 (though	dated)	 investigation	of
disk	scheduling	policies	can	be	found	in	Oney	(1975).	Karedla,	Love,	and	Wherry	(1994)	provide	a	clear,
thorough	 discussion	 of	 disk	 cache	 performance.	 Reddy	 (1992)	 gives	 a	 nice	 overview	 of	 I/O	 systems
architectures.

http://www.spec.org
http://www.tpc.org


REFERENCES
Fleming,	P.	J.,	&	Wallace,	J.	J.	“How	Not	to	Lie	with	Statistics:	The	Correct	Way	to	Summarize

Benchmark	Results.”	Communications	of	the	ACM	29:3,	March	1996,	pp.	218–221.
Giladi,	R.	“Evaluating	the	MFLOPS	Measure.”	IEEE	Micro,	August	1996,	pp.	69–75.
Grace,	R.	The	Benchmark	Book.	Upper	Saddle	River,	NJ:	Prentice	Hall,	1996.
Gray,	J.,	et	al.	“A	Measure	of	Transaction	Processing	Power.”	Datamation	31:7,	1985,	pp.	112–118.
Hennessy,	J.	L.,	&	Patterson,	D.	A.	Computer	Architecture:	A	Quantitative	Approach,	5th	ed.	San

Francisco:	Morgan	Kaufmann	Publishers,	2011.
Henning,	J.	L.	“SPEC	CPU	2006	Benchmark	Descriptions.”	ACM	SIGARCH	News	34:4,	September

2006,	pp.	1–17.
Hsu,	W.	W.,	Smith,	A.	J.,	&	Young,	H.	C.	“I/O	Reference	Behavior	of	Production	Database	Workloads

and	the	TPC	Benchmarks—An	Analysis	at	the	Logical	Level.”	ACM	Transactions	on	Database
Systems	26:1,	March	2001,	pp.	96–143.

Huff,	D.	How	to	Lie	with	Statistics.	New	York:	W.W.	Norton	&	Company,	1993.
Karedla,	R.,	Love,	J.	S.,	&	Wherry,	B.	G.	“Caching	Strategies	to	Improve	Disk	System	Performance.”

IEEE	Computer,	March	1994,	pp.	38–46.
Lilja,	D.	J.	Measuring	Computer	Performance:	A	Practitioner’s	Guide.	New	York:	Cambridge

University	Press,	2005.
Musumeci,	G.-P.,	&	Loukides,	M.	System	Performance	Tuning,	2nd	ed.	Sebastopol,	CA:	O’Reilly	&

Associates,	Inc.,	2002.
Oney,	W.	C.	“Queueing	Analysis	of	the	Scan	Policy	for	Moving-Head	Disks.”	Journal	of	the	ACM	22,

July	1975,	pp.	397–412.
Price,	W.	J.	“A	Benchmarking	Tutorial.”	IEEE	Microcomputer,	October	1989,	pp.	28–43.
Reddy,	A.	L.	N.	“A	Study	of	I/O	System	Organization.”	ACM	SIGARCH	Proceedings	of	the	19th	Annual

International	Symposium	on	Computer	Architecture	20:2,	April	1992,	pp.	308–317.
Serlin,	O.	“MIPS,	Dhrystones,	and	Other	Tales.”	Datamation,	June	1	1986,	pp.	112–118.
Severance,	C.,	&	Dowd,	K.	High	Performance	Computing,	2nd	ed.	Sebastopol,	CA:	O’Reilly	&

Associates,	Inc.,	1998.
Smith,	J.	E.	“Characterizing	Computer	Performance	with	a	Single	Number.”	Communications	of	the	ACM

32:10,	October	1998,	pp.	1202–1206.
Tufte,	E.	R.	The	Visual	Display	of	Quantitative	Information,	2nd	ed.	Cheshire,	CT:	Graphics	Press,

2001.
Weicker,	R.	P.	“Dhrystone:	A	Synthetic	Systems	Programming	Benchmark.”	Communications	of	the	ACM

27,	October	1984,	pp.	1013–1029.
Weicker,	R.	P.	“An	Overview	of	Common	Benchmarks.”	IEEE	Computer,	December	1990,	pp.	65–75.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS

1.		Explain	what	is	meant	when	we	say	that	a	program	or	system	is	memory	bound.	What	other	types	of
bindings	have	we	discussed?



2.		What	does	Amdahl’s	Law	tell	us	about	performance	optimization?
3.		Which	of	the	means	is	useful	for	comparing	rates?
4.		For	what	kinds	of	data	is	the	arithmetic	mean	inappropriate?
5.		Give	a	definition	for	optimum	performance.
6.		What	is	a	price-performance	ratio?	What	makes	it	hard	to	apply?
7.		What	is	the	shortcoming	of	using	MIPS	or	FLOPS	as	a	measure	of	system	throughput?
8.		How	is	the	Dhrystone	benchmark	different	from	Whetstone	and	Linpack?
9.		What	are	the	deficiencies	in	the	Whetstone,	Dhrystone,	and	Linpack	benchmarks	that	are	addressed	by

the	SPEC	CPU	benchmarks?
10.		Explain	the	term	benchmarketing.
11.		How	is	the	focus	of	the	TPC	different	from	SPEC?
12.		Explain	delayed	branching.
13.		What	is	branch	prediction?	What	is	it	used	for?
14.		Give	three	examples	of	pipeline	hazards.
15.		Define	the	terms	loop	fusion,	loop	fission,	loop	peeling,	and	loop	interchange.
16.		According	to	queuing	theory,	what	is	the	critical	disk	utilization	percentage?
17.		What	is	the	risk	involved	in	using	the	SSTF	disk	scheduling	algorithm?
18.		How	is	LOOK	different	from	SCAN?
19.		What	is	disk	prefetching?	What	are	its	advantages	and	disadvantages?
20.		What	are	the	advantages	and	disadvantages	of	caching	disk	writes?

EXERCISES
1.		Table	11.2	shows	an	execution	mix	and	run	times	for	two	computers,	System	A	and	System	C.	In	this

example,	System	C	is	83%	faster	than	System	A.	Table	11.3	shows	run	times	for	System	A	with	a
different	execution	mix.	Using	the	execution	mix	in	Table	11.3,	calculate	the	percentage	by	which
System	C	would	be	 faster	 than	System	A.	Using	 the	original	 statistics	 from	Table	11.2,	 by	 how
much	has	the	performance	of	System	A	degraded	under	the	new	execution	mix?

2.		With	regard	to	the	performance	data	cited	for	programs	v,	w,	x,	y,	and	z	 in	Section	11.3,	find	the
geometric	means	of	the	run	times	of	the	programs	for	System	B	and	System	C,	using	System	A	as
the	 reference	 system.	Verify	 that	 the	 ratios	of	 the	means	 are	 consistent	with	 the	 results	 obtained
using	the	other	two	systems	as	reference	systems.

3.	 	The	execution	 times	for	 three	systems	running	five	benchmarks	are	shown	in	 the	following	 table.
Compare	the	relative	performance	of	each	of	these	systems	(i.e.,	A	to	B,	B	to	C,	and	A	to	C)	using
the	arithmetic	and	geometric	means.	Are	there	any	surprises?	Explain.



4.		The	execution	times	for	three	systems	running	five	benchmarks	are	shown	in	the	following	table.
Compare	the	relative	performance	of	each	of	these	systems	(i.e.,	A	to	B,	B	to	C,	and	A	to	C)	using
the	arithmetic	and	geometric	means.	Are	there	any	surprises?	Explain.

5.	 	A	 company	 that	 is	 selling	 database	management	 optimization	 software	 contacts	 you	 to	 pitch	 its
product.	The	representative	claims	 that	 the	memory	management	software	will	 reduce	page	fault
rates	 for	 your	 system.	She	 offers	 you	 a	 30-day	 free	 trial	 of	 this	 software.	Before	 you	 install	 it,
however,	you	decide	to	first	determine	a	baseline	for	your	system.	At	specific	times	of	the	day,	you
sample	and	record	the	page	fault	rate	of	your	system	(using	the	system’s	diagnostic	software).	You
do	 the	 same	 after	 the	 software	 has	 been	 installed.	 How	 much	 of	 an	 average	 performance
improvement	has	the	new	software	provided?	(Hint:	Use	the	harmonic	mean.)

The	fault	rates	and	times	of	day	are	shown	in	the	table	below.

Time Fault	Rate	Before Fault	Rate	After
02:00–03:00 35% 45%
10:00–11:00 42% 38%
13:00–14:00 12% 10%
18:00–19:00 20% 22%

6.		What	are	the	limitations	of	synthetic	benchmarks	such	as	Whetstone	and	Dhrystone?	Do	you	think
the	 concept	 of	 a	 synthetic	 benchmark	 could	be	 extended	 to	overcome	 these	 limitations?	Explain
your	answer.

	7.		What	would	you	say	to	a	vendor	who	tells	you	that	his	system	runs	50%	of	the	SPEC	benchmark
kernel	 programs	 twice	 as	 fast	 as	 the	 leading	 competitive	 system?	Which	 statistical	 fallacy	 is	 at
work	here?

8.		Suppose	that	you	are	looking	into	purchasing	a	new	computer	system.	You	have	suitable	benchmark
results	 for	 all	 of	 the	 systems	 that	 you	 are	 considering	 except	 for	 System	 X	 Model	 Q.	 The
benchmark	results	have	been	reported	 for	System	X	Model	S,	and	 they	are	not	quite	as	good	as



several	 competing	brands.	 In	order	 to	 complete	your	 research,	 you	 call	 the	people	 at	System	X
computer	company	and	ask	when	they	plan	to	publish	benchmark	results	for	the	Model	Q.	They	tell
you	 that	 they	will	 not	 be	 publishing	 these	 results	 anytime	 soon,	 but	 because	 the	 disk	 drives	 of
Model	Q	give	an	average	access	time	of	12ms,	whereas	Model	S	had	15ms	drives,	Model	Q	will
perform	better	than	Model	S	by	25%.	How	would	you	record	the	performance	metrics	for	System
X	model	Q?

	9.	 	What	 value	 do	 you	 think	 there	would	 be	 in	 comparing	 the	 results	 of	 two	 different	 SPEC	CPU
releases,	say,	SPEC95	and	SPEC2000?

10.		Besides	the	retail	business	sector,	what	other	organizations	would	need	good	performance	from	a
transaction-processing	system?	Justify	your	answer.

	11.		Which	of	the	benchmarks	discussed	in	this	chapter	would	be	most	helpful	to	you	if	you	were	about
to	purchase	a	system	to	be	used	in	DNA	research?	Why	would	you	choose	this	one?	Would	any	of
the	other	benchmarks	be	of	interest	to	you?	Why	or	why	not?

12.		Suppose	a	friend	has	asked	you	to	help	him	make	a	choice	as	to	what	kind	of	computer	he	should
buy	 for	 his	 personal	 use	 at	 home.	What	 would	 you	 look	 for	 in	 comparing	 various	 makes	 and
models?	 How	 is	 your	 line	 of	 thinking	 different	 in	 this	 situation	 than	 if	 you	 were	 to	 help	 your
employer	purchase	a	Web	server	to	accept	customers’	orders	over	the	Internet?

	13.	 	Suppose	you	have	just	been	assigned	to	a	committee	that	has	been	tasked	with	purchasing	a	new
enterprise	file	server	that	will	support	customer	account	activity	as	well	as	many	administrative
functions,	 such	 as	 producing	 a	 weekly	 payroll.	 (Yes,	 a	 committee	 frequently	 makes	 these
decisions!)	One	of	your	committee	members	has	 just	 learned	 that	a	particular	system	has	blown
out	the	competition	in	the	SPEC	CPU2000	benchmarks.	He	is	now	insisting	that	the	committee	buy
one	of	these	systems.	What	would	be	your	reaction	to	this?

*14.	 	We	 discussed	 the	 limitations	 of	 the	 harmonic	mean	 in	 its	 application	 to	 computer	 performance
assessment.	 A	 number	 of	 critics	 have	 suggested	 that	 the	 SPEC	 should	 use	 the	 harmonic	 mean
instead.	 Suggest	 a	 unit	 of	 “work”	 that	 would	 be	 appropriate	 for	 reformulating	 the	 SPEC
benchmarks	as	rate	metrics.	Test	your	theory	using	results	from	SPEC’s	website,	www.spec.org.

*15.		SPEC	and	the	TPC	both	publish	benchmarks	for	Web	server	systems.	Visit	the	respective	websites
of	these	organizations	(www.spec.org	and	www.tpc.org)	 to	 try	 to	 find	 identical	 (or	comparable)
systems	that	have	results	posted	on	both	sites.	Discuss	your	findings.

16.		We	mentioned	that	a	large	volume	of	data	is	gathered	during	system	probe	traces.	To	give	you	some
idea	of	 the	actual	volume	of	data	 involved,	 suppose	plans	are	being	made	 to	 install	a	hardware
probe	 that	 reports	 the	 contents	 of	 a	 system’s	 program	 counter,	 instruction	 register,	 accumulator,
memory	address	register,	and	memory	buffer	register.	The	system	has	a	clock	that	runs	at	1GHz.
During	each	cycle	of	 the	system	clock,	 the	status	of	 these	five	registers	 is	written	 to	nonvolatile
memory	attached	to	the	probe	circuitry.	If	each	register	is	64	bits	wide,	how	much	storage	will	the
probe	require	if	it	is	to	gather	data	for	2	seconds?

17.		The	sidebar	in	Section	11.5.2	presents	ways	in	which	program	performance	can	be	improved.	For
each	 of	 the	 tips	 in	 the	 sidebar,	 state	 whether	 a	 computer	 organization	 and	 architecture	 issue	 is
involved.	If	so,	explain	 the	reasoning	behind	the	advice	as	given.	If	you	feel	anything	is	missing
from	the	sidebar,	include	your	advice	in	your	analysis.

18.		In	our	discussion	of	the	physical	aspects	of	disk	performance,	we	stated	that	replacing	7,200rpm

http://www.spec.org
http://www.spec.org
http://www.tpc.org


disks	with	10,000rpm	disks	can	bring	a	10%	to	50%	performance	 improvement.	Why	would	an
improvement	of	only	10%	occur?	Could	 it	be	 that	no	 improvement	at	all	would	occur?	Explain.
(Hint:	Rotational	latency	is	not	the	only	determining	factor	of	disk	performance.)

19.		Calculate	the	number	of	disk	tracks	traversed	using	the	FCFS,	SSTF,	SCAN,	and	LOOK	algorithms
for	the	series	of	disk	track	service	requests	given	below.	At	the	time	the	first	request	arrives	in	the
disk	request	queue,	the	read/write	head	is	at	track	50,	moving	toward	the	outer	(lower-numbered)
tracks.	 (Hint:	Each	 track	over	which	 the	disk	 arm	passes	 counts	 in	 the	 total,	whether	or	not	 the
track	is	read.)

54,	36,	21,	74,	46,	35,	26,	67

20.		Repeat	the	previous	problem	using	the	following	tracks:

82,	97,	35,	75,	53,	47,	17,	11

21.		On	a	particular	brand	of	disk	drive,	the	time	that	it	takes	for	the	disk	arm	to	pass	over	a	single	disk
track	 without	 stopping	 is	 500ns.	 However,	 once	 the	 head	 reaches	 the	 track	 for	 which	 it	 has	 a
service	 request,	 it	 needs	 2ms	 to	 “settle”	 over	 the	 required	 track	 before	 it	 can	 start	 reading	 or
writing.	Based	on	these	timings,	compare	the	relative	times	required	for	FCFS,	SSTF,	and	LOOK
to	carry	out	the	schedule	given	below.	You	will	need	to	compare	SSTF	to	FCFS,	LOOK	to	FCFS,
and	LOOK	to	SSTF.

As	in	our	previous	question,	when	the	first	request	arrives	in	the	disk	request	queue,	the	read/write
head	is	at	track	50,	moving	toward	the	outer	(lower-numbered)	tracks.	The	requested	tracks	are:

35,	53,	90,	67,	79,	37,	76,	47

22.	 	 Repeat	 exercise	 21	 for	 the	 following	 disk	 tracks	 (assuming	 the	 read/write	 head	 is	 at	 track	 50,
moving	outward):

48,	14,	85,	35,	84,	61,	30,	22

*23.		In	our	discussion	of	the	SSTF	disk	scheduling	algorithm,	we	stated	that	the	problem	of	starvation
“is	at	its	worst	with	low	disk	utilization	rates.”	Explain	why	this	is	so.

	24.	 	 A	 certain	microprocessor	 requires	 either	 2,	 3,	 4,	 8,	 or	 12	machine	 cycles	 to	 perform	 various
operations.	A	 total	of	25%	of	 its	 instructions	require	2	machine	cycles,	20%	require	3	machine
cycles,	17.5%	require	4	machine	cycles,	12.5%	require	8	machine	cycles,	 and	25%	require	12
machine	cycles.

	a)	What	is	the	average	number	of	machine	cycles	per	instruction	for	this	microprocessor?
	b)	What	is	the	clock	rate	(machine	cycles	per	second)	required	for	this	microprocessor	to	be	a	“1

MIPS”	processor?
	c)	Suppose	this	system	requires	an	extra	20	machine	cycles	to	retrieve	an	operand	from	memory.	It

has	 to	 go	 to	 memory	 40%	 of	 the	 time.	 What	 is	 the	 average	 number	 of	 machine	 cycles	 per
instruction	for	this	microprocessor,	including	its	memory	fetch	instructions?

25.	 	A	 certain	microprocessor	 requires	 either	 2,	 4,	 8,	 12,	 or	 16	machine	 cycles	 to	 perform	various
operations.	A	total	of	17.5%	of	its	instructions	require	2	machine	cycles,	12.5%	require	4	machine
cycles,	 35%	 require	 8	 machine	 cycles,	 20%	 require	 12	 machine	 cycles,	 and	 15%	 require	 16
machine	cycles.



a)		What	is	the	average	number	of	machine	cycles	per	instruction	for	this	microprocessor?
b)		What	is	the	clock	rate	(machine	cycles	per	second)	required	for	this	microprocessor	to	be	a	“1

MIPS”	processor?
c)		Suppose	this	system	requires	an	extra	16	machine	cycles	to	retrieve	an	operand	from	memory.	It

has	 to	 go	 to	 memory	 30%	 of	 the	 time.	What	 is	 the	 average	 number	 of	 machine	 cycles	 per
instruction	for	this	microprocessor,	including	its	memory	fetch	instructions?

26.		Herbert	Grosch	(b.	1918)	has	been	an	eminent	computer	scientist	since	the	1940s.	In	1965,	he	put
forth	a	claim	that	he	“humbly”	called	Grosch’s	Law.	This	law	can	be	paraphrased	as:

Computer	performance	increases	as	the	square	of	the	cost.	If	Computer	A	costs	twice	as	much
as	Computer	B,	you	should	expect	Computer	A	to	be	four	times	as	fast	as	Computer	B.

Use	any	of	 the	TPC	benchmarks	 to	confirm	or	 refute	 this	claim.	What	happens	when	you	restrict
your	comparison	to	similar	systems?	More	specifically,	check	the	price/performance	statistics	for
systems	 running	 only	 the	 same	 class	 of	 operating	 system	 and	 database	 software.	What	 happens
when	you	don’t	restrict	the	comparison	to	similar	systems?	Do	these	results	change	when	you	select
a	different	benchmark,	e.g.,	TPC-W	versus	TPC-C?	Discuss	your	findings.

	
1	Tuning	information	supplied	in	full-disclosure	reports	is	a	valuable	resource	for	system	administrators	seeking	to	optimize	the	performance	of
a	 system	 similar	 to	 one	 covered	 by	 a	 TPC-C	 report.	 Because	 a	 real	 workload	 is	 not	 identical	 to	 the	 TPC-C	 suite,	 the	 reported	 tuning
information	may	not	give	optimal	results,	but	it’s	often	a	good	starting	point.



The	network	is	the	computer.TM

—Sun	Microsystems,	Inc.

CHAPTER	12



Network	Organization	and	Architecture

12.1			INTRODUCTION
Sun	Microsystems	launched	a	major	advertising	campaign	in	the	1980s	with	the	catchy	slogan	that	opens
this	chapter.	A	couple	decades	ago,	its	pitch	was	surely	more	sizzle	than	steak,	but	it	was	like	a	voice	in
the	wilderness,	heralding	today’s	wired	world	with	the	Web	at	the	heart	of	global	commerce.	Standalone
business	computers	are	now	obsolete	and	irrelevant.

This	 chapter	 will	 introduce	 you	 to	 the	 vast	 and	 complex	 arena	 of	 data	 communications	 with	 a
particular	 focus	 on	 the	 Internet.	 We	 will	 look	 at	 architectural	 models	 (network	 protocols)	 from	 a
historical	 point	 of	 view,	 a	 theoretical	 point	 of	 view,	 and	 a	 practical	 point	 of	 view.	Once	 you	 have	 an
understanding	of	 how	a	network	operates,	 you	will	 learn	 about	many	of	 the	 components	 that	 constitute
network	organization.	Our	intention	is	to	give	you	a	broad	view	of	the	technologies	and	terminology	that
every	 computer	 professional	 will	 encounter	 at	 some	 time	 during	 his	 or	 her	 career.	 To	 understand	 the
computer	is	to	also	understand	the	network.

12.2			EARLY	BUSINESS	COMPUTER	NETWORKS
Today’s	computer	networks	evolved	along	 two	different	paths.	One	path	was	directed	 toward	enabling
fast	 and	 accurate	 business	 transactions,	 whereas	 the	 other	 was	 aimed	 at	 facilitating	 collaboration	 and
knowledge	sharing	in	the	academic	and	scientific	communities.

Digital	networks	of	all	varieties	aspire	to	share	computer	resources	in	the	simplest,	fastest,	and	most
cost-effective	 manner	 possible.	 The	 more	 costly	 the	 computer,	 the	 stronger	 the	 motivation	 to	 share	 it
among	as	many	users	as	possible.	In	the	1950s,	when	most	computers	cost	millions	of	dollars,	only	the
wealthiest	companies	could	afford	more	than	one	system.	Of	course,	employees	in	remote	locations	had
as	much	need	for	computer	resources	as	their	central	office	counterparts,	so	some	method	of	getting	them
connected	had	to	be	devised.	And	virtually	every	vendor	had	a	different	connectivity	solution.	The	most
dominant	 of	 these	 vendors	 was	 IBM	 with	 its	 Systems	 Network	 Architecture	 (SNA).	 This
communications	architecture,	with	modifications,	has	persisted	for	more	than	three	decades.

IBM’s	 SNA	 is	 a	 specification	 for	 end-to-end	 communication	 between	 physical	 devices	 (called
physical	units,	or	PUs)	over	which	logical	sessions	(known	as	logical	units,	or	LUs)	 take	place.	In	the
original	 architecture,	 the	 physical	 components	 of	 this	 system	 consisted	 of	 terminals,	 printers,
communications	controllers,	multiplexers,	and	front-end	processors.	Front-end	processors	sat	between	the
host	(mainframe)	system	and	the	communications	lines.	They	managed	all	of	the	communications	overhead
including	 polling	 each	 of	 the	 communications	 controllers,	 which	 in	 turn	 polled	 each	 of	 their	 attached
terminals.	This	architecture	is	shown	in	Figure	12.1.

IBM’s	SNA	was	geared	toward	high-speed	transaction	entry	and	customer	service	inquiries.	Even	at
the	modest	line	speed	of	9,600bps	(bits	per	second),	access	to	data	on	the	host	was	nearly	instantaneous
when	 all	 network	 components	 were	 functioning	 properly	 under	 normal	 loads.	 The	 speed	 of	 this
architecture,	 however,	 came	 at	 the	 expense	 of	 flexibility	 and	 interoperability.	 The	 human	 overhead	 in
managing	and	supporting	these	networks	was	enormous,	and	connections	to	other	vendors’	equipment	and



networks	were	often	laudable	feats	of	software	and	hardware	engineering.	Over	the	past	30	years,	SNA
has	 adapted	 to	 changing	 business	 needs	 and	 networking	 environments,	 but	 the	 underlying	 concepts	 are
essentially	what	they	were	decades	ago.	In	fact,	this	architecture	was	so	well	designed	that	aspects	of	it
formed	the	foundation	for	the	definitive	international	communications	architecture,	OSI,	which	we	discuss
in	 Section	 12.4.	 Although	 SNA	 contributed	 much	 to	 the	 young	 science	 of	 data	 communications,	 the
technology	 has	 just	 about	 run	 its	 course.	 In	most	 installations,	 it	 has	 been	 replaced	 by	 “open”	 Internet
protocols.

12.3	EARLY	ACADEMIC	AND	SCIENTIFIC	NETWORKS:	THE
ROOTS	AND	ARCHITECTURE	OF	THE	INTERNET

Amid	 the	 angst	 of	 the	 Cold	 War,	 American	 scientists	 at	 far-flung	 research	 institutions	 toiled	 under
government	contracts,	seeking	to	preserve	the	military	ascendancy	of	the	United	States.	At	a	time	when	the
country	had	fallen	behind	in	the	technology	race,	the	U.S.	government	created	an	organization	called	the
Advanced	Research	Projects	Agency	(ARPA).	The	sophisticated	computers	this	organization	needed	to
carry	out	its	work,	however,	were	scarce	and	extremely	costly—even	by	Pentagon	standards.	Before	long,
it	occurred	 to	someone	 that	by	establishing	communication	 links	 into	 the	few	supercomputers	 that	were
scattered	all	over	the	United	States,	computational	resources	could	be	shared	by	innumerable	like-minded
researchers.	 Moreover,	 this	 network	 would	 be	 designed	 with	 sufficient	 redundancy	 to	 provide	 for
continuous	 communication,	 even	 if	 thermonuclear	 war	 knocked	 out	 a	 large	 number	 of	 nodes	 or
communication	lines.	To	this	end,	in	December	1968,	a	Cambridge,	Massachusetts,	consulting	firm	called
BBN	(Bolt,	Beranek,	and	Newman,	now	Genuity	Corporation)	was	awarded	the	contract	to	construct	such
a	 network.	 In	December	 1969,	 four	 nodes,	 the	University	 of	Utah,	 the	University	 of	 California	 at	 Los
Angeles,	the	University	of	California	at	Santa	Barbara,	and	the	Stanford	Research	Institute,	went	online.
ARPAnet	 gradually	 expanded	 to	 include	 more	 government	 and	 research	 institutions.	 When	 President
Reagan	changed	the	name	of	ARPA	to	the	Defense	Advanced	Research	Projects	Network	 (DARPA),
ARPAnet	became	DARPAnet.	Through	the	early	1980s,	nodes	were	added	at	a	rate	of	a	little	more	than
one	per	month.	However,	military	researchers	eventually	abandoned	DARPAnet	in	favor	of	more	secure
channels.



FIGURE	12.1	A	Hierarchical,	Polled	Network

In	1985,	the	National	Science	Foundation	(NSF)	established	its	own	network,	NSFnet,	to	support	its
scientific	 and	 academic	 research.	NSFnet	 and	DARPAnet	 served	 a	 similar	 purpose	 and	 a	 similar	 user
community,	 but	 the	 capabilities	 of	 NSFnet	 outstripped	 those	 of	 DARPAnet.	 Consequently,	 when	 the
military	abandoned	DARPAnet,	NSFnet	absorbed	it	and	became	what	we	now	know	as	the	Internet.	By
the	 early	 1990s,	 the	 NSF	 had	 outgrown	NSFnet,	 so	 it	 began	 building	 a	 faster,	 more	 reliable	 NSFnet.
Administration	 of	 the	 public	 Internet	 then	 fell	 to	 private	 national	 and	 regional	 corporations,	 such	 as
Sprint,	 MCI,	 and	 PacBell,	 to	 name	 a	 few.	 These	 companies	 bought	 the	 NSFnet	 trunk	 lines,	 called
backbones,	and	made	money	by	selling	backbone	capacity	to	various	Internet	service	providers	(ISPs).

The	 original	DARPAnet	 (and	 now	 the	 Internet)	would	 have	 survived	 thermo-nuclear	war	 because,
unlike	 all	 other	 networks	 in	 existence	 in	 the	 1970s,	 it	 had	 no	 dedicated	 connections	 between	 systems.
Information	 was	 instead	 routed	 along	 whatever	 pathways	 were	 available.	 Parts	 of	 the	 data	 stream
belonging	to	a	single	dialogue	could	take	different	routes	to	their	destinations.	The	key	to	this	robustness
is	the	idea	of	datagram	message	packets,	which	carry	data	in	chunks	instead	of	the	streams	used	by	the
SNA	model.	Each	datagram	contains	addressing	 information	so	 that	every	datagram	can	be	 routed	as	a
single,	discrete	unit.

A	 second	 revolutionary	 aspect	 of	 DARPAnet	 was	 that	 it	 created	 a	 uniform	 protocol	 for
communications	between	dissimilar	hosts	along	networks	of	differing	speeds.	Because	it	connected	many
different	kinds	of	networks,	DARPAnet	was	said	 to	be	an	 internetwork.	As	originally	 specified,	 each
host	computer	connected	 to	DARPAnet	by	way	of	an	Interface	Message	Processor	 (IMP).	 IMPs	 took
care	of	protocol	translation	from	the	language	of	DARPAnet	to	the	communications	language	native	to	the
host	system,	so	any	communications	protocol	could	be	used	between	the	IMP	and	the	host.	Today,	routers
(discussed	 in	 Section	 12.6.7)	 have	 replaced	 IMPs,	 and	 the	 communications	 protocols	 are	 less



heterogeneous	than	they	were	in	the	1970s.	However,	the	underlying	principles	have	remained	the	same,
and	 the	 generic	 concept	 of	 internetworking	 has	 become	 practically	 synonymous	 with	 the	 Internet.	 A
modern	internetwork	configuration	is	shown	in	Figure	12.2.	The	diagram	shows	how	four	routers	form	the
heart	of	the	network.	They	connect	many	different	types	of	equipment,	making	decisions	on	their	own	as	to
how	datagrams	should	get	to	their	destinations	in	the	most	efficient	way	possible.

The	 Internet	 is	much	more	 than	 a	 set	 of	 good	 data	 communication	 specifications.	 It	 is,	 perhaps,	 a
philosophy.	The	foremost	principle	of	this	philosophy	is	the	idea	of	a	free	and	open	world	of	information
sharing,	with	 the	destiny	of	 this	world	being	shaped	collaboratively	by	 the	people	and	 ideas	 in	 it.	The
epitome	 of	 this	 openness	 is	 the	manner	 in	which	 Internet	 standards	 are	 created.	 Internet	 standards	 are
formulated	through	a	democratic	process	that	takes	place	under	the	auspices	of	the	Internet	Architecture
Board	 (IAB),	which	 itself	operates	under	 the	oversight	of	 the	not-for-profit	Internet	Society	 (ISOC).
The	Internet	Engineering	Task	Force	(IETF),	operating	within	the	IAB,	is	a	loose	alliance	of	industry
experts	 that	 develops	 detailed	 specifications	 for	 Internet	 protocols.	 The	 IETF	 publishes	 all	 proposed
standards	 in	 the	 form	 of	Requests	 for	 Comment	 (RFCs),	 which	 are	 open	 to	 anyone’s	 scrutiny	 and
comment.	 The	 two	 most	 important	 RFCs—RFC	 791	 (Internet	 Protocol	 Version	 4)	 and	 RFC	 793
(Transmission	Control	Protocol)—form	the	foundation	of	today’s	global	Internet.

FIGURE	12.2	An	Example	of	an	Internetwork

The	organization	of	all	the	ISOC’s	committees	under	more	committees	could	have	resulted	in	a	tangle
of	 bureaucracy	 producing	 inscrutable	 and	 convoluted	 specifications.	 But	 owing	 to	 the	 openness	 of	 the
entire	process,	as	well	as	 the	 talents	of	 the	reviewers,	RFCs	are	among	the	clearest	and	most	readable
documents	in	the	entire	body	of	networking	literature.	It	is	little	wonder	that	manufacturers	were	so	quick
to	adopt	Internet	protocols.	Internet	protocols	are	now	running	on	all	sizes	of	networks,	both	publicly	and
privately	 owned.	 Formerly,	 networking	 standards	 were	 handed	 down	 by	 a	 centralized	 committee	 or
through	 an	 equipment	 vendor.	 One	 such	 approach	 resulted	 in	 the	 ISO/OSI	 protocol	 model,	 which	 we



discuss	next.

12.4	NETWORK	PROTOCOLS	I:	ISO/OSI	PROTOCOL
UNIFICATION

In	Chapter	13,	we	show	how	various	data	storage	interfaces	use	protocol	stacks.	The	SCSI-3	Architecture
Model	is	one	of	these.	In	general,	protocol	stacks	make	all	kinds	of	interfaces	portable,	maintainable,	and
easy	 to	 describe.	 The	 most	 important	 and	 comprehensive	 of	 these	 is	 the	 ISO/OSI	 (International
Organization	 for	 Standardization/Open	 Systems	 Interconnect)	 protocol	 stack,	 which	 is	 the	 theoretical
model	for	many	storage	and	data	communication	interfaces	and	protocols.	Although	each	protocol	differs
in	 implementation	details,	 the	general	 idea	 is	 the	same:	Each	 layer	of	 the	protocol	 interfaces	only	with
layers	 adjacent	 to	 itself.	 No	 layer	 skipping	 is	 allowed.	 Protocol	 conversations	 take	 place	 between
identical	 protocol	 layers	 running	 on	 two	 different	 machines.	 The	 exact	 manner	 in	 which	 this
communication	takes	place	is	clearly	defined	in	the	international	standards.

By	 the	 late	 1970s,	 nearly	 every	 computer	 manufacturer	 had	 devised	 its	 own	 proprietary
communication	protocols.	The	details	of	these	protocols	were	sometimes	held	secret	by	their	inventors	as
a	way	to	ensure	a	lock	on	the	markets	where	their	products	were	sold.	Equipment	built	by	Vendor	A	could
not	communicate	with	equipment	built	by	Vendor	B	unless	protocol	conversion	kits	(black	boxes)	were
placed	 between	 the	 two	 systems.	 Even	 then,	 the	 black	 boxes	 might	 not	 perform	 as	 expected,	 usually
because	a	vendor	had	changed	some	protocol	parameter	after	the	box	was	built.

Two	 of	 the	 world’s	 premiere	 standards-making	 bodies	 realized	 that	 this	 Tower	 of	 Babel	 was
becoming	increasingly	costly,	ultimately	working	against	 the	advancement	of	 information	sharing.	 In	 the
late	 1970s	 and	 early	 1980s,	 both	 the	 International	 Organization	 for	 Standardization	 (ISO)	 and	 the
International	 Consultative	 Committee	 on	 Telephony	 and	 Telegraphy	 (CCITT)	 were	 independently
attempting	 to	 construct	 an	 international	 standard	 telecommunications	 architecture.	 In	 1984,	 these	 two
entities	came	together	to	produce	a	unified	model,	now	known	as	the	ISO	Open	Systems	Interconnect
Reference	Model	(ISO/OSI	RM).	(Open	systems,	in	this	context,	means	that	system	connectivity	would
not	be	proprietary	to	any	single	vendor.)	The	ISO’s	work	is	called	a	reference	model	because	virtually	no
commercial	 system	uses	 all	of	 the	 features	precisely	as	 specified	 in	 the	model.	However,	 the	 ISO/OSI
model	does	help	us	to	understand	how	real	protocols	and	network	components	fit	together	in	the	context
of	a	standard	model.

The	OSI	RM	contains	seven	protocol	layers,	starting	with	physical	media	interconnections	at	Layer	1,
through	applications	at	Layer	7.	We	must	emphasize	that	the	OSI	model	defines	only	the	functions	of	each
of	 the	 seven	 layers	 and	 the	 interfaces	 between	 them.	 Implementation	 details	 are	 not	 part	 of	 the	model.
Many	 different	 standardization	 bodies,	 including	 the	 IEEE,	 the	 European	 Computer	 Manufacturers
Association	 (ECMA),	 the	 International	 Telecommunication	 Union-Telecommunication	 Standardization
Sector	 (ITU-T),	 and	 the	 ISO	 itself	 (external	 to	 the	 ISO	 model),	 have	 provided	 such	 detail.
Implementations	at	the	highest	layers	can	be	completely	user	defined.

12.4.1		A	Parable
Before	 we	 embark	 on	 the	 technicalities	 of	 the	 OSI	 RM,	 let	 us	 offer	 a	 parable	 to	 help	 illustrate	 how
layered	protocols	work.	Suppose	you	have	lost	a	bet	with	your	sister	and	the	price	 is	 to	spend	the	day
with	your	nephew,	Billy.	Billy	is	a	notorious	brat	who	throws	tantrums	when	he	doesn’t	get	his	own	way.



Today	he	has	decided	that	he	wants	a	roast	beef	sandwich	from	Dumpy’s	Deli	down	the	street.	This	roast
beef	sandwich	must	be	dressed	with	mustard	and	pickles.	Nothing	more,	nothing	less.

Upon	entering	the	deli,	you	seat	Billy	and	take	a	number	from	the	dispenser	near	the	counter.	There	is
a	cashier	 taking	orders	and	a	 second	person	assembling	orders	 in	a	 food	preparation	area.	The	deli	 is
packed	with	hungry	workers	on	their	lunch	hours.	You	remark	to	yourself	that	the	service	seems	unusually
slow	this	day.	Billy	starts	to	announce	loudly	that	he	is	hungry,	while	he	thumps	his	little	fists	on	the	table.

Despite	 how	 badly	 you	want	 Billy’s	 sandwich,	 by	 waiting	 for	 your	 number	 to	 be	 called,	 you	 are
obeying	a	protocol.	You	know	that	pushing	yourself	ahead	of	the	others	will	get	you	nowhere.	In	fact,	if
you	defy	the	protocol,	you	could	be	ejected	from	the	deli,	making	matters	worse.

When	 you	 finally	 get	 your	 turn	 at	 the	 counter	 (Billy	 by	 now	 is	 yelling	 quite	 loudly),	 you	 give	 the
cashier	your	order,	adding	a	 tuna	sandwich	and	chips	 for	yourself.	The	cashier	 fetches	your	drinks	and
tells	 the	 food	handler	 to	prepare	a	 tuna	sandwich	and	a	 roast	beef	sandwich	with	mustard	and	pickles.
Although	 the	 cook	could	hear	 every	word	of	Billy’s	 luncheon	desires	 above	 the	din	of	 the	 crowd,	 she
waited	until	the	cashier	told	her	what	to	prepare.

Billy,	therefore,	could	not	skip	over	the	cashier	layer	of	the	deli	protocol	regardless	of	how	loudly	he
yelled.	Before	assembling	the	sandwiches,	the	food	handler	had	to	know	that	the	order	was	legitimate	and
that	a	customer	was	willing	to	pay	for	it.	She	could	know	this	only	by	being	told	by	the	cashier.

Once	the	sandwiches	have	been	prepared,	the	cook	wraps	them	individually	in	deli	paper,	marking	the
paper	to	indicate	the	contents	of	each.	The	cashier	fetches	the	sandwiches,	placing	them	both	in	a	brown
bag,	along	with	your	chips	and	 two	cans	of	cola.	She	announces	 that	your	bill	 is	$6.25,	 for	which	you
hand	her	a	$10.00	bill.	She	gives	you	$4.75	in	change.	Because	she	has	given	you	the	wrong	change,	you
stand	at	the	counter	until	you	are	given	the	correct	change,	then	you	proceed	to	your	table.

Upon	unwrapping	the	sandwich,	Billy	discovers	that	his	roast	beef	sandwich	is	in	fact	a	corned	beef
sandwich,	 triggering	yet	 another	 round	of	whining.	You	have	no	choice	but	 to	 take	another	number	and
wait	in	line	until	it	is	called.

Your	 refusal	 to	 leave	 the	 counter	when	given	 the	wrong	change	 is	 analogous	 to	 error-checking	 that
takes	place	between	the	layers	of	a	protocol.	The	transmission	does	not	proceed	until	the	receiving	layer
is	 satisfied	 with	 what	 it	 has	 received	 from	 the	 sending	 layer.	 Of	 course,	 you	 didn’t	 feel	 comfortable
unwrapping	Billy’s	sandwich	while	standing	at	the	counter	(that	would,	after	all,	be	icky).

The	sandwiches,	along	with	their	wrapping,	correspond	to	OSI	Protocol	Data	Units	 (PDUs).	Once
data	 has	 been	 encapsulated	 by	 an	 upper-layer	 protocol,	 a	 lower-layer	 protocol	 will	 not	 examine	 its
contents.	Neither	you	nor	 the	cashier	unwrapped	 the	 sandwiches.	The	cashier	 created	yet	 another	PDU
when	she	placed	your	order	in	the	bag.	Because	your	order	was	in	a	bag,	you	could	easily	carry	it	to	your
table.	Juggling	two	colas,	two	sandwiches,	and	a	bag	of	chips	through	a	crowded	deli	may	indeed	have
had	disastrous	consequences.

At	Dumpy’s	Deli,	you	know	that	if	you	want	something	to	eat,	you	can’t	go	directly	to	the	cook,	nor
can	you	go	to	another	customer,	nor	 to	a	maintenance	person.	For	 lunch	service,	you	can	go	only	to	 the
cashier	after	 taking	a	number.	The	number	you	pull	 from	 the	dispenser	 is	analogous	 to	an	OSI	Service
Access	Point	(SAP).	The	cashier	grants	you	permission	 to	place	your	order	only	when	you	present	 the
ticket	that	proves	you	are	the	next	in	line.

12.4.2		The	OSI	Reference	Model
The	OSI	Reference	Model	is	shown	in	Figure	12.3.	As	you	can	see,	the	protocol	consists	of	seven	layers.
Adjacent	 layers	 interface	 with	 each	 other	 through	 SAPs,	 and	 as	 the	 protocol	 data	 units	 (PDUs)	 pass



through	the	stack,	each	protocol	layer	adds	or	removes	its	own	header.	Headers	are	added	on	the	sending
end,	and	they	are	removed	by	the	receiving	end.	The	contents	of	the	PDUs	create	a	conversation	between
peer	layers	on	each	side	of	the	dialogue.	This	conversation	is	their	protocol.

Having	employed	a	story	to	explain	the	ideas	of	PDUs	and	SAPs,	we	supply	another	metaphor	to	help
us	further	explain	 the	OSI	Reference	Model.	 In	 this	metaphor,	suppose	 that	you	are	operating	your	own
business.	This	business,	called	Super	Soups	and	Tasty	Teas,	manufactures	gourmet	soup	and	 tea	 that	 is
sold	all	over	North	America	to	people	of	discriminating	tastes.	In	order	to	get	your	luscious	wares	where
they	are	going,	you	use	a	private	shipping	company,	Ginger,	Lee,	and	Pronto,	also	known	as	GL&P.	The
system	of	manufacturing	your	wares	and	their	ultimate	consumption	by	your	epicurean	customers	spans	a
series	of	processes	analogous	to	those	carried	out	by	the	layers	of	the	OSI	Reference	Model,	as	we	shall
see	in	the	following	sections.

The	OSI	Physical	Layer
Many	different	kinds	of	media	are	capable	of	carrying	bits	between	a	communication	source	(the	initiator)
and	their	destination	(the	responder).	Neither	the	initiator	nor	the	responder	need	have	any	concern	as	to
whether	 their	conversation	 takes	place	over	copper	wire,	satellite	 links,	or	optical	cable.	The	Physical
layer	of	the	OSI	model	assumes	the	job	of	carrying	a	signal	from	here	to	there.	It	receives	a	stream	of	bits
from	the	Data	Link	layer	above	it,	encodes	those	bits,	and	places	them	on	the	communications	medium	in
accordance	with	agreed-on	protocols	and	signaling	standards.

The	function	of	the	OSI	Physical	layer	can	be	compared	to	that	of	the	vehicles	that	the	GL&P	shipping
company	 uses	 to	 move	 products	 from	 your	 factory	 to	 your	 customer.	 After	 giving	 your	 parcel	 to	 the
delivery	 company,	 you	 usually	 don’t	 care	whether	 the	 parcel	 is	 carried	 to	 its	 destination	 on	 a	 train,	 a
truck,	an	airplane,	or	 a	 ferryboat,	 as	 long	as	 it	 arrives	at	 its	destination	 intact	 and	within	a	 reasonable
amount	of	time.	The	handlers	along	the	way	have	no	concern	as	to	the	contents	of	the	parcel,	only	as	to	the
address	on	the	box	(sometimes	even	ignoring	the	word	fragile!).	Similar	to	how	a	freight	company	moves
boxes,	the	OSI	Physical	layer	moves	transmission	frames,	which	are	sometimes	called	physical	Protocol
Data	Units,	or	physical	PDUs.	Each	physical	PDU	carries	an	address	and	has	delimiter	signal	patterns
that	surround	the	payload,	or	contents,	of	the	PDU.



FIGURE	12.3	The	OSI	Reference	Model—Interfaces	Operate	Vertically;	Protocols	Operate	Horizontally

The	OSI	Data	Link	Layer
When	 you	 send	 your	 package,	 the	 actions	 of	 placing	 articles	 in	 a	 suitable	 shipping	 container	 and
addressing	the	package	are	comparable	 to	 the	function	of	 the	OSI	Data	Link	layer.	The	Data	Link	layer
organizes	message	bytes	into	frames	of	suitable	size	for	transmission	along	the	physical	medium.	If	you
were	shipping	50kg	of	soup	and	tea,	and	GL&P	has	a	rule	that	no	package	can	weigh	more	than	40kg,	you
would	need	at	least	two	separate	boxes	to	ship	your	articles.	The	Data	Link	layer	does	the	same	thing.	It
negotiates	frame	sizes	and	the	speed	at	which	they	are	sent	with	the	Data	Link	layer	at	the	other	end.

The	 timing	of	 frame	 transmission	 is	 called	 flow	control.	 If	 frames	 are	 sent	 too	 fast,	 the	 receiver’s



buffer	could	overflow,	causing	frames	to	be	lost.	If	the	frames	are	not	sent	quickly	enough,	the	receiver
could	 time	out	and	drop	 the	connection.	 In	both	of	 these	cases,	 the	Data	Link	 layer	senses	 the	problem
when	 the	 receiver	 does	 not	 acknowledge	 the	 packets	 within	 a	 specified	 time	 interval.	 Lacking	 this
acknowledgment,	the	sender	retransmits	the	packet.

The	OSI	Network	Layer
Suppose	you	could	tell	GL&P,	“Send	this	package	through	Newark,	New	Jersey,	because	the	terminal	in
New	York	City	 is	always	 too	crowded	 to	get	my	package	 through	on	 time.”	Stated	another	way,	 if	you
could	tell	the	freight	carrier	how	to	route	your	package,	you	would	be	performing	the	same	function	as	the
Network	layer	of	the	OSI	model.	The	package	handlers	at	a	Philadelphia	terminal,	however,	would	also
be	performing	a	Network	layer	function	if	they	decide	to	route	the	package	through	Newark	after	they’ve
learned	 of	 an	 unusual	 problem	 in	New	York.	 This	 kind	 of	 localized	 decision	making	 is	 critical	 to	 the
operation	of	every	large	internetwork.	Because	of	the	complexity	of	most	networks,	it	is	impossible	for
every	end	node	computer	to	keep	track	of	every	possible	route	to	every	destination,	so	the	functions	of	the
Network	layer	are	spread	throughout	the	entire	system.

At	the	originating	computers,	the	Network	layer	doesn’t	do	much	except	add	addressing	information	to
the	PDUs	from	the	Transport	layer,	and	then	pass	them	on	to	the	Data	Link	layer.	It	does	its	most	important
and	complex	tasks	while	moving	PDUs	across	the	intermediate	nodes—those	nodes	that	act	like	freight
terminals	in	the	network.	The	Network	layer	not	only	establishes	the	route,	but	also	ensures	that	the	size	of
its	PDUs	is	compatible	with	all	of	the	equipment	between	the	source	and	the	destination.

The	OSI	Transport	Layer
Let’s	 say	 that	 the	 destination	 of	 your	 parcels,	 filled	 with	 canned	 soup	 and	 packaged	 teas,	 is	 a	 food
distribution	warehouse	in	Quebec.	Upon	its	arrival,	a	shipping	clerk	opens	the	package	to	make	sure	that
the	goods	were	not	damaged	in	transit.	She	opens	each	box,	looking	for	dented	cans	and	ripped	tea	boxes.
She	doesn’t	care	whether	the	soup	is	 too	salty	or	the	tea	is	 too	tart,	only	that	 the	products	have	arrived
intact	and	undamaged.	Once	the	goods	pass	her	inspection,	the	clerk	signs	a	receipt	that	GL&P	returns	to
you,	letting	you	know	that	your	products	got	to	their	destination.

Similarly,	the	OSI	Transport	layer	provides	quality	assurance	functions	for	the	layers	above	it	in	the
protocol	stack.	It	contributes	yet	another	level	of	end-to-end	acknowledgment	and	error	correction	through
its	 handshaking	with	 the	Transport	 layer	 at	 the	 other	 end	 of	 the	 connection.	The	Transport	 layer	 is	 the
lowest	layer	of	the	OSI	model	at	which	there	is	any	awareness	of	the	network	or	its	protocols.	Once	the
Transport	layer	peels	its	protocol	information	away	from	the	Session	PDU,	the	Session	layer	can	safely
assume	that	there	are	no	network-induced	errors	in	the	PDU.

The	OSI	Session	Layer
The	Session	 layer	 arbitrates	 the	 dialogue	 between	 two	 communicating	 nodes,	 opening	 and	 closing	 that
dialogue	as	necessary.	It	controls	the	direction	and	mode,	which	is	either	half-duplex	(in	one	direction	at
a	time)	or	full-duplex	(in	both	directions	at	once).	If	the	mode	is	half-duplex,	the	Session	layer	determines
which	 node	 has	 control	 of	 the	 line.	 It	 also	 supplies	 recovery	 checkpoints	 during	 file	 transfers.
Checkpoints	 are	 issued	 each	 time	 a	 packet,	 or	 block	 of	 data,	 is	 acknowledged	 as	 received	 in	 good
condition.	If	an	error	occurs	during	a	large	file	transfer,	the	Session	layer	retransmits	all	data	from	the	last
checkpoint.	Without	checkpoint	processing,	the	entire	file	would	need	to	be	retransmitted.



If	the	shipping	clerk	notices	that	one	of	your	boxes	was	smashed	in	transit,	she	would	notify	you	(as
well	 as	 GL&P)	 that	 the	 goods	 did	 not	 arrive	 intact	 and	 that	 you	 must	 send	 another	 shipment.	 If	 the
damaged	parcel	was	a	10kg	box	of	a	50kg	shipment,	you	would	replace	only	the	contents	of	the	10kg	box;
the	other	40kg	of	merchandise	could	be	sent	on	its	way	to	the	consumer.

The	OSI	Presentation	Layer
What	if	the	consumers	of	your	soup	and	tea	reside	in	the	Quebec	market	area	and	the	labels	on	your	soup
cans	are	in	English	only?	If	you	expect	to	sell	your	soup	to	people	who	speak	French,	you	would	certainly
want	your	soup	cans	to	have	bilingual	labels.	If	employees	of	the	Quebec	food	distribution	warehouse	do
this	for	you,	they	are	doing	what	the	Presentation	layer	does	in	the	OSI	model.

The	 Presentation	 layer	 provides	 high-level	 data	 interpretation	 services	 for	 the	 Application	 layer
above	it.	For	example,	suppose	one	network	node	is	an	IBM	zSeries	Server	that	stores	and	transmits	data
in	EBCDIC.	This	mainframe	server	needs	to	send	some	data	to	an	ASCII-based	microcomputer	that	has
just	requested	it.	The	Presentation	layers	residing	on	the	respective	systems	decide	which	of	the	two	will
perform	 the	 EBCDIC-to-ASCII	 translation.	 Either	 side	 could	 do	 it	 with	 equal	 effectiveness.	 What	 is
important	 to	 remember	 is	 that	 the	 mainframe	 is	 sending	 EBCDIC	 to	 its	 Application	 layer	 and	 the
Application	layer	on	the	client	is	receiving	ASCII	from	the	Presentation	layer	beneath	it	in	the	protocol
stack.	Presentation	layer	services	are	also	called	into	play	if	we	use	encryption	or	certain	types	of	data
compression	during	the	communication	session.

The	OSI	Application	Layer
The	 Application	 layer	 supplies	 meaningful	 information	 and	 services	 to	 users	 at	 one	 end	 of	 the
communication	 and	 interfaces	with	 system	 resources	 (programs	 and	 data	 files)	 at	 the	 other	 end	 of	 the
communication.	Application	layers	provide	a	suite	of	programs	that	can	be	invoked	as	the	user	sees	fit.	If
none	of	the	applications	routinely	supplied	by	the	Application	layer	can	do	the	job,	we	are	free	to	write
our	 own.	With	 regard	 to	 communications,	 the	 only	 thing	 that	 these	 applications	 need	 to	 do	 is	 to	 send
messages	to	the	Presentation	layer	Service	Access	Points,	and	the	lower	layers	take	care	of	the	hard	part.

To	enjoy	a	savory	serving	of	Super	Soups,	all	that	the	French	Canadian	soup	connoisseur	needs	to	do
is	 open	 the	 can,	 heat,	 and	 enjoy.	Because	GL&P	 and	 the	 regional	 food	 distributor	 have	 all	 done	 their
work,	your	soup	is	as	tasty	on	the	Canadian’s	table	as	it	was	coming	out	of	your	kitchen.	(Magnifique!)

12.5			NETWORK	PROTOCOLS	II:	TCP/IP	NETWORK
ARCHITECTURE

While	the	ISO	and	the	CCITT	were	haggling	over	the	finer	points	of	the	perfect	protocol	stack,	TCP/IP
was	 rapidly	 spreading	 across	 the	 globe.	 By	 the	 sheer	 weight	 of	 its	 popularity	 in	 the	 academic	 and
scientific	communications	communities,	TCP/IP	quietly	became	 the	de	facto	global	data	communication
standard.

Although	it	didn’t	start	out	that	way,	TCP/IP	is	now	a	lean	and	effective	protocol	stack.	It	has	three
layers	that	can	be	mapped	to	five	of	the	seven	layers	in	the	OSI	model.	These	layers	are	shown	in	Figure
12.4.	Because	the	IP	layer	is	loosely	coupled	with	OSI’s	Data	Link	and	Physical	layers,	TCP/IP	can	be
used	with	 any	 type	 of	 network,	 even	 different	 types	 of	 networks	within	 a	 single	 session.	 The	 singular
requirement	 is	 that	 all	 of	 the	 participating	 networks	 must	 be	 running—at	 minimum—Version	 4	 of	 the



Internet	Protocol	(IPv4).
There	are	two	versions	of	the	Internet	Protocol	in	use	today:	Version	4	and	Version	6.	IPv6	addresses

many	of	 the	 limitations	 of	 IPv4.	Despite	 the	many	 advantages	 of	 IPv6,	 the	 huge	 installed	base	 of	 IPv4
ensures	that	it	will	be	supported	for	many	years	to	come.	Some	of	the	major	differences	between	IPv4	and
IPv6	are	outlined	in	Section	12.5.5.	But	first,	we	take	a	detailed	look	at	IPv4.

12.5.1		The	IP	Layer	for	Version	4
The	IP	layer	of	the	TCP/IP	protocol	stack	provides	essentially	the	same	services	as	the	Network	and	Data
Link	layers	of	the	OSI	Reference	Model:	It	divides	TCP	packets	into	protocol	data	units	called	datagrams,
and	then	attaches	the	routing	information	required	to	get	the	datagrams	to	their	destinations.	The	concept
of	the	datagram	was	fundamental	to	the	robustness	of	ARPAnet,	and	now	the	Internet.	Datagrams	can	take
any	 route	 available	 to	 them	without	 intervention	 by	 a	 human	 network	manager.	 Take,	 for	 example,	 the
network	shown	in	Figure	12.5.	If	 intermediate	node	X	becomes	congested	or	fails,	 intermediate	node	Y
can	 route	 datagrams	 through	 node	 Z	 until	 X	 is	 back	 up	 to	 full	 speed.	 Routers	 are	 the	 Internet’s	 most
critical	 components,	 and	 researchers	 are	 continually	 seeking	 ways	 to	 improve	 their	 effectiveness	 and
performance.	We	look	at	routers	in	detail	in	Section	12.6.7.

FIGURE	12.4	The	TCP/IP	Protocol	Stack	Versus	the	OSI	Protocol	Stack

The	bytes	that	constitute	any	of	the	TCP/IP	protocol	data	units	are	called	octets.	This	is	because	at	the
time	that	the	ARPAnet	protocols	were	being	designed,	the	word	byte	was	thought	to	be	a	proprietary	term
for	the	8-bit	groups	used	by	IBM	mainframes.	Most	TCP/IP	literature	uses	the	word	octet,	but	we	use	byte
for	the	sake	of	clarity.

FIGURE	12.5	Datagram	Routing	in	IP



THE	IP	VERSION	4	DATAGRAM	HEADER

Each	IPv4	datagram	must	contain	at	least	40	bytes,	which	include	a	24-byte	header	as	shown	above.
The	horizontal	rows	represent	32-bit	words.	Upon	inspection	of	the	figure,	you	can	see,	for	example,	that
the	Type	of	Service	field	occupies	bits	8	through	15,	whereas	the	Packet	Identification	field	occupies	bits
32	through	47	of	the	header.	The	Padding	field	shown	as	the	last	field	of	the	header	ensures	that	the	data
that	follows	the	header	starts	on	an	even	32-bit	boundary.	The	Padding	always	contains	zeroes.	The	other
fields	in	the	IPv4	header	are:

•	 	 	Version—Specifies	 the	 IP	 protocol	 version	 being	 used.	 The	 version	 number	 tells	 all	 the	 hardware
along	the	way	the	length	of	the	datagram	and	what	content	to	expect	in	its	header	fields.	For	IPv4,	this
field	is	always	0100	(because	01002	=	410).

•			Header	Length—Gives	the	length	of	the	header	in	32-bit	words.	The	size	of	the	IP	header	is	variable,
depending	on	the	value	of	the	IP	Options	fields,	but	the	minimum	value	for	a	correct	header	is	5.

•	 	 	Type	of	Service—Controls	the	priority	that	 the	datagram	is	given	by	intermediate	nodes.	Values	can
range	from	“routine”	(000)	to	“critical”	(101).	Network	control	datagrams	are	indicated	with	110	and
111.

•			Total	Length—Gives	the	length	of	the	entire	IP	datagram	in	bytes.	As	you	can	see	by	the	layout	above,	2
bytes	are	reserved	for	this	purpose.	Hence,	the	largest	allowable	IP	datagram	is	216	–	1,	or	65,535.

•			Packet	ID—Each	datagram	is	assigned	a	serial	number	as	it	is	placed	on	the	network.	The	combination
of	Host	ID	and	Packet	ID	uniquely	identifies	each	IP	datagram	in	existence	at	any	time	in	the	world.

•	 	 	 Flags—Specifies	 whether	 the	 datagram	 may	 be	 fragmented	 (broken	 into	 smaller	 datagrams)	 by
intermediate	 nodes.	 IP	 networks	 must	 be	 able	 to	 handle	 datagrams	 of	 at	 least	 576	 bytes.	 Most	 IP
networks	can	deal	with	packets	that	are	about	8KB	long.	With	the	“Don’t	Fragment”	bit	set,	an	8KB
datagram	will	not	be	routed	over	a	network	that	says	it	can	handle	only	2KB	packets,	for	example.

•			Fragment	Offset—Indicates	the	location	of	a	fragment	within	a	certain	datagram.	That	is,	it	tells	which
part	of	the	datagram	the	fragment	came	from.

•	 	 	Time	to	Live	(TTL)—TTL	was	originally	 intended	 to	measure	 the	number	of	seconds	for	which	 the



datagram	 would	 remain	 valid.	 Should	 a	 datagram	 get	 caught	 in	 a	 routing	 loop,	 the	 TTL	 would
(theoretically)	expire	before	 the	datagram	could	contribute	 to	a	congestion	problem.	 In	practice,	 the
TTL	field	is	decremented	each	time	it	passes	through	an	intermediate	network	node,	so	this	field	does
not	 really	measure	 the	 number	 of	 seconds	 that	 a	 packet	 lives,	 but	 the	 number	 of	 hops	 it	 is	 allowed
before	it	reaches	its	destination.

•			Protocol	Number—Indicates	which	higher-layer	protocol	is	sending	the	data	that	follows	the	header.
Some	of	the	important	values	for	this	field	are:

0	=	Reserved

1	=	Internet	Control	Message	Protocol	(ICMP)

6	=	Transmission	Control	Protocol	(TCP)

17	=	User	Datagram	Protocol	(UDP)

TCP	is	described	in	Section	12.5.3.

•			Header	Checksum—This	field	is	calculated	by	first	calculating	the	one’s	complement	sum	of	all	16-bit
words	in	the	header,	and	then	taking	the	one’s	complement	of	this	sum,	with	the	checksum	field	itself
originally	set	to	all	zeroes.	The	one’s	complement	sum	is	the	arithmetic	sum	of	two	of	the	words	with
the	 (seventeenth)	 carry	 bit	 added	 to	 the	 lowest	 bit	 position	 of	 the	 sum.	 (See	 Section	 2.4.2.)	 For
example,	11110011	+	10011010	=	110001101	=	10001110	using	one’s	complement	arithmetic.	What
this	means	is	that	if	we	have	an	IP	datagram	of	the	form	shown	to	the	right,	each	wi	is	a	16-bit	word	in
the	IP	datagram.	The	complete	checksum	would	be	computed	over	two	16-bit	words	at	a	time:	w1	+	w2

=	S1;	S1	+	w3	=	S2;	…	Sk	+	wk–2	=	Sk+1.
•	 	 	 Source	 and	Destination	Addresses—Tell	where	 the	 datagram	 is	 going.	We	 have	much	more	 to	 say

about	these	32-bit	fields	in	Section	12.5.2.
•			IP	Options—Provides	diagnostic	information	and	routing	controls.	IP	Options	are,	well,	optional.

12.5.2		The	Trouble	with	IP	Version	4
The	number	of	bytes	allocated	for	each	field	in	the	IP	header	reflects	 the	technological	era	in	which	IP
was	designed.	Back	in	the	ARPAnet	years,	no	one	could	have	imagined	how	the	network	would	grow,	or
even	that	there	would	ever	be	a	civilian	use	for	it.

With	 the	 slowest	networks	of	 today	being	 faster	 than	 the	 fastest	networks	of	 the	1960s,	 IP’s	packet
length	limit	of	65,536	bytes	has	become	a	problem.	The	packets	simply	move	too	fast	for	certain	network
equipment	to	be	sure	that	the	packet	hasn’t	been	damaged	between	intermediate	nodes.	(At	gigabit	speeds,
a	65,535-byte	IP	datagram	passes	over	a	given	point	in	less	than	1ms.)

By	far	the	most	serious	problem	with	IPv4	headers	concerns	addressing.	Every	host	and	router	must



have	 an	 address	 that	 is	 unique	 over	 the	 entire	 Internet.	 To	 ensure	 that	 no	 Internet	 node	 duplicates	 the
address	 of	 another	 Internet	 node,	 host	 IDs	 are	 administered	 by	 a	 central	 authority,	 the	 Internet
Corporation	 for	 Assigned	 Names	 and	 Numbers	 (ICANN).	 ICANN	 keeps	 track	 of	 groups	 of	 IP
addresses,	 which	 are	 subsequently	 allocated	 or	 assigned	 by	 regional	 authorities.	 (The	 ICANN	 also
coordinates	the	assignment	of	parameter	values	used	in	protocols	so	that	everyone	knows	which	values
evoke	which	behaviors	over	the	Internet.)

As	you	can	see	by	looking	at	the	IP	header	shown	in	the	sidebar,	there	are	232	or	about	4.3	billion	host
IDs.	It	would	be	reasonable	to	think	that	there	would	be	plenty	of	addresses	to	go	around,	but	this	is	not
the	 case.	 The	 problem	 lies	 in	 the	 fact	 that	 these	 addresses	 are	 not	 like	 serial	 numbers	 sequentially
assigned	to	the	next	person	who	asks	for	one.	It’s	much	more	complicated	than	that.

IP	 allows	 for	 three	 types,	 or	classes,	 of	 networks,	 designated	A,	B,	 and	C.	They	 are	 distinguished
from	each	other	by	the	number	of	nodes	(called	hosts)	that	each	can	directly	support.	Class	A	networks
can	support	the	largest	number	of	hosts;	Class	C,	the	least.

The	 first	 three	 bits	 of	 an	 IP	 address	 indicate	 the	 network	 class.	 Addresses	 for	 Class	 A	 networks
always	 begin	with	 0,	 Class	 B	with	 10,	 and	 Class	 C	with	 110.	 The	 remaining	 bits	 in	 the	 address	 are
devoted	to	the	network	number	and	the	host	ID	within	that	network	number,	as	shown	in	Figure	12.6.

IP	 addresses	 are	 32-bit	 numbers	 expressed	 in	 dotted	 decimal	 notation,	 for	 example,	 18.7.21.69	 or
146.186.157.6.	Each	of	these	decimal	numbers	represents	8	bits	of	binary	information	and	can	therefore
have	a	decimal	value	between	0	and	255.	Note	that	127.x.x.x	is	a	Class	A	network	that	 is	reserved	for
loopback	testing,	which	checks	the	TCP/IP	protocol	processes	running	on	the	host.	During	the	loopback
test,	no	datagrams	enter	the	network.	The	0.0.0.0	network	is	typically	reserved	for	use	as	the	default	route
in	the	network.

Allowing	for	the	reserved	networks	0	and	127,	only	126	Class	A	networks	can	be	defined	using	a	7-
bit	 network	 field.	 Class	 A	 networks	 are	 the	 largest	 networks	 of	 all,	 each	 able	 to	 support	 about	 16.7
million	 nodes.	 Although	 it	 is	 unlikely	 that	 a	 Class	 A	 network	 would	 need	 all	 16	 million	 possible
addresses,	 the	 Class	 A	 addresses,	 1.0.0.0	 through	 126.255.255.255,	 were	 long	 ago	 assigned	 to	 early
Internet	adopters	such	as	MIT	and	the	Xerox	Corporation.	Furthermore,	all	of	the	16,382	Class	B	network
IDs	(128.0.0.0	to	191.255.255.255)	have	also	been	assigned.	Each	Class	B	network	can	contain	65,534
unique	 node	 addresses.	Because	 very	 few	 organizations	 need	more	 than	 100,000	 addresses,	 their	 next
choice	is	to	identify	themselves	as	Class	C	network	owners,	giving	them	only	256	addresses	within	the
Class	C	space	of	192.0.0.0	through	233.255.255.255.	This	is	far	fewer	than	would	meet	the	needs	of	even
a	moderately	sized	company	or	institution.	Thus,	many	networks	have	been	unable	to	obtain	a	contiguous
block	of	IP	addresses	so	that	each	node	on	the	network	can	have	its	own	address	on	the	Internet.	A	number
of	 clever	 workarounds	 have	 been	 devised	 to	 deal	 with	 this	 problem,	 but	 the	 ultimate	 solution	 lies	 in
reworking	 the	 entire	 IP	 address	 structure.	 (Classes	 D	 and	 E	 do	 exist,	 but	 they	 aren’t	 networks	 at	 all.
Instead,	 they’re	 groups	 of	 reserved	 addresses.	 The	Class	D	 addresses,	 224	 through	 240,	 are	 used	 for
multicasting	by	groups	of	hosts	that	share	a	common	characteristic.	The	Class	E	addresses,	241	through
248,	are	reserved	for	future	use.)



