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Preface

This collection of problems results from the demand of students for sup-
plementary problems and support in the preparation for examinations.
With the present collection ’Engineering Mechanics 2 - Formulas and
Problems, Mechanics of Materials’ we provide more additional exercise
material.

The subject ’Mechanics of Materials’ is commonly taught in the se-
cond course of Engineering Mechanics classes at universities. The pro-
blems analyzed within these courses use equilibrium conditions and ki-
nematic relations in conjunction with constitutive relations. As we want
concentrate more on basic concepts and solution procedures the focus
lies on linear elastic material behavior and the small strain regime. Ho-
wever, this covers a wide range of elasto-static problems with relevancy
in engineering applications. Special attention is given to structural ele-
ments like bars, beams and shafts as well as plane stress and strain
situations.

Following the warning in the first collection, we would like to make
the reader aware that pure reading and trying to comprehend the pre-
sented solutions will not provide a deeper understanding of mechanics.
Neither does it improve the problem solving skills. Using this collec-
tion wisely, one has to try to solve the problems independently. The
proposed solution should only be considered when experiencing major
problems in solving an exercise.

Obviously this collection cannot substitute a full-scale textbook. If
not familiar with the formulae, explanations, or technical terms the rea-
der has to consider his or her course material or additional textbooks
on mechanics of materials. An incomplete list is provided on page IX.

Darmstadt, Hannover, Stuttgart, Essen and D. Gross
Kaiserslautern, Summer 2016 P. Wriggers
W. Ehlers

J. Schroder

R. Miller
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Notation
The following symbols are used in the solutions to the problems:

1:  short notation for sum of all forces in the direction of the

arrow equals ZETo.

)
A :  short notation for sum of all moments with reference to
point A equals zero.

~>  short notation for it follows.
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Chapter 1

Stress, Strain, Hooke’s Law
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1.1

2 Stress

1.1 Stress, Equilibrium conditions

Stress is related to forces distributed over the
area of a cross section. The stress vector t is

defined as
dF
t= dA’

where dF' is the force acting on the area ele-
ment dA (unit: 1 Pa = 1 N/m?).

Note: The stress vector and its components depend on the orientation
of the area element (with its normal n).

Components of the stress vector:

o — normal stress (perpendicular to the plane)

7 — shear stress (in plane)

Sign convention: Positive stresses at a positive (negative) face point
in positive (negative) coordinate directions.

Spatial stress state: is uniquely defined
by the components of the stress vectors
in three mutually perpendicular sections.
The stress components are the components
of the stress tensor

Ox Tzy Tzxz
@ = || T @y T

Tzx Tzy Oz

Equilibrium of moments yields the following relations
Tey = Tyzx Tzz = Tzx , Tyz = Tzy -

Hence the stress tensor is a symmetric tensor of second order: T;; = Tj;.
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Plane stress state: is uniquely defined
by the stress components of two mutual-
ly perpendicular sections. The stress com-
ponents in the third direction (here z-
direction) vanish (0. = 7y = 74. = 0)

@w T
o_ = €T Yy
Tzy Oy

Coordinate transformation

Oz + 0 Oz — O .
=" T T 7Y €08 20 + Tuy sin 200

7T 2
a,,:ggC ;— Ty _ Te ; %Y cos 2¢p — Tzy sin 2¢p ,
Ten=— Te ; %Y sin 2¢ + Tay COS 200 .

Principal stresses

Note: @ The shear stresses vanish
in these directions!
e The principal directions are
perpendicular to each other:
@03 =1 £7/2.

Maximum shear stresses

Ty — Oy 2 * %k * ™
Tmax:\/( 2 J) +T'gy7 ® :SD:E4

In these sections the normal stresses
reach the value o9 = (05 + 0y)/2.

Invariants
I,= 0y +0y =0¢+0,=01+02,

— 2 _ 2 _
o= 020y — Tgy = OOy — Tgy = 0102 .

Plane stress state

T k
Tyx

—

Tzy

1 =%
Y $1 4,0;
02; }
T
Tmax
ao / \/UO

/\(\7()

Tmax

yLi‘A;j
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4 Equilibrium conditions

Mohr’s circle

T

Tmax

direction of

02\ / ol center:

e The construction of Mohr’s circle is always possible, provided three
independent quantities are known (e. g. 0z, 0y, Tay OF

*
Oz, Oy, P )

e The shear stress 7., is plotted over o, (7¢, over o¢).

e The angle of transformation ¢ is doubled in the circle (2¢) and ori-
ented in opposite direction.

Equilibrium conditions

in space (3D)

in plane (2D)

where

dive = Z (ag;z a4

v

Qg  Ofsy , OFes .
2t oyt ooy TI=0

OTyz 0oy = OTy: B . B
O F Ay + Py’ +fy,=0,pdive+f=0.

O | Oy | Oz -
ow * oyt oos TH=0

000 | OTey L ¢ _ ¢,

ox dy

divoe+ f=0.
aTyz+60y+f —0
Ox Oy v

adiy + 80% -
Oy 0z v
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1.2 Strain D)

1.2 Strain

The strains describe changes in the edge lengths (stretching) and in the
angles (shearing) of a cubic volume element. -

Displacement vector
U = uey + vey + we,

u, v, w = displacement components ZI
T
Y

Uniaxial strain state

strain €= o
T dz

Biaxial strain state

normal strains shear strains
(X)“d,{/
vy dy
o dyT -
y
(L{/I dy d!/[ 1 Ov
s % _,,)Hd,r
‘<—>H¢ ] Y | ot
dr Ou dx L. dz
_ dx a
ox
g_au 5—(% _8u+6v
T oz Yoy %y_(‘?y ox
Triaxial strain state ¢, = au, Ey = BU, B = 611)7
ox oy 0z
_ _ Ou n v
Ex ;'Yzy ;'Yzz Yoy = Tyz = ay ox 2
. S 2 ov  Ow
strain tensor: € = | Jy,x &y ,Vy= VYyz = Yoy = 02 + Gl
;IVZI ;7211 €z Yzx = Yzz — 8w 871/ 5
or 0z
Remark:

e The strains are, like the stresses, components of a symmetric tensor
of second order. Thus all properties (coordinate transformation, princi-
pal values etc.) of the stress tensor can be used analogously. o, — €4,
Tay = Yay/2, - -

e In a plane strain state the following holds: €. =0, .. =0, 7. = 0.
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1.3

6 Hook's law

1.3 Hooke’'s law

Hooke’s law describes the experimentally observed linear relation bet-
ween stresses and strains. The validity of Hooke’s law is restricted by
the proportionality limit (uniaxial o). In elastic-plastic materials this
limit frequently conincides with the yield limit (uniaxial oy ).

Uniaxial stress state (bar, beam)

E:2+QTAT.

E —  Young’s modulus,
ar — coefficient of thermal expansion,
AT — temperature change.

Plane stress state

1
Em:E(O'm —voy) + arAT
1
Ey (oy —voz) + ar AT,

FE
1

’}/my:GTmy 9

E
shear modulus: G = : Poisson’s ratio : v .
2(1+v)
Triaxial stress state

1 1

Ex = E[UJC —Z/(O'y—i-o'z)}—'-OéTAT, Yoy = GTZZ/ ’
1 1

Ey = E[Uy_V(UZ‘f'Ux)]"‘aTATa Yyz = GTy27
1 1

€, = E[Jz —v(oz + 0y)] + ar AT, Vew = GTZZ .

Selected material data

material E [MPa] v ar [1/°C]
steel 2,1-10° 0,3 12-107°
aluminium 0,7 - 10° 0,3 23.10°6
copper 1,2-10° 0,3 16-10°°
concrete 0,3-10° 0,15...0,3 10-10°°
wood 0,1-10° 3...9-10°°¢

Remark: 1MPa = 10°kPa = 10°Pa, 1Pa = IN/m?
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1.3 Hooke's law 7

Problem 1.1 In a thin metal sheet Tffy
the stresses 0., 0y, Tuy are given. De-

termine value and direction of the
principal stresses. O l Tay

Given: o, = 20 MPa, o, = 30 MPa,

Ty = 10 MPa. y1 ——
zy l Uy

Solution We start with the analytical method. The principal stresses
are computed by

Tay

Oy

_ 2
gro= 77Ty i\/("” 5 Uy) + 72, = 25+ /25 4+ 100 = 25 + 11.18

2
leading to
o1 = 36.18 MPa , o2 = 13.82 MPa .
For the principal directions, we obtain according to / 1
02
. 2
tan2p" = Y = 2
O — Oy 09
o1 N
the results Yy T : E
p] = 58.28° | oy = 148.28°. o ¥

To illustrate the results an element loaded by the principal stresses is
sketched.

We can also solve the problem graphically by using Mohr’s circle:

-
direction of scale: 10 MPa
/S —
N
N 9 We read off the
%21/ A1 a1 ) 71 results:
‘ a
o1 =2 36.5 MPa ,
02 = 14 MPa
@ 2 59°

www.Technicalpdf.com
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P1.2

8 Plane

Problem 1.2 Determine the stress components, the principal stresses,
and the principal directions, as well as the maximum shear stress in
any cross section for the given special cases of plane stress states :

a) 0, = 00, 0y =0, Ty =0 (uniaxial tension),

b) 0, = 0y = 00, Tay =0 (biaxial, equal tension),

c) og =0y =0, Toy =70 (pure shear).

Solution to a) The stress components are obtained for any cross sec-
tion which has the angle ¢ to the z- and y-

direction by inserting o,, o, and 7, into the

transformation relations

1 . o)) (o)
o¢ =3 (00+0)+ 5 (00— 0)cos2¢p +0-sin2p
=100(1 4 cos2p) ,
op =4 (00+0)— J (00— 0)cos2p —0-sin2p Ten
)

T&n:_é (00 —0)sin2¢ + 0 - cos 2¢p

_1

0'0(1 — COs Q(p 5 ‘\/( ‘\/(O'g
1 .

=,008Iin2p . /

Due to 74y = 0 the stresses o, oy are principal T 2

stresses, and the z- as well as y-direction are prin- -

cipal directions: ’

01 =0z =00, 02 =0y =0, @T =0, <P; = ig- 020\/ \/UO

The maximum shear stress and the corresponding
direction is determined by the following relations \ ,/\\

- /UI\ 45°
=t ’
=% o

Remark: A plate made from a material that supports only limited shear-
stresses will fail along lines under an angle of +45° to the
T-axis.

1
Tmax = 2‘01_0—2‘: 0o,

2

to b) Inserting the given values into the coordinate transformation
yields

o¢ =00, Op=00, Tenp=0.
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stress state 9

Therefore the normal stress og T 00

is acting in any section, and the AN

shear stress vanishes. There is o0

no distinguished principal direc- —~— -

tion, any section is a principal / oo
direction: l % yT g

01 = 09 = 00 . €T

to c) In this case the coordinate transformation yields

|

o¢ =Tosin2¢p, oy = —Tosin2¢p, T = ToCOS2p.

-
—

The principal stresses and directions are

——
m T
o1 =+710, 02=—T0, goT:4, @32—4. N /gl:m
For the maximum shear stress and the correspon- -
ding directions we obtain Y 1,/ AN
450 |0’2| = To
T

* %k * %k
Tmax = 70 , $1 :O, P2 :7T/2

Remark: A plate made from a material that supports limited normal
stresses will fail along lines under an angle of +45° to the
T-axis.

The results of all three stress states can be illustrated by the correspon-
ding Mohr’s circles:

toa) 7 to c)

7_
Tma‘x

01=0¢ 01="To
- 0 U 02 U U

to b)T ‘
|

g1 =09=0 a

Note: In case b) Mohr’s circle degenerates to a single point along
the o-axis!
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10 Plane

g1
P1.3 Problem 1.3 In a plane section the fol- T
lowing principal stresses are present
o] 02
o1 =96 MPa and o2 = —52 MPa. -~ -

a) Determine the stresses in sections
which are inclined by ¢* = 60° with l -

L 1
regard to the principal axes?
b) In which section ¢° does the normal stress vanish? What are the
values of the shear and normal stresses in a direction perpendicular to
the direction ¢”?

¢) In which directions do the maximal shear stresses appear, and what
are the corresponding normal stresses?

Solution to a) According to the sketch we T"i‘/:Ul
use a coordinate system z,y that coincides
with the principal axes. The stresses in the 0, = 09
cross sections inclined by ¢® = 60° follow - —
from the coordinate transformation y
=0
_ 1 Tay
ng 02+U1+02 chos?gaa=22—|—74~ - l
2 2 2
= 59 MPa,
" oo +o01  02—o01 a 1 o Té
oy = - cos2p” =22 —-"74- < /ag
2 2 2~ / N
= —15 MPa, Y
n
_ ! N4
T8 = 2 Mg 20" =T4- _V/3 ‘75'\ y
2 2 Jo0° e
= 64.1 MPa . x

to b) For the normal stress o¢ to vanish the following must hold

02202—;—01_’_02;01@82905:0

~ cos2p’ = ii =0297 ~ 20°=T727" ~ " =36.35".
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stress state 11

For o, and Té’n we obtain
ah\

_ n b

ot = ”2;”1—”2201 cos 2" = 44 MPa 2N

b
_ b Ten
o= =02 ) 7! sin 2" = 74 0.955 Tf"\( /\ b
A n

= 70.7 MPa . T

36, 35°

to ¢) The maximum shear stress occurs in directions of +£45° with
regard to the principal axes. This results in

Tmax = gLz =74 MPa .

2 Om Tmax

The corresponding normal stresses are

Om — o1 + g2 = 22 MPa Om, \ /\Um

2 L, Tmax

for the given data. a0

All informations can be illustrated by use of Mohr’s circle for the given
stress state

scale: 50 MPa

S}
12

59 MPa, ,

S}
14

—15 MPa,

Q
Il

64 MPa ,

12

37°,
ob = 44 MPa,

1%

12

71 MPa ,

1%

74 MPa

Tmax

Il

Om 22 MPa .
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P1.4

12 Plane

Problem 1.4 The following stresses o,

are acting in a panel. T :

0, = 20 MPa, 0, = 60 MPa and - -~

Tey = —40 MPa. o Y

Determine analytically and graphical- Oz
ly the principal stresses, the maximum y]

shear stress, and the corresponding di- T Ty
rections. Sketch the related sections. z lﬂy

Solution The principal stresses and their directions are calculated ana-
lytically by

a1
Oz + Oy Ox — Oy 2 9 \
oL2= "y \/( 2 ) tTay Aol
=40 + 1/(20)2 + (40)?, yt ‘”E‘ f
.- 1
~ 01 =84.72MPa, o2 =—4.72MPa, o z \
* 2Try . o . .
tan 2¢ =2 ~ @] =121.7°, @5 =317

Oz — Oy

To determine which principal stress is associated with which direction,
the transformation relations or Mohr’s circle has to be used.

For the maximum stress the following result is

obtained Tnmx Um

Om f
/ Om

T
max
0177

_ 2
Tmax = \/(‘” L") 78, = 4472 MPa,
P = " £45° = 31.7° £ 45°

The graphic solution by Mohr’s circle is sket- <p**
ched below:

scale: 20 MPa
—

o1 = 85 MPa,
—5 MPa ,
45 MPa |
122° |
e

IR 1R

IR

1%

0'2/

direction of

N
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stress state 13

Problem 1.5 A thin-walled tube
is loaded by a bending moment, an
internal pressure, and a torsional
moment. In points A and B the
following stresses occur due to the
loading;:

oB = +50 MPa, o2® =100 MPa, 7/%% =100 MPa.

Determine value and direction of the principal stresses in the points A
and B.

Os
Solution For point A the principal stresses _T> Tus
are computed by o
— |
o12 = ;(Uz"‘(js)i\/[é(gz_as)]Q"rTa‘?s sho e
rs -
= 75+ 1/(—25)% + 1002 L; Ja
=75+ 103.08 || yz
yielding AN !
o1 = 178.08 MPa oy = —28.08 MPa . o]
2
a1 \
For the principal directions we obtain 590
tan2p* = e = BN = —4 ~ o] =5202°, @3 =—-37.98°.

From the coordinate transformation it is obvious that direction 7 is
associated with the principal stress o1:

o¢= 2(0z +0s) + 5(02 — 0s) cOS 2] + Tos sin 207
=75—25 - (—0.242) + 100 - 0.970 T 7 -
= 178.08 MPa = 0 . ||

In an analogous way the principal stresses and
their directions in point B are obtained: s Tys <+

o12 = 25+ +/(—75)2 + 1002

= 25+125
~ o1 = 150 MPa, o2 = —100 MPa. ||
~
" 2-100
tan2¢p” = =—1. g
ML= 50100 33 ,1630
~ P = 63.4°, py = —26.6° .

www.Technicalpdf.com

P15



P1.6

14 Plane stress state

Problem 1.6 In a thin aluminium sheet
(E = 0.7-10°MPa , v = 0.3) the fol-
lowing strains £, = 0.001, ¢, = 0.0005,
Yoy = 0 are experimentally measured in
point P.

What are the principal stresses, the ma-
ximum shear stress, and the stresses in
a sections, that are inclined by ¢ = 30°
with regard to the principal directions?

Solution In the aluminium sheet a state of plane stress is present. From
Hooke’s law

Fey, =0, —voy, Fey =0y —voy, GYay = Tay

the following stresses can be computed

Op = (e +ua)—0’7'105(0001+000015)—885MPa
S - R Y1 0.0 ’ e ’
oy = (e +ue)f0’7'105(00005+00003)7615MPa
Y2 T 1009 ' o ’
Ty =0 .

As the shear stress 7., is equal to zero, o, o, are principal stresses,
and axes x, y are principal axes:

or =01 oy =02.
Therefore, the maximum shear stress is
1 1
Tmax = 2(01 —02) = 2(Uz —oy) = 13.5 MPa .

For the sections inclined by ¢ = 30°, the stresses follow with 75, = 0
from the transformation relations

oe =" ‘; Oy Om R 7Y cos 20 = T5 + 13.5cos 60° = 81.75 MPa

oy =" ‘; 77 7V cos2p = 75 — 13.5 cos 60° = 68.25 MPa ,
Or — Oy . . o

Ten ==, ¥ sin2p = —13.55in60° = ~11.69 MPa .
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Displacements 15

Problem 1.7 In a thin sheet the following
plane displacement field was obtained by
measurements:

w(z,y) =3.5-103z +2-10 3y,
v(z,y) =1-10"32 —0.5-103y.

a) Determine the state of strain.

b) What are principal strains, and under which angle to the z-axis do
they appear?

¢) What is the maximum shear strain ymax?

Solution to a) The strains are computed by differentiation of the dis-
placement components:

ou _3 ov -3
= o0 =35.10"2, =% = _05.107%,
© ox Fv dy
Yoy = gz+ gz =2.10%4+1-10°=3-10"2.

The strains are constant in the entire sheet (=homogeneous strain
state).

to b) The principal strains and their corresponding directions are cal-
culated from the relations for the principal stresses by using the repla-
cements (0x — €x, Twy — Yay/2 etc.). This yields the principal strains

(Y ()
- +
€12 2 2 Ty

=15-10°+£+/(2-1073)2 4+ (1.5-10-3)2 =1.5-10 * +£2.5-10"°

~ e =4-1073, ga=—1-10"3,
and the principal directions

* Yy 3 * o * o
tan 2" = = =184", =108.4".
an zp co—ey 4 ~ 9 P2

to ¢) The maximum shear strain is
Ymax =61 -2 =4-107°41-107°=5-10"°.

It occurs at angles, which are inclined by +45° with regard to the
principal directions.

www.Technicalpdf.com
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P1.8

16 Plane stress state

Problem 1.8 An elastic panel A fits in-

to the rigid socket B of height h N NN I

(Young’s modulus E, Poisson’s ratio N N T UR

v > 0). B N N

Determine the stress o, and the value N :: i

of the displacement vr at the top edge N N
NNNNNNNNNANANNY

R for a constant pressure p. It is ass-
umed that the elastic panel can move
frictionless in the socket mounting.

D= —0y
Solution In the panel a uniform plane <_‘ * * * * * ¢_>
stress state is present, where the stress = =— — 0z
component oy, is known: oy, = —p. Thus -
Hooke’s law yields - .
- —
- —

FEey =0, —voy =0, +vp,
x o nyHHH
Fey =0y — V0, = —p—Vv0,. p=—0y,

As the panel cannot expand in z-direc-
tion, it holds

ex=0.

Inserting this into Hooke’s law provides the stress o, and the normal
strain in y-direction:

1—v
Oz = —VD, €y = —P E

Knowing the strain ¢, we compute the displacement v by integration:

2

0 1—
UZEy ~ v(y):/eydyz—p EV y+C.

oy
The lower edge of the panel does not experience a displacement, i. e.

v(0) = 0, and C' = 0. For the value of the displacement at the top edge
we obtain

1—v
or=lo()| =" " ph.

www.Technicalpdf.com



Plane stress state 17

Problem 1.9 Two quadratic panels made e ;]

of different materials have both the edge o T
length a in the unloaded state. As sket- : 1 ® a
ched, they are inserted into a rigid socket, ! ©) : Ei,n 1

which has an opening [, that is smaller
than 2a.

&
5
e ]

l
What are the stresses and the changes l
of the edge lengths, if it is assumed that ‘\\\\\\\\\\\3

the panel can slide frictionless in the rigid f—q —=
socket?

Solution After force fitting into the rigid

socket the panels experience a uniform @
plane stress state. Equilibrium in vertical Y -
direction yields oy1 = oy2 = o,. Consi-
dering the condition 0;1 = 042 = 0 in
Hooke’s law for both panels provides ©
@ Elsyl:o—y7 E1511 = —Vi0y, * ** * *Ul
Yy
@  Beey2=o0y, Eagx, = —120y. n
Av ‘
With the strain-displacement relation T
(constant strains) i y
x
Auy Avy Aus Avy o Au
Exl = , Eyl = , Ex2 = ; Ey2 = o O | |
a a a a

and the kinematic compatibility
(a4 Avi) + (a+ Ave) =1
we obtain for the normal stress in y-direction

2a — 1 E1E2
a E +E;’

Oy = —

This stress leads to the following length changes

EQ El

Av1:—(2a—l)E1+E2, Avg:—(Za—l)E1+E2,

Au1 = —II1A’U1 5 AUQ = —IJQAUQ .
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18 Thin-walled pressure vessel

P1.10 Problem 1.10 A thin-walled diving sphere
(radius » = 500 mm, wall thickness t = Pw £ water
12.5 mm) is submerged 1000 m under the
water surface (pressure pyw = 10 MPa).

Compute the stresses in the wall of the
sphere. Nt

Solution We cut the sphere with a section
perpendicular to the surface of the sphere,
resulting in two hemispheres. The equilibri-
um conditions

T o2mrt +pwr27r =0 AN
provide for any section (spherical symme- ?m pw
try) the stresses

r 500

= — =—1 = —200 MPa.
ot W ot 0 00 a

2-12,5

P1.11 Problem 1.11 A spherical steel tank is heated by
a hot gas (AT = 300°C) and additionally subjec-
ted to an internal pressure (p = 1.5 MPa).
t
Compute the change of the radius.

Given: r =2m, t = 10mm, F = 2.1 - 10° MPa,
v=0.3 ar =12-10"%°C~ %

AN
Solution For any cross section perpendicular to
the surface of the sphere equilibrium provides =
gy = O'Lp =p ot . l’

The strain is computed by the change of circumference »

 2n(r+Ar)—2mr  Ar
T = 27y o o
Using Hooke’s law
FEe, =0y —voy, + Ear AT

yields

-

1.5-1073

5 +3.6-107%| =8.25 mm .

_ [pr(=v) _
Ar=r U0 +O£TAT:|—2000|:
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Thin-walled pressure vessel 19

Problem 1.12 A thin-walled cylindrical it

pressure vessel made of steel is subjected

to an internal pressure p. <<TI* ~ ;),( 777777777 >>
RN

What is the maximum value of the pres- f

sure such that the normal stresses in the | l |

central part do not to exceed the limit
stress olim !
Compute for this case the change of radius r and length (.
Given: l=5m,r=1m,t=1cm, E =2.1-10° MPa,
V= 0.3, Olim = 100 MPa.
0 P

Solution  The stresses are determined by _ r
equilibrium conditions at suitable sections: p
2 T
—: prim—o2rmt =0 ~ o0y :p2t ,
o
T 0.2dt —p2rd=0 ~~» Jg,:p;. ?»j

These stresses are principal stresses, as the
shear stress vanish in these sections. The lar- },\ d 2]
gest normal stress exceeds the limit stress for ) \}'

Op < Olim ™~ pgianmlePa ~  pmax = 1 MPa .

The related hoop strain e, results from the circumferential change:

- 2n(r+ Ar) —27mr _ Ar
v 27r o
Hooke’s law Ee, = 0, — vo; provides
_Pmax? (VY _
Ar=r Bt (1 2) 0.41 mm .

In an analogous way the strain e; = Al/l and Hooke’s law FEe; =
o¢ — vo, provide the length change

_ g Pmaxr (1 .
Al =1 It (2 u)—0.47mm.

Note: The caps at the ends of the pressure vessel are excluded-
i. e. the solution for the stresses is only valid in a sufficient distance
from the caps.
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P1.14

20 Thermal strains

Problem 1.13 The rails of a train track are installed at a temperature
of 15°C such that no internal forces are present.

Determine the stress at a temperature of —25°C, if it is assumed that
the rails cannot experience any length change?

Given: E =2.1-10°MPa, ar = 12-1075°C~ 1.
Solution In the rail exists a uniaxial stress state and Hooke’s law
provides

Fe=0c+FarAT .

As displacements are suppressed, ¢ has to be zero. Using AT = —40°C
yields for the stresses

o=—Far AT =21-10°-12-10"%-40 = 100.8 MPa .

Note: In rails the stresses due to temperature changes can become
considerably large.

Problem 1.14 A thin copper ring of radius r is heated due to the tem-
perature difference AT

What are the changes in radius and circumference if it is assumed that
the ring can deform freely?

Given: r = 100 mm, ar = 16 - 10°5°C~1, AT = 50°C.

Solution A uniform, stress-free uniaxial strain state exists in the ring
after heating. The strain is determined by the change in circumferencial
direction (change in length) Al:

Al 2n(r+ Ar)—2mr _ Ar

°= l 2mr r

Using the Hooke’s law for uniaxial states
€= Z, + arAT

and the stress-free condition o = 0, leads to
Ar =7arAT =100-16-10"%-50 = 0.08 mm ,

Al = lAr =27 Ar = 0.50 mm .
r
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Thermal strains

21
Problem 1.15 A rectangular plate (a > b) i
is inserted into a rigid oversized opening, *
such that spacings of size § are present. Y b
Subsequently the plate is heated. It is as- Lx i
sumed, that the plate can move frictionless
along its edges. | o =
a) Which temperature increase ATy is re-
quired to just close the spacing on the right?
b) For which temperature increase ATy is the upper spacing just clo-
sing? What is the value of o, in this situation?
¢) What are the stresses in the plate for AT > AT}?

E7V7aT

Solution to a) For AT < AT, the plate expands in a stress-free way.
With o, = o0y = 0 Hooke’s law reduces to

ex =€y = arAT.

The spacing on the right is closing, if the condition ¢, = §/a is met.
Introducing this result yields the temperature increase:

0

AT, = .
ara

to b) At a temperature increase AT, < AT < AT, the plate can only
expand freely in y-direction, while the strain in z-direction remains
constant. With o, = 0 and e, = d6/a it follows

(5 O Ox
a:EJraTAT, ey:quJraTAT.

The upper spacing is closing, if the the condition €, = §/b is satisfied.
All above relations provide
0 a+vb E 6(a—0b)

AT, = B
T ara (1+v)b’ 7 1+v ab

to c) For AT > AT, the strains in both directions remain constant:
s =0/a, ey = 3/b. Then
FEey =0y —voy + EarAT, FEey,=o0,—vo, + EarAT

provide the stresses

§(va + b) aTAT} B [ S(vb+a) arAT
’ Yy .

or=E (1—v2ab 1-v (1—v2ab 1-—v
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22 Thermal stresses

Problem 1.16 A thin-walled bushing
has to be heated by the temperature
difference AT, to be mounted on a
shaft.

What are the stresses in the bushing,
and what is the pressure p between
bushing and shaft after cooling? It is
assumed that the shaft is rigid and
that the displacements of the bushing
in z-directions are blocked by friction.

Solution Before cooling the bushing is stress-free. The stresses after
cooling are obtained by equilibrium, Hooke’s law, and kinematics. The
equilibrium condition provides

p-2rd=0,2td ~ o,=p

t
Hooke’s law with AT = —AT™ (coo-
ling!) states T
7 4
Eey, =0, —vo, — EarAT™ A
p *O'\',
a7

T

Eey =0y —vo, — Ear AT .

During cooling the strains in the bushing (shrinking) are blocked by
the shaft and friction. Thus the kinematic relations are given by

€o =10, €z =0.

Combining the above relations and solving for stresses and pressure
yields
t FE

ar AT, p= arAT™ .

Oy = 0p =
i rl—v

1—v

Note: e In the bushing a plane stress state is present with equal nor-
mal stresses: 0, = 0.
e If the bushing can deform freely in z-direction (no friction,
ez # 0), then 0, =0 and o, = Ear AT follow.
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Thermal stresses 23

Problem 1.17 On the thin-walled elastic shaft ) @ P1.17
a pipe@will be mounted by heat shrinking. Before L] L.

heat shrinking both parts have identical geometri- By, am

cal dimensions, but are made of different materi- !

als. @ Lo t

Which temperature difference is required to the ;

mount pipe (2) on the shaft (1) ? By

What is the pressure p between the shaft and the ‘
pipe after cooling, if it is assumed that no stresses
are present in axial direction?

Solution For the pipe (2) to be mounted on the shaft (7) its radius has
to increase by thermal expansion by t. Thus in the heated state, the

hoop strain has to assume the value

2m(r+t) — 2mr
5992 = =
27r T

Now Hooke’s law yields with oo2 = 0 (the pipe is stress free in the
heated state!)

1 ¢

Ep2 = ar AT  ~ AT = .
arT2 T
The pressure after cooling is obtained from the equilibrium equations
r r
Uaplz_tp7 0-592:+tp7 @

Hooke’s laws,

FEiepr =041, Eaepo =042, { p
the strains © ﬁ
.

Ary Ary ! Oy Y

Epl = Ep2 =
r

and the kinematic compatibility
Arg = Ary +t.
Combining the above equations yields

BB [t
p_E1+E2 r ’
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24 Hooke's law

Problem 1.18 A block is subjected to

a pressure po in z-direction by a rigid 5
press. L.
Determine the strains and stresses, if NANNNNNNNNN v

a) the deformations in z- and y-direction are restrained,
b) only the deformation in y-direction is restrained,
¢) the deformations in x— and y—direction are not restrained?

Solution In the above cases a homogeneous, triaxial stress and strain
state is present in the plate. With o, = —po Hooke’s law yields (there
are no shear stresses present!):

Fe, = 0r—voy+vpo, FEey=o0y+vpo—vo., FEe.=—po—vo,—voy.

For case a) we have €5 = ¢ = 0, and from

0=o0y —vo, +vpo, 0=o0, +vpo—voy, FEei=—po—vo.—rvoy
it follows
o 1—v—272 Po o a v
€y = — , Oy =0y = — .
1—v E v 1—pPe

In case b) € = 0 and 0% = 0 holds (free deformation, i. e. no stresses
in z-direction). With Hooke’s law

E'e:i’c = —I/(J’Z +vpy, 0= (J’Z +vpo, FEe,=—po— l/Jz
we obtain

b Ppo b 2y Po b

Ez:l/(l—l—u)E, EZ:—(l—Z/)E, Oy =—VDPo.

In case c), both oy = oy = 0, because the deformations in these direc-
tions are not restrained. Therefore Hooke’s law reduces to

c c c
FEe, =vpo, Eey=vpo, Ee. = —po,
and we have
c c Po c Po
sm:e:y:VE, sz:—E.

Note: For v > 0 we have |e2| < |e%| < |¢5|. Especially for v = 1/3 it
follows

el =—6po/(9E), el =—8po/(9E), &= —9po/(9E).

Due to the deformation constraints in x- and y-direction the plate be-
haves rather stiff in case a)!
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Thick-walled cylinder 25

Problem 1.19 In a thick-walled cylinder P1.19
with a restrained deformation in longi-

tudinal direction (plane strain state) the
following stresses are present due to loa- o

ding by an internal pressure p: Q

_ a® b? 1
JT__pb2,a2 rz )

B a2 b2 /Or
O]P—pbz_az 7”2+1 . o,

Determine the stress 0. and the resulting
force F. in axial direction of the cylinder.

B

Where does the maximum normal stress occur, and what is its value?
Given: p = 50 MPa, a = 100 mm, b = 200 mm, v = 1/3.

Solution As the deformation in axial direction of the cylinder is res-

trained, we have €, = 0. Hooke’s law in this direction provides
Ee.=0=0.—v(or +0y) .

Inserting the known relations yields the stress

2
2
o-=viortop)=2wp " = p=1L1MPa.

As o, is constant across the section, the resulting force is computed by
multiplication of o, with the cross section area:

F. =0.71(b> —a®) = 27vpa® =1.05-10° N .

The absolute values of the stresses o, and o, are maximum at the inner
boundary of the cylinder (r = a). There we have

5 2
or(a)=—p, Gw(a)zgp, T2 = P

Thus the hoop stress o, on the inside is the largest normal stress.
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26 Stresses and strains

Problem 1.20 A rigid box with

quadratic cross section is filled g l < T
with clay (volume V = a?h, den- A/],L

sity p). The material behavior [ h
of the clay is approximated by l
Hooke’s law (Young’s modulus Y

E, Poisson’s ratio v). L 7
Determine the settlement Ah z/ e

of the clay as a consequence of the
weight of the clay and the horizontal pressure distribution at the box
walls as a function of y.

Solution Due to the given loading situation only normal stresses o, oy,
and o, are present in the three coordinate directions z, y, and z. Ex-
cept for the strain ¢, no other strains occur. For o, it holds according
to Hooke’s law with e, =€, =0

oy = B Ey T v € = Eol-v €
YTl Y T 1—w 7)) T 11— Y
With the stress distribution

oy =—pg(h—y)
the settlement Ah is computed by

dv
dy °

Ey =

By integration we obtain Ah:

h h ey

_ [pg(1+y)(1—2u) (hy_ yQ)r L= s

E(l—v) 2 )], 2 E(1-v)

The horizontal pressure distribution as a function of y follows from

Hooke’s law:

Ev 1+v)(1-2v)
A+v)1—2) 5 == g

Oy =0, =
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Stresses and strains 27

Problem 1.21 In a sheet metal (Young’s
modulus £ and Poisson’s ratio v) the

three strains e4 = &, ep=3¢& und B

ec = 2¢& are measured by strain gauges

in the sketched directions. A
C

a) Determine the principal strains e
and 2. 30°
b) Compute the principal stresses o1 and

o2 under the assumption of a plane state

of stress.

¢) Calculate the principal directions.

3
<

Solution to a) We introduce a x,y- and
a &,m- coordinate system in direction of
the strain gauges. Then it holds for the
measured strains

Caay

Ex =€, £y = 3€, e =2¢. o = 30°
To compute the principal strains we have to determine the shear strain
~zy- According to the transformation relations for ¢ = 30° we have

1 1 1
ge = 2(695 +ey)+ 2(51 —&y)cos2p + o Vou sin 2p
1 1 V3
= 2(5z+5y) + 4(51 —&y) + g v
o 1\ _ V3
28 =28+ (—2)€+ g Yoy
This yields the result
2 _
Yoy = \/35 .

With this at hand, the principal strains can be calculated via

ex+e €x — Ey\2 1 2
2= yi\/( 2 y) +(2%y)

to be
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28 Stresses and strains

to b) Using the assumption of a plane stress state, Hooke’s law formu-
lated in principal directions provides the principal stresses

o1 = E (e1 + ve2) ~ o1 = 2be 1—|—1/+1_V
P12t ? YT 12 V3 )
o2 = E (e2 +ver) ~ o2 = 2be 1+y71_y
2= e 1 2=, V3 )

to c¢) The principal directions follow either from the stress or from the
strain components. Here we use the strain components to obtain from
the general formula

2
tan 2¢" = Yoy _ \/g = — L

€z — €y
the solutions
@' =—15° und @' =175°.

In order to decide, which direction corresponds to the principal strain
€1 or g2, respectively, we use the angle ¢* = —15° in the coordinate
transformation. This yields with the given strain components

1 1 ° 1 . o
€e = 2(535 +ey) + 2(a€Z — gy)cos(—30°) + o You sin(—30°)
V3 e 1 < 1 )
=28—-¢ — =2(1- E=c¢e2.
2 V32 V3 ’
The smallest principal strain €2 occurs at the angle ¢* = —15°, while

the largest principal strain e; is related to the direction of ¢* = 75°.
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30 Stress
Tensile or compressive loading in bars

Assumptions:

e Length [ of the bar is large compared to  —
characteristic dimensions of the cross sec- { TI’ U
tion A(x). |
e Axis of the bar (line connecting centroids
of the cross sections) is a straight line. N-n
e Common line of action (external loads F I
and n(z) are aligned with the axis of the A
bar). — =
e Cross section A(z) can only vary slightly.

Stress: Assuming a constant stress o across
the section A the following relation with the

normal force N holds: F
N(z
7= Aw)

o iy dN
equilibrium condition =-—n,
dz
o
Hooke’s law €= > + ar AT,
d
Kinematic relation €= v
dz
FE = Young’s modulus,
ar = coefficient of thermal expansion,
AT = temperature difference with respect to a reference state,
u(x) = displacement of a point x within the bar.

The basic equations lead to a single differential equation for the displa-

cements ( {-}' :=d{-}/dz ):

(EAY) = —n + (BAarAT) .
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Tension and compression 31

1
Elongation of a bar: Al =u(l) —u(0) = / edx.
0

special cases:

1
N
Al = AT =
z /OEAda: (AT = 0),
Fl

Al = EA (N = F = const, EA = const, AT = 0),

Al = ar ATl (N =0, EA = const, arAT = const).

Superposition: The solution of a statically indeterminate problem can
be achieved by superposition of solutions of associated statically deter-
minate problems considering the compatibility conditions.

“0”-System 1w [,()) “17-System 1 (,U

3

F F = ——
= = = = = N
X=B
A B

u%)) + ug) =0.
Rotating bar: A bar rotating with the angluar velocity w experiences
an axial loading per unit length of

n = pA zw?.
Here p is the density and = represents

the distance of the cross section A from . n
the center of rotation.

Elastic-plastic bar: For an elastic-ideal-plastic material behavior,
Hooke’s law is valid only until a certain
yield limit oy :

Ee, le| <ev,

oy sign(e) ,le| > ey .

System of bars: The displacements are obtained by “disconnecting”
and “reconnecting” of the bars from the nodes using a displacement
diagram.

Note: In areas with rapidly changing cross sections (notches, holes)
the above theory for bars is not applicable.
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32 Stress

P2.1 Problem 2.1 Determine the stresses distri- T
bution o(x) in the homogeneous bar due to
its weight. The bar has constant thickness
and a linear varying width. Furthermore,
identify the location and value of the smal- h
lest stress. x

-

|
s

It is reasonable to introduce the z-coordinate at the intersection of the
extended edges of the trapeziod. The x dependent cross section area
follows then as

A(a:) = on/l .
With the weight

2 2

v ¥ —a
W(z) = pgV(z) = pg/ AQ)dE = pgAo
of the lower part equilibrium provides
z% —a?
N(z) = F +W(z) = F + pgAo oh
This leads to the stress

_ N(z) Fh—i—pg’%o (z° —a®)
ofz) = Az) — Aoz :

The location z* of the minimum is determined by condition ¢’ = 0:

, Fh 1 pg a? . 2Fh
= — 1 = = — a? .
7 Ag x? + 2 * 2 0 ~ = pgAo ¢

The value of the minimum stress is

(=) 2Fh .
Omin =— O(X = —a® = T .
PN g o pg

Note:
e For pg = 0 (“weight-less bar”) no minimum exists. The largest stress
occurs at r = a.

e The minimum will be located within the bar, only if a < 2* < h or
pgAoa®/(2h) < F < pgAo(h® + a*)/(2h) holds.
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Problem 2.2 The contour of a light- f—] P22
house with circular thin-walled cross W WTF+
section follows a hyperbolic equation ST
2—b2_a2x2—a2 "
y B2 =a. .
—\\-— h

Determine the stress distribution as a
consequence of weight W of the light-
house head (the weight of the structure
can be neglected).

Given: b = 2a, t < a.

Solution As the weight W is the only acting external load, the normal
force N is constant (compression):

N=-W.

The cross section area A is changing. It can be approximated by (thin-
walled structure with ¢ < y)

A(z) = 2myt= 27rt\/a2 + B2 x?

2
= 27rt\/a2 + 322 2

2 !
= 2mat\[143 ), .

The stress follows now as
N _ w

-
27rat\/1+3i2

Especially at the top and bottom position we get

w w
o(xr=0)= ~ gt bzw. o(z=h)= = dmat

Note: The stress at the top is twice as large as the stress at the bottom,
which is a inefficient use of material. This situation changes if the
weight of the thin-walled structure is included in the analysis.
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34 Elongation

Problem 2.3 Determine the
elongation Al of the conical T T
shaft (Young’s modulus F) L n I

under the application of a
tensile force F. i l

Solution The normal force N = F' is constant, while the cross section
area A varies. With o = N/A the elongation is computed by

! ! 1 !

1 1 Ndx F dx
Al—/adx—E/de—E/ A "B AW
0 0 0 0

To describe the change of the cross section area A(z) we start the -
axis at the peak of the frustum. Using the intercept theorem and the
auxiliary variable a we obtain for the diameter

= X
o(x) da }

and for the area -

A(z) =

Introducing this in the relation for the elongation, then integration
provides (integration limits!):

a+l
Al F dx _ 4Fa® [ 1\|""
T E 7rd2:p2_7rEd2 z/)|,
a 4 a2
With
a+l a - _d l
D ~ 4 ““p,_d
D
the elongation is
4F1
Al= 7EDd’
. . _4AFl FI
Test: For D = d (constant cross section) we obtain Al = TER = EA
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Displacements 35

Problem 2.4 A homogeneous frustum of

a0
a pyramid (Young’s modulus E) with a ‘
square cross section is loaded on its top T T‘T
surface by a stress og.
Determine the displacement field u(x) of h
a cross section at position z. l

— b —f

Solution The normal force N = —ooa® is constant. From the kinema-
tic relation € = du/dz and Hooke’s law ¢ = o0 /E = N/EA we obtain a
differential equation for the displacement u

EA(x) :Z = —ooa’.
The area A(x) follows from the intercept theorem:
A@)=la+(-a), . ‘
Thus we have
b— d
E(a+ haa:)2 dZZ—JoaQ. i
Separation of variables yields
u ()
ooa’ dz
du = — B 5 5 du = — a 2
—a
( LTt a) w(0) 0 &+ a
Using the substitution z =a+ (b —a)&/h, dz = (b— a) d¢/h leads to
we) o) — — 700 B (VY[ ova? G- pa )
N E b—a 2/, N E b—a bzaera'

The displacement u(0) of the top surface follows from the bounda-
ry condition that the displacement has to vanish on the bottom edge
x=h:

ooa? h 1 1 ooah
uh) =0 ~ wu(0)="p b—a(a_b): B -

From this relation the displacement follows

2
_O’oa h 1 1
ufz) = E b—a<_b+bza )

T+ a
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36 Rotating bar

Problem 2.5 The cross section of wlo

a solid helicopter blade (density p, o/2¢
Young’s modulus F) is described by w(}b -
the equation A(z) = Age /", L %

Determine the stress distributi- —=|a|=—
on o(z), if the blade is rotating x
with a constant angular velocity w. \ ! |
Compute the elongation Al under the assumption a = 0.

Solution First, the sketched geometry A(l) = Ao/2 yields
Ave ™ =Ap/2 ~ =2 ~ a=1In2=0.693.

The rotation causes a distributed load per unit length

n = pw’zA(z) = pw? Agze >/,
The equilibrium condition N’ = —n provides the normal force by inte-
gration
pw’Aol® [ QT —auyi  —aap
N:—/ndx:— 02 [—le‘” —e +C].

The integration constant C'is determined by the boundary condition:

NI)=0 ~ C=(l+a)e ®=0847.

Introducing the dimensionless coordinate £ = x/l yields

o/ (pu1?)

Omazx

2 2
N =2 2 0+ age 0,

and for the stress distribution

o€ =1} = 1+ ag - e

The elongation is calculated from

1 1
l pw?l at?  C aE
A: =
l /Oadac E/o odé = o2E {5—!— 5 T 4t

W23 a C, C puwl3
= B2 {1+2—ae +a}—0.258 »

1

0

Note: Due to the varying cross section the maximum stress occurs at
the position §o —(In C2) /a = 0.24 and attains the maximum value
Omax = —(pw??In C) /a® = 0.347 pw?l®.
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Problem 2.6 A massive bar (weight Wy, P2.6
cross section area A, thermal expansion l

coefficient ar) is fixed at * = 0 and just = T
touches the ground in a stress-free man- W
ner. h 0

Determine the stress distribution o(x) in ar
the bar after a uniform heating by AT. L |

Which AT causes compression everywhe-
re in the bar?

Solution We investigate the ”two load cases”, weight und heating. The
weight causes a a normal force

_ L s
N =w@=w" T =w(1-7) T T
h h
x o(x)
which is related to the stress distribution
o N(ZE) o WO x Wiz
@) ="y _A<1_h) )

The heating produces an additional strain, which is blocked by the sup-
port on the bottom. The relation

g = UQE(?:) +arAT =0

yields
0'2(33) = —EaTAT.

Thus the total stress is computed by
Wo (1 - x
A h
Due to the blocked temperature strain, there exists a compressive stress
at the end of the bar (x = h) at all times. As the stress distribution

is linear, the stress will be compressive everywhere, if compression is
present at the top edge. Thus the relation

Wo

o(x) =01+ 02 = ) — EarAT.

o(x=0)<0 bzw. i EarAT <0
provides the necessary temperature difference
Wo
AT .
= FAar
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38 Thermal stresses
Problem 2.7 An initially stress- . E,ar
free fixed bar (cross section area
A) experiences a temperature
increase varying linearly in x.

Determine the stress and strain

distribution. AT

x
Solution The bar is supported in a statically indeterminate way. Thus
we use equilibrium, kinematics and Hooke’s law for the solution of the
problem. With n = 0 and o = N/A these equations read

o' =0, e=u', szz—l—aTAT(x)
with

AT(z) = ATy + (AT) — ATO):; .
Combining the above relations renders the differential equation for the
displacements
ar

l

Integrating twice yields

W' =arAT = " (AT — ATyp).

u'= OélT (ATl — AT(]) z -+ Cq s

ar z?
u=" (ATy — ATyp) 9 +Ciz+Cs .
The two integration constants follow from the boundary conditions:
wW0) =0 ~ Co=0, ul)=0~ C,= —O;T(ATI — ATy) .
We obtain the displacement field

arl 22z
u(e) = 5 AT - ATy (3, =)

together with the (constant) stress

o =E® —arAT) = _O‘ZT (AT, + ATH)E.

Note: With constant heating ATy = AT, the displacement wu(x)
vanishes. In this situation the stress is 0 = —ar AT E.
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Problem 2.8 A bar with a constant

cross section A is fixed at both ends. c

The bar is made of two different o O L0y
materials, that are joint together at

pOth C. F ~—a—

a) What are the reaction forces, if an

: . . Steel Alumini
external force I is applied at point e umnu
Cc?

b) Determine the normal force that is caused by a pure heating by AT?
Given: Fst/Ea =3, ast/aar =1/2 .

Solution We treat the system as two joint bars with constant normal

forces. Ny Np
to a) —~ StF<— Al
equilibrium: —N4 + N = F , P

kinematics: Alst + Ala; =0,

Naa Al — Np(l —a)

EsiA’ AT EagA

The 4 equations for the 4 unknowns (Na, Np, Algs:, Ala;) yield with
the given numerical values

Hooke’s law:Alg: =

3(l—a) a
Ny =—-F Np = .
4 31— 2a P 8 —2a
to b) AT
ANA ]\“‘YB
equilibrium: Ny = Ng = N, | -
St Al
kinematics: Als: + Ala; =0, ez
N
Hooke’s law:Algs = Esj‘l + astAT a
N(l —a)
Al = AT (Il —a).
lag EanA + aar (l a)

Solving the system of equations for the normal force N yields with the
given numerical values

2l —a

N=-
3l —2a

ESt QaSt A AT .
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40 Static indeterminate

P2.9 Problem 2.9 Solve Problem 2.8 by superposition.
Solution to a) We choose the reaction force Np as statically redundant
quantity.
“0”-System “17-System
]\“rlng
st = NI St Al
u® | | u(V)
Hooke’s law provides
’U,(O): Fa u(l):X(l—a) Xa )
Es A’ EqA EsiA
As the right edge is fixed compatibility requires
4@ —
This condition yields
Ng=X = F“EA:F3l“2.
_ St —2a
a+(l—a) EouA
From equilibrium we have
3( —a) Ny Ngp
Na=Np—F=—-F . ] P L
AT 31— 2a sth Al

to b) In the free body diagram we choose the normal force N as sta-
tically redundant quantity X. From Hooke’s law

X
ugt= B aA + astATa N=X
st -
X( ) St Al
—a
A= 0t anAT(l - a) (I
Al use Ul

and the compatibility

ust +uar =0

we obtain
Nex=_osatoul—a) _ 2A-a g 4nr.
a (I—a) 3l — 2a
EsiA " EqA
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Problem 2.10 An elastically sup- N n RN P2.10
ported bar (c1 = 2co = EA/2a) N - - \
is loaded by a constant axial NS, B ESTTR
load n. . :
fe—— ¢ —=

Compute the distribution of the
normal force N(xz) in the bar.

Solution Using the free body dia- \ B C N
gram with the forces B and C' at il"\f\/‘\f‘q—> — N
the ends of the bar, the equilibri- N N
um conditions can be formulated B n C
B+C =na, N(z) = B—nx.

The elongation/shortening of the
springs is given by

B n
<—o——— —» N(2)
B C
Auy = s Aus = . —
C1 Cc2 T

The elongation of the bar is computed from

AUSt:/adx:‘/&dx.
0 0

With N =B — nz we obtain

Ba B na’
FEA 2EA°

Finally, the kinematic relation

Augy =

B Ba na? C
A fAuse =Auz > o T opa T g

with C' = —B + na and the given value for ¢; and co yields

B(2a+4a+a):na(a +4a) ~> B:gna

FA FA FA 2FEA FEA 14
and the distribution of the normal force follows 5
— na
14
N(a:)zgna—n;t. ; I g
14 ®
9 L~ N
"
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42 Statically indeterminate problems

Problem 2.11 Determine the com- EAc C
pression Al¢ of a casing C' of length
[, if the nut of screw S (lead h) is |- - EAg - S ] )
turned by one revolution.
EA 4 | —
Given: EAE =g4- | |

Solution After the revolution of the nut we cut the system of screw and
casing and introduce the statically
indeterminate force F' between the

two parts.
The casing experiences a compres- X X
. — |~——
sion
Xl
Alc = . | —
= pag f— \
Fpr the screw we obtain an elonga- E < B]]
tion
Xl l—h
Als = : e i =l —]
® 7 EAs

The length changes have to be adjusted in such a way that casing and
screw have the same length. Therefore compatibility can be written as

h=Alc + Alg .

Inserting the length changes yields the force

X = h 1
1 + 1
EAc " EAs
and the compression of the casing
X1 1 1 3
Alc = =h =h = _h.
CT EBAc " BAc TV 477

EAs 3

Note: As the axial rigidity of the casing is larger than the one of
the screw, the compression is only 3/7 of the lead. If equal axial
rigidities are present FAc = EAg, the length change of both parts
will be equal, i. e. Ale = Als = h/2 .
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Problem 2.12 A rigid quadratic
plate (weight W, edge length v/2 )
is supported on 4 elastic posts. The
posts are of equal length [, but pos-
sess different axial rigidities.

Determine the weight distribution
on the 4 posts?

Determine the displacement f in
the middle of the plate.

Solution The system is statically indeterminate of degree one (a table
on 3 posts rests in a statically determinate way!).

Equilibrium yields I __ L
’Sz/f‘—f""”_‘ Sy
T S1+5+S3+Si=W, - |y
~ -
I: aSi=aS:, Iy i 1 8
~ Ss S4
IIZ CLSQ = a53 .

The displacement f in the middle is obtained from the average value of
the displacements u; (= length change of the posts) at opposite corners
(rigid plate). Accordingly the compatibility reads:

1 1 g p—— =
f:z(u1+U4)=2(u2+U3)~ “7::11,{:\——"’77 Us
With Hooke’s law l ;’ - —
Sil —
YT pa,
and S1 = S4, S2 = S3 we obtain as intermediate result
Sil Sil Sol Sal 5, 5
BEA T 4EA T oA T3pa 7 40 T %
Inserting this into the first equilibrium condition yields
54535135, 48, =G ~ Si=Si='G, S=S=>a
1F o1t , 51451 = 1=51= .G, 2=5= .0

form which the displacement follows:

poL(Sit, Sy _1al
“2\EA T 4EA) T 8EA"

www.Technicalpdf.com

P2.12



P2.13

44 Composite material

Problem 2.13 A column of steel rein- F
forced concrete is loaded by a tensile

force F'. c l LO T
What are the stresses in the concre-

te and the steel as well as the height h
change Ah of the column, if we assu- l
me -

a) a perfect bonding between steel c-C
and concrete?
b) the concrete is cracked and does
not carry any load?
- _ _ P Ec, Ac
Given: ESt/EC = 6, ASt/AC = 1/9. ESt-,ASf,
Solution to a) We consider the composite as a system of two ”bars”
of different materials, which experience under load F' the same length
change Al. With this the basic equations of the system are:

equilibrium: Ng: + N¢ = F',

kinematics: Ahgsi = Ahc = Ah,

Ngih Nch
Hooke’s law: Ahg: = EjltSt , Ahc = Eflc .
Solution of the system of equation yields —
with the stiffness ratio FEAc/EAs: = 3/2
— the normal forces

NSt =F lE'AC = g F’ Nc =F
1+ EAg, 1+
and the height change
Fh Fh 1 2 Fi
Ah = i. e. Ah = = .
FEAgs: + EAc ne EAg 14+ FAc 5 EAg¢
EAsy

The stresses result from A = Ac + Asy and Agy = A/10 and Ac =
9A/10

Nsi F Ne 2 F

9CT 4 T 3 4

gst =
Ast A’

to b) If only the steel carries load, we will obtain with Ng: = F

F F Fh
Jst—ASt—loA, Ah_EASf
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Problem 2.14 A laminated bar made P2.14
of bonded layers of two different ma-

terials (respective axial rigidities F' A1, @ 0)

E Ay and coefficients of thermal expan-

sion ar1, arz) is to be replaced by a

bar made of a homogeneous material.