FIGURE	12.6	IP	Address	Classes

In	addition	to	the	eventual	depletion	of	address	space,	there	are	other	problems	with	IPv4.	Its	original
designers	did	not	anticipate	the	growth	of	the	Internet	and	the	routing	problems	that	would	result	from	the
address	class	scheme.	There	are	typically	70,000-plus	routes	in	the	routing	table	of	an	Internet	backbone
router.	The	current	routing	infrastructure	of	IPv4	needs	to	be	modified	to	reduce	the	number	of	routes	that
routers	must	 store.	As	with	cache	memory,	 larger	 router	memories	 result	 in	 slower	 routing	 information
retrieval.	There	 is	 also	 a	definite	need	 for	 security	 at	 the	 IP	 level.	A	protocol	 called	 IPSec	 (Internet
Protocol	 Security)	 is	 currently	 defined	 for	 the	 IP	 level.	 However,	 it	 is	 optional	 and	 hasn’t	 been
standardized	or	universally	adopted.

THE	TCP	SEGMENT	FORMAT

The	 TCP	 segment	 format	 is	 shown	 above.	 The	 numbers	 at	 the	 top	 of	 the	 figure	 are	 the	 bit	 positions
spanned	by	each	field.	The	horizontal	rows	represent	32-bit	words.	The	fields	are	defined	as	follows:



•	 	 	 Source	 and	 Destination	 Ports—Specify	 interfaces	 to	 applications	 running	 above	 TCP.	 These
applications	are	known	to	TCP	by	their	port	number.

•			Sequence	Number—Indicates	the	sequence	number	of	the	first	byte	of	data	in	the	payload.	TCP	assigns
each	transmitted	byte	a	sequence	number.	If	100	data	bytes	will	be	sent	10	bytes	at	a	time,	the	sequence
number	in	the	first	segment	might	be	0,	the	second	10,	the	third	20,	and	so	forth.	The	starting	sequence
number	is	not	necessarily	0,	so	long	as	the	number	is	unique	between	the	sender	and	the	receiver.

•			Acknowledgment	Number—Contains	the	next	data	sequence	number	that	the	receiver	is	expecting.	TCP
uses	this	value	to	determine	whether	any	datagrams	have	gotten	lost	along	the	way.

•			Data	Offset—Contains	the	number	of	32-bit	words	in	the	header	or,	equivalently,	the	relative	location
of	the	word	where	the	data	starts	within	the	segment.	Also	known	as	the	header	length.

•			Reserved—These	six	bits	must	be	zero	until	someone	comes	up	with	a	good	use	for	them.
•	 	 	Flags—Contains	six	bits	 that	are	used	mostly	for	protocol	management.	They	are	set	 to	“true”	when

their	values	are	nonzero.	The	TCP	flags	and	their	meanings	are:

URG:	Indicates	that	urgent	data	exists	in	this	segment.	The	Urgent	Pointer	field	(see	below)	points	to
the	location	of	the	first	byte	that	follows	the	urgent	information.

ACK:	 Indicates	 whether	 the	 Acknowledgment	 Number	 field	 (see	 above)	 contains	 significant
information.

PSH:	Tells	all	TCP	processes	involved	in	the	connection	to	clear	their	buffers,	that	is,	“push”	the	data
to	the	receiver.	This	flag	should	also	be	set	when	urgent	data	exists	in	the	payload.

RST:	 	 Resets	 the	 connection.	 Usually,	 it	 forces	 validation	 of	 all	 packets	 received	 and	 places	 the
receiver	back	into	the	“listen	for	more	data”	state.

SYN:	 Indicates	 that	 the	 purpose	 of	 the	 segment	 is	 to	 synchronize	 sequence	 numbers.	 If	 the	 sender
transmits	 [SYN,	 SEQ#	 =	 x],	 it	 should	 subsequently	 receive	 [ACK,	 SEQ#	 =	 x	 +	 1]	 from	 the
receiver.	At	the	time	that	two	nodes	establish	a	connection,	both	exchange	their	respective	initial
sequence	numbers.

FIN:		This	is	the	“finished”	flag.	It	lets	the	receiver	know	that	the	sender	has	completed	transmission,
in	effect	starting	closedown	procedures	for	the	connection.

•			Window—Allows	both	nodes	to	define	the	size	of	their	respective	data	windows	by	stating	the	number
of	bytes	that	each	is	willing	to	accept	within	any	single	segment.	For	example,	if	the	sender	transmits
bytes	numbered	0	to	1,023	and	the	receiver	acknowledges	with	1,024	in	the	ACK#	field	and	a	window
value	of	512,	 the	sender	should	 reply	by	sending	data	bytes	1,024	 through	1,535.	 (This	may	happen
when	 the	 receiver’s	 buffer	 is	 starting	 to	 fill	 up	 so	 it	 requests	 that	 the	 sender	 slow	 down	 until	 the
receiver	catches	up.)	Notice	that	if	the	receiver’s	application	is	running	very	slowly,	say	it’s	pulling
data	1	or	2	bytes	at	a	time	from	its	buffer,	the	TCP	process	running	at	the	receiver	should	wait	until	the
application	buffer	is	empty	enough	to	justify	sending	another	segment.	If	the	receiver	sends	a	window
size	 of	 0,	 the	 effect	 is	 acknowledgment	 of	 all	 bytes	 up	 to	 the	 acknowledgment	 number,	 and	 to	 stop
further	data	transmission	until	the	same	acknowledgment	number	is	sent	again	with	a	nonzero	window
size.

•	 	 	 Checksum—This	 field	 contains	 the	 checksum	 over	 the	 fields	 in	 the	 TCP	 segment	 (except	 the	 data
padding	and	the	checksum	itself),	along	with	an	IP	pseudoheader	as	follows:



As	with	the	IP	checksum	explained	earlier,	the	TCP	checksum	is	the	16-bit	one’s	complement	of	the	sum
of	all	16-bit	words	in	the	header	and	text	of	the	TCP	segment.

•			Urgent	Pointer—Points	to	the	first	byte	that	follows	the	urgent	data.	This	field	is	meaningful	only	when
the	URG	flag	is	set.

•	 	 	 Options—Concerns,	 among	 other	 things,	 negotiation	 of	 window	 sizes	 and	 whether	 selective
acknowledgment	(SACK)	can	be	used.	SACK	permits	retransmission	of	particular	segments	within	a
window	as	opposed	to	requiring	the	entire	window	to	be	retransmitted	if	a	segment	from	somewhere	in
the	middle	gets	lost.	This	concept	will	be	clearer	to	you	after	our	discussion	of	TCP	flow	control.

12.5.3		Transmission	Control	Protocol
The	sole	purpose	of	IP	is	to	correctly	route	datagrams	across	the	network.	You	can	think	of	IP	as	a	courier
who	 delivers	 packages	with	 no	 concern	 as	 to	 their	 contents	 or	 the	 order	 in	which	 they	 are	 delivered.
Transmission	Control	Protocol	(TCP)	is	the	consumer	of	IP	services,	and	it	does	indeed	care	about	these
things	and	many	others.

The	protocol	connection	between	two	TCP	processes	is	much	more	sophisticated	than	the	one	at	the	IP
layer.	Where	 IP	 simply	 accepts	 or	 rejects	 datagrams	 based	 only	 on	 header	 information,	 TCP	 opens	 a
conversation,	called	a	connection,	with	a	TCP	process	running	on	a	remote	system.	A	TCP	connection	is
very	much	analogous	to	a	telephone	conversation,	with	its	own	protocol	“etiquette.”	As	part	of	initiating
this	conversation,	TCP	also	opens	a	 service	access	point	 (SAP)	 in	 the	application	 running	above	 it.	 In
TCP,	this	SAP	is	a	numerical	value	called	a	port.	The	combination	of	the	port	number,	the	host	ID,	and	the
protocol	designation	becomes	a	socket,	which	 is	 logically	equivalent	 to	a	 file	name	(or	handle)	 to	 the
application	running	above	TCP.	Instead	of	accessing	data	by	using	its	disk	file	name,	the	application	using
TCP	reads	data	through	the	socket.	Port	numbers	0	through	1,023	are	called	“well-known”	port	numbers
because	 they	 are	 reserved	 for	 particular	 TCP	 applications.	 For	 example,	 the	 TCP/IP	 File	 Transfer
Protocol	(FTP)	application	uses	ports	20	and	21.	The	Telnet	terminal	protocol	uses	port	23.	Port	numbers
1,024	through	65,535	are	available	for	user-defined	implementations.

TCP	 makes	 sure	 that	 the	 stream	 of	 data	 it	 provides	 to	 the	 application	 is	 complete,	 in	 its	 proper
sequence,	and	with	no	duplicated	data.	TCP	also	compensates	for	irregularities	in	the	underlying	network
by	making	 sure	 that	 its	 segments	 (data	 packets	with	 headers)	 aren’t	 sent	 so	 fast	 that	 they	 overwhelm
intermediate	 nodes	 or	 the	 receiver.	A	TCP	 segment	 requires	 at	 least	 20	 bytes	 for	 its	 header.	 The	 data
payload	is	optional.	A	segment	can	be	at	most	65,515	bytes	long,	including	the	header,	so	that	the	entire
segment	 fits	 into	an	IP	payload.	 If	need	be,	 IP	can	fragment	a	TCP	segment	 if	 requested	 to	do	so	by	an
intermediate	node.

TCP	 provides	 a	 reliable,	 connection-oriented	 service.	Connection-oriented	means	 simply	 that	 the
connection	must	be	set	up	before	the	hosts	can	exchange	any	information	(much	like	a	telephone	call).	The



reliability	 is	 provided	by	 a	 sequence	number	 assigned	 to	 each	 segment.	Acknowledgments	 are	 used	 to
verify	that	segments	are	received,	and	must	be	sent	and	received	within	a	specific	period	of	time.	If	no
acknowledgment	 is	 forthcoming,	 the	 data	 is	 retransmitted.	We	provide	 a	 brief	 introduction	 to	 how	 this
protocol	works	in	the	next	section.

12.5.4		The	TCP	Protocol	at	Work
So	how	does	all	of	 this	 fit	 together	 to	make	a	solid,	sequenced,	error-free	connection	between	 two	(or
more)	 TCP	 processes	 running	 on	 separate	 systems?	 Successful	 communication	 takes	 place	 in	 three
phases:	 one	 to	 initiate	 the	 connection,	 a	 second	 to	 exchange	 the	 data,	 and	 a	 third	 to	 tear	 down	 the
connection.	 First,	 the	 initiator,	 which	 we’ll	 call	 A,	 transmits	 an	 “open”	 primitive	 to	 a	 TCP	 process
running	 on	 the	 remote	 system,	 B.	 B	 is	 assumed	 to	 be	 listening	 for	 an	 “open”	 request.	 This	 “open”
primitive	has	the	form:

If	B	is	ready	to	accept	a	TCP	connection	from	the	sender,	it	replies	with:

To	which	A	responds:

A	and	B	have	now	acknowledged	each	other	and	synchronized	 the	 starting	sequence	numbers.	A’s	next
sequence	number	will	be	t	+	2;	B’s	will	be	j	+	2.	Protocol	exchanges	like	these	are	often	referred	to	as
three-way	handshakes.	Most	networking	 literature	displays	 these	 sorts	of	exchanges	 schematically,	 as
shown	in	Figure	12.7.

After	the	connection	between	A	and	B	is	established,	they	may	proceed	to	negotiate	the	window	size
and	set	other	options	for	their	connection.	The	window	tells	the	sender	how	much	data	to	send	between
acknowledgments.	 For	 example,	 suppose	 A	 and	 B	 negotiate	 a	 window	 size	 of	 500	 bytes	 with	 a	 data
payload	size	of	100	bytes,	both	agreeing	not	to	use	selective	acknowledgment	(discussed	below).	Figure
12.8	 shows	 how	TCP	manages	 the	 flow	 of	 data	 between	 the	 two	 hosts.	Notice	what	 happens	when	 a
segment	 gets	 lost:	 The	 entire	window	 is	 retransmitted,	 despite	 the	 fact	 that	 subsequent	 segments	were
delivered	without	error.

If	an	acknowledgment	gets	lost,	however,	a	subsequent	acknowledgment	can	prevent	retransmission	of
the	one	 that	 got	 lost,	 as	 shown	 in	Figure	12.9.	Of	 course,	 the	 acknowledgment	must	 be	 sent	 in	 time	 to
prevent	a	“timeout”	retransmission.



FIGURE	12.7	The	TCP	3-Way	Handshake

FIGURE	12.8	TCP	Data	Transfer	with	a	Lost	Segment

FIGURE	12.9	An	Acknowledgment	Gets	Lost

Using	 acknowledgment	 numbers,	 the	 receiver	 can	 also	 ask	 the	 sender	 to	 slow	 down	 or	 halt



transmission.	 It	 is	necessary	 to	do	so	when	 the	receiver’s	buffer	gets	 too	full.	Figure	12.10a	 illustrates
how	 this	 is	 done.	Figure	12.10b	 shows	how	B	keeps	 the	 connection	 alive	while	 it	 cannot	 receive	 any
more	data.

Upon	 completion	of	 the	 data	 exchange,	 one	or	 both	 of	 the	TCP	processes	 gracefully	 terminates	 the
connection.	One	 side	 of	 the	 connection,	 say	A,	may	 indicate	 to	 the	 other	 side,	B,	 that	 it	 is	 finished	by
sending	a	segment	with	its	FIN	flag	set	to	true.	This	effectively	closes	down	the	connection	from	A	to	B.
B,	 however,	 could	 continue	 its	 side	 of	 the	 conversation	 until	 it	 no	 longer	 has	 data	 to	 send.	Once	B	 is
finished,	it	also	transmits	a	segment	with	the	FIN	flag	set.	If	A	acknowledges	B’s	FIN,	the	connection	is
terminated	 on	 both	 ends.	 If	 B	 receives	 no	 acknowledgment	 for	 the	 duration	 of	 its	 timeout	 interval,	 it
automatically	terminates	the	connection.

FIGURE	12.10	TCP	Flow	Control
a)	B	Tells	A	to	Slow	Down
b)	B	Keeps	the	Connection	Alive	while	Unable	to	Receive	More	Data

As	opposed	to	having	hard-and-fast	rules,	TCP	allows	the	sender	and	receiver	to	negotiate	a	timeout
period.	The	timeout	should	be	set	to	a	greater	value	if	the	connection	is	slower	than	when	it	is	faster.	The
sender	and	receiver	can	also	agree	to	use	selective	acknowledgment.	When	selective	acknowledgment
(SACK)	is	enabled,	the	receiver	must	acknowledge	each	datagram.	In	other	words,	no	sliding	window	is
used.	SACK	can	save	some	bandwidth	when	an	error	occurs,	because	only	the	segment	that	has	not	been
acknowledged	 (instead	 of	 the	 entire	window)	will	 be	 retransmitted.	 But	 if	 the	 exchange	 is	 error-free,
bandwidth	is	wasted	by	sending	acknowledgment	segments.	For	this	reason,	SACK	is	chosen	only	when
there	is	little	TCP	buffer	space	on	the	receiver.	The	larger	the	receiver’s	buffer,	the	more	“wiggle	room”
it	 has	 for	 receiving	 segments	 out	 of	 sequence.	 TCP	 does	 whatever	 it	 can	 to	 provide	 the	 applications
running	above	it	with	an	error-free,	sequenced	stream	of	data.



12.5.5		IP	Version	6
By	1994,	it	appeared	that	IP’s	Class	B	address	problem	was	a	crisis	in	the	making,	having	the	potential	to
bring	the	explosive	growth	of	the	Internet	to	an	abrupt	halt.	Spurred	by	this	sense	of	approaching	doom,
the	IETF	began	concerted	work	on	a	successor	 to	IPv4,	now	called	IPv6.	 IETF	participants	released	a
number	of	experimental	protocols	 that,	over	 time,	became	known	as	 IPv5.	The	corrected	and	enhanced
versions	 of	 these	 protocols	 became	 known	 as	 IPv6.	 Experts	 predict	 that	 IPv6	 won’t	 be	 widely
implemented	until	late	in	the	first	decade	of	the	twenty-first	century.	(Every	day	more	Internet	applications
are	 being	 modified	 to	 work	 with	 IPv6.)	 In	 fact,	 some	 opponents	 argue	 that	 IPv6	 will	 “never”	 be
completely	 deployed	 because	 so	 much	 costly	 hardware	 will	 need	 to	 be	 replaced	 and	 because
workarounds	have	been	 found	 for	 the	most	vexing	problems	 inherent	 in	 IPv4.	But,	 contrary	 to	what	 its
detractors	would	 have	 you	 believe,	 IPv6	 is	much	more	 than	 a	 patch	 for	 the	Class	B	 address	 shortage
problem.	It	fixes	many	things	that	most	people	don’t	realize	are	broken,	as	we	will	explain.

The	 IETF’s	 primary	 motivation	 in	 designing	 a	 successor	 to	 IPv4	 was,	 of	 course,	 to	 extend	 IP’s
address	 space	 beyond	 its	 current	 32-bit	 limit	 to	 128	 bits	 for	 both	 the	 source	 and	 destination	 host
addresses.	 This	 is	 an	 incredibly	 large	 address	 space,	 giving	 2128	 possible	 host	 addresses.	 In	 concrete
terms,	if	each	of	these	addresses	were	assigned	to	a	network	card	weighing	28	grams	(1	oz),	2128	network
cards	would	have	a	mass	1.61	quadrillion	times	that	of	the	entire	Earth!	So	it	would	seem	that	the	supply
of	IPv6	addresses	is	inexhaustible.

The	downside	of	having	such	a	large	address	space	is	that	address	management	becomes	critical.	If
addresses	are	assigned	haphazardly	with	no	organization	in	mind,	effective	packet	routing	would	become
impossible.	 Every	 router	 on	 the	 Internet	 would	 eventually	 require	 the	 storage	 and	 speed	 of	 a
supercomputer	to	deal	with	the	ensuing	routing	table	explosion.	To	head	off	this	problem,	the	IETF	came
up	 with	 a	 hierarchical	 address	 organization	 that	 it	 calls	 the	Aggregatable	 Global	 Unicast	 Address
Format	shown	in	Figure	12.11a.	The	first	3	bits	of	the	IPv6	address	constitute	a	flag	indicating	that	the
address	is	a	Global	Unicast	Address.	The	next	13	bits	form	the	Top-Level	Aggregation	Identifier	(TLA
ID),	 which	 is	 followed	 by	 8	 reserved	 bits	 that	 allow	 either	 the	 TLA	 ID	 or	 the	 24-bit	 Next-Level
Aggregation	Identifier	 (NLA	ID)	 to	 expand,	 if	 needed.	A	TLA	 entity	may	 be	 a	 country	 or	 perhaps	 a
major	global	telecommunications	carrier.	An	NLA	entity	could	be	a	large	corporation,	a	government,	an
academic	institution,	an	ISP,	or	a	small	telecommunications	carrier.	The	16	bits	following	the	NLA	ID	are
the	Site-Level	Aggregation	 Identifier	 (SLA	 ID).	 NLA	 entities	 can	 use	 this	 field	 to	 create	 their	 own
hierarchy,	allowing	each	NLA	entity	to	have	65,536	subnetworks,	each	of	which	can	have	264	hosts.	This
hierarchy	is	shown	graphically	in	Figure	12.11b.

THE	IP	VERSION	6	HEADER
The	obvious	problem	with	IPv4,	of	course,	is	its	32-bit	address	fields.	IPv6	corrects	this	shortcoming	by
expanding	 the	address	 fields	 to	128	bits.	 In	order	 to	keep	 the	IPv6	header	as	small	as	possible	 (which
speeds	routing),	many	of	the	rarely	used	IPv4	header	fields	are	not	included	in	the	main	header	of	IPv6.	If
these	fields	are	needed,	a	Next	Header	pointer	has	been	provided.	With	the	Next	Header	field,	IPv6	could
conceivably	support	a	large	number	of	header	fields.	Thus,	future	enhancements	to	IP	would	be	much	less
disruptive	than	the	switch	from	Version	4	to	Version	6.	The	IPv6	header	fields	are	explained	on	the	next
page.



•			Version—Always	0110.
•	 	 	 Traffic	Class—IPv6	will	 eventually	 be	 able	 to	 tell	 the	 difference	 between	 real-time	 transmissions

(e.g.,	 voice	 and	 video)	 and	 less	 time-sensitive	 data	 transport	 traffic.	 This	 field	 will	 be	 used	 to
distinguish	between	these	two	traffic	types.

•	 	 	 Flow	 Label—This	 is	 another	 field	 for	 which	 specifications	 are	 still	 in	 progress.	 A	 “flow”	 is	 a
conversation,	either	broadcast	to	all	nodes	or	initiated	between	two	particular	nodes.	The	Flow	Label
field	 identifies	a	particular	flow	stream,	and	 intermediate	routers	will	 route	 the	packets	 in	a	manner
consistent	with	the	code	in	the	flow	field.

•	 	 	Payload	Length—Indicates	 the	 length	of	 the	payload	 in	bytes,	which	 includes	 the	 size	of	 additional
headers.

•	 	 	Next	Header—Indicates	 the	 type	of	header,	 if	any,	 that	follows	the	main	header.	If	an	IPv6	protocol
exchange	requires	more	protocol	information	than	can	be	carried	in	a	single	header,	the	Next	Header
field	 provides	 for	 an	 extension	 header.	 These	 extension	 headers	 are	 placed	 in	 the	 payload	 of	 the
segment.	If	 there	is	no	IP	extension	header,	 then	this	field	will	contain	the	value	for	“TCP,”	meaning
that	 the	first	header	data	 in	 the	payload	belongs	 to	TCP,	not	IP.	 In	general,	only	 the	destination	node
will	examine	 the	contents	of	 the	extension	headers.	 Intermediate	nodes	pass	 them	on	as	 if	 they	were
common	payload	data.

•			Hop	Limit—With	16	bits,	this	field	is	much	larger	than	in	Version	4,	allowing	256	hops.	As	in	Version
4,	 this	 field	 is	 decremented	 by	 each	 intermediate	 router.	 If	 it	 ever	 becomes	 zero,	 the	 packet	 is
discarded	and	the	sender	is	notified	through	an	ICMP	(for	IPv6)	message.

•			Source	and	Destination	Addresses—Much	larger,	but	with	the	same	meaning	as	in	Version	4.	See	text
for	a	discussion	of	the	format	for	this	address.
At	 first	 glance,	 the	notion	of	making	 allowances	 for	 264	 hosts	 on	 each	 subnet	 seems	 as	wasteful	 of

address	 space	 as	 the	 IPv4	 network	 class	 system.	However,	 such	 a	 large	 field	 is	 necessary	 to	 support



stateless	address	autoconfiguration,	a	new	feature	in	IPv6.	In	stateless	address	autoconfiguration,	a	host
uses	 the	48-bit	 address	burned	 into	 its	 network	 interface	 card	 (its	MAC	address,	 explained	 in	Section
12.6.2),	along	with	the	network	address	information	that	it	retrieves	from	a	nearby	router	to	form	its	entire
IP	address.	If	no	problems	occur	during	this	process,	each	host	on	the	network	configures	its	own	address
information	with	no	intervention	by	the	network	administrator.	This	feature	will	be	a	blessing	to	network
administrators	 if	 an	 entity	 changes	 its	 ISP	 or	 telecommunications	 carrier.	 Network	 administrators	will
have	 to	 change	 only	 the	 IP	 addresses	 of	 their	 routers.	 Stateless	 address	 autoconfiguration	 will
automatically	update	the	TLA	or	SLA	fields	in	every	node	on	the	network.

FIGURE	12.11	a)	Aggregatable	Global	Unicast	Address	Format
b)	Aggregatable	Global	Unicast	Hierarchy

The	 written	 syntax	 of	 IPv6	 addresses	 also	 differs	 from	 that	 of	 IPv4	 addresses.	 Recall	 that	 IPv4
addresses	are	expressed	using	a	dotted	decimal	notion,	as	in	146.186.157.6.	IPv6	addresses	are	instead
given	in	hexadecimal,	separated	by	colons,	as	follows:

30FA:505A:B210:224C:1114:0327:0904:0225

making	it	much	easier	to	recognize	the	binary	equivalent	of	an	IP	address.
IPv6	addresses	can	be	abbreviated,	omitting	zeros	where	possible.	If	a	16-bit	group	is	0000,	it	can	be

written	as	0,	or	omitted	altogether.	If	more	than	two	consecutive	colons	result	from	this	omission,	they	can
be	reduced	to	two	colons	(provided	there	 is	only	one	group	of	more	than	two	consecutive	colons).	For
example,	the	IPv6	address:

30FA:0000:0000:0000:0010:0002:0300

can	be	written

30FA:0:0:0:10:2:300

or	even



30FA::10:2:300

However,	an	address	such	as	30FA::24D6::12CB	is	invalid.
The	IETF	is	also	proposing	two	other	routing	improvements:	implementation	of	multicasting	 (where

one	message	is	placed	on	the	network	and	read	by	multiple	nodes)	and	anycasting	(where	any	one	of	a
logical	group	of	nodes	can	be	 the	recipient	of	a	message,	but	no	particular	receiver	 is	specified	by	the
packet).	 This	 feature,	 along	 with	 stateless	 address	 autoconfiguration,	 facilitates	 support	 for	 mobile
devices,	 an	 increasingly	 important	 sector	 of	 Internet	 users,	 particularly	 in	 countries	 where	 most
telecommunications	take	place	over	wireless	networks.

As	 previously	 mentioned,	 security	 is	 another	 major	 area	 in	 which	 IPv6	 differs	 from	 IPv4.	 All	 of
IPv4’s	security	features	(IPSec)	are	“optional,”	meaning	that	no	one	is	forced	to	 implement	any	type	of
security,	and	most	installations	don’t.	In	IPv6,	IPSec	is	mandatory.	Among	the	security	improvements	in
IPv6	 is	a	mechanism	that	prevents	address	spoofing,	where	a	host	 can	engage	 in	communications	with
another	 host	 using	 a	 falsified	 IP	 address.	 (IP	 spoofing	 is	 often	 used	 to	 subvert	 filtering	 routers	 and
firewalls	that	are	intended	to	keep	outsiders	from	accessing	private	intranets,	among	other	things.)	IPSec
also	 supports	 encryption	 and	 other	 measures	 that	 make	 it	 more	 difficult	 for	 miscreants	 to	 sniff	 out
unauthorized	information.

Perhaps	the	best	feature	of	IPv6	is	that	it	provides	a	transition	plan	that	allows	networks	to	gradually
move	to	the	new	format.	Support	for	IPv4	is	built	 into	IPv6.	Devices	that	use	both	protocols	are	called
dual	stack	 devices,	 because	 they	 support	 protocol	 stacks	 for	 both	 IPv4	 and	 IPv6.	Most	 routers	 on	 the
market	today	are	dual	stack	devices,	with	the	expectation	that	IPv6	will	become	a	reality	in	the	not-too-
distant	future.

The	 benefits	 of	 IPv6	 over	 IPv4	 are	 clear:	 a	 greater	 address	 space,	 better	 and	 built-in	 quality	 of
service,	and	better	and	more	efficient	routing.	It	is	not	a	question	of	if	but	of	when	we	will	move	to	IPv6.
The	 transition	 will	 be	 driven	 by	 the	 business	 need	 for	 IPv6	 and	 development	 of	 the	 necessary
applications.	 Although	 hardware	 replacement	 cost	 is	 a	 significant	 barrier,	 technician	 training	 and
replacement	 of	 minor	 IP	 devices	 (such	 as	 network	 fax	 machines	 and	 printers)	 will	 contribute	 to	 the
overall	 cost	 of	 conversion.	 With	 the	 advent	 of	 IP-ready	 automobiles,	 as	 well	 as	 many	 other	 Internet
devices,	IPv4	no	longer	meets	the	needs	of	many	current	applications.

Ethernet	Then	and	Now
Ethernet	 is	 today’s	dominant	architecture	 for	 local	area	networks	(LANs).	Ethernet	 devices	 can	be
found	 on	 desktops,	 in	 data	 centers,	 and	 in	 living	 rooms.	 Its	 ubiquity	 was	 never	 envisioned	 by	 its
inventors,	Robert	Metcalf	and	David	Boggs	of	the	Xerox	Corporation,	when	they	developed	Ethernet
in	the	early	1970s.	In	the	early	1980s,	DEC	and	Intel	were	helping	to	refine	Ethernet,	and	they	brought
many	new	and	innovative	products	to	market.	By	the	time	the	IEEE	began	its	Project	802,	Ethernet	was
a	well-established	networking	architecture.	As	 such,	 its	operational	 theory	became	part	of	 the	 IEEE
802.3	 standard,	 but	 Ethernet	 is	 not	 entirely	 congruent	 with	 the	 standard,	 because	 Ethernet	 defines
Logical	Link	 functionality	where	 IEEE	802.3	does	not.	 (IEEE	802.2	 is	 the	Data	Link	specification.)
There	are	also	some	slight	differences	between	 the	Ethernet	Protocol	Data	Unit	and	 the	 IEEE	802.3
PDU.	Because	of	its	wide	deployment,	our	discussion	will	center	on	Ethernet.

Ethernet	 uses	 a	 Carrier	 Sense	 Multiple	 Access	 /	 Collision	 Detection	 (CSMA/CD)	 medium
access	control.	Before	placing	data	on	the	network,	the	interface	circuit	checks	to	see	that	the	carrier



(i.e.,	 the	network)	 is	alive;	 then	 it	 listens	 to	see	 if	any	other	stations	are	using	 the	 line.	 If	 the	 line	 is
silent	(quiesced),	the	interface	places	its	transmission	frame	on	the	line.	If	another	station	happens	to
do	 this	 at	 the	 same	 instant,	 the	 frames	 will	 collide.	 This	 collision	 should	 be	 detected	 by	 both
transmitting	stations.

Traditional	Ethernet	networks	run	at	10Mbps,	and	they	use	a	bus	topology	as	shown	in	the	figure
below.	All	stations	connect	directly	to	the	bus	(Multiple	Access);	thus	all	nodes	receive	every	frame.
As	each	LAN	station	receives	a	frame,	it	checks	the	(MAC)	address	information	in	the	frame	header.	If
a	station	sees	its	own	address,	it	strips	off	the	framing	bits	and	then	passes	the	PDU	to	its	Logical	Link
layer.

In	 order	 to	 detect	 collisions,	 an	 Ethernet	 interface	 card	 must	 listen	 to	 the	 line	 while	 it	 is
transmitting.	 If	 it	 sees	 a	 voltage	 higher	 than	 allowed,	 that	 means	 that	 another	 node	 has	 begun
transmitting	at	nearly	the	same	time	and	the	frames	have	collided	somewhere	along	the	bus.	Once	the
collision	 is	 discovered,	 the	 NIC	 broadcasts	 a	 32-bit	 jamming	 signal	 to	 notify	 all	 stations	 that	 a
collision	has	occurred.	The	stations	that	were	involved	in	the	collision	will	both	cease	transmitting	and
wait	a	(pseudo)	random	amount	of	time	before	trying	once	more	to	transmit.	This	approach	works	well
when	 the	 PDU	 is	 long	 enough	 to	 span	 the	 distance	 between	 the	 sending	 node	 and	 the	 destination.
Because	of	 this,	 the	maximum	speed	on	a	traditional	shared-bus	CSMA/CD	Ethernet	system	is	about
100Mbps.	At	 faster	speeds,	 the	 traditional	Ethernet	PDU	is	 too	short.	 (The	bit	cells	are	narrower	at
faster	bit	rates.)	Supporting	speeds	much	beyond	that	calls	for	adjustments	to	Ethernet’s	architecture.
Gigabit	 speeds	 require	 changing	 the	 topology	 of	 the	 network	 from	 a	 shared-bus	 to	 a	 switched	 star-
shaped	network	topology,	as	shown	below.	Switches	in	a	star	topology	funnel	one	signal	at	a	time	from
the	user	nodes	onto	the	backbone	of	the	network.	The	end	nodes	connect	to	the	network	at	100Mbps,
and	upstream	switches	interconnect	at	1Gbps	or	10Gbps.	Medium	access	management	is	taken	care	of
at	 the	 switch	 level,	 so	 collision	 detection	 at	 the	 end	 nodes	 may	 be	 turned	 off.	 Switches	 can	 be
connected	to	other	network	components	such	as	hubs	and	repeaters	to	further	extend	the	network	and
provide	downward	compatibility	 to	 slower	 segments.	Gigabit	Ethernet	 competes	directly	with	more
radical	and	costly	network	solutions	such	as	Fibre	Channel.	We	discuss	and	Fibre	Channel	in	Chapter
13.



12.6	NETWORK	ORGANIZATION
Computer	 networks	 are	 often	 classified	 according	 to	 their	 geographic	 service	 areas.	 The	 smallest
networks	 are	 local	 area	 networks	 (LANs).	 Although	 they	 can	 encompass	 thousands	 of	 nodes,	 LANs
typically	 are	 used	 in	 a	 single	 building,	 or	 a	 group	 of	 buildings	 that	 are	 near	 each	 other.	When	 a	LAN
covers	 more	 than	 one	 building,	 it	 is	 sometimes	 called	 a	 campus	 network.	 Usually,	 the	 region	 (the
property)	covered	by	a	LAN	is	under	the	same	ownership	(or	control)	as	the	LAN	itself.	Metropolitan
area	networks	(MANs)	are	networks	that	cover	a	city	and	its	environs.	They	often	span	areas	that	are	not
under	the	ownership	of	the	people	who	also	own	the	network.	Wide	area	networks	(WANs)	can	cover
multiple	cities	or	span	the	entire	world.

At	one	time,	the	protocols	employed	by	LANs,	MANs,	and	WANs	differed	vastly	from	one	another.
MANs	 and	WANs	were	 usually	 designed	 for	 high-speed	 throughput	 because	 they	 served	 as	 backbone
systems	for	multiple	slower	LANs,	or	they	offered	access	to	large	host	computers	in	data	centers	far	away
from	end	users.	As	network	technologies	have	evolved,	however,	these	networks	are	now	distinguished
from	each	other	not	so	much	by	their	speed	or	by	their	protocols,	but	by	their	ownership.	One	person’s
campus	 LAN	might	 be	 another	 person’s	MAN.	 In	 fact,	 as	 LANs	 are	 becoming	 faster	 and	more	 easily
integrated	with	WAN	technology,	it	is	conceivable	that	eventually	the	concept	of	a	MAN	may	disappear
entirely.

This	 section	discusses	 the	physical	network	components	common	 to	LANs,	MANs,	and	WANs.	We
start	at	the	lowest	level	of	network	organization,	the	physical	medium	level,	Layer	1.

12.6.1		Physical	Transmission	Media
Virtually	any	medium	with	 the	ability	 to	carry	a	signal	can	support	data	communication.	There	are	 two



general	types	of	communications	media:	Guided	transmission	media	and	unguided	transmission	media.
Unguided	 media	 broadcast	 data	 over	 the	 airwaves	 using	 infrared,	 microwave,	 satellite,	 or	 broadcast
radio	carrier	signals.	Guided	media	are	physical	connectors	such	as	copper	wire	or	fiber-optic	cable	that
directly	connect	to	each	network	node.

The	physical	and	electrical	properties	of	guided	media	determine	 their	ability	 to	accurately	convey
signals	of	given	frequencies	over	various	distances.	In	Chapter	7,	we	mentioned	that	signals	attenuate	(get
weaker)	over	long	distances.	The	longer	the	distance	and	the	higher	the	signal	frequency,	the	greater	the
attenuation.	 Attenuation	 in	 copper	 wire	 results	 from	 the	 interactions	 of	 several	 electrical	 phenomena.
Chief	 among	 these	 are	 the	 internal	 resistance	 of	 copper	 conductors	 and	 the	 electrical	 interference
(inductance	and	capacitance)	that	occurs	when	signal-carrying	wires	are	in	close	proximity	to	each	other.
External	 electrical	 fields	 such	 as	 those	 surrounding	 fluorescent	 lights	 and	 electric	 motors	 can	 also
attenuate—or	even	garble—signals	as	they	are	transmitted	over	copper	wire.	Collectively,	the	electrical
phenomena	 that	 work	 against	 the	 accurate	 transmission	 of	 signals	 are	 called	 noise.	 Signal	 and	 noise
strengths	are	both	measured	in	decibels	(dB).	Cables	are	rated	according	to	how	well	they	convey	signals
at	different	frequencies	in	the	presence	of	noise.	The	resulting	quantity	is	the	signal-to-noise	rating	for	the
communications	channel,	and	it	is	also	measured	in	decibels:

The	bandwidth	of	a	medium	is	 technically	 the	range	of	frequencies	 that	 it	can	carry,	measured	in	hertz.
The	 wider	 the	 medium’s	 bandwidth,	 the	 more	 information	 it	 can	 carry.	 In	 digital	 communications,
bandwidth	 is	 the	general	 term	 for	 the	 information-carrying	capacity	of	 a	medium,	measured	 in	bits	 per
second	(bps).	Another	important	measure	is	bit	error	rate	(BER),	which	is	the	ratio	of	the	number	of	bits
received	 in	 error	 to	 the	 total	 number	 of	 bits	 received.	 If	 signal	 frequencies	 exceed	 the	 signal-carrying
capacity	of	the	line,	the	BER	may	become	so	extreme	that	the	attached	devices	will	spend	more	of	their
time	doing	error	recovery	than	in	doing	useful	work.

Coaxial	Cable
Coaxial	cable	was	once	the	medium	of	choice	for	data	communications.	It	can	carry	signals	up	to	trillions
of	 cycles	 per	 second	 with	 low	 attenuation.	 Today,	 it	 is	 used	 mostly	 for	 broadcast	 and	 closed	 circuit
television	applications.	Coaxial	cable	also	carries	signals	for	residential	Internet	services	that	piggyback
on	cable	television	lines.

The	heart	of	a	coaxial	cable	is	a	thick	(12-	to	16-gauge)	inner	conductor	surrounded	by	an	insulating
layer	 called	 a	 dielectric.	 The	 dielectric	 is	 surrounded	 by	 a	 foil	 shield	 to	 protect	 it	 from	 transient
electromagnetic	fields.	The	foil	shield	is	itself	wrapped	in	a	steel	or	copper	braid	to	provide	an	electrical
ground	for	the	cable.	The	entire	cable	is	then	encased	in	a	durable	plastic	coating	(see	Figure	12.12).

The	coaxial	cable	employed	by	cable	television	services	is	called	broadband	cable	because	it	has	a
capacity	 of	 at	 least	 2Mbit/sec.	 Broadband	 communication	 provides	multiple	 channels	 of	 data,	 using	 a
form	of	multiplexing.	Computer	networks	now	infrequently	use	narrowband	cable,	which	is	optimized	for
a	typical	bandwidth	of	64kbit/sec,	consisting	of	a	single	channel.



FIGURE	12.12	The	Parts	of	a	Coaxial	Cable

Twisted	Pair
The	easiest	way	to	connect	two	computers	is	simply	to	run	a	pair	of	copper	wires	between	them.	One	of
the	wires	is	used	for	sending	data,	the	other	for	receiving.	Of	course,	the	farther	apart	the	two	systems	are,
the	stronger	the	signal	has	to	be	to	prevent	them	from	attenuating	into	oblivion	over	long	distances.	The
distance	 between	 the	 two	 systems	 also	 affects	 the	 speed	 at	which	 data	 can	 be	 transferred.	The	 farther
apart	 they	 are,	 the	 slower	 the	 line	 speed	must	 be	 to	 avoid	 excessive	 errors.	Using	 thicker	 conductors
(smaller	wire	gauge	numbers)	can	reduce	attenuation.	Of	course,	thick	wire	is	more	costly	than	thin	wire.

In	addition	 to	attenuation,	cable	makers	are	also	challenged	by	an	electrical	phenomenon	known	as
inductance.	When	two	wires	lie	perfectly	flat	and	adjacent	to	each	other,	strong	high-frequency	signals	in
the	 wires	 create	 magnetic	 (inductive)	 fields	 around	 the	 copper	 conductors,	 which	 interfere	 with	 the
signals	in	both	lines.

The	easiest	way	to	reduce	the	electrical	inductance	between	conductors	is	to	twist	them	together.	To	a
point,	the	more	twists	that	are	introduced	in	a	pair	of	wires	per	linear	foot,	the	less	attenuation	is	caused
by	the	wires	interfering	with	each	other.	Twisted	wire	is	more	costly	to	manufacture	than	untwisted	wire
because	more	wire	 is	 consumed	per	 linear	 foot	 and	 the	 twisting	must	be	carefully	 controlled.	Twisted
pair	cabling,	with	two	twisted	wire	pairs,	is	used	in	most	LAN	installations	today	(see	Figure	12.13).	 It
comes	in	two	varieties:	shielded	and	unshielded.	Unshielded	twisted	pair	is	the	most	popular.

Shielded	twisted	pair	cable	is	suitable	for	environments	having	a	great	deal	of	electrical	interference.
Today’s	business	environments	are	 teeming	with	sources	of	electromagnetic	 radiation	 that	can	 interfere
with	 network	 signals.	 These	 sources	 can	 be	 as	 seemingly	 benign	 as	 fluorescent	 lights	 or	 as	 obviously
hostile	as	large,	humming	power	transformers.	Any	device	that	produces	a	magnetic	field	has	the	potential
for	scrambling	network	communication	links.	Interference	can	limit	the	speed	of	a	network	because	higher
signal	 frequencies	 are	 more	 sensitive	 to	 any	 kind	 of	 signal	 distortion.	 As	 a	 safeguard	 against
environmental	 interference	 (called	 electromagnetic	 interference	 [EMI]	 or	 radio-frequency
interference	[RFI]),	shielded	twisted	pair	wire	can	be	installed	to	help	maintain	the	integrity	of	network
communications	in	hostile	environments.

FIGURE	12.13	Twisted	Pair	Cable

Experts	disagree	as	to	whether	this	shielding	is	worth	the	higher	material	and	installation	costs.	They
point	out	that	if	the	shielding	is	not	properly	grounded,	it	can	actually	cause	more	problems	than	it	solves.



Specifically,	it	can	act	as	an	antenna	that	actually	attracts	radio	signals	to	the	conductors!
Whether	shielded	or	unshielded,	network	conductors	must	have	signal-carrying	capacity	appropriate

to	 the	 network	 technology	 being	 used.	 The	 Electronic	 Industries	 Alliance	 (EIA),	 along	 with	 the
Telecommunications	Industry	Association	(TIA),	established	a	rating	system	for	network	cabling	in	1991.
The	 latest	 revision	 of	 this	 rating	 system	 is	 EIA/TIA-568B.	 The	 EIA/TIA	 category	 ratings	 specify	 the
maximum	 frequency	 that	 the	 cable	 can	 support	 without	 excessive	 attenuation.	 The	 ISO	 rating	 system,
which	is	not	used	as	often	as	the	EIA/TIA	category	system,	refers	to	these	wire	grades	as	classes.	These
ratings	 are	 shown	 in	 Table	 12.1.	Most	 LANs	 installed	 today	 are	 equipped	 with	 Category	 5	 or	 better
cabling.	Many	 installations	 are	 abandoning	 copper	 entirely	 and	 installing	 fiberoptic	 cable	 instead	 (see
next	Section).

Note	 that	 the	signal-carrying	capacity	of	 the	cable	grades	shown	 in	Table	12.1	 is	given	 in	 terms	of
megahertz.	This	 is	not	 the	same	as	megabits.	As	we	saw	 in	Chapter	2,	Section	2.A,	 the	number	of	bits
carried	at	any	given	frequency	is	a	function	of	the	encoding	method	used	in	the	network.	Networks	running
below	100Mbps	could	easily	afford	to	use	Manchester	coding,	which	requires	two	signal	transitions	for
every	bit	transmitted.	Networks	running	at	100Mbps	and	above	use	different	encoding	schemes,	one	of	the
most	popular	being	the	4B/5B,	4	bits	in	5	baud	using	NRZI	signaling,	as	shown	in	Figure	12.14.

Baud	is	the	unit	of	measure	for	the	number	of	signal	transitions	supported	by	a	transmission	medium
or	 transmission	method	 over	 a	medium.	For	 networks	 other	 than	 the	 voice	 telephone	 network,	 the	 line
speed	is	rated	in	hertz,	but	hertz	and	baud	are	equivalent	with	regard	to	digital	signals.	As	you	can	see	in
Figure	12.14,	if	a	network	uses	4B/5B	encoding,	a	signal-carrying	capacity	of	125MHz	is	required	for	the
line	to	have	a	bit	rate	of	100Mbps.

Fiber-Optic	Cable
Optical	fiber	network	media	can	carry	signals	faster	and	farther	than	either	twisted	pair	or	coaxial	cable.
Fiber-optic	 cable	 is	 theoretically	 able	 to	 support	 frequencies	 in	 the	 terahertz	 range,	 but	 transmission
speeds	 are	 more	 commonly	 in	 the	 range	 of	 about	 2GHz,	 carried	 over	 runs	 of	 10	 to	 100km	 (without
repeaters).	Optical	cable	consists	of	bundles	of	thin	(1.5	to	125µm)	glass	or	plastic	strands	surrounded	by
a	protective	plastic	 sheath.	Although	 the	underlying	physics	 is	quite	different,	you	can	 think	of	a	 fiber-
optic	 strand	as	 a	 conductor	of	 light	 just	 as	 copper	 is	 a	 conductor	of	 electricity.	The	cable	 is	 a	 type	of
“light	guide”	that	routes	the	light	from	one	end	of	the	cable	to	the	other.	At	the	sending	end,	a	light	emitting
diode	or	laser	diode	emits	pulses	of	light	that	travel	through	the	glass	strand,	much	as	water	goes	through
a	pipe.	On	the	receiving	end,	photodetectors	convert	the	light	pulses	into	electrical	signals	for	processing
by	electronic	devices.

EIA/TIA ISO Maximum	Frequency

Category	1 	 Voice	and	“low-speed”	data	(4–9.6kHz)

Category	2 Class	A 1Mbps	or	less

Category	3 Class	B 10MHz

Category	4 Class	C 20MHz

Category	5 Class	D 100MHz

Category	6 Class	E 250MHz

Category	7 Class	F 600MHz

TABLE	12.1	EIA/TIA-568B	and	ISO	Cable	Specifications



FIGURE	12.14	4B/5B	Encoding

Optical	 fiber	 supports	 three	different	 transmission	modes	depending	on	 the	 type	of	 fiber	 used.	The
types	of	fiber	are	shown	in	Figure	12.15.	The	narrowest	 fiber,	single-mode	 fiber,	conveys	 light	at	only
one	 wavelength,	 typically	 850,	 1,300,	 or	 1,500nm.	 It	 allows	 the	 fastest	 data	 rates	 over	 the	 longest
distances.

Multimode	 fiber	can	carry	several	different	 light	wavelengths	simultaneously	 through	a	 larger	fiber
core.	 In	multimode	 fiber,	 the	 laser	 light	waves	 bounce	 off	 the	 sides	 of	 the	 fiber	 core,	 causing	 greater
attenuation	 than	 single-mode	 fiber.	Not	 only	 do	 the	 light	waves	 scatter,	 but	 they	 also	 collide	with	 one
another	to	some	degree,	causing	further	attenuation.

Multimode	graded	index	 fiber	also	supports	multiple	wavelengths	concurrently,	but	 it	does	so	 in	a
more	 controlled	 manner	 than	 regular	 multimode	 fiber.	 Multimode	 graded	 index	 fiber	 consists	 of
concentric	 layers	 of	 plastic	 or	 glass,	 each	 with	 refractive	 properties	 that	 are	 optimized	 for	 carrying
specific	light	wavelengths.	Like	regular	multimode	fiber,	light	travels	in	waves	through	multimode	graded
index	optical	fiber.	But	unlike	multimode	fiber,	the	waves	are	confined	to	the	area	of	the	optical	fiber	that
is	 suitable	 to	 propagating	 its	 particular	 wavelength.	 Thus,	 the	 different	 wavelengths	 concurrently
transmitted	through	the	fiber	do	not	interfere	with	each	other.

The	 fiber-optic	medium	offers	many	 advantages	 over	 copper,	 the	most	 obvious	 being	 its	 enormous
signal-carrying	capacity.	It	is	also	immune	to	EMI	and	RFI,	making	it	ideal	for	deployment	in	industrial
facilities.	Fiber-optic	cable	 is	 small	 and	 lightweight,	one	 fiber	being	capable	of	 replacing	hundreds	of
pairs	of	copper	wires.

But	optical	cable	is	fragile	and	costly	to	purchase	and	install.	Because	of	this,	fiber	is	most	often	used
as	network	backbone	cable,	which	bears	the	traffic	of	hundreds	or	thousands	of	users.	Backbone	cable	is
like	an	interstate	highway.	Access	to	it	is	limited	to	specific	entrance	and	exit	points,	but	a	large	volume
of	traffic	is	carried	at	high	speed.	For	a	vehicle	to	get	to	its	final	destination,	it	has	to	exit	the	highway	and



perhaps	drive	through	a	residential	street.	The	network	equivalent	of	a	residential	street	most	often	takes
the	 form	 of	 twisted	 pair	 copper	 wire.	 This	 “residential	 street”	 copper	 wire	 is	 sometimes	 called
horizontal	cable,	to	differentiate	it	from	backbone	(vertical)	cable.	Undoubtedly,	“fiber	to	the	desktop”
will	eventually	become	a	reality	as	costs	decrease.	At	the	same	time,	demand	is	steadily	increasing	for
the	 integration	 of	 data,	 voice,	 and	 video	 over	 the	 same	 cable.	 With	 the	 deployment	 of	 these	 new
technologies,	network	media	probably	will	be	stretched	to	their	limits	before	the	next	generation	of	high-
speed	cabling	is	introduced.

FIGURE	12.15	Optical	Fiber
a)	Single	Mode
b)	Multimode
c)	Graded	Index

Unguided	Media—Wireless	Data	Communications
Bit	 patterns	 can	 be	 conveyed	 over	 any	 medium	 capable	 of	 supporting	 a	 signal.	 Accordingly,	 the
transmission	 hardware	 and	methods	 employed	 in	wireless	 data	 communications	 vary	widely.	We	 can’t
even	 begin	 to	 cover	 them	 all	 here.	 We	 will,	 however,	 say	 a	 few	 words	 about	 the	 wireless	 data
communications	standards	that	most	of	us	encounter	in	our	daily	activities:	cellular	wireless,	Bluetooth,
and	the	802.11x	family	of	standards.

As	their	name	implies,	cellular	wireless	networks	transmit	data	over	the	cellular	telephone	network.
Like	the	early	residential	telephone	network,	the	cellular	system	was	not	intended	to	be	a	data	network.
Consequently,	the	so-called	first-and	second-generation	cellular	data	transmission	networks	have	limited
features	and	transmission	rates	(usually	between	0.3	and	1Mbps).	There	is	indeed	as	much	to	be	gained
by	 establishing	 broadband	 cellular	 service	 as	 there	was	 in	 establishing	 broadband	 residential	 service
over	guided	media	(cable	and	telephone).	Fast	cellular	data	communications	provides	added	convenience
for	 people	 who	 are	 already	 accustomed	 to	 fast	 networking	 at	 home	 and	 at	 the	 office.	 It	 also	 has	 the
potential	to	reach	out	to	millions	of	new	customers	who	have	been	underserved	by	landlines.	With	this	in
mind,	the	ITU	has	defined	a	third-generation	wireless	communication	structure,	commonly	called	3G.	The
features	 of	 3G	 include	 data	 rates	 up	 to	 2.048Mbps,	 support	 for	 a	 wide	 array	 of	 equipment,	 and	 the
integration	of	low-Earth-orbiting	(LEO)	satellites	into	a	unified	system.	Although	access	speeds	may	vary,
it	is	possible	that	with	3G,	the	World	Wide	Web	will	finally	be	open	to	the	entire	world.

Bluetooth,	 otherwise	 known	 as	 IEEE	 802.15.1-2002,	 was	 conceived	 of	 by	 Ericsson
(Telefonaktiebolaget	 LM	 Ericsson)	 in	 1994.	 Bluetooth	 is	 the	 name-sake	 of	 a	 tenth-century	 king	 of
Denmark	and	Norway	who	is	famous	for	ending	the	hostilities	 that	had	been	raging	among	a	number	of
Danish,	Norwegian,	 and	Swedish	 tribes.	The	 analogous	 aim	of	Bluetooth	 is	 to	 bring	 together	 differing
technologies	 for	 interconnecting	 computers	 and	 other	 equipment	 over	 very	 short	 distances,	 officially
known	as	personal	area	networks	(PANs),	or	piconets.	The	first	Bluetooth	specification	was	released
in	1999	by	a	consortium	consisting	of	Ericsson,	IBM,	Intel,	Nokia,	and	Toshiba.

A	Bluetooth	network	consists	of	a	master	device	and	up	to	seven	slave	devices,	to	which	the	master
communicates	in	round-robin	fashion.	Data	transmission	of	720Kbps	occurs	at	very	low	power	(no	more



than	 100mw)	 over	 an	 unregulated	 frequency	 of	 2.45GHz.	 Bluetooth	 is	 very	 popular	 for	 connecting
portable	 computing	 devices	 (such	 as	 tablet	 PCs,	 PDAs,	 and	 cell	 phones)	 to	 a	 variety	 of	 peripheral
devices	without	the	need	for	cables	or	cable	sockets	that	take	up	precious	space	in	portable	devices.

Wireless	 local	 area	 networks	 (WLANs)	 are	much	 slower	 than	 hardwired	 LANs,	 but	 they	 provide
many	other	benefits	that	have	contributed	to	their	proliferation.	The	most	important	of	these	is	the	fact	that
a	network	can	be	set	up	just	about	anywhere,	and	it	can	be	reconfigured	with	unparalleled	ease.	The	IEEE
802.11	family	of	WLAN	standards	has	grown	steadily	since	the	first	standard	was	published	in	1997.	We
have	provided	a	brief	synopsis	of	the	various	components	of	the	standard	in	Table	12.2.

IEEE	Specification Description
802.11	-	2007 The	basic	wireless	standard	includes	amendments	a	–	j	and	the	maintenance	revision,	802.11.RevMA.

802.11k	-	2007 Radio	resource	measurements	to	allow	remote	management	of	services	such	as	roaming.

802.11n	-	2009 Improvements	for	throughput,	up	to	600Mbps	over	the	2.4	and	5GHz	bands	with	a	range	of	around	250ft	indoors.

802.11p	-	2010 Extensions	specifically	for	automobiles	and	other	vehicles	in	the	5.9GHz	spectrum.

802.11r	-	2008 Fast	roaming:	Allows	reliable	handoffs	between	base	stations	to	accommodate	wireless	devices	in	motion	(e.g.,	in	cars).

802.11s	-	2010 Wireless	mesh	networking

802.11u	-	2010 Interworking	with	non-802	networks,	such	as	3G	cellular.

802.11v	-	2010 Wireless	network	management.

802.11.w	-	2009 Wireless	LAN	management	frame	protection.

802.11.y	-	2008 MAC	layer	enhancements	for	the	3,650MHz	band	for	wireless	LANs.

TABLE	12.2	IEEE	802.11	Wireless	Network	Standards

A	typical	WLAN	consists	of	one	or	more	interconnected	(hardwired)	wireless	access	points	(WAPs)
that	 broadcast	 data	 to	 nodes	 on	 the	 network.	 The	 node	 maintains	 a	 connection	 through	 its	 assigned
frequency	 for	 the	 duration	 of	 its	 session,	 or	 until	 the	 connection	 is	 broken.	 The	 range	 of	 the	WAPs	 is
limited	by	ambient	electromagnetic	interference	and	obstructions	such	as	walls	and	furniture.	In	general,
the	faster	a	wireless	network’s	data	transmission	speed,	the	more	susceptible	it	is	to	obstructions,	and	the
shorter	its	range	of	transmission.	Nodes	farthest	from	the	WAP	will	have	the	lowest	through-put,	because
the	transmission	speed	is	stepped	down	to	accommodate	the	greater	distance.

Security	 is	 a	 continual	 problem	 in	 wireless	 networking.	 Certain	 measures	 can	 be	 taken	 to	 make
unauthorized	access	difficult,	such	as	the	use	of	the	128-bit	encryption	mode	of	wired	equivalent	privacy
(WEP).	Security	experts	caution,	however,	that	it	is	impossible	to	block	a	determined	and	sophisticated
hacker.	If	security	is	a	concern,	any	form	of	wireless	networking	should	be	deployed	with	extreme	care.
Even	piconets	can	open	the	door	for	malicious	access	to	the	entire	enterprise	network.

12.6.2		Interface	Cards
Transmission	media	are	connected	to	clients,	hosts,	and	other	network	devices	through	network	interfaces.
Because	these	interfaces	are	often	implemented	on	removable	circuit	boards,	 they	are	commonly	called
network	interface	cards,	or	simply	NICs.	(Please	don’t	say	“NIC	card”!)	A	NIC	usually	embodies	the
lowest	three	layers	of	the	OSI	protocol	stack.	It	forms	the	bridge	between	the	physical	components	of	the
network	and	your	system.	NICs	attach	directly	to	a	system’s	main	bus	or	dedicated	I/O	bus.	They	convert
the	parallel	data	passed	on	the	system	bus	to	the	serial	signals	broadcast	on	a	communications	medium.
NICs	change	the	encoding	of	the	data	from	binary	to	the	Manchester	or	4B/5B	of	the	network	(and	vice
versa).	NICs	also	provide	physical	connections	and	negotiate	permission	to	place	signals	on	the	network



medium.
Every	network	card	has	a	unique	physical	address	burned	into	its	circuits.	This	is	called	a	Medium

Access	 Control	 (MAC)	 address,	 and	 it	 is	 6	 bytes	 long.	 The	 first	 3	 bytes	 are	 the	 manufacturer’s
identification	number,	which	is	designated	by	the	IEEE.	The	last	3	bytes	are	a	unique	identifier	assigned
to	 the	NIC	by	 the	manufacturer.	No	 two	cards	anywhere	 in	 the	world	should	ever	have	 the	same	MAC
address.	Network	protocol	 layers	map	 this	physical	MAC	address	 to	at	 least	one	 logical	 address.	The
logical	address	is	the	name	or	address	by	which	the	node	is	known	to	other	nodes	on	the	network.	It	 is
possible	for	one	computer	(logical	address)	to	have	two	or	more	NICs,	but	each	NIC	will	have	a	distinct
MAC	address.

12.6.3		Repeaters
A	 small	 office	 LAN	 installation	 will	 have	 many	 NICs	 within	 a	 few	 feet	 of	 each	 other.	 In	 an	 office
complex,	however,	NICs	may	be	separated	by	hundreds	of	feet	of	cable.	The	longer	the	cable,	the	greater
the	signal	attenuation.	The	effects	of	attenuation	can	be	mitigated	either	by	reducing	 transmission	speed
(usually	an	unacceptable	option)	or	by	adding	repeaters	to	the	network.	Repeaters	counteract	attenuation
by	 amplifying	 signals	 as	 they	 are	 passed	 through	 the	 physical	 cabling	 of	 the	 network.	 The	 number	 of
repeaters	 required	 for	 any	 network	 depends	 on	 the	 distance	 over	 which	 the	 signal	 is	 transmitted,	 the
medium	used,	and	the	signaling	speed	of	the	line.	For	example,	high-frequency	copper	wire	needs	more
repeaters	per	kilometer	than	optical	cable	operating	at	a	comparable	frequency.

Repeaters	 are	 part	 of	 the	 network	 medium.	 In	 theory,	 they	 are	 dumb	 devices	 functioning	 entirely
without	human	intervention.	As	such,	they	would	contain	no	network-addressable	components.	However,
some	repeaters	now	offer	higher-level	services	to	assist	with	network	management	and	troubleshooting.
Figure	12.16	is	a	representation	of	how	a	repeater	regenerates	an	attenuated	digital	signal.

12.6.4		Hubs
Repeaters	are	Physical	layer	devices	having	one	input	and	one	output	port.	Hubs	are	also	Physical	layer
devices,	but	 they	can	have	many	ports	for	input	and	output.	They	receive	incoming	packets	from	one	or
more	locations	and	broadcast	the	packets	to	one	or	more	devices	on	the	network.	Hubs	allow	computers
to	be	joined	to	form	network	segments.	The	simplest	hubs	are	nothing	more	than	repeaters	that	connect
various	 branches	 of	 a	 network.	 Physical	 network	 branches	 stuck	 together	 by	 hubs	 do	 not	 partition	 the
network	 in	 any	 way;	 they	 are	 strictly	 Layer	 1	 devices	 and	 are	 not	 aware	 of	 a	 packet’s	 source	 or	 its
destination.	Every	station	on	the	network	continues	to	compete	for	bandwidth	with	every	other	station	on
the	network,	regardless	of	the	presence	or	absence	of	intervening	hubs.	Because	hubs	are	Layer	1	devices,
the	 physical	medium	must	 be	 the	 same	 on	 all	 ports	 of	 the	 hub.	You	 can	 think	 of	 simple	 hubs	 as	 being
nothing	more	 than	 repeaters	 that	 provide	multiple	 station	 access	 to	 the	 physical	 network.	Figure	 12.17
shows	a	network	equipped	with	three	hubs.

As	hub	architectures	have	evolved,	many	now	have	the	ability	to	connect	dissimilar	physical	media.
Although	such	media	interconnection	is	a	Layer	2	function,	manufacturers	continue	to	call	these	devices
“hubs.”	Switching	hubs	and	 intelligent	hubs	are	still	 further	 removed	from	the	notion	of	a	hub	being	a
“Layer	1	device.”	These	sophisticated	components	not	only	connect	dissimilar	media,	but	also	perform
rudimentary	routing	and	protocol	conversion,	which	are	all	Layer	3	functions.

12.6.5		Switches



A	switch	is	a	Layer	2	device	that	creates	a	point-to-point	connection	between	one	of	its	input	ports	and
one	of	 its	output	ports.	Although	hubs	and	 switches	perform	 the	 same	 function,	 they	differ	 in	how	 they
handle	 the	data	 internally.	Hubs	broadcast	 the	packets	 to	all	computers	on	 the	network	and	handle	only
one	 packet	 at	 a	 time.	 Switches,	 on	 the	 other	 hand,	 can	 handle	 multiple	 communications	 between	 the
computers	attached	to	them.	If	there	were	only	two	computers	on	the	network,	a	hub	and	a	switch	would
behave	in	exactly	the	same	way.	If	more	than	two	computers	were	trying	to	communicate	on	a	network,	a
switch	gives	better	performance	because	the	full	bandwidth	of	the	network	is	available	at	both	sides	of
the	 switch.	 Therefore,	 switches	 are	 preferred	 to	 hubs	 in	most	 network	 installations.	 In	 Chapter	 9,	 we
introduced	switches	that	connect	processors	to	memories	or	processors	to	processors.	Those	switches	are
the	 same	kind	of	 switches	we	discuss	 here.	 Switches	 contain	 some	number	 of	 buffered	 input	 ports,	 an
equal	 number	 of	 output	 ports,	 a	 switching	 fabric	 (a	 combination	 of	 the	 switching	 units,	 the	 integrated
circuits	that	they	contain,	and	the	programming	that	allows	switching	paths	to	be	controlled),	and	digital
hardware	 that	 interprets	 address	 information	 encoded	 on	 network	 frames	 as	 they	 arrive	 in	 the	 input
buffers.

FIGURE	12.16	The	Function	of	a	Repeater	in	the	OSI	Reference	Model

FIGURE	12.17	A	Network	Connected	with	Hubs

As	with	most	of	the	network	components	we	have	been	discussing,	switches	have	been	improved	by
adding	addressability	and	management	features.	Most	switches	today	can	report	on	the	amount	and	type	of
traffic	 they	 are	 handling	 and	 can	 even	 filter	 out	 certain	 network	 packets	 based	 on	 user-supplied
parameters.	 Because	 all	 switching	 functions	 are	 carried	 out	 in	 hardware,	 switches	 are	 the	 preferred
devices	for	interconnecting	high-performance	network	components.

12.6.6		Bridges	and	Gateways
The	purpose	of	both	bridges	and	gateways	is	to	provide	a	link	between	two	dissimilar	network	segments.
Both	can	support	different	media	(and	network	speeds),	and	they	are	both	“store	and	forward”	devices,
holding	an	entire	frame	before	sending	it	on.	But	that’s	where	their	similarities	end.

Bridges	join	two	similar	types	of	networks	so	they	look	like	one	network.	With	bridges,	all	computers
on	the	network	belong	to	the	same	subnet	(the	network	consisting	of	all	devices	whose	IP	addresses	have
the	 same	 prefix).	 Bridges	 are	 relatively	 simple	 devices	 with	 functionality	 primarily	 at	 Layer	 2.	 This
means	 that	 they	 know	 nothing	 about	 protocols,	 but	 simply	 forward	 data	 depending	 on	 the	 destination



address.	 Bridges	 can	 connect	 different	media	 having	 different	media	 access	 control	 protocols,	 but	 the
protocol	from	the	MAC	layer	through	all	higher	layers	in	the	OSI	stack	must	be	identical	in	both	segments.
This	relationship	is	shown	in	Figure	12.18.

Each	node	connected	to	any	particular	bridge	must	have	a	unique	address.	(The	MAC	address	is	most
often	 used.)	 The	 network	 administrator	 must	 program	 simple	 bridges	 with	 the	 addresses	 and	 segment
numbers	of	each	valid	node	on	the	network.	The	only	data	that	is	allowed	to	cross	the	bridge	is	data	that
is	being	sent	to	a	valid	address	on	the	other	side	of	the	bridge.	For	large	networks	that	change	frequently
(most	networks),	this	continual	reprogramming	is	tedious,	time-consuming,	and	error	prone.	Transparent
bridges	were	invented	to	alleviate	 this	problem.	They	are	sophisticated	devices	that	have	the	ability	to
learn	 the	 address	 of	 every	 device	 on	 each	 segment.	 Transparent	 bridges	 can	 also	 supply	management
information	such	as	throughput	reports.	Such	functionality	implies	that	a	bridge	is	not	entirely	a	Layer	2
device.	However,	bridges	still	require	identical	Network	layer	protocols	and	identical	interfaces	to	those
protocols	on	both	interconnected	segments.

Figure	 12.18	 shows	 two	 different	 kinds	 of	 local	 area	 networks	 connected	 to	 each	 other	 through	 a
bridge.	This	is	typically	how	bridges	are	used.	If,	however,	users	on	these	LANs	needed	to	connect	to	a
system	that	uses	a	radically	different	protocol,	for	example,	a	public	switched	telephone	network	or	a	host
computer	that	uses	a	nonstandard	proprietary	protocol,	then	a	gateway	is	required.	A	gateway	is	a	point
of	 entrance	 to	 another	 network.	 Gateways	 are	 full-featured	 computers	 that	 supply	 communications
services	spanning	all	seven	OSI	layers.	Gateway	system	software	converts	protocols	and	character	codes,
and	can	provide	encryption	and	decryption	 services.	Because	 they	do	 so	much	work	 in	 their	 software,
gateways	cannot	provide	the	throughput	of	hardware-based	bridges,	but	they	make	up	for	it	by	providing
enormously	more	functionality.	Gateways	are	often	connected	directly	to	switches	and	routers.