A

Determine FA and ar such that the
homogeneous bar experiences the sa-
me elongation as the laminated bar
under application of a force and a tem-
perature change ? FA, ar

Solution For the laminated bar, subjected to a force F' and a tempe-
rature increase AT, the basic equation yield

equilibrium: Ny + No = I, /EAL_@,”
kinematics: Aly = Aly = Aljam , N — Vs
Nyl
Hooke’s law:Aly = + am AT, F
EA N, ————
N.
A= 22t amaTi, B ors
This yields
- Fl EA1CMT1 + EAQOéTg
Alam = o\ 4+ B A, BA +EA,  STE
For a homogeneous bar under identical loading conditions, we have
Fl
Alhom = EA +arATIl.

The length changes Aljam and Alnom agree for arbitrary F and AT
only, if

B _ EAiar: + EAsars
EA—EA1+EA2, aT = EA1+EA2
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46 Forces in bars

Problem 2.15 1In the depicted support a a
construction for the rigid body B the ~ > o
lower support bar is too short by the T
length 6. In order to assemble the struc-

aluminium

ture a force F, is applied, such that the Lat
end of the bar just touches the ground. F,

After assembly the force F, is removed. l
The diameters of all bars d; are identical. [ B |

a) Compute the required assembly force }
F,. steel st
b) Determine the displacement vp of the h il
body and the forces in the bars after as- 0

sembly.

Given: Iy = 1m, da; = 2mm, Ea = 0.7 - 10° MPa, ls; = 1.5m,
ds; = 2mm, Es; = 2.1-10° MPa, § = 5mm .

Solution to a) Each aluminium bar carries half of the assembly force
(equilibrium) and elongates by the amount delta §. This yields

F. _ Sallar _ Falar _
Sar= 2’ Alar = EAa  2EAa 9,
1) 5 5 2
Fo=2° EAy=2. 0,7-10° . 7-12 = 2200 N .
~r Las Al 1000 0,7-10° -7 00

to b) After removal of the force F, new forces S4; and Ss: are present.
This leads to the equilibrium condition

SSt - 2SAl ) fSA, ? SAl
Hooke’s law | |
Saila Ssilst ¢
Alg = Algy = Ss
4 EA st EAs: L

and the compatibility condition
Ala + Alst = 6.

Solving the 4 equations yields

EA 210% - - 12
Sar = ljz IStAlEAAz - 10500 R 37r1 =S550N,
1+2lAl EASt 1+223
Sl
Ss¢ =254, = 1100 N, v = Al = 224 — 25 mm.
EAx
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Problem 2.16 Two rigid beams P2.16
are connected by two elastic L ¢ -

bars. The first beams is fixed %‘ A‘

at point A, while the second is 4 T
simply supported at point B. EA EA, ar “
Bar 2 is heated by a tempera- "A 1 9 '

ture AT. l

Compute the forces in the two
bars. a a
e O

Solution We cut the system S1¢ S
and use the following free body Y
diagram to formulate the equili- S, S,
brium conditions ? ?

8%
B : 2aS1+a52=0,

Hooke’s law

Al = 1@ 54 54
'T EA”
Sk SQ?

Sza R B
= AT - i
EA+aT @ 7777

Al

and the compatibility condition

Aly = 2Al, . Al

Solving for the unknown forces
in the bars yields

SlziEAaTAT, Szz—gEAaTAT.

Note: In the heated bar compressive forces are generated due
to the constrained deformations.
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P2.17 Problem 2.17 In the depicted two bar
system both bars have the same axial
rigidity EA.

Determine the displacement of point C' 9
where the load is applied.

60°
C
1
F
— 1
Solution From equilibrium we have
2 &
T: S2sin60° = F ~> 52:3\/3}7',
o 1 Si
—: =851 — S2¢c0860° =0~ 51:—3\/3F. F
Thus the elongation and shrinking of the bars follow as
2 l
A= Sl _ 3V3cose0sF _ VB FL Sk __V3 FI
T EA T EA T 3 EAY 7' EA T 3 EAT

To determine the displacements of
point C' we construct the displace-
ment diagram. In this diagram the
length changes are introduced. As the
length changes are small Al; < [ they
are not drawn to the scale. In this
example Al; is a shrinkage (to the
left) and Als an elongation. Consi-
dering that the bars can only rotate
around the hinge points we introdu- u
ce the right angles and read off the cr
displacement diagram:

V3 Fl
u=IALl = gy
Al w43 Fl 1 V3 Fl 1 Fl

Teos30° tan60° ~ 3 BA lyg' 3 BA V3 U EA
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Problem 2.18 A rigid weightless D 1 P2.18
triangle is supported by 3 bars
with the axial rigidity FA. The T
triangle is loaded in point B by

the force F'. ¢F

a) Determine the forces S; in the 2 i
3 bars and their elongations Al;. B C T
b) Compute the displacement of 3 "
point C. i

fe— a —>f=— a —f

Solution to a) The system is statically determinately supported. The
forces in the bars follow immediately from the equilibrium conditions:

A
C: aSy =alF ~ S1=F,
)

E: aSe =0 ~ Sy=0,
T

: S38indh°+ F =0 ~ S3=—V2F.

Related to these forces are the following elongations

_S1l1_Fa o
All_EA_EA, Aly =0,
Al _Sglg__\/2F~\/2a__2Fa

3T BA T EA T °EAC

to b) The displacement of point C' is
sketched in the displacement diagram.
As bar 2 experiences no force and thus
no length change, the horizontal dis-
placement vanishes. From the displace-
ment diagram we obtain for the vertical
displacement vc:

Fa
vo = V2 |Als] = 2v/2 A"
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50 Deformation

P2.19 Problem 2.19 1In the depicted
truss the members have the axi-
al rigidities FA;, EAs and the
coefficients of thermal expansion
ary, a72.

Determine the axial forces in the
trusses, if the system is heated
by AT?

Solution As the system is statically indeterminate, we have to use all
basic equations. We start S,
with the equilibrium

251(308,64-52 =0

and continue with Hooke’s law

Sil
Al = ETAll + lloleAT,

Sl
Aly = EA, + lQ(XTQAT,

where
h o1
= lo=nh. N
YT cosp ? 3 ¥Cp

The compatibility of the displacements is according
to the the displacement diagram:

Alr = Alacos 3.

Solving the 4 equations for the two truss forces and the two elongations
yields

2
apg cos” B — ar A

S1=FEA;
EA,
1+ 2cos? ﬂEAg

T, Sy = —2cos 3 S1 .

Note: For cos 8 = \/aTl/aTg we obtain S1 = S = 0: the trusses can
than expand without causing forces! (special case ari = arz

~ B=0)
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Problem 2.20 Truss member 3 p«i\oLo P2.20
was produced too short to be as- D D
sembled between two identical > c

trusses. 2 2

a) Determine the required as-
sembly force D?

b) Calculate the normal force Ss
after the assembly (D = 0)? — a4 —t=— 4 ——=— a —

Given: FA, = EA3 = EA, EA; = V2 EA.

|[-— o —

Solution to a) The force D has to move point C' by §/2 in horizontal
direction during assembly. From equilibrium

—:  Sacos4b° =D, C D

T: S1=S53c0845°, Sy :l Sy

kinematics (S1 was positively introduced
as compressive forcel!!) with the prescribed

displacement
1)
uc = All + AZQ\/2, uc = 2 ’ A]_)
o C
and Hooke’s law .
N2
JAVAIRS
Al = Iy = S20v? o
EA V2EA
we obtain ¢’ e 1 1
16 |
= EA
6 a

to b) Equlibrium, kinematics and Hooke’s law are as in a), but D has
to be replaced by S3. With the known compatibility condition

Sga
2uc + Als = 6 and Als = EA S, c

it follows SlT \ s
2
16

= EA.
S 7 a
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P2.21  Problem2.21 A centric ¢ " 5
loaded 7rigid beam is sup- B )
ported by 4 elastic bars of . ) }
equal axial rigidity EA. 30° 300 3 ‘: 4
Determine the forces in the
bars? }_7 1 4,‘47 l 4,{

Solution a) First, we solve the statically indeterminate system by
applying all basic equations simultaneously. Using equilibrium

L

o~

S1 =292,

%
T (S1452)sin30° + S5+ Ss = F
a

B: lS3+2lS4:lF,

Hooke’s laws

?53 S,rl ?

o o 512a
Al = Als = BA
o Sga o S4a
Als= g Ala= py
and the geometry of the deformation
B
Aly Aly B , D
1. W2 L Al Al
B®
S b
B/
Aly 1
= Als = Al
cos 60° 3 Z(U +Al)
we obtain as solution
2 5
5125225429177 53:9F.
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b) Now, we solve the problem by superposition. The system is divided
into two statically determinate basic systems:

“0”-System “17-System
‘ F

A A
S&o) / \ fX g

Sil) Sél)

SO g
Equilibrium yields

SO — g _ g0 _

From geometry and Hooke’s laws it follows

2O — Al§0) _ F2a L _ X 2a
B cos 60° EA B EA ’
vy = ALY = 22%4 ’ vy = 2);?4 ’
W) =1 el
Al = gj .

The kinematic compatibility requires the total displacement of point C'
to coincide with the shortening of truss 3:

’Ug?) —v(cl) :Alél).

Inserting the displacements yields
5
X =853= 9 F

and

2 2
Si=5" -5V = F,  Si=8"-8"=_F.
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54 Truss system

Problem 2.22 The depicted truss
system (axial rigidity EA) is loaded

by the external force F' and additio- F
nally pinned at point C. §|:" C
a) Determine the reaction force at T
point C. o
b) Calculate the vertical displace- 1 9 1
ment of point C. l
Q

Solution to a) Using equilibrium P

b F4+S2+ Sicosa=0, ¢

S1

—: C+ Sisina=0, S,

Hooke’s laws
Sily Sala
Al = Als =
h=pa- =g

and kinematics

Al1 = Als cosa
yields w!

. 2 2
sin v cos” «v cos” « 1
- Ja - _ Ja - _
¢ 1+cos3a =’ 51 1+cos3a ™’ 52 1+ cos? a

to b) Knowing S> the vertical displacement of point C follows as

Sal 1 Fl

ve L2 EA 1+ cos®a FA

In contrast to the displacement diagram, in which tensile forces (elon-
gations) are assumed, compressive force occur in the system. Due to
shortening point C' moves in downwards direction.

Test: o =m/2 yields S1 =0 and So = —F.
a=0 yields S1 = S2 = —F/2.
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Problem 2.23 A rigid beam is sup- F? P2.23
ported by three bars of elastic-ideal-

plastic material. ' ? T
a) At what force F¢!,, and at which E. Aoy /2
location in the bars is the yield stress o

oy reached at first?

b) At what force FE.,, occurs plastic 1/2

yielding in all bars of the system? 4

Solution to a) The system is statically indeterminate. Using symmetry
equilibrium provides P ?

2514+ S =F
Kinematics is expressed b | * Y
P Y Sl‘ So Sy= 51
Aly = Als .
Until plastic yielding Hooke’s law can be used
Sl _ Sal
A= gy Bl=opy-
The solution provides forces and stresses in the bars
F F F F
S Ty T e 2T gy

As the stress in bar 2 is the highest, the yield limit is reached first there
during load increase:

1
092 = Oy o F;a$:20YA~

to b) For a load increase above Fe. . bar 1 and bar 3 still respond
elastically, while bar two undergoes plastic deformation: oo = oy . Thus

with S; = 0;A it follows from equilibrium r ?
200A+oyA=F
- _F _ oy *

Sy=0,4 Sp=oy4 Sz=01A
All bars are undego plastic deformation if

F oy l
o1 =0y -~ — =oy ~ Fhu: =30vA.

2A 2
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56 Plasticity

Problem 2.24 1In the depicted symme-
tric system all bars are made of the
same elastic-ideal-plastic material, but
have different cross sections.

a) At what force F¢,, and at which
location in the bars is the yield stress
oy reached at first? Determine the
reaction force at C for this situation.

f— = —»

b) Determine the force F?! . when both bars deform plastically?
c) Calculate the displacement ufl,, of point C' for case a)?

Solution to a) Until reaching the force Fel . the system responds
elastically. Therefore the equilibrium conditions are given by

V2 V2 V2 V2 ¢
— 231— QSQ—F, T 231+252—C, r
together with Hooke’s law S S,
_ S1V2h _ S3V2h
Ab="pa Alz= o0 4

and the kinematics (bar 2 will shorten)

Al = —Als.

From the above relation we obtain

V2 2v/2 o 2Fh
Si= g F, 5 g £ C 30 Ahb =g
N S V2 F _ S _ V2F

= AT 34 PToAT T 3 4

The absolute value of the stresses is identical in both bars. Yielding
will occur if

V2

9 oy A.

el 3 el
o1 =|o2| =0y ~ Fmaz:2\/20YA7 ~  Crae = —

to b) As at Fel.. plastic yielding occurs in both bars, we have
Fel — Fpl .
to c¢) Until the yield limit is reached the displacement of C' is given by

2v2 Fh el el oy
mas = W(Ey, =2 .
3 E 1 ) ~ Umax ’I,L( maz) h‘

u=\/2Al1: E
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Bending of Beams
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58 Ordinary bending

Beam = straight structural element, length [ large compared to
dimensions of the cross section, perpendicular loads.

q(z) F
re T |
£ 2
= |

‘Z z

x

31 3.1 Ordinary bending

nomenclature and assumptions:

e 1 = axis of cross section centroids; ¥,z = principal axis of the se-
cond moment of area (moment of inertia).

e kinematic assumption: plane cross sections remain plane

w=w(x), u=zi),

w = displacement in z-direction,
u = displacement in z-direction,
¢ = rotation angle of cross section.

e stress resultants:

V= V., = shear force,

M = M, = bending moment.
Normal stress

neutral axis

o(z)=", z 1 I x
I Zmax
# Omax
I = moment of inertia with respect to y-axis,
z = distance to neutral azis (= axis of centroids).

The largest absolute value of the stress occurs in the extreme fibre:

I
s W = — section modulus.

Omax — = |
Zmax|

M
W
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3.1  Ordinary bending 59

Shear stress
a) thin-walled, open profile

_VS(s)
T(S) - It(S) )

S(s) = static moment of A* with regard to
y-axis,

t(s) = thickness of profile at position s.

b) compact cross section

_V5()
7(2) = Ib(z)

special case: rectangle

3Q 174£ 2
T4 R2 )

_30Q
" 20bh

5
]

Note: Tmax = 7(2=0) is 50% larger than Tmean =
Shear center M of singly symmetrical cross sections.

moment of V' with regard to 0
= moment of distributed shear
stresses with regard to 0:

TJVIQI/T(S)TJ_(S)t(S)dS

Position of centriod C' und shear center M for selected profiles:

full circle
semi circle with slit

M
c Mfc M @
M=C¢ M=C C Co]o o o o o
o M
T
M - L%’L*%w
T

0,273 7




60 Differential equation of the deflection curve
Basic equations

equilibrium conditions dv " dm =V,
dz dz

Hooke’s law, kinematics M = EIv’

V=GAs(y+w'),

EI = bending stiffness,
GAs = shear stiffness,
As = KA = shear area (k = shear correction factor).

Rigid with respect to shear (Bernoulli beam): If we additionally assume,
that cross sections perpendicular to the undeformed beam axis remain
perpendicular to the deflection curve during the deformation, it follows
from Hooke’s law for the shear force (GAs — o0)

P =—w.

Differential equation of the deflection curve for the Bernoulli
beam: Inserting into Hooke’s law for M yields

Elw' =—-M.

This leads with the equilibrium conditions to
(EIw//)// — q’

or for EI = const
Elw" = q.

Temperature induced moment

A linearly, across the height h, varying temperature field (= tempera-
ture gradient) can be treated by a temperature moment : i

Tb - Tt T

Mr =FI —
O ==
z

Ty

ar = coefficient of thermal expansion.

In this case, the differential equation for the deflection curve yields

EIw" = —(M + Mr).
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Boundary conditions and solution methods 61

Table of boundary conditions

support w w’ M 1%
f 0 #+0 0 #0
— 0 0 #0 #0
——— 75 0 75 0 0 0
free end
A
a — #+0 0 #0 0

Solution methods

1.

For continuous functions of g(x) or M(x), four or two times integra-
tion of the corresponding differential equation yields the deflection
curve w(z). The four or two integration constants are obtained by
the boundary conditions (see table of boundary conditions).

. For several regions (discontinuities in the loads, deformation, con-

centrated forces or concentrated moments), the integration has to be
performed piecewise. The integration constants are determined from
boundary and matching (continuity) conditions. The computation
can by simplified by using the Macauley bracket (see Engineering
Mechanics 1):

" 0 firex <a,
<x—a>=
(x—a)" firz > a .

. Statically indeterminate problems can be solved by using superposi-

tion of known deflections and rotations. For this purpose, deflection
and rotations of the most frequent load cases and support situations
can be found in the table on page 62/63.

. Statically indeterminate problems can also be solved by using the

principle of virtual forces (energy method) (see chapter 5).
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62 Table of end rotations
load case
T F
:—;ag,«b»‘
Y
A
A 7%;7 l Z7 B
—
qo
VAPV ITiivvvvvy
A
A%; l Z7 B
a
g
A
A 7%§7 l Z7 B
—c M
A
\ l \
T *‘p
A R ) — B
l |
P,
qo
IITITIIITININ,
A l | B
I
quh\
A { l 113
7 }—>‘/L 1[()
s )
A 1 B
lanations:
explanations @ " a 5

360

Mol
6

Q(Jl3
24

qsl’

(38%-1)

(]

Mol

(3a° — 1)

Fa?

qol®

qal®

24

Mol



Elw(x)

3
Pl - 2 - ) <£-a >

qol*

& 4
gy (E—287+80)

qpl?

3 5
1ho (7€ — 106 +3¢")

Mol?

o B -+ -3<t-a>?

FI?

6 [3¢%a — 4+ < £ —a >

qol*

oy (667 —46° +¢%)

qal

2 3 4 45
120 (106" —10&” +5¢° - &)

Mo™

[\

< & —a>" = Macauley bracket

and deflections

E-Iwmax

F?
48
fora=p=1/2

5

qol*
384

see problem 3.13

Mol?
s V3
fora =0

Fi?
B
for a =1

qol*
8

qal*
30

2
Mol
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64 Biaxial bending

3.2 Biaxial bending

az = axis of centroids,
arbitrary ortho-

&
w
|

gonal axis.

Y

shear forces V, , V.

and

bending moments M, , M.
(positive when positive right-
hand screw at positive intersec-
tion).

Differential equation of the deflection for shear rigid beams:

B = i(—MyIz +M.I,.)
By = i(MzIy _M,I,.)
A = LI -IZ,,
Iy, I.,I,. = second order area moments.

Normal stress

1

A (Myl. — M.1y.)z — (M1, — MyI,.)y] .

o =

Special case: If y, z are principal azis (I, = 0), then

Elyw'=-M,, ELV' =M., o=
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Normal stress 65

Problem 3.1 A cantilever beam with the
depicted cross section (constant wall thick-
ness t, t < a is subjected to a concentra-

ted force F' at one end. ‘ F
Determine the maximum stress in the cross
section at the support. T
F
‘ 2a 2a t
1 40a | = G| = |

Solution The distance of the centroid £- from the top surface is ob-
tained from the sub-areas by using t < a

big birg I
~ 7~ N ~ 7SN 5 = 13
¢ _3&GA 2(2at-a)+2(at-2a)  8a®t 7l o ¢
“T SA,  2at+2-2at +2- at  8at
-~ <~ — 13
B I big birg
=a. Ji}
The second moment of area with regard to the
y-axis is computed by using the parallel-axis
theorem. I o
I ~ x - 1T c |1 I“
RN 3 N e
t(2a) 2 16, 5 v
I, =d> 2a +2{ }+2 a”-aty = _ ta”, a
Y 12 { } 3 1A
z 1l
Thus we obtain for the section modulus
16 1
W = L _ 3 :16ta2.
Zmax a 3

The stress in the cross section at the support is calculated using the
bending moment at this position

M = —40aF

to be
o _|M] _ 40aF 30 F
B 17 _16t2_ 4 at
3a

(the upper fibre is in tension, the lower under compression).
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66 Computation of

Problem 3.2 A cantilever ®
beam with the sketched A ___________________ | F
cross section is loaded by —
the force I at point @ . ®©
Determine the normal —a ,2a_ | j-—
stresses at point @ at the ®
support. QQI

Zai

Solution As the neutral axis is passing trough the centroids of the
cross sections, we first determine the position of the centroid:

I T

~ A ~ -~ N §
A& 8a® a+2{2a 3a} 5 —| ! |E
= = ,a

SA; 8a? + 4a? 3 _
T

§c =

The second moment of area with respect to the
y-axis is computed by summing up the contri-
butions of the sub-areas:

4a(2a)® (2 \? —| r
I, = “(12@) + (3 a) 8a°| +
- 5
y 1 a
o a(2a)? (. 22a2 _ 4 1 3
12 3 3 iz
The following stress resultants are present in the cross section at the
support 5
N =—-F and M, =—_aF.

3

The associated stresses are (on due to normal force, oy due to bending
moment)

. _N_ F and . 7My2775 aFz 5 Fz
YA 12a2 R P B R U
3

. . . T
At point @ superposition with zo = — 3a yields

F 5 F7 2 F

g:UN+UA4(ZQ):_12a2 44 g3 3a— 11 a2
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normal stresses 67

Problem 3.3 The column with F P3.3
a star-shaped cross section Al

(t < a) is loaded by a force F,
applied off center.

Determine T 60°
a) the maximum absolute value ;b

of the stress,

b) the maximal value of b such
that nowhere in the cross secti-
on tensile stresses occur.

Solution to a) Due to the load and the
symmetry of the cross section it is convenient ur
to introduce the following v, 2-coordinate
system. This yields

ta®

12 °
The second moments of area for the sub-areas

II and III with respect to the y-axis are
determined by the transformation equations

I =

3
127 127
Using t < a we obtain

Iy+1I. I,—1
n‘; 4 9 <c082g0+lncsin2ap:

I»,,: IC: InCZO, QDZ*SOO.

ta3_ta3 1 ta®
24 24 27 48 °

Ty = Iymr =

This leads to

3 3 3

Together with the stress resultants N = —F and M, = —bF it follows
N M, F  8F
7=t I, T T3t tad S

The largest stress (compression) occurs at z = a/2:

o F (1,0
T at \ 3 a)’

to b) Tensile stress occurs first at z = —a/2:
a F Fb a
(=) =0 gy T =0 b=y,
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68 Inhomogeneous cross section

Problem 3.4 A column is clam- F,
ped at the bottom and is carrying ¢ h h
a vertical load F, at the center of 7 T ok~ ok
the top cross section and a horizon- T @ o ©)
tal load F} in the middle of edge b
b. The column is made of 3 layers i = ET S
with different Young’s moduli. ! i
x Yy
Determine the normal stress distri- = h .
bution in the cross section at the
clamping. 1 az
Solution We consider the different load cases independently.
to a) With the vertical load F,, we obtain from z
equilibrium o141 + 0242 = —Fy e [TIITTIIIIIT]
Hooke’s law oi = Fie;
and geometry €1 =¢e2 =¢ 03 - “7‘1‘ -
the strain
Eie1A) + Eaen A E526h+4E51bh F, £ F
= = —F, ~> = —
1€1A41 22 A2 3 3 2Ebh

and the associated stresses
F, F,

o9 = —2

S 2bh bh

o1 =

to b) Fj, causes a moment Mg = —Fjl at the support. Then geometry

(assume: cross sections remain plane)
u=1v-z ~ e=9 -z,

Hooke’s law o(z) = E(z)e(z)

and h/3 h/2 (2)
M= [o2dA =200/ [E; [ 2*dz+ Eo [ 22dz] 7V
0 h/3

=y B () + ()~ (2% = b/ BR®

lead to (using M = Mg)

;2T Ryl
V=T s
Finally, the stresses follow as
2T M hy  9Fl
= BWE=Eo gt g = T
2T M h, _ 54Fl
2= Btz =B pya® 2 0200) = T e
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Shear stresses 69

Problem 3.5 A wooden cantilever VF P3.5
can be assembled from 3 beams
(dimensions of the cross section ® @
b = a and h = 2a) in different b b
ways. ] =
7 plh 7 b
What is the maximal force F' for b b
the two variants @ and @ , if the l_Jz ; B %‘
maximal allowed shear stress in the
bonding layer is given by Taiow? h | h |

Solution With V' = F the shear stress in the bonding layer becomes
in general (z = z;)

. FS(z)
T(z1) = Ib(z) "
This yields with 7(z;) = Tallow the maximal load Fax
TallowI b(Zl)
Fmax -
S(z)

For variant ©® we obtain

b _rhb® b bys ., T T1
= = 1
I=", +2[12+(2+2) bh] 10 a* & iQ(mb)
b(zl):b:a7 A z
S(z) = sz:;(h—i-b)bh:?,aB ‘
A*

which leads to the force

P 10a*-a 10 2
Imax — Tallow 3@3 = 3 allow .
Analogously we obtain for variant @
_h(3b)* _ 9 4 o
I= 19 = 9% b(z) = h =2a,
S(zl):/ 2dA =b-bh = 24°
e

and the force

9a*-2a 9

2
2.943 - 2 Tallow @ .

F2max = Tallow
Note: The shear stresses in the cross section at z = z and in the

corresponding perpendicular bonding interface are equal (associated
shear stresses!).
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70 Shear stresses

Problem 3.6 Determine the shear stress
due to an applied shear resultant force
V in the depicted thin- walled I-profile.

Solution The shear stresses are com-
puted from

_VS(s)
I t(s)

Thus we need to determine the second
moment of area I with regard to the
y-axis. With 1 < b and t2 < h we
obtain

AN
=1 I, =2
1+ 12 tlb<2> +t212
h? h?
19 (t2h + 6t1D) 12( 1+ 6A42)

The static moment of sub-area A™ for a
position s in the lower sub-area is given
by

and for a position z in the second sub-
area it follows
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in beams 71

These relations yield the shear stress in the upper sub-area

h Az
T1(s) = v 2 he -V Ay s
h2 Ao As h
14
12 (A2 +6A1)t 6A,
and in the second sub-area
h  t2 9 2 1+ A 1— 22’
() VoA g (P =40y T aa, h
T2\2) = = .
h2 Ao Ay
1+
19 (A2 +6A1) to 6A,

A
1
= —o=" ! 44 Aml
TQmax—T2(Z—O)— )
As 14 Ao
BV —=—=
6141 ¢
it depends on the area ratio Az/A;. T ¢ T2 max_ |
The maximum shear stress in the first ¢
sub-area is given by ¢

max — =b/2) = T1 max
T1 TG(S / ) A2 1+ A2 2h
6A1
. 15V
For example A1 = Ay and b = h yields 72 max = 14 A at the center
2
and 71 max = 14 X . For this situation the smallest value in the vertical
sub-area :
|4 1 12 Vv
mln = = 2 = = 5
T2 7'2(2«' h/ ) A2 1 N A2 14 A2
6A1

is only 20% smaller than 72 max. As a rough estimate we can use the
average shear stress Tave = V/A in the central sub-area.
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72 Stresses

Problem 3.7 A composite beam ; b |
consists of an upper concrete slab
and a steel I beam. The structure
is loaded by a bending moment M.

a) Determine the width b of the M 2h
concrete slab, such that compres-

sive stresses occur only in the LM

concrete part, while the tension is

present in the steel part. Given : M = 1000 kNm

Ec=3.5-10* N/mm?

b) For this case compute the Es=2.1-10° N /mm?

stresses in the extreme fibres of the

two materials. h =40 cm
As=h?/6
Ig = h*/18
Solution to a) For the case
that compression occurs only in
the concrete and tension only in S
the steel sub-area the strain in U ‘—rz'
the bonding layer has do be zero @

(=neutral fibre). With the chosen

coordinate system we have
20 E
e=az, =8 C’ o

where a is not yet determined. The
stresses in steel and concrete are

os=Fse=aFsz, oc=Fce=aFEcz.

As the beam is loaded only by a bending moment, the normal force N
has to vanish:

N:/O'sdA+/O'ch:0 ~r Es/sz—l—Ec/sz:O.
As

Ac As Ac
With
h? h? h h2%b
/sz—zsAs—h6—6, /ZdA_ZCAC__Zhb__ 9
Ag Ac
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in composite beam 73

and Es/Ec =6 the required width b is obtained:

6 — =0 ~> b=2h =80cm.

to b) The unknown factor a follows from the prescribed bending mo-
ment.

From the definitions

M:/zasdA—‘,—/zach:aEs/zsz—l—aEc/szA.
As Ac As Ac

and the evaluation of the integrals

ht Bt 2
2 o 2 o _ 4
/ZdA—Is+hAs—18+6 —9h
As
9 bh: 2 4,
dA= = _h
/Z 3 3
Ac
it follows
ah*Ec Es 4 M
M = 2 = 2ah" FE = .
9 {ECJFG] avBe 9T opape

With this result the stresses in the steel and concrete are

EsM 3 M M
os = z= z oc = z.
57 2Bch! ht © 7 ops
For the top extreme fibre in concrete (2* = —h) and the bottom extrem

fibre in steel (2* = 2h) we obtain

—7.8125 N/mm?

M
0= = gy = ~T8125N/mm? E
ob=6 % = 93.75N/mm?

™\ 93.75 N/mm?
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74 Shear stresses

Problem 3.8 Determine the shear — 20—V
stresses due to a shear force V ) pt
for the depicted thin-walled beam — | [ ]
cross section (t < a). T

—| |- P
i

- a —] *t

Solution At first we compute the cross section area, the location of

the centroid and the second moment of area: I
_ Fe s
A =dat+2-2at + 2at = 10at A —
4 ¢ ,
bA=2a-2at+2a-2at ~ b= _a, by sully ©
t(2a)® 4
Iy = (2a)*2at + 2 ( Sa) = 30ta37 n 2
I=I,=I;-b’A= 104m3 ) il
15
53~

Due to symmetry of the cross section the
shear stress is symmetric to the z-axis.
Thus only half of the cross section has to be considered. With the
coordinantes s; to s3 we obtain for the static moments in the sub-areas
I to IIT

S[ = bslt: gatsl,

— b — s2 o 48 2 1 2
SII—bZat+(52+ 9 )(b sz)t—%at 21552,
SH[ = (2(1 — b)t83 = g at53 .
. . _ xQ/at
These relations result in the shear stressesM
T = Q[i] = 236 Qt 51 , 3Q/at /.**4,*¢¢¢ W =
o el
__QSn_Q (18 15 s ) ! |
"7 1t T at\65 208 a2) . i *
1 | I
_QSm 9 Q s3 0 /S
=1t T 52at o nQ/at —
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Shear center 75

Problem 3.9 Locate the shear center f— b —]
for the depicted thin-walled (¢t < b, h)

box profile with a slit. ,
h _
Solution We start by computing the
static moments with respect to the
y-axis of the three sub-areas: y
2 2 -
5 o h h M
SI—t2 , S[[—ts +2t52, 1 I —(51
K2 h h 1 1
S =t + bt + s3t _ o3 . 53
8 2 2 2
S
Thus the shear stresses become 2
Tir
B Q s% ———
"= i -
Q(h  h 1
= M|
=y \s Ta%)o l $ 0
Q h2 h 53 (2 * Tr
T =\ g +2b+ 2(h—53) . T *

The equivalency of moments with re-
spect to 0 provides

h/2 b h
Qrym A Trbt dsy + [) TIr 2t dss T 24 + 8

2
_am (1,1,

3
Q1 (bh 1bh3+ih2b2>
1\

With the second moment of area for the thin-walled profile

_ th® hy21 _ ,,2(h | b
1_2[12+bt(2)]_th (6+2)

we obtain the distance s of the shear center M to the reference point 0

11
ok gttt 2n 3

M = 4 =b .
th? 1 1 2h + 6b
6h+ 2b
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76 Bending along two axes

Problem 3.10 The cantilever
with thin-walled box cross
section is loaded by two ben-
ding moments M, = Fl and
M, = 2F1I.

Determine the distribution of
the normal stresses in the
cross section for b = 2h.

Solution Because of symmetry y and z are principal axes. The stress
distribution is computed from

M, M.
o= 2= Y.
Y z
With g =1
th* NI :
I,=2- 2. ( ) = :
v 19 + 9 tb 6th (h + 3b)
tb® b2 1,5
L=2" +2 (2) ht = (0 (b+ 3h)
and the given bending moments we find
o Fl . 2F1 y_6Fl(z y)
= - - 3 - -
Unzoon leapzosn o tRPNT 10
6 6
The equation of the neutral axis (line of neutral axis
zero stress) is computed from o = 0 )
z= 7 y -
107" 7.7 e
To clarify the representation the stresses \w A 36 FI
due to the two loading cases are depicted seperately: 35 th2
@ [T ]
S @ o
1A ] 0
@ 21 FI [T &151?1
due to M. . 35 th? 35 th?

due to M,
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Biaxial bending 7
Problem 3.11 A beam, simply
supported at both ends, with a Ia !
thin-walled profile (¢ < b) is loa- t 2
ded by a force F' in the middle. A

Determine the stress distributi- r 7

b
|
on under the load as well as the Y ¢ t
location and value of the maxi- —r'

S

mum stress.

p 2b
—

b
e 2

Solution For the unsymmetrical profile the principal axes are not
known. We have to use the equations for biaxial bending. Thus we
obtain for the stresses with M, =0

— M?J
A

The moment due to the load is given by

Fl

4

Together with the geometric quantities of the cross section

_t(2p)° 8 3 [t b2 1 2
12 3tb’ 12_2[12“2) bt}_?)tb’

(2 + Iy:2y) .

g
My - Mmax -

I, +2-0*(bt) =

bt = —tb?

2
A =1L -1, = 19615266 — %0 = ;thﬁ

I.=-2-b-

we obtain the stress

Rl (2, s\ _ 3 Fl .
o= 726(3tbz tby)—28tb3(2z 3y) .
4~9tb

The neutral axis follows from the condition

3 neutral

=0 ~ z:zy. éaxis

. . compression
The maximal stresses occur at points 2

with the largest distance to the neutral v
axis (y =0, z = +b): 3

3 Fl I7_

14 b2 z

S

tension

Omax — +
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78 Computation of

Problem 3.12 A cantilever beam
with thin-walled profile (t < a) is

subjected to a constant line load g¢o * * * * * * * * * * * * *

and a concentrated force F'.

Determine the distribution of the nor- ‘

mal stress in the cross section at the
support.

Given: F' = 2qol.

Solution We place a vy, z-coordinate system at
the not yet known centroid. By symmetry to
the 45°-axis the distance £ to both sub-areas
is identical. As the static moment vanishes with
regard to the symmetry axis, we have

£cat=(g—50)at ~ 5023.

With regard to the symmetry axis we find

3
1, == (D%t (ar= ),
Io==§ Gat= (=) (-Dat =’

This yields

5v226 1,6 1 25
A=1,0.—1I,. = t?a® —  t?a® = | t?a°.
ole = lye = (5,) Fa" = gy a” = ygtha
The internal moments at the support are given by
o q0l2 . . 2
M, = — 9 and M. = Fl = +2qol”.
Finally we obtain for the stress

1
A

36 ol 5 4 5[ ta®
= — -2 _
t%ﬁ” g 94! 20 8 )]”°

B 25,3 ql’ _ta3
|:2qu 24ta + 9 8 y

3 qu2
= 4 a3 (72 — 17y) .

g

{Myl. — M. 1y2) 2 — [M=1y — Myl,:]y}
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stresses in beams 79

Alternatively we can describe the stress distribution with respect to
the principal axes y*, z*, which we know from symmetry considerati-
ons. The principal values of the second moments of area follow with
I, =1, and ¢ = 45°

. Iy+ L 5,3 1,3 1 3
I:y Iz: t — = t
v g Tl la—glam=yta, C
Iy + 1. 5,3, 1,3 1 3
=" —I,.= _t ta” = _ta” .
: 2 ve = gylat glan = gla AR

Decomposition of the loading in the principal directions yields

2
M;:—q(;l cos p + Flsin g
2 1\ 1
= 2 — 2
qol ( 9 2\/ ;

- Sy M.
M = q02 sin g + Flcos ¢ o

CIOZQ(;—F?) ;\/27

which leads to the stresses in the principal directions

M, ., M 3v/2 qol?
— _ z * — 12 * * .
7 I; ? Y 4 tad (1227 = 5y7)

To check the result we transform with

1
Z*=—ysinp + zcosp = (z—y)z\/Q,

. 1
y =ycosp+ zsinp = (z+y)2\/2

back and find by re-substitution

3 qu2 3 qu2

= 12(z —y)—5 = Tz —17y).

0= s 12E =) =5yl = (T2 = 1Ty)
ll(?lltl"rll axis
The neutral axis satisfies the equation .
compression

17 Y

‘= Y- N ’ tension

m—
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80 Computation of the deflection

Problem 3.13 The beam is simply suppor-
ted at both ends. Determine %
a) location and value of maximal moment, ‘ l l

b) location and value of maximal deflection, 7;;7

c) the slope of the deflection curve at both 7 Bl ‘
supports. ‘ ! ‘

T
[I—

Solution Bending moment and deflection curve can be computed in-
dependently, because the beam is statically determinate.
to a) The given loading provides
oz

q=qo I

by twice integration
332
V=—qo 2l3+ Cy,

MZ*Qoaél + Ciz+Cs.

With the static boundary conditions

MO)=0 ~ Co=0, M@l)=0 ~ =%

6
we obtain
7 S TR

Location and value of the maximal moment are determined by the con-
dition M’ =0
m*

M=V=0 ~ 1—3(l

1

)2=0 ~ @ = V31=0,5T71,
o 1 1 1

Mooy = M(z") = 18\/3 ql®(1 - 3) = 27\/3 qol?.

to b) With the known function of the moment

w=t ()]

we derive from ET w'" = —M by twice integration
1?2 12t
Elw=-% ( - )
v 6 \or —ap) T
1?2 /a3 1 2°
Bro=-""(0 -, 13)+03a:+04.
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by integration 81

The new integration constants are determined from the geometric boun-
dary conditions

w(0)=0 ~ Ci1=0,

B _qlP (11N _ T
wll) =0~ Ca="g (6 20)_360q0l'

Finally we obtain (cf. table on page 62, load case no. 3)
qol4 x x\3 r\°
= -1 .
ETw= 340 [7l 0(1) +3(z)
The maximal deflection is computed by using the condition w’ =0 :
x** 2 x** 4
Elw' =0 ~ 7—30<l> +15(l) =0
x x 7
- (l) _2(5) v =0,
= 1(+>\/8 1=0,5191.
— 15 )

(The (+)-sign provides an z-value outside of the range of validity.) Thus
we have

4
e = (&) = 35821\/ \/15 7-10( \/185)+3(1_\/185)2]

_ ql*
=0, 0065 I

to c) The slope of the deflection curve follows as

03 7 qu3
/ _ _
w0 = pr =360 EI
/ 7_(]0l2 l - l 7 qu3 _ 8 qu3
W) = 6EI( 4) T 360 BI T 360 EI

Note: Maximal moment and maximal deflection occur at different
locations: x* # z**
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82 Computation of the deflection

P3.14 Problem 3.14 Determine the func- s
tion. of the bending moment for the o
deicted b FISHEIENE:
El

Solution The beam is statically indeterminate. Thus the function of
the moment needs to be computed with help of the deflection curve.
From the differential equation we derive by integration

Elw'"Y =q=qo,

—EIw" = Q = —qor + Ch s

2
_Elw" =M = —quQ + Chz+ O,

3 2
EIw/:qox —Clx — Cox+ Cs,
6 2
4 3 2
T T T
Elw= — — )
w=4qo,, 016 022 + Csx + Cy
The 4 integration constants follow from the 4 geometric boundary con-
ditions:

& 12 l
W) =0~ N -0 —Cal=0 Ci="1
~r
B ql* ? 2 _ @l
w(l)—O o 24 —016—022—0 CQ— 12-

This yields

M:—qféz {1—6f+6(x)1.

l
qol? 12 qol?
12\®\ 7 T
l
M qol?
24
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by integration 83

Problem 3.15 Determine the deflec-

tion of the depicted beam. The left T o

end of the beam is elastically sup- m
ported by a spring, the right end is p P
clamped, and the load has the shape c7§77 EI v

of a quadratic parabola.

Solution We start by computing the quadratic equation for the line
load. From the general equation ¢ = A + Bz + Cz? and

q(0) =0 ~ A=0,

gq)=0 ~ BI+CI*=0,

I sl ol «»Cz—?, B =47
;) =aw ~ B,+C =,

it follows  q(z) = 4qo [a;: - (;;)2]

Four times integration of EI w!V = ¢ yields

—EIw" =V = —4qo(§ - ;;) +Ch,
—Elw"=M = 74q0<§; - 1";;) +Ciz + Ch,
EIw’:4q0(;Zl - 698;) —Clm; — Cox +Cs,

The boundary conditions provide

M(0)=0 ~ Cy =0,
V(0)=c w(O)«»cl_cg‘},
, B q013 12
w'(l)=0 10 —C12+03—0,
w(l)=0 M'510l4_01l3+(13l+(j4:(),
45 6

The 3 equations for Ci, C3, and C4 yield with the abbreviation
A=1+c?®/3EI

T c qol? . qol? 1 e? T qol*
= Cs = 10A(1 18EI)’ =19y A

T 90A EI’
which leads to the final result

qol4 1
w =

www.Technicalpdf.com
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84 Beams

P3.16 Problem 3.16 A cantilever beam is T 2
subjected to a constant distributed

load qo. EI rﬂ_m

Determine the deflection at the free i

7777
end, ~— 20— T2 am

Solution We solve the problem in two different ways.
15¢ solution: Due to the discontinuity of () we have to consider two
domains:

0< 2 <2a q =0,

V:[:Cl,
My = Crx1 + Co,
i
Elwy = —C 9 — Cox1 4+ Cs,
3 2
ETw; :—Cle; —szzl + Czz1 + Cy,

0<z2<a Q2 = qo,
Vo = —qox2+ Cs,

x5
My =—qo ; +Csz2+Cs,

2
3 2
}1_/‘[10/2:(10%62 —059622 — Csx2+ C7,
4 3 2
T2 T2~ X2
EIw2—Q024 C56 062—1—07952—1—08.

The 8 integration constants C; follow from:

4boun— [w,(0) =0~ C5=0, wi(0)=0~ Cy=0,

dary qoa’
conditons | @2(a) =0~ (5 =qoa, Ma2(a) =0~ Cs=—

2
Mi(2a) = M2(0) ~Ci2a+C2 = Cs

and 4 (2a)2
contin— | w}(2a) = w5(0) ~ —C 9 ~ C22a + C5 = (7,
uity 3 2

. 2 2
condi— wi(2a) = w2(0) = 0 ~» —Cl( )" _ 02( @)
tions 6 2

+C32a+Cy =Cs =0
3 1 1
~ Ci=-cqa, Cz= qad’, Cr= qad’, Cs=0.

(For the shear force no continuity condition is available because it expe-
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with different areas 85

riences a jump related to the unknown reaction force B). The deflection
at the free end yields

qo {a4 a* at a4} 3 qoa4

+ + =8 EI

wa(a) = 246 44

T EI

274 solution: Using the Macauley bracket we can describe both do-
mains by a single equation. We introduce z from the left end and have
to consider the jump in the shear resultant at B (assumed to be positive
in upward direction):

q=qo <x72a>0,
V=—q<z—2a> +B <z —2a>"+C1,

1
M = —2q0 <z —2a>>4+B<z—2a>" +Ciz + Cy,

1 1 1
Elw' = 6qo <z —2a>° —QB <z —2a>2 —201332 — Cax + Cs,
1
6

1 1 3 1
Elw= _ q <z—2a>4—6B<m—2a>3— Cha®— 202:62+03:c+C4.

24

The 5 unknowns C; and B follow from

w(0)=0 ~C3=0,
4 boun— w(0) =0 ~Cy=0,
dary condi—
tions and Q@Ba)=0 ~ —ga+B+C1=0,

2

M(3a) =0~ —IJoa2 +Ba+Ci3a+Cy=0
1 t1 2 3 2 2
Lreetion {0 00,0 - 4 Gas o =0,

Solving yields:
3 1 11
Cl:_8q0a7 02:4q0a2, 03:()7 04:()7 B = 8q0a.

Thus the deflection at the free end is given by

4 3 3 2 4
_ g |a 11 a 3 (3a)” 1 5(3a)°| _ 3 qoa
wB) = prloy T 8% 8% 6 4% 2 | T8 EIC

Note: The computation of displacements at designated locations is less
complex with methods discussed in chapter 5.
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86 Computation of the deflection curve by Macauley bracket

Problem 3.17 The depicted beam o
is loaded on its cantilever part by = @

a constant line load. W Bl
Compute the deflection at the hin- =1 K O

ge and determine the slope diffe-
rence at the hinge.

(1’:
\4-2—>‘<— ——-—  ——

Solution With the help of the Macauley bracket the entire domain can
be descibed by a single equation. During integration the jump in the
slope Ay at the hinge has to be considered separately.

a _o
g=¢qo—q <T— >,

2
Vz—qox+qo<x—;>1—|—A<m—;>0+01,
2
M=—q" +% co-%>24A<a— 2> 101+ O,
2 2 2 2
3 A a x?
Elw — T qo a3 . 2 .
w q06 6<:1c 2> 2<:1c 2> 012 Chx
+EIA<p<ac—a>0+Cg,
4 3 2
T Qo a 4 A a 3 T T
Elw = - - - - —
W=qo,, — 24<ac 2> 6<:1c 2> 016 022

+EIA<p<ac—a>1 +Csx + Cy.

The 4 integration constants C;, the unknown reaction force A, and the
slope difference Ay at the hinge are determined from the following 6
conditions

V(0)=0 ~ =0, M(@0)=0 ~ Ca=0,
3 1
M(a) =0 ~ A= qoa, w(g):() ~ 384qoa4+03;+04:0,
w'(2a) =0~ gqoa3 — i;qoa‘o’ — g;qoa‘o’ + EIAp+C3 =0,
2 81 1
w(2a) =0 ~ 3q0a4— 384q0a4— 192q0a4+E1Aapa+032a+C4:0.
This yields the solution
5 39

4 9 3
EIAp = .
384110a , ¥ 32(10(1

Thus we obtain for the deflection at the hinge

_ 3 _
Cs = 94 900" Cy

1 qoa4
12 EI Ao
and for the slope difference

3
A@quoa . %

32 EI

wg =w(a) = —

AN NN
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Beam with variable cross section 87
Problem 3.18 A leaf spring with P3.18
constant thickness ¢t and variable
width b = bol/(l + x) is fixed at
one side and loaded at one edge
by F.

Determine the deflection at the
position of the load.

Solution The system is statically determinate. Hence the function of
the moment follows from equilibrium considerations:

V = F = const, M=Fx+C.

The condition M (l) = 0 yields C = —F[ and thus

M=-F(—-u=).
Use of the differential equation EI w"” = —M yields with
5 bot® 1
Hz)=b)15 = 95 14

and the abbreviation Iy = b0t3/12 :
,,7F(l—$)(l+$)7 F 2 2
v Elol = g )

By integration we obtain

w' F (12x — z® + C’1) ,

= Ell 3
_F yx? ot
w= Elol(l 2 712 +Clx+02)'

The boundary conditions
w'(0)=0 ~ C1=0, w0)=0 ~ C2=0
render the solution

5 FI®
w(l) = Wmax = 12 Bl

Note: For a beam with constant width by the same load results in a
smaller deflection
Fi? 4 FI3

v = 3pr = 12 BI
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88 Beam with variable cross section

P3.19 Problem 3.19 A cantilever beam with o
rectangular cross section (width b, = :
height h(x)) is subjected to a linear va- m 1
rying load such that the extreme fibre c !
experiences a stress og. E
Determine the deflection of the left end. } ! }

Solution First we have to compute the unknown cross section height.
Using
| M|

Omax = =00

w
together with

3
qo

M=="g 1= 157

yields h(x)

_ q0  3/2
h(zx) = \/Uobl .
This leads to

Qo qgo 9/2
I(z) = :
() 12aol\/bool ¢

Integration of ET w"” = —M provides together with the boundary con-
ditions w’(l) = w(l) =0:

W' — — M _ qoz*12000 [bool £=9/2 — 990 bool o3/
EI 61Fqo qo0 E qo ’
U)/ _ 20'0 \/bo’ol (_2x71/2+2171/2) ’
E qo0
oo [bool 1/2 _1/2 1/2
w=2 (—43: + 21 x + 21 )
E qo0

Evaluation at x = 0 yields the deflection at the left end

ago bO’ol2
0)=4 .
w(0) E\/ o

As a test we check the physical dimensions (F=force, L=length):

] = FL‘Q\/LFL—QLQ .
SR A A R
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Problem 3.20 The depicted beam is

assembled from two parts with diffe-

rent bending stiffness.

Determine the deflection at the free

end.

Superposition 89

F

2E1

4 Bl V

.
I 7

| ——— | —

Solution We use superposition together with the tabulated results on
page 62. First we assume that beam I is fixed at point B and compute
the defection wyr. To this we have to add the deflection w; of the left
beam I due to F' and M = Fl. Finally we have to consider the slope
w}, that appears at the left beam. This slop has to be multiplied by
the length [ and added as an additional deflection at the right end:

I F
BY\FI i ¢
Jw I * / Ei

N“«'} B Wi

f=wn +wr +wil = wn + (wr, +wry,) + (Wi, +wr,, )l

According to load case no. 5

o — FI? o — FI?
T 3ED 'F = 3(2EI)
and load case no. 8

(F)I? ,_ (FUI
202E1) M T

Wiy =

(2EI)

FI?
2(2E1)

’
wIF =

superposition yields the deflection at the end

F? 1 3 3 3 3 FB
f 1+ +54+ 5+ b=

~ 3EI 277474 2

T2 EI
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90 Superposition

Problem 3.21 Determine the

deflection curve for the depic- A * * * * * * * * * * * * * *

ted beam. Bl A

Solution The beam is statically indeterminate. We free the support
moment at the left end and introduce the unknown moment X:

q

PP rviiey = pordiei b i i +(
£ A & AL &

Jq Wy

From the table on page 62 we obtain for the slope:

3

load case no. 2 wfl = 2%102?] ,
Xl

load case no. 4 (with =1) wk = .

The total slope at the left support has to vanish. Thus compatibility
provides

1
w;+w3(=o ~ X:MA:—quZQ.

Superposition of the deflection curves in table on page 62 yields the
deflection curve of the system

El w= FEI(wg + wx)

4 2
= 06— 26 - ol (2646 - 36%)
Qol* .2 3 4
= (36— 56 26"
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Static indeterminate system 91

Problem 3.22 A pole is clamped at o P3.22
A and supported at B by an elastic El T
rope. The pole is subjected to a ho- a —»] a
rizontal linearily varying load. B *
EFA
Compute the horizontal displace- [
ent v at point C fo El !
ment v in r = _.
p aQEA 3 1 2a
Qo ] A J
Solution We disconnect rope and pole:
(o vx
Wy 3: a - X X wx
- Ny
- + Aa
Compatibility at the connection of the rope requires
Xa
wg —wx = Aa, where Aa = EA (see chapter 2).

With the table on page 62 we obtain:
_ q(2a)* 8 goa*

1 5 . = =
oad case no. 7 Wq 20E] 5 EBI
_ X(22)° 8 Xd*
load case no. 5 WX = apr T s oprc
Using these values in the compatibility condition provides
1
4 3 qoa
8 qoa 78Xa :Xa - Y — 5 :8qoa.
15 EI 3 EI EA 14 3 EI 45
8 a’EA

The displacement v results from superposition (for the linear varying
load we have to consider the displacement wy and the slope wy: vg =
wq + wya):

_ _ w0 | o0 X(@a)? [, 2 1)
Elv=FEI(vg+vx)= 50 t ooy e g 3.5 -1+ (5

~ ~ 4
load case no. 5 with a = 2/3

o 4 14 3iqoa4
= pdoe = g XaT= oy
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92 Static indeterminate system

P3.23 Problem 3.23 Two parallel beams
(bending stiffness ET, length a) ha-

ve a distance of [ and are clamped
at the left support. An elastic bar
(axial rigidity E'A) of length [ + 6 145 s<l I
is force fitted at a/2 between the

two beams. l

a) Determine the force in the bar?

b) Compute the change e by which l~—a/2 —=t=—a/2 —
the distance [ at the beam ends is
changed.

Solution to a) From geometry (compatibility)

I+ 2wx = (1+6) — Al '
X fx : | wx
~ 2wx +Al=3§ Ly
Al — I
we obtain (see table on page 62, A
X
load case no. 5)
() X¢
X
2 Xl :
= A =
wx = gpp A= gy
X
and the force in the bar (compression)
g x— 0 , =6 EA 13
l L@ l 140 EA
EA  12E]1 121 BT

to b) The opening e is computed with help of the table on page 62
from load case no. 5

Xa® 1 1\° 5 a®EA )
=2 =2 -1 —1 =
e=2ix =203y +<2>} 24 | EI A*EA
+ 121 EI
.. . EA
Note: In the limit case EI — oo one obtains S = § . and
e=0.
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Superposition 93

Problem 3.24 C te th P3.24
reaction forces focrm[‘cllli;z1 ctlaepi:j— * * * * * * * * * * * * * * %
ted beam. A kB A

7777 7777

12— /2 —

Solution The system is twice statically indeterminate. We treat the
support moment M4 = X; and the reaction force B = X2 as static
redundant quantities and use superposition:

qo qo

Xy
Ty = 101 +
L L A1 2B AL B L I
B C W, Wy w]  wq X,

A

Considering the (arbitrary chosen) directions yields for the compatibi-
lity

w; +w] —wh =0,
wq + w1 — w2 =0.
From the table on page 62 (no. 2, 4 and 1) we obtain
ql? N Xil - Xol? _

2 3 6 0
1 X013
I X102 — =0
384100 T g 48 :
which yields
1 2 4
X, = — Xy = .
1 56 ql”, 2= qol

The support reactions are determined by superposition of the 3 load
cases

qo_X1_X2 13

A= = T g T 5%
4
B:X2:7qu,

_ qol X1_X2711
C="g + | =9 =5 ®
Mi=Xi=- " ql

A= A1 = 56(10
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P3.25

94 Static indeterminate system

Problem 3.25 Determine the

deflection curve for the depic- qo
ted beam subjected to a tra- o
pezoidal load.

| ! “

Solution The beam is statically indeterminate. We choose B as the
static redundant quantity and use superposition of 3 load cases (the
trapezoidal load is replaced by an equivalent constant and linearly va-
rying load)

q1 — 4o

q1

. W -

The table on page 62 (load case no. 6, 7 and 5) provides

_al

Elw(z) =", (66 -4& +¢")
(ql—QO)l4 2 3 4 5 BI® 2 3
= e (1067 108 4 5gt €)= T (367~ €).