FIGURE	12.18	A	Bridge	Connecting	Two	Networks

12.6.7		Routers	and	Routing
After	gateways,	routers	are	the	next	most	complicated	components	in	a	network.	They	are,	in	fact,	small
special-purpose	 computers.	 A	 router	 is	 a	 device	 (or	 a	 piece	 of	 software)	 connected	 to	 at	 least	 two
networks	 that	determines	 the	destination	 to	which	a	packet	 should	be	 forwarded.	Routers	 are	normally
located	 at	 gateways.	 Operating	 correctly,	 routers	 make	 the	 network	 fast	 and	 responsive.	 Operating
incorrectly,	 one	 faulty	 router	 can	 bring	 down	 the	 whole	 system.	 In	 this	 section,	 we	 reveal	 the	 inner
workings	of	routers	and	discuss	the	thorny	problems	that	routers	are	called	upon	to	solve.

Despite	 their	 complexity,	 routers	 are	 usually	 referred	 to	 as	Layer	 3	 devices,	 because	most	 of	 their
work	 is	 done	 at	 the	Network	 layer	 of	 the	OSI	Reference	Model.	However,	most	 routers	 also	 provide
some	network	monitoring,	management,	and	 troubleshooting	services.	Because	 routers	are	by	definition
Layer	3	devices,	they	can	bridge	different	network	media	types	(fiber	to	copper,	for	example)	and	connect



different	 network	 protocols	 running	 at	 Layer	 3	 and	 below.	 Because	 of	 their	 abilities,	 routers	 are
sometimes	referred	to	as	“intermediate	systems”	or	“gateways”	in	Internet	standards	literature.	(When	the
first	Internet	standards	were	written,	the	word	router	hadn’t	yet	been	coined.)

Routers	are	designed	specifically	to	connect	two	networks	together,	typically	a	LAN	to	a	WAN.	They
are	 complex	 devices	 because	 not	 only	 do	 they	 contain	 buffers	 and	 switching	 logic,	 but	 they	 also	 have
enough	memory	 and	 processing	 power	 to	 calculate	 the	 best	way	 to	 send	 a	 packet	 to	 its	 destination.	A
conceptual	model	of	the	internals	of	a	router	is	shown	in	Figure	12.19.

In	 large	 networks,	 routers	 find	 an	 approximate	 solution	 to	 a	 problem	 that	 is	 fundamentally	 NP
complete.	 An	 NP-complete	 problem	 is	 one	 in	 which	 its	 optimal	 solution	 is	 theoretically	 impossible
within	a	time	period	that	is	short	enough	for	that	solution	to	be	useful.

Consider	the	network	shown	in	Figure	12.20.	You	may	recognize	this	figure	as	a	complete	graph	(K5).
There	are	n(n	–	1)	/	2	edges	in	a	complete	graph	containing	n	nodes.	In	our	illustration,	we	have	5	nodes
and	10	edges.	The	edges	represent	routes—or	hops—between	each	of	the	nodes.

If	Node	1	(Router	1)	needs	to	send	a	packet	to	Node	2,	it	has	the	following	choices	of	routes:

FIGURE	12.19	Anatomy	of	a	Router



FIGURE	12.20	A	Fully	Connected	Network

When	Node	1	and	Node	2	are	not	directly	connected,	 the	traffic	between	them	must	pass	 through	at
least	one	intermediate	node.	Considering	all	options,	the	number	of	possible	routes	is	on	the	algorithmic
order	of	N!.	This	problem	is	further	complicated	when	costs	or	weights	are	applied	to	the	routing	paths.
Worse	 yet,	 the	weights	 can	 change	 depending	 on	 traffic	 flow.	 For	 example,	 if	 the	 connection	 between
Nodes	1	and	2	were	a	tariffed	high-latency	(slow)	line,	we	might	be	a	whole	lot	better	off	using	the	1	→
4	→	5	→	3	→	2	route.	Clearly,	in	a	real-world	network,	with	hundreds	of	routers,	the	problem	becomes
enormous.	 If	 each	 router	 had	 to	 come	up	with	 the	 perfect	 outbound	 route	 for	 each	 incoming	 packet	 by
considering	all	 the	possibilities,	 the	packets	would	never	get	where	 they	were	going	quickly	enough	 to
make	anyone	happy.

Of	course,	in	a	very	stable	network	with	only	a	few	nodes,	it	is	possible	to	program	each	router	so
that	 it	always	uses	 the	same	optimal	 route.	This	 is	called	static	routing,	 and	 it	 is	 feasible	 in	networks
where	a	large	number	of	users	in	one	location	use	a	centralized	host,	or	gateway,	in	another	location.	In
the	 short	 term,	 this	 is	 an	 effective	way	 to	 interconnect	 systems,	 but	 if	 a	 problem	 arises	 in	 one	 of	 the
interconnecting	 links	 or	 routers,	 users	 are	 disconnected	 from	 the	 host.	 A	 human	 being	 must	 quickly
respond	 to	 restore	 service.	 Static	 routing	 just	 isn’t	 a	 reasonable	 option	 for	 networks	 that	 change
frequently.	This	is	to	say	that	static	routing	isn’t	an	option	for	most	networks.	Conversely,	static	networks
are	predictable,	because	the	path	(and	thus	the	number	of	hops)	a	packet	will	take	is	always	known	and
can	be	controlled.	Static	routing	is	also	very	stable,	and	it	creates	no	routing	protocol	exchange	traffic.

Dynamic	routers	automatically	set	up	routes	and	respond	to	the	changes	in	the	network.	These	routers
can	also	select	an	optimal	route	as	well	as	a	backup	route	should	something	happen	to	the	route	of	choice.
They	do	not	change	routing	instructions,	but	instead	allow	for	dynamic	altering	of	routing	tables.

Dynamic	 routers	 automatically	 explore	 their	 networks	 through	 information	 exchanges	 with	 other
routers	on	the	network.	The	information	packets	exchanged	by	the	routers	reveal	their	addresses	and	costs
of	getting	 from	one	point	 to	another.	Using	 this	 information,	each	 router	assembles	a	 table	of	values	 in
memory.	This	routing	table	is,	in	truth,	a	reachability	list	for	every	node	on	the	network,	plus	some	default
values.	Typically,	each	destination	node	is	listed	along	with	the	neighboring,	or	next-hop,	router	to	which
it	is	connected.

When	 creating	 their	 tables,	 dynamic	 routers	 consider	 one	 of	 two	metrics.	 They	 can	 use	 either	 the
distance	to	travel	between	two	nodes	or	the	condition	of	the	network	in	terms	of	measured	latency.	The
algorithms	using	the	first	metric	are	distance	vector	routing	algorithms.	Link	state	routing	algorithms
use	the	second	metric.

Distance	 vector	 routing	 is	 derived	 from	 a	 pair	 of	 similar	 algorithms	 invented	 in	 1957	 and	 1962
known,	 respectively,	 as	 the	Bellman-Ford	 and	 Ford-Fulkerson	 algorithms.	 The	 distance	 in	 distance
vector	 routing	 is	 usually	 a	measure	 of	 the	 number	 of	 nodes	 (hops)	 through	which	 a	 packet	must	 pass
before	reaching	its	destination,	but	any	metric	can	be	used.	For	example,	suppose	we	have	 the	network
shown	in	Figure	12.21a.	There	are	4	routers	and	10	nodes	connected	as	indicated.	If	node	B	wants	to	send
a	packet	to	node	L,	there	are	two	choices:	One	is	B	→	Router	4	→	Router	1	→	L,	with	one	hop	between
Router	4	and	Router	1.	The	other	 routing	choice	has	 three	hops	between	 the	routers:	B	→	Router	4	→
Router	3	→	Router	2	→	Router	1	→	L.	With	distance	vector	routing,	the	objective	is	to	always	use	the
shortest	route,	so	our	B	→	Router	4	→	Router	1	→	L	route	is	the	obvious	choice.



FIGURE	12.21	a)	An	Example	of	a	Network	with	4	Routers	and	10	Nodes
b)	Routing	Tables	from	Router	1	and	Router	3	Are	Used	for	Building	the	Routing	Table	for	Router	2

In	distance	vector	routing,	every	router	needs	to	know	the	identities	of	each	node	connected	to	each
router	as	well	as	the	hop	counts	between	them.	To	do	this	efficiently,	routers	exchange	node	and	hop	count
information	with	their	adjacent	neighbors.	For	example,	using	the	network	shown	in	Figure	12.21a,	Router
1	and	Router	3	would	have	routing	tables	as	shown	in	Figure	12.21b.	These	routing	tables	are	then	sent	to
Router	2.	As	shown	in	the	figure,	Router	2	selects	the	shortest	path	to	any	of	the	nodes	considering	all	of
the	routes	that	are	reported	in	the	routing	tables.	The	final	routing	table	contains	the	addresses	of	nodes
directly	 connected	 to	 Router	 2	 along	with	 a	 list	 of	 destination	 nodes	 that	 are	 reachable	 through	 other
routers	 and	 a	 hop	 count	 to	 those	 nodes.	Notice	 that	 the	 hop	 counts	 in	 the	 final	 table	 for	 Router	 2	 are
increased	by	1	 to	 account	 for	 the	 one	hop	between	Router	 2	 and	Router	 1,	 and	between	Router	 2	 and
Router	3.	A	real	routing	table	would	also	contain	a	default	router	address	that	would	be	used	for	nodes
that	are	not	directly	connected	to	the	network,	such	as	stations	on	a	remote	LAN	or	Internet	destinations,
for	example.

Distance	vector	routing	is	easy	to	implement,	but	it	does	have	a	few	problems.	For	one	thing,	it	can
take	 a	 long	 time	 for	 the	 routing	 tables	 to	 stabilize	 (or	 converge)	 in	 a	 large	 network.	 Additionally,	 a
considerable	 amount	 of	 traffic	 is	 placed	 on	 the	 network	 as	 the	 routing	 tables	 are	 updated.	 And	 third,
obsolete	routes	can	persist	in	the	routing	tables,	causing	misrouted	or	lost	packets.	This	last	problem	is
called	the	count-to-infinity	problem.

You	 can	 understand	 the	 count-to-infinity	 problem	by	 studying	 the	 network	 shown	 in	Figure	 12.22a.



Notice	 that	 there	 are	 redundant	 paths	 through	 the	 network.	Note	 also	 that	 the	 path	 through	 the	 intranet
requires	 3	 hops.	 For	 example,	 if	 Router	 3	 goes	 offline,	 clients	 can	 still	 get	 to	 the	mainframe	 and	 the
Internet,	but	they	won’t	be	able	to	print	anything	until	Router	3	is	again	operational.

The	paths	from	all	of	the	routers	to	the	Internet	are	shown	in	Figure	12.22b.	We	call	the	time	that	this
snapshot	was	 taken	 t	 =	 0.	As	 you	 can	 see,	Router	 1	 and	Router	 2	 use	Router	 3	 to	 get	 to	 the	 Internet.
Sometime	between	 t	 =	 0	 and	 t	 =	 1,	 the	 link	between	Router	 3	 and	Router	 4	 goes	down	 (say	 someone
unplugs	 the	 cable	 that	 connects	 these	 routers).	 At	 t	 =	 1,	 Router	 3	 discovers	 this	 break,	 but	 has	 just
received	the	routing	table	update	from	its	neighbors,	both	of	which	advertise	themselves	as	being	able	to
get	to	the	Internet	in	two	hops.	Router	3	then	assumes	that	it	can	get	to	the	Internet	using	one	of	these	two
routers	and	updates	its	table	accordingly.	It	picks	Router	1	as	its	next	hop	to	the	Internet.	(Router	3	is	one
hop	from	Router	1,	so	the	total	hops	from	Router	3	to	the	Internet	is	1	+	2	=	3.)	Router	3	then	sends	its
routing	table	to	Router	1	and	Router	2	at	t	=	2.	At	t	=	3,	Router	1	and	Router	2	receive	Router	3’s	updated
hop	count	for	getting	to	the	Internet,	so	they	add	1	to	Router	3’s	value	(because	they	know	that	Router	3	is
one	hop	away)	and	subsequently	broadcast	their	tables.	This	cycle	continues	until	all	of	the	routers	end	up
with	 a	 hop	 count	 of	 infinity,	 meaning	 that	 the	 registers	 that	 hold	 the	 hop	 count	 eventually	 overflow,
crashing	the	whole	network.



FIGURE	12.22	a)	An	Example	of	a	Network	with	Redundant	Paths
b)	The	Routing	that	Router	1,	Router	2,	and	Router	3	would	use	to	get	to	the	Internet
c–g)	Routing	Table	Updates	for	the	Paths	to	the	Internet

Two	methods	are	commonly	used	 to	prevent	 this	 situation.	One	 is	 to	use	a	 small	value	 for	 infinity,
facilitating	early	problem	detection	 (before	a	 register	overflows),	and	 the	other	 is	 to	somehow	prevent
short	cycles	like	the	one	that	happened	in	our	example.

Sophisticated	 routers	 use	 a	 method	 called	 split	 horizon	 routing	 to	 keep	 short	 cycles	 out	 of	 the
network.	The	idea	is	simple:	No	router	will	use	a	route	given	by	its	neighbor	that	 includes	itself	 in	the
route.	 (Similarly,	 the	 router	 could	go	 ahead	 and	use	 the	 self-referential	 route,	 but	 set	 the	path	value	 to
infinity.	This	is	called	split	horizon	with	poison	reverse.	The	route	is	“poisoned”	because	it	is	marked	as
unreachable.)	The	routing	table	exchange	for	our	example	path	to	the	Internet	using	split	horizon	routing
would	 converge	 as	 shown	 in	 Figure	 12.23.	 Of	 course,	 we	 still	 have	 the	 problem	 of	 larger	 cycles
occurring.	Say	Router	1	points	to	Router	2,	which	points	to	Router	3,	which	points	to	Router	1.	To	some



extent,	 this	problem	can	be	 remedied	 if	 the	 routers	 exchange	 their	 tables	only	when	a	 link	needs	 to	be
updated.	 (These	are	called	 triggered	updates.)	Updates	done	 in	 this	manner	cause	 fewer	cycles	 in	 the
routing	graph	and	also	reduce	traffic	on	the	network.

In	large	internetworks,	hop	counts	can	be	a	misleading	metric,	particularly	when	the	network	includes
a	 variety	 of	 equipment	 and	 line	 speeds.	 For	 example,	 suppose	 a	 packet	 has	 two	 ways	 of	 getting
somewhere.	One	path	traverses	six	routers	on	a	100Mbps	LAN,	and	the	other	traverses	two	routers	on	a
64Kbps	 leased	 line.	Although	the	100Mbps	LAN	could	provide	more	 than	 ten	 times	 the	 throughput,	 the
hop	count	metric	would	force	traffic	onto	the	slower	leased	line.	If	instead	of	counting	hops	we	measure
the	actual	line	latency,	we	could	prevent	such	anomalies.	This	is	the	idea	behind	link	state	routing.

FIGURE	12.23	Split	Horizon	with	Poison	Reverse	Routing

As	with	distance	vector	routing,	link	state	routing	is	a	self-managing	system.	Each	router	discovers	the
speed	of	the	lines	between	itself	and	its	neighboring	routers	by	periodically	sending	out	Hello	packets.	At
the	instant	it	releases	the	packet,	the	router	starts	a	timer.	Each	router	that	subsequently	receives	the	packet
immediately	dispatches	a	reply.	Once	the	initiator	gets	a	reply,	it	stops	its	timer	and	divides	the	result	by
2,	giving	the	one-way	time	estimate	for	the	link	to	the	router	that	replied	to	the	packet.	Once	all	the	replies
are	received,	the	router	assembles	the	timings	into	a	table	of	link	state	values.	This	table	is	then	broadcast
to	all	other	routers,	except	its	adjacent	neighbors.	Nonadjacent	routers	then	use	this	information	to	update
all	 routes	 that	 include	 the	 sending	 router.	Eventually,	all	 routers	within	 the	 routing	domain	end	up	with
identical	 routing	 tables.	Simply	 stated,	 after	 convergence	 takes	place,	 a	 single	 snapshot	of	 the	network
exists	in	the	tables	of	each	router.	The	routers	then	use	this	image	to	calculate	the	optimal	path	to	every
destination	in	its	routing	table.

In	calculating	optimal	routes,	each	router	 is	programmed	to	think	of	 itself	as	 the	root	node	of	a	tree
with	 every	 destination	 being	 an	 internal	 leaf	 node	 of	 the	 tree.	 Using	 this	 conceptualization,	 the	 router
computes	an	optimal	path	 to	each	destination	using	Dijkstra’s	algorithm.1	Once	 found,	 the	 router	 stores
only	the	next	hop	along	the	path.	It	doesn’t	store	the	entire	path.	The	next	(downstream)	router	should	also
have	computed	the	same	optimal	path—or	a	better	one	by	the	time	the	packet	gets	there—so	it	would	use
the	next	link	in	the	optimal	path	that	was	computed	by	its	upstream	predecessor.	After	Router	1	in	Figure
12.22a	has	applied	Dijkstra’s	algorithm,	it	sees	the	network	as	shown	in	Figure	12.24.

Clearly,	routers	can	retain	only	a	finite	amount	of	information.	Once	a	network	gets	to	a	size	where
performance	starts	 to	degrade	 (usually	 this	happens	 for	 reasons	other	 than	 routing	 table	 saturation),	 the
network	must	be	split	into	subnetworks,	or	segments.	In	very	large	networks,	hierarchical	topologies	that
involve	 a	 combination	 of	 switching	 and	 routing	 technologies	 are	 employed	 to	 help	 keep	 the	 system



manageable.	The	best	network	designers	know	when	each	technology	is	called	for	in	the	system	design.
The	ultimate	aim	is	to	maximize	throughput	while	keeping	the	network	manageable	and	robust.

FIGURE	12.24	How	Router	1	Sees	the	Network	in	Figure	12.22a	Using	Link	State	Routing	and
Dijkstra’s	Algorithm

What	Is	a	Firewall?
Virtually	everyone	in	government,	 industry,	and	academia	uses	the	Internet	during	the	course	of	daily
business.	 Yet	 the	 Internet	 invites	 everyone	 on	 board—even	 those	 persons	 who	 would	 plunder	 or
destroy	a	company’s	computing	resources.	So	how	do	you	keep	a	network	open	enough	for	people	to
do	their	jobs	but	sufficiently	secure	to	protect	the	assets	of	the	business?	The	preferred	solution	to	this
problem	is	to	place	a	firewall	between	the	internal	network	and	the	Internet.

Firewalls	get	their	name	by	drawing	an	analogy	to	the	high	brick	walls	that	are	sometimes	placed
between	 adjacent	 buildings.	 If	 a	 fire	 erupts	 in	 one	 of	 the	 buildings,	 the	 adjacent	 structure	 has	 some
protection	from	becoming	involved	in	the	blaze.	So	it	is	with	a	network	firewall:	The	internal	users	are
partitioned	from	external	users	who	may	do	harm	to	the	internal	network	structure.

Firewalls	come	in	many	varieties.	Two	types	that	are	most	popular	are	router-based	firewalls	and
host-based—or	proxy	server—firewalls.	 Both	 types	 are	 programmed	with	 a	 rule	 base	 known	 as	 a
policy.	The	 firewall	 policy	defines	which	network	 addresses	 can	have	 access	 to	which	 services.	A
good	example	of	a	policy	 involves	 file	 transfers.	A	firewall	could	be	programmed	to	allow	internal
users	 (on	 the	 protected	 side	 of	 the	 network)	 to	 download	 files	 from	 the	 Internet.	 Users	 outside	 the
protected	 network	 would	 be	 prohibited	 from	 downloading	 files	 from	 the	 internal	 network.	 The
assumption	 is	 that	data	on	 the	 inside	of	 the	network	may	contain	 sensitive,	private	 information.	Any
firewall	 can	 also	 be	 programmed	 with	 a	 list	 of	 forbidden	 addresses.	 (This	 is	 sometimes	 called	 a
blacklist.)	 Blacklisted	 addresses	 often	 include	 the	 websites	 of	 groups	 disseminating	 objectionable
material.



Both	 types	of	 firewalls	also	distinguish	between	 inbound	and	outbound	 traffic.	This	prevents	 the
address	spoofing	that	attempts	to	fool	a	firewall	into	thinking	that	a	user	is	inside	the	network,	when	in
fact	the	user	is	outside	the	network.	If	the	firewall	were	fooled	by	a	spoofed	address,	an	external	user
would	have	free	run	of	the	internal	network.

Both	 router-based	 firewalls	 and	 proxy	 servers	 have	 the	 ability	 to	 encrypt	 network	 traffic.
Encryption	is	the	process	of	scrambling	a	message	using	an	algorithm	and	a	key	value	so	that	the	only
device	that	can	read	the	message	is	the	device	having	the	corresponding	key.	Key	values	are	changed
periodically,	usually	daily.	This	process	happens	automatically	when	firewalls	are	programmed	with
key	exchange	routines.	Routers	tend	to	use	simpler	encryption	algorithms,	usually	based	on	simple	bit
shifts	and	logical	ANDs	using	the	message	and	the	key	value.	(One	such	algorithm	is	the	U.S.	federal
Data	 Encryption	 Standard	 [DES].	 For	 more	 security,	 the	 message	 is	 sometimes	 encrypted	 three
times.	This	is	called	Triple-DES.)

As	 you	 might	 expect,	 proxy	 servers	 are	 slower	 and	 more	 prone	 to	 failure	 than	 router-based
firewalls,	but	they	also	have	many	more	features	than	router-based	firewalls.	First	among	these	is	their
ability	 to	 act	 as	 an	 agent	 for	 users	 on	 the	 internal	 network	 (hence	 the	 name	 proxy	 server).	 These
systems	are	usually	equipped	with	two	network	cards,	that	is,	they	are	dual	homed	One	network	card
connects	to	the	internal	network,	and	the	other	connects	to	the	outside	network.	With	this	configuration,
the	server	can	completely	mask	the	characteristics	of	the	internal	network	from	anyone	on	the	outside.
All	 that	 the	 external	 users	 can	 see	 is	 the	 address	 of	 the	 network	 interface	 that	 is	 connected	 to	 the
outside.

Server-based	 firewalls	 can	 also	 maintain	 extensive	 network	 logs.	 Through	 these	 logs,	 security
administrators	 can	 detect	 most	 invasion	 attempts	 by	 external	 evildoers.	 In	 some	 cases,	 logs	 can
provide	information	regarding	the	source	of	a	penetration	attempt.

12.7			THE	FRAGILITY	OF	THE	INTERNET
In	a	short	35	years,	 the	Cold	War’s	secret	DARPANet	has	been	transformed	into	a	crucial	resource	for
civilian	business	 and	 industry.	Although	 the	 Internet	 is	 obviously	our	main	 conduit	 for	 information	 and
financial	 transactions,	 it	 not	 so	 obviously	 is	 the	 fabric	 for	 supervisory	 control	 and	 data	 acquisition
(SCADA)	 networks.	 SCADA	 systems	 operate	 vital	 portions	 of	 our	 physical	 infrastructure	 including
power	generation	facilities,	transportation	networks,	sewage	systems,	and	oil	and	gas	pipelines,	to	name
only	a	few.



Because	 of	 their	 inherent	 communication	 needs,	 SCADA	 systems	 were	 the	 first	 wave	 of	 control
systems	 to	 connect	 via	 the	 Internet.	 The	 present	 wave	 involves	 less	 critical	 but	much	more	 numerous
collections	of	control	and	sensory	nodes	known	as	the	Internet	of	Things	(IoT)	or	Machine-to-Machine
(M2M)	 communication.	The	 span	of	 the	 IoT	encompasses	 everything	 from	 the	 smallest	RFID	chips,	 to
home	appliances,	to	security	systems.	One	can	easily	foresee	a	world	in	which	every	object	is	tagged	and
able	to	report	its	location	through	the	Web.	Intelligent	nodes	might	even	be	able	to	collaborate	with	other
nodes	to	make	operational	decisions.	Cisco	Systems	has	estimated	that	there	may	be	as	many	as	50	billion
M2M	devices	 in	use	by	2020.	 It	 is	 possible	 that	without	 the	 Internet,	 these	devices	might	 be	 rendered
useless—including	large	portions	of	our	crucial	SCADA	infrastructure.

As	stated	earlier	 in	 this	chapter,	 the	 Internet	was	designed	with	survivability	 in	mind.	 If	one	 router
fails,	another	can	be	used	just	as	easily.	And,	in	fact,	this	robustness	demonstrated	itself	magnificently	in
October	 2012	 when	 Hurricane	 Sandy	 struck	 the	 Mid-Atlantic	 region	 of	 the	 United	 States.	 Internet
monitoring	 company	 Renesys	 estimated	 that	 only	 5%	 of	 the	 networks	 in	Manhattan	 were	 unreachable
between	October	29	and	October	30,	despite	a	substantial	amount	of	cabling	and	other	equipment	being
under	water	or	without	power.	Moreover,	the	problems	were	largely	limited	to	Manhattan:	The	outrages
did	not	propagate	throughout	the	region.

Indeed,	if	the	Internet	infrastructure	in	the	northeastern	United	States	could	survive	Superstorm	Sandy,
one	might	be	led	to	believe	that	the	Internet	can	survive	anything.	Several	Internet	observers	are	becoming
increasingly	worried,	however.	Some	of	the	loudest	alarms	are	being	heard	concerning	the	possibility	of
cyber	warfare—particularly	cyber	warfare	directed	at	SCADA	systems.	A	well-executed	SCADA	attack
could	bring	down	vast	swaths	of	a	country’s	power	systems	and	transportation	networks.	But	even	a	less
aggressive	 cyber	 attack	 aimed	 at	 only	 a	 few	 strategic	 backbone	 routers	 could	 cause	 a	 catastrophic
cascading	failure.	 In	 this	scenario,	 the	failed	routers	overwhelm	other	routers	on	 the	backbone,	causing
their	failure	as	well.

A	second	concern	is	that	of	the	increasing	bandwidth	demands	brought	on	by	the	IoT.	It	is	impossible
to	characterize	the	type	of	traffic	that	these	devices	will	place	on	the	network.	Will	it	consist	of	billions	of
short	UDP-type	bursts?	Will	it	be	streams	of	time-sensitive	data?	Until	now,	capacity	demands	have	been
met	 by	 simply	 adding	more	 cables	 and	 routers	 to	 the	 network.	 But	 as	more	 devices	 are	 added	 to	 the
network,	the	larger	the	routing	tables	become,	and	the	more	time	it	takes	to	select	a	route	and	forward	a
packet.	When	decisions	can’t	be	made	timely,	packets	are	lost	and	need	to	be	retransmitted,	putting	even
more	 traffic	on	 the	network.	At	 its	worst,	 this	situation	could	 lead	 to	a	condition	known	as	congestive
collapse,	 where	 a	 significant	 number	 of	 routers	 go	 offline	 because	 they	 can	 no	 longer	 handle	 their
incoming	traffic,	even	in	defiance	of	our	best	efforts	at	congestion	control.

Recognizing	that	the	IoT	may	push	packet	traffic	past	the	limits	of	network	scalability,	scientists	have
proposed	more	 intelligent,	or	cognitive,	packet	routing.	This	 idea	 takes	advantage	of	 the	 intelligence	of
the	end	nodes	in	the	network.	This	is	to	say	that	end	nodes	could	engage	in	direct	peer-to-peer	exchanges,
rather	 than	needing	 to	 involve	a	host.	As	a	simple	example,	consider	 the	process	of	 transferring	digital
photos	from	a	smartphone	to	a	tablet	computer	via	Wi-Fi.	In	many	cases,	the	digital	photos	travel	from	the
phone	 to	 a	 central	 router	 and	 then	 back	 through	 the	 Internet	 to	 the	 tablet.	Despite	 these	 devices	 being
inches	from	each	other,	the	packets	may	travel	hundreds	of	miles.	Indeed,	50	billion	transfers	like	this	in	a
day,	and	there	is	no	question	that	congestive	collapse	is	a	real	concern.	The	Internet	keeps	working	harder
to	keep	ahead	of	its	many	threats.	But	this	hard	work	leads	ultimately	to	exhaustion.	The	time	has	come	for
the	Internet	to	work	smarter.	Otherwise,	we	may	be	forced	to	recall	how	we	ever	lived	without	it.



CHAPTER	SUMMARY
This	 chapter	 has	 presented	 an	 overview	 of	 the	 network	 components	 and	 protocols	 that	 are	 used	 in
building	data	communications	systems.	Each	network	component—each	network	process—carries	out	a
task	at	some	 level	within	a	 layered	protocol	stack.	Network	engineers	use	 layers	of	 the	OSI	Reference
Model	to	describe	the	roles	and	responsibilities	of	all	network	components.	When	a	computer	is	engaged
in	communications	with	another	computer,	each	layer	of	the	protocol	stack	it	is	running	converses	with	a
corresponding	 layer	 running	 on	 the	 remote	 system.	 Protocol	 layers	 interface	with	 their	 adjacent	 layers
using	service	access	points.

Most	 Internet	 applications	 rely	 on	 TCP/IP,	 which	 is	 by	 far	 the	 most	 widely	 deployed	 data
communications	 protocol.	 Although	 often	 referred	 to	 as	 TCP/IP,	 this	 combination	 is	 actually	 two
protocols.	TCP	provides	a	means	for	setting	up	a	reliable	communications	stream	on	top	of	the	unreliable
IP.	Version	4	of	its	IP	component	is	constrained	by	its	32-bit	address	fields.	Version	6	of	IP	will	solve	this
problem	because	its	address	fields	are	128	bits	wide.	With	these	larger	address	fields,	routing	could	be	a
formidable	task.	With	this	in	mind,	the	IETF	has	devised	a	hierarchical	address	scheme,	the	Aggregatable
Global	Unicast	Address	Format,	which	makes	routing	of	packets	both	easier	and	faster.

We	 have	 described	 a	 number	 of	 components	 common	 to	most	 data	 communications	 networks.	 The
most	 important	 of	 these	 components	 are	 the	 physical	 media	 and	 the	 routers.	 Physical	 media	 must	 be
chosen	with	consideration	to	the	anticipated	load	and	the	distance	to	be	covered.	Physical	media	can	be
extended	 with	 repeaters	 when	 necessary.	 Routers	 are	 complex	 devices	 that	 monitor	 the	 state	 of	 the
network.	Their	programming	allows	them	to	select	nearly	optimal	paths	for	network	traffic.

As	 the	 Internet	 continues	 its	 exponential	 growth	 as	 a	 vehicle	 for	 commerce,	 routing	 problems	will
grow	proportionately.	The	solution	to	these	problems	may	ultimately	reside	in	rethinking	the	architecture
and	some	of	the	assumptions	that	form	the	foundation	of	the	Internet	as	we	know	it	today.

FURTHER	READING
There	is	no	shortage	of	literature	on	the	topic	of	computer	networking.	The	challenge	is	in	finding	good
networking	material	 these	days.	Among	the	best	data	communications	books	available	are	those	written
by	Tanenbaum	(2010),	Stallings	(2013),	and	Kurose	and	Ross	(2012).	Following	the	OSI	protocol	stack
in	its	organization,	Tanenbaum’s	work	is	an	easy-to-read	introduction	to	most	of	the	important	concepts	of
data	communications	and	networks.	Kurose	and	Ross	discuss	most	of	the	topics	presented	in	this	chapter
with	good	detail	and	at	a	level	that	is	accessible	to	most	interested	readers.	The	book	by	Stallings	covers
most	of	 the	same	material	as	Tanenbaum’s	book,	but	with	much	more	rigor	and	detail.	Sherman	(1990)
also	provides	a	well-written	(but	aging)	introduction	to	data	communications.	The	historical	perspective
that	Sherman	furnishes	is	most	enjoyable.

The	definitive	source	for	information	concerning	Internet	standards	(requests	for	comment,	or	RFCs)
is	the	Internet	Engineering	Task	Force	website	at	www.ietf.org.	The	RFCs	relevant	to	material	presented
in	this	chapter	are:

•			RFC	791	“Internet	Protocol	Version	4	(IPv4)”
•			RFC	793	“Transmission	Control	Protocol	(TCP)”
•			RFC	1180	“A	TCP/IP	Tutorial”
•			RFC	1887	“An	Architecture	for	IPv6	Unicast	Address	Allocation”
•			RFC	2460	“Internet	Protocol,	Version	6	(IPv6)	Specification”

http://www.ietf.org


•			RFC	2026	“The	Internet	Standards	Process”
•			RFC	1925	“The	Fundamental	Truths	of	Networking”

IBM’s	TCP/IP	 tutorial	 Redbook	 by	Rodriguez,	Getrell,	Karas,	 and	 Peschke	 (2001)	 is	 one	 of	 the	most
inexpensive	and	readable	resources	outside	of	the	IETF.	Unlike	the	IETF	site,	it	also	discusses	ways	in
which	 a	 particular	 vendor’s	 products	 implement	 TCP/IP	 (with	 no	 hype).	 Minoli	 and	 Schmidt	 (1999)
discuss	the	Internet	infrastructure,	with	a	particular	focus	on	quality-of-service	issues.

Clark	(1997)	gives	us	a	detailed	and	comprehensive	account	of	telephone	communications	(centering
in	the	UK).	It	relates	important	aspects	of	public	telephone	networks,	including	their	ability	to	carry	data
traffic.	Burd’s	 (1997)	 ISDN	and	de	Prycker’s	 (1996)	ATM	books	 are	both	definitive	 accounts	of	 their
subjects.	The	 IBM	(1995)	Redbook	on	ATM,	 though	 less	 rigorous	 than	de	Prycker,	provides	excellent,
objective	detail	concerning	ATM’s	salient	features.

For	more	information	relevant	to	the	Internet	backbone	router	instability	problem,	see	the	papers	by
Labovitz,	Malan,	and	Jahanian	(1998,	1999).	The	University	of	Michigan	maintains	a	website	devoted	to
Internet	performance	issues.	It	can	be	found	at	www.merit.edu/ipma/.

The	 only	 way	 to	 keep	 abreast	 of	 the	 latest	 data	 networking	 technologies	 is	 to	 constantly	 read
professional	and	trade	periodicals.	The	most	avant-garde	information	can	be	found	in	publications	by	the
ACM	 and	 IEEE.	 Outstanding	 among	 these	 are	 IEEE/ACM	 Transactions	 on	 Networking	 and	 IEEE
Network.	 Trade	 journals	 are	 another	 source	 of	 good	 information,	 particularly	 for	 understanding	 how
various	vendors	are	implementing	the	latest	in	networking	technology.	Two	such	magazines	published	by
CMP	 are	 Network	 Computing	 (www.networkcomputing.com)	 and	 Network	 Magazine
(www.networkmagazine.com).	Network	World	 is	a	weekly	magazine	published	by	CW	Communications
that	not	only	provides	an	excellent	print	version,	but	its	related	website,	www.nwfusion.com,	teems	with
information	and	resources.

Many	equipment	vendors	are	gracious	enough	to	post	excellent,	low-hype	tutorial	information	on	their
websites.	 These	 sites	 include	 those	 by	 IBM,	 Cisco	 Systems,	 and	 Corning	 Glass.	 Certainly	 you	 will
discover	other	great	commercial	sites	as	you	explore	specific	technologies	related	to	the	topics	presented
in	this	chapter.	It	seems	that	one	can	never	learn	enough	when	it	comes	to	data	communications	(no	matter
how	hard	one	tries!).

REFERENCES
Burd,	N.	The	ISDN	Subscriber	Loop.	London:	Chapman	&	Hall,	1997.
Clark,	M.	P.	Networks	and	Telecommunications:	Design	and	Operation,	2nd	ed.	Chichester,	England:

John	Wiley	&	Sons,	1997.
Kurose,	J.	F.,	&	Ross,	K.	W.	Computer	Networking:	A	Top-Down	Approach	Featuring	the	Internet.
Boston,	MA:	Addison	Wesley	Longman,	2001.
Labovitz,	C.,	Malan,	G.	R.,	&	Jahanian,	F.	“Internet	Routing	Instability.”	IEEE/ACM	Transactions	on

Networking	6:5,	October	1998,	pp.	515–528.
Labovitz,	C.,	Malan,	G.	R.,	&	Jahanian,	F.	“Origins	of	Internet	Routing	Instability.”	INFOCOM	‘99.

Eighteenth	Annual	Joint	Conference	of	the	IEEE	Computer	and	Communications	Societies.
Proceedings.	IEEE	1,	1999,	pp.	218–226.

Liotta,	A.,	“The	Cognitive	NET	is	Coming,”	IEEE	Spectrum	50:8,	August	2013,	pp.	26–31.

http://www.merit.edu/ipma/
http://www.networkcomputing.com
http://www.networkmagazine.com
http://www.nwfusion.com


Liu,	W.,	Matthews,	C.,	Parziale	L.,	et	al.	TCP/IP	Tutorial	and	Technical	Overview,	8th	ed.	Armonk,	NY:
IBM	Corporation,	2006.

Minoli,	D.,	&	Schmidt,	A.	Internet	Architectures.	New	York:	John	Wiley	&	Sons,	1999.
Sherman,	K.	Data	Communications:	A	User’s	Guide,	3rd	ed.	Englewood	Cliffs,	NJ:	Prentice	Hall,	1990.
Stallings,	W.	Data	and	Computer	Communications,	10th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,

2013.
Tanenbaum,	A.	S.	Computer	Networks,	5th	ed.	Upper	Saddle	River,	NJ:	Prentice	Hall,	2010.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS

1.		How	is	the	organization	of	a	polled	network	different	from	that	of	an	internetwork?
2.		What	protocol	device	was	the	key	to	the	robustness	of	DARPAnet?
3.		Who	establishes	standards	for	the	Internet?
4.		What	is	the	formal	name	given	to	Internet	standards?
5.	 	Which	layer	of	the	ISO/OSI	Reference	Model	takes	care	of	negotiating	frame	size	and	transmission

speed?
6.		If	a	communications	session	were	to	employ	encryption	or	compression,	which	layer	of	the	ISO/OSI

Reference	Model	would	perform	this	service?
7.	 	According	 to	 the	 IPv4	 format	described	 in	Section	12.5.1,	what	bit	positions	does	 the	 IP	Protocol

Number	occupy?	What	is	the	purpose	of	this	field?
8.		Why	have	certain	types	of	IP	addresses	become	scarce?
9.		Explain	the	general	purpose	of	the	TCP	protocol.
10.		How	does	IPv6	improve	upon	IPv4?
11.		What	is	the	difference	between	guided	and	unguided	data	transmission	media?	List	some	examples	of

each.
12.		What	determines	the	quality	of	a	transmission	medium?	What	metric	is	used?
13.		What	are	the	principal	causes	of	attenuation?	What	can	help	reduce	it?
14.		What	is	the	difference	between	the	baud	rate	and	the	bit	rate	of	a	line?
15.		What	are	the	three	types	of	fiber-optic	cable?	Which	of	these	can	transmit	signals	the	fastest?
16.		Where	does	one	find	a	MAC	address?	How	many	bytes	are	in	a	MAC	address?
17.		Briefly	describe	how	repeaters,	hubs,	switches,	and	routers	differ	from	one	another.
18.		What	is	the	difference	between	a	bridge	and	a	gateway?	Which	one	is	faster	and	why?
19.		When	is	it	not	a	very	good	idea	to	use	static	routing?
20.		Give	two	important	ways	in	which	link	state	routing	differs	from	distance	vector	routing.
21.		What	are	the	three	main	problems	that	arise	from	distance	vector	routing?
22.		In	what	ways	does	a	firewall	provide	security?
23.		What	are	SCADA	systems?



24.		In	what	ways	is	the	Internet	threatened?

EXERCISES
1.	 	 In	what	way	 is	 the	 traffic	of	an	early	business	computer	network	different	 from	 that	of	an	early

scientific-academic	network?	Is	there	such	a	distinction	between	these	two	types	of	systems	today?
2.		Why	is	the	ISO/OSI	protocol	stack	called	a	reference	model?	Do	you	think	this	will	always	be	the

case?
3.		How	is	a	Network	layer	protocol	different	from	a	Transport	layer	protocol?
4.	 	 Internet	 protocol	 standards	 are	 devised	 through	 the	 efforts	 of	 thousands	 of	 people	 all	 over	 the

world—regardless	of	their	having	any	particular	background	in	data	communications.	On	the	other
hand,	 proprietary	 protocols	 are	 created	 by	 a	 much	 smaller	 group	 of	 people,	 all	 of	 whom	 are
directly	or	indirectly	working	for	the	same	employer.
a)		What	advantages	and	disadvantages	do	you	think	are	offered	by	each	approach?	Which	would

produce	a	better	product?	Which	would	produce	a	product	more	quickly?
b)	 	 Why	 do	 you	 think	 that	 the	 IETF	 approach	 has	 achieved	 ascendancy	 over	 the	 proprietary

approach?
	5.		In	our	description	of	the	Window	field	in	the	TCP	header,	we	said:

Notice	that	if	the	receiver’s	application	is	running	very	slowly,	say	it’s	pulling	data	1	or	2	bytes	at	a
time	from	its	buffer,	the	TCP	process	running	at	the	receiver	should	wait	until	the	application	buffer
is	empty	enough	to	justify	sending	another	segment.

What	is	the	“justification”	for	sending	another	segment?

6.	 	 The	OSI	 protocol	 stack	 includes	Session	 and	Presentation	 layers	 in	 addition	 to	 its	Application
layer.	TCP/IP	applications,	such	as	Telnet	and	FTP,	have	no	such	separate	layers	defined.	Do	you
think	 that	 such	 a	 separation	 should	 be	 made?	 Give	 some	 advantages	 and	 disadvantages	 of
incorporating	the	OSI	approach	into	TCP/IP.

7.	 	Why	is	the	length	of	a	TCP	segment	limited	to	65,515	bytes?	(Hint:	Look	at	the	definition	of	the
Data	Offset	field	of	the	TCP	segment	format.)

8.		Why	does	the	IETF	use	the	word	octet	instead	of	byte?	Do	you	think	this	practice	should	continue?
	9.		Into	which	class	of	networks	do	the	following	IP	addresses	fall?

	a)		180.265.14.3
	b)		218.193.149.222
	c)		92.146.292.7

10.		Into	which	class	of	networks	do	the	following	IP	addresses	fall?
a)		223.52.176.62
b)		127.255.255.2
c)		191.57.229.163

11.		A	station	running	TCP/IP	needs	to	transfer	a	file	to	a	host.	The	file	contains	1,024	bytes.	How	many
bytes,	including	all	of	the	TCP/IP	overhead,	would	be	sent,	assuming	a	payload	size	of	128	bytes



and	that	both	systems	are	running	IPv4?	(Also	assume	that	the	three-way	handshake	and	window
size	negotiation	have	been	completed	and	that	no	errors	occur	during	transmission.)
	a)	What	is	the	protocol	overhead	(stated	as	a	percentage)?
	b)	Perform	the	same	calculation,	this	time	assuming	that	both	clients	are	using	IPv6.

12.		A	station	running	TCP/IP	needs	to	transfer	a	file	to	a	host.	The	file	contains	2,048	bytes.	How	many
bytes,	including	all	of	the	TCP/IP	overhead,	would	be	sent,	assuming	a	payload	size	of	512	bytes
and	that	both	systems	are	running	IPv4?	(Also	assume	that	the	three-way	handshake	and	window
size	negotiation	have	been	completed	and	that	no	errors	occur	during	transmission.)
a)		What	is	the	protocol	overhead	(stated	as	a	percentage)?
b)		Perform	the	same	calculation,	this	time	assuming	that	both	clients	are	using	IPv6.

	13.	 	 Two	 stations	 running	 TCP/IP	 are	 engaged	 in	 transferring	 a	 file.	 This	 file	 is	 100KB	 long,	 the
payload	size	is	100	bytes,	and	the	negotiated	window	size	is	300	bytes.	The	sender	receives	an
ACK	1,500	from	the	receiver.

	a)	Which	bytes	will	be	sent	next?
	b)	What	is	the	last	byte	number	that	can	be	sent	without	an	ACK	being	sent	by	the	receiver?

14.		Two	stations	running	TCP/IP	are	engaged	in	transferring	a	file.	This	file	is	10KB	long,	the	payload
size	is	100	bytes,	and	the	negotiated	window	size	is	2,000	bytes.	The	sender	receives	an	ACK	900
from	the	receiver.
a)		Which	bytes	will	be	sent	next?
b)		What	is	the	last	byte	number	that	can	be	sent	without	an	ACK	being	sent	by	the	receiver?

15.		What	problems	would	present	themselves	if	TCP	did	not	allow	senders	and	receivers	to	negotiate
a	timeout	window?

16.		IP	is	a	connectionless	protocol,	whereas	TCP	is	connection-oriented.	How	can	these	two	protocols
coexist	in	the	same	protocol	stack?

17.	 	Section	12.6.1	states	 that	when	using	4B/5B	encoding,	a	signal-carrying	capacity	of	125MHz	 is
required	for	a	transmission	medium	to	have	a	bit	rate	of	100Mbps.
a)		What	signal-carrying	capacity	would	be	required	if	Manchester	coding	were	used	instead?
b)	 	What	 signal-carrying	 capacity	would	 be	 required	 if	modified	 frequency	modulation	 (MFM)

coding	were	used,	 assuming	 that	 the	occurrence	of	 a	0	 and	 the	occurance	of	 a	1	 are	 equally
likely	events?

(Manchester	and	MFM	coding	are	explained	in	Chapter	2,	Section	2.A.)

18.		a)	The	signal	power	for	a	particular	class	of	network	wiring	is	8,733.26dB,	and	the	noise	rating	at
that	 particular	 signal	 strength	 at	 100MHz	 is	 41.8dB.	 Find	 the	 signal-to-noise	 ratio	 for	 this
conductor.
b)	 	 Suppose	 the	 noise	 rating	 for	 the	 network	wiring	 in	 part	 a	 is	 9.5dB	 and	 the	 noise	 rating	 is

36.9dB	when	a	200MHz	signal	is	transmitted.	What	is	the	signal	strength?
	19.		a)	The	signal	power	for	a	particular	class	of	network	wiring	is	2,898dB,	and	the	noise	rating	at

that	 particular	 signal	 strength	 at	 100MHz	 is	 40dB.	 Find	 the	 signal-to-noise	 ratio	 for	 this
conductor.

	b)	Suppose	the	noise	rating	for	the	network	wiring	in	part	a	is	0.32dB	and	the	noise	rating	is	35dB



when	a	200MHz	signal	is	transmitted.	What	is	the	signal	strength?
20.		How	big	is	a	physical	PDU?	The	answer	to	this	question	determines	the	number	of	simultaneous

transmissions	for	many	network	architectures.

If	 a	 signal	 propagates	 through	 copper	wire	 at	 a	 rate	 of	 2	×	 108m/s,	 then	 on	 a	 carrier	 running	 at
10Mbps	the	length	of	each	bit	pulse	is	given	by:

If	a	data	frame	is	512	bits	long,	then	the	entire	frame	occupies:

(Length	of	one	bit)	×	(Frame	size)	=	20	×	512	=	10,240	meters.

a)		How	big	is	a	1,024-bit	packet	if	the	network	runs	at	100Mbps?
b)		How	big	is	it	if	the	network	speed	is	increased	to	155Mbps?
c)	 	At	100Mbps,	how	much	 time	elapses	as	one	of	 these	 frames	passes	a	particular	point	 in	 the

network?
21.		It	looks	like	the	4B/5B	bit	cells	in	Figure	12.14	are	fairly	small.	How	long,	in	reality,	is	such	a	bit

cell	on	a	125MHz	line?	(Use	the	constants	and	formulas	from	the	previous	question.)
22.		With	reference	to	Figure	12.21,	suppose	Router	4	derives	its	routing	table	from	the	routing	tables

of	Router	1	and	Router	3.	Complete	 the	 routing	 table	 for	Router	4	using	 the	 same	 format	as	 the
routing	table	of	the	other	three	routers.

	
1For	an	explanation	of	Dijkstra’s	algorithm,	see	Appendix	A.



Storing	data	is	one	thing;	retrieving	data	is	everything.

—Fred	Moore,	President

Horison	Information	Strategies,	2003

Not	many	of	us	know	what	to	do	with	1,000	20-terabyte	drives—yet,	that	is	what	we	have	to
design	for	in	the	next	five	to	ten	years.

—Jim	Gray,	2005

CHAPTER	13



Selected	Storage	Systems	and	Interfaces

13.1			INTRODUCTION
The	world’s	craving	for	data	and	passion	for	information	seem	to	have	no	upper	boundary.	If	it	is	at	all
possible	to	somehow	capture	the	digital	essence	of	an	activity,	it	seems	we	are	utterly	compelled	to	do	so.
It’s	as	though	the	single	byte	that	we	fail	to	lock	in	our	archives	will	be	the	only	one	that’s	important	ten
years	hence.

Consider	 a	 trip	 to	 the	 grocery	 store,	 as	 an	 example.	 If	 you	 drive	 there,	 your	 automobile	 may	 be
recording	 status	 information	 from	 its	 internal	 computer	 systems,	 while	 its	 global	 positioning	 system
continually	 relays	your	 location	 to	a	 satellite.	Once	 inside	 the	store,	your	picture	may	be	 taken	several
times	and	recorded	in	a	digital	security	system.	Some	of	the	items	you	place	in	your	basket	might	contain
embedded	radio	frequency	identification	(RFID)	tags.	Sensors	throughout	the	store	constantly	record	the
location	of	 the	packages	containing	 the	 tags	while	you	move	 from	aisle	 to	aisle.	As	you	check	out,	 the
purchase	of	each	item	is	recorded	in	a	computer,	whereupon	financial	and	inventory	records	are	updated.
When	you	hand	over	your	“frequent	buyer”	or	“customer	loyalty”	card,	your	purchases	become	associated
with	your	personal	information.	Paying	for	your	purchases	with	a	credit	or	debit	card	generates	several
more	 transactions	 in	various	 computers	 in	 the	 financial	processing	chain.	Days	 later,	 some	of	 this	data
may	be	extracted	by	data	warehousing,	data	mining,	or	decision	support	systems,	creating	even	more	rows
in	a	database	table	somewhere.	Thus,	the	unremarkable	activity	of	buying	one’s	groceries	in	the	twenty-
first	century	could	produce	multiple	megabytes	of	data	that	may	persist	for	years.	Whether	mere	humans
can	make	sense	of	it	all—and	what	happens	if	they	do—are	questions	we	won’t	try	to	address	here.	We
will	 instead	 describe	 the	 hardware	 structures	 that	 help	 computer	 systems	 deal	 with	 this	 so-called
information	explosion.

Historically,	electronic	records	in	an	enterprise	were	stored	on	fairly	homogeneous,	centralized	disk
and	tape	storage	systems	that	were	directly	connected	to	a	large	host	system.	The	entire	collection	of	disk
drives,	 tape	drives,	and	the	main	CPU	were	under	 the	control	of	a	single	operating	system	(or	multiple
images	 of	 the	 same	 operating	 system).	 Over	 the	 past	 20	 years,	 centralized	 configurations	 have	 been
replaced	or	supplemented	by	myriad	smaller	servers	 that	offer	specialized	services	 including	email,	e-
commerce,	 end	 user	 reporting,	 and	 general	 applications.	 System	 management	 challenges	 grow
proportionately	with	the	number	and	diversity	of	server	platforms	and	applications.	Not	the	least	of	these
challenges	is	enterprise	storage	management.

A	number	of	storage	architectures	have	recently	been	put	forth	 to	help	get	 things	under	control.	The
main	purpose	of	 this	 chapter	 is	 to	provide	you	with	an	overview	of	various	 important	 I/O	and	 storage
implementations,	with	particular	attention	given	to	enterprise	storage	implementations.	You	will	see	how
these	 implementations	 are	 becoming	 systems	 in	 their	 own	 right,	 having	 architecture	 models	 that	 are
distinct	 from	 the	 host	 systems	 to	 which	 they	 attach.	 We	 begin	 by	 discussing	 SCSI,	 one	 of	 the	 most
important	and	enduring	I/O	interfaces.

13.2			SCSI	ARCHITECTURE



The	Small	Computer	System	 Interface,	 or	SCSI	 (pronounced	 “scuzzy”),	was	 invented	 in	 1981	 by	 a
then-premiere	disk	drive	manufacturer,	Shugart	Associates,	and	NCR	Corporation,	formerly	also	a	strong
player	 in	 the	 small	 computer	market.	This	 interface	was	originally	called	SASI	 for	Shugart	Associates
Standard	 Interface.	 It	 was	 so	 well	 designed	 that	 it	 became	 an	 ANSI	 standard	 in	 1986.	 The	 ANSI
committees	called	the	new	interface	SCSI,	thinking	it	better	to	refer	to	the	interface	in	more	general	terms.

The	 original	 standard	 SCSI	 interface	 (which	 we	 now	 call	 SCSI-1)	 defined	 a	 set	 of	 commands,	 a
transport	 protocol,	 and	 the	 physical	 connections	 required	 to	 link	 an	 unprecedented	 number	 of	 drives
(seven)	to	a	CPU	at	an	unprecedented	speed	of	5	megabytes	per	second	(MBps).	The	groundbreaking	idea
was	to	push	intelligence	into	the	interface	to	make	it	more	or	less	self-managing.	This	freed	the	CPU	to
work	on	computational	tasks	instead	of	I/O	tasks.	In	the	early	1980s,	most	small	computer	systems	were
running	at	clock	 rates	between	2	and	8.44MHz;	 this	made	 the	 throughput	of	 the	SCSI	bus	seem	nothing
short	of	dazzling.

Today,	SCSI	is	in	its	third	generation,	aptly	called	SCSI-3.	SCSI-3	is	more	than	an	interface	standard;
it	 is	 an	 architecture,	 officially	 called	 the	 SCSI	 Architecture	 Model-3	 (SAM-3).	 This	 architecture
includes	the	“classic”	parallel	SCSI	interface	as	well	as	three	serial	interfaces	and	one	hybrid	interface.
We	have	more	to	say	about	SAM	in	Section	13.2.2.

Ironically,	SCSI	is	no	longer	the	dominant	interface	for	small	systems.	It	has	long	been	supplanted	in
personal	 systems	by	simpler,	 cheaper	disks.	However,	as	of	 this	writing,	SCSI	 is	employed	 in	80%	of
enterprise-class	 storage	 systems.	Because	of	 its	dominance	 in	 this	 area,	 it	 is	well	worth	understanding
how	it	works.

13.2.1		“Classic”	Parallel	SCSI
Suppose	someone	says	to	you,	“We	just	installed	a	new	BackOffice	server	with	three	huge	SCSI	drives,”
or	“My	system	is	screaming	since	I	upgraded	to	SCSI.”	The	speaker	is	probably	referring	to	a	SCSI-2	or
a	traditional	parallel	disk	drive	system.	In	the	1980s,	these	statements	would	have	been	quite	the	techno-
brag	 because	 of	 the	 intractability	 of	 connecting	 and	 configuring	 the	 first	 generation	 of	 SCSI	 devices.
Today,	not	only	are	transfer	rates	a	couple	of	orders	of	magnitude	higher,	but	intelligence	has	been	built
into	SCSI	devices	so	as	to	virtually	eliminate	the	vexations	endured	by	early	SCSI	adopters.

Parallel	 SCSI	 disk	 drives	 support	 a	 variety	 of	 speeds	 ranging	 from	 10MBps	 (for	 downward
compatibility	with	early	SCSI-2)	 to	as	much	as	320MBps	for	Wide,	Fast,	and	Ultra	 implementations	of
the	latest	SCSI	devices.	One	of	the	many	beauties	of	SCSI	is	that	a	single	SCSI	bus	can	support	this	range
of	device	speeds	with	no	need	for	recabling	or	drive	replacement.	(However,	no	one	will	give	you	any
performance	guarantees.)	Some	representative	SCSI	capabilities	are	shown	in	Table	13.1.

Much	of	 the	flexibility	and	robustness	of	 the	SCSI	parallel	architecture	can	be	attributed	 to	 the	fact
that	SCSI	devices	can	communicate	among	themselves.	SCSI	devices	are	daisy-chained	(the	input	of	one
drive	cabled	from	the	output	of	another)	along	one	bus.	The	CPU	communicates	only	with	its	SCSI	host
adapter,	 issuing	I/O	commands	when	required.	The	CPU	subsequently	goes	about	its	business	while	the
adapter	 takes	care	of	managing	 the	 input	or	output	operation.	Figure	13.1	 shows	 this	organization	 for	a
SCSI-2	system.

“Fast”	parallel	SCSI	cables	have	50	conductors.	Eight	of	these	are	used	for	data,	11	for	various	types
of	control.	The	remaining	conductors	are	required	for	the	electrical	interface.	The	device	selection	(SEL)
signal	is	placed	on	the	data	bus	at	the	beginning	of	a	transfer	or	command.	Because	there	are	only	eight
data	 lines,	 a	maximum	of	 seven	 devices	 (in	 addition	 to	 the	 host	 adapter)	 can	 be	 supported.	 “Fast	 and
Wide”	 SCSI	 cables	 have	 16-bit	 data	 buses,	 allowing	 twice	 as	 many	 devices	 to	 be	 supported	 at



(presumably)	 twice	 the	 transfer	 rate.	Some	Fast	 and	Wide	SCSI	 systems	use	 two	68-conductor	 cables,
which	 can	 support	 twice	 the	 transfer	 rate	 and	 double	 the	 number	 of	 devices	 that	 can	 be	 supported	 by
systems	using	only	one	68-conductor	cable.	Table	13.2	shows	the	pinouts	for	a	50-conductor	SCSI	cable.

TABLE	13.1	A	Summary	of	Various	SCSI	Capabilities

FIGURE	13.1	A	SCSI-2	Configuration

Parallel	 SCSI	 devices	 communicate	 with	 each	 other	 and	 the	 host	 adapter	 using	 an	 asynchronous
protocol	 running	 in	 eight	 phases.	 Strict	 timings	 are	 defined	 for	 each	 phase.	That	 is,	 if	 a	 phase	 has	 not
completed	within	a	certain	number	of	milliseconds	(depending	on	the	speed	of	the	bus),	it	is	considered
an	error	and	the	protocol	restarts	from	the	beginning	of	the	current	phase.	The	device	that	is	sending	the
data	is	called	the	initiator	and	the	destination	device	is	called	the	target	device.	The	eight	phases	of	the
SCSI	protocol	are	described	below.	Figure	13.2	illustrates	these	phases	in	a	state	diagram.

TABLE	13.2	SCSI	D-Type	Connector	Pinouts



FIGURE	13.2	State	Diagram	of	Parallel	SCSI	Phases	(Dotted	Lines	Show	Error	Conditions)

•		 	Bus	Free:	 Interrogate	 the	“bus	busy”	(BSY)	signaling	 line	 to	see	whether	 the	bus	 is	 in	use	prior	 to
entering	the	next	phase;	or	lower	the	BSY	signal	after	data	transfer	is	complete.

•			Arbitration:	The	initiator	bids	for	control	of	the	bus	by	placing	its	device	ID	on	the	bus	and	raising	the
busy	signal.	If	two	devices	do	this	simultaneously,	the	one	with	the	highest	device	ID	wins	control	of
the	bus.	The	host	must	always	have	the	highest	device	ID.	The	loser	waits	for	another	“Bus	Free”	state.

•			Selection:	The	address	of	the	target	device	is	placed	on	the	data	bus,	the	“selection”	(SEL)	signal	is
raised,	and	the	BSY	signal	is	lowered.	When	the	target	device	sees	its	own	device	ID	on	the	bus	with
SEL	raised	and	BSY	and	I/O	lowered,	 it	 raises	 the	BSY	signal	and	stores	 the	ID	of	 the	 initiator	 for
later	use.	The	initiator	knows	that	the	target	is	ready	when	it	sees	the	BSY	line	asserted	and	responds
by	lowering	the	SEL	signal.

•			Command:	Once	the	target	detects	that	the	initiator	has	negated	the	SEL	signal,	it	 indicates	that	it	 is
ready	for	a	command	by	asserting	the	“ready	for	command”	signal	on	the	“command/data”	(C/D)	line,
and	requests	the	command	itself	by	raising	the	REQ	signal.	After	the	initiator	senses	that	the	C/D	and
REQ	signals	are	raised,	it	places	the	first	command	on	the	data	bus	and	asserts	the	ACK	signal.	The
target	device	will	respond	to	the	command	thus	sent	and	then	raise	the	ACK	signal	to	acknowledge	that
the	command	has	been	received.	Subsequent	bytes	of	the	command,	if	any,	are	exchanged	using	ACK
signals	until	all	command	bytes	have	been	transferred.

At	this	point,	the	initiator	and	target	could	free	the	bus	so	that	other	devices	can	use	it	while	the	disk	is
being	 positioned	 under	 the	 read/write	 head.	 This	 allows	 greater	 concurrency,	 but	 creates	 more
overhead,	as	control	of	the	bus	would	have	to	be	renegotiated	before	the	data	could	be	transferred	to
the	initiator.

•			Data:	After	the	target	has	received	the	entire	command,	it	places	the	bus	in	“data”	mode	by	lowering
the	C/D	signal.	Depending	on	whether	the	transfer	is	an	output	from	the	source	to	the	target	(say,	a	disk
write)	or	an	input	from	the	source	to	the	target	(such	as	a	disk	read),	the	“input/output”	line	is	negated
or	asserted,	respectively.	Bytes	are	then	placed	on	the	bus	and	transferred	using	the	same	“REQ/ACK”



handshake	that	is	used	during	the	command	phase.
•			Status:	Once	all	the	data	has	been	transferred,	the	target	places	the	bus	back	into	command	mode	by

raising	 the	 C/D	 signal.	 It	 then	 asserts	 the	 REQ	 signal	 and	 waits	 for	 an	 acknowledgment	 from	 the
initiator,	which	tells	it	that	the	initiator	is	free	and	ready	to	accept	a	command.

•			Message:	When	the	target	senses	that	the	initiator	is	ready,	it	places	the	“command	complete”	code	on
the	 data	 lines	 and	 asserts	 the	 “message”	 line,	 MSG.	 When	 the	 initiator	 observes	 the	 “command
complete”	message,	it	lowers	all	signals	on	the	bus,	thus	returning	the	bus	to	the	“bus	free”	state.

•	 	 	Reselection:	 In	 the	 event	 that	 a	 transfer	was	 interrupted	 (such	 as	when	 the	 bus	 is	 released	while
waiting	for	a	disk	or	tape	to	service	a	request),	control	of	the	bus	is	renegotiated	through	an	arbitration
phase	as	described	above.	The	initiator	determines	that	it	has	been	reselected	when	it	sees	the	SEL	and
I/O	 lines	 asserted	with	 the	 exclusive	OR	of	 its	 own	 and	 the	 ID	of	 the	 target	 on	 the	 data	 lines.	The
protocol	then	resumes	at	the	Data	phase.

Synchronous	SCSI	data	 transfers	work	much	 the	 same	way	as	 the	asynchronous	method	 just	described.
The	primary	difference	between	the	 two	is	 that	no	handshaking	is	required	between	the	 transmission	of
each	data	byte.	Instead,	a	minimum	transfer	period	is	negotiated	between	the	initiator	and	the	target.	Data
is	exchanged	for	the	duration	of	the	negotiated	period.	A	REQ/ACK	handshake	will	then	take	place	before
the	next	block	of	data	will	be	sent.

It	is	easy	to	see	why	timing	is	so	critical	to	the	effectiveness	of	SCSI.	Upper	limits	for	waiting	times
prevent	the	interface	from	hanging	when	there	is	a	device	error.	If	this	were	not	the	case,	the	removal	of	a
floppy	disk	 from	 its	drive	might	prevent	 access	 to	 a	 fixed	disk	because	 the	bus	 could	be	marked	busy
“forever”	 (or	 at	 least	 until	 the	 system	 is	 restarted).	 Signal	 attenuation	 over	 long	 cable	 runs	 can	 cause
timeouts,	making	the	entire	system	slow	and	unreliable.	Serial	interfaces	are	much	more	tolerant	of	timing
variability.

13.2.2		The	SCSI	Architecture	Model-3
SCSI	 has	 evolved	 from	 a	 monolithic	 system	 consisting	 of	 a	 protocol,	 signals,	 and	 connectors	 into	 a
layered	 interface	 specification,	 separating	 physical	 connections	 from	 transport	 protocols	 and	 interface
commands.	The	new	specification,	called	the	SCSI	Architecture	Model-3	(SAM-3),	defines	these	layers
and	 how	 they	 interact	 with	 a	 command-level	 host	 architecture	 called	 the	 SCSI	 Primary	 Commands
(SPC)	 to	 perform	 serial	 and	 parallel	 I/O	 for	 virtually	 any	 type	 of	 device	 that	 can	 be	 connected	 to	 a
computer	system.	Layers	communicate	with	adjacent	layers	using	protocol	service	requests,	indications,
responses,	and	confirmations.	Loosely	coupled	protocol	stacks	such	as	these	allow	the	greatest	flexibility
in	choices	of	interface	hardware,	software,	and	media.	Technical	improvements	in	one	layer	should	have
no	effect	on	the	operation	of	the	other	layers.	The	flexibility	of	the	SAM	has	opened	a	new	world	of	speed
and	adaptability	for	disk	storage	systems.

Figure	 13.3	 shows	 how	 the	 components	 of	 the	 SAM	 fit	 together.	 Although	 the	 architecture	 retains
downward	 compatibility	with	 SCSI	 parallel	 protocols	 and	 interfaces,	 the	 largest	 and	 fastest	 computer
systems	 are	 now	 using	 serial	methods.	 The	 SAM-3	 serial	 protocols	 are	Serial	 Storage	Architecture
(SSA),	Serial	Bus	 (also	known	as	IEEE	1394	or	FireWire),	Serial	Attached	SCSI,	 iSCSI,	and	Fibre
Channel	 (FC).	 Because	 of	 the	 speeds	 of	 the	 SCSI	 buses	 and	 the	 diversity	 of	 systems	 that	 SCSI	 can
interconnect,	the	“small”	in	“Small	Computer	System	Interface”	has	become	a	misnomer,	with	variants	of
SCSI	being	used	in	everything	from	the	smallest	personal	computer	to	the	largest	mainframe	systems.

Each	of	 the	SCSI	 serial	protocols	has	 its	own	protocol	 stack,	which	conforms	 to	 the	defined	SCSI



primary	command	at	the	top	and	clearly	defined	transport	protocols	and	physical	interface	systems	at	the
bottom.	 Serial	 protocols	 send	 data	 in	 packets	 (or	 frames).	 These	 packets	 consist	 of	 a	 group	 of	 bytes
containing	identifying	information	(the	packet	header),	a	group	of	data	bytes	(called	the	packet	payload),
and	some	sort	of	 trailer	delimiting	 the	end	of	 the	packet.	Error-detection	coding	 is	also	 included	 in	 the
packet	trailer	in	many	of	the	SAM	protocols.

FIGURE	13.3	The	SCSI	Architecture	Model-3

We	will	examine	a	few	of	the	more	interesting	SAM	serial	protocols	in	the	sections	that	follow.

IEEE	1394
The	interface	system	now	known	as	IEEE	1394	had	its	beginnings	at	the	Apple	Computer	Company	when
it	saw	a	need	to	create	a	faster	and	more	reliable	bus	than	was	provided	by	the	parallel	SCSI	systems	that
were	 dominant	 in	 the	 late	 1980s.	 This	 interface,	 which	 Apple	 called	 FireWire,	 today	 provides	 bus
speeds	of	480MBps,	with	greater	speeds	expected	in	the	near	future.

IEEE	 1394	 is	 more	 than	 a	 storage	 interface;	 it	 is	 a	 peer-to-peer	 storage	 network.	 Devices	 are
equipped	with	 intelligence	 that	 allows	 them	 to	 communicate	with	 each	 other	 as	well	 as	with	 the	 host
controller.	 This	 communication	 includes	 negotiation	 of	 transfer	 speeds	 and	 control	 of	 the	 bus.	 These
functions	are	spread	throughout	the	IEEE	1394	protocol	layers,	as	shown	in	Figure	13.4.

Not	only	does	IEEE	1394	provide	faster	data	transfer	than	early	parallel	SCSI,	but	it	does	so	using	a
much	 thinner	 cable,	with	 only	 six	 conductors—four	 for	 data	 and	 control,	 two	 for	 power.	 The	 smaller
cable	is	cheaper	and	much	easier	to	manage	than	50-conductor	SCSI-2	cables.	Furthermore,	IEEE	1394
cables	can	be	extended	about	15	feet	(4.5	meters)	between	devices.	As	many	as	63	devices	can	be	daisy-
chained	on	one	bus.	The	IEEE	1394	connector	is	modular,	similar	in	style	to	Game	Boy	connectors.



FIGURE	13.4	The	IEEE	1394	Protocol	Stack

The	entire	system	is	self-configuring,	which	permits	easy	hot-plugging	(plug	and	play)	of	a	multitude
of	 devices	 while	 the	 system	 is	 running.	 Hot-plugging,	 however,	 does	 not	 come	 without	 a	 price.	 The
polling	required	to	keep	track	of	devices	connected	to	the	interface	places	overhead	on	the	system,	which
ultimately	limits	its	throughput.	Furthermore,	if	a	connection	is	busy	processing	a	stream	of	isochronous
data,	it	may	not	immediately	acknowledge	a	device	being	plugged	in	during	the	transfer.

Devices	can	be	plugged	into	extra	ports	on	other	devices,	creating	a	tree	structure	as	shown	in	Figure
13.5.	For	data	 I/O	purposes,	 this	 tree	structure	 is	of	 limited	use.	Because	of	 its	support	of	 isochronous
data	 transfer,	 IEEE	 1394	 has	 gained	 wide	 acceptance	 in	 consumer	 electronics.	 It	 is	 also	 poised	 to
overtake	the	IEEE	488	General	Purpose	Interface	Bus	 for	 laboratory	data	acquisition	applications	as
well.	 Because	 of	 its	 preoccupation	 with	 real-time	 data	 handling,	 it	 is	 not	 likely	 that	 IEEE	 1394	 will
endeavor	to	replace	SCSI	as	a	high-capacity	data	storage	interface.



FIGURE	13.5	An	IEEE	1394	Tree	Configuration,	Laden	with	Consumer	Electronics

Serial	Storage	Architecture
Serial	 Storage	 Architecture	 (SSA)	 was	 the	 first	 storage	 interface	 to	 break	 away	 from	 parallel
connections.	 Although	 it	 has	 been	 superseded	 by	 other	 technologies,	 SSA	 was	 the	 turning	 point	 for
industry	 thinking	 about	 storage	 interfaces.	 In	 the	 early	 1990s,	 IBM	 was	 among	 the	 many	 computer
manufacturers	seeking	a	fast	and	reliable	alternative	to	parallel	SCSI	for	use	in	mainframe	disk	storage
systems.	IBM’s	engineers	decided	on	a	serial	bus	that	would	offer	both	compactness	and	low	attenuation
for	 long	cable	 runs.	 It	was	 required	 to	provide	 increased	 throughput	and	downward	compatibility	with
SCSI-2	protocols.	By	 the	 end	of	1992,	SSA	was	 sufficiently	 refined	 to	warrant	 IBM	proposing	 it	 as	 a
standard	to	ANSI.	This	standard	was	approved	in	late	1996.

SSA’s	design	supports	multiple	disk	drives	and	multiple	hosts	 in	a	 loop	configuration,	as	 shown	 in
Figure	13.6.	A	four-conductor	cable	consisting	of	 two	 twisted	pairs	of	copper	wire	 (or	 four	strands	of
fiber-optic	 cable)	 allows	 signals	 to	 be	 transmitted	 in	 opposite	 directions	 in	 the	 loop.	 Because	 of	 this
redundancy,	one	drive	or	host	adapter	can	fail	and	the	rest	of	the	disks	will	remain	accessible.

The	dual	loop	topology	of	the	SSA	architecture	also	allows	the	base	through-put	to	be	doubled	from
40MBps	to	80MBps.	If	all	nodes	are	functioning	normally,	devices	can	communicate	with	one	another	in
full-duplex	mode	(data	goes	in	both	directions	in	the	loop	at	the	same	time).

SSA	devices	can	manage	some	of	their	own	I/O.	For	example,	in	Figure	13.6,	host	adapter	A	can	be
reading	disk	0	while	host	adapter	B	is	writing	to	disk	3,	disk	1	is	sending	data	to	a	tape	unit,	and	disk	2	is
sending	data	to	a	printer,	with	no	throughput	degradation	attributable	to	the	bus	itself.	IBM	calls	this	idea
spatial	reuse	because	no	parts	of	the	system	have	to	wait	for	the	bus	if	there	is	a	clear	path	between	the
source	and	the	target.

Because	 of	 its	 elegance,	 speed,	 and	 reliability,	 SSA	 was	 poised	 to	 become	 the	 dominant
interconnection	method	for	large	computer	systems	…	until	Fibre	Channel	came	along.



Fibre	Channel
In	 1991,	 engineers	 at	 the	 CERN	 (Conseil	 Européen	 pour	 la	 Recherche	 Nucléaire)	 (or	 European
Organization	 for	Nuclear	Research)	 laboratory	 in	Geneva,	 Switzerland,	 set	 out	 to	 devise	 a	 system	 for
transporting	 Internet	 communications	 over	 fiber-optic	 media.	 They	 called	 this	 system	Fibre	 Channel,
using	the	European	spelling	of	fiber.	The	following	year,	Hewlett-Packard,	IBM,	and	Sun	Microsystems
formed	a	consortium	 to	adapt	Fibre	Channel	 to	disk	 interface	 systems.	This	group	grew	 to	become	 the
Fibre	Channel	Association	(FCA),	which	is	working	with	ANSI	to	produce	a	refined	and	robust	model
for	 high-speed	 interfaces	 to	 storage	 devices.	 Although	 originally	 chartered	 to	 define	 fiber-optic
interfaces,	 Fibre	Channel	 protocols	 can	 be	 used	 over	 twisted	 pair	 and	 coaxial	 copper	media	 as	well.
Fibre	Channel	storage	systems	can	have	any	of	 three	 topologies:	switched,	point-to-point,	or	 loop.	The
loop	 topology,	 called	Fibre	Channel	Arbitrated	Loop	 (FC-AL),	 is	 the	most	 widely	 used—and	 least
costly—of	the	three	Fibre	Channel	topologies.	The	Fibre	Channel	topologies	are	shown	in	Figure	13.7.

FIGURE	13.6	A	Serial	Storage	Architecture	(SSA)	Configuration

FC-AL	provides	100MBps	packet	transmission	in	one	direction,	with	a	theoretical	maximum	of	127
devices	in	the	loop;	60	is	considered	the	practical	limit,	however.

Notice	 that	Figure	13.7	 shows	 two	versions	 of	FC-AL,	 one	with	 (c)	 and	one	without	 (b)	 a	 simple
switching	device	called	a	hub.	FC-AL	hubs	are	equipped	with	port	bypass	switches	that	engage	whenever
one	of	the	FC-AL	disks	fails.	Without	some	type	of	port-bypassing	ability,	the	entire	loop	will	fail	should
only	 one	 disk	 become	 unusable.	 (Compare	 this	 with	 SSA.)	 Thus,	 adding	 a	 hub	 to	 the	 configuration
introduces	failover	protection.	Because	the	hub	itself	can	become	a	single	point	of	failure	(although	they
don’t	often	fail),	redundant	hubs	are	provided	for	installations	requiring	high	system	availability.



FIGURE	13.7	Fibre	Channel	Topologies

Switched	Fibre	Channel	storage	systems	provide	much	more	bandwidth	than	FC-AL	with	no	practical
limit	to	the	number	of	devices	connected	to	the	interface	(up	to	224).	Each	drop	between	the	switch	and	a
node	 can	 support	 a	 100MBps	 connection.	 Therefore,	 two	 disks	 can	 be	 transferring	 data	 between	 each
other	at	100MBps	while	the	CPU	is	transferring	data	to	another	disk	at	100MBps,	and	so	forth.	As	you
might	expect,	switched	Fibre	Channel	configurations	are	more	costly	than	loop	configurations	because	of
the	more	sophisticated	switching	components,	which	must	be	redundant	to	ensure	continuous	operation.

Fibre	 Channel	 is	 something	 of	 an	 amalgamation	 of	 data	 networks	 and	 storage	 interfaces.	 It	 has	 a
protocol	 stack	 that	 fits	 both	 the	 SAM	 and	 the	 internationally	 accepted	 network	 protocol	 stacks.	 This
protocol	stack	is	shown	in	Figure	13.8.	Because	of	the	higher-level	protocol	mappings,	a	Fibre	Channel
storage	 configuration	 does	 not	 necessarily	 require	 a	 direct	 connection	 to	 a	 CPU:	 The	 Fibre	 Channel
protocol	packets	can	be	encapsulated	within	a	network	transmission	packet	or	passed	directly	as	a	SCSI
command.	Layer	FC-4	handles	the	details.

The	FC-2	 layer	produces	 the	protocol	packet	 (or	 frame)	 that	contains	 the	data	or	command	coming
from	the	upper	levels	or	responses	and	data	coming	from	the	lower	levels.	This	packet,	shown	in	Figure
13.9,	has	a	fixed	size	of	2,148	bytes,	36	of	which	are	delimiting,	routing,	and	error-control	bytes.



FIGURE	13.8	The	Fibre	Channel	Protocol	Stack

The	FC-AL	loop	initializes	itself	when	it	is	powered	up.	At	that	time,	participating	devices	announce
themselves,	negotiate	device	(or	port)	numbers,	and	select	a	master	device.	Data	transmissions	take	place
through	packet	exchanges.

FC-AL	is	a	point-to-point	protocol,	in	some	ways	similar	to	SCSI.	Only	two	nodes,	the	initiator	and
the	responder,	can	use	the	bus	at	a	time.	When	an	initiator	wants	to	use	the	bus,	it	places	a	special	signal
called	ARB(x)	on	the	bus.	This	means	that	device	x	wishes	to	arbitrate	for	control	of	the	bus.	If	no	other
device	has	control	of	the	bus,	each	node	in	the	loop	forwards	the	ARB(x)	to	its	next	upstream	neighbor
until	the	packet	eventually	gets	back	to	the	initiator.	When	the	initiator	sees	its	ARB(x)	unchanged	on	the
bus,	it	knows	that	it	has	won	control.

If	another	device	has	control	of	the	loop,	the	ARB(x)	packet	will	be	changed	to	an	ARB(F0)	before	it
gets	back	to	the	initiator.	The	initiator	then	tries	again.	If	two	devices	attempt	to	get	control	of	the	bus	at
the	same	instant,	the	one	with	the	highest	node	number	wins	and	the	other	tries	again	later.

The	 initiator	 claims	 control	 of	 the	 bus	 by	 opening	 a	 connection	with	 a	 responder.	 This	 is	 done	 by
sending	 an	 OPN(yy)	 (for	 full-duplex)	 or	 OPN(yx)	 (for	 half-duplex)	 command.	 Upon	 receiving	 the
OPN(??)	 command,	 the	 responder	 enters	 the	 “ready”	 state	 and	 notifies	 the	 initiator	 by	 sending	 the
“receiver	 ready”	 (R_RDY)	 command	 to	 the	 initiator.	 Once	 the	 data	 transfer	 is	 complete,	 the	 initiator
issues	a	“close”	command	(CLS)	to	relinquish	control	of	the	loop.

The	specifics	of	the	data	transfer	protocol	depend	on	what	class	of	service	is	being	used	in	the	loop
or	fabric.	Some	classes	require	that	packets	be	acknowledged	(for	maximum	accuracy)	and	some	do	not
(for	maximum	speed).



FIGURE	13.9	The	Fibre	Channel	Protocol	Packet

At	this	writing,	there	are	five	classes	of	service	defined	for	Fibre	Channel	data	transfers.	Not	all	of
these	classes	of	service	have	been	 implemented	 in	real	products.	Furthermore,	some	classes	of	service
can	be	 intermixed	 if	 there	 is	 sufficient	 bandwidth	 available.	Some	 implementations	 allow	Class	 2	 and
Class	3	frames	to	be	transmitted	when	the	loop	or	channel	is	not	being	used	for	Class	1	traffic.	Table	13.3
summarizes	the	various	classes	of	service	presently	defined	for	Fibre	Channel.

13.3			INTERNET	SCSI
Along	 with	 its	 superb	 performance	 and	 expansion	 capabilities,	 Fibre	 Channel	 comes	 with	 major
drawbacks:	 Its	hardware	components	 are	 costly,	 and	 the	Fibre	Channel	protocol	presents	 a	 formidable
learning	 curve.	 These	 factors,	 along	with	 the	 continuous	 improvements	 taking	 place	 in	 less	 expensive
technologies,	 are	 providing	 fertile	 ground	 for	 the	 growth	 of	 several	 alternatives	 for	 high-performance
enterprise	storage.	One	of	the	most	widely	heralded	is	Internet	SCSI	(iSCSI),	which	capitalizes	on	well-
understood	 Internet	and	LAN	protocols	 to	provide	 fast,	 reliable	 transport	 services	 for	SCSI	commands
and	data.

The	general	idea	behind	iSCSI	is	to	replace	the	SCSI	bus	with	the	Internet,	as	shown	in	Figure	13.10.
Although	the	concept	is	simple,	the	protocol	overhead	is	substantial.	When	a	host	sends	data	to	an	iSCSI
disk	array,	the	SCSI	data	is	encapsulated	as	an	iSCSI	payload,	which	in	turn	is	a	payload	for	TCP.	The
TCP	packet	 is	 placed	 inside	one	or	more	 IP	packets,	which	 itself	 is	 a	 payload	 in	one	or	more	gigabit
Ethernet	frames,	as	shown	in	Figure	13.11.	The	Ethernet	frames	are	carried	across	the	network	(this	trip
could	be	measured	in	meters	or	kilometers)	to	an	Ethernet	interface	on	the	disk	array.	The	payloads	are
extracted	 as	 the	 packet	works	 its	way	 up	 the	 protocol	 stack,	 until	 it	 is	written	 to	 a	 disk	 (at	 last).	 It’s
important	to	keep	in	mind	that	a	data	transfer	may	span	many	Ethernet	frames	because	of	the	limitations	of
TCP,	IP,	and	various	hardware	components	along	the	way.

Class Description
1 Dedicated	connection	with	acknowledgment	of	packets.	Not	supported	by	many	vendors	because	of	the	complexity	of	connection	management.



2 Similar	to	Class	1	except	it	does	not	require	dedicated	connections.	Packets	may	be	delivered	out	of	sequence	when	they	are	routed	through
different	paths	in	the	network.	Class	2	is	suitable	for	low-traffic,	infrequent-burst	installations.

3 Connectionless	unacknowledged	delivery.	Packet	delivery	and	sequencing	are	managed	by	upper-level	protocols.	In	small	networks	with	ample
bandwidth,	delivery	is	usually	reliable.	Well-suited	for	FC-AL	because	of	temporary	paths	negotiated	by	the	protocol.

4
Virtual	circuits	carved	out	of	the	full	bandwidth	of	the	network.	For	example,	a	100MBps	network	could	support	one	75MBps	and	one	25MBps
connection.	Each	of	these	virtual	circuits	would	permit	different	classes	of	service.	In	2002,	no	commercial	Class	4	products	had	yet	been	brought
to	market.

6
Multicasting	from	one	source	with	acknowledgment	delivery	to	another	source.	Useful	for	video	or	audio	broadcasting.	To	prevent	flooding	of	the
broadcasting	node	(as	would	happen	using	Class	3	connections	for	broadcasting),	a	separate	node	would	be	placed	on	the	network	to	manage	the
broadcast	acknowledgments.	As	of	2002,	no	Class	6	implementations	had	been	brought	to	market.

TABLE	13.3	Fibre	Channel	Classes	of	Service

Unlike	Fibre	Channel,	iSCSI	has	no	distance	limitations.	Theoretically,	using	iSCSI,	you	could	save	a
file	 to	a	disk	drive	 that	appears	as	 if	 it	 is	 local	storage	to	you,	but	 the	file	could	end	up	actually	being
stored	thousands	of	miles	away.	This	idea	ignores	the	latency	characteristic	of	long-distance	file	transfers
—that	a	user	can’t	help	but	notice.	To	provide	tolerable	performance,	iSCSI	requires	the	fastest	possible
network	 connections	 (at	 this	 writing,	 10	 gigabit	 Ethernet	 is	 recommended)	 and	 hardware-based	 TCP
processors	called	TCP	offload	engines	(TOEs).

The	Internet	presents	additional	challenges	of	security	and	 transmission	 integrity	 that	can	be	 largely
ignored	 in	 an	 isolated	 Fibre	 Channel	 installation.	 However,	 these	 issues	 loom	 large	 in	 iSCSI.	 iSCSI
security	measures	 include	 transmission	 encryption	 and	 firewalls.	 Transmission	 integrity	 is	 provided	 at
both	the	outer	protocol	levels	and	inside	the	iSCSI	payload	itself,	which	is	protected	by	a	32-bit	CRC.
Defective	packets	are	 retransmitted	unless	 the	TCP	or	 IP	session	 fails,	 in	which	case	 the	connection	 is
terminated	and	reestablished.

FIGURE	13.10	Replacing	the	SCSI	Bus	with	the	Internet
a)	Traditional	Parallel	SCSI
b)	The	Protocol	Stack	of	iSCSI



FIGURE	13.11	Internet	SCSI	Protocol	Data	Unit	(PDU)	Encapsulation

An	organization	does	not	necessarily	have	 to	choose	between	 the	exclusive	use	of	 iSCSI	and	Fibre
Channel.	The	two	technologies	can	be	combined	so	that	one	complements	the	other.	Fibre	Channel	is	best
suited	for	high-throughput	applications,	and	iSCSI	for	larger	pools	of	less	frequently	used	data.	A	good
use	 for	 iSCSI	 is	 to	 provide	 a	 cost-effective	 remote	 mirror	 site	 for	 a	 high-availability	 Fibre	 Channel
installation.

13.4			STORAGE	AREA	NETWORKS
Fast	 network	 connectivity	 such	 as	 provided	 by	 Fibre	 Channel	 and	 10	 gigabit	 Ethernet	 has	 enabled
construction	of	dedicated	networks	built	specifically	for	storage	access	and	management.	These	networks
are	 called	 storage	 area	 networks	 (SANs).	 SANs	 logically	 extend	 local	 storage	 buses,	 making
collections	of	storage	devices	accessible	to	all	computer	platforms—small,	medium,	and	large.	Storage
devices	 can	 be	 collocated	 with	 the	 hosts	 or	 they	 can	 be	 miles	 away	 serving	 as	 “hot”	 backups	 for	 a
primary	processing	site.

SANs	offer	leaner	and	faster	access	to	large	amounts	of	storage	than	can	be	provided	by	the	network
attached	storage	(NAS)	model.	In	a	typical	NAS	system,	all	file	accesses	must	pass	through	a	particular
file	server,	incurring	all	of	the	protocol	overhead	and	traffic	congestion	associated	with	the	network.	The
disk	access	protocols	(SCSI	Architecture	Model-3	commands)	are	embedded	within	the	network	packets,
giving	two	layers	of	protocol	overhead	and	two	iterations	of	packet	assembly/disassembly.

SANs,	 sometimes	 called	 “the	 networks	 behind	 the	 network,”	 are	 isolated	 from	 ordinary	 network
traffic.	Fibre	Channel	storage	networks	(either	switched	or	FC-AL)	are	potentially	much	faster	than	NAS
systems	 because	 they	 have	 only	 one	 protocol	 stack	 to	 traverse.	 They	 therefore	 bypass	 traditional	 file
servers,	which	can	throttle	network	traffic.	NAS	and	SAN	configurations	are	compared	in	Figures	13.12
and	13.13.

Because	Fibre	Channel	SANs	are	independent	of	any	particular	network	protocols	(such	as	Ethernet)
or	 proprietary	 host	 attachments,	 they	 are	 accessible	 through	 the	 SAM	 upper-level	 protocols	 by	 any
platform	that	can	be	configured	to	recognize	the	SAN	storage	devices.	Even	in	the	most	complex	SANs,
storage	management	is	greatly	simplified	because	all	storage	is	on	a	single	SAN	(as	opposed	to	sundry
file	servers	and	disk	arrays).	Data	can	be	vaulted	at	remote	sites	through	electronic	transfer	or	backed	up
to	 tape	 without	 interfering	 with	 network	 or	 host	 operations.	 Because	 of	 their	 speed,	 flexibility,	 and
robustness,	SANs	are	becoming	the	first	choice	for	providing	high-availability,	multiterabyte	storage	 to
large	user	communities.



13.5			OTHER	I/O	CONNECTIONS
A	number	of	 I/O	architectures	 lie	outside	 the	 realm	of	 the	SCSI-3	architecture	model	but	 can	 interface
with	it	 to	some	degree.	The	most	popular	of	 these	is	 the	AT	Attachment	 (ATA)	used	 in	most	 low-end
computers.	Others,	designed	for	computer	architectures	apart	 from	the	Intel	paradigm,	have	found	wide
application	 on	 various	 platform	 types.	We	 describe	 a	 few	 of	 the	more	 popular	 I/O	 connections	 in	 the
sections	that	follow.

FIGURE	13.12	Network	Attached	Storage

13.5.1		Parallel	Buses:	XT	to	ATA
The	first	IBM	PCs	were	supported	by	an	8-bit	bus	called	the	PC/XT	bus.	This	bus	was	accepted	by	the
IEEE	and	renamed	the	Industry	Standard	Architecture	(ISA)	bus.	It	originally	operated	at	2.38MBps,
and	it	required	two	cycles	to	access	a	16-bit	memory	address	because	of	its	narrow	width.	Because	the
XT	ran	at	4.77MHz,	the	XT	bus	offered	adequate	performance.	With	the	introduction	of	the	PC/AT	(“AT”
for	Advanced	Technology)	with	 its	 faster	 80286	processor,	 it	was	obvious	 that	 an	8-bit	 bus	would	no
longer	be	useful.	The	immediate	solution	was	to	widen	the	bus	to	16	data	lines,	increase	its	clock	rate	to
8MHz,	and	call	it	an	“AT	bus.”	It	wasn’t	long,	however,	before	the	new	AT	bus	became	a	serious	system
bottleneck	as	microprocessor	speeds	began	exceeding	25MHz.

Several	solutions	to	this	problem	have	been	marketed	over	the	years.	The	most	enduring	of	these	is	an
incarnation	 of	 the	AT	 bus—with	 several	 variations—known	 as	AT	Attachment	 (ATA),	ATAPI,	Fast
ATA,	and	EIDE.	The	latter	abbreviation	stands	for	Enhanced	Integrated	Drive	Electronics,	 so-called
because	much	of	the	controlling	function	that	would	normally	be	placed	in	a	disk	drive	interface	card	was
moved	into	the	control	circuits	of	the	disk	drive	itself.	The	ATA	offers	downward	compatibility	with	16-
bit	AT	interface	cards,	while	permitting	32-bit	interfaces	for	disk	drives	and	other	devices.	No	external
devices	 can	 be	 directly	 connected	 to	 an	 ATA	 bus.	 The	 number	 of	 internal	 devices	 is	 limited	 to	 four.
Depending	 on	 whether	 programmed	 I/O	 or	 DMA	 I/O	 is	 used,	 the	 ATA	 bus	 can	 support	 22MBps	 or
16.7MBps	transfer	rates	with	a	theoretical	maximum	of	100MBps.	Ultra	ATA	provides	burst	rate	transfers
of	133MBps.	At	these	speeds,	ATA	provides	one	of	the	most	favorable	cost-performance	ratios	for	small
system	buses	in	the	market	today.



FIGURE	13.13	A	Storage	Area	Network	(SAN)

13.5.2		Serial	ATA	and	Serial	Attached	SCSI
Notwithstanding	its	satisfactory	performance	and	low	cost,	ATA	is	starting	to	fade	from	the	small	system
scene.	As	 processor	 speeds	 increase,	 even	Ultra	ATA	 starts	 to	 become	 a	 bottleneck.	Moreover,	 faster
processors	 generate	 a	 great	 deal	 of	 heat,	 which	 must	 be	 moved	 away	 from	 the	 processor	 and	 other
sensitive	components.	Anything	that	impedes	airflow	inside	the	main	system	housing	is	problematic,	and
the	two-inch	flat	cabling	of	parallel	ATA	is	certainly	no	help.	With	this	in	mind,	the	next-generation	ATA
interface	was	designed	as	a	 serial	 interface.	The	serial	ATA,	or	SATA,	 interface	 supports	much	 faster
transfer	rates	than	parallel	attachments	can	reliably	provide,	and	it	requires	only	seven	conductors	(four
for	data,	three	for	grounding)	that	fit	nicely	in	a	quarter-inch	cable.

Besides	having	thinner	cabling,	the	many	attractive	features	of	SATA	include:

•			Faster	data	transfer	than	parallel	ATA:	300MBps	versus	133MBps	(burst	rate);	faster	SATA	speeds	are
expected	in	the	near	future

•			Lower	voltage:	500mV	versus	3.0	or	5.0V
•			Longer	cables:	1m	versus	0.5m
•	 	 	 Software	 compatibility	 with	 parallel	 ATA—no	 changes	 to	 drivers,	 BIOS,	 or	 operating	 systems

required
•	 	 	Enhanced	error	checking:	32-bit	CRC	for	all	bits,	as	opposed	to	data—only	CRC	for	parallel	Ultra

ATA



•			Point-to-point	configuration,	as	opposed	to	master–slave,	enables	various	devices	along	the	interface
to	pass	data	concurrently

Many	of	these	improvements	to	ATA	have	also	been	carried	over	to	a	serial	version	of	SCSI	called	serial
attached	 SCSI,	 or	 SAS.	 The	 plugs	 and	 cabling	 of	 SAS	 are	 identical	 to	 SATA,	 and	 for	 systems	 that
support	both	ATA	and	SCSI,	the	devices	distinguish	themselves	to	the	host	at	power-up	time.	SAS	drives
connect	 through	a	backplane	bus	 that	moves	data	at	 rates	up	 to	300MBps	(with	faster	speeds	planned).
SAS	is	hugely	scalable,	with	more	than	16,000	devices	theoretically	possible	within	one	domain.	With	all
these	advantages,	it	is	clear	that	it	is	only	a	matter	of	time	until	SAS	and	SATA	drives	completely	replace
their	parallel	counterparts.

13.5.3		Peripheral	Component	Interconnect
By	 1992,	 the	 AT	 bus	 had	 become	 the	 major	 inhibiting	 factor	 with	 regard	 to	 overall	 small	 system
performance.	Fearing	 that	 the	AT	bus	had	reached	 the	end	of	 its	useful	 life,	 Intel	sponsored	an	 industry
group	 charged	with	 devising	 a	 faster	 and	more	 flexible	 I/O	 bus	 for	 small	 systems.	 The	 result	 of	 their
efforts	is	the	Peripheral	Component	Interconnect	(PCI).

The	PCI	bus	is	an	extension	to	the	system	data	bus,	supplanting	any	other	I/O	bus	on	the	system.	PCI
runs	 as	 fast	 as	 66MHz	 at	 the	 full	 width	 of	 a	 CPU	 word.	 Data	 throughput	 is	 therefore	 theoretically
264MBps	for	a	32-bit	CPU	(66MHz	×	(32	bits	÷	8	bits/byte)	=	264MBps).	For	a	64-bit	bus	running	at
66MHz,	 the	 maximum	 transfer	 rate	 is	 528MBps.	 Although	 PCI	 connects	 to	 the	 system	 bus,	 it	 can
autonomously	negotiate	bus	speeds	and	data	transfers	without	CPU	intervention.	PCI	is	fast	and	flexible.
Versions	 of	 PCI	 are	 used	 in	 small	 home	 computers	 as	 well	 as	 large,	 high-performance	 systems	 that
support	data	acquisition	and	scientific	research.

13.5.4		A	Serial	Interface:	USB
The	Universal	 Serial	 Bus	 (USB)	 isn’t	 really	 a	 bus,	 but	 it	 is	 universal.	 USB	 is	 a	 serial	 peripheral
interface	that—in	one	form	or	another—is	provided	on	practically	every	electronic	consumer	product	that
is	rechargeable	or	stores	data.	The	family	of	USB	specifications	is	under	the	control	of	a	consortium	of
equipment	manufacturers	called	the	USB	Implementers	Forum	(USB-IF).	There	have	been	three	major
releases	 of	 USB	 starting	 with	 USB	 1.0	 in	 1996	 to	 the	 most	 current,	 USB	 3.1,	 in	 2013.	 Speeds	 have
increased	from	the	12	Mbps	offered	by	USB	1.0	to	10	Gbps	for	USB	3.1	in	Superspeed+	mode.	The	280
Mbps	speed	provided	by	the	ubiquitous	USB	2.0	is	sufficient	for	most	everyday	file	transfers.	USB	3.1	is
better	suited	for	bulk	transfers	such	as	disk	backups	and	isochronous	transfers	such	as	video	streaming.
USB	3.1	is	backward	compatible	with	all	versions	to	USB	2.0.

USB	requires	an	adapter	card	 in	 the	host	called	a	root	hub.	The	 root	hub	connects	 to	one	or	more
external	multiport	hubs	that	can	connect	directly	to	a	large	variety	of	peripheral	devices,	including	video
cameras	and	telephones.	Multiport	hubs	can	be	cascaded	off	one	another	up	to	five	deep,	supporting	as
many	 as	 127	 devices	 through	 a	 single	 root	 hub.	 Properly	 equipped	 devices	 can	 be	 daisy-chained	 and
addressed	by	the	host	through	their	respective	unique	device	IDs.

The	goal	of	USB	was	 to	make	attaching	peripheral	devices	as	easy	as	“plugging	a	 telephone	 into	a
wall	jack,”	and	it	has	achieved	this	goal	despite	the	proliferation	of	device	types	that	has	occurred	in	the
past	decade.	The	joys	of	USB’s	plug-and-play	capabilities	are	lost	on	those	who	have	never	known	the
agony	 of	 resolving	 conflicting	 interrupt	 request	 vectors	 and	 rewiring	 cables	 that	 required	 a	 few	 pin
swaps.	USB	achieves	 its	 plug-and-play	 feat	 through	publication	of	device	driver	 software	 and	 a	host–



device	protocol	that	associates	devices	with	their	respective	drivers.
Several	steps	must	take	place	when	a	device	is	plugged	into	a	host	system:

1.		When	a	device	is	plugged	into	a	USB	port,	the	electrical	state	of	the	port	is	changed.	The	host	system
detects	this	change	and	dispatches	a	reset	packet	back	to	the	device.

2.	 	The	host	requests	the	device’s	Device	Descriptor	information.	This	information	includes	the	device
type,	device	manufacturer’s	code	 (assigned	by	 the	USB-IF),	 the	manufacturer’s	product	 ID,	and	 the
USB	specification	number	(e.g.,	1.0,	2.0,	etc.)

3.		As	soon	as	the	host	is	able	to	do	so,	it	loads	the	device	driver	that	corresponds	to	the	product	ID.
4.		The	host	may	request	one	or	more	Configuration	Descriptors	from	the	device.	This	step	is	necessary

whenever	there	is	more	than	one	configuration	available	at	the	device.
5.		Once	everything	is	known	about	the	characteristics	of	the	device	and	the	appropriate	driver	is	loaded,

the	host	dispatches	an	address	assignment	to	the	device.	Both	the	host	and	the	device	are	now	ready	to
negotiate	data	transfers.

USB	supports	four	different	data	transfer	modes,	each	having	its	respective	underlying	protocol:

Control	transfers—Protocol	exchanges	between	the	host	and	the	device,	such	as	plug-and-play,	and
setups	for	other	transfer	types.

Isochronous	transfers—Time-sensitive	data	transfers	such	as	music	and	video.	Interrupt	transfers
—Bursty	data	movement	such	as	the	ones	generated	by	mice	and	keyboards.

Bulk	transfers—Transfers	between	the	host	and	bulk	devices	such	as	flash	drives,	cameras,	and
scanners.

USB	cables	 require	only	 four	 conductors:	 two	 for	data	 transfer,	 one	 for	power	 (+5V),	 and	one	 for
ground.	USB	3.0	augments	these	four	with	six	more:	four	dedicated	for	signaling,	a	signal	ground,	and	one
for	managing	USB	on-the-go.	USB	On-the-Go	(USB	OTG),	available	since	USB	1.1,	allows	a	device	to
act	as	both	a	host	and	a	slave	device	within	the	same	connection.	Tablet	computers	commonly	utilize	USB
OTG,	 because	 they	 can	 be	 hosts	 to	 external	 devices	 like	 keyboards,	 or	 slave	 devices	 to	 desktop
computers	when	files	are	being	transferred.

Portable	 device	manufacturers	were	 quick	 to	 exploit	 the	 5V	 at	 500mA	 power	 readily	 available	 at
ubiquitous	 USB	 2.0	 ports,	 and	 they	 soon	 became	 charging	 stations	 for	 every	 type	 of	 portable	 device.
(USB	 3.0	 supplies	 900mA.)	 In	 response,	 the	USB-IF	 published	 its	Battery	Charging	 Specification	 in
2009.	The	Forum	observed,	“USB	has	evolved	from	a	data	interface	capable	of	supplying	limited	power
to	a	primary	provider	of	power	with	a	data	interface.”	This	specification	includes	a	plug-and-play	feature
to	determine	the	optimal	means	by	which	to	charge	the	attached	device.

The	main	objection	to	USB	1.0	was	its	slow	data	transfer	rate,	so	computer	manufacturers	were	slow
to	adopt	it	for	anything	other	than	keyboards	and	mice.	Since	then,	data	transfer	rates	have	been	steadily
climbing	to	10Gbps	for	USB	3.1.	The	evolution	of	these	data	rates	is	shown	in	Table	13.4.

USB	is	arguably	the	most	important	and	successful	computer	interface.	No	other	type	of	connectivity
has	 found	 its	 way	 into,	 such	 a	 wide	 variety	 of	 device	 types,	 from	 the	 smallest	 MP3	 players,	 to
smartphones,	to	file	servers.	It	has	achieved	this	penetration	through	its	performance	and	ease	of	use.	It	is
also	 a	 shining	 example	 of	 what	 can	 be	 achieved	 through	 standardization	 and	 cooperation	 within	 the
equipment	manufacturing	industry.



USB	Version Year Maximum	Speed
1.0 1996 12Mbit/s
2.0 2000 480Mbit/s
3.0 2008 5Gbit/s
3.1 2013 10Gbit/s

TABLE	13.4	Data	Rates	of	Several	USB	Versions

13.6	CLOUD	STORAGE
Cloud	 storage	 builds	 on	 the	 Cloud	 computing	 idea	 mentioned	 in	 Chapters	 1	 and	 9.	 Cloud	 storage
provides	a	scalable	data	storage	platform	that	is	accessible	via	the	Internet.	Similar	to	Cloud	computing,
the	idea	behind	Cloud	storage	is	that	one	pays	only	for	the	storage	one	uses.	Capacity	is	elastic:	It	can	be
allocated	 and	 deallocated	 on	 demand.	 The	 servers	 are	 configured	 in	 redundant	 clusters	 to	 provide
failover	protection	and	a	scalable	architecture.

Cloud	storage	capabilities	vary	considerably	according	 to	 the	ways	 in	which	 it	will	be	used	by	 its
customer.	 Consumer-grade	 storage	 provides	 a	 convenient	 platform	 that	 subscribers	 may	 access	 from
anywhere	in	 the	world.	Several	wellknown	providers	 in	 this	area	 include	Amazon	Cloud	Drive,	Apple
iCloud,	Drop-box,	Microsoft	SkyDrive,	and	CX,	to	name	only	a	few.	As	of	late	2013,	prices	are	between
$0.04	and	$0.12	per	gigabyte	per	month,	depending	on	 features.	Most	of	 these	providers	offer	 a	 small
amount	of	storage	space	for	free,	only	charging	after	certain	thresholds	are	reached.

Enterprise-class	Cloud	 storage	bills	 itself	 as	 a	 platform	 suitable	 for	 storing	 an	organization’s	most
precious	 asset:	 its	 data.	 This	 data	 must	 be	 accessible	 when	 needed	 and	 must	 be	 protected	 from
unauthorized	access.	The	enterprise	must	be	able	to	control	who	has	access	to	its	data	at	any	given	time.
Unlike	 consumer-grade	Cloud	 services,	 enterprise-grade	Cloud	 storage	must	meet	 certain	 agreed-upon
performance	 requirements.	The	providers’	 fees	 are	based	on	 the	 service	parameters	 and	 the	 amount	of
data	 stored.	 For	 example,	 one	 major	 provider	 advertised	 its	 product	 with	 a	 tenfold	 price	 difference
between	the	lowest-	and	highest-level	performance	specifications.	Because	of	the	wide	price	variations
caused	by	 these	performance	parameters,	service-level	agreements	(SLAs)	can	be	put	 in	place	 to	make
sure	the	purchaser	gets	his	money’s	worth.	SLAs	state	specific	monetary	penalties	that	the	Cloud	storage
provider	incurs	when	the	performance	parameters	are	not	met.	These	parameters	typically	include	(among
others)	the	following:

•	 	 	Availability—Usually	 stated	 in	 terms	 of	 percentage	 of	 uptime	 based	 on	 24-hour	 days	 in	 a	 service
month.	 This	 category	 also	 includes	 disaster	 recovery	 considerations	 such	 as	 the	 number	 of	 disaster
drills	conducted	in	a	year	and	the	amount	of	time	required	to	restore	service	to	full	capacity.

•			Reliability—Concerns	itself	with	the	number	of	read	and	write	errors	during	a	service	month.
•			Responsiveness—Typically	measured	in	average	seconds	per	transaction.	This	metric	might	also	be

qualified	as	to	peak-	and	nonpeak-period	response	times.
•	 	 	Manageability—Determines	 to	what	 extent	 the	 service	 consumer	 can	 control	 the	 configuration	 and

allocation	 of	 the	 storage	 elements.	 How	 difficult	 is	 it	 to	 expand	 or	 contract	 the	 amount	 of	 storage
utilized?

•	 	 	Security—States	 the	 types	of	controls	put	 in	place	by	 the	Cloud	provider	and	consumer.	SLAs	can



include	penalties	for	data	breaches;	however,	they	rarely	cover	the	actual	costs	of	the	breach.

In	comparing	Cloud	storage	providers,	 total	cost	of	ownership	must	be	determined.	Providers’	 fees
might	 not	 be	 limited	 to	 simply	 costs	 per	 gigabyte	 of	 storage.	 Separate	 charges	 could	 be	 assessed	 for
number	 of	 I/O	 operations	 per	month,	 bandwidth	 consumed,	 and	 technical	 support	 services,	 as	well	 as
“transition	fees”	that	are	incurred	just	for	moving	data	into	the	providers’	Cloud	infrastructure.

Nearly	every	major	technology	company	has	some	sort	of	enterprise	Cloud	storage	offering.	As	of	late
2013,	the	leaders	are	Amazon’s	Simple	Storage	Service	(S3),	Google,	HP,	and	Microsoft.	Even	at	their
highest	 levels,	 the	prices	charged	by	 these	companies	are	a	 fraction	of	 the	 total	cost	of	ownership	of	a
data	storage	facility.	Thus,	the	costs	are	quite	tempting	to	CIOs	under	continued	pressure	to	deliver	more
services	for	less	money.

As	with	anything,	there	are	downsides	to	moving	to	Cloud	storage.	The	greatest	of	all	is	that	storing
one’s	critical	data	 in	 the	Cloud	 is	 fraught	with	risk.	First,	 there’s	 the	risk	of	availability.	Handing	over
control	of	one’s	data	infrastructure	to	an	outside	company	means	entering	into	contracts	that	include	SLAs
that	must	be	monitored	and	enforced.	Then	there’s	 the	risk	of	 the	outside	company	going	insolvent.	The
greatest	impediment	of	all	concerns	security:	It	is	simply	not	possible	to	provide	the	same	security	in	the
Cloud	as	 in	 a	 fortified,	 company-controlled	data	center.	Barriers	presented	by	various	government	and
financial	 regulations,	 such	 as	 HIPAA	 and	 Sarbanes-Oxley,	 are	 formidable.	 Surely,	 companies	 will	 be
using	the	Cloud	for	storage,	but	will	likely	be	doing	so	in	small	ways	for	the	foreseeable	future.

CHAPTER	SUMMARY
This	chapter	has	outlined	some	popular	I/O	architectures	suitable	for	 large	and	small	systems.	SCSI-2,
ATA,	SATA,	EIDE,	PCI,	USB,	and	IEEE	1394	are	suitable	for	small	systems.	Fibre	Channel	and	some	of
the	SAM-3	protocols	were	designed	for	large,	high-capacity	systems.	The	SCSI	Architecture	Model-3	has
defined	numerous	high-speed	interfaces.	Aspects	of	SCSI	Architecture	Model-3	overlap	into	the	area	of
data	 communications	 because	 computers	 and	 storage	 systems	 continue	 to	 become	more	 interconnected.
For	 ease	 of	 reference,	 we	 have	 provided	 a	 summary	 of	 the	 storage	 interconnections	 discussed	 in	 this
chapter	in	Table	13.5.

Fibre	Channel	 is	 one	 of	 the	 fastest	 interface	 protocols,	 and	 it	 is	 the	 first	 choice	 for	 deployment	 in
server	farms.	However,	other	protocols	are	on	the	horizon,	including	iSCSI	and	SATA.	It	is	certain	that
the	industry	is	replacing	parallel	interfaces	with	serial	interfaces.	This	change	is	driven	by	the	need	for
speed,	the	general	compatibility	of	serial	protocols	with	any	number	of	physical	interconnection	methods,
and—in	the	case	of	SATA—the	need	to	control	heat	inside	the	CPU	cabinet.

A	new	growth	industry	is	emerging	around	the	concepts	of	“managed	storage”	and	“storage	services,”
where	third	parties	take	care	of	short-	and	long-term	disk	storage	management	for	client	companies.	One
can	expect	that	this	area	of	outsourced	services	will	continue	to	grow,	bringing	with	it	many	new	ideas,
protocols,	and	architectures	to	include	trustworthy	Cloud	storage.



TABLE	13.5	A	Summary	of	Various	I/O	Interfaces

FURTHER	READING
Because	SCSI	has	been	around	for	such	a	long	time,	it	is	the	topic	of	numerous	books,	including	those	by
Schmidt	 (1999)	 and	 Field	 and	 Ridge	 (1999).	 Field	 and	 Ridge’s	 SCSI	 book	 is	 noteworthy	 for	 its
readability.	An	excellent	introduction	to	SAN	and	NAS	systems	is	written	by	Spalding	(2003).	Tate	et	al.
(2005)	contains	a	good	introduction	and	detailed	 information	about	specific	products	 that	will	 improve
your	understanding	of	the	technology.	The	books	by	Clark	(1999)	and	Thornburgh	(1999)	are	very	good
introductions	to	Fibre	Channel	SANs.	No-hype	introductions	to	Cloud	storage	can	be	found	in	the	papers
by	 Abadi	 (2009)	 and	 Buyya	 (2009).	 Goldner	 (2003)	 provides	 a	 concise	 discussion	 of	 iSCSI.	 The
technical	 details	 of	 iSCSI	 can	 be	 found	 in	 Internet	 RFC	 3720	 (www.ietf.org).	 The	 SCSI	 Architecture
Model-3	 is	 nicely	 explained	 by	 Reidel	 and	 Goldner	 (2003).	 A	 great	 deal	 of	 storage	 and	 interface
information	can	be	found	on	the	InterNational	Committee	on	Information	Technology	Standards	(INCITS)
websites:	 INCITS	 T10	 working	 group	 (www.t10.org)	 is	 the	 oversight	 group	 for	 SCSI,	 T11
(www.t11.org)	deals	with	Fibre	Channel	and	HiPPI,	and	T13	(www.t13.org)	concerns	 itself	with	ATA.
Other	 sources	of	 technical	 information	 include	 the	SCSI	Trade	Association	 (www.scsita.org),	 the	USB
Implementers	Forum	(www.usb.org),	 the	Storage	Networking	Industry	Association	(www.snia.org),	and
the	 Serial	 ATA	 International	 Organization	 (www.serialata.org).	 Good	 sites	 for	 storage	 news	 include
www.byteandswitch.com,	 www.wwpi.com	 (Computer	 Technology	 Review),	 and
www.storagemagazine.techtarget.com.

Axelson	has	published	an	entire	series	of	detailed	books	on	the	subject	of	the	USB	interface.	Her	USB
Complete	 (2009)	 is	an	 ideal	starting	point	 in	 the	series.	 It	 includes	a	clear	and	 thorough	description	of
USB	architecture	and	protocols.	Code	samples	are	provided	to	aid	the	reader	in	interfacing	with	various
types	 of	 USB	 devices.	 A	 wealth	 of	 information	 can	 also	 be	 found	 on	 the	 official	 USB	 website:
www.usb.org.

Intended	as	a	graduate	text,	Hill	et	al.	(2013)	in	their	Guide	to	Cloud	Computing	succinctly	describe
Cloud	architectures,	including	many	examples	from	the	major	providers.	The	chapter	on	data	in	the	Cloud
is	 outstanding	 in	 its	 discussion	 of	 the	 ways	 in	 which	 Cloud	 data	 architectures	 differ	 from	 traditional
architectures.	The	authors’	presentation	of	various	 trade-offs	 involved	with	Cloud	storage	 is	especially
noteworthy.	 Practitioners	 may	 find	 Erl	 et	 al.	 (2013)	 useful	 in	 its	 focus	 on	 business	 issues	 including
delivery	models,	governance,	and	economics	of	Cloud.	In	a	similar	work,	Schultz	(2011)	describes	Cloud
storage	 in	 the	 context	 of	 the	 storage	 hierarchy	 as	well	 as	 the	 computing	 services	 hierarchy.	 The	 IEEE

http://www.ietf.org
http://www.t10.org
http://www.t11.org
http://www.t13.org
http://www.scsita.org
http://www.usb.org
http://www.snia.org
http://www.serialata.org
http://www.byteandswitch.com
http://www.wwpi.com
http://www.storagemagazine.techtarget.com
http://www.usb.org


maintains	an	educational	Cloud	computing	portal	at	www.cloudcomputing.ieee.org.

REFERENCES
Abadi,	D.	“Data	Management	in	the	Cloud:	Limitations	and	Opportunities.”	IEEE	Data	Engineering

Bulletin,	32:1,	2009,	pp.	3–12.
Axelson,	J.	USB	Complete:	The	Developer’s	Guide.	Madison,	WI:	Lakeview	Research,	2009.
Buyya,	R.	“Market-Oriented	Cloud	Computing:	Vision,	Hype,	and	Reality	of	Delivering	Computing	as	the

5th	Utility.”	Proceedings	of	the	2009	9th	IEEE/ACM	International	Symposium	on	Cluster
Computing	and	the	Grid	(May	18–21,	2009).	CCGRID.IEEE	Computer	Society,	Washington,	DC.

Clark,	T.	Designing	Storage	Area	Networks:	A	Practical	Guide	for	Implementing	Fibre	Channel	SANs.
Reading,	MA:	Addison-Wesley-Longman,	1999.

Erl,	T.,	Ricardo,	P.,	&	Zaigham,	M.	Cloud	Computing:	Concepts,	Technology	&	Architecture.	Vancouver,
BC:	Arcitura,	2013.

Field,	G.,	Ridge,	P.,	et	al.	The	Book	of	SCSI:	I/O	for	the	New	Millennium,	2nd	ed.	San	Francisco,	CA:
No	Starch	Press,	1999.

Goldner,	J.	S.	“The	Emergence	of	iSCSI.”	ACM	Queue,	June	2003,	pp.	44–53.
Hill,	R.,	Hirsch,	L.,	Lake,	P.,	&	Moshiri,	S.	Guide	to	Cloud	Computing:	Principles	and	Practice.

London:	Springer-Verlag,	2013.
Reidel,	E.,	&	Goldner,	J.	S.	“Storage	Systems:	Not	Just	a	Bunch	of	Disks	Anymore.”	ACM	Queue,	June

2003,	pp.	32–41.
Schmidt,	F.,	The	SCSI	Bus	and	IDE	Interface,	2nd	ed.	Reading,	MA:	Addison-Wesley,	1999.
Schultz,	G.	Cloud	and	Virtual	Data	Storage	Networking.	Boca	Raton,	FL:	Auerbach	Publications,	2011.
Spalding,	R.	Storage	Networks:	The	Complete	Reference.	Boston,	MA:	McGraw-Hill,	2003.
Tate,	J.,	Kanth,	R.,	&	Telles,	A.	Introduction	to	Storage	Area	Networks,	3rd	ed.	IBM	Redbook	SG24-

5470-02.	San	Jose,	CA:	IBM	Corporation,	International	Technical	Support,	2005.
Thornburgh,	R.	H.	Fibre	Channel	for	Mass	Storage.	Hewlett-Packard	Professional	Books	series.	Upper

Saddle	River,	NJ:	Prentice	Hall,	1999.

REVIEW	OF	ESSENTIAL	TERMS	AND	CONCEPTS

1.		What	does	the	acronym	SCSI	stand	for?	Does	the	name	still	make	sense?
2.		How	is	SAM-3	different	from	classic	parallel	SCSI?
3.		What	is	another	name	for	IEEE	1394?
4.		What	drawbacks	of	SCSI-2	does	IEEE	1394	improve	upon?
5.		Define	NAS.
6.		Define	SAN.	How	is	it	different	from	NAS?
7.		Under	what	circumstances	would	you	consider	installing	a	Fibre	Channel	SAN?
8.		What	are	the	advantages	and	disadvantages	of	iSCSI?
9.		What	is	ATA?	In	what	ways	is	SATA	an	improvement?

http://www.cloudcomputing.ieee.org


10.		What	two	features	of	USB	make	it	so	desirable	for	portable	devices?

EXERCISES
1.		Which	of	the	types	of	storage	architectures	discussed	in	this	chapter	would	you	expect	to	find	in	a

large	 data	 center	 or	 server	 farm?	 What	 would	 be	 the	 problem	 with	 using	 one	 of	 the	 other
architectures	in	the	data	center	environment?

2.		How	many	SCSI	devices	can	be	active	after	the	arbitration	phase	has	completed?
3.		Suppose	during	an	asynchronous	parallel	SCSI	data	transfer	someone	removes	a	floppy	disk	from

the	drive	that	is	the	intended	target	of	the	transfer.	How	would	the	initiator	know	that	the	error	has
occurred	during	these	phases:
•			Bus-free
•			Status
•			Selection
•			Message
•			Command
•			Reselection
•			Data
a)		During	which	of	the	phases	is	it	possible	that	good	data	may	be	written	to	the	floppy	if	the	data

transfer	is	a	“write”	operation?
b)		If	the	transfer	is	a	“read,”	at	which	point	would	the	system	have	good	data	in	the	buffer?	Would

the	system	ever	acknowledge	this	data?
4.	 	Your	manager	has	decided	 that	 the	 throughput	of	your	 file	 server	can	be	 improved	by	 replacing

your	old	SCSI-2	host	adapter	with	a	Fast	and	Wide	SCSI-3	adapter.	She	also	decides	that	the	old
SCSI-2	drives	will	be	replaced	with	Fast	and	Wide	SCSI-3	drives	that	are	much	larger	 than	the
old	ones.	After	all	the	files	from	the	old	SCSI-2	disks	have	been	moved	to	the	SCSI-3	drives,	you
reformat	the	old	drives	so	they	can	be	used	again	somewhere.	Upon	hearing	that	you	did	this,	your
manager	tells	you	to	leave	the	old	SCSI-2	drives	in	the	server,	because	she	knows	that	SCSI-2	is
downward	compatible	with	SCSI-3.	Being	a	good	employee,	you	acquiesce	to	this	demand.

A	few	days	later,	however,	you	are	not	surprised	when	your	manager	expresses	disappointment	that
the	 SCSI-3	 upgrade	 does	 not	 seem	 to	 be	 delivering	 the	 performance	 improvement	 she	 expected.
What	happened?	How	can	you	fix	it?

5.	 	You	have	just	upgraded	your	system	to	a	Fast	and	Wide	SCSI	interface.	This	system	has	a	floppy
disk,	a	CD-ROM,	and	five	8GB	fixed	disks.	What	is	the	device	number	of	the	host	adapter?	Why?

6.		How	does	SCSI-2	differ	from	the	principles	behind	the	SCSI	Architecture	Model-3?
7.		What	benefits	does	the	SCSI	Architecture	Model-3	provide	to	computer	and	peripheral	equipment

manufacturers?
8.		Suppose	you	wish	to	devise	a	video	conferencing	system	by	connecting	a	number	of	computers	and

video	cameras	together.	Which	interface	model	would	you	choose?	Will	the	protocol	packet	used
to	transfer	the	video	be	identical	to	the	protocol	packet	used	for	data	transmission?	What	protocol
information	would	be	in	one	packet	and	not	in	the	other?



9.	 	How	would	an	SSA	bus	configuration	recover	from	a	single	disk	failure?	Suppose	another	node
fails	before	the	first	one	can	be	fixed.	How	would	the	system	recover?

10.		You	have	been	assigned	to	a	work	group	that	has	been	given	the	task	of	placing	automated	controls
in	a	chemical	plant.	Hundreds	of	sensors	will	be	placed	in	tanks,	vats,	and	hoppers	throughout	the
factory	campus.	All	data	 from	 the	sensors	will	be	 fed	 into	a	group	of	 sufficiently	high-powered
computers	so	that	plant	managers	and	supervisors	can	control	and	monitor	the	various	processes
taking	place.

What	type	of	interface	would	you	use	between	the	sensors	and	the	computers?	If	all	computers	are
to	have	access	to	all	of	the	sensor	input,	would	you	use	the	same	type	of	connection	to	interconnect
the	computers	among	one	another?	Which	I/O	control	model	would	you	use?

11.		One	of	the	engineers	who	works	for	you	is	proposing	changes	to	the	bus	architecture	of	the	systems
that	 your	 company	 manufactures.	 She	 claims	 that	 if	 the	 bus	 is	 modified	 to	 support	 network
protocols	directly,	the	systems	will	have	no	need	for	network	cards.	She	claims	that	you	could	also
eliminate	your	SAN	and	connect	the	client	computers	directly	to	the	disk	array.	Would	you	object
to	this	approach?	Explain.	Hint:	Think	of	other	uses	for	the	main	bus	besides	carrying	bytes	to	and
from	storage	devices.

12.		Storage	systems	increasingly	rely	on	the	Internet	infrastructure	as	a	transport	medium.	What	are	the
advantages	of	this	approach?	What	problems	are	present	in	terms	of	security	and	reliability?



A	civilization	flourishes	when	people	plant	trees	under	whose	shade	they	will	never	sit.

—Greek	saying

APPENDIX	A



Data	Structures	and	the	Computer

A.1	INTRODUCTION
Throughout	 this	 text,	 we	 take	 for	 granted	 that	 our	 readers	 understand	 the	 basics	 of	 computer	 data
structures.	Such	an	understanding	is	not	required	for	overall	comprehension	of	this	text,	but	it	is	helpful	in
grasping	 some	 of	 the	 more	 subtle	 points	 of	 computer	 organization	 and	 architecture.	 This	 appendix	 is
intended	as	 an	extended	glossary	 for	 readers	who	have	yet	 to	 experience	a	 formal	 introduction	 to	data
structures.	It	can	also	be	used	as	a	refresher	for	those	who	studied	data	structures	long	ago.	With	this	goal
in	 mind,	 our	 treatment	 here	 is	 necessarily	 brief,	 and	 it	 (of	 course!)	 is	 slanted	 toward	 hardware
considerations.	Readers	who	wish	to	delve	further	into	this	fascinating	study	are	invited	to	read	any	of	the
books	 cited	 in	 the	 reference	 list	 at	 the	 end	 of	 this	 appendix.	As	 you	 read	 through	 this	 appendix,	 you
should	be	aware	 that	all	of	our	memory	addresses	 in	 the	examples	are	given	 in	hexadecimal.	 If	 you
haven’t	already	done	so,	you	should	read	Chapter	2	before	proceeding.

A.2	FUNDAMENTAL	STRUCTURES

A.2.1	Arrays
The	term	data	structure	refers	to	the	manner	in	which	related	pieces	of	information	are	organized	so	that
executing	 processes	 can	 easily	 access	 data	 as	 needed.	 Data	 structures	 are	 often	 independent	 of	 their
implementation,	as	the	manner	of	organization	is	logical,	not	necessarily	physical.

The	simplest	of	all	data	structures	is	the	linear	array.	As	you	probably	know	from	your	programming
experience,	a	linear	array	is	a	contiguous	area	of	computer	memory	to	which	your	program	has	assigned	a
name.	The	group	of	entities	stored	in	this	contiguous	area	must	be	homogeneous	(they	must	have	the	same
size	and	type)	and	can	be	addressed	individually,	typically	using	subscripting.	For	example,	suppose	you
have	the	following	Java	declaration:

char[]	charArray[10];

The	operating	system	assigns	a	storage	value	to	the	variable	charArray	that	represents	the	base	address
(or	beginning	address)	of	the	array.	Access	to	subsequent	characters	is	provided	through	offsets	from	this
base	location.	The	offsets	are	incremented	by	the	size	of	the	primitive	data	type	of	the	array,	in	this	case,
char.	Characters	in	Java	are	16	bits	wide,	so	the	offset	for	a	character	array	would	be	2	bytes	per	array
element.	 For	 example,	 let’s	 say	 that	 the	 charArray	 structure	 is	 stored	 at	 address	 80A2.	 The	 program
statement:

char	aChar	=	charArray[3];

would	retrieve	the	2	bytes	found	at	memory	location	80A8.	Because	Java	indexes	its	arrays	starting	with
zero,	we	have	just	stored	the	fourth	element	of	the	array	in	the	character	variable	aChar:



Two-dimensional	 arrays	 are	 linear	 arrays	 consisting	 of	 one-dimensional	 arrays,	 so	 the	memory	 offset
value	must	 take	 the	 row	 size	 into	 account,	 along	with	 the	 size	 of	 the	 primitive	 data	 type	 of	 the	 array.
Consider,	for	example,	the	following	Java	declaration:

char[]	charArray[4][10];

Here	we	are	defining	four	linear	arrays	that	have	10	storage	locations	each.	However,	it	is	much	easier	to
think	 of	 this	 structure	 as	 a	 two-dimensional	 array	 of	 4	 rows	 and	 10	 columns.	 If	 the	 base	 address	 of
charArray	is	still	80A2,	then	element	charArray[1][4]	would	be	found	at	address	80BE.	This	is	because
row	0	of	the	array	occupies	addresses	80A2	through	80B5,	row	1	starts	at	80B6,	and	we	are	accessing
the	fifth	element	of	row	2:

Array	storage	is	a	good	choice	when	the	problem	that	our	program	solves	allows	us	to	home	in	on	a	small
subset	of	the	array’s	storage	locations.	This	would	be	the	case	if	we	were	writing	a	backgammon	game.
For	 example,	 each	“point”	would	be	 a	 location	 in	 the	 “board”	array.	The	program	would	 inspect	only
those	board	points	that	are	legal	moves	for	a	particular	roll	of	the	dice	prior	to	allowing	a	move.

Another	good	application	for	arrays	is	a	data	collection	task	based	on	times	of	the	day	or	days	of	the
month.	 We	 might,	 for	 example,	 be	 counting	 the	 number	 of	 vehicles	 that	 pass	 a	 particular	 point	 on	 a
highway	at	different	times	of	the	day.	If	someone	later	asks	for	the	average	traffic	flow	between	9:00	am
and	9:59	am,	all	we	need	to	do	is	average	the	tenth	element	of	each	24-hour	day’s	array	for	the	period
over	which	we	have	collected	the	data.	(Midnight	to	1:00	am	is	the	zeroth	element.)

A.2.2	Queues	and	Linked	Lists
Arrays	are	not	very	helpful	when	we	are	processing	items	in	response	to	requests	for	service.	Requests
for	service	are	usually	processed	according	to	the	time	that	the	request	was	made.	In	other	words,	first-
come,	first-served.

Consider	 a	 Web	 server	 that	 handles	 Hypertext	 Transfer	 Protocol	 (HTTP)	 requests	 from	 users
connected	through	the	Internet.	The	sequence	of	incoming	requests	may	resemble	the	one	shown	in	Table
A.1.

Conceivably,	we	could	place	each	of	 these	 requests	 into	an	array	and	 then	 search	 the	array	 for	 the
lowest	 timestamp	value	when	we	are	 ready	 to	 service	 the	next	 request.	This	 implementation	would	be
hopelessly	inefficient,	however,	because	each	element	of	the	array	would	need	to	be	interrogated	every
time.	 Furthermore,	 we	 would	 risk	 running	 out	 of	 room	 in	 the	 array	 if	 we	 experience	 a	 day	 with	 an
unusually	heavy	amount	of	traffic.	For	these	reasons,	a	queue	 is	 the	appropriate	data	structure	for	first-
come,	first-served	applications.	The	queue	data	structure	requires	that	elements	be	removed	in	the	same
order	in	which	they	are	entered.	Waiting	lines	at	banks	and	supermarkets	are	good	examples	of	queues.

There	are	different	ways	to	implement	queues,	but	all	queue	implementations	have	four	components:	a
memory	variable	that	points	to	the	first	item	in	the	queue	(the	head	of	the	queue),	a	memory	variable	that
points	to	the	end	of	the	queue	(its	tail),	memory	locations	in	which	to	store	the	queue	items,	and	a	set	of
operations	specific	to	the	queue	data	structure.	The	pointer	to	the	head	of	the	queue	indicates	which	item



is	to	be	serviced	next.	The	tail	pointer	is	useful	for	adding	items	to	the	end	of	the	queue.	When	the	head
pointer	is	null	(zero),	the	queue	is	empty.	The	operations	on	queues	typically	include	adding	an	entry	to
the	end	of	the	list	(enqueue),	deleting	an	entry	from	the	beginning	of	the	list	(dequeue),	and	checking	to	see
whether	the	queue	is	empty.

One	popular	way	of	 implementing	a	queue	 is	 to	use	a	 linked	 list.	 In	 a	 linked	 list,	 each	 item	 in	 the
queue	contains	a	pointer	to	the	next	item	in	the	queue.	As	items	are	dequeued,	the	head	pointer	can	use	the
information	found	in	the	node	that	was	just	deleted	to	locate	the	next	node.	So,	in	our	Web	server	example
above,	after	Item	1	is	serviced	(and	removed	from	the	queue),	the	head-of-queue	pointer	is	set	to	point	to
Item	2.

Time Source	Address HTTP	Command

07:22:03 10.122.224.5 http://www.spiffywebsite.com/sitemap.html

07:22:04 10.167.14.190 http://www.spiffywebsite.com/shoppingcart.html

07:22:12 10.148.105.67 http://www.spiffywebsite.com/spiffypix.jpg

07:23:09 10.72.99.56 http://www.spiffywebsite.com/userguide.html

TABLE	A.1	HTTP	Requests	for	a	Web	Server

In	our	example	from	Table	A.1,	let’s	say	that	the	head	of	the	queue	is	at	address	7049,	which	contains
the	 first	 HTTP	 request,	www.spiffywebsite.com/sitemap.html.	 The	 head-of-queue	 pointer	 is	 set	 to	 the
value	7049.	At	memory	address	7049,	we	will	have	the	entry:

07:22:03,	10.122.224.5,	www.spiffywebsite.com/sitemap.html,	70E6,

where	70E6	is	the	address	of	the	following	item:

07:22:04,	10.167.14.190,	www.spiffywebsite.com/shoppingcart.html,	712A.

The	entire	contents	of	the	queue	are	shown	in	Table	A.2.
The	pointer	to	the	head	of	the	queue	is	set	to	7049,	and	the	tail	pointer	is	set	to	81B3.	If	another	user

request	arrives,	the	system	finds	a	spot	for	it	in	memory	and	updates	the	last	queue	item	(to	point	to	the
new	entry)	as	well	as	the	tail	pointer.	You	should	notice	that	when	this	kind	of	pointer	structure	is	used,
unlike	 arrays,	 there	 is	 no	 requirement	 that	 the	 data	 elements	 be	 contiguous	 in	 memory.	 This	 is	 what
enables	 the	 structure	 to	 grow	 as	 needed.	 Moreover,	 there	 is	 no	 requirement	 that	 the	 addresses	 be
ascending,	 as	we	 have	 shown.	 The	 queue	 elements	 can	 be	 located	 anywhere	 in	memory.	 The	 pointers
maintain	the	order	of	the	queue.

The	queue	 architecture	 that	we	have	described	 can	be	modified	 to	 create	 a	 fixed-size	queue	 (often
called	a	circular	queue),	or	a	priority	queue,	where	certain	types	of	entries	will	jump	ahead	of	the	others.
Even	with	these	added	wrinkles,	queues	are	easy	data	structures	to	implement.

A.2.3	Stacks
Queues	are	sometimes	called	FIFO	(first-in,	first-out)	lists,	for	obvious	reasons.	Some	applications	call
for	the	opposite	ordering,	or	last-in,	first-out	(LIFO).	Stacks	are	appropriate	data	structures	 for	LIFO
ordering.	They	get	 their	name	from	their	 similarity	 to	how	cafeterias	provide	plates	 to	 their	customers.
Cafeteria	service	personnel	add	hot,	wet,	clean	plates	to	the	top	of	a	spring-loaded	tube,	pushing	the	cold,

http://www.spiffywebsite.com/sitemap.html
http://www.spiffywebsite.com/shoppingcart.html
http://www.spiffywebsite.com/spiffypix.jpg
http://www.spiffywebsite.com/userguide.html
http://www.spiffywebsite.com/sitemap.html
http://www.spiffywebsite.com/sitemap.html
http://www.spiffywebsite.com/shoppingcart.html


dry	plates	farther	down	the	tube.	The	next	customer	takes	a	plate	from	the	top	of	the	stack.	This	sequence
is	 shown	 in	Figure	A.1.	Figure	A.1a	 shows	 a	 stack	 of	 plates.	 The	 plate	 numbered	 1	was	 the	 first	 one
placed	on	the	stack.	Plate	number	7	was	the	last.	Plate	number	7	is	the	first	plate	removed,	as	shown	in
Figure	A.1b.	When	the	next	plate	arrives,	plate	number	8,	it	will	go	on	top	of	the	stack	as	shown	in	Figure
A.1c.	The	act	of	adding	an	item	to	a	stack	is	called	pushing.	To	remove	an	item	is	to	pop	it.	To	interrogate
the	top	item	in	a	stack,	without	removing	it,	is	to	peek	at	it.