The support condition at B yields the reaction force B

(g1 — o)l

3
w(l) =0 ~ B=_ql—- 10

8

By recasting the above equations

al* (@ —q)l* | ql*

24 24 24

we determine the deflection curve

4 o 4



Superposition 95

Problem 3.26 For the beam with two " Fle b P3.26
domains determine the support reacti- r 2

ons and the deflection at the center of = =

each domain. Bl = B = C

Given: F' = 2qol. =1 !

Solution We divide the beam into 2 separate (hinged at both ends)
beams and introduce the moment at the central support as statically

redundant quantity:

F
sxxxxxs R N

X
A ( (0 T : t (/'qu
u,'/ﬁ ) U-_g(“) “'1[ ’
BY B!

A© BO B cO A 0 B

Equilibrium yields

0 1 0 0 F
A<°>:B§>=2qoz, B§>:(§;>=2,
AV =cW = g = _BH =
1 2 l
The table on page 62 provides
3 2

0 qol 0 Fl 1 1

i = g W = ey v = e

Compatibility can be formulated as
W, @ o D Z gt © 4y @

which yields together with the tabulated results

X1
3EI"

1 5 3 1 5
X =- "= __Fl=— ql° =Mg.
167" 7 32 4% "
The support reactions are computed by superposition
1 1 1
— A 1) _ —
A=A"+ A 2(101 4(IOl 4(]01,
B =B+ B" + B + BV = 21,
F 1 3
— ) n -+ _ | = 1.
c=Cc"+C g T 4% 4%
For the deflections at the center of the domains we compute
4 2 4
o) (1) _ 5 qu X1 1 _ 1 _ qol
h=h"FTh = 5ey pr Tepr\e " 8) = TssapEr

3 2 4
0 w _ Fl X1 1 1 5 qol
Po=Fh+f = opr Tepr\a s

T 192 Bl
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96 Temperature load

Problem 3.27 A beam (rectangular cross T
section, width b, height h) that is clam- 7

ped at both ends is subjected along its A I T, B?
length [ to a constant temperature diffe- . ! |

rence 1} — Typ.
Determine the defection of the beam and the maximum stresses.

Solution The beam is twice statically indeterimante. We choose as
statically redundant quantities the reaction moment X; = Mp and the
reaction force Xo = B. We use superpostion of the three (statically
determinate) systems:

(0) (1) 1(2)

“0”-System uﬁ;B “17-System u;’b, “2”-System wp
0 ?
fwp ! e
1y : 1-) + Wp
) Mg
) i,

The deflection in the “0”-System is computed by the temperature mo-
ment

MAT = EIO(T(T}, — Tt)/h

using the differential equation w” (*) = —Mar/EI and considering the
boundary conditions w(0>(0) =0, w <0)(0) =0:
M, Mar 2?
7(0) _ _MaAr (0) _ _Mar
w “(z) = T w' (x) Bl 9 -

Due to the clamping at B compatibility requires

wp = wg)) + wg) + wg> =0, wp = wgo) —l—wg(l) + wg@) =0.

From the table on page 62 we obtain
_Mar, Mgl BP _Mar * _ Mpl* _ BP
EI EI 2EI EI 2 2EI  3EI
with the solution

B=0, Mp=—Mar.

As Mp = M is constant along the entire length of the beam the deflec-
tion becomes

"o M + MAT _ . _
w = — Bl =0 i. e. w=0.
The maximum stress is computed with the section modulus W = bh?/6
M| . Mar

loma| = Ty =6



Frame 97

Problem 3.28 Determine the TYVYVIVIIY®
support reactions for the de- EI
picted frame.

Solution We free the right support and use B as static redundant
quantity

VIVIVPPIvY O VIIIvPedey @

B
The individual displacement components are determined from the table
on page 62 and superposition:

TRy ©
> (]

- Vg 1

Vg = Vg + Vg = P A+ Vgp =

Ba< \/ -

qoa

g *B

3

4
UB:v31+v32:w~a+v32=Ba-a-a+Ba3 :3Ba3.

The compatibility at B provides the reaction force B:

15
Vg = UB ~ B:32qoa.

The other support reactions follow from equilibrium

17 1,
A= Ma = — .
39 90@ and A 49000

P3.28
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98 Superposition

Problem 3.20 An auxiliary brid — S
roblem 3. n auxiliary bridge, q
that is resting on the river banks, is * TYYrvYYYRYY *ﬂ ’

supported in the middle by an addi- A v X EI A

tional pontoon (block with cross sec- '—V'
tion A at the water line). The bridge p A
is subjected to a constant load qo.

Given: water density p, EI/Al®pg=1/24.

Determine the immersion depth f of the pontoon due to qo.

Solution The system is statically indeterminately supported. We use
the pontoon force as statically redundant force and apply superposition:

TR L s

QR TITIIITRITRITT 0N
A@A‘M A A
Wy X
T

For the immersion of the pontoon we obtain
f=wqg—wx.

Archimedes’ principle yields the buoyant force F4 that is equal to the
weight of displaced fluid (see also chapter 7), i. e. we have

X

X =Fa=pgfA ~ f:pgA~

The table on page 62 provides
5 qo(20)* X (20)®

no. 2 : wq:384 qO(EI) , no. 1: = 4éE)I .
Using the above results

X 5 qolel* X813 5 ol

pgA 384 Bl asEl T N T l234f11 = @l

6 EI  pgA

the immersion depth is given by

. X _ ql EIl3: 1 gol*
pgA  pgAEII3 24 EI -



Superposition 99

Problem 3.30 An elastic rope P3.30
(length s) is fixed to the wall
and in C frictionless redirected EA
by a pulley. The pulley is atta-
ched to a beam (axial rigidity

— 00), > O
Determine the displacement of E1 0
the load Q. |

Solution The displacement of @ is computed by the length change

_ Qs

As—EA

of the rope and a contributions § of the deflection of the pulley. The
deflection is calculated by the vertical load on the beam

V=Q—Scosp=0Q(1—cosyp)

to be ‘ 4
3 73
w— vie _ Q(1 —cosp)l . / — wH
3EI 3EI

The deflection ¢ of the load @ follows from

O =w—+ an — ay

=w+ (s —by) — (s —by) © 1 by
)N

=w+ by, — by C

Cho—+
Ay, l J

Q
by, — by = wcos p (for w < by) .
Q/
This leads to the deflection of @

vo =0+ As=w(l—cosyp)+

Qs s 13(1 — cos p)?
EA @ EA + 3EI '
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100 Statically indeterminate system

Problem 3.31 The depicted struc-
ture consists of a beam and bars B R
with stiffness ratio « = EI/a*EA.

The structure is loaded by the force £l = y
F. A AN ofra L
a
a) Determine the forces in the bars- \® 1
fora =1/8 C V2EA
b) For which value of « vanishes the ol

force S27
¢) For which « follows Mp = 07

Solution The system is statically indeterminate in the interior. We free
the middle bar (basic system):

A B
lllL_ lll_&_‘l‘c
£ . ””’Q’FFWF 2 .
2 2

Equilibrium in C' yields Sio) = V/2F/2. The beam is loaded by the
components F'/2. With the table on page 62 (load case no. 1) the dis-
placement at A is given by

F(4a)® [3 1 9 1 11 11 2
EI 0) _ . (1_ _ ) . (1_ _ ) _ F3
Yai=y 6 |4 a\' "6 16/ as @

and at location B

F (4a)®*1 1 11 11
Ys 2 6 4 2 16 4) 127°

Due to the truss elongation Al; point C' experiences the displacement

1
V2 Fav/?2
w® = A2 = D2 _ Fa
V2EA V2 EA EA

Hence the total displacement of C'is given by

o) _ 2Fa3 + Fa

0 0
vg) =i g T3 El T EA

Now we load the system by the unknown normal force S2 = X and
consider the two load cases independently:



Superposition 101

1 17
A B A B

A\Zy%ﬁsv%% X7 &

In sub-system I the deformation is analogous to the basic system, if F'
is replaced by — X, i. e.

15 2 Xa*  Xa 15 11 Xa®
v = — — w = — .
© 3 EI EA’ B 12 EI

The displacement in sub-system II is again determined from the table
on page 62

ar X (4a)? 4 Xa?

B 48EI ~— 3 EI’
LD (D) X(4a)® (1 1(1 11 ) 11 Xa®
¢ T 7A T 6EI 24 4 16/ 12 EI °

Compatibility requires that the difference in the total displacement at
points C' und B are equal to the elongation of bar 2:

X
’Ug?) +U(CI) + vgj) — [wg)) +wg) + wgl)] — a
EA
or
2Fa® L Fa 2Xa®  Xa N 11Xa* (11Fa3 _ 11Xa® N 4Xa3> _ Xa
3EI ' EA 3EI FEA 12EI 12ET  12E1 * 3EI) EA
1
a—
~ x=_ 4F
200 + 6

§-1 3 1 13
to a) X:S2:1+1F:—10F, S1:2\/2(F—X):20\/2F,
176
tob) So=X=0 -~ a—i,
F F X
to ¢) MB—22a (2—2) =0 ~ X=-F,
1
o
~ LF=-F ~ a= 1.
20+ ¢ 36
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A

P3.32 Problem 3.32 The two depic-
ted posts have to be connected
by a rope. The rope has to be EI ET ¢
fixed at points A and B. The h -
rope is too short by Al. A bp —

a) Determine the horizontal
force F' at the right post
that is required to fix the
rope stress-free.

S - 77

b) The force F is removed after assembly. Determine the force in
the rope and the moments at both supports.

Solution to a) The force F' has to bend the post by Al to the left.
From the table on page 62 (load case no. 5) we obtain

FRr? 3ET
Al_:?:EI ~ F= 13 Al.

to b) The length Al follows from the extension Alg of the rope due to
a yet unknown force S in the rope and the deflection fs of both posts
due to the same unknown force S. Compatibility states

Al=Als + fs + fs

which yields

Sl Sh® Sk} Al 1
A= pag Tapr Tapr 5= Pas 2K A

3 IEI

Finally the moments at the support follow from equilibrium

M =hs = 2 Bash s :
! |4 2HPEAs
3 IEI



Problem 3.33 A plane frame [
is loaded in C' and D by two a>c 9
forces. a

: : : cllL 3 W
Determine the reciprocative BI - o

horizontal displacement Aw of

C und D. a ED gaﬂ

Solution To apply the table on page 62 we have to separate the defor-
mation of the individual beams and use superposition.

2
2 M=F_a
M—Fa”'(y\ Q_Z)\ b
%’“ + ' g +

®
4>‘ 9 ‘<— 2 w
< - a
3 3 r w
&_1 ) -

p.a
M M

2 2
C' is moved by <p~3a+w~3a+w to the right,

2 2
D is moved by ¢ - a+w~3a+w to the left.

3

Thus, the reciprocative displacement follows
Au=2|p- §a+w~ §a+w] .

With the table on page 62 it follows:

load case no. 2 El¢p = (zFa) 2a _ (gFa) 2a = 2Fa2,

3 3 6 9
2 2 o
load case no. 8 FEly¢ = (SFa)a:?)Fa ,
2 \3
F(3a) 8 3
load caseno. 5 FElw = 3 =31 Fa”,

which yields

Au—af( 4,8 Fa® 112 Fd®
T \er 9T 81) BI T 81 BIC

Note: Due to the antisymmetry of the system the vertical displace-
ments of C' and D are the same.

P3.33
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[ [
P3.34 Problem 3.34 The depic- [y =y .
ted frame is loaded by a ‘\j 0
moment M. o
Determine the reciproca-
tive rotation Aggm at the
hinge. \l
T
el

Solution It is reasonable to split the loading into a symmetric and
antisymmetric contribution:

Mo/2 Mo/2

M ™ Mo/2 My/2
M s o R R
\
\
\

= + \

The antisymmetric loading causes no
reciprocative rotation at the hinge.
For the symmetric loadign it suffices
to consider half of the frame struc-
ture. The rotation 1 results solely
from the bending of the vertical post
(only a normal force occurs in the ho-
rizontal beam). Thus from the table
on page 62 (load case no. 4 with 8 =1
and o = 0) we obtain

Mol
9 Mol
T 3EI  G6EI’

¥

Hence the reciprocative rotation follows

Mol

Apn=20= ap;
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Problem 3.35 Determine for the Fla P3.35
depicted beam with a thin-walled “—?
profile the displacement at the o
point where the logd is applied. T
= F S| 2a
? E Y t<a L
l | A

Solution Due to the unsymmetrical profile oblique bending occurs. The
displacements are computed using the two related differential equati-
ons. The bending moments are given by

My,=-F(-2z), M.=0,

and the second moments of area for the thin-walled profile follow from

t(2a)3 2 8 3 2 3
I, = 2 = I, = ,
v 9 +a(at)a 3ta , 3ta ;
I,. = —2(ta)a2 = —tad®, A=T,0. 1. = 9t2a6.
Thus the two differential equations can be integrated for the z-direction
Ew”*—MyIz _6F (1—=x)
B AT td? ’
3 F 2
E'w':—7 tag(l—m) +Ch,
1 F 3
Ew:7ta3(l—m) + Crz + Cq
and the y-direction
MyI 9 F
o = _Mylye _
v A 7 ta? (l—=x),
o 9 F _ 2
Ev—14m3(l )"+ Cs,
3 F 3
Ev = —14 taS(l—m) +Csx+Cy .
The boundary conditions at the support yield
9 FI* 3 FI?
"0)=0 Cz = — "(0)=0 Ci =
v(0) ™ ? 14ta37w() - YT7 tad
3 FP® 1 FP®
0)=0 Cy= 0)=0 Cy = — .
VO =0 =y g O =0 o=y

Thus the displacements at the point, where the load is applied x = [, are
2 FI? 3 FIP
)= l)=— .
L o
Note: Although the load is acting in wvertical direction a displacement

in horizontal direction occurs. The profile preferably deforms in
the direction which is related to the smaller second moment of area.
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Problem 3.36  The simply
supported beam is loaded by
a constant distributed load.

Determine the displacement
of the centroid of the cross
section in the middle of the
beam (only deformation due
to bending).

Given: [ =2 m,
E =21-10° MPa,
qo = 10* N/m .

o] 130 JjB
L 1o

Solution We compute the geometric quantities of the cross section:

A =65-10+ 12010 = 1850 mm

o=

1850
~(65-10) -32.5+ (120 - 10) - 5
e = 1850
. 3
I, = 651210 + (42.16)%(65 - 10) +
=322.7 cm? |
. 3
I = 10155 + (17.84)%(65 - 10) +
=55.8 cm? |

C(L
(65-10) -5+ (120-10)- 70 _ \7y6 -
.

nc

- ——

= 14.66 mm , -
10 - 1203 2

2t (22.84)%(10 - 120)
120 - 10® 2

T (9.66)(10 - 120)

I.= —(—17.84)(—42.16)(65 - 10) — (22.84)(9.66)(10 - 120)

= —75.4 cm*

A =1,I. — I, = 123215 cm® .

The loading causes only a moment along the y-axis:

l x?
My(x) = q; T — qo 9 -
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The basic equations simplify to

MyI
Eu' = _ vt _
w A 5 v A

, L og 22 3

1. @ 3 x
Ew==x 9 (16 12+Clm+02) ’

2 3
E'U/:—IZZ q20 (lx2 _ —i—Cg) R
Iz qo JJB

Ev = — Y

v A 9 (l6 +C’3a:+04)

The boundary conditions
w(0)=0 ~ C2=0, v(0)=0 ~ Cy4=0,
w(l)=0 ~ Cp=-— v(l)=0 ~ 03:—12

together with the abbreviation & = ? yield
"
Ew qo , et -2 +£}A,

v —q°l {et -2 v} 'y

In the middle of the beam (£ = 1/2) the curly brackets attain the value
5/16 which leads with the given numerical values (converted to cm) to

oo .4 5 558 1
w=107-2000 30/ 193915 91107 — 04D Cm
C 1
5 —75.4 1 ‘
=107 . = —0.61 |
v=107-2000 o0t 193215 21107 06l em, SN
w .

=\/w2+112:0.76cm.
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Problem 3.37 In the middle of . F !
a beam the force I is applied. e ¢ 2
P R

The thin-walled profile is pro- I
duced from an aluminium sheet
of 2 mm thickness. ‘

|
1

: F =4
Compute the deformation at ¢
the point where the force is T
applied. T ‘
Given: [ =2 m , c 10
E =17-10" MPa, 1Y
F =1200 N . — L
2 [cm]

z

Solution The displacement can be determined with regards to the y, 2-
axes, or with regard to the principal axes. We want to consider both
possibilities.

15" solution: The position of the centroid is known. With regard to
the y, z-axes we find
7 02-10° N (0.2~103 ~02-6°
Y12 12 12
_02-8
)
I.=—2{5-2-02-4+4-4-0.2-2} = —28.8 cm*,

)+2-52-o.2-4=69.73cm4,

I. +2-4%.02-2=21.33 cm”,

A=1I,I. —I7, = 657.9 cm® .

F

With the bending moments M, = 2 M.,=0 fir0<z<Il/2
(symmetry) the differential equations are given by

FI. " FIyZ
_ By = —

oA Y oA "
After integration and incorporation of the boundary conditions we ob-
tain in the middle of the beam (see also table on page 62):

Ew// .

_ FPP I. 1200-200° 21.33

W USE AT 4g.7.10°  657.9 003 oM

3 . 3 (_
FI* I, _1200-200" (=288) _ o0

YT USE A T 48.7-10°  657.9

f=+vVw?+0v2=156cm.
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24 solution: We refer to the principal axes. The principal directions
and values of the second moment of area are given by
21,

tan 2" = =-1.1 ¥ = —24.98°
an 2y I, I 9 ~ 98

91.06

5 * \/24.22 + 28.82

Lo =

~ L =1I,=8315cm", I,=1I=791cm*.

Decomposition of the load into principal directions yields
F; = Fcosy™ =0.906 F , F,=—Fsiny® =0422 F |

and the displacements follow from the table on page 62 (load case no. 1)

Pyl 1200 - 0.422 - 200°
= = =-1.52cm,
F 48F1, 48-7-10°-7.91 o
Fel? 1200 - 0.906 - 200°
I cl* _ 1200-0.906-200° _ . em

T 48EI,  48-7-10°-83.15

f:\/f3+fg:1.55cm.
n
'[/}*

For comparison with the 1°* solution we transfer the displacements into
the y, z-coordinate system:

[v| = |fy|costp™ — fesinyp™ =1.25cm,
w = |fn|sine™ + fccosp™ = 0.93 cm.

Note: We used in the computations numerical values up to the second
digit. Thus the numerical value for the total displacement f differs in
the second digit.
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Problem 3.38 A beam compo- o

sed of two different materials - Fb»‘

(a bi-metal beam to measu- By, oy h
re temperature) is heated uni- Ey y h
formly by a temperature diffe- 7/ |

rence AT. : ! ‘ z

Determine the deformation at the free end.

Solution We assume a linear stress distribution in each material and
replace the stresses by a resultant force F; and a resulting moment M;.
If we suppose a2 > a1 the lower

part wants expand more. As this Fy M

is prevented by the upper part, — )

the lower part is under compres- ~— AL T
P b DA

sion, while tension prevails in
the upper part. 1 and F» cause
a moment in the composite beam which is in equilibrium with M; and
M (no external loads). Thus the following equations hold:

statics N=0 ~ F=F=F,
MZO o Fh:M1+M2,
Ml 12 1 M2 12

"
Hooke’s law  w; = Wy =

 E1 bh®’  Eo bh3’
Kinematic compatibility demands
" " "
Wy = Wy =W
Additionally the strains have to match at the interface. They consist of
three contributions: temperature o; AT, normal force F//EA and ben-
ding M/EW . Considering tension and compression we formulate
F M6 F M6

AT — AT — - .
Y oY SR bhEs  Eabh?

Eliminating the moments M; and rearrangement to get w’ yields

n_ 12E1E2(O¢2 — al)AT

WE? + 14E,Ey + E2) -¢

Integration, by incorporating the boun-
dary conditions at the left end, provides
the displacement at the free end
l2
=-C _. -
v 2

AT
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Torsion

If an external load causes an internal moment M, along the longitu-
dinal axis, the bar is loaded by torsion (twisting). In the following we
refer to the moment M, as torque or torsional moment Mr.
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Prerequisites, assumptions:

e Warping of the cross sections is not constrained (pure tor-
sion),

e The shape of the cross sections does not change during rotation.

Equilibrium conditions

=—m, m(z) = external moment per unit length.

Differential equation for the angle of twist

dd
GIr, =Mr,
dx
¥ = angle of twist,
GIr = torsional rigidity,

G = shear modulus,

IT = torsional constant.

Twist of end sections
I

AY =9(l / 19' )dz = dz
0

Special case: GIr = const, My = const

Ml
AY = .
GIr

Maximum shear stress

Mt . .
Tmax = W’ Wr = sectional moment of torsion.
T

The location of the maximum shear stress is provided in the following
table.
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Cross section

T ﬂ
N
|
,‘(l

r; = 0 (full circle)

thin-walled, closed profile

t
@a a = const
t = const

thin-walled, open profile

h

ti\«—»

1
i t = const
t; = const
square
= Tmaz — a
a
ellipse /e

Tmazx

It
= Il = ;T(ri —r]
It = ;r?‘i
2

e

Ir = 2wa’t

1
Ir= 3ht3

1
Ir = 5 Ehitf

Ir =0, 141a*
a3b3
Ir=m , b2
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Wr Remarks

The shear stresses are distributed

4 _ 4 . .
Wiy = Ir _ mreg—ri linearly across the cross section:
Pa 2 P My
7(7) = r.
It
T 3 Cross sections remain plane
Wr = _r,

during deformation.

7 is constant across the wall-thickness ¢.
The shear flow
Wr = 2A7 tmin T — 71 — Mr
™= o4r
is constant.

Tmax occurs at the smallest wall-
thickness tmin.

Wr = 27a’t Ar is the area encircled by the central
line of the profile.

I
Wr= r
7 is linearly distributed across the
wall-thickness.
Wy = 1 he2 Tmax Occurs at the largest wall-
thickness tmax.
It
W =
T tmax
e 0.208 o Tmax occurs at in the middle of
T = 0.
the lateral lengths.
W =" ab? Tmax occurs at the ends of the smaller
T =

semi-axis.
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Problem 4.1 A shaft with cir-
cular cross section is clamped
at one end and loaded by a
pair of forces.

Determine F' such that the
admissible shear stress Tadmis
is not exceeded. Compute for
this case the twist of the end
section.

Given: R =200 mm, » =20 mm, [ = 5 m, 7, = 150 MPa,
G = 0.8 - 10° MPa.

Solution The torque (torsional moment)
M7 =2RF

is constant along the bar. The maximum shear stress in the cross section
is given with

Wr = 72TT3

by
__ Mz _4RF
T Wre @

In order not to exceed the admissible shear stress,

3
r
Tmax < Tadmis ~ F < AR Tadmis -
must hold and we obtain
3 . .
Fo = r - 7 - 8000 - 150 —AT12N

4R

For this load the twist (in radians) can be computed using

4200

Ir = 72TT4 and Mg = 2RFmax .

Inserting yields

Mgl 7l 150 -5000

Aﬁ _— =
GIr Gr 0.8-10% - 20

0.47 .

This value is equivalent to an angle of 27°.
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2b
Problem 4.2 A shaft has to carry ©) Q=— P4.2
the torque Mr =12 - 10% Nm. Select a 2%
a cross section from the depicted
group.
Dimension the cross sections such ®

that the admissible shear stress
Tadmis — D0 MPa is not exceeded.
Which cross section is the most effi-
cient in terms of material usage?

Solution The admissble shear stress is reached for

Mr
Tmax — = Tadmis -
Wr

With the section moment for torsion

Wi, = g a®, Wr, = 0.208 -8 b° = 1.664 °
™ 2 ™
Wr, = 2nc’t = 5(:3, Wr, = 3 dt* = 150 d®
we determine with the given numerical values
3 2Mr 3 Mt
“ \/TK’TZul i 1.664 7, i
c:?’\/5MT:72,6mm, d:?’\/15OMT:2Z5.5mm.
T Tzul T Tzul
The cross section areas are
Ay = ma® = 89.8 cm? | Ay = 4b? = 110.0 cm? |

As = gc2 —331cm®, A= gdz —319.4 cm® .

Therefore, the third cross section (i. e. the thin-walled closed profile) is
the most material efficient profile.
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Problem 4.3 Determine the My My
maximum admissible torque ain! ] -
(torsional moment) and the ‘ l ‘
corresponding admissible - o
twist for the closed profile vt yit
and the profile that is slit at 2t 1 2t 2t 2t
A —| |- | |— ] |- .
Given: a = 10 cm, ¢t = 2 mm, gt t oy

Tadmis = 20 MPa, 7 =%

[ =5m,

G =0.8-10° MPa. a

Solution The admissible torque and the admissible twist are computed
for both profiles via

i l Tadmis WTl

M is — Ta mqu Aﬁa mis = Tadmis — S ]

Tadmis TadmisVWW'T , dmis GIT GIT

In the case of the closed profile with ¢ < a it holds
ds a a a

Ar = a? =9 ( ) —3

T=a , 7{ #(s) o + . ;o

2

Ir = 447 _ 4ta3 ’ Wi = 2A0tmi = 2a%t

fio

and we obtain

Mr, ;. = Tadmis2a®t = 800 Nm ,
3Tadmisl N o
Aﬁa ow — =0.01 :1’ .
1 2Ca 0.01875 ( 07°)

If the profile is open (slit at position A), we compute with

1 3, 4,3 o Ir s
JT_Bzijtihi_6ta, W = 3t%a

tmax

the torque and twist

]\47“a = Tadmis3t2a =24 Nm,

dmis

Admis = T‘"‘ngtl =0.3125 (217.9°).