TABLE	A.2	An	HTTP	Request	Queue	Implemented	in	Memory

FIGURE	A.1	Stacks	of	Plates
a)	The	Initial	Stack
b)	Plate	7	Is	Removed	(Popped)
c)	Plate	8	Is	Added	(Pushed)

A	stack	is	a	useful	data	structure	when	you	are	working	your	way	through	a	series	of	nested	subroutine
calls	in	a	program.	If	you	push	the	current	address	on	the	top	of	the	stack	before	you	branch	to	the	next
address,	you	know	that	you	can	return	along	the	same	route	as	you	arrived.	All	you	do	is	pop	each	address
as	you	need	it.	As	an	example	from	everyday	life,	say	we	visit	a	series	of	cities	in	this	order:

1.		New	York,	NY
2.		Albany,	NY
3.		Buffalo,	NY
4.		Erie,	PA



5.		Pittsburgh,	PA
6.		Cleveland,	OH
7.		St.	Louis,	MO
8.		Chicago,	IL

From	Chicago,	how	do	we	get	back	to	New	York?	A	human	being	would	simply	pull	out	a	map	(and	find	a
more	direct	route),	or	would	just	“know”	to	find	Interstate	80	and	head	east.	Computers	certainly	aren’t	as
smart	as	we	are.	So	the	easiest	thing	for	a	computer	to	do	is	to	retrace	its	original	route.	A	stack	(like	the
one	shown	in	Table	A.3)	is	exactly	the	right	data	structure	for	the	job.	All	that	the	computer	needs	to	do	is
push	the	current	location	on	the	top	of	the	stack	as	the	route	is	traversed.	The	return	route	is	easily	found
by	popping	the	previous	city	from	the	top	of	the	stack.

It	 is	possible	to	implement	stacks	in	a	variety	of	ways.	The	most	popular	software	implementations
are	done	via	linear	arrays	and	linked	lists.	System	stacks	(the	hardware	versions)	are	implemented	using
a	fixed	memory	allocation,	which	is	a	block	of	memory	set	aside	for	the	exclusive	use	of	the	stack.	Two
memory	variables	are	required	to	manage	the	stack.	One	variable	points	to	the	top	of	the	stack	(the	last
item	placed	on	the	stack),	whereas	a	second	variable	keeps	count	of	the	number	of	items	in	the	stack.	The
maximum	stack	size	(or	the	highest	allowable	memory	address)	is	stored	as	a	constant.	When	an	item	is
pushed	onto	the	stack,	the	stack	pointer	(the	memory	address	for	the	top	of	the	stack)	is	incremented	by	the
size	of	the	data	type	that	is	stored	in	the	stack.

Consider	an	example	where	we	want	to	store	the	last	three	letters	of	the	alphabet	and	retrieve	them	in
reverse	order.	The	Java	(Unicode)	coding	for	these	characters	in	hexadecimal	is:

X	=	0058,	Y	=	0059,	Z	=	005A.

Memory	addresses	808A	through	80CA	are	reserved	for	the	stack.	A	constant,	MAXSTACK,	is	set	to	20
(hex).	Because	the	stack	is	initially	empty,	the	stack	pointer	is	set	to	a	null	value,	and	the	stack	counter	is
at	 zero.	 Table	 A.4	 shows	 a	 trace	 of	 the	 stack	 and	 its	 management	 variables	 as	 the	 three	 Unicode
characters	are	stored.

To	retrieve	the	data,	three	pops	take	place.	With	each	pop,	the	stack	pointer	is	decremented	by	two.	Of
course,	with	each	addition	and	retrieval,	the	status	of	the	stack	must	be	checked.	We	have	to	be	sure	that
we	don’t	add	an	item	to	a	stack	that	is	full	or	try	to	remove	an	item	from	a	stack	that	is	empty.	Stacks	are
widely	used	in	computer	system	firmware	and	software.

Stack	Location City
7	(top) St.	Louis,	MO

6 Cleveland,	OH

5 Pittsburgh,	PA

4 Erie,	PA

3 Buffalo,	NY

2 Albany,	NY

1 New	York,	NY

TABLE	A.3	A	Stack	of	Visited	Cities



TABLE	A.4	Adding	the	Letters	X,	Y,	and	Z	to	a	Stack.	(The	dashes	represent	irrelevant	memory	values.)
a)	X	(0058)	Is	Added	and	the	Stack	Pointer	Is	Incremented	by	the	Size	of	the	Data	Element	(2	Bytes)
b)	Y	(0059)	Is	Added	and	the	Stack	Pointer	Is	Incremented	by	2	Again
c)	Z	(005A)	Is	Added

A.3	TREES
Queues,	stacks,	and	arrays	are	useful	for	processing	lists	of	things	where	the	locations	of	the	items	in	the
list	(relative	to	each	other)	do	not	change	no	matter	how	many	items	are	in	the	list.	Certainly,	this	is	not
the	nature	of	many	of	the	data	collections	that	we	use	in	our	daily	lives.	Consider	a	program	that	would
manage	an	address	book.	One	useful	way	of	sequencing	this	data	is	to	keep	the	list	in	order	by	last	name.
A	binary	search	could	quickly	locate	any	name	in	the	list,	successively	limiting	the	search	to	half	the	list.
A	binary	search	is	shown	seeking	the	name	Kleene	in	the	list	of	famous	mathematicians	in	Figure	A.2.	We
begin	by	determining	the	middle	of	the	list	(Hilbert)	and	comparing	this	value	to	our	key.	If	they	are	equal,
we	have	found	the	desired	item.	If	 the	key	(Kleene)	is	 larger	than	the	item	in	the	middle	of	the	list,	we
look	in	the	bottom	half	of	the	list,	as	shown	in	Figure	A.2b.	(This	effectively	reduces	our	search	space	by
half.)	Now	we	determine	the	new	middle	(Markov)	of	the	bottom	half	of	the	list.	If	our	key	(Kleene)	is
smaller	than	this	new	middle,	we	throw	out	the	bottom	half	of	this	list	and	keep	the	top	half,	as	in	Figure
A.2c.	 If	our	key	has	still	not	been	 found,	we	divide	 the	 list	 in	half	again.	 In	 this	way,	we	successively
divide	 the	 list	 in	 half	 until	we	 find	 our	 key	 (or	 determine	 that	 it	 is	 not	 in	 the	 list).	 This	 example	was
contrived	 to	 show	a	worstcase	 situation.	 It	 took	4	operations	 to	 locate	a	key	 in	a	 list	of	16	 items.	 If	 it
happened	that	we	were	looking	for	Hilbert,	we’d	have	found	him	on	the	first	try.	No	matter	how	large	the
list	is,	any	name	could	be	located	in	time	proportionate	to	the	base	2	logarithm	of	the	number	of	items	in
the	list.

Clearly,	a	binary	search	requires	that	the	data	be	sequenced	by	its	key	values.	So	what	happens	when
we	want	to	add	a	name	to	our	address	book?	We	must	put	it	in	its	proper	place	so	that	we	can	reliably	use
the	binary	search.	If	the	book	is	stored	in	a	linear	array,	then	we	can	quite	easily	figure	out	where	the	new
element	belongs,	 say	at	position	k.	But	 to	 insert	 this	 item,	we	must	make	 room	for	 it	 in	 the	array.	This
means	 that	we	must	 first	move	 all	 of	 the	 items	 at	 locations	 k	 through	n	 (the	 last	 item	 in	 the	 book)	 to
locations	k	+	1	through	n	+	1.	If	the	address	book	is	large,	this	shifting	process	would	probably	be	slower
than	we	would	like.	Furthermore,	if	the	array	can	hold	only	n	items,	we	are	in	big	trouble.	A	new	array
will	have	to	be	defined	and	then	loaded	from	the	old	one,	consuming	even	more	time.



FIGURE	A.2	A	Binary	Search	for	Kleene

A	linked	list	implementation	won’t	work	very	well	either,	because	the	midpoint	of	the	list	is	hard	to
find.	The	only	way	to	search	a	linked	list	is	to	follow	the	chain	of	list	items	until	you	find	the	spot	where
the	new	item	should	be.	If	you	have	a	long	list,	linear	searches	are	operationally	infeasible—they	won’t
happen	fast	enough	to	make	anyone	happy.

So	a	good	data	structure	for	keeping	ordered,	maintainable	 lists	 is	one	 that	allows	us	 to	find	 things
quickly	yet	add	and	delete	items	without	excessive	overhead.	There	are	several	data	structures	that	fit	the
bill.	The	simplest	of	these	is	the	binary	tree.	Like	linked	lists,	binary	trees	keep	track	of	adjacent	data
items	 through	 the	use	of	pointers	 to	memory	 locations.	And,	 like	 linked	 lists,	 they	can	grow	arbitrarily
large.	But	this	growth	is	done	in	such	a	way	that	it’s	easy	to	retrieve	any	key	from	the	tree.	Binary	trees
are	 called	 binary	 because	 in	 their	 graphical	 representation,	 each	 node	 (or	 vertex)	 has	 at	 most	 two
descendant	 (child)	 nodes.	 (Trees	with	more	 than	 two	descendant	 nodes	 are	 called	n-ary	 trees.)	 Some
example	binary	trees	are	shown	in	Figure	A.3.	Don’t	let	it	bother	you	that	these	graphics	look	like	upside-
down	trees—they	are	trees	in	the	mathematical	sense.	Each	node	is	connected	to	the	graph	(meaning	that
every	node	is	reachable	from	the	first	node),	and	the	graph	contains	no	cycles	(meaning	that	we	can’t	end
up	going	in	circles	as	we’re	looking	for	things).

The	topmost	node	of	a	tree	is	its	root.	The	root	is	the	only	part	of	a	tree	that	has	to	be	kept	track	of
independently.	All	other	nodes	are	referenced	through	the	root	using	two	memory	pointer	values	stored	in
each	 node.	 Each	 pointer	 indicates	where	 the	 node’s	 left	 child	 or	 right	 child	 node	 can	 be	 found.	 The
leaves	 of	 a	 tree,	 nodes	 at	 the	very	bottom	of	 the	 structure,	 have	null	 values	 for	 their	 child	nodes.	The
distance,	the	number	of	levels,	from	the	leaves	to	the	root	of	a	tree	is	called	its	height.	Nodes	that	are	not
leaves	are	called	internal	nodes	of	the	tree.	Internal	nodes	have	at	least	one	subtree	(even	if	it’s	a	leaf).

FIGURE	A.3	Some	Binary	Trees

In	addition	to	pointers,	the	nodes	of	a	binary	tree	contain	data	(or	data	key	values)	around	which	a	tree
is	 structured.	 Binary	 trees	 are	 often	 organized	 so	 that	 all	 key	 values	 smaller	 than	 the	 key	 value	 at	 a



particular	node	are	stored	in	its	left	subtree,	and	all	key	values	greater	than	or	equal	to	the	key	value	are
stored	in	its	right	subtree.	Figure	A.4	shows	an	example	of	this	idea.

The	binary	tree	shown	in	Figure	A.4	is	also	a	balanced	binary	tree.	Formally,	when	a	binary	tree	is
balanced,	 the	depth	of	 the	 left	and	 right	 subtree	of	every	node	differs	by	at	most	1.	What	 is	 significant
about	this	is	that	any	data	item	referenced	by	the	tree	can	be	located	in	time	proportionate	to	the	base	2
logarithm	of	the	number	of	nodes	in	the	tree.	So	a	tree	containing	65,535	data	keys	requires	at	most	15
memory	operations	to	find	any	particular	element	(or	to	determine	that	it’s	not	there).	Unlike	sorted	lists
kept	in	linear	arrays	(which	give	the	same	running	time	for	a	search)	it	is	much	easier	to	maintain	the	set
of	key	values	in	binary	trees.	To	insert	an	element,	all	we	do	is	rearrange	a	few	memory	pointers,	rather
than	restructure	 the	entire	 list.	The	 running	 time	for	both	 inserting	and	deleting	a	node	from	a	balanced
binary	tree	is	also	proportionate	to	the	base	2	logarithm	of	the	number	of	items	in	the	tree.	Thus,	this	data
structure	is	much	better	than	an	array	or	simple	linked	list	for	maintaining	a	group	of	sorted	data	elements.

FIGURE	A.4	An	Ordered	Binary	Tree	with	Nondecreasing	Key	Values

TABLE	A.5	The	Memory	Map	for	the	Binary	Tree	in	Figure	A.4

Although	our	graphics	make	it	easy	to	conceptualize	the	logical	structure	of	a	tree,	it	is	good	to	keep	in
mind	 that	 computer	 memory	 is	 linear,	 so	 our	 picture	 is	 only	 an	 abstraction.	 In	 Table	 A.5,	 we	 have
provided	a	map	of	64	bytes	of	memory	that	store	the	tree	in	Figure	A.4.	For	convenience	of	reading,	we
show	them	in	a	tabular	format.	For	example,	the	hex	address	of	the	byte	located	in	the	column	with	label	5
(which	we	will	refer	to	as	Column	5)	of	the	row	with	label	1	(Row	1)	is	15.	Row	0,	Column	0	refers	to
address	0.	The	node	keys	are	coded	in	hexadecimal	ASCII,	as	shown	in	the	table	above	the	memory	map.

In	our	memory	map,	the	root	of	the	tree	is	located	at	addresses	36	through	38	(Row	3,	Columns	6–8).
Its	key	value	 is	at	address	37.	The	 left	 subtree	 (child)	of	 the	 root	 is	 found	at	address	25,	and	 the	 right
subtree	at	address	3B.	If	we	look	at	address	3B,	we	find	the	key,	I,	with	its	left	child	at	address	14	and	its
right	 child	 at	 address	 21.	At	 address	 21,	we	 find	 the	 leaf	 node,	 J,	 having	 zeroes	 for	 both	 of	 its	 child



pointers.
Binary	 trees	 are	 useful	 in	 many	 applications	 such	 as	 compilers	 and	 assemblers.	 (See	 Chapter	 8.)

However,	 when	 it	 comes	 to	 storing	 and	 retrieving	 key	 values	 from	 very	 large	 data	 sets,	 several	 data
structures	are	superior	to	binary	trees.	As	an	example,	consider	the	task	of	designing	an	online	telephone
book	for	New	York	City,	which	has	a	population	of	just	over	8	million	people.	Assuming	that	there	are
approximately	8	million	telephone	numbers	to	put	in	our	book,	we	would	end	up	with	a	binary	tree	having
at	least	23	levels.	Furthermore,	more	than	half	the	nodes	would	be	at	the	leaves,	meaning	that	most	of	the
time,	we	would	have	to	read	22	pointers	before	finding	the	desired	number.

Although	a	binary	tree	design	is	not	totally	dreadful	for	this	application,	we	can	improve	on	it.	One
better	way	involves	an	n-ary	tree	structure	called	a	trie	(pronounced	“try”).	Instead	of	storing	an	entire
key	value	in	each	node,	tries	use	fragments	of	the	keys.	The	key	value	is	assembled	as	a	search	proceeds
down	the	trie.	Internal	nodes	contain	a	sufficient	number	of	pointers	to	direct	a	search	to	the	desired	key
or	to	the	next	level	of	the	trie.	Tries	are	particularly	suitable	for	data	having	variable-length	keys,	such	as
our	telephone	book	example.	Shorter	keys	are	near	the	top,	whereas	longer	keys	are	at	the	bottom	of	the
data	structure.

In	Figure	A.5,	we	have	depicted	a	trie	containing	the	names	of	famous	mathematicians.	The	diagram
implies	 that	every	 internal	node	contains	26	 letters.	The	nature	of	our	data	suggests	 that	 there	are	more
efficient	 trie	 structures	 than	 the	one	shown.	 (We	observe	 that	 it	 is	hard	 to	 find	a	 famous	mathematician
whose	 name	 begins	with	ZQX.)	 In	 fact,	 designing	 an	 internal	 node	 structure	 is	 the	 hardest	 part	 of	 trie
construction.	Depending	on	the	key	values,	more	than	one	character	can	be	used	as	an	index.	For	example,
suppose	 that	 instead	 of	 containing	 each	 letter	 of	 the	 alphabet	 as	 a	 single	 unit,	we	 could	 use	 groups	 of
letters.	By	changing	the	multiplicity	of	the	keys	in	the	root	node	of	the	trie	in	Figure	A.5,	the	trie	can	be
made	flatter	by	one	level.	This	modification	is	shown	in	Figure	A.6.	A	consequence	of	flattening	the	trie
is	that	searching	can	be	done	faster,	if	such	flattening	is	done	carefully.	In	Figure	A.6,	we	chose	to	roll	up
only	two	keys,	ER	and	EU,	to	eliminate	one	level.	If	we	had	doubled	up	every	key,	the	root	would	contain
676	keys	(AA	through	ZZ),	making	the	data	structure	unnecessarily	large	and	unwieldy	with	respect	to	the
amount	of	data	that	it	stores.

Figure	A.5	A	Trie	of	Famous	Mathematicians



FIGURE	A.6	A	Flatter	Trie	of	Famous	Mathematicians

In	 practice,	 structures	 for	 storage	 and	 retrieval	 of	 large	 amounts	 of	 data	 are	 designed	 with	 more
consideration	to	the	medium	on	which	they	will	be	stored	than	to	the	nature	of	the	data	itself.	Often,	index
nodes	are	contrived	so	that	some	integral	number	of	internal	nodes	at	one	level	of	the	tree	is	accessible
through	one	read	operation	of	the	disk	drive	on	which	the	index	is	stored.	One	such	data	structure	is	a	B+
tree,	which	is	used	in	large	database	systems.

A	B+	tree	is	a	hierarchical	structure	consisting	of	pointers	to	index	structures	or	actual	data	records.
As	 records	 are	 added	 and	 deleted	 from	 the	 database,	 leaves	 in	 the	 B+	 tree	 are	 updated.	 Additional
branches	 (internal	 nodes)	 are	 spawned	when	 updates	 to	 existing	 leaves	 are	 not	 possible.	 The	 internal
nodes	of	a	B+	tree	are	collectively	referred	to	as	 its	 index	part,	whereas	 the	 leaf	nodes	are	called	 the
sequence	part,	because	they	will	always	be	in	sequential	order.	A	schematic	of	a	portion	of	a	B+	tree	is
shown	in	Figure	A.7.

The	numbers	shown	in	the	diagram	are	record	key	values.	Along	with	each	key	value	in	the	leaf	node
of	a	B+	tree,	the	database	management	system	(see	Chapter	8)	maintains	a	pointer	to	the	location	of	the
physical	record.	This	pointer	value	is	used	by	the	operating	system	to	retrieve	the	record	from	the	disk.
So	 the	 physical	 record	 can	 be	 located	 virtually	 anywhere,	 but	 the	 sequence	 part	 of	 the	 data	 structure
always	stays	in	order.	Traversal	of	the	B+	tree	assures	us	that	any	record	can	be	located	quickly	based	on
its	key	value.



FIGURE	A.7	A	Partial	B+	Tree

To	locate	a	key	value	using	the	B+	tree	shown	in	Figure	A.7,	all	we	need	to	do	is	compare	the	desired
value	with	the	values	stored	in	the	internal	nodes.	When	a	key	value	is	less	than	the	value	of	a	key	in	an
internal	node,	the	tree	is	traversed	to	the	left.	Accordingly,	retrieving	a	value	greater	than	or	equal	to	an
internal	node’s	key	value	requires	that	we	traverse	the	tree	to	the	right.	When	an	internal	node	has	reached
its	capacity,	and	we	need	to	add	a	record	to	 the	database,	additional	 levels	are	added	to	 the	hierarchy.
Record	deletion,	however,	does	not	cause	an	immediate	flattening	of	the	tree,	just	a	movement	of	pointers.
B+	 tree	hierarchies	 are	 flattened	during	a	process	 called	database	reorganization	 (or	reorg).	 Reorgs
can	 be	 exceedingly	 time-consuming	 in	 large	 databases,	 so	 they	 are	 usually	 performed	 only	 when
absolutely	necessary.

The	 best	 database	 indexing	 methods	 take	 into	 account	 the	 underlying	 storage	 architecture	 of	 the
systems	 on	 which	 they	 run.	 In	 particular,	 for	 best	 system	 performance,	 disk	 reads	 must	 be	 kept	 to	 a
minimum.	(See	Chapter	11.)	Unless	a	substantial	part	of	a	data	file’s	index	is	cached	in	memory,	record
accesses	require	at	least	two	read	operations:	one	to	read	the	index	and	another	to	retrieve	the	record.	For
B+	tree	indices	on	highly	active	files,	the	first	few	levels	of	the	tree	are	read	from	cache	memory	rather
than	from	disk.	Thus,	disk	reads	are	required	only	when	retrieving	lower	index	tree	levels	and	the	data
record	itself.

A.4	NETWORK	GRAPHS
By	definition,	tree	structures	contain	no	cycles.	This	makes	trees	useful	for	data	storage	and	retrieval,	a
simple	 task	 in	 terms	 of	 computational	 complexity.	 Harder	 problems	 require	 more	 complex	 structures.



Consider,	 for	example,	 the	 routing	problem	 that	we	presented	 in	Section	A.2,	where	we	need	 to	 find	a
return	path	from	Chicago	to	New	York.	We	never	said	anything	about	finding	the	shortest	path,	only	that	it
was	easiest	to	simply	retrace	our	steps.	Finding	the	shortest	path,	or	an	optimal	path,	requires	a	different
kind	of	data	structure,	one	that	allows	cycles.

An	n-ary	tree	can	be	changed	into	a	more	general	network	graph	by	allowing	leaf	nodes	to	point	 to
each	other.	But	now	we	have	to	allow	for	the	fact	that	it	is	possible	for	any	node	to	point	to	the	remaining
n	–	1	nodes	in	the	graph.	If	we	simply	extend	the	binary	tree	data	structure	to	allow	for	a	network	data
structure,	each	node	would	need	n	–	1	pointers.	We	can	do	better.

If	the	network	in	question	is	static,	that	is,	it	neither	gains	nor	loses	nodes	through	the	execution	of	our
algorithm,	it	can	be	represented	using	an	adjacency	matrix.	An	adjacency	matrix	 is	a	 two-dimensional
array	 with	 a	 row	 and	 column	 for	 each	 node.	 Consider	 the	 graph	 shown	 in	 Figure	 A.8a.	 It	 has	 six
interconnected	nodes.	The	connections	(edges)	between	the	nodes	of	the	graph	are	indicated	by	a	1	in	the
adjacency	 matrix,	 where	 the	 column	 of	 one	 node	 and	 the	 row	 of	 the	 other	 intersect.	 The	 completed
adjacency	matrix	is	shown	in	Figure	A.8b.

FIGURE	A.8	a)	A	General	Graph
b)	The	Graph’s	Adjacency	Matrix

Let’s	return	to	our	example	of	finding	an	optimal	route	between	two	cities.	We	represent	the	map	as	a
graph	with	weighted	edges.	The	weights	on	the	edges	correspond	to	the	distance,	or	“cost”	of	going	from
one	city	to	another.	Instead	of	entering	1s	in	the	adjacency	matrix,	these	traveling	costs	are	entered	where
a	route	between	two	cities	exists.

It	is	also	possible	to	represent	a	connected	graph	as	a	linked	adjacency	list.	The	implementation	of	an
adjacency	list	structure	usually	involves	keeping	the	nodes	of	the	graph	in	a	linear	array	that	points	to	a
list	of	nodes	to	which	it	is	adjacent.	The	nice	part	about	this	arrangement	is	that	we	can	easily	locate	any
node	in	the	graph,	and	the	cost	of	moving	between	one	node	and	another	can	be	kept	in	the	list	elements
coming	off	the	array.	Figure	A.9	shows	a	weighted	graph	along	with	its	adjacency	list	data	structure.

General	 graphs,	 such	 as	 the	 ones	 we	 have	 been	 describing,	 are	 widely	 used	 for	 solving
communications	routing	problems.	One	of	the	most	important	of	these	algorithms	is	Dijkstra’s	algorithm,
which	works	on	the	idea	that	the	least-cost	route	through	the	graph	consists	of	the	collection	of	all	of	the
shortest	connecting	links	between	all	of	the	nodes.	The	algorithm	starts	by	inspecting	all	paths	adjacent	to
the	starting	node	of	the	graph.	It	updates	each	node	with	the	cost	of	getting	there	from	the	starting	node.	It
then	inspects	each	path	to	adjacent	nodes,	updating	each	with	the	cost	of	getting	to	the	node.	If	the	node
already	contains	a	cost,	 it	 is	selected	as	the	next	destination	only	if	 the	cost	of	 traveling	to	that	node	is
smaller	than	the	value	already	recorded	in	that	node.	This	process	is	illustrated	in	Figure	A.10.



FIGURE	A.9	a)	A	Weighted	Graph
b)	The	Graph’s	Adjacency	List

FIGURE	A.10	Dijkstra’s	Algorithm



In	Figure	A.10a,	the	value	to	reach	all	nodes	is	set	to	infinity.	Paths	from	the	first	node	to	its	adjacent
nodes	are	inspected,	and	each	node	is	updated	with	the	cost	of	getting	to	that	node	(Figure	A.10b).	Paths
from	the	node	of	 lesser	cost	 to	 its	neighbors	are	 inspected,	updating	 those	nodes	with	 the	cost	 to	reach
them,	if	that	cost	is	less	than	the	value	that	was	previously	stored	in	each	node.	This	is	what	happens	to
the	node	at	the	lower	left-hand	side	of	the	graph	in	Figure	A.10c.	The	process	repeats	until	 the	shortest
path	is	discovered,	as	shown	in	Figure	A.10f.

One	of	 the	 tricky	parts	of	Dijkstra’s	algorithm	is	 that	a	number	of	data	structures	are	 involved.	Not
only	 does	 the	 graph	 itself	 have	 to	 be	 provided	 for,	 but	 the	 paths	 to	 each	 node	 have	 to	 be	 recorded
somehow	so	that	they	can	be	retrieved	when	needed.	We	leave	as	an	exercise	the	matter	of	representing
the	required	data	structures	and	the	construction	of	pseudocode	for	Dijkstra’s	algorithm	that	operates	on
those	data	structures.

SUMMARY
This	 appendix	 has	 described	 a	 number	 of	 important	 data	 structures	 commonly	 employed	 by	 computer
systems.	Stacks	and	queues	are	most	important	at	the	lowest	levels	of	the	system,	because	the	simplicity
of	 these	 data	 structures	matches	 the	 simplicity	 of	 the	 operations	 that	 take	 place	 at	 those	 levels.	At	 the
system	software	level,	compilers	and	database	systems	rely	heavily	on	tree	structures	for	fast	information
storage	and	retrieval.	The	most	complex	data	structures	are	found	at	 the	high-level	 language	 layer.	 It	 is
possible	for	these	structures	to	consist	of	more	than	one	subsidiary	data	structure,	as	in	our	illustration	of
a	network	graph	that	uses	both	an	array	and	a	linked	list	to	fully	describe	the	graph.

FURTHER	READING
A	good	understanding	of	all	of	the	topics	discussed	in	this	brief	appendix	is	essential	for	continued	study
of	computer	 systems	and	programming.	 If	 this	 is	 the	 first	 time	you	have	 seen	 the	data	 structures	 in	 this
appendix,	we	heartily	encourage	you	 to	 read	 the	algorithms	book	by	Rawlins	 (1992).	 It	 is	entertaining,
well	written,	and	colorful.	For	those	interested	in	more	thorough	and	advanced	treatments,	the	books	by
Knuth	 (1998)	 and	Cormen,	Leiserson,	Rivest,	 and	Stein	 (2001)	 offer	 the	 greatest	 detail.	The	books	by
Weiss	(1995)	and	Horowitz	and	Sahni	(1983)	present	compact	and	readable	accounts	of	data	structures
that	cover	most	of	the	important	topics	described	in	this	appendix.

REFERENCES
Cormen,	T.	H.,	Leiserson,	C.	E.,	Rivest,	R.	L.,	&	Stein,	C.	Introduction	to	Algorithms,	2nd	ed.

Cambridge,	MA:	MIT	Press,	2001.
Horowitz,	E.,	&	Sahni,	S.	Fundamentals	of	Data	Structures.	Rockville,	MD:	Computer	Science	Press,

1983.
Knuth,	D.	E.	The	Art	of	Computer	Programming,	3rd	ed.	Volumes	1,	2,	and	3.	Reading,	MA:	Addison-

Wesley,	1998.
Rawlins,	G.	J.	E.	Compared	to	What?	An	Introduction	to	the	Analysis	of	Algorithms.	New	York:	W.	H.

Freeman	and	Company,	1992.
Weiss,	M.	A.	Data	Structures	and	Algorithm	Analysis,	2nd	ed.	Redwood	City,	CA:	Benjamin/Cummings

Publishing	Company,	1995.



EXERCISES
1.	 	Give	at	 least	one	example	of	applications	where	each	of	the	following	data	structures	would	be

most	suitable:
a)		Arrays
b)		Queues
c)		Linked	lists
d)		Stacks
e)		Trees

2.		As	stated	in	the	text,	a	priority	queue	is	a	queue	in	which	certain	items	are	allowed	to	jump	to	the
head	of	the	line	if	they	meet	certain	conditions.	Devise	a	data	structure	and	a	suitable	algorithm	to
implement	a	priority	queue.

	3.		Suppose	you	didn’t	want	to	maintain	a	set	of	sorted	data	elements	as	a	tree,	but	chose	a	linked	list
implementation	 instead,	 despite	 its	 obvious	 inefficiencies.	 The	 list	 is	 ordered	 by	 key	 values	 in
ascending	order;	that	is,	 the	lowest	key	value	is	at	the	head	of	the	list.	To	locate	a	data	element,
you	search	the	list	linearly	until	you	find	a	key	value	that	is	greater	than	the	key	value	of	the	item’s
key.	If	the	purpose	of	this	search	is	to	insert	another	item	in	the	list,	how	would	you	achieve	this
insertion?	 In	 other	words,	 give	 a	 pseudocode	 algorithm	 that	 lists	 each	 step.	You	 can	make	 this
algorithm	somewhat	more	efficient	by	slightly	changing	the	data	structure	of	the	list.

4.		The	memory	map	shown	below	describes	a	binary	tree.	Draw	the	tree.

5.		The	memory	map	shown	below	describes	a	binary	tree.	Draw	the	tree.

6.		The	memory	map	shown	below	describes	a	binary	tree.	The	leaves	contain	the	keys	H	(48),	I	(49),
J	(4A),	K	(4B),	L	(4C),	M	(4D),	N	(4E),	and	O	(4F).	Draw	the	tree.



7.	 	Devise	 a	 formula	 for	 the	maximum	number	of	nodes	 that	 can	be	placed	 in	 a	binary	 tree	with	n
levels.

8.		A	graph	traversal	is	the	act	of	interrogating	(or	visiting)	every	node	in	the	graph.	Traversals	are
useful	when	nodes	are	added	to	a	tree	in	a	certain	order	(perhaps	random)	and	retrieved	in	some
other	given	order.	Three	frequently	used	traversals,	preorder,	inorder,	and	postorder,	are	shown
in	the	diagram	below,	with	diagram	(a)	illustrating	a	preorder	traversal,	(b)	an	inorder	traversal,
and	(c)	a	postorder	traversal.

a)	 	 Rearrange	 the	 tree	 above	 so	 that	 a	 preorder	 traversal	 will	 print	 the	 node	 key	 values	 in
alphabetical	 order.	 Change	 only	 the	 key	 values	 in	 the	 nodes.	 Do	 the	 same	 for	 an	 inorder
traversal.

b)		Perform	the	other	two	traversals	on	both	of	the	trees	redrawn	in	exercise	8a.
9.	 	Most	 books	 concerning	 algorithms	 and	data	 structures	present	 traversal	 algorithms	 as	 recursive

procedures.	 (Recursive	procedures	 are	 subroutines	or	 functions	 that	 call	 themselves.)	However,
the	computer	achieves	this	recursion	using	iteration!	The	algorithm	below	uses	a	stack	to	perform
an	iterative	preorder	traversal	of	a	tree.	(Refer	to	exercise	8.)	As	each	node	is	traversed,	its	key
value	is	printed	as	in	the	diagram	above.



a)		Modify	the	algorithm	so	that	it	will	perform	an	inorder	traversal.
b)		Modify	the	algorithm	so	that	it	will	perform	a	postorder	traversal.	(Hint:	As	you	leave	a	node

to	follow	its	left	subtree,	update	a	value	in	the	node	to	indicate	that	the	node	has	been	visited.)
10.	 	 Regarding	 the	 trie	 root	 node	 shown	 in	 Figure	A.6,	 what	 complications	 arise	 if	 we	 discover	 a

famous	mathematician	whose	name	is	Ethel?	How	can	we	prevent	this	problem?
11.	 	 Using	Dijkstra’s	 algorithm,	 find	 a	 shorter	 route	 from	New	York	 to	Chicago	 using	 the	mileages

given	 in	 the	 adjacency	 matrix	 below.	 The	 value	 “infinity”	 (∞)	 indicates	 no	 direct	 connection
between	two	given	cities.

12.	 	 Suggest	 a	way	 an	 adjacency	matrix	 could	be	 stored	 so	 that	 it	would	occupy	 less	main	memory
space.

13.		Design	an	algorithm,	with	suitable	data	structures,	that	implements	Dijkstra’s	algorithm.



14.		Which	of	the	data	structures	discussed	in	this	appendix	would	be	best	for	creating	a	dictionary	that
would	be	used	by	a	spelling	checker	in	a	word	processor?



Glossary

1s	Complement	Notation	See	One’s	Complement	Notation.
2s	Complement	Notation	See	Two’s	Complement	Notation.
Access	Time	1.	The	sum	of	the	rotational	delay	and	seek	time	on	a	hard	disk.	2.	The	time	required	to	find

and	return	a	specific	piece	of	information	from	disk	or	memory.
Accumulator	Architecture	An	architecture	that	assumes	one	operand	to	be	in	the	accumulator	without

requiring	the	accumulator	to	be	explicitly	referenced	in	the	instruction.
Accuracy	In	the	context	of	numeric	representation,	accuracy	refers	to	how	close	a	number	is	to	its	true

value.
ACID	Properties	Four	characteristics	of	a	database	or	transaction-processing	system:	(1)	Atomicity,

meaning	all	related	updates	take	place	within	the	bounds	of	the	transaction	or	no	updates	are	made	at
all.	(2)	Consistency,	meaning	all	updates	comply	with	the	constraints	placed	on	all	data	elements.	(3)
Isolation,	meaning	no	transaction	can	interfere	with	the	activities	or	updates	of	another	transaction.	(4)
Durability,	meaning	that	successful	transactions	are	written	to	“durable”	media	(e.g.,	magnetic	disk)
as	soon	as	possible.

Actuator	Arm	The	mechanical	component	of	a	disk	drive	that	holds	read/write	heads.
Addend	In	an	arithmetic	addition	operation,	the	addend	is	increased	by	the	value	of	the	augend	to	form	a

sum.
Address	Binding	The	process	of	mapping	symbolic	addresses	to	actual	physical	memory	locations.
Address	Bus	The	part	of	a	bus	that	transfers	the	address	from	which	the	CPU	will	read	or	write.
Address	Spoofing	A	communications	hacking	technique	where	a	host	engages	in	communications	with

another	host	using	a	falsified	IP	address.	IP	spoofing	is	often	used	to	subvert	filtering	routers	and
firewalls	intended	to	keep	outsiders	from	accessing	private	intranets,	among	other	things.

Addressing	Mode	Specifies	where	the	operand	for	an	instruction	is	located	by	how	the	operand	is	to	be
interpreted.

Adjacency	List	A	data	structure	that	models	a	directed	graph	(or	network)	where	a	pointer	between	node
elements	indicates	the	existence	of	a	path	between	two	nodes	in	the	graph.

Adjacency	Matrix	A	two-dimensional	array	that	models	a	directed	graph	(or	network).	If	the	graph
contains	n	nodes,	the	adjacency	matrix	will	have	n	rows	and	n	columns.	If	there	is	a	path	between
node	x	and	node	y	in	the	graph,	then	the	adjacency	matrix	will	contain	a	nonzero	value	in	column	x	of
row	y.	The	entry	will	be	zero	otherwise.

Aggregatable	Global	Unicast	Address	Format	A	plan	for	organizing	the	2128	possible	host	addresses
under	IPv6.

AGP	(Accelerated	Graphics	Port)	A	graphics	interface	designed	by	Intel	specifically	for	3D	graphics.
Algebraic	Field	A	set	of	numbers	that	is	closed	under	addition	and	multiplication	with	identity	elements

for	both	operations.	Fields	also	support	the	associative,	commutative,	and	distributive	properties	of
algebra.	The	system	of	real	numbers	is	a	field.

Amdahl’s	Law	A	law	that	states	that	the	performance	enhancement	possible	with	a	given	improvement	is



limited	by	the	amount	that	the	improved	feature	is	used.	More	formally,	the	overall	speedup	of	a
computer	system	depends	on	both	the	speedup	in	a	particular	component	and	how	much	that
component	is	used	by	the	system.	Symbolically:	S	=	1	÷	[(1	–	f)	+	f	÷	k],	where	S	is	the	speedup;	f	is
the	fraction	of	work	performed	by	the	faster	component;	and	k	is	the	speedup	of	a	new	component.

American	National	Standards	Institute	(ANSI)	The	group	representing	the	United	States’	interests	in
various	international	groups	for	creating	standards	in	the	computer	industry.

American	Standard	Code	for	Information	Interchange	See	ASCII.
Analytical	Engine	A	general-purpose	machine	designed	by	Charles	Babbage	in	1833.
Anycasting	A	network	messaging	method	that	permits	any	one	of	a	logical	group	of	nodes	to	receive	a

message,	but	no	particular	receiver	is	specified	in	the	message.
Application-Specific	Integrated	Circuit	(ASIC)	A	customized	circuit	built	to	deliver	a	narrowly	defined

function	or	set	of	functions.	The	usual	motivation	for	building	an	ASIC	is	to	deliver	better
performance	than	can	be	achieved	by	a	programmed	general-purpose	microcontroller	or
microprocessor.	In	large	batches,	ASICs	can	sometimes	be	less	expensive	than	programmed	general-
purpose	processors	because	only	the	necessary	functions	are	provided	for	by	the	hardware	on	the
chip.

Arithmetic	Coding	A	data	compression	method	that	partitions	the	real	number	line	in	the	interval
between	0	and	1	using	the	probabilities	in	the	symbol	set	of	the	message	to	be	compressed.	Symbols
with	a	higher	probability	of	occurrence	get	a	larger	chunk	of	the	interval.

Arithmetic	Logic	Unit	(ALU)	The	combinational	circuit	responsible	for	performing	the	arithmetic	and
logic	functions	in	a	CPU.

Arithmetic	Mean	A	measure	of	central	tendency	derived	by	finding	the	sum	of	a	set	of	data	values	and
dividing	by	the	number	of	data	values.	In	commonplace	usage,	the	“average”	of	a	set	of	values	is	the
arithmetic	mean	of	those	values.

Arithmetic	Shift	A	special	type	of	shift	operation	that	preserves	the	sign	bit.
ARPAnet	See	DARPAnet.
ASCII	(American	Standard	Code	for	Information	Interchange)	A	7-bit	character	code	used	to

represent	numeric,	alphabetic,	special	printable,	and	control	characters.
ASIC	See	Application-Specific	Integrated	Circuit.
Assembler	Directive	An	instruction	specifically	for	the	assembler	that	is	not	to	be	translated	into

machine	code,	but	rather	tells	the	assembler	to	perform	a	specific	function,	such	as	generating	a	page
break	in	a	program	listing.

Assembly	Language	A	low-level	language	using	mnemonics	that	has	a	one-to-one	correspondence	with
the	machine	language	for	a	particular	architecture.

Associative	Memory	Memory	whose	locations	are	identified	by	content,	not	address,	which	is	specially
designed	to	be	searched	in	parallel.

Asynchronous	Circuits	Sequential	circuits	that	become	active	the	moment	any	input	value	changes.
AT	Attachment	See	EIDE.
ATAPI	Abbreviation	for	AT	Attachment	Packet	Interface,	which	is	an	extension	of	EIDE	that	supports

CR-ROM	drives.
Attenuation	Electrical	signal	loss	over	time	or	distance	that	results	in	erroneous	data	at	the	receiver.
Augend	See	Addend.



B+	Tree	An	acyclic	data	structure	consisting	of	pointers	to	index	structures	or	data	records.	The	internal
nodes	of	a	B+	tree	are	collectively	referred	to	as	its	index	part,	whereas	the	leaf	nodes	are	called	the
sequence	part,	because	they	will	always	be	in	sequential	order.

Backbone	High-capacity	communications	(trunk)	line	that	carries	digital	network	traffic.
Backward	Compatible	A	program	is	said	to	be	backward	compatible	if	it	will	run	using	files	and	data

created	for	an	older	version	of	the	same	software.	A	computer	is	backward	compatible	if	it	can	run
software	developed	for	previous	versions	of	the	same	architecture.

Bandwidth	The	range	of	frequencies	that	an	analog	communications	medium	can	carry,	measured	in	hertz.
In	digital	communications,	bandwidth	is	the	general	term	for	the	information-carrying	capacity	of	a
medium,	measured	in	bits	per	second	(bps).

Base	Address	Address	of	the	first	element	of	a	data	structure.	All	other	elements	in	the	structure	are
identified	as	offsets	from	the	base	address.

Base/Offset	Addressing	An	addressing	mode	in	which	an	offset	is	added	to	a	specific	base	register	that
is	then	added	to	the	specified	operand	to	yield	the	effective	address	of	the	data.

Based	Addressing	An	addressing	mode	that	uses	a	base	register	(either	explicitly	or	implicitly
designated)	to	store	an	offset	(or	displacement),	which	is	added	to	the	operand	results	in	the	effective
address	of	the	data.

Basic	Input/Output	System	See	BIOS.
Batch	Processing	A	mode	of	computation	where,	under	normal	conditions,	there	is	no	human	interaction

with	the	system,	aside	from	initiating	a	batch	processing	job.	Similar	jobs	are	grouped	and	executed
serially.

Baud	The	unit	of	measure	for	the	number	of	signal	transitions	supported	by	a	transmission	medium	or
transmission	method	over	a	medium.

BCD	Abbreviation	for	binary	coded	decimal.	A	coding	system	that	uses	four	bits	to	express	the	decimal
digits	0	through	9.	BCD	was	the	basis	for	EBCDIC.

Benchmark	Suite	A	collection	of	kernel	programs	intended	to	measure	computer	system	performance.	By
using	a	number	of	different	kernels,	it	is	believed	that	a	system’s	processing	power	can	be	accurately
assessed.

Benchmarketing	The	widespread	practice	by	computer	vendors	of	advertising	their	systems’	benchmark
results	when	their	numbers	can	be	construed	to	be	better	than	those	of	their	competition.

Benchmarking	The	science	of	making	objective	assessments	of	the	performance	of	a	hardware	or
software	system.	Benchmarks	are	also	useful	for	determining	performance	improvements	obtained	by
upgrading	a	computer	or	its	components.

BER	See	Bit	Error	Rate.
Biased	Exponent	The	adjustment	of	the	exponent	part	of	a	floating-point	number	that	eliminates	the	need

for	a	sign	bit	on	the	exponent.	The	bias	value,	which	represents	zero,	is	a	number	near	the	middle	of
the	range	of	possible	values	for	the	exponent.	Values	larger	than	the	bias	are	positive	exponents.

Big	Endian	Storing	multibyte	words	in	memory	with	the	most	significant	byte	at	the	lowest	address.
Binary	Coded	Decimal	See	BCD.
Binary	Search	A	method	of	locating	a	key	in	a	sorted	list	of	values	by	successively	limiting	the	search	to

half	of	the	list.
Binary	Tree	An	acyclic	data	structure	consisting	of	a	root,	internal	nodes,	and	leaves.	The	root	and	each



internal	node	can	have	at	most	two	pointers	to	other	nodes	(thus,	at	most,	two	descendants).	Leaves
are	nodes	that	have	no	descendent	nodes.

Binding	Time	Reference	to	the	operation	during	which	symbolic	address	binding	takes	place.	Load-time
binding	provides	addresses	as	the	binary	module	is	loaded	into	memory.	Run-time	binding	(or
execution-time	binding)	delays	binding	until	the	process	is	actually	running.

Biological	Computer	A	computer	that	uses	components	from	living	organisms	instead	of	silicon.
BIOS	Acronym	for	basic	input/output	system.	A	programmable	integrated	circuit	that	contains	information

and	programming	for	the	components	of	a	particular	system.	Microcomputer	operating	systems
perform	I/O	and	other	device-specific	activities	through	the	system	BIOS.

Bit	A	contraction	of	binary	digit,	the	value	of	which	can	be	0	or	1.
Bit	Cell	The	amount	of	linear	or	aerial	space,	or	the	amount	of	time	occupied	by	a	bit	in	the	storage	or

transmission	of	bytes.
Bit	Error	Rate	(BER)	The	ratio	of	the	number	of	erroneous	bits	received	to	the	total	number	of	bits

received.
Black	Box	1.	A	module	that	performs	a	function,	but	the	internal	details	of	how	the	function	is	performed

are	not	apparent	to	any	person	or	process	external	to	the	black	box.	2.	In	data	communications,	a
device	that	adapts	a	device	to	the	protocol	of	a	system	for	which	it	was	not	originally	designed.

Block	Field	That	part	of	an	address	that	specifies	the	corresponding	cache	block.
Blocking	Interconnection	Network	A	network	that	does	not	allow	new	connections	in	the	presence	of

other	simultaneous	connections.
Boolean	Algebra	An	algebra	for	the	manipulation	of	objects	that	can	take	on	only	two	values,	typically

true	and	false.	Also	known	as	symbolic	logic.
Boolean	Expressions	The	result	of	combining	Boolean	variables	and	Boolean	operators.
Boolean	Function	A	function	with	one	or	more	Boolean	input	values	that	yields	a	Boolean	result.
Boolean	Identities	Laws	that	pertain	to	Boolean	expressions	and	Boolean	variables.
Boolean	Product	The	result	of	an	AND	operation.
Boolean	Sum	The	result	of	an	OR	operation.
Boot	A	shortened	but	most	commonly	used	form	of	the	verb	bootstrapping,	the	process	by	which	a	small

program	is	invoked	to	initiate	a	computer’s	full	operation.
Booth’s	Algorithm	A	fast	and	efficient	method	for	multiplying	signed	two’s	complement	numbers	that

uses	a	string	of	ones	in	a	binary	number	in	much	the	same	way	as	a	string	of	zeros.
Bootstrap	Loader	Computer	firmware	that	executes	a	bootstrapping	program.
Bootstrapping	See	Boot.
Branch	Prediction	The	process	of	guessing	the	next	instruction	in	the	instruction	stream	prior	to	its

execution,	thus	avoiding	pipeline	stalls	due	to	branching.	If	the	prediction	is	successful,	no	delay	is
introduced	into	the	pipeline.	If	the	prediction	is	unsuccessful,	the	pipeline	must	be	flushed	and	all
calculations	caused	by	this	miscalculation	must	be	discarded.

Bridge	A	Layer	2	network	component	that	joins	two	similar	types	of	networks	so	they	look	like	one
network.	A	bridge	is	a	“store	and	forward”	device,	receiving	and	holding	an	entire	transmission	frame
before	sending	it	on	its	way.

British	Standards	Institution	(BSI)	The	group	representing	Great	Britain’s	interests	in	various



international	groups	for	creating	standards	in	the	computer	industry.
Broadband	Cable	A	class	of	guided	network	media	having	a	capacity	of	at	least	2Mbps.	Broadband

communication	provides	multiple	channels	of	data,	using	a	form	of	multiplexing.
Burst	Error	An	error	pattern	where	multiple	adjacent	bits	are	damaged.
Bursty	Data	An	I/O	condition	where	data	is	sent	in	blocks,	or	clusters,	as	opposed	to	a	steady	stream.
Bus	A	shared	group	of	wires	through	which	data	is	transmitted	from	one	part	of	a	computer	to	another.

Synchronous	buses	are	clocked	so	events	occur	only	at	clock	ticks.	Asynchronous	buses	use	control
lines	to	coordinate	the	operations	and	require	complex	handshaking	protocols	to	enforce	timing.	See
also	Address	Bus,	Control	Bus,	and	Data	Bus.

Bus	Arbitration	The	process	used	to	determine	which	device	should	be	in	control	of	the	bus.
Bus	Cycle	The	time	between	one	tick	of	the	bus	clock	and	another.
Bus	Protocol	A	set	of	usage	rules	governing	how	buses	are	used.
Bus-Based	Network	A	network	that	allows	processors	and	memories	to	communicate	via	a	shared	bus.
Byte	A	group	of	eight	contiguous	bits.
Byte-Addressable	Means	each	individual	byte	has	a	unique	address,	or	the	smallest	addressable	bit

string	is	one	byte.
C-LOOK	See	LOOK.
C-SCAN	See	SCAN.
Cache	Specialized,	high-speed	storage	used	to	store	frequently	accessed	or	recently	accessed	data.	There

are	two	types	of	cache:	memory	cache	and	disk	cache.	Memory	cache	(or	cache	memory)	is	smaller
and	faster	than	main	memory.	There	are	two	types	of	memory	cache:	(1)	Level	1	cache	(L1)	is	a	small,
fast	memory	cache	that	is	built	into	the	microprocessor	chip	and	helps	speed	up	access	to	frequently
used	data;	(2)	Level	2	cache	(L2)	is	a	collection	of	fast,	built-in	memory	chips	situated	between	the
microprocessor	and	main	memory.	Disk	cache	is	a	specialized	buffer	used	to	store	data	read	from
disk.

Cache	Coherence	Problem	The	problem	that	results	when	the	value	stored	in	cache	differs	from	the
value	stored	in	memory.

Cache	Mapping	The	process	of	converting	a	memory	address	into	a	cache	location.
Campus	Network	A	privately	owned	data	communications	network	that	spans	multiple	buildings	in	a

small	area.	Campus	networks	are	typically	extensions	of	LANs	and	employ	LAN	protocols.
Canonical	Form	With	reference	to	Boolean	expressions,	this	means	one	of	the	two	standard	forms:	sum-

of-products	or	product-of-sums.
Carbon	Nanotube	A	tubular	form	of	elemental	carbon	that	is	one	atom	thick	(also	known	as	graphene).

Carbon	nanotubes	possess	distinctive	electrical	properties	that	make	them	ideal	for	nonvolatile	bit
storage.

CD	Recording	Mode	Specifies	the	format	used	for	placing	data	on	a	CD-ROM.	Modes	0	and	2,	intended
for	music	recording,	have	no	error-correction	capabilities.	Mode	1,	intended	for	data	recording,	has
two	levels	of	error	detection	and	correction.	The	total	capacity	of	a	CD	recorded	in	Mode	1	is
650MB.	Modes	0	and	2	can	hold	742MB	but	cannot	reliably	be	used	for	data	recording.

CD-ROM	An	acronym	for	compact	disc-read	only	memory.	A	type	of	optical	disk	capable	of	storing
more	than	half	a	gigabyte	of	data.	Other	varieties	of	optical	storage	include	CD-R	(CD-Recordable),
CD-RW	(CD-Rewritable),	and	WORM	(Write	Once	Read	Many).



CEN	(Comité	Européen	de	Normalisation)	The	European	committee	for	standardization	in	the	computer
industry.

Central	Processing	Unit	(CPU)	The	computer	component	responsible	for	fetching	instructions,	decoding
them,	and	performing	the	indicated	sequence	of	operations	on	the	correct	data.	The	CPU	consists	of	an
ALU,	registers,	and	a	control	unit.

Channel	I/O	I/O	that	takes	place	using	an	intelligent	type	of	DMA	interface	known	as	an	I/O	channel.	I/O
channels	are	driven	by	small	CPUs	called	I/O	processors	(IOPs),	which	are	optimized	for	I/O.

Checkpoint	Issued	each	time	a	block	of	data	is	correctly	processed	and	committed	to	durable	storage
during	database	updates	or	network	file	transfers.	If	an	error	occurs	during	processing,	data	up	to	the
last	checkpoint	is	considered	valid.

Checksum	A	group	of	bits	derived	through	a	mathematical	operation	over	one	or	more	data	bytes.
Checksum	bits	are	often	appended	to	the	end	of	a	block	of	information	bytes	to	maintain	the	integrity
of	information	in	data	storage	and	transmission.	One	popular	checksum	is	the	cyclic	redundancy	check
(CRC).

Chip	A	small	silicon	semiconductor	crystal	consisting	of	the	necessary	electronic	components
(transistors,	resistors,	and	capacitors)	to	implement	various	gates.

CISC	(Complex	Instruction	Set	Computer)	A	design	philosophy	in	which	computers	have	a	large
number	of	instructions,	of	variable	length,	with	complicated	layouts.

Client-Server	System	See	n-Tiered	Architecture.
Clock	Cycle	Time	The	reciprocal	of	the	clock	frequency.	Also	called	the	clock	period.
Clock	Skew	Clock	drift;	a	situation	where	coordinated	clocks	in	a	system	or	network	gradually	lose

synchronization.
Clock	Speed	The	speed	of	the	processor,	usually	measured	in	megahertz	(millions	of	pulses	per	second)

or	gigahertz	(billions	of	pulses	per	second).	Also	called	the	clock	frequency	or	clock	rate.
Cloud	Computing	A	type	of	distributed	computing	where	computing	services	are	provided	by	loosely

coupled	Web	servers.	The	client	computer	interacts	only	with	an	abstract	“cloud”	rather	than	the
individual	servers.

Cluster	Computing	Distributed	computing	in	which	all	the	resources	within	the	same	administrative
domain	work	on	“group”	tasks.

Cluster	of	Workstations	(COW)	A	collection	of	distributed	workstations	similar	to	a	NOW,	but	that
requires	a	single	entity	to	be	in	charge.

CNT	See	Carbon	Nanotube.
Coaxial	Cable	A	type	of	wire	that	consists	of	a	center	wire	surrounded	by	insulation	and	then	a	grounded

foil	shield	that	is	wrapped	in	steel	or	copper	braid.
Code	Word	An	n-bit	unit	containing	m	data	bits	and	r	check	bits,	used	in	error	detection	and	error

correction.
COLD	An	acronym	for	computer	output	laser	disc.	COLD	is	a	computer	output	method	used	instead	of,	or

in	addition	to,	paper	or	microfilm	output.	COLD	provides	longterm	archival	storage	of	data.
Combinational	Circuit	A	logic	device	whose	output	is	always	based	entirely	on	the	given	inputs.
Common	Pathway	Bus	A	bus	that	is	shared	by	a	number	of	devices	(also	called	a	multipoint	bus).
Compact	Disc-Read	Only	Memory	See	CD-ROM.



Compilation	The	process	of	using	a	compiler.
Compiler	A	program	that	translates	an	entire	block	of	source	code	into	object	code	at	one	time.
Complement	The	negation	of	a	Boolean	expression	or	variable.
Completely	Connected	Network	A	network	in	which	all	components	are	connected	to	all	other

components.
Complex	Programmable	Logic	Devices	(CPLDs)	Generic	name	for	a	class	of	VLSI	chips	that	contain

numerous	blocks	of	programmable	array	logic	or	programmable	logic	array	devices.
Compression	Factor	(Ratio)	Measures	the	effectiveness	of	a	data	compression	operation.

Mathematically,	the	compression	factor	=	1	–	(compressed	size	÷	uncompressed	size)	×	100%,	where
the	sizes	are	measured	in	bytes.

Computer	Architecture	Focuses	on	the	structure	and	behavior	of	the	computer	system	and	refers	to	the
logical	aspects	of	system	implementation	as	seen	by	the	programmer.	Includes	things	such	as
instruction	sets	and	formats,	operation	codes,	data	types,	the	number	and	types	of	registers,	addressing
modes,	and	main	memory	access	methods	as	well	as	various	I/O	mechanisms.

Computer	Level	Hierarchy	An	abstract	hierarchy	that	represents	most	modern	computers	as	a	series	of
levels,	starting	with	the	lowest:	digital	logic	level,	control	level,	machine	level,	system	software
level,	assembly	language	level,	high-level	language	level,	and	user	level.

Computer	Organization	Addresses	issues	such	as	control	signals	and	memory	types,	and	encompasses
all	physical	aspects	of	computer	systems.

Computer	Output	Laser	Disc	See	COLD.
Context	Switch	An	operating	system	procedure	of	switching	from	one	executing	process	to	another.
Control	Bus	The	portion	of	a	bus	used	to	transfer	control	signals.
Control	Unit	The	part	of	the	CPU	that	controls	execution	of	instructions,	movement	of	data,	and	timing.	It

can	be	either	hardwired	(consisting	of	physical	gates	that	create	the	control	signals)	or
microprogrammed	(consisting	of	microcode	that	interprets	instructions	and	translates	these
instructions	to	the	appropriate	control	signals).

Convolutional	Code	A	coding	method	whereby	the	output	symbol	is	a	function	of	the	current	input	symbol
and	some	number	of	symbols	previously	processed.	Convolutional	coding	is	employed	in	PRML	data
encoding	methods.

CPU	Bound	A	system	performance	condition	where	a	process	or	set	of	processes	spends	most	of	its
execution	time	in	the	CPU	or	waiting	for	CPU	resources.

CPU	Scheduling	The	process	of	selecting	a	waiting	process	for	execution.	Scheduling	approaches
include	first-come,	first-served	(pick	the	next	one	in	line),	round-robin	(give	each	process	a	portion	of
CPU	time),	shortest	job	first	(attempt	to	pick	the	job	with	the	shortest	expected	execution	time),	and
priority	(base	the	decision	on	some	predetermined	factor,	such	as	a	number	indicating	importance).

CRC	See	Cyclic	Redundancy	Check.
Cycle	Stealing	See	DMA.
Cyclic	Redundancy	Check	(CRC)	A	type	of	checksum	used	primarily	in	data	communications	that

determines	whether	an	error	has	occurred	in	a	large	block	or	stream	of	information	bytes.
Daisy	Chaining	An	I/O	device	connection	method	where	the	input	of	one	device	is	cabled	serially	from

the	output	of	another.
DARPAnet	Acronym	for	Defense	Advanced	Research	Projects	Network.	Often	referred	to	as	the	original



Internet.	The	defense	research	agency	has	been	named	ARPA	(Advanced	Research	Projects	Agency)
and	DARPA	at	various	times,	so	this	original	network	is	known	as	both	ARPAnet	and	DARPAnet.

DASD	Acronym	for	direct	access	storage	device.	DASD	usually	refers	to	a	large	pool	of	magnetic	disks
that	attach	to	very	large	computer	systems.	The	name	DASD	derives	from	the	idea	that	each	unit	of
disk	storage	on	magnetic	disks	has	a	unique	address	that	can	be	accessed	independently	of	the	sectors
around	it.

DAT	See	Serpentine	Recording.
Data	A	numerical	value	that	represents	a	measurable	property.	A	fact.
Data	Bus	The	portion	of	a	bus	that	transfers	the	actual	data.
Data	Cache	Cache	for	holding	the	most	recently	used	data	only	(no	instructions).
Data	Dependency	A	situation	that	arises	when	the	result	of	one	instruction,	not	yet	completely	executed,

is	to	be	used	as	an	operand	to	a	following	instruction.	May	slow	down	a	pipelined	CPU.
Data	Structure	The	manner	in	which	related	pieces	of	information	are	organized	to	facilitate	access	to

data.	Data	structures	are	often	independent	of	their	implementation,	as	the	manner	of	organization	is
logical,	not	necessarily	physical.

Data	Token	Unit	that	represents	the	data	that	flows	through	a	dataflow	graph.	Reception	of	all	data	tokens
is	necessary	for	nodes	in	a	dataflow	graph	to	fire.

Database	Management	System	(DBMS)	Software	that	provides	management	services	and	enforces
order	and	consistency	on	a	group	of	related	files.

Dataflow	Architecture	An	architecture	in	which	programs	are	driven	by	the	availability	of	data,	not	by
the	instruction	execution	sequence	(as	in	instruction-driven	architectures).

Datagram	A	network	PDU	routed	as	a	single,	discrete	unit.	Datagrams	are	usually	components	of	a
dialog	or	conversation	between	two	communicating	entities;	thus,	they	also	contain	sequencing
information	to	keep	them	in	order	and	to	prevent	lost	packets.

Datapath	A	network	of	registers,	the	ALU,	and	the	connections	(buses)	between	them.	Indicates	the	path
data	must	traverse	in	the	system.

DBMS	See	Database	Management	System.
Decoder	A	combinational	circuit	that	uses	the	values	of	its	inputs	to	select	one	specific	output	line.
Decoherence	In	quantum	computing,	the	tendency	for	qubits	to	decay	into	an	incoherent	state.
Dedicated	Cluster	Parallel	Computer	(DCPC)	A	set	of	workstations	specifically	collected	to	work	on	a

given	parallel	computation.
Denormalized	Number	Any	number	in	IEEE-754	floating-point	format	that	has	an	exponent	of	all	zeros.

Denormalized	numbers	do	not	include	an	implied	one.
Deterministic	Finite	Automaton	(DFA)	An	abstract	computational	model	consisting	of	an	input	alphabet,

a	finite	set	of	states	that	represents	every	configuration	the	machine	can	assume,	a	start	state,	a	final
state,	and	a	set	of	functions	that	defines	transitions	between	the	states.	The	purpose	of	a	DFA	is	to
accept	(or	reject)	a	string.	DFAs	are	useful	in	computer	theory	and	in	the	design	of	compilers.

Dhrystone	A	benchmarking	program	that	focuses	on	string	manipulation	and	integer	operations.	Reinhold
P.	Weicker	of	Siemens	Nixdorf	Information	Systems	developed	this	benchmark	in	1984	and	named	it
Dhrystone	reportedly	as	a	pun	on	the	Whetstone	benchmark,	because	“Dhrystones	don’t	float.”

Difference	Engine	A	machine	designed	by	Charles	Babbage	in	1822	to	mechanize	the	solution	of
polynomial	functions.



Digital	Circuit	A	physical	circuit	(consisting	of	gates)	that	processes	signals	with	two	discrete	states.
Digital	Signal	0	See	DS-0.
Digital	Subscriber	Line	See	DSL.
Digital	Versatile	Disc	See	DVD.
Digital-to-Analog	Converter	(DAC)	Device	connected	to	graphics	card	and	monitor	that	converts	binary

images	to	analog	signals	that	the	monitor	can	understand.
Dijkstra’s	Algorithm	An	algorithm	that	finds	a	least-cost	path	through	a	network.	It	works	on	the	idea	that

the	least-cost	route	through	the	graph	consists	of	the	collection	of	all	of	the	shortest	connecting	links
between	all	of	the	nodes.

Diminished	Radix	Complement	Given	a	number	N	in	base	r	having	d	digits,	the	diminished	radix
complement	of	N	is	defined	to	be	(r	d	–	1)	–	N.	For	decimal	numbers,	r	=	10,	and	the	diminished	radix
is	10	–	1	=	9.

Direct	Access	Storage	Device	See	DASD.
Direct	Addressing	An	addressing	mode	in	which	the	value	to	be	referenced	is	obtained	by	specifying	its

memory	address	directly	in	the	instruction.
Direct	Mapped	Cache	A	cache-mapping	scheme	that	maps	blocks	of	memory	to	blocks	in	cache	using	a

modular	approach.
Direct	Memory	Access	See	DMA.
Dirty	Blocks	Blocks	in	cache	that	have	been	modified	but	not	yet	copied	to	main	memory.
Disk	Scheduling	A	policy	for	determining	the	order	in	which	requests	for	access	to	sectors	on	the	disk

are	serviced.	Common	disk-scheduling	policies	are	FCFS	(first-come,	first-served),	shortest	seek
time	first	(SSTF),	SCAN,	C-SCAN,	LOOK,	and	C-LOOK.

Disk	Striping	A	type	of	mapping	used	in	RAID	drives	in	which	contiguous	blocks	of	data	(strips)	are
mapped	in	a	round-robin	fashion	to	different	disk	drives.

Disk	Utilization	The	measure	of	the	percentage	of	the	time	that	the	disk	is	busy	servicing	I/O	requests.
Utilization	is	determined	by	the	speed	of	the	disk	and	the	rate	at	which	requests	arrive	in	the	service
queue.	Stated	mathematically:	Utilization	=	Request	Arrival	Rate	÷	Disk	Service	Rate,	where	the
arrival	rate	is	given	in	requests	per	second	and	the	disk	service	rate	is	given	in	I/O	operations	per
second.

Distributed	Computing	A	situation	in	which	a	set	of	networked	computers	work	collaboratively	to	solve
a	problem.

Divide	Underflow	The	computer	equivalent	of	division	by	zero,	where	the	divisor	value	is	too	small	to
be	stored	in	the	accumulator.

DLL	See	Dynamic	Link	Library.
DLT	See	Serpentine	Recording.
DMA	Abbreviation	for	direct	memory	access,	an	I/O	control	method	where	specialized	circuits	(other

than	the	CPU)	control	I/O	activity.	However,	the	DMA	and	the	CPU	share	the	memory	bus,	so	the
DMA	consumes	memory	cycles	that	would	otherwise	be	used	by	the	CPU.	This	is	called	cycle
stealing.

Dot	Pitch	A	measurement	that	indicates	the	distance	between	a	dot	(or	pixel)	and	the	closest	dot	of	the
same	color	on	a	display	monitor.	The	lower	this	number	is,	the	crisper	the	image	is.



DRAM	(Dynamic	RAM)	RAM	that	requires	periodic	recharging	to	maintain	data	(unlike	static	RAM,
which	holds	its	contents	as	long	as	power	is	available).

Dual	Stack	Communications	devices	that	use	two	different	protocols.	Today,	most	dual	stack	devices
(routers)	support	protocol	stacks	for	both	IPv4	and	IPv6.

Duality	Principle	The	principle	evident	in	Boolean	identities	where	the	product	form	and	the	sum	form
have	similar	relationships.

Dump	The	act	or	results	of	printing	the	contents	of	memory	(usually	in	hexadecimal)	to	facilitate
diagnosing	a	program	bug.	Old-timers	sometimes	call	this	a	“core”	dump,	which	dates	back	to	the
pre-IC	days	of	ferromagnetic	memories.

Durable	Storage	Any	storage	medium	that	does	not	rely	on	the	continued	supply	of	electric	current	to
retain	data.	Magnetic	disks,	magnetic	tape,	and	optical	disks	are	forms	of	durable	storage.

DVD	Abbreviation	for	digital	versatile	disc	(formerly	called	digital	video	disc),	a	high-density	optical
storage	medium.	Single-layer	and	double-layer	120mm	DVDs	can	accommodate	4.7	and	8.54GB	of
data,	respectively.

Dynamic	Interconnection	Network	Allows	the	path	between	two	entities	(either	two	processors	or	a
processor	and	memory)	to	change	from	one	communication	to	the	next.

Dynamic	Link	Library	(DLL)	Collection	of	binary	objects	usable	by	a	linking	(program)	loader	for	the
completion	of	executable	modules.

EBCDIC	(Extended	Binary	Coded	Decimal	Interchange	Code)	An	8-bit	code	invented	by	the	IBM
Corporation	that	supported	lowercase	as	well	as	uppercase	letters	and	a	number	of	other	characters
(including	customer-defined	codes)	that	were	beyond	the	expressive	power	of	the	six-	and	seven-bit
codes	in	use	at	the	time.

EEPROM	(Electronically	Erasable	PROM)	PROM	that	can	be	programmed	and	erased	using	an
electronic	field.

Effective	Access	Time	(EAT)	The	weighted	average	representing	the	mean	access	time	in	a	memory
hierarchy.

Effective	Address	The	actual	location	(in	memory)	of	an	operand.
EIDE	(Enhanced	Integrated	Drive	Electronics)	A	cost-effective	hardware	interface,	which	is	a	newer

version	of	the	IDE	interface	standard,	between	a	computer	and	its	mass	storage	devices.
Elasticity	The	ability	to	add	and	remove	system	resources	based	on	demand	from	those	resources.
Elevator	Algorithm	See	SCAN.
Embedded	System	A	microcontroller	or	microprocessor	that	controls	a	device	whose	primary	function	is

something	other	than	general-purpose	computing.	Embedded	systems	serve	supporting	roles	only	and
are	often	transparent	to	the	user	of	the	device.

Encoding	The	process	of	converting	plain	text	to	a	form	suitable	for	digital	data	storage	or	transmission.
Encryption	The	process	of	scrambling	a	message	using	an	algorithm	and	a	key	value	so	that	one	must

have	the	corresponding	key	to	read	the	message.
Entropy	In	the	context	of	information	theory,	entropy	is	a	measure	of	the	information	content	of	a	message.
EPROM	(Erasable	PROM)	PROM	that	can	be	programmed	and	erased	(using	highly	specialized

equipment)	to	be	programmed	again.
Error-Correcting	Code	A	code	constructed	in	such	a	way	that	it	can	detect	the	presence	of	errors	and	can

correct	some	or	all	of	the	errors	automatically.



Error-Detecting	Code	A	code	constructed	in	such	a	way	that	it	can	detect	the	presence	of	errors.
Ethernet	A	dominant	local	area	networking	technology	invented	in	1976	that	supports	data	transfer	rates

up	to	100Mbps	over	coaxial	cable.	The	IEEE	802.3	standard	is	based	on	Ethernet	but	is	not	identical
to	it.

Excess-M	Representation	A	representation	for	floating-point	numbers	that	uses	M	as	a	biasing	value.
Exclusive	Cache	A	cache	that	guarantees	that	data	is	resident	in,	at	most,	one	level	of	one	cache.
Expanding	Opcodes	An	instruction	design	that	allows	the	opcode	to	vary	in	length,	dependent	on	the

number	of	operands	required	for	the	instruction.
Expansion	Bus	An	external	bus	that	connects	peripherals,	external	devices,	expansion	slots,	and	I/O	ports

to	the	rest	of	the	computer.
Extended	Binary	Coded	Decimal	Interchange	Code	See	EBCDIC.
External	Fragmentation	Fragmentation	that	results	from	many	holes	in	memory	that	are	free	to	be	used

but	are	too	small	to	hold	meaningful	information.	See	Fragmentation.
Fab	Short	for	integrated	circuit	fabrication	facility.
Fast	ATA	Fast	AT	Attachment.	See	EIDE.
Fast	Fourier	Transform	Mathematical	process	for	converting	discrete,	quantized	values	from	one

domain	to	another,	such	as	time	or	space	to	frequency.
FC-AL	See	Fibre	Channel.
Fetch–Decode–Execute	Cycle	The	instruction	cycle	a	computer	follows	to	execute	a	program.
Fiber-Optic	Cable	See	Optical	Cable.
Fibre	Channel	A	serial	data	transfer	technology	for	transmitting	data	at	a	rate	up	to	1Gbps.	Fibre	Channel

Arbitrated	Loop	(FC-AL)	is	the	most	widely	used—and	least	costly—of	the	three	Fibre	Channel
topologies.

Field-Programmable	Gate	Array	(FPGA)	A	programmable	logic	device	that	provides	logic	functions
using	memory	and	multiplexers	instead	of	connecting	or	disconnecting	gates,	as	is	done	in	other
configurable	devices.	Memory	cells	contain	the	truth	table	of	the	desired	logic	function.

Finite	State	Machine	An	abstract	computational	model	consisting	of	an	input	alphabet,	an	output
alphabet,	a	finite	set	of	states	that	represents	every	configuration	the	machine	can	assume,	a	start	state,
and	a	set	of	functions	that	defines	transitions	between	the	states.	Finite	state	machines	are	useful	for
describing	the	behavior	of	sequential	logic	circuits.

Firewall	A	Layer	3	network	device	(together	with	the	corresponding	set	of	programs)	that	restricts	access
to	a	network	based	on	policies	programmed	into	the	device.	Firewalls	protect	networks	or	certain
network	services	from	unauthorized	access.

FireWire	A	self-configuring	serial	I/O	connection	technology	that	is	now	the	IEEE	1394	standard.
FireWire	supports	traditional	data	transfer	as	well	as	isochronous	input	and	output	at	speeds	up	to
40MBps.

Firmware	Programs	stored	in	read	only	memory,	such	as	ROM,	PROM,	or	EPROM.
First-In,	First-Out	(FIFO)	Replacement	Algorithm	A	replacement	algorithm	that	replaces	the	item	that

has	been	resident	for	the	longest	period	of	time.
Flash	Memory	EPROM	allowing	data	to	be	written	or	erased	in	blocks.
Flip-Flop	The	basic	component	of	sequential	circuits	that	acts	as	the	storage	element,	which	is	able	to



maintain	a	stable	output	even	after	the	inputs	are	made	inactive.	Also,	the	simplest	type	of	sequential
circuit.	Differs	from	a	latch	in	that	a	flip-flop	is	edge-triggered	and	latch	is	level-triggered.

Floating-Point	Emulation	Programmatic	simulation	of	instructions	particular	to	floating-point	operations.
Floating-Point	Operations	Per	Second	See	FLOPS.
Floating-Point	Unit	Specialized	computer	circuits	that	are	optimized	for	the	performance	of	fractional

binary	computations.
Floppy	Disk	Removable,	low-density	magnetic	storage	medium	consisting	of	a	flexible	Mylar	substrate

coated	with	a	magnetic	film.
FLOPS	An	acronym	for	floating-point	operations	per	second.	FLOPS	is	an	outmoded	measure	of

computer	performance	for	which	there	is	no	clear	definition.	Several	benchmarking	programs	(such	as
Whetstone	and	Linpack)	produce	megaflops	(MFLOPS)	rates	for	the	system	under	test.

Flux	Reversal	A	change	in	the	polarity	of	the	magnetic	coating	used	in	computer	tape	or	disk	storage
devices.	Depending	on	the	encoding	method,	a	flux	reversal	can	indicate	a	binary	0	or	1.

Flynn’s	Taxonomy	A	scheme	for	classifying	computer	architectures	based	on	the	number	of	data	streams
and	the	number	of	instruction	streams	allowed	concurrently.	See	also	MIMD,	MISD,	SISD,	and
SIMD.

FM	See	Frequency	Modulation.
Forest	A	collection	of	one	or	more	disjoint	n-ary	or	binary	trees.
FPGA	See	Field-Programmable	Gate	Array.
FPU	See	Floating-Point	Unit.
Fragmentation	1.	Occurs	when	memory	or	disk	space	becomes	unusable.	See	also	Internal	Fragmentation

and	External	Fragmentation.	2.	The	process	of	breaking	an	IP	datagram	into	smaller	pieces	to	fit	the
requirements	of	a	given	network.

Frame	Buffer	RAM	located	on	a	graphics	card	used	to	store	rendered	images.
Frequency	Division	Multiplexing	(FDM)	A	method	whereby	a	medium	carries	several	communications

streams.	When	FDM	is	used	over	long-distance	telephone	cables,	each	call	is	assigned	its	own
frequency	band	allowing	a	dozen	or	more	calls	to	easily	travel	over	the	same	conductor	without
interfering	with	one	another.

Frequency	Modulation	(FM)	As	used	in	digital	applications,	frequency	modulation	(FM)	is	an	encoding
method	for	the	storage	or	transmission	of	information	where	at	least	one	transition	is	supplied	for	each
bit	cell.	These	synchronizing	transitions	occur	at	the	beginning	of	the	bit	cell	boundary.

Full	Duplex	A	transfer	mode	where	data	travels	simultaneously	in	both	directions	over	a	communications
medium	or	data	bus.

Full-Adder	A	circuit	to	add	three	bits,	one	of	which	is	a	carry	in,	that	produces	two	outputs:	a	sum	and	a
carry.

Full-Stroke	Seek	The	act	of	moving	a	disk	arm	from	the	innermost	track	to	the	outer-most,	or	vice	versa.
Fully	Associative	Cache	A	cache-mapping	scheme	that	allows	blocks	of	main	memory	to	be	mapped	to

any	block	in	cache.	Requires	associative	memory	for	cache.
G	Prefix	meaning	230,	or	approximately	one	billion.
Galois	Field	An	algebraic	field	with	a	finite	number	of	elements.	Commonly	used	Galois	fields	are

defined	through	the	modulus	operation	using	a	prime	number,	GF(p)	=	{0,	1,	…	p	–	1}	for	all	integers



Z	mod	p.
Garbage	Collection	A	process	in	which	chunks	of	memory	are	coalesced	into	larger,	usable	pieces.
Gate	A	small,	electronic	device	that	computes	various	functions	of	two-valued	signals.
Gateway	A	point	of	entrance	to	a	network	from	external	networks.
General-Purpose	Register	Architecture	An	architecture	that	uses	sets	of	general-purpose	registers	to

hold	operands	for	instructions.
General-Purpose	Registers	(also	User-Visible	Registers)	Registers	that	can	be	accessed	by	the

programmer	and	used	for	different	purposes.
Geometric	Mean	A	measure	of	central	tendency	frequently	used	in	computer	performance	analysis.	The

geometric	mean,	G,	is	the	nth	root	of	the	product	of	the	n	measurements:	G	=	(x1	×	x2	×	x3	×	…	×	xn)1/n.
The	geometric	mean	provides	a	consistent	number	with	which	to	perform	comparisons	regardless	of
the	distribution	of	the	data.

GIF	(Graphics	Interchange	Format)	See	LZW	Compression.
Graphics	Processing	Unit	(GPU)	The	processor	on	a	graphics	card.
Grid	Computing	A	global	effort	to	use	the	resources	of	many	computers	in	different	administrative

domains,	without	having	to	consider	where	those	computer	resources	are	located,	to	solve	large
computational	problems.

Guided	Transmission	Media	Physical	connectors	such	as	copper	wire	or	fiber-optic	cable	that	have
direct	physical	connections	to	network	components.

Half	Duplex	A	transfer	mode	where	data	can	travel	in	only	one	direction	at	a	time	over	a	communications
medium	or	data	bus.

Half-Adder	A	circuit	to	add	two	bits	that	produces	two	outputs:	a	sum	and	a	carry.
Hamming	Code	An	error-correcting	code	that	augments	an	information	byte	with	check	bits	(or	redundant

bits).
Hamming	Distance	The	number	of	bit	positions	in	which	code	words	differ.	The	smallest	Hamming

distance,	D(min),	among	all	pairs	of	words	in	a	code	is	its	minimum	Hamming	distance.	The	minimum
Hamming	distance	determines	a	code’s	error-detecting	and	error-correcting	capability.

Handshake	The	protocol	that	requires,	before	data	can	be	transferred	between	a	sender	and	a	receiver,
that	the	sender	contact	the	receiver	to	initiate	the	transfer	of	bytes.	The	receiver	then	must
acknowledge	the	request	and	indicate	that	it	is	able	to	receive	data.

Harmonic	Mean	A	measure	of	central	tendency	frequently	used	in	computer	performance	analysis	for
averaging	rates	or	ratios.	The	harmonic	mean	is	given	by	H	=	n	÷	(1/x1	+	1/x2	+	1/x3	+	…	+	1/xn).

Harvard	Architecture	A	computer	architecture	that	uses	two	buses:	one	for	data	and	one	for	instructions.
Harvard	Cache	The	name	given	to	a	partitioned	cache	that	has	separate	storage	for	data	and	instructions

(i.e.,	a	data	cache	and	an	instruction	cache).
Hazard	A	factor	contributing	to	a	pipeline	stall.	Includes	such	things	as	data	dependencies,	resource

conflicts,	and	memory	fetch	access	delays.
Head	Crash	A	ruinous	condition	of	a	rigid	magnetic	disk	caused	by	a	read-write	head	coming	into

contact	with	the	surface	of	the	disk.
Heap	Main	memory	space	that	is	allocated	and	deallocated	as	data	structures	are	created	and	destroyed

during	process	execution.



Helical	Scan	Recording	A	method	of	placing	bits	on	a	magnetic	tape	where	the	medium	passes	over	a
tilted	rotating	drum	(capstan),	which	has	two	read	and	two	write	heads.

Hertz	The	unit	of	measurement	for	clock	frequencies	as	measured	in	cycles	per	second.	One	hertz	is	one
cycle	per	second.

Hextet	A	group	of	four	bits	that	represents	a	single	hexadecimal	digit.
Hierarchical	Memory	Memory	consisting	of	a	combination	of	memory	types	that	gives	a	good

cost/performance	trade-off,	typically	including	cache,	RAM,	and	virtual	memory.
High-Order	Interleaving	Memory	interleaving	that	uses	the	high-order	bits	of	the	address	to	select	the

memory	module.
High-Performance	Peripheral	Interface	See	HiPPI.
HiPPI	Acronym	for	High-Performance	Peripheral	Interface,	a	high-capacity	storage	interface	and

backbone	protocol	for	local	area	networks.
Hit	Occurs	when	the	requested	data	is	found	at	a	particular	memory	level	or	a	requested	page	is	found	in

memory.
Hit	Rate	The	percentage	of	memory	accesses	found	in	a	given	level	of	memory.
Hit	Time	The	time	required	to	access	the	requested	information	in	a	given	level	of	memory.
Hollerith	Card	An	80-column	punched	card	developed	by	Herman	Hollerith	and	used	for	computer	input

and	output.
Hot	Plugging	The	ability	to	add	and	remove	devices	while	the	computer	is	running.
Hub	An	OSI	Layer	1	device	that	has	many	ports	for	input	and	output	that	broadcasts	packets	received

from	one	or	more	locations	to	one	or	more	devices	on	the	network.
Huffman	Coding	A	statistical	data	compression	method	that	creates	a	binary	tree	from	the	symbols	in	the

input.	The	output	is	a	binary	code	derived	from	the	frequency	of	the	symbols	in	the	input	and	a
dictionary	to	decode	the	binary	stream.

Hybrid	RAID	System	A	RAID	system	that	uses	multiple	RAID	levels	in	combination.
Hypercube	Networks	Multidimensional	extensions	of	mesh	networks	in	which	each	dimension	has	two

processors.
Hyperthreading	Technology	that	enables	a	single	physical	processor	to	simulate	two	logical	(or	virtual)

processors.
I/O	Bound	A	system	performance	condition	where	a	process	or	set	of	processes	spend	most	of	their

execution	time	executing	I/O	operations	or	waiting	for	I/O	resources.
IaaS	Abbreviation	for	Infrastructure-as-a-Service	(IaaS)	provides	only	server	hardware,	secure	network

access	to	the	servers,	and	backup	and	recovery	services	over	the	Internet.	The	customer	is	responsible
for	all	system	software	including	the	operating	system	and	databases.	Compare	with	SaaS	and	PaaS.

IAB	See	Internet	Engineering	Task	Force.
ICANN	See	Internet	Corporation	for	Assigned	Names	and	Numbers.
IEEE-754	Formally	known	as	IEEE	Standard	for	Binary	Floating-Point	Arithmetic	(ANSI/IEEE	Std	754-

1985),	IEEE-754	is	a	format	for	representing	floating-point	numbers.	Single-precision	numbers	have
1	bit	for	the	sign,	8	bits	for	the	exponent	(with	a	bias	of	127),	and	23	bits	for	the	significand	(with	an
implied	1	to	the	left	of	the	binary	point),	for	a	total	of	32	bits.	Double-precision	numbers	have	1	bit
for	the	sign,	11	bits	for	the	exponent	(with	a	bias	of	1023),	and	52	bits	for	the	significand	(with	an



implied	1	to	the	left	of	the	binary	point),	for	a	total	of	64	bits.
IETF	See	Internet	Engineering	Task	Force.
Immediate	Addressing	An	addressing	mode	in	which	the	value	to	be	referenced	immediately	follows	the

operation	code	in	the	instruction.
Inclusive	Cache	A	cache	that	allows	data	to	exist	concurrently	at	multiple	levels	in	a	cache	hierarchy.
Indexed	Addressing	An	addressing	mode	that	uses	an	index	register	(either	explicitly	or	implicitly

designated)	to	store	an	offset	(or	displacement),	which	is	added	to	the	operand	and	results	in	the
effective	address	of	the	data.

Indirect	Addressing	An	addressing	mode	that	uses	the	bits	in	the	address	field	to	specify	a	memory
address	that	is	to	be	used	as	a	pointer	to	the	actual	operand.

Indirect	Indexed	Addressing	An	addressing	mode	that	uses	both	indirect	and	indexed	addressing	at	the
same	time.

Inductance	Opposition	to	changes	in	current	within	a	conductor.	Also,	the	magnetic	field	that	surrounds	a
conductor	as	current	passes	through	it.

Industry	Standard	Architecture	(ISA)	Bus	The	IEEE	standardization	of	the	1980s-generation	PC/XT
bus.

InfiniBand	A	2.5Gbps	point-to-point	switched	fabric	interconnection	technology	developed	by	Intel.
InfiniBand	is	designed	to	connect	multiple	CPUs	to	multiple	peripheral	devices	simultaneously	and
with	low	latency.	InfiniBand	is	a	likely	replacement	for	PCI,	but	requires	some	improvements	before
it	can	replace	Fibre	Channel.

Infix	Notation	One	of	the	orderings	of	operators	and	operands	that	places	the	operators	between
operands,	such	as	2	+	3.

Information	Data	that	has	meaning	to	a	human	being.
Information	Theory	A	field	of	study	that	concerns	itself	with	the	way	in	which	information	is	stored	and

coded.
Infrastructure-as-a-Service	See	IaaS.
Input/Output	Devices	Devices	that	allow	users	to	communicate	with	the	computer	or	provide	read/write

access	to	data.
Input/Output	System	A	subsystem	of	components	that	moves	coded	data	between	external	devices	and	a

host	system,	consisting	of	a	CPU	and	main	memory.
Institute	of	Electrical	and	Electronic	Engineers	(IEEE)	An	organization	dedicated	to	the	advancement

of	the	professions	of	electronic	and	computer	engineering.
Instruction	Cache	Cache	used	to	store	the	most	recently	used	instructions	only	(no	data).
Instruction	Cycle	See	Fetch–Decode–Execute	cycle.
Instruction	Set	Architecture	(ISA)	The	agreed-upon	interface	between	all	the	software	that	runs	on	the

machine	and	the	hardware	that	executes	it.	It	specifies	the	instructions	that	the	computer	can	perform
and	the	format	for	each	instruction.

Instruction-Based	I/O	I/O	method	where	the	CPU	has	specialized	instructions	that	are	used	to	perform
the	input	and	output.

Integrated	Cache	See	Unified	Cache.
Integrated	Circuit	(IC)	The	technology	used	in	the	third	generation	of	computers	that	allows	for	multiple



transistors	on	a	single	chip.	A	chip	that	has	been	mounted	in	a	ceramic	or	plastic	container	with
external	pins.

Intellectual	Property	(IP)	Pretested	circuit	design	modules	that	are	licensed	for	use	in	customized
circuit-designs.	The	purchaser	typically	pays	a	license	fee	for	the	use	of	the	design.

Interconnection	Network	The	network	connecting	multiple	processors	and	memories.
Interface	Facility	whereby	a	computer	system	connects	to	an	outside	entity.	Hardware	interfaces

encompass	the	software,	control	circuits,	and	physical	connectors	required	to	connect	a	computer	to
an	I/O	device.	Also	includes	the	manner	in	which	human	beings	interact	with	the	machine.	The	two
types	of	system	interfaces	are	command	line	interfaces	and	graphical	user	interfaces	(GUIs).

Interleaving	A	method	of	sector	addressing	on	magnetic	disk	drives	where	disk	sectors	are	not	in
consecutive	order	around	the	perimeter	of	a	track.	This	is	an	“older”	technology	invented	to
compensate	for	the	difference	between	the	rotational	speed	of	a	disk	drive	and	the	rate	at	which	data
can	be	read	from	the	disk.	See	also	High-order	Interleaving,	Low-order	Interleaving,	and	Memory
Interleaving.

Intermediate	Node	Another	name	for	an	Internet	router.
Internal	Fragmentation	Fragmentation	internal	to	a	given	block	and	unusable	by	any	process	except	the

process	to	which	the	block	has	been	granted.
International	Organization	for	Standardization	(ISO)	The	entity	that	coordinates	worldwide	standards

development	activities.
International	Telecommunications	Union	(ITU)	An	organization	concerned	with	the	interoperability	of

telecommunications	systems.
Internet	Corporation	for	Assigned	Names	and	Numbers	(ICANN)	A	nonprofit	corporation	that

coordinates	the	assignment	of	Internet	addresses,	parameter	values	used	in	Internet	protocols,	and
high-level	domain	names	such	as	.org	and	.edu.

Internet	Engineering	Task	Force	(IETF)	A	loose	alliance	of	industry	experts	that	develops	detailed
specifications	for	Internet	protocols.	The	IETF	operates	under	the	Internet	Architecture	Board	(IAB),
which	itself	operates	under	the	oversight	of	the	not-for-profit	Internet	Society	(ISOC).	The	IETF
publishes	all	proposed	standards	in	the	form	of	Requests	for	Comment	(RFCs).

Internet	of	Things	(IoT)	A	name	for	the	Internet	attachment	of	devices	other	than	traditional	host	or
client	computers	to	the	Internet.	These	devices	have	varying	degrees	of	intelligence.	Thus,	the	Internet
of	Things	encompasses	simple	sensors	as	well	as	intelligent	control	devices	capable	of	some	degree
of	self-management.	IoT	is	also	known	as	Machine-to-Machine	(M2M)	Internet	systems.

Internet	Protocol	See	IP.
Internetwork	A	network	consisting	of	subnetworks	that	use	differing	protocols.
Interpreter	A	program	that	translates	source	code	into	object	code	by	analyzing	and	executing	each	line

of	the	source	code,	one	at	a	time.
Interrupt	An	event	that	alters	(or	interrupts)	the	normal	fetch–decode–execute	cycle	of	execution	in	the

system.
Interrupt	Cycle	The	part	of	the	instruction	cycle	in	which	the	CPU	checks	to	see	if	an	interrupt	is	pending

and,	if	so,	invokes	an	interrupt-handling	routine.
Interrupt	Handling	The	process	of	executing	a	specific	routine	to	process	an	interrupt.
Interrupt	Latency	The	elapsed	(wall	clock)	time	between	the	occurrence	of	an	interrupt	and	the



execution	of	the	first	instruction	of	the	interrupt	service	routine.	Interrupt	latency	is	an	important
metric	in	the	evaluation	of	embedded	operating	systems.

Interrupt	Nesting	An	operating	system	feature	that	allows	suspension	of	an	interrupt	service	routine	to
process	higher	priority	interrupts.	Interrupt	nesting	is	desirable	in	real-time	operating	systems,	where
event	responsiveness	is	critical	to	proper	system	operation.

Interrupt-Driven	I/O	An	I/O	method	whereby	input	devices	signal	the	CPU	when	they	have	data	ready
for	processing,	thus	allowing	the	CPU	to	do	other,	more	useful	work.

IoT	See	Internet	of	Things.
IP	(Internet	Protocol)	1.	A	connectionless	Network	Layer	communications	protocol	that	conveys

information	in	packets	called	datagrams.	Each	datagram	contains	addressing	information	as	well	as
data.	2.	See	Intellectual	Property.

IR	(Instruction	Register)	Holds	the	next	instruction	to	be	executed	in	a	program.
ISA	Bus	See	Industry	Standard	Architecture	(ISA)	Bus.
ISO	Open	Systems	Interconnect	Reference	Model	See	ISO/OSI	RM.
ISO/OSI	RM	A	data	communications	protocol	model	consisting	of	seven	layers:	Application,

Presentation,	Session,	Transport,	Network,	Data	Link,	and	Physical.	The	ISO’s	work	is	called	a
reference	model	because,	owing	to	its	complexity,	virtually	no	commercial	system	uses	all	of	the
features	precisely	as	specified	in	the	model.

ISOC	See	Internet	Engineering	Task	Force.
Isochronous	Data	Data	that	is	time-sensitive	to	the	extent	that	if	it	is	delivered	too	late,	much	of	its

meaning	(information)	is	lost.	Examples	of	isochronous	are	used	with	realtime	data	such	as	voice	and
video	transmission	intended	for	real-time	delivery.

JBOD	Acronym	for	Just	a	Bunch	of	Disks.	This	term	is	used	to	contrast	an	unorganized	collection	of	disk
drives	from	RAID	or	managed	storage,	such	as	a	SAN.

Joint	Photographic	Experts	Group	See	JPEG.
JPEG	A	lossy	data	compression	method	devised	under	the	auspices	of	the	Joint	Photographic	Experts

Group.	JPEG	is	an	eight-step	compression	method	that	allows	the	user	to	specify	the	allowable	visual
degradation	in	the	compressed	image.	JPEG	2000	is	a	more	complex	and	slower	version	of	JPEG.

K	Prefix	meaning	210	or	1024	(approximately	one	thousand).	For	example,	2Kb	means	2048	bits.
Kernel	1.	A	limited-function	program	that	remains	when	I/O	routines	and	other	non-CPU-intensive	code

are	pared	from	an	application.	Kernel	programs	are	used	in	the	creation	of	benchmark	suites.	2.	A
program	module	that	provides	minimal—but	critical—functions.	In	the	context	of	operating	systems,	a
kernel	is	that	portion	of	the	operating	system	that	continuously	executes	while	the	system	is
operational.

Karnaugh	map	(Kmap)	A	method	used	to	simplify	Boolean	expressions	that	uses	maps,	or	tables,	instead
of	Boolean	algebra	identities	and	equation	manipulation.

LAN	An	acronym	for	local	area	network,	a	network	of	computers	within	a	single	building.	Most	LANs
currently	use	Ethernet	networking	technology	at	speeds	upward	of	100Mbps.

Latch	A	flip-flop	that	is	level-triggered.
LCD	Liquid	crystal	display,	a	common	technology	used	for	monitors.
Least	Recently	Used	(LRU)	Replacement	Algorithm	A	replacement	algorithm	that	replaces	the	item

that	was	used	least	recently.



Linear	Array	Network	(also	Ring	Network)	Allows	any	entity	to	directly	communicate	with	its	two
neighbors,	but	any	other	communication	has	to	go	through	multiple	entities	to	arrive	at	its	destination.

Link	Editor	See	Linking.
Linked	List	A	data	structure	where	each	element	contains	a	pointer	that	is	either	null	or	points	to	another

data	element	of	the	same	kind.
Linking	The	process	of	matching	the	external	symbols	of	a	program	with	all	exported	symbols	from	other

files,	producing	a	single	binary	file	with	no	unresolved	external	symbols.
Linpack	A	contraction	of	LINear	algebra	PACKage.	Software	used	to	measure	floating-point

performance.	It	is	a	collection	of	subroutines	called	Basic	Linear	Algebra	Subroutines	(BLAS),	which
solve	systems	of	linear	equations	using	double-precision	arithmetic.

Little	Endian	Storing	multibyte	words	with	the	least	significant	byte	at	the	lowest	address.
Load-Store	Architecture	An	architecture	in	which	only	the	load	and	store	instructions	of	the	ISA	can

access	memory.	All	other	instructions	must	use	registers	to	access	data.
Local	Area	Network	See	LAN.
Local	Bus	A	data	bus	in	a	PC	that	connects	the	peripheral	device	directly	to	the	CPU.
Locality	(Locality	of	Reference)	A	property	in	which	a	program	tends	to	access	data	or	instructions	in

clusters.
Logical	Partition	A	nonphysical	division	of	a	computer	system	that	gives	the	illusion	that	the	divisions

are	physically	discrete	entities.
Logically	Equivalent	In	the	context	of	Boolean	expressions:	two	Boolean	expressions	are	logically

equivalent	if	they	have	the	same	truth	table.
LOOK	(C-LOOK)	A	disk-scheduling	algorithm	where	the	disk	arm	changes	direction	only	when	the

highest-	and	lowest-numbered	requested	tracks	are	read	or	written.	LOOK	has	a	variant,	called	C-
LOOK	(for	circular	LOOK),	in	which	track	zero	is	treated	as	if	it	were	adjacent	to	the	highest-
numbered	track	on	the	disk.

Loop	Fission	The	process	of	splitting	large	loops	into	smaller	ones.	Has	a	place	in	loop	optimization,
because	it	can	eliminate	data	dependencies,	and	reduces	cache	delays	resulting	from	conflicts.	See
Loop	Peeling.

Loop	Fusion	The	process	of	combining	loops	that	use	the	same	data	items,	resulting	in	increased	cache
performance,	increased	instruction-level	parallelism,	and	reduced	loop	overhead.

Loop	Interchange	The	process	of	rearranging	loops	so	that	memory	is	accessed	more	closely	to	the	way
in	which	the	data	is	stored.

Loop	Peeling	A	type	of	loop	fission.	The	process	of	removing	the	beginning	or	ending	statements	from	a
loop.

Loop	Unrolling	The	process	of	expanding	a	loop	so	that	each	new	iteration	contains	several	of	the
original	iterations,	thus	performing	more	computations	per	loop	iteration.

Loopback	Test	Checks	the	functions	of	communications	devices	and	protocols	running	on	a	host	system.
During	loopback	testing,	no	data	enters	the	network.

Loosely	Coupled	Multiprocessors	Multiprocessor	systems	that	have	a	physically	distributed	memory.
Also	known	as	distributed	systems.

Low-Order	Interleaving	Memory	interleaving	that	uses	the	low-order	bits	of	the	address	to	select	the



correct	memory	module.
LPAR	See	Logical	Partition.
LSI	(Large-Scale	Integration)	Integrated	circuits	with	1,000	to	10,000	components	per	chip.
Luminance	Measure	of	the	amount	of	light	an	LCD	monitor	emits.
LZ77	Compression	A	data	compression	method	that	uses	a	text	window,	which	serves	as	a	dictionary,	in

conjunction	with	a	look-ahead	buffer,	which	contains	the	information	to	be	encoded.	If	any	characters
inside	the	look-ahead	buffer	can	be	found	in	the	dictionary,	the	location	and	length	of	the	text	in	the
window	is	written	to	the	output.	If	the	text	cannot	be	found,	the	unencoded	symbol	is	written	with	a
flag	indicating	that	the	symbol	should	be	used	as	a	literal.

LZ78	Compression	Differs	from	LZ77	in	that	it	removes	the	limitation	of	the	fixed-size	text	window.
Instead,	it	populates	a	trie	with	tokens	from	the	input.	The	entire	trie	is	written	to	disk	following	the
encoded	message,	and	is	read	first	before	decoding	the	message.

LZW	Compression	A	more	efficient	implementation	of	LZ78	compression	where	the	trie	size	is	carefully
managed.	LZW	is	the	basis	for	GIF	data	compression.

M	Prefix	meaning	220	or	1,048,576	(approximately	one	million).	For	example,	2MB	means	221	bytes,	or
approximately	2	million	bytes.

M2M	See	Internet	of	Things.
MAC	See	Medium	Access	Control.
MAC	Address	A	unique	six-byte	physical	address	burned	into	the	circuits	of	a	network	interface	card

(NIC).	The	first	three	bytes	are	the	manufacturer’s	identification	number,	which	is	designated	by	the
IEEE.	The	last	three	bytes	are	a	unique	identifier	assigned	to	the	NIC	by	the	manufacturer.	No	two
cards	anywhere	in	the	world	should	ever	have	the	same	MAC	address.	Network	protocol	layers	map
this	physical	MAC	address	to	at	least	one	logical	address.

Machine-to-Machine	See	Internet	of	Things.
Main	Memory	Storage	where	program	instructions	and	data	are	stored.	Typically	implemented	with

RAM	memory.
MAN	Acronym	for	metropolitan	area	network.	MANs	are	high-speed	networks	that	cover	a	city	and	its

environs.
Manchester	Code	Also	known	as	phase	modulation	(PM),	an	encoding	method	used	in	the	transmission

or	storage	of	information	that	provides	a	transition	for	each	bit,	whether	a	one	or	a	zero.	In	PM,	each
binary	1	is	signaled	by	an	“up”	transition,	and	each	binary	zero	by	a	“down”	transition.	Extra
transitions	are	provided	at	bit	cell	boundaries	when	necessary.

Mantissa	The	fractional	part	of	a	logarithm,	often	used	to	refer	to	the	fractional	part	of	a	number
expressed	in	scientific	notation,	as	well	as	the	fractional	part	of	a	floating-point	number	(see
Significand).

MAR	(Memory	Address	Register)	Register	that	holds	the	memory	address	of	the	data	being	referenced.
Maskable	Interrupt	An	interrupt	that	can	be	ignored	or	disabled.
MBR	(Memory	Buffer	Register)	Register	that	holds	the	data	either	just	read	from	memory	or	the	data

ready	to	be	written	to	memory.
Mealy	Machine	A	finite	state	machine	where	transitions	between	the	states	describe	the	machine’s	input

and	output.
Mean	Time	to	Failure	See	MTTF.



Medium	Access	Control	(MAC)	The	method	by	which	a	node	connects	to	a	network.	The	two	dominant
approaches	to	medium	access	control	are	token	passing	and	carrier	sense/collision	detection
(CSMA/CD).

Medium	Access	Control	Address	See	MAC	Address.
Memory	Bound	A	system	performance	condition	where	a	process	or	set	of	processes	spends	most	of	its

execution	time	in	main	system	memory	or	waiting	for	memory	resources.
Memory	Hierarchy	(also	Hierarchical	Memory)	The	use	of	various	levels	of	memory,	each	with

different	access	speeds	and	storage	capacities,	to	achieve	a	better	performance/cost	ratio	than	could
be	achieved	using	one	memory	type	alone.

Memory	Interleaving	A	technique	that	splits	memory	across	multiple	memory	modules	(or	banks).	See
High-Order	Interleaving	and	Low-Order	Interleaving.

Memory-Mapped	I/O	When	registers	in	an	interface	appear	in	the	computer’s	memory	map	and	there	is
no	real	difference	between	accessing	memory	and	accessing	an	I/O	device.

Memory-Memory	Architectures	Architectures	that	allow	an	instruction	to	perform	an	operation	without
requiring	at	least	one	operand	to	be	in	a	register.

Memristor	An	electrical	component	with	discrete	states	of	high	resistance	and	low	resistance.	The	states
can	be	changed	through	the	application	of	electrical	current,	thereby	making	memristors	good
candidates	for	nonvolatile	bit	storage.

Mesh	Network	A	network	that	links	each	entity	to	four	or	six	(depending	on	whether	they	are	two-
dimensional	or	three-dimensional)	neighbors.

Message	Latency	The	time	required	for	the	first	bit	of	a	message	to	reach	its	destination.
Metric	A	single	number	that	characterizes	the	performance	of	a	system.
Metropolitan	Area	Network	See	MAN.
MFM	See	Modified	Frequency	Modulation.
Microcomputer	A	computer	that	uses	a	microprocessor.
Microcontroller	A	simple	embedded	systems	processor	that	consists	of	a	processor,	memory,	and	I/O

ports.	Memory,	consisting	of	ROM,	flash,	and	RAM,	is	usually	measured	in	kilobytes.
Microkernel	Operating	system	component	where	a	relatively	small	process,	the	microkernel,	provides

rudimentary	operating	system	functionality,	relying	on	external	modules	to	perform	specific	tasks.
Microoperations	“Mini”	instructions	that	specify	the	elementary	operations	that	can	be	performed	on	data

stored	in	registers.
Microprocessor	A	processor	whose	CPU,	storage,	and	I/O	capabilities	are	implemented	typically	on	a

single	chip.
Microprogram	Software	used	to	interpret	instructions	into	machine	language.
Microsequencer	Circuitry	that	serves	as	the	program	counter	to	control	the	flow	of	execution	in	a

microprogram.
Middleware	Broad	classification	for	software	that	provides	services	above	the	operating	system	layer

but	below	the	application	program	layer.
Millions	of	Instructions	per	Second	See	MIPS.
MIMD	(Multiple	Instruction,	Multiple	Data)	An	architecture	that	employs	multiple	control	points,	each

with	its	own	instruction	and	data	stream.



Minuend	In	an	arithmetic	subtraction,	the	minuend	is	decreased	by	the	value	of	the	subtrahend.
MIPS	An	acronym	for	millions	of	instructions	per	second,	an	outmoded	measure	of	computer	system

performance.	Mathematically,	MIPS	=	(number	of	instructions	executed)	÷	(execution	time	×	106).
MIPS	is	too	architecture-dependent	to	be	useful.	As	such,	the	metric	has	given	rise	to	some	creative
interpretations	of	the	acronym,	for	example,	“Misleading	Indicator	of	Processor	Speed”	and
“Meaningless	Indicators	of	Performance	for	Salesmen.”

MISD	(Multiple	Instruction,	Single	Data)	An	architecture	with	multiple	instruction	streams	operating	on
the	same	data	stream.

Miss	Occurs	when	the	requested	data	is	not	found	in	the	given	level	of	memory.
Miss	Penalty	The	time	required	to	process	a	miss,	which	includes	replacing	a	block	in	an	upper	level	of

memory,	plus	the	additional	time	to	deliver	the	requested	data	to	the	processor.
Miss	Rate	The	percentage	of	memory	accesses	not	found	in	a	given	level	of	memory.
MNG	Multiple-image	Network	Graphics,	MNG,	is	an	extension	of	PNG	that	allows	multiple	images	to

be	compressed	into	one	file.	These	files	can	be	of	any	type,	such	as	grayscale,	true	color,	or	even
JPEGs.

Modified	Frequency	Modulation	(MFM)	An	encoding	method	for	the	storage	or	transmission	of	data
whereby	bit	cell	boundary	transitions	are	provided	only	between	consecutive	zeros.	With	MFM,	then,
at	least	one	transition	is	supplied	for	every	pair	of	bit	cells,	as	opposed	to	each	cell	in	PM	or	FM.

Moore	Machine	A	finite	state	machine	where	the	states	describe	the	machine’s	output.
Moore’s	Law	A	prediction	by	Gordon	Moore	stating	that	the	density	of	silicon	chips	doubles	every	18

months.
MPP	(Massively	Parallel	Processors)	An	MIMD	distributed	memory	architecture	in	which	processors

do	not	share	memory.
MSI	(Medium-Scale	Integration)	Integrated	circuits	with	100	to	1,000	components	per	chip.
MTTF	An	abbreviation	for	mean	time	to	failure,	MTTF	is	a	mathematical	expectation	of	the	life	of	a

component	derived	through	statistical	quality	control	methods	commonly	used	in	the	manufacturing
industry.	This	is	a	theoretical	quantity	that	does	not	necessarily	reflect	the	actual	service	life	of	a
component.

Multi-Core	Processor	A	multiprocessor	with	all	cores	(CPUs)	on	the	same	chip.
Multicast	A	network	messaging	method	that	sends	a	single	message	that	is	read	by	multiple	nodes.
Multilevel	Cache	Hierarchy	A	cache	memory	hierarchy	consisting	of	more	than	one	level.
Multiple-image	Network	Graphics	See	MNG.
Multiplexer	A	combinational	circuit	connecting	multiple	inputs	to	one	output	that	selects	(using	control

lines)	one	of	the	many	input	lines	and	directs	it	to	the	single	output	line.
Multiplexing	Sharing	a	single	communications	medium	among	a	number	of	unrelated,	isolated

connections.	A	connection	is	allocated	a	channel	within	a	digital	carrier	through	interleaved	time	slots
or,	in	the	case	of	a	broadband	carrier,	a	connection	is	allocated	a	particular	wavelength	(frequency)
carried	by	a	broadband	medium.

Multipoint	Bus	A	bus	that	is	shared	by	a	number	of	devices	(also	called	a	common	pathway	bus).
Multiprocessor	System	A	computer	system	containing	more	than	one	CPU.
Multiprogramming	Concurrent	execution	of	multiple	processes	within	a	single	CPU.



Multistage	Interconnection	Network	(Shuffle	Network)	Switched	network	built	using	2	×	2	switches
and	multiple	stages.	Examples	include	the	Omega	network.

Multitasking	Running	multiple	processes	concurrently.	Differs	from	multiprogramming	in	that	often	the
processes	belong	to	the	same	user.

Multithreading	The	process	of	subdividing	a	process	into	different	threads	of	control	to	increase
concurrency.

n-ary	Tree	An	acyclic	data	structure	consisting	of	a	root,	internal	nodes,	and	leaves.	The	root	and	each
internal	node	can	have,	at	most,	n	pointers	to	other	nodes	(thus,	at	most,	n	descendants).	Leaves	are
nodes	that	have	no	descendant	nodes.

n-Tiered	Architecture	Execution	environment	where	processing	takes	place	on	more	than	one	computer
system.	Client-server	systems	often	use	a	3-tiered	architecture,	one	tier	being	a	desktop	computer,	the
second	an	application	server,	and	the	third	a	database	server.	The	application	server	manages	the
programs	and	the	interaction	between	the	desktop	computer	and	the	database	server.

NAP	Acronym	for	Network	Access	Point,	a	switching	center	used	by	regional	Internet	Service	Providers
(ISPs)	to	connect	to	other	regional	ISPs.

Narrowband	Cable	A	class	of	guided	network	media	optimized	for	a	single	frequency	range.
Network	Access	Point	See	NAP.
Network	Interface	Card	(NIC)	An	I/O	expansion	circuit	board	that	usually	encompasses	the	lowest

three	layers	of	the	OSI	protocol	stack.	An	NIC	converts	the	parallel	data	passed	on	the	system	bus	to
the	serial	signals	broadcast	on	a	communications	medium.	NICs	convert	system	data	from	binary	to
the	coding	of	the	network	(and	vice	versa).

Network	of	Workstations	(NOW)	A	collection	of	distributed	workstations	that	works	in	parallel	only
while	the	nodes	are	not	being	used	as	regular	workstations.

Neural	Network	A	type	of	computer	system	composed	of	large	numbers	of	simple	processing	elements
that	individually	handle	one	piece	of	a	much	larger	problem.	The	processing	elements	must	undergo
training	via	a	specific	learning	algorithm.

Nibble	One	of	two	4-bit	halves	of	a	byte.	Bytes	consist	of	one	high-order	and	one	low-order	nibble.
NIC	See	Network	Interface	Card.
Noise	The	electrical	phenomena	that	work	against	the	accurate	transmission	of	signals.	Noise	strength	is

measured	in	decibels	(dB).
Non-Return-to-Zero	(NRZ)	A	code	devised	for	the	transmission	of	data	where	1s	are	always	high	and

0s	always	low,	or	vice	versa.	Typically,	“high”	is	+5	or	+3	volts	and	“low”	is	–5	or	–3	volts.	This
code	is	ineffective	if	the	sender	and	receiver	are	not	in	exact	synchronization.	In	magnetic	storage,	the
NRZ	code	is	implemented	by	flux	reversals.

Non-Return-to-Zero-Invert	(NRZI)	A	code	for	data	transmission	and	storage	that	provides	a	transition
—either	high	to	low	or	low	to	high—for	each	binary	one,	and	no	transition	for	binary	zero.	The
frequent	transitions	help	to	maintain	synchronization.

Nonblocking	Cache	A	cache	that	can	process	multiple	requests	concurrently.
Nonblocking	Interconnection	Network	A	network	that	allows	new	connections	in	the	presence	of	other

simultaneous	connections.
Nonmaskable	Interrupt	A	high-priority	interrupt	that	cannot	be	disabled	and	must	be	acknowledged.
Nonrecurring	Engineering	Costs	See	NRE.



Nonuniform	Memory	Access	(NUMA)	A	type	of	shared	memory	MIMD	machine	that	provides	each
processor	with	its	own	piece	of	memory,	resulting	in	near-memory	accesses	taking	less	time	than
memory	belonging	to	other	processors.

Normalization	1.	In	the	context	of	computer	performance	analysis,	normalization	is	the	process	of
expressing	a	statistical	performance	measure	as	a	ratio	to	the	performance	of	a	system	to	which
comparisons	are	made.	2.	In	the	context	of	floating-point	representation,	normalizing	a	number	means
adjusting	the	exponent	so	that	the	leftmost	bit	of	the	significand	(fractional	part)	will	be	a	1.

NOW	See	Network	of	Workstations.
NRE	Nonrecurring	engineering	costs	involved	in	the	production	of	a	customized	integrated	circuit.	NRE

includes	the	cost	of	licensing	intellectual	property	designs	and	creating	the	circuit	mask.
NRZ	See	Non-Return-to-Zero.
NRZI	See	Non-Return-to-Zero-Invert.
Nybble	See	Nibble.
Nyquist’s	Law	Law	from	Henry	Nyquist	that	shows	no	signal	can	convey	information	at	a	rate	faster	than

twice	its	frequency.	Symbolically:	DataRatemax	=	2	×	bandwidth	×	log2	(number	of	signal	levels)	baud.
Octet	1.	A	group	of	three	bits	that	represents	a	single	octal	digit.	2.	In	Internet	networking,	refers	to	a

group	of	8	consecutive	bits	(otherwise	known	as	a	byte).
Offset	Binary	Representation	See	Excess-M	Representation.
One’s	Complement	Notation	A	method	used	to	represent	signed	binary	values.	Positive	numbers	are

simply	represented	in	signed	magnitude	format;	negative	numbers	are	represented	by	flipping	all	the
bits	in	the	representation	of	the	corresponding	positive	number.

Opcode	Short	for	operation	code.	The	part	of	an	instruction	that	specifies	the	operation	to	be	executed.
Operating	System	Software	that	controls	the	overall	operation	of	a	computer	system	to	include	process

scheduling	and	management,	process	protection,	memory	management,	I/O,	and	security.
Operation	Counting	The	process	of	estimating	the	number	of	instruction	types	that	are	executed	in	a

loop,	then	determining	the	number	of	machine	cycles	required	for	each	instruction	type.	This
information	is	then	used	to	achieve	a	better	instruction	balance	and,	possibly,	increase	performance	of
a	program.

Optical	Cable	A	class	of	guided	network	media,	often	called	fiber-optic	cable,	that	consists	of	bundles	of
thin	(1.5	to	125µm)	glass	or	plastic	strands	surrounded	by	a	protective	plastic	sheath.	A	fiber-optic
strand	conducts	light	in	a	manner	comparable	to	how	copper	wire	conducts	electricity	and	household
plumbing	“conducts”	water.

Optical	Computer	A	computer	that	uses	photons	of	laser	light	to	carry	out	logic	functions.
Optical	Jukebox	Robotic	optical	storage	libraries	that	provide	direct	access	to	large	numbers	of	optical

disks.	Jukeboxes	can	store	dozens	to	hundreds	of	disks,	for	total	capacities	of	50	to	1,200GB	and
upwards.

Orthogonality	An	instruction	set	is	said	to	be	orthogonal	if	the	instructions	are	independent	(there	is	no
overlap	in	functionality)	and	consistent	(there	are	no	special	cases,	no	special	registers,	all
addressing	modes	can	be	used	with	any	data	type	or	instruction	type,	instructions	have	the	same
format,	etc.).	In	the	context	of	programming,	an	orthogonal	instruction	set	is	one	in	which	all
instructions	have	the	same	format	and	register	usage	and	can	therefore	be	used	interchangeably.	(The
choice	of	register	to	use	is	orthogonal	to	the	choice	of	instruction.)



Overclocking	A	method	used	to	improve	system	performance	that	pushes	the	bounds	of	specific	system
components.

Overflow	A	condition	where	a	register	is	not	large	enough	to	contain	the	result	of	an	arithmetic	operation.
In	signed	arithmetic	operations,	overflow	is	detectable	when	the	carry	in	to	the	sign	bit	does	not	equal
the	carry	out	from	the	sign	bit.

Overlay	A	memory	management	method	where	the	programmer	controls	the	timing	of	program	submodule
loading.	Today,	this	task	is	usually	performed	automatically	through	the	system’s	memory	management
facilities.

P-Code	Languages	Languages	that	are	both	compiled	and	interpreted.
PaaS	Abbreviation	for	Platform-as-a-Service,	where	an	outside	party	provides	server	hardware,

operating	systems,	database	services,	security	components.	These	facilities	are	provided	over	the
Internet	from	a	location	that	is	often	unknown	to	the	consumer.	The	consumer	of	these	services	also
has	no	concerns	regarding	the	underlying	hardware	of	PaaS.	Compare	with	IaaS	and	SaaS.

Packed	BCD	BCD	values	that	are	placed	in	adjacent	nibbles	in	a	byte,	allowing	one	nibble	for	the	sign.
Page	Fault	Occurs	when	a	requested	page	is	not	in	main	memory	and	must	be	copied	to	memory	from

disk.
Page	Field	The	part	of	an	address	that	specifies	the	page	(either	virtual	or	physical)	in	which	the

requested	data	resides.
Page	Frames	The	equal-sized	chunks	or	blocks	into	which	main	memory	(physical	memory)	is	divided

when	implementing	paged	virtual	memory.
Page	Mapping	The	mechanism	by	which	virtual	addresses	are	translated	into	physical	ones.
Page	Table	A	table	that	records	the	physical	location	of	a	process’s	virtual	pages.
Pages	The	fixed-sized	blocks	into	which	virtual	memory	(the	logical	address	space)	is	divided,	each

equal	in	size	to	a	page	frame.	Virtual	pages	are	stored	on	disk	until	needed.
Paging	1.	A	method	used	for	implementing	virtual	memory	in	which	main	memory	is	divided	into	fixed-

sized	blocks	(frames)	and	programs	are	divided	into	the	same	size	blocks	(pages).	2.	The	process	of
copying	a	virtual	page	from	disk	to	a	page	frame	in	main	memory.

PAL	See	Programmable	Array	Logic.
Parallel	Communication	Communication	in	which	an	entire	byte	(or	word)	is	transmitted	at	once	across

the	communication	medium.	The	communication	medium	(data	bus	or	peripheral	interface	cable)	must
therefore	have	one	conductor	for	each	bit.	Other	conductors	are	needed	to	manage	the	data	exchange.
The	presence	of	a	clock	signal	(or	strobe)	is	critical	to	the	proper	handling	of	parallel	data
transmission.	Compare	to	Serial	Communication.

Parallel	Processor	A	computer	that	is	capable	of	carrying	out	multiple	calculations	simultaneously.
Parity	The	simplest	error-detection	scheme	that	is	a	function	of	the	sum	of	the	1s	in	a	byte.	A	parity	bit	is

turned	“on”	or	“off”	depending	on	whether	the	sum	of	the	other	bits	in	the	byte	is	even	or	odd.
Parking	Heads	Done	when	a	hard	disk	is	powered	down.	The	read/write	heads	retreat	to	a	safe	place	to

prevent	damage	to	the	medium.
Partial	Response	Maximum	Likelihood	See	PRML.
PC	(Program	Counter)	Register	that	holds	the	address	of	the	next	instruction	to	be	executed	in	a

program.
PCI	See	Peripheral	Component	Interconnect.



PDH	See	Plesiochronous	Digital	Hierarchy.
PDU	See	Protocol	Data	Unit.
Perceptron	A	single	trainable	neuron	in	a	neural	network.
Peripheral	Component	Interconnect	(PCI)	A	local	bus	standard	from	Intel	that	supports	the	connection

of	multiple	peripheral	devices.
Pervasive	Computing	See	Ubiquitous	Computing.
Phase	Modulation	(PM)	See	Manchester	Code.
Photonic	Computer	See	Optical	Computer.
Physical	Address	The	real	address	in	physical	memory.
Pile	of	PCs	(POPC)	A	cluster	of	dedicated	heterogeneous	hardware	used	to	build	a	parallel	system.

BEOWULF	is	an	example	of	a	POPC.
Pipelining	The	process	of	breaking	down	the	fetch–decode–execute	cycle	into	smaller	steps	(pipeline

stages),	where	some	of	these	smaller	steps	can	be	overlapped	and	performed	in	parallel.
Platform-as-a-Service	See	PaaS.
PLD	(Programmable	Logic	Device)	Any	of	a	general	class	of	logic	devices	that	can	be	configured	(or

modified)	to	provide	a	desired	logic	function.	PLDs	include	(but	are	not	limited	to)	programmable
array	logic	(PAL),	programmable	logic	array	(PLA),	and	Field-Programmable	Gate	Array	(FPGA)
devices.

Plug-and-Play	The	ability	of	a	computer	to	configure	devices	automatically.
PM	See	Manchester	Code.
PNG	(Portable	Network	Graphics)	Data	compression	that	first	encodes	the	message	using	Huffman

code	and	then	compresses	the	message	again	using	LZ77	compression.
Point-to-Point	Bus	A	bus	connecting	two	specific	components	in	a	system.
Pointer	A	memory	address	stored	as	a	data	value	in	a	register	or	memory.
Polling	When	a	system	continually	monitors	registers	or	communications	ports,	testing	them	for	the

presence	of	data	signals.
POP	See	Internet	Service	Provider.
Port	1.	A	connection	socket	(interface)	on	a	computer	system	that	provides	access	to	an	I/O	bus	or

controller.	2.	In	the	TCP/IP	protocol	suite,	a	port	is	a	numerical	value	that	identifies	a	particular
protocol	service.

Portable	Network	Graphics	See	PNG.
POSIX	An	acronym	for	Portable	Operating	System	Interface,	an	effort	by	the	IEEE	to	define	a	“standard”

Unix.	The	current	standard	is	1003.1-2001,	which	includes	realtime	extensions	for	shared	memory,
I/O	interrupt	handling,	and	priority	scheduling.	POSIX	is	pronounced	paw-zicks.

Postfix	Notation	One	of	the	orderings	of	operators	and	operands	that	places	the	operators	after	operands,
such	as	23+.	Also	known	as	Reverse	Polish	Notation.

Precision	In	the	context	of	numeric	representation,	precision	deals	with	how	much	information	we	have
about	a	value	and	the	amount	of	information	used	to	represent	the	value.

Prefetching	A	technique	for	reducing	memory	or	disk	accesses.	When	using	prefetching,	multiple	pages
from	memory	are	read,	or	a	disk	reads	a	number	of	sectors	subsequent	to	the	one	requested	with	the
expectation	that	one	or	more	of	the	subsequent	pages	or	sectors	will	be	needed	“soon.”



Prefix	Notation	One	of	the	orderings	of	operators	and	operands	that	places	the	operators	before	the
operands,	such	as	+23.

Price-Performance	Ratio	One	way	of	measuring	the	“value”	of	a	particular	system	based	on	its	stated
performance.	Mathematically,	a	price-performance	ratio	is	found	by	dividing	the	price	of	a	system	by
a	meaningful	performance	metric.	A	price-performance	ratio	is	only	as	good	as	the	metric	used	in	the
divisor	and	only	as	meaningful	as	the	total	cost	of	ownership	of	the	system.

Principle	of	Equivalence	of	Hardware	and	Software	The	principle	that	states	that	anything	that	can	be
done	with	software	can	also	be	done	with	hardware,	and	anything	that	can	be	done	with	hardware	can
also	be	done	with	software.

PRML	Partial	response	maximum	likelihood	is	a	widely	employed	magnetic	media	encoding	method
consisting	of	a	convolutional	code	and	a	Viterbi	detector.	While	reading	a	disk	(or	tape),	magnetic
detector	circuits	take	several	samples	across	each	bit	cell.	These	waveforms	are	passed	to	a	Viterbi
detector	that	selects	the	most	probable	bit	pattern.	The	purpose	of	PRML	is	to	allow	bit	cells	to	be
much	closer	together.

Product-of-Sums	Form	A	standard	form	for	a	Boolean	expression	that	is	a	collection	of	sum	terms
ANDed	together.

Profiling	The	process	of	breaking	program	code	into	small	chunks	and	timing	each	of	these	chunks	to
determine	which	chunks	take	the	most	time.

Program	Counter	Register	(PC)	A	special	register	that	holds	the	address	of	the	next	instruction	to	be
executed.

Programmable	Array	Logic	(PAL)	A	configurable	logic	device	that	provides	a	sum-of-products	function
of	its	inputs.	Connections	are	made	(or	broken)	between	the	inputs	and	AND	gates	(for	the	product
part)	by	throwing	switches	or	blowing	fuses.	The	outputs	of	the	AND	gates	are	inputs	to	OR	gates	that
provide	the	sum	part.	Connections	between	the	OR	gates	and	the	AND	gates	are	not	configurable.
PALs	are	less	flexible	but	faster	than	PLAs.

Programmable	Logic	Array	(PLA)	A	configurable	logic	device	that	provides	a	product-of-sums
function	of	its	inputs.	Connections	are	made	(or	broken)	between	the	inputs	and	AND	gates	(for	the
product	part)	by	throwing	switches	or	blowing	fuses.	The	outputs	of	the	AND	gates	are	inputs	to	OR
gates	that	provide	the	sum	part.	Connections	between	the	OR	gates	and	the	AND	gates	may	also	be
configured	using	switches	or	fuses,	thus	providing	greater	flexibility	than	PALs.

Programmed	I/O	I/O	in	which	the	CPU	must	wait	while	the	I/O	module	completes	a	requested	I/O
operation.

PROM	(Programmable	ROM)	ROM	that	can	be	programmed	with	the	proper	equipment.
Protection	Fault	A	condition	caused	by	a	process	attempting	to	use	the	protected	memory	of	another

process	or	the	operating	system.
Protocol	A	set	of	rules	to	which	communicating	entities	must	adhere	in	order	for	an	information	exchange

to	take	place.
Protocol	Data	Unit	(PDU)	A	data	communications	packet	that	contains	protocol	information	in	addition

to	a	data	payload.
QIC	See	Serpentine	Recording.
Quantum	Computer	A	computer	based	on	the	quantum	physics	of	particles	that	manipulates	information

as	qubits,	which	can	exist	in	multiple	states	simultaneously,	resulting	in	quantum	parallelism.



Qubit	The	basic	unit	of	quantum	information,	which	can	represent	a	0,	a	1,	or	both.	The	quantum
computing	equivalent	of	a	bit.

Queue	A	data	structure	optimized	for	first-come,	first-served	(FIFO)	element	processing.	Queue	elements
are	removed	in	the	same	order	in	which	they	arrived.

Race	Condition	A	situation	where	the	final	state	of	data	depends	not	on	the	correctness	of	the	updates,	but
on	the	order	in	which	they	were	accessed.

Radix	Complement	Given	a	number	N	in	base	r	having	d	digits,	the	radix	complement	of	N	is	defined	to
be	r	d	–	N	for	N	≠	0	and	0	for	N	=	0.

Radix	Point	A	separator	that	distinguishes	the	integer	part	of	a	number	from	its	fractional	part.
RAID	A	storage	system	that	improves	reliability	and	performance	by	providing	a	number	of

“inexpensive”	(or	“independent”)	small	disks	instead	of	a	single	large,	expensive	disk.	The	name	of
this	system	was	initially	“redundant	array	of	inexpensive	disks.”	Today,	the	translation	of	RAID	is
properly	given	as	“redundant	array	of	independent	disks.”

RAID-0	Also	known	as	drive	spanning;	places	data	in	stripes	across	several	disks.	RAID-0	offers	no
redundancy.

RAID-1	Also	known	as	mirroring;	writes	two	copies	of	data	onto	a	pair	of	independent	disks.
RAID-10	Combination	of	the	striping	of	RAID-0	with	the	mirroring	of	RAID-1.	RAID-10	gives	the	best

possible	read	performance	while	providing	the	best	possible	availability.
RAID-2	RAID	systems	that	contain	a	set	of	data	drives	and	a	set	of	Hamming	drives.	One	bit	of	data	is

written	to	each	data	drive,	with	the	Hamming	drives	containing	error	recovery	information	for	the	data
drives.	RAID-2	is	a	theoretical	RAID	design	with	no	commercial	implementations.

RAID-3	Popular	RAID	system	that	stripes	data	one	bit	at	a	time	across	all	of	the	data	drives	and	uses	one
drive	to	hold	a	simple	parity	bit.	The	parity	calculation	can	be	done	quickly	in	hardware	using	an
XOR	operation	on	each	data	bit.

RAID-4	A	theoretical	RAID	level	(like	RAID-2).	A	RAID-4	array,	like	RAID-3,	consists	of	a	group	of
data	disks	and	a	parity	disk.	Instead	of	writing	data	one	bit	at	a	time	across	all	of	the	drives,	RAID-4
writes	data	in	strips	of	uniform	size,	creating	a	stripe	across	all	of	the	drives	as	described	in	RAID-0.
Bits	in	the	data	strip	are	XORed	with	each	other	to	create	the	parity	strip.	RAID-4	is	essentially
RAID-0	with	parity.

RAID-5	Popular	RAID	system	that	builds	upon	RAID-4	with	the	parity	disks	spread	throughout	the	entire
array.

RAID-6	RAID	system	that	uses	two	sets	of	error-correction	strips	for	every	rank	(or	horizontal	row)	of
drives.	A	second	level	of	protection	is	added	with	the	use	of	Reed-Solomon	error-correcting	codes	in
addition	to	parity.

RAM	(Random	Access	Memory)	Volatile	memory	that	is	used	to	store	programs	and	data	on	a	computer.
Each	memory	location	has	a	unique	address.

RAMAC	Acronym	for	Random	Access	Method	of	Accounting	and	Control.	Released	by	IBM	in	1956,
RAMAC	was	the	first	commercial	disk-based	computer	system.

Range	In	the	context	of	numeric	representation,	the	interval	from	the	smallest	value	in	a	given	format	to
the	largest	value	in	that	same	format.

Real-Time	System	Computer	processing	that	reacts	to	physical	events	as	they	occur,	thus	requiring
rigorous	timing	constraints.	In	hard	real-time	systems	(with	potentially	fatal	results	if	deadlines	aren’t



met),	there	can	be	no	timing	errors.	In	soft	real-time	systems,	meeting	deadlines	is	desirable,	but	does
not	result	in	catastrophic	results	if	deadlines	are	missed.

Recording	Mode	See	CD	Recording	Mode.
Reed-Solomon	(RS)	Code	that	can	be	thought	of	as	a	CRC	that	operates	over	entire	characters	instead	of

only	a	few	bits.	RS	codes,	like	CRCs,	are	systematic:	the	parity	bytes	are	appended	to	a	block	of
information	bytes.

Reentrant	Code	Code	that	can	be	used	with	different	data.
Register	A	hardware	circuit	that	stores	binary	data.	Registers	are	located	on	the	CPU	and	are	very	fast.

Some	are	user-visible;	others	are	not.
Register	Addressing	An	addressing	mode	in	which	the	contents	of	a	register	are	used	as	the	operand.
Register	Indirect	Addressing	An	addressing	mode	in	which	the	contents	of	a	register	are	used	as	a

pointer	to	the	actual	location	of	the	operand.
Register	Transfer	Notation	(RTN)	[also	Register	Transfer	Language	(RTL)]	The	symbolic	notation

used	to	describe	the	behavior	of	microoperations.
Register	Window	Sets	(also	Overlapping	Register	Windows)	A	technique	used	by	RISC	architectures

to	allow	parameter	passing	to	be	done	by	simply	changing	which	registers	are	visible	to	the	currently
executing	procedure.

Register-Memory	Architecture	An	architecture	that	requires	at	least	one	operand	to	be	located	in	a
register	and	one	to	be	located	in	memory.

Repeater	An	OSI	Layer	1	device	that	amplifies	signals	sent	through	long	network	cabling	runs.
Replacement	Policy	The	policy	used	to	select	a	victim	cache	block	or	page	to	be	replaced.	(Necessary

for	set	associative	caching,	fully	associative	caching,	and	paging.)
Request	for	Comment	See	Internet	Engineering	Task	Force.
Resident	Monitor	Early	type	of	operating	system	that	allowed	programs	to	be	processed	without	human

interaction	(other	than	placing	the	decks	of	cards	into	the	card	reader).	Predecessor	to	modern
operating	system.

Resource	Conflict	A	situation	in	which	two	instructions	need	the	same	resource.	May	slow	down	a
pipelined	CPU.

Response	Time	The	amount	of	time	required	for	a	system	or	one	of	its	components	to	carry	out	a	task.
Reverse	Polish	Notation	(RPN)	See	Postfix	Notation.
RISC	(Reduced	Instruction	Set	Computer)	A	design	philosophy	in	which	each	computer	instruction

performs	only	one	operation,	instructions	are	all	the	same	size,	they	have	only	a	few	different	layouts,
and	all	arithmetic	operations	must	be	performed	between	registers.

RLL	See	Run-Length-Limited.
Robotic	Tape	Library	Also	known	as	a	tape	silo,	an	automated	tape	library	system	that	can	mount,

dismount,	and	keep	track	of	(catalog)	great	numbers	of	magnetic	tape	cartridges.	Robotic	tape
libraries	can	have	total	capacities	in	the	hundreds	of	terabytes	and	can	load	a	cartridge	at	user	request
in	less	than	half	a	minute.

Rock’s	Law	A	corollary	to	Moore’s	Law	that	states	that	the	cost	of	capital	equipment	to	build
semiconductors	will	double	every	four	years.

ROM	(Read-Only	Memory)	Nonvolatile	memory	that	always	retains	its	data.



Rose’s	Law	A	prediction	made	by	Geordie	Rose	that	states	that	the	number	of	qubits	that	can	be
assembled	to	successfully	perform	computations	will	double	every	12	months.

Rotational	Delay	The	time	required	for	a	requested	sector	to	position	itself	under	the	read/write	heads	of
a	hard	disk.

Router	A	sophisticated	hardware	device	connected	to	at	least	two	networks	that	determines	the
destination	to	which	a	packet	should	be	forwarded.

Run-Length-Limited	(RLL)	A	coding	method	where	block	character	code	words	such	as	ASCII	or
EBCDIC	are	translated	into	code	words	specially	designed	to	limit	the	number	of	consecutive	zeros
appearing	in	the	code.	An	RLL(d,	k)	code	allows	a	minimum	of	d	and	a	maximum	of	k	consecutive
zeros	to	appear	between	any	pair	of	consecutive	ones.

SaaS	Abbreviation	for	Software-as-a-Service,	which	characterizes	application	software	provided	over
the	Internet	as	a	service.	SaaS	typically	has	few	locally	installed	components.	The	consumer	of	the
service	has	no	knowledge	of	the	internals	of	either	the	application	or	its	supporting	infrastructure.
Compare	with	IaaS	and	PaaS.

SAS	See	Serial	Attached	SCSI.
SATA	See	Serial	ATA.
SCADA	Acronym	for	Supervisory	Control	and	Data	Acquisition	systems.	SCADA	systems	include	those

that	manage	large	industrial,	manufacturing,	transportation,	and	other	physical	systems.
SCAN	(C-SCAN)	A	disk-scheduling	algorithm	where	the	disk	arm	continually	sweeps	over	the	surface	of

the	disk,	stopping	when	it	reaches	a	track	for	which	it	has	a	request	in	its	service	queue.	This
approach	is	called	the	elevator	algorithm	because	of	its	similarity	to	how	skyscraper	elevators
service	their	passengers.	SCAN	has	a	variant,	called	C-SCAN	(for	circular	SCAN),	in	which	track
zero	is	treated	as	if	it	were	adjacent	to	the	highest-numbered	track	on	the	disk.