Note: The closed profile is much stiffer with respect to torsion than the
open profile.
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Problem 4.4 A shaft is loaded P4.4
by a pair of forces. The shaft

is assmbled from two different 2b/

thin-walled cross sections (¢t < #

a) of the same material (shear

modulus G). \M
F
Determine in both cases the ad- ~— i F

missible forces and the corre-

T
sponding twist such that the © ! ® ' /\\/Za
shear stress Taamis 1S not excee- m M\
ded. vt f v
i Tt
20—

Solution The torque My = 2bF is constant along the length of the
shaft. Stress and twist are determined from

T_MT_2bF Aﬁ_MTl_2bFl
T Wr o Wr T GIr GIr
The admissible shear stress will not be exeeded for
WTTadmis WTTadmis
< admis F < Fa mis — )
TS Tadmis S gy T T 2

2bl Faamis Tadmis Wl
A admis — = .
Jua Glr Glr

With the values for the two different cross sections

T 9 ds a 5 T 5
@ Ar 5@ ?{t t( + ), Wr =ma*t, Ir 2+7rat,
® Ar =d’ %dsza(2+2¢2) Wr =2d%t, Ir = 2 a’t
’ t ot ’ ’ 1++/2
we obtain
2 2
T a“t a“t
Fa mis; — admis » Fa misg — admis
d 1 9 b Tad d 9 b'rd
2 lamiq lami@
Abgammia, = = L7 1Todmis A iy = (14 v/2) TR

T aG aG

Note: The admissible force is larger for the first profile, while the
admissible twist is larger for the second profile.
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Problem 4.5 The thin-walled box girder
is loaded by a torque Mr.

Determine the warping of the cross section.

Solution The warping u(s) (displacement
in longitudinal direction) is computed from
the shear strain

T 0s T ox
of the wall segments. With

o T o MT
7T G T GArt(s)
81} dv MT
or ~ tdz T TJ‘(S)GIT ’

4-16a* 32 5

AT:4a2, IT a’t

= 4a | 4a ~ 3
t T o

we obtain dv=r ddy

ou  Mr t _37)(3)
0s  8Ga2t [t(s) 4a '

Integration in region @ provides (t(s) = 2t, 7 = a) with u(s=0) =0

(then u vanishes on average)

(s = M {1 3}57 Mr

T8Ga2t |2 4| °T 32642t

Analogously, we obtain in regions @ , ® ;, @

M-
uz(s) = 32G22t[8 — 2a] ,
M-
us(8) = = g9 0q2, 5 ~ 40
ua(s) Mz [s — 6a] .

= 32Ga?t

o -




Problem 4.6 A tube @ is mounted
by heat shrinking on a shaft @
with circular cross section of diffe-
rent material.

Determine the maximum shear
stresses in @ and @ as well as the
twist under the application of a tor-
que Mr.

and stress 121

My P4.6

Solution First we consider shaft © and pipe @ independently. For the

angle of twist and the stress it yields

M, 1 M,
Y = ! maxq — ! 5
YT, T g
192 = MTQl 5 Tmaxgy = MT2
G21p2 WT2
with

s T
I, = 2R411, Ip, = 2 (R% _R;l) , Wr =

Together with equilibrium
Mr = Mr, + Mr,

and geometric compatibilty

Y =102 =1

we obtain
Gil,
Mz, = M- !
n g Gl]m + GQI:DQ ’
and
MTG17”1
Tmaxi — Tmaxy —

Gl]m + GQIPz ’

9= Ml
Gl]m + GQIPz .

M,

Ipl IP2
= Wr, = .
Rl 9 T2 R2
G2 IP2

=M
4 Gl]m + GQIPz

MTGQTQ
Gl]m + GQIPz ’
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Problem 4.7 A conical shaft

with varying radius is loaded by T r(x) My 5
a torque Mry. da - > I a
Determine the twist and the j/‘
peripheral stress as a function l

of x.

Solution The differential equation for the twist angle is given with

R R C R o)

by

GI, ~ nGa* (2_ %)4

9 = Mt 2M~ 1

Integration with respect to x yields

2M~l 1
Iz) = C.
($) 37rGa4 (2 iE)B +
T
The integration constants are determined from the boundary conditions
_ 2M7l 1
VO =0~ O=—g s s
Thus the twist results in
Myl 1
= - 1
() 12rGa* (1 o )3
21

The peripheral shear stress is computed with

I T T\3
Wr(e) =" = 2“3(1_ z)
as
oy~ Mo 2Mr
= = 3 -
Wr Ta3 (2—?)

Twist and stress have a maximum at = = {:

TMrl 2M-
o= 0 )= ""7

T 127Gat’ mad
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Problem 4.8 The depicted gear-
system consists of two shafts
(lengths 1, l2) of identical mate-
rial, that are connected by two
gear wheels (radii Ri, Rz). The
shaft @ is loaded by an external
torque M;.

a) Determine M, such that
equilibrium is fulfilled.

b) Choose the diameters di and d» such that the admissible shear stress
Tadmis 1S not exceeded?

¢) Compute the angle of twist at position C, if shaft @ is fixed at
position A.

S [ e

Solution to a) Equilibrium of moments

1 LY
My=RF, My=-R:F ﬁ»ﬁ
u u
yields oF
R M. &
My =—"2M, . ——
Ry [] n |

to b) The critical value of the shear stress is reached in each shaft for:

) _aemy o _3\/16M1
maxjy — W1 - ﬂ_d:l; — Tadmis 1= M Todmis 5
|Ms]  Ra 16M, 3\/ Rs
maxsg — - — Tadmis dy = di .
Tmaxa = oy TRy mdd w7 ® R
to ¢) For the twist angle in @ and ® we obtain
LM, 32Mik 32Mosl,
A9 = = AYs = Yo =
YT Gy, T wGdE 2T T rGdd
With the continuity of the rotations
Y1pR1 = =282
and
Yo =i + A b V1B
we compute —U2p

2

32M4 R\ 3
Yo = [ lop .
c Gwd‘%{l-’_(bh) 2}

P4.8
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P4.9 Problem 4.9 A homoge-
neous, graded shaft with
circular cross section is clam-

ped at both ends and loaded B
by the torque M.
Compute the torques at the a b
support positions A and B as L
well as the twist at the point
where My is applied.

_ My © © Mg
Solution The system is sta- ««
tically indeterminate because A c B

the support torques M4 and
Mp cannot be computed
solely from the equilibrium
conditions.

Ma+ Mp = My

By cutting the shaft at C' constant torques are obtained in the regions
@® and @ . This results in the following twists

M Mpb
0y =AY g, = BT
GI,, GI,,
Geometric compatibility requires that the two angles of twist are iden-
tical:
Yo =01 =92 .

Together with

T T
Ip, = 711, Ip, = 13
we obtain
1 1
MA = MO 4 ) MB = MO 4 )
14 M0 14 r1b
rib raa
2Moyab
S 04

= xG (bri+ars)
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Problem 4.10 A shaft is clam- P4.10
ped at both ends and loaded
along part b of its length [
by a constant distributed tor-
que mo.

Determine the function of twist
angle and torque.

Solution The external torque m(z) has a jump at position = = a. We
use the Macauley bracket to incorparate the discontinuous function.
With

m(z) =mo <x—a>"
the differential equation for the twist angle follows

GIrd' = —m(z) = —mo <z —a>° .

Integrating twice yields
GIrd = Mr = —mo <z —a>"+C1
GIrY = —%mo <z—a>>4+Ciz+Cs.

The constants folllow from the boundary conditions
F0)=0 ~ C2=0,

2
I =0 ~ clzém(l)b

Finally we obtain

ke

My bla + 1
() = mob b <z—a>' a ’”0(20]+)
Mr(w) =moby o b ’ ® | N\

x a
quadr.

I
. parabola
I
I
I

L0
Y I :
— 0 _ -
ﬁ(‘”)_zGIT{z b2 } | |

xr
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P4.11 Problem 4.11 The depicted shaft
with ring-shaped cross section is
clamped at one end. At the other end
a rigid beam is attached. The beam
is supported by two springs and “aiow
loaded by the forces P. Determine ¢

!

a) the maximum force Pmax for a
prescribed admissible displacement /2 e I/2 —
Uadmis (In z-direction) at point A,
b) position and value of the maxi-
mum shear stress in the cross section
of the truss for P = Ppax. c=10° N/m

G =8-10" N/m?

Given : Upqmis = 2cm, 1=2m
r=5cm, R=10cm

Solution to a) The system is statically indeterminate. We free the
system at point B leading to the twist of the shaft

/
Mrl GI 7
Ap = Mr= PA 7 —
YT, TOMTT %Y 2 My
with (small twist angles)
P v P
Uadmis M
Ap = =0.2.
L ¢ (N ?
Equilibrium of moments for the beam provides ? B ¢
A
B : Mrp = Puax — lF. , where F. = ¢ Uadmis . ¢ Fe
Eliminating Ay, M7 and F. yields
G1,
Pmax - (2 l3p + C)”admis .
With I, = 7(R*—r*)/2 = 1.47-10"* m* and the given numerical values
we obtain
2.8-10%0.1.47 6 s
Prax = ( 1048 410 ) 2107 = 78.7kN

to b) The shear stress assumes its maximum value at the outer pe-
rimeter of the cross section. The absolute value is computed by

MT = Pmaxl - Cuadmisl
= (78.7 —10% - 0.02) 2 = 117.4kNm

and
MrR 117.4-0.1

max — = = 79.8 MN 2. Tmax
7 I, ~ 147-10-4 /m
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Problem 4.12 The hollow shaft A P4.12

® and the solid shaft @ are joint 7
by a bolt at A. ® GIr, ©)
7 G

Determine the torque M7 and Ir,
the twist angle 8 of the bolt af- a b

ter assembly for the case that

the ends of the shafts have an

angular difference of a in the

[0 [ j
v o
stress-free state. @ ®

Solution In the assembled state both shafts are loaded by the torque
M. We cut the system at position A and determine the angle of twist
of @ and @ separately:

o MT(L MTb

V1 = V2 = :
YT G *7T GIp,

From the geometric compatibility in the assembled state

a— U = /
1)2‘
- ©)
and
M 4
B =1

we obtain for M7 and 8

Mr =G ¢ 1
1+bIT1
alr,
(0%

=9 =

p=h= S
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Problem 4.13 The thin-walled spar with ring-shaped cross section
(length [, shear modulus G, radius r, thickness t < r) is located in
the interior of an airplane wing. It is loaded by a distributed torque
mr(z) with mr(0) = 2mo and mz(l) = mo. The spar is clamped at
the fuselage.

2mg

Determine

a) the torque Mr(z) in the spar,

b) the distribution of the shear stress 7(x) and the maximum shear
stress Tmax due to torsion,

¢) the angle ¥;, by which the end of the wing at x = [ rotates with
regard to the fuselage.

Solution to a) The distributed torque is given by
mr(x) = (2 — i;) mo .
The torque follows by integration

2

Mr(z) = —/mT(:p) doe 4+ C1 = (zl —2x> mo + C1
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which leads with the boundary condition

Mr(l)=0

~ (;—2l)m0+C1:0 ~ Clzgmol

to

2
T T

3
MT(LI}) = (212 — 21 + 2) mol .

to b) For the thin-walled spar cross section the shear stresses are com-
puted using the second moment of area for torsion It = 27wr3t:

Mt mol 22 x 3
= = —2 .
T@) = T g (2z2 Pt 2)

The maximum shear stress occurs at position z = 0 and its value is
given by
3 mol

Tmax = g 2

to ¢) With the second moment of area for torsion It and the shear
modulus GG we obtain for the twist

Mr(z) mol z? x 3
9’ = = —92
@) ="Gr = oGma (212 1o

as well as for the edge rotation
Mol z3 2 3
V@) = ot (612 ot 296) T

The integration constant is determined from the boundary condition
?#(0) = 0 to be C2 = 0. Thus the edge rotation ¥; at the end of the
wing yields (z = 1):

mol? 1 3 mol?
=90 = 5Gmrs (6 S 2) M T gy
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P4.14 Problem 4.14 A shaft with the
depicted thin-walled profile is
loaded by a torque Mry.

a) Determine the shear stress in
different sections of the profile.

b) Compute the maximum
admissible torque, such that
the admissible shear stress
Tadmis 18 not exceeded.

Solution The profile consists
of two parts. For each part the
following holds:

T=r(s) 1) = "
;Mg 1 T
%= G, T 26 A, ?{ g 45
With the given values
AT1 = gaQ s AT2 = 4a2

we obtain by considerating that the shear flux in section S is composed
of the contributions from the torques My, and Mr,:

Ta? 8a?

19/1 1 {]\47"1 ™a |:]\4T1 MT2:| 20,}

T ra2G | ma? t t

9! 1 {MT2 6a []\47*2 MT1:| Qa}
2 .

T 842G | 8a? ¢ 8a2  wa? | t

Inserting this result into the geometric compatibility

9 =9 =0
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yields

]\/.IT1 247

Mr, - 10 + 1755
with
M7t = Mr, + Mr,

the torques

247
16

= Mr =0.254 My, Mr, =0.746 Mr .
12 + 7+ T

Mr,

Now the stresses in the sections A, B and S follow

M M
Ta=_ ' =008 ",
2A1yt a?t My | My
— 0.093
0081, ® 2t
M, Mr [
= =0.093 ,
= 2Am,t a’t ® B @
My My \ \ ,
— _ — 0.012 My
7s =71 — T7a = 0.012 a2t a2t ‘® — 0.093 az;

Equalizing the maximum shear stress with the admissible shear stress

M

T
Tmax — TB = 0.093 a2t = Tadmis ,

provides the maximum admissible torque

2
admis t
Mr, =10—75" dM at
T

Note: Inserting M7, and M, in ¢ determines the second moment
of area for torsion I+ = 13.7a%t. Neglecting the section S, we obtain
I = 13.6 a®t. Thus section S only contributes a small amount to the
torsional rigidity.
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I
P4.15 Problem 4.15 The fixed leaf spring } 1
(t < b) is eccentrically loaded by a N
force F. 3 )
E.G

Compute the deflection at the point
loading. Determine the maximum

"
normal and shear stress. - z t
Y
i B ¥

Solution The leaf spring is subjected to a bending and a torsion load.
Due to bending the deflection is given by the table on page 62.

F3 3
we =10 witn 1= FL

3ET 12 —‘

The constant torque

wp
U,”['*

causes a rotation at the end of the spring

9= Mrlo Ir = ;bt3

and the corresponding displacement wr = 319. The total deflection is
thus obtained by

W= W w _4F?P 1+3Eb2
I o/ 16G12 )

Bending and torsion cause stress in the extreme fibre of the fixed cross
section

op,Tr
M 6lF Mr  3bF —
g = = T = = .
PTwT o T w2 y il\
z oB,Tr
An area element at the top surface (z = —t/2) Tr
T,

is loaded as sketched. Thus the maximum nor-

mal and shear stress follow TiB

O'Bi
w
yT—>
T
x
0B oB\2  , 3FI \/ b2
g = 2+\/(2> P e (THYET g )
o2 2_3Fl\/ b2
Tm“_\/(2> T e VT e
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Problem 4.16 An element of HI—ObH
a bridge is constructed as *F
a thin-walled (¢ < b) box 1
girder. During construction 4
the box girder is eccentrically F
loaded. Y y2t
Determine the location and A
. t t
value of the maximum normal | . |
and shear stress. i
. . . Y
Solution Section properties » 20 -
of the profile are
2b2t+2~b(b-t) 3 5 5
2 2
s = = b, Sy(Zmaz) =bt _b= _b"t
. 8bt 8 v(#maa) =bt g b=
t® tb® 3\° 5\°
I, _2(12 + 64) + 4bt (8b) + 2bt (Sb)
37 .3 2
= ot Y j z
Iq 37 2 Zmazl
W= "Y =""tb
Zmax 15 1
5 C
Wr = 2A7tmin = 4b°t . V -

Using bending moment, torque, shear force in the clamped support

Mp =—10bF, Mp=bF, V.=F

yields for the lower section
oB oB
_Mp 150 F «i T»
BT w T T3 b yI
T P —
_Mr 1F V.8, 15 F o
T wr T 4w 9T Lt st

The largest absolute value for the normal stress and the shear stress
are obtained by 7 = 71 + 7¢ at location C'

_ 0B _ oB\?2 0 F
92T \/(2) TrE= A6,

_ oB\? | 5 _ F
Tmax—\/(Z) + 7 _213bt

P4.16
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a C 2a

Problem 4.17 The depicted ] —— ,
cantilever with thin-walled A4 LB
circular cross section is clam- e I v
ped at both ends and loaded y G/E=3/8
eccentrically at point C'. c
Determine the deflection at -0 %
the point where the load is ap- ‘ .
plied and compute the normal F
stress and the shear stresses 5
due to torsion. a/2

M, F| _aF M,
Solution The cantilever ©) My i ®
is cut at point C. Equili- + * + y {$
brium yields Vi vy, v

1
M2:M3+2aF, Vi=Va+ F.

The deflection, the angle of bending, and the angle of twist are given
at point C by (see table on page 62):

o V1a3 _ ]\41612 o _8V2a3 _ 4M1a2
Yo = gpr ~ opr 0 YT T 3pr T 2Bl
e — Via>  Ma e — +4V2a2 L 2Mia
“t = 9pr  EI’ 9% T 2ErI EI
Mga 2M3a
Yo, = Yo, = — .
(&5 GIr ) Cy GIr
Compatibility demands
we, = wey wlcl = w/CQ , Yo, = Vo,
which renders
20 7 8
= _F =—- _F M, = F
Vil 2=—g B M= ppal,
1 1
MQISGF, M3:—6GF.
The second moments of area and the elasticity constants
G 3

Ir =21 =273t und P
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yield the deflection at the point of loading

26Fa®

wWEp = w +a19 =
PR YA T qpr

To compute the stresses, we need the bending moments at A and B:
Ma =M —Via = —gaF

Mg =M1+v22a:—§aF.

The maximum normal stresses due to bending in A, B and C' are given
with the section modulus W =1/r

o _|Ma| _ 4darF o _ 2arF

AT w9 0 7P 91 0
|Mi|  8arF

oc = =

w 271 °

The shear stresse in secion @ or @ are calculated with W = 2W = 2TI :

Mo arF T,M3,‘”"F
T Wy 1210

Wy 61°

T =

The largest stresses occur at the point oA
A. An area element at the top surface «i
(analogously on the bottom surface) is y
loaded as sketched. For the principal  ew—
stress and the maximum shear stress

we obtain
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P4.18 Problem 4.18 The depicted
cantilever is fixed at both
ends and bent by 90°. The
cantilever is loaded at point
C' by the force F.

Compute the deflection at
the point C.

Solution To solve the pro- -
blem we use superposition. N N
We cut the system at point AA

C' and apply symmetry ar- ’ P

guments for the depicted
loading with respect to ben-
ding and torsion. At this sta-
ge the moment M is un-
known. From the table on
page 62 we deduce

w! 7Fa2_Ma Fa? Ma?
© T 4EI EI’ - '
The angle of twist due to torsion at C' is given by

Ma

Do = .
“T aIr

The geometric compatibility

wer = Vo2
yields
Fa GIT
M =
4 EI+GlIr

and the final result

_ Fa® AEI+GlIr
- 24EI EI+GIr ~

wc
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Problem 4.19 The depicted semi- ton view P4.19
circular support is loaded at point P Y F
A by a force F. —
De'terrnine the deflection at the side view ELGIy
point A.
a
F

Solution Equilibrium of moments
provides the bending moment Mp
and the torque Mr ) [1 Mg

Mp(p) = —aFsingp , [B)‘]:[
Mr(p) =a(l+cosp)F . s X

The angle of twist is given by
A9 Mr

ds - GIT
The twist d¥ at position ¢ causes the deflection at A

@ COS P \~ asin g

mit ds = ady .

dwra = asine dv .

Combining the previous results and integration yields the deflection
due to torsion
3

w */dw _ fa
TA = TA—G,IT

The deflection due to bending is follows from

T 3
/sin o(1+ cosp)dp = ZGFIa .
T
0

d*wp d’>wp Fa®
EI =-M = i
ds? B qer T Opr MY
3 3
= st C) L wsle) = T (—sing+ G+ o)
and the boundary conditions
wp(0) =0 ~ Ci=1, wp(0) =0 ~ C2=0.

Using these constants yields
F 3

EI (¥
Finally the total deflection at A is given at position ¢ = 7

wp(p) = —sing) .

Fa? EI
wA:wTA+wB(7F):EI 7r+2GIT .
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Problem 4.20 A cantilever beam
with the depicted profile is subjec-
ted to an eccentric line load g. De-
termine at the clamped support

a) the largest shear stress due to
the shear force and its position,
b) the shear stress due to torsion.
¢) the distribution of the shear
stresses due to shear force and tor-
sion across the profile. Determine
position and value of the largest
shear stress.

¢ =20kN/m

NN

—

3.5

q h
i

l=6m {

‘1.2

1.2

1.2;

t

.7/0*

)

z

Z(]f ]
C

1.2 T

20

o

o 10 e 35 ——=f 10 |~

[cm)]

Solution We start by computing the stress resultants at the clamped

support:
V.= ql = 20-6
B q l2 B 62
M, = 9 =-20 9

Mr=gql-3.5cm =20-6-0.035

= 120 kN

I

= —360 kNm ,

= 4.2kNm.

With the geometric data of the profile we calculate the position of the

centroid C' and the second moment of area Iy:

Zo
Zy =20 — 2, =11.58 cm ,

bih? 2
IyIZ 12 +ZA121

= -1.2) - 8.422 + 2.
(35 )-8 + 19

20% 1.2

Y zA; 2-(20-1.2)-10+2-(10-1.2) - 20
T S A; T 35-1242-2001.242-10-1.2

+2-(20-1,2)-1.58% +2-(10- 1.2) - 11.58?

=7915.8 cm* .

= 8.42

cm ,
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to a) The shear stress due to the shear force is obtained by

V.S, 120

T =

I,h ~ 79158 -1.2 Sy = 0.01263 5y .

The static moment S, reaches its maximum at z = 0:

35

+ ; 8.4%.1.2 =218.7 cm®>.

From this result the maximum shear stress due to shear force follows

Tv max = 0.01263 - 218.7

~ TV max = 2.76 kN/cm® = 27.6 N/mm? .

to b) The shear stress due to torsion is calculated using the second
moment of area for torsion respectively the torsion modulus of the
profile:

_1 3_1 3 4
IT_SZhiti = ,(35+2:20+2-10) - 1.2° =547 ,em

13 hit] 547 3
=3 e 12 =45.6 cm” .

Wr
With the already calculated torque M7 we obtain

Mr  4.2-10°
Wr 456

TT —

~  7r =921 kN/cm® = 92.1 N/mm” .

to c) The largest shear stress oc-
curs at the position z = 0. It HEITEERXEY
is distributed linearly across the L —
wall thickness with the following .
extreme values:
) . W/(ff
Tinside = 27.6 — 92.1 = —64.5 N/mm?, R
Toutside = 27.6 +92.1 = 119.7 N/mm? A
V4T VU/U/
~ Tmax = 119.9 N/mm? . A
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Problem 4.21 A thin-walled box

girder is loaded by a force of 300 kN. 7;‘;7 ® R

Determine for the cross section at ¢—>1/, 7777
. ;

position @) ~ 10m —=f
20m ———

a) the stress distribution (normal \
and shear stcresses) due to shear for- 300 kN
ce and torsion,

b) the position of the maximum ZQL —
principal stress and Ty 7y 180
¢) the value and direction of the ’\\ ® . BEEE

principal stress at the vertex @ of - 300 , [em)]
the profile.

Remark: Assume for the torsional -
load case a fork bearing at the left i i
end.

Solution The second moment of area is given by

12
The stress resultants at position @) (or directly left of it) are

I, = bihy ,4*2—22’803 2.(1.5-300)-40> = 1.611-10° cm*
y_212+z_ iZi =2 +2-(1.5-300)- = 1.611- cm” .

i

300 _300-20

Vo= ") =150kN, M, ="" """ =1500 kNm,

Mz =300-1.5=450kNm.

to a) The normal stress is linear across the height of the
cross section and reaches in point (@ the value ;’

M, 1500 - 1000 - 1000

a = 4010 = 925 N 2.
Iyz 1.611 - 106 - 104 0-10 = 37.25 N/mm @

37.25 N/mm?

The shear stresses due to V. are determined by the zh-line and Sy-line.

(Ol [ [ T1]60 —9000jg ~
—80° s T7s >80 [ —.
zh — line [cm?] o S, — line [cm®] ) — 10600
b N ; —
[ [T T[] 60 o 12 —
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By using the Sy-line we obtain

VS 150 5y :9.3-10*55}5 kN/cm®.

T Ih T 1611109 A
At position (@) they assume the value 5.6
S i e
TWa = 1.611510- .1%2‘0-01.5 weg v Nt @
= 0.56 kN/cm? = 5.6 N/mm? . B Sf ‘ -

The shear stresses due to torsion are given by
— MT
© 247k

450 - 10 - 10°
224000 - 1.5 - 103

Ar =300 - 80 = 24000 cm”

s
~ TTq =

=6.25 N/mm”.

to b) The maximum shear stresses oc- @
cur at points @@ and (), the maximum

normal stresses at point (@). Thus the w
principal stresses assume the largest @
value at (@).

to c) In point (@ the shear and normal

stresses are: —» Ta
Ta = TVa+Tra = 5.646.25 = 11.85 N/mm?, x
<_l T_>
o = 37.25 N/mm2 . Y
The principal stresses are given by L,T
or="+ \/(02“”)2 + 72 =40.7 N/mm2,

og =% _ \/(‘”)2 + 72 = —3.45 N/mm?.
For the direction of the principal stress o1 we compute

2 o
tan2a0 = | =0.636 ~ ao=16.23°.

Ox
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Problem 4.22 A cantilever beam F
with thin-walled T-profile (t < a) y
is eccentrically loaded by a force F'. .

The clamped support is designed ‘ l }
such that warping is allowed. ‘z

Determine the maximum stresses

due to bending, shear force and tor- ‘F

sion. At which position do they oc- ty b
cur? C T
Given: t = a/10, I =20a yom,

2a
!
= a = a ]

Solution We start by determining the following geometric properties
of the profile:

b= ; :

I = b22at + [t(ig)g +b22at} - éa4, - 3(5/2 = ;a3,
Sc = b2at + ;)C;t = 890 a‘?’7

Ir = ; 220" = 30400 at, Wr = ItT - 330 @

The bending moment reaches its maximum at the clamped support
(z = 0), while shear force and torque are constant along the beam:

Mmax:—lF:—Qan, V:F’ Mpr =al'.

We compute the maximum bending stress (compression, at the lower
surface, at © = 0), the maximum shear stress due to shear force (at the
centroid C'), and the shear stress due to torsion (at the outer boundary
of the flanges):

_ |Muax|  20aF F
Omax = W - éas == 180 a2 5
c_CSo _ Fga® 21F

v It éa4 110(1 4 a2’
Mr aF F
T Wr 330“3 a?

Note: The shear stress due to shear force is small compared to the
shear stress due to torsion.
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Energy theorem

The work W done by the external forces (moments) during loading of
an elastic body is equal to the strain energy II stored in the body:

W =1I.