SCSI	An	acronym	for	Small	Computer	System	Interface,	a	disk	drive	connection	technology	that	allows
multiple	devices	to	be	daisy-chained	and	addressed	individually	through	a	single	host	adapter.	Has
been	expanded	to	include	numerous	connection	methods	through	the	SCSI-3	Architecture	Model
(SAM),	which	is	a	layered	system	with	protocols	for	communication	between	the	layers.	SAM
incorporates	Serial	Storage	Architecture	(SSA),	Serial	Bus	(also	known	as	IEEE	1394	or	FireWire),
Fibre	Channel,	and	Generic	Packet	Protocol	(GPP)	into	a	unified	architectural	model.

SDH	See	Synchronous	Digital	Hierarchy.
SDRAM	(Synchronous	Dynamic	Random	Access	Memory)	Memory	that	is	synchronized	with	the	clock

speed	with	which	the	processor	bus	is	optimized.
Secondary	Memory	Memory	located	off	the	CPU	and	out	of	the	system	itself.	Examples	include	magnetic

disk,	magnetic	tape,	and	CD-ROM.
Seek	Time	The	time	it	takes	for	a	disk	arm	to	position	itself	over	a	requested	track.
Segment	Table	A	table	that	records	the	physical	locations	of	a	process’s	segments.
Segmentation	Similar	to	paging	except	that	instead	of	dividing	the	virtual	address	space	into	equal,

fixed-sized	pages,	and	the	physical	address	space	into	equal-sized	page	frames,	the	virtual	address
space	is	divided	into	logical,	variable-length	units,	or	segments.

Self-Relative	Addressing	An	addressing	mode	in	which	the	address	of	the	operand	is	computed	as	an
offset	from	the	current	instruction.

Semantic	Gap	The	logical	gap	that	exists	between	the	physical	components	of	a	computer	and	a	high-



level	language.
Sequential	Circuit	A	logic	device	whose	output	is	defined	in	terms	of	its	current	inputs	in	addition	to	its

previous	outputs.
Serial	ATA	(SATA)	A	serial	implementation	of	the	ATA	interface.	Its	advantages	include	much	faster

speeds	(up	to	600MBps	envisioned)	and	thinner	cables	that	facilitate	airflow	inside	the	main
computer	cabinets.	SATA	will	eventually	replace	parallel	ATA.

Serial	Attached	SCSI	(SAS)	A	serial	implementation	of	the	SCSI	interface.	Its	advantages	include	much
faster	speeds	(up	to	600MBps	envisioned)	and	thinner	cables	that	facilitate	airflow	inside	the	main
computer	cabinets.	SAS	supports	more	than	16,000	devices	in	a	domain.	SAS	has	replaced	parallel
SCSI	in	all	new	equipment.

Serial	Communication	A	method	of	transmitting	data	where	a	data	byte	is	sent	one	bit	at	a	time.	Serial
communication	is	asynchronous:	It	requires	no	separate	timing	signal	within	the	transmission	medium.
Compare	to	Parallel	Communication.

Serial	Storage	Architecture	See	SSA.
Serpentine	Recording	A	method	of	placing	bits	on	a	magnetic	tape	medium	“lengthwise,”	with	each	byte

aligning	in	parallel	with	the	long	edge	of	the	tape.	Popular	serpentine	tape	formats	include	digital
linear	tape	(DLT)	and	Quarter-Inch	Cartridge	(QIC).

Server	Consolidation	The	act	of	combining	numerous	(usually	small)	servers	into	one	(usually	larger)
system.

Server	Farm	A	large,	controlled	environment	computer	facility	containing	great	numbers	of	small	server
systems.

Service	Access	Point	(SAP)	A	numerical	value	that	identifies	the	protocol	service	requested	during	a
communications	session.	In	TCP,	this	SAP	is	a	numerical	value	called	a	port.

Set	Associative	Cache	(also	n-Way	Set	Associative	Cache)	A	cache-mapping	scheme	that	requires
cache	to	be	divided	into	sets	of	associative	memory	blocks.	Main	memory	is	then	modularly	mapped
to	a	given	set.

Set	Field	That	part	of	an	address	that	specifies	the	corresponding	cache	set.
Shannon’s	Law	Articulated	in	1948	by	Claude	Shannon,	a	measure	of	the	signalcarrying	capacity	of	an

imperfect	transmission	medium.	In	symbols:	DataRatemax	=	Bandwidth	×	log2	[1	+	(Signal	dB	÷	Noise
dB)]	baud.

Shared	Memory	Systems	Systems	in	which	all	processors	have	access	to	a	global	memory	and
communication	is	via	shared	variables.

Short	Stroking	The	practice	of	placing	files	on	a	disk	in	such	a	way	as	to	minimize	disk	arm	motion,	thus
reducing	access	time.

Shortest	Seek	Time	First	(SSTF)	A	disk-scheduling	algorithm	that	arranges	access	requests	so	that	the
disk	arm	services	the	track	nearest	its	current	location.

Shuffle	Network	See	Multistage	Interconnection	Network.
Signal-to-Noise	Ratio	A	measure	of	the	quality	of	a	communications	channel.	The	signal-to-noise	ratio

varies	in	proportion	to	the	frequency	of	the	signal	carried	over	the	line.	(The	higher	the	frequency,	the
greater	the	signal-to-noise	ratio.)	Mathematically:	Signal-to-Noise	Ratio	(dB)	=	10	log10	(Signal	dB	÷
Noise	dB).

Signed	Magnitude	A	binary	representation	of	a	number	having	a	sign	as	its	leftmost	bit,	where	the



remaining	bits	comprise	its	absolute	value	(or	magnitude).
Significand	A	term	introduced	by	IEEE	to	refer	to	the	fractional	part	of	a	number	expressed	in	floating-

point	notation.	IEEE’s	definition	includes	an	implied	one	to	the	left	of	the	binary	point	of	a	normalized
number;	however,	the	term	is	widely	accepted	to	refer	to	the	fractional	part	of	a	floating-point	number
for	any	given	representation.

SIMD	(Single	Instruction,	Multiple	Data)	An	architecture	with	a	single	point	of	control	that	executes	the
same	instruction	simultaneously	on	multiple	data	values.	Examples	include	vector	processors	and
array	processors.

Singularity	See	Technical	Singularity.
SISD	(Single	Instruction,	Single	Data)	An	architecture	with	a	single	instruction	stream	and	only	one	data

stream.	Examples	include	the	von	Neumann	architecture	employed	in	most	current	PCs.
SLED	(Single	Large	Expensive	Disk)	A	term	coined	along	with	the	concept	of	RAID.	SLED	systems	are

thought	to	be	less	reliable	and	perform	poorly	as	compared	to	RAID	systems.
Small	Computer	System	Interface	See	SCSI.
SMP	(Symmetric	Multiprocessors)	An	MIMD	shared	memory	architecture.
SNA	See	Systems	Network	Architecture.
SOC	See	System	on	a	Chip.
Software-as-a-Service	See	SaaS.
Solid-State	Drive	See	SSD.
SPEC	Acronym	used	by	the	Standard	Performance	Evaluation	Corporation.	SPEC’s	objective	is	to

establish	equitable	and	realistic	methods	for	computer	performance	measurement.	SPEC	produces
respected	benchmarking	suites	for	file	server,	Web,	desktop	computing	environments,	enterprise-level
multiprocessor	systems	and	super-computers,	and	multimedia	as	well	as	graphics-intensive	systems.

Speculative	Execution	The	act	of	fetching	an	instruction	and	beginning	its	execution	in	the	pipeline
before	it	is	certain	whether	the	instruction	will	need	to	execute.	This	work	must	be	undone	if	a
prediction	is	found	to	be	incorrect.

Speedup	See	Amdahl’s	Law.
SPMD	(Single	Program,	Multiple	Data)	An	extension	to	Flynn’s	taxonomy	describing	systems	that

consist	of	multiprocessors,	each	with	its	own	data	set	and	program	memory.
Spooling	Acronym	for	simultaneous	peripheral	operation	online,	a	process	whereby	printed	output	is

written	to	disk	prior	to	being	sent	to	a	printer,	helping	to	compensate	for	the	great	difference	between
CPU	speed	and	printer	speed.

SRAM	(Static	RAM)	RAM	that	holds	its	contents	as	long	as	power	is	available	(unlike	dynamic	RAM,
which	requires	recharges	to	maintain	data).

SSA	An	abbreviation	for	Serial	Storage	Architecture.	SSA’s	design	supports	multiple	disk	drives	and
multiple	hosts	in	a	redundant	loop	configuration.	Because	of	this	redundancy,	one	drive	or	host
adapter	can	fail	and	the	rest	of	the	disks	will	remain	accessible.	The	dual	loop	topology	of	the	SSA
architecture	also	allows	the	base	throughput	to	be	doubled	from	40MBps	to	80MBps.	SSA	is	losing
market	share	to	Fibre	Channel.

SSD	Abbreviation	for	solid-state	drive;	a	mass	storage	device	consisting	of	a	microcontroller	and	a	large
array	of	flash	memory.	SSDs	are	more	rugged	and	provide	faster	access	times	than	conventional
magnetic	disks.



SSI	(Small-Scale	Integration)	Integrated	circuits	with	10	to	100	components	per	chip.
SSTF	See	Shortest	Seek	Time	First.
Stack	A	simple	data	structure	optimized	for	last-in,	first-out	(LIFO)	element	processing.	Stack	elements

are	removed	in	the	reverse	order	in	which	they	arrived.
Stack	Addressing	An	addressing	mode	in	which	the	operand	is	assumed	to	be	on	the	system	stack.
Stack	Architecture	An	architecture	that	uses	a	stack	to	execute	instructions,	where	the	operands	are

implicitly	found	on	top	of	the	stack.
Standard	Performance	Evaluation	Corporation	See	SPEC.
Star-Connected	Network	A	network	using	a	central	hub	through	which	all	messages	must	pass.
Static	Interconnection	Network	A	network	that	establishes	a	fixed	path	between	two	entities	(either	two

processors	or	a	processor	and	a	memory)	that	cannot	change	from	one	communication	to	the	next.
Statistical	Coding	A	data	compression	method	where	the	frequency	of	the	occurrence	of	a	symbol

determines	the	length	of	the	output	symbol.	Symbol	probabilities	are	written	to	a	file	along	with	the
information	required	to	decode	the	message.	Symbols	that	occur	with	greatest	frequency	in	the	input
become	the	smallest	symbols	in	the	output.

Status	Register	A	special	register	that	monitors	and	records	special	conditions	such	as	overflow,
carries,	and	borrows.

Storage	Area	Network	Networks	built	specifically	for	data	storage	access	and	management.
Strictly	Inclusive	Cache	A	cache	that	guarantees	that	all	data	resident	in	one	level	is	also	found	in

another	level	of	the	cache	hierarchy.
Subnet	A	subdivision	of	a	larger	network.	Under	the	TCP/IP	protocol,	a	subnet	is	a	network	consisting	of

all	devices	whose	IP	addresses	have	the	same	prefix.
Subsystem	A	logical	computing	environment	usually	established	to	facilitate	management	of	related

applications	or	processes.
Subtrahend	See	Minuend.
Sum-of-Products	Form	A	standard	form	for	a	Boolean	expression	that	is	a	collection	of	product	terms

ORed	together.
Superpipelining	The	process	of	combining	superscalar	concepts	with	pipelining,	by	dividing	the	pipeline

stages	into	many	small	stages,	so	more	than	one	stage	can	be	executed	during	one	clock	cycle.
Superpositioning	In	quantum	computing,	the	phenomenon	in	which	a	system	exists	in	more	than	one	state

simultaneously.
Superscalar	A	design	methodology	for	computer	architecture	in	which	the	CPU	has	multiple	ALUs	and

can	issue	more	than	one	instruction	per	clock	cycle.
Supervised	Learning	A	type	of	learning	used	in	training	neural	networks	that	assumes	prior	knowledge	of

correct	results,	which	are	fed	to	the	neural	net	during	the	training	phase.
Supervisory	Control	and	Data	Acquisition	See	SCADA.
Switch	A	device	that	provides	point-to-point	interconnection	between	system	components.	In	the	context

of	data	communications,	a	switch	is	a	Layer	2	device	that	creates	a	point-to-point	connection	between
one	of	its	input	ports	and	one	of	its	output	ports.

Switching	Network	A	network	that	connects	processors	and	memories	via	switches	(either	crossbar	or	2
×	2	switches)	that	allows	for	dynamic	routing.



Symbol	Table	The	table	built	by	an	assembler	that	stores	the	set	of	correspondences	between	labels	and
memory	addresses.

Symbolic	Logic	See	Boolean	Algebra.
Synchronous	Circuits	Sequential	circuits	that	use	clocks	to	order	events.	The	output	values	of	these

circuits	can	change	only	when	the	clock	ticks.
Syndrome	A	group	of	error-checking	bits.
Synthetic	Benchmark	A	performance	metric	derived	from	a	program	written	to	exercise	particular

system	components.	By	running	the	synthetic	benchmark	on	various	systems,	the	resulting	execution
time	produces	a	single	performance	metric	across	all	of	the	systems	tested.	Better-known	synthetic
benchmarks	are	the	Whetstone,	Linpack,	and	Dhrystone	metrics.

System	Bus	An	internal	bus	commonly	found	on	PCs	that	connects	the	CPU,	memory,	and	all	other
internal	components.

System	on	a	Chip	(SOC)	A	highly	complex	embedded	system	component	sometimes	consisting	of	more
than	one	processor	and	several	diverse	supporting	circuits.	SOCs	have	large	memories,	enabling	them
to	support	full-featured	operating	systems.	When	SOCs	comprise	more	than	one	processor	core,	they
often	do	not	share	the	same	clock	and	can	have	different	instruction	sets	and	architectures.	SOCs	get
their	name	from	the	fact	that	they	etch	fully	functional	systems	on	a	single	die,	as	opposed	to	socketing
several	different	chips	on	a	printed	circuit	board.

System	Simulation	Software	models	for	predicting	aspects	of	system	behavior	without	the	use	of	the
exact	live	environment	that	the	simulator	is	modeling.	Simulation	is	useful	for	estimating	the
performance	of	systems	or	system	configurations	that	do	not	yet	exist.

Systematic	Error	Detection	An	error-detection	method	where	error-checking	bits	are	appended	to	the
original	information	byte.

Systems	Network	Architecture	(SNA)	An	early	proprietary	network	technology	invented	by	IBM.	This
system	originally	consisted	of	dumb	terminals	that	were	polled	by	communications	controllers.	The
communications	controllers,	in	turn,	communicated	with	a	communications	front-end	processor	that
was	connected	to	a	host	(mainframe)	computer.

Systolic	Arrays	A	variation	of	SIMD	computers	that	incorporates	large	arrays	of	simple	processors	that
use	vector	pipelines	for	data	flow	and	also	incorporates	a	high	degree	of	parallelism.

Tag	Field	That	part	of	an	address	that	specifies	the	cache	tag.
Tape	Silo	See	Robotic	Tape	Library.
TCM	See	Trellis	Code	Modulation.
TCO	See	Total	Cost	of	Ownership.
TCP	A	connection-oriented	protocol	used	by	the	Internet.	TCP	is	a	self-managing	protocol	that	ensures

the	accurate,	sequenced	delivery	of	data	segments.
Technical	Singularity	A	theoretical	point	in	time	when	human	technology	has	progressed	to	the	point

where	it	will	fundamentally	and	irreversibly	alter	human	development.
Thrashing	Occurs	when	needed	blocks	or	pages	are	constantly	brought	into	memory	but	immediately

replaced.
Thread	A	lightweight	or	“mini”	process.
Throughput	A	measure	of	the	number	of	concurrent	tasks	that	a	system	can	carry	out	without	adversely

affecting	response	time.



Thunking	The	process	of	converting	16-bit	instructions	to	32-bit	instructions	in	a	Microsoft	Windows
system.

Timesharing	A	multiuser	computer	system	where	the	CPU	switches	between	user	processes	very	quickly,
giving	each	user	a	small	timeslice	(portion	of	processor	time).

Timeslice	See	Timesharing.
Total	Cost	of	Ownership	The	amount	of	money	that	a	computer	system	will	cost	over	a	given	period	of

time,	perhaps	over	the	system’s	expected	life.	A	useful	TCO	figure	will	include,	at	minimum,	the
purchase	price	of	the	exact	configuration	to	be	used	including	system	software,	expected	expansions
and	upgrades	to	the	system,	hardware	and	software	maintenance	fees,	and	operations	staff	manpower,
as	well	as	facilities	costs	including	floor	space,	backup	power,	and	air-conditioning.

TPC	An	abbreviation	for	Transaction	Processing	Performance	Council.	The	TPC	produces	benchmark
suites	for	servers	that	support	transactions,	Web	commerce,	and	data	warehouses	(decision	support
systems).

Trace	Cache	A	variant	of	an	instruction	cache	that	is	used	to	store	instruction	sequences	that	have	already
been	decoded.

Transaction	Processing	Performance	Council	See	TPC.
Transfer	Time	The	sum	of	access	time	and	the	time	it	takes	to	actually	read	data	from	a	hard	disk.	The

time	varies	according	to	how	much	data	is	read.
Transistor	Short	for	transfer	resistor,	the	solid-state	version	of	the	triode,	a	device	that	amplifies	a	signal

or	opens	or	closes	a	circuit.	The	technology	used	in	the	second	generation	of	computers.
Translation	Look-aside	Buffer	(TLB)	A	cache	for	a	page	table.	Entries	consist	of	(virtual	page	number,

physical	frame	number)	pairs.
Transmission	Control	Performance	Protocol	See	TCP.
Transparent	Bridge	Sophisticated	network	devices	having	the	ability	to	learn	the	address	of	every

device	on	each	segment.	Transparent	bridges	can	also	supply	management	information	such	as
throughput	reports.

Transport	Latency	The	time	a	message	spends	in	the	network.
Tree	Network	A	network	that	arranges	entities	in	noncyclic	tree	structures.
Tri-State	Device	A	circuit	that	uses	an	additional	input	value	to	determine	when	current	passes	through

the	device	and	when	it	does	not,	thus	resulting	in	three	potential	outputs:	0,	1,	or	nothing.
Trie	An	acyclic	(n-ary	tree)	data	structure	that	stores	partial	data	key	values	in	each	of	its	nodes.	The	key

value	is	assembled	as	a	search	proceeds	down	the	trie.	Internal	nodes	contain	a	sufficient	number	of
pointers	to	direct	a	search	to	the	desired	key	or	to	the	next	level	of	the	trie.

Truth	Table	A	table	that	describes	a	logic	function	and	shows	the	relationships	between	all	possible
values	for	the	input	values	and	the	results	of	those	inputs	into	the	function.

Twisted	Pair	A	pair	of	insulated	wires	twisted	together	and	used	to	transmit	electrical	signals.
Two’s	Complement	Notation	A	method	used	to	represent	signed	binary	values.	Positive	numbers	are

simply	represented	in	signed-magnitude	representation;	negative	numbers	are	represented	by	flipping
all	the	bits	in	the	representation	of	the	corresponding	positive	number	and	adding	one.

Ubiquitous	Computing	The	concept	of	integrating	computers	into	our	environments	in	such	a	way	that
data	and	network	access	become	transparent	but	constantly	available.

ULSI	(Ultra-Large-Scale	Integration)	More	than	1	million	components	per	chip.



UML	Unified	Modeling	Language,	first	released	in	1996	by	three	Rational	Software	object-oriented
design	pioneers:	Grady	Booch,	Ivar	Jacobson,	and	James	Rumbaugh.	UML	brought	together	several
object-oriented	modeling	systems	under	one	standard	that	now	falls	under	the	auspices	of	the	Object
Management	Group	(OMG).

Underflow	See	Divide	Underflow.
Unguided	Transmission	Media	Electromagnetic	or	optical	carrier	waves	that	convey	data

communications	signals.	This	media	class	includes	wireless	broadcast,	microwave,	satellite,	and
free-space	optics.

Unicode	A	16-bit	international	character	code	that	can	express	every	language	in	the	world.	The	lower
127	characters	of	the	Unicode	character	set	are	identical	to	the	ASCII	character	set.

Unified	Cache	Cache	that	holds	the	more	recently	used	data	and	instructions	for	an	executing	program.
Unified	Modeling	Language	See	UML.
Uniform	Memory	Access	(UMA)	Shared	memory	MIMD	machines	in	which	memory	accessed	by	any

processor	to	any	memory	takes	the	same	amount	of	time.
Universal	Gate	So-called	because	any	electronic	circuit	can	be	constructed	using	only	this	kind	of	gate.

(NAND	and	NOR	are	both	examples	of	universal	gates.)
Universal	Serial	Bus	See	USB.
Unsupervised	Learning	A	type	of	learning	used	in	training	neural	networks	that	does	not	provide	the

correct	output	to	the	network	during	training.
USB	(Universal	Serial	Bus)	An	external	bus	standard	used	in	USB	ports	that	supports	hot	plugging	with	a

variety	of	devices.
Vacuum	Tube	The	somewhat	undependable	technology	used	in	Generation	Zero	of	computers.
Vector	Processors	Specialized,	heavily	pipelined	processors	that	perform	efficient	operations	on	entire

vectors	and	matrices	at	once.	Register–register	vector	processors	require	all	operations	to	use
registers	as	source	and	destination	operands.	Memory–memory	vector	processors	allow	operands
from	memory	to	be	routed	directly	to	the	arithmetic	unit.

Verilog	A	popular	hardware	definition	language	used	in	designing	integrated	circuits.	Verilog	was	created
by	Gateway	Design	Automation	in	1983	and	released	into	the	public	domain	in	1990	soon	after
Cadence	Design	Systems	bought	Gateway.	Verilog	is	now	standardized	as	IEEE	1364-2001.

VHDL	An	abbreviation	for	Very	(high-speed	integrated	circuit)	Hardware	Design	Language	that	enables
engineers	to	create	circuit	designs	using	a	“higher-level”	language	similar	in	syntax	to	Ada.	VHDL
was	created	under	a	U.S.	Defense	Advanced	Research	Program	Agency	(DARPA)	contract	awarded
to	Intermetrics,	IBM,	and	Texas	Instruments	in	1983.	The	latest	VHDL	standard	is	IEEE	1097-2002.

Virtual	Address	The	logical	or	program	address	generated	by	the	CPU	in	response	to	executing	a
program.	Whenever	the	CPU	generates	an	address,	it	is	always	in	terms	of	virtual	address	space.

Virtual	Machine	1.	A	hypothetical	computer.	2.	A	self-contained	operating	environment	that	gives	the
illusion	of	the	existence	of	a	separate	physical	machine.	3.	A	software	emulation	of	a	real	machine.

Virtual	Memory	A	method	that	uses	the	hard	disk	as	an	extension	to	RAM,	thus	increasing	the	available
address	space	a	process	can	use.

Viterbi	Decoder	A	specialized	circuit	employed	in	magnetic	media	that	selects	the	most	likely	bit	pattern.
See	PRML.

VLIW	Architecture	(Very	Long	Instruction	Word)	An	architectural	characteristic	in	which	each



instruction	can	specify	multiple	scalar	operations.
VLSI	(Very-Large-Scale	Integration)	Integrated	circuits	with	more	than	10,000	components	per	chip.

The	technology	used	in	the	fourth	generation	of	computers.
Volatile	Memory	Memory	that	is	lost	when	power	is	switched	off.
von	Neumann	Architecture	A	stored-program	machine	architecture	consisting	of	a	CPU,	an	ALU,

registers,	and	main	memory.
von	Neumann	Bottleneck	The	name	given	to	the	single	path	between	main	memory	and	the	control	unit

of	the	CPU.	The	single	path	forces	alternation	of	instruction	and	execution	cycles	and	often	results	in	a
bottleneck,	or	slowing	of	the	system.

Wall	Clock	Time	Also	called	elapsed	time,	this	is	the	only	true	measure	of	computer	performance,
especially	when	the	wall	clock	time	is	measured	as	the	system	is	running	your	program.

WAN	Acronym	for	wide	area	network.	WANs	can	cover	multiple	cities	or	the	entire	world.
Watchdog	Timer	A	specialized	circuit	used	in	embedded	systems	that	guards	against	system	hangs	and

infinite	loops.	Watchdog	timers	typically	contain	a	register	that	is	periodically	decremented.	The
program	running	in	the	embedded	system	periodically	resets	the	timer	to	indicate	system	liveness.

Wear	Leveling	A	technique	used	to	evenly	distribute	erase-write	operations	across	an	entire	solid-state
drive	in	order	to	prevent	excessive	localized	memory	cell	wear.

Weighted	Arithmetic	Mean	An	arithmetic	mean	that	is	found	by	taking	the	products	of	the	frequency	of	a
set	of	results	(expressed	as	a	percentage)	with	the	values	of	the	results.	The	weighted	arithmetic	mean
gives	a	mathematical	expectation	of	the	behavior	of	a	system	and	may	also	be	called	weighted
average.

Weighted	Numbering	System	A	numeration	system	in	which	a	value	is	represented	through	increasing
powers	of	a	radix	(or	base).	The	binary	and	decimal	number	systems	are	examples	of	weighted
numbering	systems.	Roman	numerals	do	not	fall	into	this	class.

Whetstone	A	benchmarking	program	that	is	floating-point	intensive	with	many	calls	to	library	routines
for	computation	of	trigonometric	and	exponential	functions.	Results	are	reported	in	Kilo-Whetstone
Instructions	per	Second	(KWIPS)	or	Mega-Whetstone	Instructions	per	Second	(MWIPS).

Wide	Area	Network	See	WAN.
Winchester	Disk	Any	hard	disk	that	is	housed	in	a	sealed	unit.	The	name	derives	from	the	code	name

IBM	used	during	the	development	of	this	technology.	Today,	all	hard	disks	are	enclosed	in	sealed
units,	but	the	name	“Winchester”	has	persisted.

Word	An	addressable	group	of	contiguous	bits.	Words	commonly	consist	of	16	bits,	32	bits,	or	64	bits;
however,	some	early	architectures	employed	word	sizes	that	were	not	multiples	of	8.

Word	Field	(also	Offset	Field)	That	part	of	an	address	that	specifies	the	unique	word	in	a	given	block	or
page.

Word-Addressable	Each	word	(not	necessarily	each	byte)	has	its	own	address.
Write-Back	A	cache	update	policy	that	updates	main	memory	only	when	a	cache	block	is	selected	to	be

removed	from	cache.	Allows	inconsistencies	between	a	stored	cache	value	and	its	corresponding
memory	value.

Write-Through	A	cache	update	policy	that	updates	both	the	cache	and	the	main	memory	simultaneously
on	every	write.

Zoned-Bit	Recording	The	practice	of	increasing	disk	capacity	by	making	all	disk	sectors	approximately



the	same	size,	placing	more	sectors	on	the	outer	tracks	than	on	the	inner	tracks.	Other	types	of
recording	methods	have	the	same	number	of	sectors	on	all	tracks	of	the	disk.



Answers	and	Hints	for	Selected	Exercises

Chapter	1
1.	 	 Between	 hardware	 and	 software,	 one	 provides	 more	 speed,	 the	 other	 provides	 more	 flexibility.

(Which	one	 is	which?)	Hardware	and	software	are	related	 through	the	Principle	of	Equivalence	of
Hardware	and	Software.	Can	one	solve	a	problem	where	the	other	cannot?

3.		One	million,	or	106

10.		0.75	micron

Chapter	2
1.		a)	1212223

b)		102025
c)		42667
d)		60309

7.		a)	11010.11001
b)		11000010.00001
c)		100101010.110011
d)		10000.000111

16.		a)	Signed-magnitude:	01001101
One’s	complement:	01001101
Two’s	complement:	01001101	Excess-127:	11001100

b)	Signed-magnitude:	10101010
One’s	complement:	11010101
Two’s	complement:	11010110	Excess-127:	1010101

28.		a)	Smallest	negative:	100000	(–31)	Largest	positive:	011111	(31)
32.		a)	10110000

b)	00110000
c)	10000000

34.		a)	00111010
b)	00101010
c)	01011110

36.		a)	111100



38.		a)	1001
40.		104
42.		Hint:	Begin	the	trace	as	follows:

46.	

57.	
68.		The	error	is	in	bit	5.
73.		a)	1101	remainder	110

b)	111	remainder	1100
c)	100111	remainder	110
d)	11001	remainder	1000

77.		Code	word:	1011001011

Chapter	3
1.		a)

b)		



3.		

5.		
8.	 	 Invalid.	 One	 method	 of	 proof	 uses	 a	 truth	 table.	 A	 more	 challenging	 approach	 using	 identities

employs	the	relation	a	XOR	b	=	ab′	+	a′b.



15.		

17.		

19.		
22.		F(x,	y,	z)	=	x′y′z′	+	x′yz′	+	xy′z	+	xyz′	+	xyz
25.

The	complemented	sum	of	two	products	forms	is	(x′y′z′	+	x′y′z)′.
33.



36.

49.	 	The	values	assigned	for	 the	 inputs	 (the	card	encoding),	determine	 the	exact	design	of	each	reader.
One	encoding	is	shown	in	the	table	below.

Based	on	this	coding,	the	card	reader	for	the	server	room	can	be	implemented	as	shown	below:

What	is	the	design	for	the	rest?
50.



54.

57.		Start	by	numbering	the	lines	between	the	flip-flops	as	shown:



Chapter	3	Focus	on	Kamaugh	Maps
3A.1.	a)	x′z	+	xz′

			b)	x′z	+	x′y	+	xy′z′
3A.4.	a)	w′z′	+	w′y′z′	+	wyz

			b)	w′x′	+	wx	+	w′y	+	yz′	+	x′z′	or	w′x′	+	wx	+	xy	+	x′z′
3A.6.	a)	x′z′	+	w′xz	+	w′xy
3A.6.	b)	x′y′	+	wx′z′

3A.8.	
3A.9.	a)	x	+	y′z	(We	don’t	want	to	include	the	“don’t	care”	as	it	doesn’t	help	us.)

	b)		x′z′	+	w′z

Chapter	4
4.		a)	There	are	2M	×	4	bytes,	which	equals	2	×	220	×	22	=	223	total	bytes,	so	23	bits	are	needed	for	an

address.
b)		There	are	2M	words,	which	equals	2	×	220	=	221,	so	21	bits	are	required	for	an	address.

10.		a)	16	(8	rows	of	2	columns)
b)		2
c)		256K	=	218,	so	18	bits
d)		8
e)		2M	=	221,	so	21	bits
f)		Bank	0	(000)
g)		Bank	6	(110)



15.	 	a)	There	are	220	 bytes,	which	 can	 all	 be	 addressed	using	 addresses	0	 through	220	 –	 1	with	20-bit
addresses.

b)		There	are	only	219	words,	and	addressing	each	requires	using	addresses	0	through	219	–	1.
23.

A 108
One 109
S1 106
S2 103

26.		a)	Store	007

Chapter	5

1.		
6.		a)	0xFE01	=	1111	1110	0000	00012	=	–51110

b)		0x01FE	=	0000	0001	1111	11102	=	51010
10.		6	×	212

12.		a)	X	Y	×	W	Z	×	V	U	×	+	+
21.

Mode Value
Immediate 0x1000
Direct 0x1400
Indirect 0x1300
Indexed 0x1000

27.		a)	8
b)		16
c)		216

d)		224	–	1

Chapter	6
1.		a)	220/24	=	216

b)	20-bit	addresses	with	11	bits	in	the	tag	field,	5	in	the	block	field,	and	4	in	the	offset	field
c)		Block	22	(or	block	0x16)

4.		a)	216/25	=	211

b)		16	bit	addresses	with	11	bits	in	the	tag	field	and	5	bits	in	the	offset	field



c)		Because	it’s	associative	cache,	it	can	map	anywhere.
7.		Each	address	has	27	bits,	and	there	are	7	in	the	tag	field,	14	in	the	set	field,	and	6	in	the	offset	field.
19.

Chapter	7
1.		1.28	or	28%	(S	=	1.2766;	f	=	0.65;	k	=	1.5)
9.	 	a)	Choose	 the	 disk	 upgrade.	This	will	 cost	 $216.20	per	 1%	 improvement	 versus	 $268.24	 for	 the

CPU.
b)		The	disk	upgrade	gives	the	greater	improvement:	36.99%	versus	18.64%	for	the	processor.
c)		The	break-even	point	would	be	a	disk	upgrade	costing	$9922	or	a	CPU	upgrade	costing	$4031.

12.		a)	A	CPU	should	disable	all	interrupts	before	it	enters	an	interrupt	service	routine,	so	the	interrupt
shouldn’t	happen	in	the	first	place.

b)		It	is	not	a	problem.
c)		If	interrupts	are	disabled,	the	second	interrupt	would	never	happen,	so	it	is	not	a	problem.

22.		Some	people	think	that	retrieving	specific	data	from	a	particular	disk	is	not	a	“random”	act.
24.		Rotational	delay	(average	latency)	=	7200	RPM	=	120	rev/sec	=	0.008333	sec/rev	=	8.333	ms	per

revolution.	 (Alternatively,	 60,000	 ms	 per	 minute/7200	 revolutions	 per	 minute	 =	 8.333	 ms	 per
revolution.)	The	average	is	half	of	this,	or	4.17	ms.

28.		a)	256	MB	(1	MB	=	220	B)
b)		11	ms

32.		28.93MB/track
39.



Chapter	8
5.		If	processes	share	a	specific	set	of	resources,	it	might	be	reasonable	to	group	them	as	a	subsystem.	If

a	 given	 set	 of	 processes	 is	 used	 for	 testing	 the	 system,	 it	 would	 be	 wise	 to	 group	 them	 as	 a
subsystemv	 because	 if	 they	 crash	 or	 do	 something	 “weird,”	 only	 the	 subsystem	 in	which	 they	 are
running	 is	 affected.	 If	 you	are	giving	access	 to	 a	 specific	group	of	people	 for	 a	 limited	 time	or	 to
limited	resources,	you	may	want	these	user	processes	to	be	grouped	as	a	subsystem	as	well.

7.		Nonrelocatable	code	is	often	used	when	code	needs	to	be	more	compact.	Therefore,	it	is	common	in
embedded	 systems	 that	 have	 space	 constraints	 (such	 as	 your	 microwave	 or	 your	 car	 computer).
Nonrelocatable	code	is	also	faster,	so	it	is	used	in	systems	that	are	sensitive	to	small	timing	delays,
such	 as	 real-time	 systems.	 Relocatable	 code	 requires	 hardware	 support,	 so	 nonrelocatable	 code
would	be	used	in	those	situations	that	might	not	have	that	support	(such	as	in	Nintendo).

9.		Dynamic	linking	saves	disk	space	(why?),	results	in	fewer	system	errors	(why?),	and	allows	for	code
sharing.	However,	dynamic	linking	can	cause	load-time	delays,	and	if	dynamic	link	library	routines
are	changed,	others	using	modified	libraries	could	end	up	with	difficult	bugs	to	trace.

19.		Java	is	first	compiled	into	byte	code.	This	intermediate	byte	code	is	then	interpreted	by	the	JVM.
21.	 	 a)	 A	 race	 condition	 occurs	 when	 different	 computational	 results	 (e.g.,	 output,	 values	 of	 data

variables)	occur	depending	on	the	particular	timing	and	resulting	order	of	execution	of	statements
across	separate	threads,	processes,	or	transactions.
Suppose	we	have	the	following	two	transactions	accessing	an	account	with	an	initial	balance	of
500:



The	value	of	the	new	balance	depends	on	the	order	in	which	the	transactions	are	run.	What	are	the
possible	values	for	the	new	balance?

b)	 	Race	conditions	can	be	prevented	by	running	 transactions	 in	 isolation	and	providing	atomicity.
Atomic	transactions	in	databases	are	ensured	via	locking.

c)		Using	locks	can	result	in	deadlocks.	Suppose	Transaction	T1	gets	an	exclusive	lock	on	data	item
X	 (which	 means	 no	 other	 transaction	 can	 share	 the	 lock),	 and	 then	 Transaction	 T2	 gets	 an
exclusive	lock	on	data	item	Y.	Now	suppose	T1	needs	to	hold	on	to	X	but	now	needs	Y,	and	T2
must	hold	on	to	Y	but	now	needs	X.	We	have	a	deadlock	because	each	is	waiting	on	the	other	and
will	not	release	the	lock	that	it	has.

Chapter	9
1.		RISC	machines	limit	the	instructions	that	can	access	memory	to	load	and	store	instructions	only.	This

means	that	all	other	instructions	use	registers.	This	requires	fewer	cycles	and	speeds	up	the	execution
of	the	code	and,	thus,	the	performance	of	the	hardware.	The	goal	for	RISC	architectures	is	to	achieve
single-cycle	instructions,	which	would	not	be	possible	if	instructions	had	to	access	memory	instead
of	registers.

3.		“Reduced”	originally	meant	providing	a	set	of	minimal	instructions	that	could	carry	out	all	essential
operations:	data	movement,	ALU	operations,	 and	branching.	However,	 the	main	objective	 in	RISC
machines	today	is	to	simplify	instructions	so	they	can	execute	more	quickly.	Each	instruction	performs
only	 one	 operation,	 they	 are	 all	 the	 same	 size,	 they	 have	 only	 a	 few	 different	 layouts,	 and	 all
arithmetic	 operations	must	 be	 performed	 between	 registers	 (data	 in	memory	 cannot	 be	 used	 as	 an
operand).

5.		128
9.	 	 During	 a	 context	 switch,	 all	 information	 about	 the	 currently	 executing	 process	 must	 be	 saved,

including	the	values	in	the	register	windows.	When	the	process	is	restored,	the	values	in	the	register
windows	must	be	restored	as	well.	Depending	on	the	size	of	the	windows,	this	could	be	a	very	time-
consuming	process.

11.	 	a)	SIMD:	single	 instruction,	multiple	data.	One	specific	 instruction	executes	on	multiple	pieces	of
data.	For	example,	a	vector	processor	adding	arrays	uses	one	instruction	(C[i]	=	A[i]	+	B[i]),	but
can	perform	this	instruction	on	several	pieces	of	data	(C[1]	=	A[1]	+	B[1],	C[2]	=	A[2]	+	B[2],
C[3]	=	A[3]	+	B[3],	etc.),	depending	on	how	many	ALUs	the	processor	contains.

13.		Loosely	coupled	and	tightly	coupled	are	terms	that	describe	how	multiprocessors	deal	with	memory.
If	 there	 is	one	 large,	centralized,	shared	memory,	we	say	 the	system	is	 tightly	coupled.	 If	 there	are
multiple,	physically	distributed	memories,	we	say	the	system	is	loosely	coupled.

17.		SIMD:	data	parallelism;	MIMD:	control	or	task	parallelism.	Why?
19.	 	 Whereas	 superscalar	 processors	 rely	 on	 both	 the	 hardware	 (to	 arbitrate	 dependencies)	 and	 the

compiler	 (to	 generate	 approximate	 schedules),	 VLIW	 processors	 rely	 entirely	 on	 the	 compiler.
Therefore,	VLIW	moves	the	complexity	completely	to	the	compiler.

20.		Both	architectures	feature	a	small	number	of	parallel	pipelines	for	processing	instructions.	However,
the	VLIW	architecture	 relies	on	 the	compiler	 for	prepackaging	and	 scheduling	 the	 instructions	 in	a
correct	and	efficient	way.	In	the	superscalar	architecture,	instruction	scheduling	is	done	by	hardware.



21.		Distributed	systems	allow	for	sharing	as	well	as	redundancy.
23.	 	When	 adding	 processors	 to	 a	 crossbar	 interconnection	 network,	 the	 number	 of	 crossbar	 switches

grows	 to	 an	 unmanageable	 size	 very	 quickly.	 Bus	 networks	 suffer	 from	 potential	 bottlenecks	 and
contention	issues.

25.		With	write-through,	the	new	value	is	immediately	flushed	through	to	the	server.	This	keeps	the	server
constantly	 up-to-date,	 but	 writing	 takes	 longer	 (losing	 the	 speed	 increase	 that	 caching	 typically
provides).	With	write-back,	the	new	value	is	flushed	to	the	server	after	a	given	delay.	This	maintains
the	speed	increase,	but	means	that	if	the	server	crashes	before	the	new	data	is	flushed,	some	data	may
be	lost.	This	is	a	good	example	to	illustrate	that	performance	improvements	often	come	at	a	price.

27.		Yes,	individual	neurons	take	input,	process	it,	and	provide	output.	This	output	is	then	used	by	another
neuron	“down	the	line.”	However,	the	neurons	themselves	work	in	parallel.

29.	 	While	 the	network	 is	 learning,	 indications	of	 incorrect	output	are	used	 to	make	adjustments	 to	 the
weights	in	the	network.	These	adjustments	are	based	on	various	optimization	algorithms.	The	learning
is	complete	when	the	weighted	average	converges	to	a	given	value.

Chapter	10
2.	 	 Small	 embedded	 systems	 have	 no	 need	 to	 perform	 the	 complicated	 power-on	 self-test	 (POST)

sequence	 that	 is	 carried	 out	 by	 personal	 systems.	 For	 one	 thing,	 embedded	 systems	memories	 are
much	 smaller	 and	 thus	 take	 less	 time	 for	 power-on	 checks.	 Secondly,	 peripheral	 devices	 on	most
embedded	systems—if	they	exist	at	all—are	fewer	and	simpler	than	those	connected	to	most	personal
computers.	This	means	less	hardware	to	check	and	fewer	drivers—if	any—to	load.

8.	 	 Interrupt	 latency	 is	 the	 elapsed	 (wall	 clock)	 time	 between	 the	 occurrence	 of	 an	 interrupt	 and	 the
execution	of	 the	 first	 instruction	of	 the	 interrupt	 service	 routine	 (ISR).	 In	order	 to	 execute	 the	 first
instruction	of	the	ISR,	the	thread	currently	executing	in	the	CPU	must	be	suspended:	A	context	switch
takes	place.	The	interrupt	latency	must	therefore	be	greater	than	the	context	switch	time.

Chapter	11
1.		The	weighted	average	execution	time	of	System	C	is	2170	/	5	=	434.	Thus,	we	have	(563.5	/	434	=

1.298387	–	1)	×	100	=	30%.	System	A’s	performance	has	degraded	by	(9563.5	 /	79	–	1)	×	100	=
641.4%.

3.	 	System	A:	Arithmetic	mean	=	400;	Geometric	means:	1,	0.7712,	and	1.1364	System	B:	Arithmetic
mean	=	525;	Geometric	means:	1.1596,	1,	and	1.3663	System	C:	Arithmetic	mean	=	405;	Geometric
means:	0.7946,	0.6330,	and	1

7.		This	is	the	fallacy	of	incomplete	information.	Why?
9.	 	There	is	no	value	in	doing	this.	Each	release	consists	of	a	different	set	of	programs,	so	the	results

cannot	be	compared.
11.		The	best	benchmark	in	this	situation	would	be	the	SPEC	CPU	series.	Why?
13.		First,	be	diplomatic.	Suggest	that	the	group	investigate	whether	TPC-C	benchmarks	are	available	for

this	system.	Whether	or	not	TPC-C	figures	are	available,	you	may	want	to	educate	this	individual	as
to	 the	meaning	 of	Amdahl’s	 Law	 and	why	 a	 fast	 CPU	will	 not	 necessarily	 determine	whether	 the



entire	system	will	handle	your	workload.
24.		a)	5.8	cycles/instruction	(Be	sure	you	can	show	your	work	to	arrive	at	this	answer.)

b)		5.8	MHz	(Why?)
c)		13.25

Chapter	12
5.	 	 The	 payload	 (data)	 of	 the	TCP	 segment	 should	 be	made	 as	 large	 as	 possible	 so	 that	 the	 network

overhead	required	to	send	the	segment	is	minimized.	If	the	payload	consisted	of	only	1	or	2	bytes,	the
network	overhead	would	be	at	least	an	order	of	magnitude	greater	than	the	data	transmitted.

9.			a)	Class	B
b)		Class	C
c)		Class	A

11.		a)	We	will	assume	that	no	options	are	set	in	the	TCP	or	IP	headers	and	ignore	any	session	shutdown
messages.	There	are	20	bytes	in	the	TCP	header	and	20	bytes	in	the	IP	header.	For	a	file	size	of
1024	bytes,	using	a	payload	of	128	bytes,	8	payloads	will	have	 to	be	sent.	Thus,	8	TCP	and	 IP
headers.	With	40	bytes	of	overhead	per	transmission	unit,	we	have	8	×	40	bytes	of	overhead	added
to	the	1024	payload	bytes,	giving	a	total	transmission	of	1344	bytes.	The	overhead	percentage	is
320	÷	1344	×	100%	=	23.8%.

b)	 	 The	 minimal	 IPv6	 header	 is	 40	 bytes	 long.	 Added	 to	 the	 20	 bytes	 in	 the	 TCP	 header,	 each
transmission	 contains	 60	 overhead	 bytes,	 for	 a	 total	 of	 480	 bytes	 to	 send	 the	 8	 payloads.	The
overhead	percentage	is	this:	480	÷	1504	×	100%	or	31.9%.

13.		a)	Bytes	1500	through	1599
	b)		Byte	1799

19.

Chapter	13
5.		The	host	adapter	always	has	the	highest	device	number	so	that	it	will	always	win	arbitration	for	the

bus.	 “Fast	 and	 wide”	 SCSI-3	 interfaces	 can	 support	 as	 many	 as	 32	 devices;	 therefore,	 the	 host
adapter	will	always	be	device	number	31.

Appendix	A
3.		A	more	efficient	linked	list	implementation	will	put	three	pointers	on	each	node	of	the	list.	What	does

the	extra	pointer	point	to?
5.





Index

The	index	that	appeared	in	the	print	version	of	this	title	was	intentionally	removed	from	the	eBook.	Please	use	the	search	function	on
your	eReading	device	to	search	for	terms	of	interest.	For	your	reference,	the	terms	that	appear	in	the	print	index	are	listed	below.

0x	notation	(for	hexadecimal	numbers)
2	×	2	switch
3D-IC.	See	three-dimensional	integrated	circuit.
a.	See	Atto.
ABC	computer
Abramson,	Norman
Absolute	code
Absorption	law
Accelerated	graphics	port.	See	AGP.
Access	time
disk
memory.	See	EAT.

Accumulator	(AC)
Accumulator	architecture
Accuracy,	of	floating	point	numbers
ACID	properties.	See	Database,	properties.
Active	matrix
Actuator	arm
Ada
Countess	of	Lovelace
programming	language

Adders
Addition	and	subtraction.	See	Computer	arithmetic.
Address
alignment
classes	(IP)
mapping
number	of	bits	required
spoofing
vector	(I/O)

Address	lines
Addressing	modes
auto-decrement
auto-increment
base/offset
based
defined
direct
immediate
indexed
indirect
indirect	indexed
register
register	indirect
self-relative
stack
table	summarizing	various	modes

Adjacency	list
Adjacency	matrix
Advanced	Research	Projects	Agency	(ARPA).	See	ARPA.



Aggregatable	global	unicast	address	format
AGP
AIX
Algebraic	field
Algebraic	simplification
Algorithmic	state	machine
Alignment.	See	Address,	alignment	and	Byte	alignment.
Altair
Alternative	architectures
dataflow.	See	Dataflow	computing.
distributed	systems.	See	Distributed	systems.
multiprocessors.	See	Multiprocessor	systems.
neural	networks.	See	Neural	networks.
parallel	systems.	See	Parallel	architectures.
Quantum	computers.	See	Quantum	computing.
RISC.	See	RISC.

Amdahl’s	law
Analytical	Engine.	See	Babbage,	Charles.
Anantharaman,	Thomas
AND
Boolean
gate

ANSI	(American	National	Standards	Institute)
ANSI	X3.320
Anycasting
Apple	I	and	II	computers
Applet
Application	layer	(OSI	RM)
Application	specific	integrated	circuit	(ASIC)
Application	systems
Arbitration,	bus
Architecture
alternative.	See	Alternative	architectures.
computer,	in	general.	See	Computer	architecture.
multicore.	See	Multicore	architecture.
organization,	compared	to
parallel.	See	Parallel	architectures.

Arithmetic
computer.	See	Computer	arithmetic.
modulo	2

Arithmetic	coding	(data	compression)
Arithmetic	logic	unit	(ALU)
combinational	circuit
as	part	of	von	Neumann	architecture

Arithmetic	mean
Arithmetic	shift
left
right

ARM	architecture
ARPA	(Advanced	Research	Projects	Agency)
ARPAnet
Array,	data	structure
ASCII	(American	Standard	Code	for	Information	Interchange)
chart

ASIC.	See	Application	specific	integrated	circuit.
Aspect	ratio
Assemblers
assembly	process
comment	delimiter
defined



directive
labels
object	file
pass
source	file
symbol	table

Assembly	language
embedded	systems	and
instructions
defined
one-to-one	correspondence	with	machine	language	instructions

Intel
MARIE
instruction	listing

MIPS
reasons	for	use

Associative	law
Associative	memory
Asynchronous	bus
Asynchronous	sequential	circuit
AT	attachment	(ATA)
AT	bus
Atanasoff,	John	Vincent
ABC	computer

ATAPI
Atomicity
Attenuation
Atto
Attributes.	See	Java	programming	language.
Audit	trail.	See	Database,	logging.
Automata
cellular

B+	tree.	See	Trees,	B+.
B	programming	language
Babbage,	Charles
Analytical	Engine
Difference	Engine

Backbone	cable
Background	debug	mode	(BDM)
Backplane	bus
Backup	window
Backus,	John
Backward	compatible
Bandpass	filterbank
Bandwidth,	defined
Bardeen,	John
Base	address
Base	conversion
division-remainder	method
subtraction	method

Base	two,	for	use	in	computer
Based	addressing	mode
BASIC
Basic	input/output	system.	See	BIOS.
Batch	processing
Baud
Baudot	code
BBN	Butterfly
BCD.	See	Binary	coded	decimal.



BDM.	See	Background	debug	mode.
Becker,	Donald
BEDO	DRAM.	See	RAM.
Beginner’s	All-purpose	Symbolic	Instruction	Code.	See	BASIC.
Bell	Labs
Bellman-Ford	algorithm.	See	Distance	vector	routing.
Benchmarketing
Benchmarking
Benchmarks
Dhrystone
kernel
Linpack
SPEC
synthetic,	defined
TPC
Whetstone
See	also	System	simulation.

BEOWULF.	See	Distributed	systems.
BER.	See	Bit	error	rate.
Berkley	Open	Infrastructure	for	Network	Computing
Bias
Biased	exponent
BiCMOS
Big	data
Big	endian
defined
discussed
versus	little	endian

Binary	Coded	Decimal	(BCD)
packed
zoned

Binary	counter.	See	Counter.
Binary	multiplication	and	division
Binary	numbers
Binary	search
Binary	tree.	See	Trees.
Binding,	to	physical	addresses
Biological	computing
Biological	storage
BIOS
Bit
cell
defined
rotating
shifting

Bit	error	rate	(BER)
Black	box	approach
Blacklist
BLAS	(basic	linear	algebra	subroutines)
Block,	disk
Block	I/O
Block	field
See	also	Cache	memory,	address	fields	and	Cache	memory,	mapping	schemes.

Blocking	network.	See	Interconnection	networks.
Blue	Gene
Bluetooth
Blu-ray	disc
Blue-violet	laser	disk
Boggs,	David
BOINC.	See	Distributed	systems.



Bolt,	Beranak,	and	Newman.	See	BBN	Butterfly.
Boole,	George
Boolean
algebra
algebra	and	digital	circuits
complements
expressions
one-to-one	correspondence	to	electrical	circuits
simplification
using	identities
using	Karnaugh	maps

function
canonical	form
equivalence
representation
standardized	form
truth	tables

identities
duality	principle

operator
precedence	of	operations

problem	description	to	circuit
product
sum

Booth’s	algorithm
Branch	instructions
branch	prediction
delayed	branch
optimization
See	also	Instruction	pipelining.

Brattain,	Walter
Bridge	(Network)
Broadband	cable
BSI	(British	Standards	Institution)
Bulk	transfer
Bunch,	Jim
Burst	error
Bursty	traffic	(I/O),	defined
Bus
address	lines
arbitration
centralized	parallel
daisy	chain
distributed	with	collision	detection
distributed	with	self-selection

architecture
asynchronous
backplane
clock
common	pathway
components
control	lines
CPU
data	lines
defined
expansion
interconnection
I/O
PCI
timing	diagram



See	also	SCSI.
local
MARIE
master	and	slave
multipoint
point-to-point
power	lines
processor-memory
protocol
settle	time
speed
synchronous
system
timing	diagram
and	von	Neumann	architecture
width

Bus-based	network.	See	Interconnection	networks.
Bus	clock
Bus	cycle
Bus	interface	unit.	See	Intel	architecture.
Byte
compared	to	data	and	information
defined

Byte	addressable	memory
Byte	alignment
Bytecode
See	also	Java	programming	language	and	Java	virtual	machine.

C-LOOK.	See	Disk,	magnetic,	scheduling.
C	programming	language
C++	programming	language
C-SCAN.	See	SCAN.
Cable.	See	Network	cable.
Cache.	See	Cache	memory.
Cache	coherence.	See	Cache	memory,	write	policies.	See	also	NUMA.
Cache	memory
address	fields
format	for	direct	mapped
format	for	fully	associative
format	for	set	associative

analogies
data	cache
disk	drive
effective	access	time
exclusive
Harvard
hit
hit	rate	(ratio)
inclusive
instruction	cache
integrated
Level	1	(L1)
Level	2	(L2)
levels
locality
mapping	schemes
direct	mapped
fully	associative
set	associative

miss



miss	rate
multilevel	cache	hierarchy
nonblocking
replacement	policies
first-in,	first-out	(FIFO)
least	recently	used	(LRU)
optimal

trace	cache
unified
valid	bit
victim	block
victim	cache
write	policies
write-back
write-through

Cache	mirroring
Cache	pollution
Cadence	Design	Systems
Calculating	clock
Campbell,	Murray
Campus	network
Cancer	treatment
Canonical	form
Capacitive	touchscreen
Capstan,	defined
Carbon	nanotube	(CNT)
Carrier	sense	multiple	access/collision	detection.	See	CSMA/CD.
Carry	versus	overflow
Casting	out	9s
Category,	network	cable
CC-NUMA	(cache	coherent	NUMA)
CCITT	(International	Consultative	Committee	on	Telephony	and	Telegraphy)
CDC.	See	Control	Data	Corporation.
CD-ROM.	See	also	Optical	disk.
Cellular	automata.	See	Automata.
CEN	(Comité	Européen	de	Normalisation)
Central	processing	unit	(CPU)
arithmetic	logic	unit	(ALU)
basics	and	organization
bound
bus
clock
and	hardwired	control

control	unit.	See	Control	unit.
datapath
functions
instruction	cycle
optimization
as	part	of	von	Neumann	architecture
performance.	See	Benchmarking.
registers
time,	equation.	See	CPU	equation.
See	also	Microprocessor.

Centralized	parallel	arbitration
CERN	(Conseil	Européen	pour	la	Recherche	Nucléaire)
CFP.	See	SPEC	benchmark.
Channel	command	word
Channel	frame.	See	Optical	disk.
Channel	I/O
Channel	path



Character	codes
Character	I/O
Characteristic	table	of	sequential	circuit
Check	bits.	See	Parity.
Chess	playing	machines
Chipmunk	logic	simulator
See	also	Diglog.

Chips,	logic
See	also	Integrated	circuit.

Chrominance
CICS	(customer	information	and	control	system).	See	Transaction	manager.
CINT.	See	SPEC	benchmark.
Circuit	design
digital	analysis
digital	synthesis
from	problem	description

CISC	(complex	instruction	set	computer)
Intel	architectures
versus	RISC
comparison	chart

Cisco
Class.	See	Java	programming	language.
Classes,	network.	See	Network	classes.
network	cable

Client-server
Clock
bus
cycle	time
frequencies
and	sequential	circuit
system.	See	Central	processing	unit,	clock.

Clock	cycle
equation	relating	CPU	time	to	clock	cycles.	See	CPU	equation.

Clock	frequency
Clock	period.	See	Clock	cycle.
Clock	rate
Clock	skew
Cloud	computing
Cloud	storage
Cluster,	disk
Cluster	of	workstations	(COW).	See	Distributed	systems.
cm*
CM5
CMOS
Coaxial	cable
COBOL
Cocke,	John
Code	word.	See	Hamming	codes.
Codes
character
ASCII
BCD
EBCDIC
Unicode

convolutional
data	recording	and	transmission
4B/5B
frequency	modulation
Manchester	code
modified	frequency	modulation



non-return-to-zero	(NRZ)
non-return-to-zero-invert	(NRZI)
partial	response	maximum	likelihood	(PRML)
phase	modulation	(PM)
run-length-limited	(RLL)	code

error	detecting	and	correcting.	See	Error	detection	and	correction.
Hamming.	See	Hamming	codes.
Huffman
Reed-Solomon

Codesign
Codevelopment
Cognitive	computers
COLD	(computer	output	laser	disk)
Color	depth
Combinational	circuits
algebraic	simplification
arithmetic	logic	unit	(ALU)
basic	concepts
Boolean	expressions
Boolean	functions,	implementation	of
decoder
in	MARIE

full	adder
half	adder
Karnaugh	maps
multiplexer
NAND	and	NOR	implementation
parity	generator	and	parity	checker
ripple-carry	adder
shifter
truth	table

Combinational	logic
and	hardwired	control	(MARIE)
programmable	logic	devices.	See	Programmable	logic	device.

Comment	delimiter
Commodore	computer
Communications,	data
Commutative	law
Compact	disk.	See	Optical	disk.
Compiled	languages
See	also	Compiler.

Compiler
compilation	process
six	phases	(figure)

Compile-time	binding.	See	Binding.
Complementary	metal-oxide	semiconductor.	See	CMOS.
Complement	systems
See	also	One’s	complement	and	Two’s	complement.

Complements,	Boolean
Completely	connected	network.	See	Interconnection	networks.
Complex	instruction	set	computer.	See	CISC.
Complex	logic	programming	device	(CPLD)
Compression.	See	Data	compression.
Compression	factor	(ratio)
Computationally	infeasible
Computer
components,	compared	by	size
defined
example	system
history



jargon
look	inside
performance
prefixes.	See	Prefixes.
reconfigurable
removing	a	cover

Computer	architecture
compared	to	computer	organization
defined
evolution	of,	compared	to	operating	systems
real-world	examples
ARM
Intel.	See	Intel	architectures.
MIPS.	See	MIPS	architectures.

reasons	to	study
taxonomy	(chart)

Computer	arithmetic
Booth’s	algorithm
floating-point	arithmetic
floating-point	representation
integer	arithmetic
integer	representation

Computer	generations.	See	Computers,	history	of.
Computer	hardware
relationship	to	software

Computer-level	hierarchy
assembly	language	level
control	level
digital	logic	level
figure	of
high-level	language	level
machine	level	(ISA)
system	software	level
user	level

Computer	organization
compared	to	computer	architecture
defined
reasons	to	study

Computers,	history	of
first	generation	of
fourth	generation	of
generation	zero
Internet
microprocessors
second	generation	of
third	generation	of
von	Neumann	machine

Computing	as	a	service
Conditional	branch
and	performance
See	also	Instruction	pipelining,	pipeline	conflicts.

Congestive	collapse
Connection	machine
See	also	Multiprocessor	systems.

Consensus	theorem
Consistency
See	also	Database,	properties.

Constant	linear	velocity	(CD-ROM)
Constant	pool.	See	Java	virtual	machine.
Constraints.	See	Database.



Content	addressable	memory
Context	switching.	See	Operating	systems.
Contrast	ratio
Control
hardwired	versus	microprogrammed
timing
See	also	Control	unit.

Control	Data	Corporation	(CDC)
CDC	6600	supercomputer

Control	lines
ALU
bus
datapath
how	they	get	set
See	also	Microprogrammed	control	and	Hardwired	control.

I/O
memory
multiplexer
relationship	to	microoperations

Control	program	for	microcomputer.	See	CP/M.
Control	signals
See	also	Control	lines.

Control	and	status	registers
Control	store
Control	transfer
Control	unit
control	matrix
control	word
defined
hardwired	implementation
microprogrammed	implementation
operation	and	function
timing	signals

Conversion
between	radices
binary	to	decimal,	double-dabble
of	fractions
powers-of-two

Convolutional	coding
COOL
CORBA	(common	object	request	broker	architecture)
Count	enable	line
Count-to-infinity	problem
Counter
binary
cycle
ring

CPLD.	See	Complex	programming	logic	device.
CP/M.	See	Operating	systems,	for	personal	computers.
CPU.	See	Central	processing	unit	(CPU).
CPU	bound.	See	Central	processing	unit.
CPU	equation
CPU	optimization,	defined
Cray,	Seymour
Cray-1
Cray	T3E
See	also	Multiprocessor	systems,	massively	parallel.

Crossbar	network.	See	Interconnection	networks.
CSMA/CD	(carrier	sense	multiple	access/collision	detection)
Curnow,	Harold	J.



Current	window	pointer	(CWP).	See	RISC,	register	windows.
Cyber	warfare
Cycle	counter.	See	Counter.
Cycle	stealing
Cyclic	redundancy	check	(CRC)
Cylinder,	disk

D-cache.	See	Intel	memory	management.
D	flip-flop
and	registers
and	ring	counter

Daisy	chain	arbitration
DARPA	(Defense	Advanced	Research	Projects	Agency)
DARPAnet
DAT.	See	Digital	audio	tape.
Data,	compared	to	bytes	and	information
Data	bus
Data	cache.	See	Cache	memory.
Data	compression
arithmetic	coding
entropy
factor	(ratio)
GIF
Huffman	code
JPEG
JPEG	2000
lossy/lossless
MP3
LZ	systems
PNG
statistical	coding

Data	dependency.	See	Instruction	pipelining,	pipeline	conflicts.
Data	encoding
defined
process

Data	Encryption	Standard.	See	DES.
Data	flow	graph.	See	Dataflow	computing.
Data	link	layer	(OSI	RM)
See	also	Bridge	and	Switch,	data	network.

Data	recording	codes
Data	registers
D	flip-flop	use	in
See	also	Registers.

Data	structures
defined
See	also	Array,	Graph,	Linked	list,	Queue,	and	Trees.

Data	token.	See	Dataflow	computing.
Database
audit	trails
constraints
data	structures.	See	Trees.
deadlock
diagram
file
indexing
key
logging
management	systems
properties	(ACID)
race	condition



record
recovery
reorganization
schema
software
transaction	manager

Database	management	system	(DBMS).	See	Database.
Dataflow	computing
example	dataflow	graph
Manchester	model

Datagram,	defined
Datapath,	CPU
combinational	logic	for
and	machine	control
MARIE

da	Vinci,	Leonardo
Davis,	Al
DCE	(distributed	computing	environment)
DCOM	(distributed	component	object	model)
DDR	SDRAM.	See	RAM.
Deadlock
DebitCredit	benchmark
DEC.	See	Digital	Equipment	Corporation.
Decimal	to	binary	conversions
fractions
unsigned	whole	numbers

Decision	support	system
Decoder
and	hardwired	control
for	memory	addressing

Decoding,	instructions
hardwired
microprogramming
unit.	See	Parallel	architecture,	superscalar.

Decoherence
Dedicated	cluster	parallel	computer	(DCPC).	See	Distributed	systems.
Deep	Blue
DeepQA
Defragmenting,	disk
Delayed	branching
See	also	Branch	instructions,	optimization.

DeMorgan’s	law
Denormalized	number
DES	(Data	Encryption	Standard)
Deterministic	finite	automata	(DFA)
Dhrystone	benchmark
Dielectric
Difference	Engine.	See	Babbage,	Charles.
Difference	vector
Digital	analysis
Digital	audio	tape	(DAT)
Digital	circuits
relationship	to	Boolean	algebra

Digital	components
programmable	logic	device.	See	Programmable	logic	device.
See	also	Logic	gates.

Digital	Equipment	Corporation	(DEC)
Alpha
and	MIPS	benchmark
PDP	1



PDP	8	and	PDP	11
PDP	as	second-generation	machine
as	third-generation	machine
VAX	11/780

Digital	linear	tape	(DLT)
Digital	logic
Boolean	algebra
combinational	circuits
gates
programmable	logic	devices.	See	Programmable	logic	device.
sequential	circuits

Digital	signal	processing	(DSP)
Digital	synthesis
Digital-to-analog	converter
Digital	versatile	disk.	See	DVD.
Digital	video	disk.	See	DVD.
Digital	video	interface.	See	DVI.
Diglog
Dijkstra’s	algorithm,	routing	application
Diminished	radix	complement
Direct	addressing
Direct	mapped	cache.	See	Cache,	mapping	schemes.
Direct	memory	access	(DMA)
compared	to	channel	I/O
configuration
sequence	of	operations

Disk	drive,	magnetic
access	time
actuator	arm
block
caching
cluster
cylinder
defragmenting
directory
file	organization
head	crash
head	parking
interleaving
latency
mirroring
performance
platter
prefetching
RAMAC	RVA	Turbo	disk
removable	pack
rotational	latency	(delay)
scheduling
sector
seek	time
short	stroking
specification	sample
solid	state
speeds
track
transfer	time
utilization
Winchester
zoned-bit	recording
See	also	RAID.



Disk	drive,	optical.	See	Optical	disk.
Display	manager
Distance	vector	routing
Distributed	bus	arbitration
Distributed	computing
Cloud	computing
defined
discussed
See	also	Distributed	systems.

Distributed	systems
BEOWULF
BOINC
cluster	computing
cluster	of	workstations	(COW)
dedicated	cluster	parallel	computer	(DCPC)
global	computing
grid	computing
network	of	workstations	(NOW)
pile	of	PCs	(PoPC)
RPCs	(remote	procedure	calls)
ubiquitous	(also	pervasive)	computing
versus	networked	systems
See	also	Multiprocessor	systems.

Ditzel,	David
Divide	underflow
Division	algorithms,	integer
Division-remainder	method
DLL	(dynamic	link	library)
DMA.	See	Direct	memory	access.
D(min).	See	Hamming	codes.
DNA	computing
DNA	storage
Dömer,	Rainer
Dominance	law
Dongarra,	Jack
Don’t	care	condition
Double	complement	law
Double-Dabble	(dibble)
Double-precision	numbers
DR	DOS.	See	Operating	systems,	for	personal	computers.
DRAM.	See	RAM.
DRDRAM.	See	RAM.
Drive	spanning
DSP.	See	Digital	signal	processing.
Dual	homed
Dual	stack
Duality	principle
Durability
See	also	Database,	properties.

Durable	storage,	defined
DVD.	See	Optical	disk.
DVI
D-Wave	Computers.	See	Quantum	computing.
Dynamic	branch	prediction
See	also	Branch	instructions,	optimization.

Dynamic	link	libraries.	See	DLL.
Dynamic	linking.	See	DLL.
Dynamic	network.	See	Interconnection	networks.
Dynamic	RAM.	See	RAM.
Dynamic	ratio	(LCD)



E.	See	Exa.
EAT.	See	Effective	access	time.
EBCDIC
chart

Eckert,	John	Presper
ECL
ECMA
ENIAC
EDA.	See	Electronic	design	automation.
Edge-triggered	circuit
EDO	DRAM.	See	RAM.
EDVAC
EEPROM.	See	ROM.
Effective	access	time
Ei.	See	Exbi.
EIA/TIA-568B
EIDE	(enhanced	integrated	drive	electronics)
Electromagnetic	interference	(EMI)
Electronic	design	automation	(EDA)
Elevator	algorithm
Elias,	Peter
Embedded	system	(in	general)
debugging
design	lifecycle
hardware
memory	organization
operating	system
programming
system	software
system	tradeoffs

Emitter-coupled	logic.	See	ECL.
Emulation,	floating-point.	See	Floating-point	emulation.
Enabling	unit.	See	Dataflow	computing.
Encoded	data
Encryption
wireless

End	carry-around
Endianess.	See	Little	endian	and	Big	endian.
Engelbart,	Doug
Enhanced	integrated	drive	electronics.	See	EIDE.
ENIAC
ENIAC-on-a-chip

Entropy
EPIC	(explicitly	parallel	instruction	computers)
compared	to	VLIW
See	also	Parallel	architectures.