The specific strain energy can be written in index notation for three-
dimensional problems of elastostatics:
H*

v 1
[Eikfik + 2] T2 [+ v) oo — voii]

T 21+ 120" E

3 3 3
with e, g 1= Z Z Eik Eik and €4 1= Z Eii -
=il [s=1l =1

The following expressions hold for bars and beams:

strain

] strain-
loading energy per
length unit SLEIEY
2 N2
tension / compression I = ; ]E‘VA II = ; A4 d
1
: 1 M? 1 [ M?
bend I = II= d
ending 9 BI T
1
2 2
shear el v W= L v dx
2 GAs 2 /) GAsg
1

2 2
torsion I = 1 Mz II= - Mz dx
2 GIr 2 GIlr
1

Total strain energy (tension + bending + shear + torsion):

N? M? V2 M2
II= QEAdm—l-/QEIda:—f—/QGASda:—i—/QGITdm.
1 1 1 l

special case: bar (N = const, FA = const): I = i
p : = , = : = 0BA "

2
205
special case: truss system = Z 251%714- '
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Remark: For slender beams, the shear contribution can be neglected
compared to the bending contribution.

Principle of virtual forces

The displacement of a point due to tension, bending, shear, and torsion
can be computed from

NN MM Vv Mr Mt
P = d d d d
f A YY) B V) cas ¥t e ¢
1 1 1 1
where
fi = displacement (rotation) at position i,
N, M, V, My = stress resultants due to the external loads,
N, M, V, My = stress resultants due to a virtual force (mo-

ment) “1”at position ¢ in direction of f;.

Since the shear contributions are usually small compared to the other
contributions, they will be neglected in the following problems.

Special case truss:

Sk Sk

fi: lk:
- FEAg

Special case bending of beams:

MM
fi— EI da:

Application to statically determinate problems

To compute the displacement
fi at an arbitrary position i,
the bending moment due to
the external loads (M) and
due to the wirtual load (M)
have to be determined.

The integral [ MMdz can be
evaluated by resorting to the
tabulated values on page 146.
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.
MD
~.

sik

A

- sik
2

- 2(21+12)k
ﬁl 2$ik
S 3
&
2
2
S
2 2
2 B &
+
@
—
S|
] j
Z ‘ 1sik‘
S 3
i 1 .
O—AS 4szk‘
@
°
s j
= 0 3 .
g = 8szk‘
8
B
=
[$]
////" 1
O/QJZ sik
S 4

Quadratic parabola: —o— =

Cubic parabola: —o—

- sik
3

S .
2i90)k
6(“ + 2i2)

- sik
3

sik
isik‘

1 sik
5

apex of the parabola,

sik

N —

- sik
6

I .
2 k
6( i1+ i2)

- sik
3

isik

root of the linear load ¢(z).



"

S

s1
9 (k1 + k2)

562 (k1 + 2k2)

Z (2i1k1 + i1ko
+2i2ks + i2k1)

St

/& k
3( 1+ k2)
St

/& k
12(3 1 + 5k2)
St

k 3k
12( 1+ 3k2)

St
k1 + 4k
20( 1+ 4ks2)

St sik 2 o
4k 11k 1 —
40( 1+ 11ks) i (I+a+a )

gé(ml + 8k2)

Trapezoids: individual - or k-values can be negative.

— (tSp G5

1sik
2
1 .
682k(1 + o)

Fla+Byin
+(1 + a)ig]

ésik(l + aB)

PE-p-67

sik (

5 14+a+a?)

IEERTIES

4

sik

20 14a)( —042)

integrals [ M; My dz 147

quadratic parabola

2 sik
&

1 sik
B

1 sik
5

1 sik
5

2 sik
&

s
120

1 sik
6
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Application to statically indeterminate problems

The statically redundant (un-
known) force X = B is computed
B from the kinematic constraint, that
the displacement has to vanish at

F

A — *F 7 point ¢ of X (support):
}X =B
=0,
. MM
“0”-System The relation fz =S Bl dz
F 1
%———-—j---r F@y\ yields with
MO M=MO+x MO | M=MD
“1”-System J
f——————— the statical redundant force
T [
i S MOMDde
X = B =
f MO MO de

The integrals can be evaluated by resorting to the values tabulated on
page 146.

Remark: In n-fold statically indeterminate problems, n statically red-
undant (unknown) forces/moments X; occur. They are determined from
n kinematic constraints (e. g. f; = 0).

Method of Castigliano

The derivative of the strain energy with respect to the external force
(moment) F; is equal to the displacement (rotation) f; in the direction
of the force (moment) at the point where the force (moment) is applied.

oIl

fi=op

Reciprocity theorem of Maxwell and Betti

E F
k

Ai[’iﬂ% Aiﬁ{ A—,,;, Jie = i
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Problem 5.1 The depicted sys- T P5.1
tem is made of trusses with "

identical axial rigidity EA. L

Determine the vertical displace-

ment f of the force F. lF i

fe— 4 —— Q@ —=— @ —|

Solution The problem is solved using conservation of energy W =1I .
To assume the value f the force has to do the work W = é F f. The
strain energy Il is calculated by

S21;
= EA; 2EA 2 Sil
Knowing the reaction forces ) S21;
A = F/3 and B = 2F/3 the i b S Fog
normal forces in the truss sys-
tem can be tabulated 1 V2a  —V2F/3  2v2/9
2 a F/3 1/9
3 F/3 1/9
4 a —F/3 1/9
5 V2a —V2F/3  2v2/9
6 a 2F/3 4/9
7 a F 9/9
Thus we compute 8 \/Za —2V2F/3  8V/2/9
9 2F/3 4/9
4 (5+3v2) 2,
- : i = 2
f=g ga Fa Z S71 5 +3V2)F?

Alternatively the method of Castigliano can be applied. Using the strain
energy

S21, 2(5+ wz)
2 EA; 9 EA

and the condition f = 0II/OF we get

Inm=

. 4(5+3¢2)F

F=or~9 EA
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Problem 5.2 A beam (flexural rigidity

EI, axial rgidity EA — o) is loaded EA
by the force F' and supported by the
inclined rope (axial rigidity EA). Fl

f—— & ——

Compute the vertical displacement f
in force direction. N\ET

Solution The problem can be solved by using the energy theorem
W =T1I.
The work of the external force F' is given by
1
W=_Ff.
o IS
The strain energy consists of beam bending and tension in the rope:

IIT=1IIg+1IIp.
S F

With P\\ l
N

mny

A:2aF—\é2aS:0 sz tp AT B

V2

Tt Ay + S 9 —F=0~ Ay =-F
and m

M(z)=—F=zx (0<z<a)

we obtain for the rope

S?1 F?q
s = opa =42 py
and for the beam (using the symmetry of M(z))
M2 [ F2a? 1 F26?
HB_/ZEIdm_Z/ om1 YT 5 g
0

Finally, the energy theorem yields

2 Fa® Fa
= 8v2 .

! 3 EI +8v EA

Note: In section AB of the beam exists a compressive normal
force N = —2F. The corresponding contribution to the strain energy
is zero, because the beam is assumed to have infinite axial rigidity.
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Problem 5.3 In the depicted truss
is loaded by the force F. All
trusses possess the same axial
rigidity FA.

Compute the vertical and hori-
zontal displacement of node I11.

. (| ——t—— 4 —>

Solution Using the principle of virtual forces the displacements follow
from

S:S; 1
f:ZEAi li = EAZSZ‘SMZ'.

As the system is statically determinate, §
we can compute the forces in the truss 5.(V)
members S; due to the load F' from ¢

equilibrium considerations.

Loading node III by virtual forces “1”
in vertical or horizontal direction, pro-
vides the forces S;(") or S;#) in the
truss members, respectively.

S &YW ssMiL s 55,0

~
~
S

1 a —-F -1 Fa 0 0
2 V2a V2F V2 2v/2Fa 0 0
3 a —2F —2 4Fa 0 0
4 a 0 0 0 0 0
5 a F 1 Fa 1 Fa
6 a F 1 Fa 1 Fa
7 V2a —V2F -2 2v/2Fa 0
8 a 0 0 0 0
9 a F 0 0 0
> 088V = (T+4v2)Fa Y 88,1 = 2Fa
This leads to the vertical and horizontal displacements:
Fa
fv—(7+4\/2)EA, fu=2,,.

P5.3
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Problem 5.4 The depicted plane
frame (flexural rigidity FEI) is
subjected to two point forces F.

Compute for the rigid corner C
a) the horizontal displacement,
b) the vertical displacement,

¢) the rotation.

20 —

Solution We use the principle of virtual forces, neglecting shear, ten-

sion and torsion contributions:

MM
fo= | pr
l

The bending moment M due to the external forces F' is sketched below

Clns

M

to a) Horizontal displacement of the corner: We apply a horizontal
virtual force “1” at the corner C' and determine the associated bending

moment.

Using integration in sections together with the tabulated values on page

146 yields:
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a 2a
1 2
fH—EI/MMdm—EI</MMdm+/Mde)
0 a

= E2'I (;(a)(a)(Fa) + g(a +2a)Fa)

11 Fa®

"~ 3 EI’

to b) Vertical displacement of the corner: Application of a vertical
virtual force “1” yields no loading due to bending and thus no displa-
cement:

to c¢) Rotation of the corner: The virtual moment “1”, applied at corner
C, yields the following bending moment M:

For the rotation 1 of the corner we obtain by use of the table on page
146:

a 2a
1
w—EI(/Mde-I-/MMdm)
0 a

1 [ Fd? 1 1 1

= 1 F
EI(Z (It y)+ga az)
11 Fa?

T 12 EI
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P5.5 Problem 5.5 Determine the vertical W m B
displacement fp and the rotation ¢p ~
in point B at the end of the frame. ~EI l
All beams in the frame are rigid in a
axial direction FA — oo. {
A7777'

Solution Using the principle of virtual forces we can compute the dis-
placement and the rotation from

[ MM

F=] pr &

For the original and the auxiliary system we get:

4o a?

Using the table on page 146 we compute

1 1 Ja qoa2 qoa2 _5q0a4
fB—EI/MMde_EJ[4' g fatay ca

1
vp = o /MMWdac =

1 |a qoa2
EI |3 2 2
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Problem 5.6 The depicted frame

is constructed with beams having
identical flexural rigidity FI.

Compute the vertical and hori-
zontal displacement at the loading

point.

£
iS

b ]

fe—a

rY

f— o]

s —f

-

Solution According to the principle of virtual forces the displacements

are obtained from

[ MM

f= Bl do.

The bending moments M due to the load and My and M g due to the
auxiliary loads are given below:

Using the table on page 146 we compute

T EI

v = gy { yal-F) (=) + b= Fa)(-a)

_ Fa®b

i = ;1 {;b(—Fa)(—b)—i- ;b(Fa)a} = (1

+ ;b(Fa)a} Fa’ (1 + 4b),

[ r——
| } a | } a
1 b 1 1 b
L |-
+ a—1>b + a

b b
m

My % a My
@jj b a—b
a

~ 3EI

a

+3b
2a )

P5.6
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P5.7 Problem 5.7 The sketched system 0

consists of a clamped beam (EA —

oo) with flexural rigidity E7 and 1

two bars of identical axial rigidity >
EA

EA. \
2

fe— o o —

ET
Compute the vertical and horizon- ~ I3 i
tal displacement at the point of load
application.
7777
A

Solution The beam is subjected to bending, while the bars experience
tension or compression. We compute the displacements based on the
principle of virtual forces

MM SiSi
T da:—f—;EAill.

As the system is statically determinate, we obtain M and S; from equi-
librium conditions:

M

S1:\/2F,

Sy =—F.

My = aF
Ny Ma=a oF

The vertical displacement can be calculated by loading the system with
a force “1” in vertical direction. By replacing F' by “1”the above results
can be used:

My

Si, =2,

Sy = —1.
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Using the table on page 146 yields

fv = Elj {a(aF)a—i— ;a(aF)a}
+ElA {\/2F V224 + (—F)(—1)a}

_4Fd® | (1+2V2)Fa
T3 FEI EA '

To compute the horizontal displacement we use the following auxili-
ary system:

| MH
| il
S1y; =0, 3 5 — 17

-— Ap =1 a

NA My=a

b, -

The displacement fg follows from evaluation

fo= Elj{;a(aF)a—i—O}—i—ElA{O—i—(—F)-La}

_ Fa? Fa
" 2EI  EA
El 1. ..
Note: For it holds fg = 0. For a rigid beam (ET — o)

a?EA ~ 2
the load application point moves to the left (fz < 0).
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Problem 5.8 Determine the verti- sinusoidal @
cal displacement f in the center of o /

C

’%’ e L
B

2 2

Solution The principle of virtual forces yields the vertical displacement

MM

I= EI

The bending moment M due to the given loading is computed via in-
tegration:

dx .

2

q(m):qosin(ﬂm), V=q ¢ cos(’”m), M = qo a2 sin(ﬂm)
a T a ™ a

For the virtual load “1” it follows:

1 *1
Az = _x, z<a/2
M_{ 2

Bla-2)="_" z>af g ¢ ot

The vertical displacement ist then obtained

a/2 a
MM 1 T a—x
f= Bl dw—El{/szx—i—/( 5 >Md:v}
0 a/2

Integration with

. sincx x coscx
r sincxdr = y =
c c

renders the result

a/2
. 00 sin(Zx) - i cos(z x)
2EI7T2 7r2 g
2
a 0
. T ks @
. _a2 Cos(ﬂm)_sm(ax)_’_accos(ax) g
T w2 a T gt EIC
2
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clamped and subjected to a verti-

Problem 5.9 The sketched arch is Ia
cal force F. l

El
Compute the vertical and horizon-
tal displacement at the point of
loading. Only deformations due to R
bending shall be considered. s

Solution We use the principle of
virtual forces. The displacements F
are computed from

'
f= MM ds . Még\ %
EI /

The bending moment M is obtai-
ned from equilibrium considerati-
ons

M = —FRcosy .

To determine the vertical displacement we ap-
ply a force “1” in vertical direction. This yields

My = —Rcosp

together with ds = R d¢ the displacement

/2 /2
R FR® 2
fv= EI/MMV dp = Bl /cos pdp =
0 0

The auxiliary force in horizontal direction cau-
ses the bending moment

Mg =—R(1—singp)

and the displ;:(/:gment o 777
R R*F . FR?
In=pr / MMude =gy /(COW_SWCOW) 4= ypr -

0 0

Note: For the integration the two relations cos® ¢ = %(1 + cos2¢p) and

sin g cos p = % sin 2¢p were used.

P5.9
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Problem 5.10 The depicted
truss is made of members
with identical axial rgidity
EA.

Determine the normal forces
in the truss members and
the vertical displacement
under the load.

Solution The support of the truss is statically indeterminate. We use
the reaction force C' as statically redundant force and compute its value
from the support constraint

Si Si l; 1
= = Si Sili=0.

fe EA; 42
Here we only compute the normal forces in the “0”-system. The compu-
tation of these forces in the “17- and “2”-system follow by an analogous
procedure.

“0”-system: “1”-system:

For example at node I (“0”-system):
TZ S3 = —\/255 = —\/2F 52
—: S =F

For example at node B (“0”-System):

v rx
1 51:—253:F F S,

With ; = S + ¢~ 5™ and i = S it follows

Y578 340y

C =
Sss T+4v2
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i SO s SOSsM; SPsPy 8P
1 a F -1 —Fa a 1
2 a F -2 —2Fa 4a 1
3 V2a —V2F V2 —2v/2Fa 2v/2a —V2
4 a 0 1 0 a 0
5 a F 0 0 0 1
6 V2a 0 —V2 0 2v2a 0
7 a 0 0 0 0 0
8 a 0 0 0 0 0
9 a 0 1 0 a 0

Y= (-3-2V2)Fa (T+4V2)a

From this table we deduct the forces in the truss members

g 442v2 1 _ A+4v2
Yoraave T TP rpave ) TP T rhaye
S = STW2 o g gl AEBV2 Lo o

7442 74+ 42

To compute the vertical displacement at the loading point we consider
the system as a statically determinate system loaded by F' and C, which

fulfills the support constraint fc = 0. For this situation we know the
forces S;.

“2”-system:

With the forces S; = ng) of the auxiliary system “2” we obtain

1
fr= g D 5iSili

Fa
= BA(7+4v2) [(4+2v2) +1 - (4 +4V2)(—V2)V2 + (T + 4v2)]
204+ 14v2 Fa

7T+4v2 EAS
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2a
P5.11 Problem 5.11 Determine the ben- . D
ding moment and the horizontal OEREE! i i T
displacement fy of the support T Jord
B of the depicted frame structure NET ) J
2a ,
l £
A
-7

Solution The system is statically

indeterminate. To determine sup-

port reactions we use the principle of virtual forces, where we consider
the moment X = M4 as statical redundant reaction. Thus we obtain
the following bending moments and support reaction in the “0”- and
“1”7-system:

“0”-system:

AV =0, :
AY = goa,
A9 | BO
[—
B(O) = qoa . A
A
“ ! m
17-system: 0 — ® '
A0 g : |
H | ; MM
1 :
AY=-_ ., 4 ] TBW
2a _»\\\) 1”
1 (1)
BY = . TA
2a '

The condition that the rotation at position A has to vanish

MM

Bl dx ,

pa = 0=
yields with

M=M+x MY and M=mD
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11,
2 1
X = My = _fM(())M(l)dm _ 3 a (Z(IOa ) B _qoa2
JMOM®Ddz 1o gy 9101 5
3

The support reactions and the bending moment follow as

Apg = Ag) +X~Ag> =0, N “
17
Av =AY + XAV = Caoa,
15
— O . —
B=B"+X-B _16q0a. M

To compute the horizontal displacement at B, the frame is considered
as a statically determinate system loaded by go and X = Ma. At this
system an auxiliary force is applied (“2”-system) rendering the followi-
ng bending moment:

“2”-system:

Using
M=M+x. MY and M=M?

we compute with the table on page 146

Ju :];I/MMdm: El[ {/M<0)M(2>dm+X/M<1)M<2)dx}

2 2
_ ;I {23(1 qo2a (2a-+a) — QOSG [(13~2a~1'(2 2a + a) + ;.2a.1 . 24}
13 qoa4

24 EI
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Problem 5.12 Compute the re- F
action forces and the deflection El
at points D and G.
- £ K Z
Now an additional force of 2F A D 7%7 a c

is applied at D. How does the
deflection at G change?

a4 —ta—— (1 —|

2 2

Solution We apply the principle of virtual forces and use the reaction
force B as statically redundant force. Together with the bending mo-
ments in the “0”- and “1”-System
* F
***************** (0) ®
M .
?A(o) _ éF BO) — éF? ;(IF éaF

“0”-system:

1
3
3@

“1”-system: ? ?
o

the kinematic constraint fp = 0 yields the reaction force B:

) E1] /M<O)M(1>da; a aF (_ Za) L9 {2 aF (_ Qa)

X - B :_3 3 3 6 3 3
1 MO O g a 2a 2a+2a 2a 2a
EI 33 3 3 3 3
aF a 2aF a 2aF /1 2a a 2aF a
_ 2 _ _ _
+3(3>+ 3(3)+3(3>}+33(3)_7F

a 2a 2a . 2a 2a 2a 8
33 3 3 3 3

Furthermore, we compute

A0 oy L T2 F _3
A=A+ X AV = F— F._ ==, C=:F.

To determine the deflection we consider the beam as a statically deter-
minate system loaded by F' and B. From the two auxiliary systems

“2”-system:
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“3”-system: + “17

we obtain

fo = El[ /[M<0) + X - MY MP de

= El] {/M<0)M(2>dx+X/M(1>M<2)dx}

1 2a2aF2a+7Fa _2a a
T EIl3 3 3 8 3 3 /)3

+a _4aa_2a2a_2a2a_aa a 2aF 2a
6 33 3 3 3 3 33 3 3 3

5 Fd®

T 48 EI

1
o= fpc= Bl /[M(O) X M(l)]M(3)da:

1 © 1/ W@ |1 Fd®
I{/M MOdo+ X [ MO MOz b=

The deflection at G due to the additional load 2F" is computed from
the reciprocity theorem of Maxwell-

Betti. Based on this theorem the /f1>< *

deflection fpe at D due to the for- 7&7

ce F in G is equal to the deflection 'K_/A'

fap at G due to the force F' in D. /( ‘D

As a consequence of the force 2F * f

at D we obtain at G the deflection 7&#_ o A
kcere 777

2fcp. Thus, the total deflection at
G is given by
fep = fpc

f=fa+2fpc oF QIi”ZQ’f“G

o 5_2 Fa®> 7 Fa
S \48 “64) EI 96 EI T A A G A
D7777 777
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P5.13 Problem 5.13 The depicted T3 IR
frame is loaded by a constant
line load ¢o. The frame is
made of beams with identical a
flexural rigidity E'1.

Al B& [&F.
Determine the reaction forces AN % ,Z,\,
in the supports. f~—— O —— 1 —
Solution The frame is two Ty IERE L
times statically indetermina-
te. We consider the reaction
force B and the horizontal fi
force Cy as statically redun- I fa
dant forces to obtain the de- A g B

AN s =C

picted system. The unknown 4> #Xl —B#Hs =Cu

forces X1 = B and X2 =Cg

are computed from the kine-

matic constraints fi = 0 and

f2=0.

Using the principle of virtual forces we construct the following basic
and auxiliary systems :

“0”-system:
o

KR’ 'E'R! quadr. par.
SRR |
| | |
AP ﬂr | ﬁ‘
AP v
Ai?) = qoa, Ag) 0, C(O) = qoa
“1”-system: ”
,,,,,,,,,,,,, © 17
: | ;
| 1 | MO
A;}_» | | ‘
ﬂ‘ 45%) f e ?C‘m
! (1) 1 1)
Ai/) CV 2 ) AH 0
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“2”-system:

,,,,,,,,,,,,, o TTIe[IT1]¢°
l ! | © o
|
i i ! ’ M®
2 | Wy
A(II) : : [ 1
# AY ﬁr o
(2) (2) (2) _
AV _CV O, AH =1.

From conditions

1
=g

f2

/[M(O) + XMWY 4+ XoMP MM dz =0,

51 /[M(°> + XMWY + XoMPMPdz =0
we obtain by using the table on page 146

5a qoa’ a 5goa’ 1 1 a®
M(O)M(l) —_92 - _ M( )M( ) —
/ dz 12 2 2 2 de =

3
2
/M<1)M(2>dm =%, /M(O>M<2)dx = —, wa,

/M<2)M<2)dx =2 g(—a)(—a) + 2a(—a)(—a) = 2 a®
the following two equations
5qoa’ a? a® . 2qoa’ a? 8a® .
! +X16+X22—0, -3 +X12+X23 =0.
The solution is given by
X1 =B= 8 a Xo=Cy = L a
1=B=_qa, 2 =0 = 5090

and the remaining support reactions follow

8 1 3
AV:A@ + XlAg) + X2A§/2) = qoa — . Qa- ., +0= . qoa ,
1
An=AR + XA + A7 = | qa,
1
Cv=qoa — 3 qoa - 9 = :; qoa .
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F
Problem 5.14 An elastic circular arc +

is loaded by two opposing forces F'. T

Determine the bending moment and a
the compression in the circular arc.
Assume that the arc is rigid with
respect to an axial deformation.

Solution We cut the arc at the mid
plane (at ¢ =0, m) and realize that *F
the system is internally statically
indeterminate (the stress resultants
cannot be determined from equilibrium NP ‘
conditions). The unknown bending P fa
moment X = M4 is computed from 24 9

the fact that the slope at A has to vanish (symmetry!). Use of the prin-
ciple of virtual forces yields:

M f
4

“0”-system: F “1”-system:

M© = ;FR(l—coscp), MM =1,

From
1
¢A_E1/MMdS_O

we obtain with

M=M94+x. MY M=MY  ds=Rdp
for Ma: /2
“2FR
. 7_fM(°>M(1)dsi_20f 2 (17COS“’)Rd“07_FR 11
AT T T MO MMds /2 - 2 x)"
2 [ Rdy
0

These intermediate results yield the bending moment in the range 0 <
p<m/2

M=MY4+x. MY = ;FR(Z —cosgp) .
™



for a circular arc 169

To compute the vertical displacement at the loading point we consider
the semicircular arc as being loaded by the force F' and the moment M 4
and to be simply supported (statically determinate). For this system
the bending moment M is known. Form the related auxiliary system
we obtain

1
M = 2R(1—cosgp).

With this result the displacement follows

/2 /2
1 FR? 2
=2 MM = — cos 1 — cos
fF Bl / Rdy 9F] / (7r coscp) (1 —cosp)dy
0 0
_ PR ~(2+1)sing+ ¥ 4 sin2 ﬂ/Q—FRg(n—g)
~2EI (7 \& P TP T Rl ™
The compression of the circular arc yields
FR® n° -8
Av=2fr="pr 4y

Using the theorem of Castigliano to solve the problem, we derive with

M2

1
M_2FR(1—c05g0)+MA and I = 2Elds
and by using the fact that the slope at A has to vanish
oIl
= =0
VA= oM

the result
/2

oM 1
/MaMAds—O ~ 2/|:2FR(1—COSLP)+MA:|'1'RdQ0—0

11

~ MA:—FR[2 -

} and leFR(z—cosgo).
2 m

The displacement fr is computed from
oIl 1 oM
Ir=op = EI/MaFdS
/2

- E2‘I / {F2R(72r _COS‘/’)] [I;(i _Cow)} It dp= ggj (”_ i) '

0
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P5.15 Problem 5.15 The depicted pi-
pe @ is clamped on one side
and supported by the additional
rope @ .

Determine the support reac-
tions in A and B, if the pipe is
loaded by the force F'.

Given: 1 3 ELl, 1 r 1
"B 87 EA)S 1007 I 10

Solution The system is statically indeterminate. We choose the reacti-
on force in B as statically redundant force. This leads to the following
“0”- and “1”-system:

“0”-System:
A =F,
MY =—LF,
MY =rF .
MO M7(~0> N©
LWF
rF
® ® ®
..@-; ® NO=0
® O] 0]
“1”-System:
AW = 1,
My =1y,
M7(}> =r.
1
M® MY N® wpr

I ) u
@ ® N oF
@®
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From the constraint, that the displacement at B has to vanish,

- [MM MrMr NN

fB=0= Bl dx + Gly dx + EA dx
we obtain with

M=M?+x. MY My=M +x- M,

N=N94+x.NO  M=MY Mr=m{",6 N=NO

the unknown force X = B

M(O)M<1) M<0)M(1> NO N
/ +/ T T / QZ‘
X =B-= EIl GITI EA2
B MO MWD NOND
dx r T dx+ dx
EIl GIT1 EA2
a2 w40
o Eh IR e) A
1 1 .
l Il l lo-1-1
EI 3 101 1+GIT1 17“7“+EA2 2

Using I71 = 2I; (circular cross section!) and the given relations leads to

The support reactions at A are given by

96 11
A=AO £ x. AW = F F = F
+ 107 107
(0) (1) 11
Ma=MD +x M _—lF+ llF“m?llF’
Mpa =M + X - Mp(1) =rF — % po Mg
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P5.16 Problem 5.16 Determine the second
moment of area I, for the depicted stati-
cally indeterminate structure, such that
the vertical displacement at point K is
exactly wxg = 1cm.

Given: E = 21-10" kN/m?,
a =3 m, = 0 = a > >
¢ =5kN/m.

Solution To determine the displacement at point K we first have to
compute the stress resultants in the statically indeterminate system.
For this a hinge is introduced at K.