EPROM.	See	ROM.
Equivalence,	Boolean
Error,	floating-point
Error	detection	and	correction
cyclic	redundancy	check	(CRC)
Hamming	codes
Reed-Solomon

Error	propagation	in	floating-point	numbers
Estridge,	Don
Ethernet
in	iSCSI
in	storage	networks

Evenodd
Event	driven,	operating	system



Exa
Exabyte,	use	of
Exbi
Exception.	See	Interrupts,	software	interrupt.
Excess	representation
Exclusive	cache.	See	Cache	memory,	exclusive.
Execute	cycle.	See	Fetch-decode-execute	cycle.
Execution-time	binding.	See	Binding.
Execution	unit.	See	Intel	architectures	or	Parallel	architectures,	superscalar.
Expanding	opcodes
See	also	Instruction	set	architecture.

Expansion	bus
Expansion	slot
Explicitly	parallel	instruction	computers.	See	EPIC.
Exponent
Extended	Binary	Coded	Decimal	Interchange	Code.	See	EBCDIC.
Extended	graphics	array.	See	XGA.
Extended	integrated	drive	electronics.	See	EIDE.
External	fragmentation.	See	Virtual	memory,	segmentation,	external	fragmentation.

f.	See	Femto.
Fallacies,	statistical
Fast	carry	look	ahead
Fast	Fourier	transform	(FFT)
FCFS.	See	First-come,	first-served.
Feedback
Femto
Ferrucci,	David
FET
Fetch-decode-execute	cycle
decoding
modified	for	interrupts

Fetching	unit.	See	Dataflow	computing.
Fiber	optics.	See	Optical	cable.
Fibre	channel
Association
FC-AL
features	compared	(table)

Field	effect	transistor.	See	FET.
Field	programmable	gate	array	(FPGA)
Fifth-generation	language
Finite	state	machine	(FSM)
Firewall
FireWire.	See	IEEE	1394.
Firmware
First-come,	first-served	(FCFS)
disk	scheduling.	See	Disk	drive,	magnetic,	scheduling.
job	scheduling.	See	Scheduling,	by	operating	system.

First-generation	language	(1GL)
Fixed	branch	prediction
Fixed	disk.	See	Disk	drive,	magnetic.
Fixed-length	instruction.	See	Instruction	formats,	fixed-length.
Fixed-point	representation
Flag	register
Flash	memory.	See	ROM	and	Memory.
Flat	file	system
Flip-flops
D
See	also	D	flip-flop.

defined



JK
SR

Floating-point	arithmetic
Floating-point	emulation
Floating-point	errors
Floating-point	operations	per	second.	See	FLOPS.
Floating-point	representation
IEEE	Standard
normalization

Floating-point	unit
FLOPS	(floating-point	operations	per	second)
Flux	reversal
Flynn,	Michael
Flynn’s	taxonomy
chart
shortfalls

Ford-Fulkerson	algorithm.	See	Distance	vector	routing.
FORTRAN	(FORmula	TRANslation)
Foster,	William,	A.
4B/5B	encoding
Fourth-generation	language
FPGA.	See	Field	programmable	gate	array.
FPM	DRAM.	See	RAM.
Fractions,	converting	between	bases
Fragmentation
Frame	buffer
Frequency	modulation	(FM)
Full	adder
Full	duplex,	defined
Full	stroke	seek
Fully	associative	cache.	See	Cache,	mapping	schemes.
Functional	unit.	See	Dataflow	computing.

G.	See	Giga.
Gajski,	Daniel
logic	synthesis	Y-chart

Galois	field
Garbage	collection
See	also	External	fragmentation.

Gates,	Bill
Gates,	logic
multiple	input
symbols	for
universal

Gateway	Design	Automation
Gateway	(network)
General-purpose	register
General-purpose	register	architecture
load-store
memory-memory
register-memory

Generations,	of	computers.	See	Computers,	history	of.
Genuity	Corporation
Geometric	mean
Gerstlauer,	Andres
Gi.	See	Gibi.
Gibson,	Garth
Gibi
Giga
Gigahertz



GIF
Global	computing
Global	register	set.	See	RISC.
Goddard	Space	Flight	Center
Gosling,	James
GPR.	See	General-purpose	register	architecture.
Graded	index	fiber	optic
Graph,	data	structure
Graphical	user	interface.	See	GUI.
Graphics	and	Workstation	Performance	Group	(GWPG)
Graphics	interchange	format.	See	GIF.
Graphics	processing	unit	(GPU)
Gray,	Jim
Grid	computing.	See	Distributed	systems.
GUI
inventor
use	in	operating	system
See	also	Operating	systems,	as	interface.

Half	adder
Hamming	codes
algorithm
check	(redundant)	bits
code	word
difference	vector
in	disk	drives
distance
of	networks

minimum	Hamming	distance	D(min)
required	number	of	check	bits

Hamming	distance
in	error	correction
in	hypercube
minimum

Handle
Handshaking	protocol	(bus)
Hard	drive.	See	Disk	drive,	magnetic.
Hardware	definition	language	(HDL)
Hardwired	control
control	matrix
cycle	counter
described
illustration	of	control	unit
instruction	decoder
logic	diagrams
versus	microprogramming

Harmonic	mean
Harvard	architecture.	See	Non-von	Neumann	architectures.
Harvard	cache.	See	Cache	memory.
Hashing
Hawking,	Stephen
Hazard.	See	Pipeline.
HDCP
HD-DVD
HDL.	See	Hardware	definition	language.
HDMI
Head	crash
Heap,	memory
Helical	scan
Hertz



Hewlett-Packard
Hexadecimal	numbering	system
Hextet
Hidden	bit
Hierarchical	memory.	See	Memory	hierarchy.
Hierarchical	systems,	defined.	See	Computer-level	hierarchy.
High	bandwidth	digital	content	protection.	See	HDCP.
High	definition	multimedia	interface.	See	HDMI.
High-order
byte.	See	Interleaving,	memory.
nibble

High	Performance	Group	(HPG)
HiPPI	(High-performance	peripheral	interface)
History	of	computers.	See	Computers,	history	of.
Hit
Hit	rate
Hit	time
Hollerith	card
Hollerith,	Herman
Holographic	data	storage
Hop,	network	route
Horizontal	cable
Hot	plugging
HP-UX
Hsu,	Feng-hsiung
Hsu,	Windsor	W.
Hub
Huffman,	David
Huffman	code
Hypercube	network.	See	Interconnection	networks.

I-cache.	See	Intel	memory	management.
IA-32/x86
IA-64
IaaS
IAB.	See	Internet	Architecture	Board.
IBM	Corporation
AIX
binary-coded	decimal
Blue	Gene
and	cancer	treatment
Datamaster
Deep	Blue
DeepQA
EBCDIC
eSeries
founded
iSeries
Millipede
Model	801
Model	5100
PC	(fourth-generation)
Power7
pSeries
RAMAC
RAMAC	RVA	Turbo	2	disk
RS/6000
as	second-generation	machine
server	consolidation
SNA



System/360
operating	system

System/360-67	TSS
System/370
System/390
as	third-generation	machine
TP1	benchmark
and	TPC	benchmarks
VM	(virtual	machine	operating	system)
Watson
zSeries

IC.	See	Integrated	circuit.
ICANN.	See	Internet,	Internet	Corporation	for	Assigned	Names	and	Numbers.
ICE.	See	In-circuit	emulator.
Id.	See	Dataflow	computing.
IDE
Idempotent	law
Identity	law
IEEE	(Institute	of	Electrical	and	Electronic	Engineers)
IEEE	1394
IEEE	Standards
IEEE	488
IEEE	754
IEEE	1394
IEEE	802.2
IEEE	802.3
IEEE	802.11x
IEEE	802.15.1-2002
IEEE	1003.1-2001	(POSIX)
IEEE	1097-2002
IEEE	1149.1
IEEE	1364-2001
IEEE	5001

IETF.	See	Internet	Engineering	Task	Force.
If-then-else	instruction,	MARIE
ILM.	See	Information	lifecycle	management.
ILP.	See	Instruction-level	parallelism.
IMP
Implied	bit	(floating-point)
In-circuit	emulator	(ICE)
Inclusive	cache.	See	Cache	memory.
Indexed	addressing
Indirect	addressing
Inductance
Industry	standard	architecture	(ISA)
Infix	notation
Information,	compared	to	bytes	and	data
Information	lifecycle	management	(ILM)
Information	theory,	defined
Infrastructure	as	a	service.	See	IaaS.
Input-output.	See	I/O.
Input/output	instructions
and	MARIE

Input	register	set.	See	RISC,	register	windows.
InREG	(MARIE)
Instruction
assembly-language
machine

Instruction-based	I/O
Instruction	cache.	See	Cache	memory.



Instruction	cycle.	See	Fetch-decode-execute	cycle.
Instruction	decoder
Instruction	fetch	unit.	See	Intel	architectures	or	Parallel	architectures,	superscalar.
Instruction	formats,	described
decisions
expanding	opcodes
fixed-length
instruction	length
MARIE
number	of	operands
variable-length
See	also	Big	endian	and	Little	endian.

Instruction-level	parallelism	(ILP)
Instruction	mnemonic
Instruction	pipelining
defined
pipeline	conflicts
pipeline	stage
speedup	achieved	using

Instruction	processing
fetch-decode-execute	cycle
interrupts	and	I/O

Instruction	register	(IR)
Instruction	set	architecture	(ISA)
addressing
ARM
CISC
defined
design	decisions	for
expanding	opcodes
features
instruction	formats
instruction	types
instruction	pipelining.	See	Instruction	pipelining.
Intel
Java	virtual	machine
little	versus	big	endian
machine	level
MARIE
extended	set
full	set
initial	set

MIPS
number	of	operands
orthogonality
real-world	examples
RISC
stacks	versus	registers
See	also	Accumulator	architecture,	General-purpose	register	architecture,	and	Stack	architecture.

Instruction	types
arithmetic	operations
bit	manipulation
Boolean	logic
data	movement
I/O
special	purpose
transfer	of	control

Integer	arithmetic
addition	and	subtraction
multiplication	and	division



Integer	representation
converting	between	bases
converting	powers-of-two
largest	and	smallest	representable
one’s	complement
signed-magnitude	representation
two’s	complement	representation

Integrated	cache.	See	Unified	cache.
Integrated	circuit	(IC)
application	specific
Cray
DEC	PDP	8
DEC	PDP	11
IBM	System/360
manufacturing
and	multiprogramming
production
size	comparison	to	other	components
as	technology	used
3D-IC
and	timesharing

Integrated	drive	electronics.	See	IDE.
Integrated	services	digital	network.	See	ISDN.
Integration
LSI	(large-scale	integration)
MSI	(medium-scale	integration)
SSI	(small-scale	integration)
ULSI	(ultra	large-scale	integration)
VLSI	(very	large-scale	integration)
defined
as	fourth-generation	component

WSI	(wafer	scale	integration)
Intel
and	operating	systems
RAM	chip

Intel	architectures
4004
8080
8086
8087
8088
80x86
bus	interface	unit
example	program
execution	unit
hyperthreading
i7
IA-32
IA-64
as	VLIW	processor
ISA
Itanium
Pentium	series
processor	naming
registers

Intel	assembly	language
Intel	memory	management
D-cache
I-cache

Intellectual	property	(IP)	design



Intelligent	hub
Interconnection	networks
2	×	2	switch
blocking
bus-based
comparison	of	various	networks	(table)
completely	connected
crossbar
network
switch

dynamic
hypercube
linear	array
mesh
multistage
nonblocking
Omega
ring
shuffle
star-connected
static
figure	of

switching
topologies
tree

Interface
EIDE
network.	See	Network	interface	card.
Interface	message	processor.	See	IMP.

Interleaving
disk	sector
memory
high-order
low-order

Internal	fragmentation.	See	Virtual	memory,	paging.
International	Business	Machines	Corporation.	See	IBM.
International	Electrotechnical	Commission
Internet
Architecture	Board	(IAB)
Engineering	Task	Force	(IETF)
history
Internet	Corporation	for	Assigned	Names	and	Numbers	(ICANN)
protocol.	See	IP.
RFC,	defined
SCSI
service	provider.	See	ISP.
Society	(ISOC)
of	things
See	also	TCP.

Internetwork,	defined
Interpreted	languages
Interpreter
interpretation	process

Interrupt-driven	I/O
modified	instruction	cycle

Interrupts
address	vector
defined
handling
hardware	interrupt



I/O
latency
maskable
nesting
nonmaskable
processing,	flowchart
service	routine
software	interrupt
vector	table

Interrupt	transfer	(USB)
Inverse	law
I/O
architectures
block
bound
bus	operation
channel	I/O
character
control	methods
defined
direct	memory	access
compared	to	channel	I/O

instruction-based
interface
interrupt-driven	I/O
isolated
memory-mapped
optimization
parallel
performance
polled
programmed	I/O
serial
subsystem
See	also	Direct	memory	access	(DMA).

I/O	bound.	See	I/O.
I/O	bus
operation

I/O	processor	(IOP)
IoT.	See	Internet	of	things.
IP	(Internet	protocol)
version	4	(IPv4)
address	classes
header	format

version	6	(IPv6)
address	syntax
aggregatable	global	unicast	address	format
header	format

IP	(circuit	design).	See	Intellectual	property	design.
IPSec
IR.	See	Instruction	register.
ISA.	See	Instruction	set	architecture	or	Industry	standard	architecture.
iSCSI
Island	architecture
ISO	(International	Organization	for	Standardization)
ISO	standards
communications	reference	model.	See	OSI	reference	model.
ISO	9660

ISOC.	See	Internet	Society.
Isochronous	data



Isolation
See	also	Database,	properties.

ISP	(Internet	service	provider)
ITU	(International	Telecommunications	Union)

Jacquard,	Joseph-Marie
Jargon.	See	Computer	jargon.
Java	programming	language
compilation	and	execution
diagram
just-in-time	compiler
process

methods
simple	program
annotated	bytecode
binary	image	of

Java	virtual	machine
diagram
method	area
programming	environment	diagram

JBoD
Jennings,	Ken
Jeopardy!
JK	flip-flop
and	synchronous	counter

Joint	Electron	Devices	Engineering	Council	(JEDEC)
Joint	Photographic	Experts	Group	(JPEG)
Joint	Test	Action	Group	(JTAG)
Jordan,	F.	W.
JPEG	compression
JPEG	2000
Jukebox,	optical
Just	a	bunch	of	disks.	See	JBoD.
JVM.	See	Java	virtual	machine.

K.	See	Kilo.
Kardash,	John
Karnaugh	map
description	of	maps
don’t	care	condition
minterm
simplification
for	four	variables
for	three	variables
for	two	variables

Kasparov,	Garry
Katz,	Randy
Kelly,	Kevin
Kemeny,	John	G.
Kendall	Square	Research
Kernel.	See	Operating	systems	or	Benchmarks,	SPEC.
Key,	Alan
Key	field
See	also	Database,	management	systems.

Ki.	See	Kibi.
Kibi
Kilby,	Jack
Kildall,	Gary
Kilo
Kmap.	See	Karnaugh	map.



KSR-1
Kurtz,	Thomas	E.
Kurzell,	Ray
KWIPS.	See	WIPS	(Whetstone	instructions	per	second).

Labels.	See	Assemblers.
LAN	(local	area	network)
wireless

Land.	See	Optical	disk.
Large-scale	integration	(LSI)
Last-in,	first-out	(LIFO).	See	Stack.
Latch
Latency,	disk
LCD	(monitor)
Learning	algorithm.	See	Neural	networks.
Leibniz,	Gottfried
Lempel,	Abraham
Level-triggered	circuit
Levels,	computer	hierarchy.	See	Computer-level	hierarchy.
Lexical	analysis
Lickel,	Charles
Lightning	portable	adder
Linear	Algebra	Package.	See	Benchmarks.
Linear	array.	See	Array.
network.	See	Interconnection	networks.

Linear	tape	open.	See	LTO.
Link	editor
linking	process	(figure)

Link	state	routing
Linked	list,	data	structure
Linker.	See	Link	editor.
Linking.	See	Link	editor.
Linpack.	See	Benchmarks.
Linux
embedded
See	also	Operating	systems,	for	personal	computers.

Liquid	crystal	display.	See	LCD.
Little	endian
defined
discussed
versus	big	endian
See	also	Instruction	set	architecture.

Load/store	architecture
Load-time	binding.	See	Binding.
Local	area	network.	See	LAN.
Local	bus
Local	register	set.	See	RISC,	register	windows.
Locality	of	reference
See	also	Cache	memory	and	Memory	hierarchy.

Logic	circuits
See	also	Combinational	circuits	and	Sequential	circuits.

Logic	diagrams
Logic	families
Logic	gates
Logical	equivalence
Logical	operations
See	also	Boolean,	function.

Logical	partitions.	See	Partitions.
Logical	schema.	See	Database,	schema.
Long-term	scheduling



LOOK.	See	Disk,	magnetic,	scheduling.
Loop	optimization
fission
fusion
interchange
peeling
unrolling

Loopback	test
Loosely	coupled.	See	Distributed	systems.
Lossy/Lossless	data	compression
Low-order
byte.	See	Interleaving,	memory.
nibble

LPARs.	See	Partitions.
LSI.	See	Large	scale	integration.
LTO	(linear	tape	open)
LUCID.	See	Dataflow	computing.
Luminance
in	JPEG
in	LCD	monitor

LZ	compression
LZ77
LZ78
LZW

M.	See	Mega.
m.	See	Milli.
μ.	See	Micro.
MAC	(medium	access	control)
Mach	operating	system.	See	Operating	systems.
Machine	instructions
Machine	instructions	per	second.	See	MIPS.
Machine-to-machine	(M2M).	See	Internet	of	things.
MacOS.	See	Operating	systems,	for	personal	computers.
Magic	number	(Java)
Magnetic	disk.	See	Disk	drive,	magnetic.
Magnetic	tape.	See	Tape,	magnetic.
Main	memory
See	also	RAM.

MAN
Manchester	coding
Manchester	tagged	dataflow	model
See	also	Dataflow	computing.

Mantissa
Mapping
cache.	See	Cache	memory.
memory.	See	Virtual	memory.

MAR.	See	Memory	address	register.
MARIE
acronym
addressing	modes
ALU,	control	signals	for
architecture
buses
data	path
example	programs
instruction	format
instruction	processing
instruction	set	architecture
listing,	extended	set



listing,	full	set
listing,	initial	set

instructions
Add
AddI
Clear
Halt
Input
JnS
Jump
JumpI
Load
LoadI
Output
Skipcond
Store
StoreI
Subt

I/O
limitations	of
organization
programming
registers
simple	program

MARS	simulator
Martin,	James
Maskable	interrupt
Massively	parallel	systems.	See	Multiprocessor	systems.
Master	device	(on	bus)
Matching	unit.	See	Dataflow	computing.
Mauchley,	John
ENIAC

Maximum	likelihood
MBR.	See	Memory	buffer	register.
MDCT.	See	Modified	discrete	cosine	transform.
MDRAM.	See	RAM.
Mealy,	George
Mealy	machine
Mean	time	to	failure	(MTTF)
Mean	time	to	repair	(MTTR)
Means.	See	Arithmetic	mean,	Geometric	mean,	and	Harmonic	mean.
Measure	of	central	tendency
Mebi
Mechanical	calculating	machines.	See	Computers,	history	of,	generation	zero.
Media	access	control.	See	MAC.
Media	processor
Medium	access	control.	See	MAC.
Medium-scale	integration	(MSI)
Mega
Megahertz
Memorial	Sloan-Kettering	Cancer	Center
Memory
address	versus	contents
addressing
number	of	bits	required	for	address

alignment
bank.	See	Memory,	module.
bound
byte-addressable
cache.	See	Cache	memory.



capacity
as	collection	of	RAM	chips
construction
See	also	Flip-flops.

D	flip-flop	use	in
decoder	use	in
embedded	system.	See	Embedded	system,	memory	organization.
hierarchy.	See	Memory	hierarchy.
interleaving
location
module
optimization,	defined
organization
secondary
solid	state
types
See	also	ROM	and	RAM.

used	as	stack
using	cache,	TLBs,	and	paging	together
virtual.	See	Virtual	memory.
word-addressable

Memory	address	register	(MAR)
Memory	bound.	See	Memory.
Memory	buffer	register	(MBR)
Memory	hierarchy
diagram
locality	of	reference
terminology

Memory-mapped	I/O
Memristor
MEMS	(micro-electro-mechanical	storage)
Mesh	network.	See	Interconnection	networks.
Message	latency
Metal-oxide	semiconductor	field-effect	transistor.	See	MOSFET.
Metcalf,	Robert
Method.	See	Java	programming	language.
Method	area.	See	Java	virtual	machine.
Method	of	differences
Metric,	performance
Metropolitan	area	network.	See	MAN.
MFLOPS.	See	FLOPS.
MHz.	See	Megahertz.
Mi.	See	Mebi.
Micro
Microarchitecture
Microchip.	See	Integrated	circuit.
Microcode
Microcomputer
as	result	of	VLSI
See	also	Personal	computer.

Microcontroller
Micro-electro-mechanical	storage.	See	MEMS.
Microinstruction
defined
MARIE	format
See	also	Microoperation.

Micro	Instrumentation	and	Telemetry	Corporation	(MITS)
Microkernel.	See	Operating	systems.
Microoperation
codes	and	corresponding	MARIE	RTL



and	control	words
how	sequenced
timing	diagram	for	MARIE	Add	instruction
See	also	Register	transfer	notation.

Microprocessor
example	system
Intel,	evolution	of

Microprocessors
Intel	architectures.	See	Intel	architectures.
MIPS	architectures.	See	MIPS	architectures.

Microprogram
control	store
defined
firmware
MARIE
microcode

Microprogrammed	control
advantages/disadvantages	of
described
illustration	of	control	unit
for	MARIE
versus	hardwired	control

Microprogramming.	See	Microprogrammed	control.
Microsequencer
Microsoft
MS-DOS
Windows
7
8
embedded
95
98
2000
CE
ME
NT
XP
See	also	Operating	systems,	for	personal	computers.

Middleware
Mill
Milli
Millipede
MIMD	(multiple	instruction	multiple	data).	See	Flynn’s	taxonomy.
Minimum	Hamming	distance.	See	Hamming	codes.
Minterm
Minuend
MIPS	(machine	instructions	per	second)
MIPS	architectures
CPU
example	program
ISA
as	load/store	architecture
MARS	simulator
MIPS	x
MIPS32
MIPS64
registers
SPIM	simulator

Mirroring
disk	cache



disk	drive
MISD	(multiple	instruction	single	data).	See	Flynn’s	taxonomy.
Miss
Miss	penalty
Miss	rate
MITS.	See	Micro	Instrumentation	and	Telemetry	Corporation.
MMX	technology
Mnemonic
MNG
Modified	discrete	cosine	transform	(MDCT)
Modified	frequency	modulation	(MFM)
Modulation
frequency
phase
pulse	code

Modulo	2	arithmetic
Molecular	computer
Moler,	Cleve
Monitor
active	matrix
aspect	ratio
color	depth
contrast	ratio
dynamic	ratio
luminance
native	resolution
passive	matrix
as	part	of	operating	system.	See	Resident	monitor.
response	time

Monolithic	kernel.	See	Operating	systems.
Moore,	Edward
Moore,	Gordon
Moore	machine
Moore’s	law
Morton,	Andrew
Motherboard
Motorola
68HC12
68K

Mouse,	inventor
Moving	Picture	Experts	Group	(MPEG)
MP3	compression
MPP.	See	Multiprocessor	systems.
MS-DOS
in	embedded	systems
See	also	Operating	systems,	for	personal	computers	and	Microsoft.

MSI.	See	Medium-scale	integration.
MTTF.	See	Mean	time	to	failure.
MTTR.	See	Mean	time	to	repair.
Multicasting
Multicore	architecture
Multimedia	Logic	(MML)
Multimode	fiber	optic
Multiple	image	network	graphics.	See	MNG.
Multiple	input	gates.	See	Gates,	multiple	input.
Multiplexer
Multiplexor	channel
Multiplication	algorithms
floating	point
integer



Multipoint	bus
Multiprocessor	systems
distributed	systems
See	also	Distributed	systems.

loosely	coupled
massively	parallel	(MPP)
MPP	versus	SMP
and	networks
shared	memory
symmetric	(SMP)
tightly	coupled
See	also	Parallel	architectures.

Multiprogramming,
systems
See	also	Operating	systems.

Multistage	interconnection	network.	See	Interconnection	networks.
Multitasking
Multithreading
Multitiered	architecture
Murray	code
MWIPS.	See	WIPS	(Whetstone	instructions	per	second).

N.	See	Nano.
NaN
NAND
Nano
Nanotube.	See	Carbon	nanotube.
Narrowband	cable
NAS	(network	attached	storage)
National	Institute	of	Standards	and	Technology
National	Security	Agency
Native	method	area.	See	Java	virtual	machine.
Native	resolution
nCube
See	also	Multiprocessor	systems,	massively	parallel.

Negation.	See	Boolean	expressions.
Negroponte,	Nicholas
Neilson,	Norman	R.
Netlist
Network	access	point.	See	NAP.
Network	attached	storage.	See	NAS.
Network	cable
categories	(chart)
coaxial
optical
twisted	pair

Network	classes	(IPv4)
Network	graph.	See	Graph.
Network	interface	card	(NIC)
Network	layer	(ISO,	RM)
See	also	Router.

Network	of	workstations	(NOW).	See	Distributed	systems.
Network	topology
See	also	Interconnection	networks.

Networked	system
versus	distributed	system

Neural	networks
defined
example	(with	military	tanks)
learning	algorithm



perceptron
processing	element

Nexus
Nibble,	defined
NIC.	See	Network	interface	card.
Nielson,	Norman	R.
Nine’s	complement
NMOS
Noise
Nonblocking	cache.	See	Cache	memory.
Nonblocking	network.	See	Interconnection	networks.
Nonmaskable	interrupt
Nonpreemptive	scheduling
Non-recurring	engineering	expenses	(NRE)
Nonrelocatable	code
Non-return-to-zero	(NRZ)
Non-return-to-zero-invert	(NRZI)
Non-von	Neumann	architectures
cellular	automata
cognitive	computing
dataflow.	See	Dataflow	computing.
Harvard	architecture
neural	networks.	See	Neural	networks.
parallel	processing.	See	Parallel	architectures.
quantum	computer.	See	Quantum	computing.
reduction	machine

NOP	instruction
NOR
Normalization
in	floating-point	representation
in	means	comparison

NOT
Boolean
gate

Noyce,	Robert
NRAM
NRE.	See	Non-recurring	engineering	expenses.
NSA.	See	National	Security	Agency.
NSFNet
n-tiered	architecture
N-type	metal-oxide	semiconductors.	See	NMOS.
Null	law
NUMA	(nonuniform	memory	access)
cache	coherence

Numbering	system
N-way	set	associative	cache.	See	Cache,	mapping	schemes.
Nybble.	See	Nibble.
Object	file.	See	Assemblers.
Octal	numbering	system
Octet
octal	number
in	TCP/IP

Offset,	binary
Offset	field
See	also	Cache	memory	and	Virtual	memory,	paging.

Olsen,	Ken
Omega	network.	See	Interconnection	networks.
One-address	instruction	set	architecture
See	also	Instruction	set	architecture.

One’s	complement



arithmetic
representation
representation	for	zero

Opcode
Opel,	John
Open	Systems	Group	(OSG)
OpenBSD.	See	Operating	systems,	for	personal	computers.
Operating	systems
AIX
batch	processing
context	switching
defined
design
distributed
evolution	of,	compared	to	advances	in	architecture
history	of
HP-UX
as	interface
command	line
GUI,	defined
X	window	system

kernel
microkernel
monolithic

Linux
Mach
MINIX
multiprocessor
multiprogramming
networked
OS/360
for	personal	computers
BIOS
CP/M
DR	DOS
Linux
MacOS
MS-DOS.	See	Microsoft.
OpenBSD
OS/2
PC	DOS
QDOS
Windows.	See	Microsoft.

as	process	manager
real-time
Embedded	Linux.	See	Linux,	embedded.
MS-DOS	as
QNX
Windows	embedded.	See	Microsoft,	Windows.

as	resource	manager
scheduling	for.	See	Scheduling,	by	operating	system.
for	security	and	protection
services
Solaris
synchronization	problems
timesharing
Unix
VM	(IBM	zSeries)

Operation	counting
Opportunistic	write



Optical	cable
Optical	computing
Optical	disk
blue-violet
capacity
CD-ROM
channel	frames
constant	linear	velocity	(CLV)
construction
DVD
land
logical	sector	format
pit
recording	methods
sector
session
subchannels
track

Optical	jukebox.	See	Jukebox.
Optimization.	See	Central	processing	unit,	optimization	and	Disk	drive,	performance,	and	Memory,	optimization.

OR
Boolean
gate

Origin	2000
Origin	3900
Orthogonality
OS/2.	See	Operating	systems,	for	personal	computers.
OS/360.	See	Operating	systems.
OSI	reference	model	(OSI	RM)
application	layer
data	link	layer
figure
mapping	to	TCP/IP
network	layer
parable
physical	layer
presentation	layer
session	layer
transport	layer

Output	register	set.	See	RISC,	register	windows.
OutREG	(MARIE)
Overclocking
Overflow
detection
signed	magnitude
two’s	complement
versus	carry

Overhead,	network
Overlapping	register	windows.	See	RISC,	register	windows.
Overlay
See	also	Paging.

P.	See	Peta.
p.	See	Pico.
P-code	langage
PaaS
Packed	decimal	numbers
Page
Page	fault



Page	field
See	also	Virtual	memory,	paging.

Page	file
See	also	Virtual	memory,	paging.

Page	frame
Page	table
dirty	bit
modify	bit
usage	bit
valid	bit
See	also	Virtual	memory,	paging.

Paging
defined
combined	with	segmentation
explained
See	also	Virtual	memory,	paging.

PAL.	See	Programmable	array	logic.
PAN
Pandigital
Papadopolis,	Greg
Parallel	architectures
alternative	approaches
dataflow.	See	Dataflow	computing.
neural	networks.	See	Neural	networks.
systolic	arrays.	See	Systolic	arrays.

EPIC
interconnection	networks.	See	Interconnection	networks.
neural	networks.	See	Neural	networks.
superscalar
vector	processors
vector	registers

VLIW
Parallel	data	transmission
Parallel	processing
See	also	Multiprocessor	systems.

Parity
in	disk	drives.	See	RAID.
See	also	Hamming	codes.

Parity	checker
Parity	generator
Parking	heads
Parse	tree
Parsing
See	also	Compiler,	compilation	process.

Partial	response	maximum	likelihood	code	(PRML)
Partitions
figure	of

Pascal
programming	language
Blaise

Pascaline
Passive	matrix
Patterson,	David
PC.	See	Program	counter	or	Personal	computer.
PC	DOS.	See	Operating	systems,	for	personal	computers.
PCI	(peripheral	component	interconnect)
defined

PCIe
PCM.	See	Pulse	code	modulation.
Pebi



Pentium	series	microprocessors
assembly	program
caching
memory
registers

Perceptron.	See	Neural	networks.
Performance
Amdahl’s	law
benchmarks.	See	Benchmarking.
disk	drive
equation.	See	CPU	equation.
See	also	Central	processing	unit,	optimization.

Peripheral	component	interconnect.	See	PCI.
Personal	area	network	(PAN)
Personal	computer
example	system
expansion	bus
jargon
local	bus
look	inside
ports
removing	a	cover
sample	advertisement
system	bus

Peta
Petabyte,	use	of
Pervasive	computing.	See	Distributed	systems,	ubiquitous	computing.
Phase	modulation	(PM)
Photonic	computing
Physical	address
Physical	layer	(OSI	RM)
See	also	Network	cable,	Repeater,	and	Hub.

Physical	schema.	See	Database,	schema.
Pi.	See	Pebi.
PIC	microcontroller
Pico
Piconet
Pile	of	PCs	(PoPC).	See	Distributed	systems.
Pinouts,	SCSI-2	cable
Pipeline
conflicts
hazard
stage
use	in	RISC	machines

Pipelining
Pit.	See	Optical	disk.
Pixel,	defined
PKZIP
PLA.	See	Programmable	logic	array.
Plasmon	Corporation
Platform	as	a	service.	See	PaaS.
Platter,	magnetic	disk
PLD.	See	Programmable	logic	device.
Plug-and-play
defined

PMOS
PNG	(portable	network	graphics)
Point-to-point	bus
Polled	I/O.	See	Programmed	I/O.
Pop.	See	Point	of	presence	or	Stack.



Portable	network	graphics.	See	PNG.
Port	I/O.	See	Programmed	I/O.
Ports
inside	a	computer
parallel
serial
TCP
USB	(universal	serial	bus)

Positional	numbering	system.	See	Numbering	system.
POSIX.	See	IEEE	standards.
Postfix	notation.	See	Reverse	Polish	notation.
Power	lines
PowerPC
Precision
of	floating	point	numbers

Prediction.	See	Branch	instructions,	branch	prediction.
Preemptive	scheduling
Prefetching
disk

Prefix	notation
Prefixes
listed

Presentation	layer	(OSI	RM)
Price-performance	ratio
Principle	of	equivalence	of	hardware	and	software
Priority	queue
Priority	scheduling.	See	Scheduling,	by	operating	system.
PRISM
PRML.	See	Partial	response	maximum	likelihood	code.
Processor	speed,	defined
Processor-to-memory	bus
Product-of-sums	form
Professional	Disc	for	Data	(PDD)
Profiling
Program	counter	(PC)
Program-level	parallelism	(PLP)
Program	optimization	tips
Programmable	array	logic	(PAL)
Programmable	logic	array	(PLA)
Programmable	logic	device	(PLD)
Programmed	I/O
Programming	language	hierarchy	(figure)
PROM.	See	ROM.
Protected	environments
and	evolution	of	system	architectures
subsystems	and	partitions
virtual	machines

Protection	fault
Protocol
bus
I/O,	defined
TCP

Protocol	data	unit
Proxy	server
Psychoacoustic	coding
P-type	metal-oxide	semiconductors.	See	PMOS.
Public-resource	computing
Pulse	code	modulation	(PCM)
Push.	See	Stack.



QCL
QDOS.	See	Operating	systems,	for	personal	computers.
QNX.	See	Operating	systems,	real-time.
Quantization
Quantum	computing
algorithms
D-Wave	Computers
language
parallelism
qubit
Rose’s	Law
sqid
superposition

Quarter	inch	cartridge	(QIC)
Qubit.	See	Quantum	computing.
Queue,	data	structure
Quick-and-dirty	operating	system.	See	Operating	systems,	for	personal	computers.

Race	condition
Radio	frequency	interference	(RFI)
Radix
Radix	complement
diminished

Radix	point
RAID	(redundant	array	of	independent	disks)
Berkeley	nomenclature
hybrid	systems
RAID	0
RAID	1
RAID	2
RAID	3
RAID	4
RAID	5
RAID	6
RAID	ADG
RAID	DP
summary

RAM
BEDO	DRAM
DDR3
DDR	SDRAM
DRAM
DRDRAM
dynamic
EDO	DRAM
FPM	DRAM
MDRAM
RDRAM
SDRAM
SLDRAM
SRAM
static
See	also	Memory.

RAMAC
RAMAC	RVA	Turbo	2	disk
Random	access	memory.	See	RAM.
Range
of	floating	point	numbers
of	integers

RDRAM.	See	RAM.



Read	only	memory.	See	ROM.
Real-time	systems
hard	real-time
soft	real-time

Reconfigurable	computers
Record
See	also	Database,	management	systems.

Reduced	instruction	set	computer.	See	RISC.
Redundant	array	of	independent	disks.	See	RAID.
Redundant	bits
See	also	Check	bits	and	Parity.

Reed-Solomon	(RS)
code
in	disk	drives
error	correction

Reentrant	code
Register
D	flip-flop	in
as	memory	location
in	von	Neumann	architecture
windows.	See	RISC.

Register	addressing
Register	indirect	addressing
Register-memory	architecture
Register	transfer	language	(RTL).	See	Register	transfer	notation.
Register	transfer	notation	(RTN)
defined
fetch-decode-execute	cycle
MARIE	instructions	in
symbolic	notation	for

Registers
address
data
flag
general-purpose
index
instruction
MARIE
Pentium
program	counter
scratchpad
stack	pointer
status
user-visible
versus	stacks	for	internal	storage

Relocatable	code
Remote	procedure	call	(RPC).	See	Distributed	systems.
Reorganization
database.	See	Database.
disk

Repeater
Replacement	policies
for	cache
for	memory

Representation	for	zero
signed-magnitude

Request	for	comment	(RFC)
defined
RFC	791	(IP)
RFC	793	(TCP)



list	of	important
Resident	monitor
See	also	Operating	systems.

Residue	arithmetic
Resistive	touchscreen
Resource	conflict.	See	Instruction	pipelining,	pipeline	conflicts.
Resource	management.	See	Operating	system,	as	resource	manager.
Response	time
measurement.	See	Benchmarks,	TCP.
LCD	monitor

Reverse	Polish	notation
RFC.	See	Request	for	comment.
Ring	counter.	See	Counter.
Ring	network.	See	Interconnection	networks.
Ripple-carry	adder
RISC	(reduced	instruction	set	computer)
ARM
in	embedded	systems
MIPS	architectures
misnomer
pipelining
register	windows
versus	CISC
comparison	chart

Ritchie,	Dennis
RLL(d,	k).	See	Run-length-limited	code.
RMI	(remote	method	invocation),
Robotic	tape	library.	See	Tape	library,	robotic.
Rock,	Arthur
Rock’s	law
ROM
EEPROM
EPROM
flash	memory
PROM
See	also	Memory.

Root	hub
Rose,	Geordie
Rose’s	Law.	See	Quantum	computing.
Rotational	delay
Rotate	instruction
Round-robin.	See	Scheduling,	by	operating	system.
Router
Routing
congestive	collapse
distance	vector
link	state
static

RPM	(revolutions	per	minute)
RS(n,	k).	See	Reed-Solomon.
RTL.	See	Register	transfer	language.
RTN.	See	Register	transfer	notation.
Run-length	coding
Run-length-limited	code	(RLL)
Run-time	binding.	See	Binding.
Rutter,	Brad

SaaS
SACK.	See	Selective	acknowledgment.
SAM	(SCSI-3	Architecture	Model).	See	SCSI.



SAN	(storage	area	network)
SATA.	See	Serial	ATA.
SCADA
SCAN.	See	Disk	drive,	magnetic,	scheduling.
Scan	code
Scheduling
by	operating	system
disk	drive.	See	Disk	drive,	magnetic,	scheduling.

Schickard,	Wilhelm
SCSI
architecture	features	compared
fibre	channel
IEEE	1394
iSCSI	(Internet	SCSI)
Serial	attached
SCSI-3	Architecture	Model	(SAM)
SSA

SDH.	See	Synchronous	digital	hierarchy.
SDRAM.	See	RAM.
Seagate
Seattle	Computer	Products	Company
Secondary	memory.	See	Memory,	secondary.
Second-generation	language	(2GL)
Sector
magnetic	disk
optical	disk

Seek	time
Segment
Intel	assembly	language
code
data
stack

memory.	See	Virtual	memory,	segmentation.
network
TCP

Segment	table.	See	Virtual	memory,	segmentation.
Segmentation.	See	Virtual	memory.
Selective	acknowledgment	(SACK)
Selector	channel
Semantic	analyzer
See	also	Compiler,	compilation	process.

Semantic	gap
Sequent	Computer	Systems
Sequential	circuits
asynchronous
basic	concepts
clocks
counters
edge-triggered
flip-flops
characteristic	table,	defined
D.	See	D	flip-flop.
JK.	See	JK	flip-flop.
SR.	See	SR	flip-flop.

level-triggered
memory	circuit
registers
synchronous

Sequential	locality
See	also	Locality	of	reference.



Sequential	logic
and	hardwired	control	(MARIE)

Serial	ATA
Serial	attached	SCSI
Serial	data	transmission
Serial	storage	architecture.	See	SSA.
Serlin,	Omri
Serpentine	recording
Server	consolidation
Server	farms
Service	level	agreement
Session,	optical	disk
Session	layer	(OSI	RM)
Set	associative	cache.	See	Cache,	mapping	schemes.
Set	field
See	also	Cache	memory,	address	fields	and	Cache	memory,	mapping	schemes.

Settle	time	(I/O	bus)
Shadow	set
Shannon,	Claude
Shared	memory	multiprocessors	(SMM).	See	Multiprocessor	systems,	shared	memory.
Shared	virtual	memory	systems.	See	Multiprocessor	systems,	shared	memory.
Shifter
Shifting,	binary	multiplication	and	division
Shockley,	William
Shortest	job	first.	See	Scheduling,	by	operating	system.
Shortest	remaining	time	first.	See	Scheduling,	by	operating	system.
Shortest	seek	time	first	(SSTF).	See	Disk	drive,	magnetic,	scheduling.
Short	stroking.	See	Disk	drive,	magnetic.
Short-term	scheduling
Shuffle	network.	See	Interconnection	networks.
Signal-to-noise	ratio
Signed	integers
Signed	integer	representation.	See	Complement	systems,	One’s	complement,	Signed-magnitude,	and	Two’s	complement.
Signed-magnitude
addition	and	subtraction
representation

Significand
Silicon	Graphics
Silo,	tape.	See	Tape	library,	robotic.
SIMD	(single	instruction	multiple	data).	See	Flynn’s	taxonomy.
Simple	object	access	protocol.	See	SOAP.
Simplification	of	Boolean	expressions
and	digital	circuits
Karnaugh	maps

Simulation.	See	System	simulation.
Simultaneous	peripheral	operation	online.	See	Spooling.
Single	mode	optical	fiber
Single	precision	numbers
Singularity.	See	Technological	singularity.
Sisal.	See	Dataflow	computing.
SISD	(single	instruction	single	data).	See	Flynn’s	taxonomy.
SLA.	See	Service	level	agreement.
SJF.	See	Shortest	job	first.
Slave	device	(on	bus)
SLDRAM.	See	RAM.
SLED	(single	large	expensive	disk)
Small	Computer	System	Interface.	See	SCSI.
Small	scale	integration	(SSI)
SMM.	See	Multiprocessor	systems,	shared	memory.
SMP.	See	Multiprocessor	systems.



SNA
figure

SNOBOL
Snoopy	cache	controller
See	also	NUMA.

SOAP
SOC.	See	System-on-a-chip.
Socket	(TCP)
Software	as	a	service.	See	SaaS.
Software	interrupt
Solaris.	See	Operating	systems.
Solid	state	drive.	See	SSD.
Sony	Corporation
Source	file.	See	Assemblers.
SPARC	architecture
Spatial	locality
See	also	Locality	of	reference.

Spatial	reuse
SPEC	benchmarks.	See	Benchmarks.
SpecC
Special-purpose	register
Speculative	execution
Speedup
See	also	Amdahl’s	law	and	Instruction	pipelining.

Sperry	Computer	Corporation.	See	Unisys.
SPIM	simulator
Split	horizon	routing
SPMD	(single	program	multiple	data).	See	Flynn’s	taxonomy.
Spooling
Sqid.	See	Quantum	computing.
SR	Flip-flop
SRAM.	See	RAM.
SSA
SSD
SSI.	See	Small-scale	integration.
SSTF.	See	Disk	drive,	magnetic,	scheduling.
Stack
implementation	in	MARIE
operations	(push	and	pop)
pointer
versus	registers	for	internal	storage

Stack	addressing
Stack	architecture
See	also	Instruction	set	architecture.

Standard	Performance	Evaluation	Corporation
See	also	SPEC	benchmarks.

Standardized	form
product-of-sums
sum-of-products
See	also	Boolean,	functions.

Standards	organizations
ANSI	(American	National	Standards	Institute)
BSI	(British	Standards	Institution)
CCITT	(International	Consultative	Committee	on	Telephony	and	Telegraphy)
CEN	(Comité	Européen	de	Normalisation)
European	Computer	Manufacturers	Association	(ECMA)
ICANN	(Internet	Corporation	for	Assigned	Names	and	Numbers)
IEEE	(Institute	of	Electrical	and	Electronic	Engineers)
IETF	(Internet	Engineering	Task	Force)
ISO	(International	Organization	for	Standardization)



ITU	(International	Telecommunications	Union)
Star	network.	See	Interconnection	networks.
Starvation
Static	branch	prediction
Static.	See	RAM.
Static	network.	See	Interconnection	networks.
Static	routing
Statistical	coding.	See	Data	compression.
Statistical	fallacies.	See	Fallacies,	statistical.
Status	register
Stepped	Reckoner
Sterling,	Thomas
Stewart,	Pete
Storage
cloud
future	of
magnetic	disk.	See	Disk	drive,	magnetic.
magnetic	tape.	See	Tape,	magnetic.
main	memory.	See	Memory.
optical.	See	Optical	disk.

Storage	area	network.	See	SAN.
Stored-program	computer.	See	Von	Neumann
architecture.
Strobe
Subnet
Subsystems,	I/O.	See	I/O	subsystem.
Sum-of-products	form
Sun	Microsystems
Superparamagnetic	limit
Superparamagnetism
Superpipelining
Superposition.	See	Quantum	computing.
Superscalar
See	also	Parallel	architectures.

Supervisory	control	and	data	acquisition.	See	SCADA.
Switch
2	×	2.	See	Interconnection	networks.
crossbar.	See	Interconnection	networks.
data	network

Switching	hub
fabric

Switching	network.	See	Interconnection	networks.
Symbol	table
Symbolic	logic
See	also	Boolean	algebra.

Symmetric	multiprocessors.	See	Multiprocessor
systems.
Synchronous	bus
Synchronous	counter
Synchronous	sequential	circuit
Syndrome
Syntax	tree.	See	Parse	tree.
Synthetic	benchmark,	defined
System	bus
backplane
I/O.	See	I/O.
MARIE
multipoint
point-to-point
processor-to-memory



SystemC
System	clock.	See	Central	processing	unit,	clock.
System	simulation
System	software
operating	systems
programming	tools
protected	environments

System	trace
Systematic	error	detection
System-on-a-chip	(SOC)
Systems	network	architecture.	See	SNA.
Systolic	arrays

T.	See	Tera.
Tablet	computer,	described
Tag	field
See	also	Cache	memory,	address	fields	and	Cache	memory,	mapping	schemes.

Tape,	magnetic
DAT
DLT
future	of
helical	scan
LTO	(Linear	Tape	Open)
nine	track
QIC
robotic	library
silo

Tape	library,	robotic
Task
Taxonomy,	architecture.	See	Computer	architecture.
TBW	(terabytes	written)
TCM.	See	Trellis	code	modulation.
TCP
offload	engine	(TOE)
segment	format

TCP/IP
Tebi
Technical	singularity
Temporal	locality
See	also	Locality	of	reference.

Tera
Third-generation	language	(3GL)
Thompson,	Ken
Thread
Three-address	code
See	also	Compiler,	compilation	process.

Three-address	instruction	set	architecture
See	also	Instruction	set	architecture.

Three-dimensional	integrated	circuit
Throughput
Ti.	See	Tebi.
Tightly	coupled.	See	Multiprocessor	systems.
Timeout	(I/O)
Timesharing
See	also	Operating	systems.

Timeslicing
Timing	diagram
I/O	bus
microoperation

Timing	signals



in	hardwired	control
See	also	Clocks.

TLB
flowchart	for	using
See	also	Virtual	memory,	paging.

TOE.	See	TCP	offload	engine.
Tokens
See	also	Compiler,	compilation	process.

Topology.	See	Network	topology.
Torvalds,	Linus
Touchscreen	technology
TP	monitor	(transaction	processing	monitor).	See	Transaction	manager.
TPC	(Transaction	Processing	Performance	Council)	benchmarks
TP1	benchmark
Trace	cache.	See	Cache	memory.
Track
magnetic	disk
optical	disk
pitch

Transaction	manager
Transaction	Processing	Performance	Council	(TPC)
Transfer	time,	disk
Transistors
as	computer	technology
defined
famous	computers	built	using
size	comparison	to	other	components

Transistor-transistor	logic.	See	TTL.
Translation	look-aside	buffer.	See	TLB.
Transmission	control	protocol.	See	TCP.
Transmission	media	(network)
Transport	latency
Transport	layer	(OSI	RM)
Trap.	See	Interrupts,	software	interrupt.
Tree	network.	See	Interconnection	networks.
Trees,	data	structure
B+
balanced
binary
child
height
n-ary
root
trie

Tri-state	device
Trie
in	data	compression
trees

True	branch	prediction
Truth	table
TTL	(time	to	live)
TTL	(transistor-transistor	logic)
Turk,	mechanical
Twisted	pair	cable
Two-address	instruction	set	architecture
See	also	Instruction	set	architecture.

Two-by-two	switch.	See	2	3	2	switch.
Two’s	complement
arithmetic
representation



UBER	(unrecoverable	bit	error	ratio)
Ubiquitous	computing.	See	Distributed	systems,	ubiquitous	computing.
ULSI.	See	Ultra	large-scale	integration.
Ultra	Density	Optical	Disk,	(UDO-2)
Ultra	large-scale	integration	(ULSI)
UMA	(uniform	memory	access)
UML
Unconditional	branch
Unguided	media
Unicode
codespace	chart

Unified	cache.	See	Cache	memory.
Unisys
Univac
Universal	disk	format	specification	(UDF)
Universal	gates
NAND
NOR

University	of	California	at	Berkeley
Unix
developed
for	personal	computers
POSIX.	See	IEEE	standards.
variants	of

Unrecoverable	bit	error	ratio.	See	UBER.
Unsigned	versus	signed	numbers
USB	(Universal	Serial	Bus)
defined
Implementers	Forum	(USB-IF)
versions	compared

User-visible	registers
See	also	General-purpose	register.

Unstructured	programming

Vacuum	tubes
as	computer	technology
explained
famous	computers	built	using
size	comparison	to	other	components

VAL.	See	Dataflow	computing.
Valid	bit
See	also	Cache	memory	and	Page	table.

Variable-length	instruction
See	also	Instruction	formats.

VAT	(virtual	allocation	table)
Vector	processors.	See	Parallel	architectures.
Vector	registers.	See	Parallel	architectures,	vector	processors.
Verilog
Vertical	cable
Very	large-scale	integration	(VLSI)
Very	long	instruction	word.	See	VLIW.
VHDL
Victim	cache.	See	Cache	memory.
Vinge,	Vernor
Viterbi	decoder
Viterbi	detection
Virtual	address.	See	Virtual	memory,	address.
Virtual	allocation	table.	See	VAT.
Virtual	device	driver
Virtual	machine



illustration
Java	virtual	machine
manager	(VMM)

Virtual	memory
address
combined	with	caching
diagram

defined
effective	access	time	using
mapping
paging
advantages/disadvantages
diagram
effective	access	time	using
internal	fragmentation
page	table
steps	involved	in
use	of	TLB

segmentation
external	fragmentation
segment	table

terminology
VLIW
compared	to	EPIC
See	also	Parallel	architectures.

VLSI.	See	Very	large-scale	integration.
VMM.	See	Virtual	machine,	manager.
VOIP	(voice	over	IP)
Von	Kempelen,	Wolfgang
Von	Neumann,	John
Von	Neumann	architecture
bottleneck
characteristics
fetch-decode-execute	cycle
figure	of

Von	Neumann	bottleneck.	See	Von	Neumann	architecture.
Von	Neumann	execution	cycle.	See	Fetch-decode-execute	cycle.
Von	Neumann	machine.	See	Von	Neumann	architecture.
VxD.	See	Virtual	device	driver.

Wafer	scale	integration
Wall	clock	time
WAN	(wide	area	network)
WAP
Watchdog	timer
Watson
Wear	leveling
Weighted	arithmetic	mean.	See	Arithmetic	mean.
Weighted	numbering	system.	See	Numbering	system.
Wellpoint
WEP
Weiser,	Mark
Welsh,	Terry
Whetstone	benchmark
Wichman,	Brian	A.
Wide	area	network.	See	WAN.
Winchester	disk
Windows.	See	Operating	systems,	for	personal	computers,	Windows,	and	Microsoft,	Windows.
WIPS	(Whetstone	instructions	per	second)
Wired	equivalent	privacy.	See	WEP.



Wireless	access	point.	See	WAP.
Wireless	networking
WLAN
Word
defined
memory
size

Word-addressable	memory.	See	Memory.
WORM	(disk)
Write-back.	See	Cache	coherence	and	Cache	memory,	write	policies.
Write-through.	See	Cache	coherence	and	Cache	memory,	write	policies.
WSI.	See	Wafer	scale	integration.

Xerox	Corporation
Xerox	Palo	Alto	Research	Center
XGA
XOR
Boolean
in	disk	drives
gate

XT	bus

Y.	See	Yotta.
y.	See	Yocto.
Yocto
Yotta
Yottabytes,	use	of

Z.	See	Zetta.
z.	See	Zepto.
Zepto
Zero-address	architecture.	See	Stack	architecture.
Zetta
Zettabytes,	use	of
Zhu,	Jianwen
Zings	benchmark
Ziv,	Jacob
Ziv-Lempel	compression.	See	LZ.
Ziv-Lempel-Welsh	compression.	See	LZW.
Zoned	bit	recording
Zoned	decimal	format
zSeries.	See	IBM	Corporation.
Zuse,	Konrad


	Title Page
	Copyright
	Dedication
	Contents
	Preface
	Chapter 1 Introduction
	1.1 Overview
	1.2 The Main Components of a Computer
	1.3 An Example System: Wading Through the Jargon
	1.4 Standards Organizations
	1.5 Historical Development
	1.5.1 Generation Zero: Mechanical Calculating Machines (1642–1945)
	1.5.2 The First Generation: Vacuum Tube Computers (1945–1953)
	1.5.3 The Second Generation: Transistorized Computers (1954–1965)
	1.5.4 The Third Generation: Integrated Circuit Computers (1965–1980)
	1.5.5 The Fourth Generation: VLSI Computers (1980–????)
	1.5.6 Moore’s Law

	1.6 The Computer Level Hierarchy
	1.7 Cloud Computing: Computing as a Service
	1.8 The Von Neumann Model
	1.9 Non–Von Neumann Models
	1.10 Parallel Processors and Parallel Computing
	1.11 Parallelism: Enabler of Machine Intelligence—Deep Blue and Watson
	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises

	Chapter 2 Data Representation in Computer Systems
	2.1 Introduction
	2.2 Positional Numbering Systems
	2.3 Converting Between Bases
	2.3.1 Converting Unsigned Whole Numbers
	2.3.2 Converting Fractions
	2.3.3 Converting Between Power-of-Two Radices

	2.4 Signed Integer Representation
	2.4.1 Signed Magnitude
	2.4.2 Complement Systems
	2.4.3 Excess-M Representation for Signed Numbers
	2.4.4 Unsigned Versus Signed Numbers
	2.4.5 Computers, Arithmetic, and Booth’s Algorithm
	2.4.6 Carry Versus Overflow
	2.4.7 Binary Multiplication and Division Using Shifting

	2.5 Floating-Point Representation
	2.5.1 A Simple Model
	2.5.2 Floating-Point Arithmetic
	2.5.3 Floating-Point Errors
	2.5.4 The IEEE-754 Floating-Point Standard
	2.5.5 Range, Precision, and Accuracy
	2.5.6 Additional Problems with Floating-Point Numbers

	2.6 Character Codes
	2.6.1 Binary-Coded Decimal
	2.6.2 EBCDIC
	2.6.3 ASCII
	2.6.4 Unicode

	2.7 Error Detection and Correction
	2.7.1 Cyclic Redundancy Check
	2.7.2 Hamming Codes
	2.7.3 Reed-Solomon

	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises
	Focus on Codes for Data Recording and Transmission
	2A.1 Non-Return-to-Zero Code
	2A.2 Non-Return-to-Zero-Invert Code
	2A.3 Phase Modulation (Manchester Code)
	2A.4 Frequency Modulation
	2A.5 Run-Length-Limited Code
	2A.6 Partial Response Maximum Likelihood Coding
	2A.7 Summary
	Exercises


	Chapter 3 Boolean Algebra and Digital Logic
	3.1 Introduction
	3.2 Boolean Algebra
	3.2.1 Boolean Expressions
	3.2.2 Boolean Identities
	3.2.3 Simplification of Boolean Expressions
	3.2.4 Complements
	3.2.5 Representing Boolean Functions

	3.3 Logic Gates
	3.3.1 Symbols for Logic Gates
	3.3.2 Universal Gates
	3.3.3 Multiple Input Gates

	3.4 Digital Components
	3.4.1 Digital Circuits and Their Relationship to Boolean Algebra
	3.4.2 Integrated Circuits
	3.4.3 Putting It All Together: From Problem Description to Circuit

	3.5 Combinational Circuits
	3.5.1 Basic Concepts
	3.5.2 Examples of Typical Combinational Circuits

	3.6 Sequential Circuits
	3.6.1 Basic Concepts
	3.6.2 Clocks
	3.6.3 Flip-Flops
	3.6.4 Finite State Machines
	3.6.5 Examples of Sequential Circuits
	3.6.6 An Application of Sequential Logic: Convolutional Coding and Viterbi Detection

	3.7 Designing Circuits
	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises
	Focus on Karnaugh Maps
	3A.1 Introduction
	3A.2 Description of Kmaps and Terminology
	3A.3 Kmap Simplification for Two Variables
	3A.4 Kmap Simplification for Three Variables
	3A.5 Kmap Simplification for Four Variables
	3A.6 Don’t Care Conditions
	3A.7 Summary
	Exercises


	Chapter 4 MARIE: An Introduction to a Simple Computer
	4.1 Introduction
	4.2 CPU Basics and Organization
	4.2.1 The Registers
	4.2.2 The ALU
	4.2.3 The Control Unit

	4.3 The Bus
	4.4 Clocks
	4.5 The Input/Output Subsystem
	4.6 Memory Organization and Addressing
	4.7 Interrupts
	4.8 MARIE
	4.8.1 The Architecture
	4.8.2 Registers and Buses
	4.8.3 Instruction Set Architecture
	4.8.4 Register Transfer Notation

	4.9 Instruction Processing
	4.9.1 The Fetch–Decode–Execute Cycle
	4.9.2 Interrupts and the Instruction Cycle
	4.9.3 MARIE’s I/O

	4.10 A Simple Program
	4.11 A Discussion on Assemblers
	4.11.1 What Do Assemblers Do?
	4.11.2 Why Use Assembly Language?

	4.12 Extending Our Instruction Set
	4.13 A Discussion on Decoding: Hardwired Versus Microprogrammed Control
	4.13.1 Machine Control
	4.13.2 Hardwired Control
	4.13.3 Microprogrammed Control

	4.14 Real-World Examples of Computer Architectures
	4.14.1 Intel Architectures
	4.14.2 MIPS Architectures
	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises


	Chapter 5 A Closer Look at Instruction Set Architectures
	5.1 Introduction
	5.2 Instruction Formats
	5.2.1 Design Decisions for Instruction Sets
	5.2.2 Little Versus Big Endian
	5.2.3 Internal Storage in the CPU: Stacks Versus Registers
	5.2.4 Number of Operands and Instruction Length
	5.2.5 Expanding Opcodes

	5.3 Instruction Types
	5.3.1 Data Movement
	5.3.2 Arithmetic Operations
	5.3.3 Boolean Logic Instructions
	5.3.4 Bit Manipulation Instructions
	5.3.5 Input/Output Instructions
	5.3.6 Instructions for Transfer of Control
	5.3.7 Special-Purpose Instructions
	5.3.8 Instruction Set Orthogonality

	5.4 Addressing
	5.4.1 Data Types
	5.4.2 Address Modes

	5.5 Instruction Pipelining
	5.6 Real-World Examples of ISAs
	5.6.1 Intel
	5.6.2 MIPS
	5.6.3 Java Virtual Machine
	5.6.4 ARM

	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises

	Chapter 6 Memory
	6.1 Introduction
	6.2 Types of Memory
	6.3 The Memory Hierarchy
	6.3.1 Locality of Reference

	6.4 Cache Memory
	6.4.1 Cache Mapping Schemes
	6.4.2 Replacement Policies
	6.4.3 Effective Access Time and Hit Ratio
	6.4.4 When Does Caching Break Down?
	6.4.5 Cache Write Policies
	6.4.6 Instruction and Data Caches
	6.4.7 Levels of Cache

	6.5 Virtual Memory
	6.5.1 Paging
	6.5.2 Effective Access Time Using Paging
	6.5.3 Putting It All Together: Using Cache, TLBs, and Paging
	6.5.4 Advantages and Disadvantages of Paging and Virtual Memory
	6.5.5 Segmentation
	6.5.6 Paging Combined with Segmentation

	6.6 A Real-World Example of Memory Management
	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises

	Chapter 7 Input/Output and Storage Systems
	7.1 Introduction
	7.2 I/O and Performance
	7.3 Amdahl’ s Law
	7.4 I/O Architectures
	7.4.1 I/O Control Methods
	7.4.2 Character I/O Versus Block I/O
	7.4.3 I/O Bus Operation

	7.5 Data Transmission Modes
	7.5.1 Parallel Data Transmission
	7.5.2 Serial Data Transmission

	7.6 Magnetic Disk Technology
	7.6.1 Rigid Disk Drives
	7.6.2 Solid State Drives

	7.7 Optical Disks
	7.7.1 CD-ROM
	7.7.2 DVD
	7.7.3 Blue-Violet Laser Discs
	7.7.4 Optical Disk Recording Methods

	7.8 Magnetic Tape
	7.9 RAID
	7.9.1 RAID Level 0
	7.9.2 RAID Level 1
	7.9.3 RAID Level 2
	7.9.4 RAID Level 3
	7.9.5 RAID Level 4
	7.9.6 RAID Level 5
	7.9.7 RAID Level 6
	7.9.8 RAID DP
	7.9.9 Hybrid RAID Systems
	7.10 The Future of Data Storage

	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises
	Focus on Data Compression
	7A.1 Introduction
	7A.2 Statistical Coding
	7A.2.1 Huffman Coding
	7A.2.2 Arithmetic Coding
	7A.3 Ziv-Lempel (LZ) Dictionary Systems
	7A.4 GIF and PNG Compression
	7A.5 JPEG Compression
	7A.6 MP3 Compression
	7A.7 Summary
	Further Reading
	References
	Exercises


	Chapter 8 System Software
	8.1 Introduction
	8.2 Operating Systems
	8.2.1 Operating Systems History
	8.2.2 Operating System Design
	8.2.3 Operating System Services

	8.3 Protected Environments
	8.3.1 Virtual Machines
	8.3.2 Subsystems and Partitions
	8.3.3 Protected Environments and the Evolution of Systems Architectures

	8.4 Programming Tools
	8.4.1 Assemblers and Assembly
	8.4.2 Link Editors
	8.4.3 Dynamic Link Libraries
	8.4.4 Compilers
	8.4.5 Interpreters

	8.5 Java: All of the Above
	8.6 Database Software
	8.7 Transaction Managers
	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises

	Chapter 9 Alternative Architectures
	9.1 Introduction
	9.2 RISC Machines
	9.3 Flynn’s Taxonomy
	9.4 Parallel and Multiprocessor Architectures
	9.4.1 Superscalar and VLIW
	9.4.2 Vector Processors
	9.4.3 Interconnection Networks
	9.4.4 Shared Memory Multiprocessors
	9.4.5 Distributed Computing

	9.5 Alternative Parallel Processing Approaches
	9.5.1 Dataflow Computing
	9.5.2 Neural Networks
	9.5.3 Systolic Arrays

	9.6 Quantum Computing
	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises

	Chapter 10 Topics in Embedded Systems
	10.1 Introduction
	10.2 An Overview of Embedded Hardware
	10.2.1 Off-the-Shelf Embedded System Hardware
	10.2.2 Configurable Hardware
	10.2.3 Custom-Designed Embedded Hardware

	10.3 An Overview of Embedded Software
	10.3.1 Embedded Systems Memory Organization
	10.3.2 Embedded Operating Systems
	10.3.3 Embedded Systems Software Development

	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises

	Chapter 11 Performance Measurement and Analysis
	11.1 Introduction
	11.2 Computer Performance Equations
	11.3 Mathematical Preliminaries
	11.3.1 What the Means Mean
	11.3.2 The Statistics and Semantics

	11.4 Benchmarking
	11.4.1 Clock Rate, MIPS, and FLOPS
	11.4.2 Synthetic Benchmarks: Whetstone, Linpack, and Dhrystone
	11.4.3 Standard Performance Evaluation Corporation Benchmarks
	11.4.4 Transaction Processing Performance Council Benchmarks
	11.4.5 System Simulation

	11.5 CPU Performance Optimization
	11.5.1 Branch Optimization
	11.5.2 Use of Good Algorithms and Simple Code

	11.6 Disk Performance
	11.6.1 Understanding the Problem
	11.6.2 Physical Considerations
	11.6.3 Logical Considerations

	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises

	Chapter 12 Network Organization and Architecture
	12.1 Introduction
	12.2 Early Business Computer Networks
	12.3 Early Academic and Scientific Networks: The Roots and Architecture of the Internet
	12.4 Network Protocols I: ISO/OSI Protocol Unification
	12.4.1 A Parable
	12.4.2 The OSI Reference Model

	12.5 Network Protocols II: TCP/IP Network Architecture
	12.5.1 The IP Layer for Version 4
	12.5.2 The Trouble with IP Version 4
	12.5.3 Transmission Control Protocol
	12.5.4 The TCP Protocol at Work
	12.5.5 IP Version 6

	12.6 Network Organization
	12.6.1 Physical Transmission Media
	12.6.2 Interface Cards
	12.6.3 Repeaters
	12.6.4 Hubs
	12.6.5 Switches
	12.6.6 Bridges and Gateways
	12.6.7 Routers and Routing

	12.7 The Fragility of the Internet
	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises

	Chapter 13 Selected Storage Systems and Interfaces
	13.1 Introduction
	13.2 SCSI Architecture
	13.2.1 “Classic” Parallel SCSI
	13.2.2 The SCSI Architecture Model-3

	13.3 Internet SCSI
	13.4 Storage Area Networks
	13.5 Other I/O Connections
	13.5.1 Parallel Buses: XT to ATA
	13.5.2 Serial ATA and Serial Attached SCSI
	13.5.3 Peripheral Component Interconnect
	13.5.4 A Serial Interface: USB

	13.6 Cloud Storage
	Chapter Summary
	Further Reading
	References
	Review of Essential Terms and Concepts
	Exercises

	Appendix A: Data Structures and the Computer
	A.1 Introduction
	A.2 Fundamental Structures
	A.2.1 Arrays
	A.2.2 Queues and Linked Lists
	A.2.3 Stacks

	A.3 Trees
	A.4 Network Graphs
	Summary
	Further Reading
	References
	Exercises

	Glossary
	Answers and Hints for Selected Exercises
	Index