“0”-system:

L

7777

1 4
baa [ ]

14 F-Fmal- =4 1 =T <~ —1-1
ﬂaﬁ/‘/ 340 ®~—-_—®
5 2
6@
) NEINHE ‘
stol & [ | Qo o | & My
2 2
“1”-system: 34
1
ElE
HEEE +1 [g
Elnil
9] ®
IECIHE @] | +1

o) M,
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The rotations at point K in the “0”- and “1”-system are given by

1 2 1 5 1 1 7
Ely(510 = 6a -1 Sqa2 + 6@ -1 6qa2 + 3a -1 8(]@2 = 24qa3 R
1 4
E1y511:4~(3~a~12) = ja.
With
010 + X1011 =0
we determine the statically -0
redundant quantity ®
(bending moment at K) [ oqa
7
X1 :—32 qa2, ©) _372[1(12
which leads to the total bending moment. 2qa’ M

To compute the displacement of point K we apply in the statically de-
terminate “0”-system a force “1”and compute the bending moments.

Tt TTE

? 4 2

4
? 3 @
3

Bt =2 (03 20) - fo (- )
rga'y (~gp00) 230y gua”) +2(307 oe’)

g4 T 14 10 1

- )

97 T 576 576 27 T 18
929 ot
= 17289%
The required second moment of area results from condition §1x =wx

1 929 4 1 929 5

Iy = = 4y i
Y Bug 1728 9 T 21.10% 1728 100 SO0 = 10368 cm



P5.17

174 Principle of virtual forces

Problem 5.17 The depicted beam with 0
flexural rigidity ET is statically indeter- l l l l l l l l
minately supported.

N4

[ 7777
Compute the deflection at the center of [ a \
the beam.

Solution We regard the reaction force in B as statical redundant force
and use the principle of virtual forces to determine B from the cons-
traint

MM

fB= Bl dz=0.

For the “0”- and “1”-system we obtain:

“0”-system:
i MO (2) = ~Lgo(a — 2)?

1y b,

N T a Ol 1
« MO (x) — (a — a’/‘)

With the help of the table on page 146 we deduct

fM(O>M(1>da: 3
= qo a .

X=B="1 yommdas = 8

To determine the vertical displacement, the beam is considered as a
simply supported beam on two supports. For this situation we compu-
te the bending moment due to the (“2”-system) under a virtual load.

“2”-system: ‘ w1

M
) R —TIg

With M = M@ and M = M© + XM® it follows

1

V=g

! /(M<O)M<2))d:v b /(M(1>M<2))da:
EI EI

/(M<°> + XMYM®P dzx

o 1 _ 7 a4 + X a3 o qa4
T Er\ 3 16" ) T 192E1 "
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Problem 5.18 The sketched frame P5.18
(axial rigidity FA — oo, flexural N

rigidity ET) is closed by an elastic EA
truss (axial rigidity FEA). The - _ a
system is subjected to a constant Ll EI
line load qo 7;;7 R 0

Compute the force in the truss. 1 2a =

Solution The system is internally statically indeterminate. We choose
the force in the truss as statically redundant force. From the principle
of virtual forces follow the basic and auxiliary system:

“0”-system: qo quadr. Par.
Yy

MO
Ap=qoal | ®

® 1, 2
540
Ay= 11 qoa ] B= 11 Qo T \‘\‘\‘\‘\LLL 2

“1”-System:

| M
J o o

a a

©

a a
From the condition, that difference in the displacement of the frame
and the end of the truss has to vanish,

1 SS2a
Af—EI/Mde-I— EA =0,

follows together with

M=MP+x. MY M=MVD 6 Ss=x, §=5U=1

the force in the truss

1 1. /1 1 /1
- MO MPaz 2\ (_ 2\ _
- EI/ _ 22“(2q°“)( “)+4“(2q0“>( @)
1 (1) 4 4 (1) 2a 1 2aET
M pr®q —a)(— —a)(—
EI'/ T+ 2| ye-a)(-a)| +2a(-a)(-a)+ 5
15 1 wa
- oa .
64, BB

4FE Aa?
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P5.19 Problem 5.19 The semicircular arc (fle-
xural rigidity ET) is supported by a bar
(axial rigidity EA) and loaded by a force
F.

Compute the force in the bar and the
deflection at the connection point of bar
and arc.

Solution The system is statically indeterminate. We use the principle
of virtual forces and the force in the bar as statically redundant force.
This leads to the following “0”- and “1”-system:

“0”-system:

MO (p)=Fasin g, a
Ag=F [ F
S(0>:0 . - —
“1”-system: ‘1 4

1
M(1>(90)=2 a(l—cosp),

1) _ (1 _
SH=1. Ag,}):1/2$ B(l):1/2$ +C =1
The difference in displacements of arc and bar has to vanish:

S Sa

1
Af—EI/MMd:E-I- BA

=0, with

M:M<O)+X-M(l>, M:M(1>, S=X, S:S<1):1.

This condition provides the force in the bar

/2

F
_;I/M(D)M(l)dm 2 Za J sinp(1 — cosp)dx
S = —_— 0
1 / M) M a s EI
MY MY dr + 9@ 1— 2q a
EI FEA 4 Of( cos ¢)2dx + A
4 F
- EI
(Br-8)+8

The deflection f of the arc is given by the deformation of the bar:

fﬁ_Sai 4Fa
EA (37r—8)EA+8§21
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Problem 5.20 The depicted frame P5.20

(axial rigidity FA — oo, flexural

rigidity ET) is loaded by a force F. a
The bar @ has the axial rigidi-
ty EA, while bar @ is considered
to be rigid. u

Determine the force Sz in bar @
and the vertical displacement vg at
point B.

Solution The system is statically determinate supported, but due to
the rigid truss internally statically indeterminate. To compute the for-
ce Sa in bar @ we use the following “0”- and “1”-systems. The reaction
forces and the force in bar @ can be determined from equilibrium con-
ditions.

“0”-system: “1”-system:
St
——
F e
AAH AAH
— —_—
T .AV T ./iiv
Ay =F,Ap=F, S =F Ay =Ayp=5=0,5=1

The bending moments My and M, of both systems are sketched below:

“0”-System: “1”_System:
—2Fa _ 7\/20\
e 2o
o
©

M, My
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When evaluating the principle of virtual forces we have to consider that
the bar is rigid. This yields

1 -1 V2 _5V2 3
a1 = EI/MoMlda:— EI-6a(—Fa—4Fa) 5 a(—1)2= 6E1Fa ,
e ! M?dz = ! -la-1a2-2* a’
R o) T Er 3% 2 T 3EI’

and for the force in bar @ we obtain

ao 5vV2 3 3EI 5v/2
52 Q11 6EI “ a3 2

At point B the vertical displacement vg and the force F' have the same
direction, hence we can use the energy theorem:

1 1 [ M? 1 S21;
F = K .
ofve =y [ prdr+, . BA

Its application is based on the bending moment in the total system
M = Mo —|— XMli

1
Fa ®
2

~

\

G4
® >

M
Evaluation the integrals using the bending moment M yields
M1 (1 5, 1 20 1 1 1 594 7T 23
Eldw_EI <3aFa +3-3aFa +3-3a4Fa -Z—GEIFa

Furthermore, with the force Si in the bar (note, bar @ is rigid)
S?ll o F2a
— EA " EA

we compute the vertical displacement

- 7a2+ 1 Fa
B=\6rr " EA '
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Problem 5.21 A trapezoidal, P5.21
frame (axial rigidity FA,

flexural rigidity ET) with two V3

bars (axial rigidity FA) is ET l

loaded by a force F'. EA EA

Compute  the  horizontal A
and vertical displacement at
the loading point. I i i

Solution Since the vertical displacement vr of the load has the same
direction as load F', we can determine vr by the conservation of energy:

1 1 [ M? 1 S21;
F = B .
oFvr =y | prdet, — EA;

The structure is statically determinate supported. Thus reaction forces,
stress resultants, and the forces in the bars can be determined from
equilibrium conditions.

Using the bending moment and the bar forces yields

() e () e ()

Thus we compute for the vertical displacement

1 1
For = p; T pa

_11FPP | Fl

VP =9 pr TapA-
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The horizontal displacement at the loading point follows by loading
with a virtual “1”force in horizontal direction. Bending moment and

forces in the bars are computed from equilibrium conditions.

ul//

Using the “0”- and “1”-system we determine the horizontal displace-

ment
MM SiSili 1 (1FIV/3 LFIV3
Y= Er dx+; EA, _EI(34 2 Uity 2”)

with the final result

" _ 53 P
"7 48 EIC

Note: The deformation of the bars and the right part of the frame
do not contribute to the horizontal displacement.



Chapter 6

Buckling of Bars



182 Stability

The total potential of elastic systems loaded by conservative forces
consists of an external potential I® of the applied forces and the
potential (strain energy) I of the internal forces:

=m0 + 0@ .

In an equilibrium state,
I =0

holds.
Formal application of the stability conditions for rigid bodies (see
book 1, chapter 7) to elastic systems yields

> 0 stable equilibrium,
& =61 + 6’11 { =0 indifferent equilibrium,

< 0 unstable equilibrium.

The critical load of an elastic system is reached, if the equilibrium is
indifferent. Besides the original equilibrium state, neighboring equili-
brium states exist related to deformation (“buckling”). Critical loads
and associated equilibirum states can be determined from equilibrium
conditions in the deformed state or by investigating 62II.

For an elastic bar under compression equilibrium conditions in the de-
formed state provide the differential equation for Euler’s column

N EI F
w2 w4 N =0, v:;}

T

with the general solution
w = Acos\x + Bsin\x + CAx + D .

The constants A, B, C' and D are determined from the boundary condi-
tions for the kinematic and static quantities. Note that these conditions
have to be formulated in the deformed state. For example, under the
assumption of small rotations an elastic support at position x = 0 is
described by
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— — e i
) w( )/ '(0) %f F T/\ ) w'(0)
N <.

N cw(0)
Q(0)

Q(0) = cw(0) — Fw’'(0) ~ EIw"(0) + cw(0) — Fw'(0) =0,
M(0) =0 ~ EIw'(0)=0.

Four characteristic boundary conditions establish the Euler buckling

F *F *F j‘{

T oA

l Fo. - TEI m2El m2ET 2Bl
Oy 2 (1/v/1.43)2 (1/2)?

l 1. 2. 3. A

Approximate solutions for the critical load can be obtained by
using the ansatz w(x) in the energy functional for buckling (Rayleigh-
quotient):

l 2
[EIv" dz
I 0

1
1 112 = 2

II= ; (Elw dz — Ferit® ) dz =0 ~  Fuit =

0 W dx

o,

To determine Fi;, the ansatz w(z) has to satisfy the essential (kinema-
tic) boundary conditions (note that the result for Fei¢ improves, if w(z)
satisfies also the static boundary conditions). The approximate soluti-
on is in general on the unsafe side, because the inequality Ferit > Ferit
holds.

Individual springs at position z; are included in the nominator by

c[w(x;)]?, while torsion springs are incorporated by ez [’ (x:)]*:

F
)
.

beIﬁ}”de + erl@ (1p)]? + c[w(lr))?

- l
ZFTA Oftb’2da:
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Problem 6.1 Both depicted 1)

systems consist of rigid bars Ia
supported by elastic springs. — )
Determine the critical loads ) a ) a |
P 2) \ \ \
crit-
.
i cz FAS
~= ~=<<
‘kaﬂka—qkaa‘
v E
Solution to 1) We consider  2adyp
the system in the deflected T 50
state. From equilibrium c2adp A
cadp
A

A aleadp) + 2a(2cadp) — 2a0pF =0
we obtain
d0p(bca —2F) =0.

Thus a neighboring equilibrium state (dp # 0) related to the equilibri-
um state ¢ = 0 is only possible for

5
Fcrit = 9 ca .
) ~
to 2) Equilibrium conditions ::Ti
for the defelcted state TY =

A
A: a(cadp) —2aB + adpF =0,

A
® G: 2a6p F—aB =0
provide after elimination of B
dp(ca—3F)=0.

This results in the critical force
ca

Forip = 3 .
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Problem 6.2 The depicted frame ﬂ—m—n . P6.2
consists of four rigid bars connec- 1
ted by hinges and torsional —f cr cr
springs with stiffness cr. b
Determine the critical load gcrit- l cr cr
A By

f— 20—+
Solution From the sketched deflected state follows the geometric rela-
tion:
f=b(l—cosyp).
. . 2aq
Hence the potential energy is given by l
I =11 + (@

=4 ;CTL,DE —2qaf

= 2cr p? — 2qab(1 — cos p) .

The system is in equilibrium, if
ol = 21;5@ = (4ery — 2qabsinp)dp =0 .

Thus for equilibrium in the deflected state with dp # 0, we must have
derp — 2qabsing = 0/;.

The trivial equilibrium state is related to ¢ = 0.

Using the second variation of the potential energy we can determine
the type of the equilibrium

>0 stable,
4l

1= dp? (8¢)? = (der — 2qabcos ) (5p)? =0 indifferent,
< 0 unstable

At the trivial equilibrium state (¢ = 0) the system is indifferent for the
critical load

o ZCT
ant— ab .
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Problem 6.3 The depicted r
system consists of rigid / %c Y =
bars that are elastically e ke

supported. e— 0 —=— @ = —]

Determine the critical loads and sketch the associated buckling figures.
Sps @ F {

adpy + 2a0py

Solution The system has
two degrees of freedom.
The equilibrium conditions do1
in the deflected state are A cadep,

cladpy + adyps) }

~
A ca25g01 + 20a2(5<p1 + dp2) —a(dp1 +20p2)F =0,

@ g : ca2(5g01 + d0p2) — 2adp2F =0 .
Using A = F/ca we obtain the homogeneous system of equations
(3=X)dp1 +2(1 —X)dp2 =0,
1-0p14+ (1 —2X\)dp2=0.

For a non-trivial solution the determinant of the coefficient matrix has
to vanish:

G a1 \ o BEVIT
3—)A) 2(1—2X 1= )
—0 o~ 2-ailoo o 4
1 (1-2x 22 A V1T
2 = 4 .
Re-substituting provides
5417 34+V17 ~
Fi = 4 ca, dp1 = 9 02 50 B
01
and
5— V17 V17T -3
F> = 4 ca, op1 = — 9 0. 5on <?2
02

The originally straight equilibrium state can buckle into two neigh-
boring states, because the system has two degrees of freedom. Since
F> < Fy, force F5 is the critical load: Fepiy = Fb.
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Problem 6.4 Determine for the p El P6.4
depicted elastic bar the con- ——— ‘E
ditions for buckling and the — Ty |

critical load.

Solution From the general solution of the Euler coloumn

w=Acosz+ Bsin\z+Chxr+D, N = L
w' = —AXsin Az + BAcos Az + C\
w” = —M/EI = —AN cos Az — B\?sin Az |

w"” = —Q/EI = AN*sin Az — BA® cos Az

in conjunction with the boundary conditions, we derive

~»  Asin Al — Bcos Al =0 .

w0)=0: ~ A+D=0 ~ D=-A,

w'(0)=0: ~ B+C=0 ~ (C=-B,

w(l)=0: ~ —AsinAN+ BcosAN+C=0,
)=0:

Inserting C' = — B yields for the last two equations
Asin Al — B(cos Al —1) =0,
Asin Al — Bcos Al =0.

This leads to B = 0, and the condition of buckling is given by
sin A\l =0 ~ Al =nm (n=1,2,3,...).

The smallest eigenvalue A1l = 7 provides the critical load

L EI
2

Foyw=m

Inserting the constants and the eigenvalue yields the buckling shape

w = A(cos - 1),

l
where A remains undetermined.

Note: The critical load for the considered case is identical to the
274 Euler buckling case.
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Problem 6.5 The depicted
beam is subjected to axial

compression and is supported ¢ _@_«—
at both ends elastically by " bcccd
torsional springs. 1 l }

Given.: EI =lcp.

a) Determine the critical load.

b) Compute with the ansatz w,(z) = a(l—z)x and W2 (z) = a sin(rz /1)
the approximate solution for the critical load via the Rayleigh-quotient.

Solution to a) The general solution of the buckling problem
F

w = AcosA\x + Bsin\x + CAx + D | /\Q’:EI

yields with the boundary conditions
w(0) =0, M(0)=—FEIw'(0) = —crw'(0),
w(l) =0, M()=—-EIw"(l) = +ecrw' ()
and with the abbreviation k = EI /ler the following system of equations
A+D=0,
KANl = =B\ — C)\,
Acos Al + Bsin\l+CMN+D =0,
kAN Lcos Al + kBA?Isin Al = —AXsin Al + BAcos Al + C .
Elimination of the constants yields an equation for the eigenvalues
2 — 2(1 4 kA%1*) cos Xl — Al[1 — (kAD)? — 2k]sin Xl =0 .

For k = 1 we deduce from this equation (e. g. by a graphical solution
method) the first eigenvalue and the associated critical load
EI

Al = 3.67 ~ Frrie = M\IEI=13.49 2

Note: We obtain the eigenvalue equations for a beam clamped on both
ends as special case (k = 0 or ¢ — c0)
2—2cos Al — ANsin\l=0 ~ AN=27,

and similarily for the simply supported beam xk — oo or c¢r — 0)

sin\l =0 ~ MN=mx.



elastic systems 189

to b) To determine the critical load with the first ansatz we need to
compute the derivatives:

w1 (z) = a(lz—2z°), @i(z)=a(l—-2z), @)(z)=—-2a.

Substituting this into the formula of the Rayleigh-quotient yields:

) jEI~ (—2a)* dz + cr [a (1 — 0)]> 4 er [a (1 — 20))°
Fcritl = 0 !
Of[a (I —2z)])* dz

Integration and rearrangement yields

!
2 272 2
[4@ El;r]o + cral* + cra2l B 1Q21ET + cral? + cpal?

Fcrit 1= 4 i 4
[a2l2az —2d%12% + 3a2x3] a*® —24%1° + 3a213
0

Inserting ler = FI leads to the final result

~ Bl
Fcritl =18 12 .

Analogously the second ansatz renders step by step

Wy(x) = 7lra cos (7;x) , Wy (x) = — (7;)2asin (;Tm) ,

l
;@} + 2cr El(ﬂz(;l—o)—+mm

B l 2 47 o B l

= 1 ' - 1 - 1l_0 )
{24—4 sm(ZZx)}O 2
_ EI (7 +4

d Fcrit2 = (7r ) = 13.87 Bl
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P6.6 Problem 6.6 A beam is clamped p EI B p
at the left end and is elastically 7% i?_
supported at B by a spring (spring .
constant c). ‘ l |

Deduce the condition for buckling.

Solution The general solution for the buckling problem is given by

w= Acos Az + Bsin\x + CAx + D, )\2:5},
w' = —AXsin Az + BAcos Az + C\
w” = —M/EI = —AX* cos Az — BA\?sin Az,
w" = —Q/EI = AX*sin A\x — BA* cos Az .
The boundary conditions
w(0) =0, .. /Q(Z) l
=, s et
M) =0, Q’El)

lead to the homogeneous system of equations
A+D=0,
B+C=0,
—Acos Al — Bsin\l =0,
Acos Al + Bsin N+ C(M — EIN/e)+ D =0.

Eliminating the constants yields the equation for the eigenvalues (buck-
ling condition)

El
tan Al = A — (\)® ) . tan Al
an (A) cl? 2 / tan Al
."_,.n".:.:”‘ /2| Ml ™ __E"'
The solution of this transcendental — ° Y

equation can by obtained graphi- .
cally. The special case EI/cl® = 1 A= (AP |
yields the first eigenvalue
EI "
2

Ml=181 ~ erit =2 3.27
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o P
Problem 6.7 The depicted beam 797 rigid L1 R+ P6.7
consists of a rigid and an elastic '—»JL 77

part (flexural rigidity ET). 1 a | a |

Determine the bucking condition and the critical load.

Solution The general solution of the buckling problem is given by

F
EI"

w = Acos Az + Bsin\x +C\z + D , 2\ =

From the boundary and transmission conditions

Q(0) = Fu'(0)
we derive
Acosha+ Bsinda+ Cla+D =0,
AcosAa+ BsinAa =0,
A+ D =DBMa+ Cla,
EI BN = F(BA+C)\).

This yields the constants C' = 0, D = 0, A = BAa and the buckling
condition

tan Aa = —Xa .
tan Aa, tan \a
The graphical (or numerical) solution 1 [\ . N7
renders the first eigenvalue o (.7 /2] Ma m .
Aa = 2,03 I o
and hence the critical load -2t - 3 —/)\a
EI L :

Fore 2412 5 .
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Problem 6.8 Consider the sketched half-
frame with different cross section data in the
regions @ and @ .

Given: [y =5.0m,
lp =10m 5
E =21-10" kN/cm? |
ar =1.2-107° 1/K ,
A; =50.0 cm? |
I, =500 cm?,
I, = 10000 cm* .

How much can region @ be heated until
buckling occurs?

Solution We choose a substitute system for
region @ according to Euler case 2 with
length [;. For this case the buckling load is:

g2 Bl _ 221107500
R - 5002
=414.52 kN .

The displacements of shaft @ and beam @
are given by:

. Fyl3 41452 -100°
" 3EL,  3-2.1-10*-10%
=0.658 cm |
. Fl

Al =1l = _EA1 + arAT

=—0.1974 4+ 6 - 107 3AT .

Using compatibility
f = All >

L 1O

Fy

0.658 = —0.1974 + 6 - 10 *AT

we can determine the required temperature difference

AT =1425 K.
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Problem 6.9 The depicted sys- F P6.9
tem consists of bars with diffe-
rent flexural rigidity. T

El

Assign the individual bars to BI
the corresponding Euler cases ! ® 1
and determine which bar is ®
first buckling for the ratio 2 e @ e @ =
EI, = 2EI. ‘

Solution The Euler cases are determined from the table on page 183:

Bar @ and bar @ correspond to the second Euler buckling mode, be-
cause these bars are hinged at both ends.

Bar @ is clamped at the right side and simply supported at the left
side. This corresponds to the third Euler case.

The forces due to the load F' are given by

T
|
sp=- 1

;/27 . Sz/\bg
832—2. 2_»3 f

Thus we obtain the following critical forces

Flaw 7w2EL 1 #n?EL
= i d Flcrit = 5

V2 2a2 V2 ooa?

Fowiw T ED ™ EL
\/2 - 2@2 i d F2 crit — \/2 a2 5

F3 erig 2 EL 2 Bl
s =2047 0~ Fre=1020 0

Because Ficrit < F3erit < Faerit, bar @ buckles first. Hence force Fy crit
is crucial for the failure of the entire system.
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Problem 6.10  The depicted
construction is assmbled from
two bars with double symmetric
profile (I, = 2I, for both bars).

Determine the maximal height
a, such that no buckling occurs.

Solution Due to the symmetry of the structure and the load the follo-
wing compressive normal forces appear in the two bars

F

V2

To investigate the stability behaviour we consider the different support
conditions and the different flexural rigidities. Bar @ is simply sup-
ported at the lower end. The upper end is fixed by a rigid slider and
connected to bar @ by a hinge. This corresponds to the Euler case no.
3. For buckling along the local y-axis of the profile we compute

F w2 EI, FI,
S1:\/2:2.04 942 ~ aly:1.207r\/ I

and for buckling along the local z-axis with EI, = 0.5 El,

F 72 Bl \/EI
- —92.04 § . =0. v
S1 V2 0 92 ~  ai 0.857 I

follows. Bar @ is hinged with one rotation axis in y-direction at the
lower end. With regard to rotation along the z-axis the support is ri-
gid. The support at the upper end is analogous to bar ©® . Buckling
along the local y-axis corresponds to the third Euler buckling mode.
With S5 = S1 we obtain

A2y = A1y -

Buckling along the local z-axis is equivalent to the Euler case no. 4 and
yields with EI, = 0.5 E1I,

F Bl EI
Sy = =2.04 Y > =1.19 \/ v
T 222 " "W F
Since a1 » is the smallest value, the critical length is given by

El
Qerit = 0.857r\/ Fy .
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Hydrostatics
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Prerequisite: The density p (unit: kg/m®) of the fluid is constant.

Pressure: The pressure p (unit: Pa = N/m?) is a force per area, that
is identical for all cross sections and always acts normal to the cross
section (hydrostatic stress state).

Pressure in a fluid under the acti-
on of gravity and a surface pressure
po is given by:

p(2) =po+o0gz.

The buoyancy force acting on a body (volume V') immersed in a fluid

is equal to the weight of the displaced fluid volume.
Buoyancy force:

Fa=pgV. —=

The line of action related to the
buoyancy force passes through the
center of gravity Cr of the displa-
ced fluid volume.

Fluid pressure on plane surfaces

Resulting force

F=pyc)A=pghcA.

Center of pressure D
yD_ Sz bl

My

S

IpD=—
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Fluid pressure on curved surfaces

dFy =pdAcosa=pgdV
dFy = pdAsina = pdA”

Integration yields

Fv=pgV,

Fy = pc- A™.

The resulting horizontal component of the fluid pressure Fy is equal
to the product of the vertically projected area A™ and the pressure pco~
in the centroid of the projected area.

Stability of a floating body: The equilibrium state is stable if the
meta center M is above the centroid C'g of the body:

r
> 0 : stable
hy =
. < 0 : unstable
77‘_' M . with the position of the meta
= — 4 center
e Ch
T o hy = L _ e
M=, o

water line

Here the following data are used

I, : second moment of area defined by the water line,
V .  volume of the displaced fluid,
e : distance of the centroid of the body centroid Cg
from the centroid of the displaced fluid Cp.
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Problem 7.1 A container is closed — I

during filling by a ball valve. \
Determine the density pp of the

ball, such that no air remains in
the container when the ball closes
the valve.

Given.: pp, r1, r2.

Solution The ball has to submerge
to a depth that just closes the
opening when the container is full.
The buoyancy force is than pr g Vi,
where V7 is the volume of the
displaced fluid (spherical segment).
The buoyancy force has to be equal

st

-

to the weight of the ball ' =

prgVi=ppgV.
With the volume of a sphere

4
V:37rrg

and the spherical section
2 h 2 2
Vi=mh (7“2—3), h=ry+/r3 —1rf

we compute for the density of the ball

h

Vi wh* (r2 = ) 3 (h)

PB:pFV:PF 4 5 :pF4( > (1
37'['7“2

h
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. B
Problem 7.2 The design of the de- P7.2
picted valve of a water basin = s
ensures that the valve opens if the .
water level reaches the hinge at z
point B. The flap valve is assumed
to be massless. \\,’, a

Determine z for the valve to func- e
tion in the described way.

Given: p, a, r.

Solution The thickness of the flap valve is irrelevant for the following
considerations, as all forces are assumed per unit length.

By
We compute the resulting horizontal for- l !
ce from the linear pressure distribution: ?
H
1
FH:2pg(2+a)2 z
with ! /]| C=0
2 FH A —
z=_(z+a). | Fy
3 -
r

The vertical buoyancy force can be computed from the weight of the
displaced water by using the area of the dashed region:

Fv =pg (2ar—72rr2) .

The flap valve just opens if the reaction force in C' vanishes. Equilibrium
of moments with regard to B provides:

E : —rlky 4+ zFg =0

~  —pg (Zar—grz)r—l—;pg(i—i-af;(a—l—E):O.

The solution of this equation with respect to z yields the water level

zZ= 3\/3(2ar—72r7‘2)r—a.



200 Buoyancy

P7.3 Problem 7.3  The depicted cross
section of a tunnel is immersed
in water saturated “liquid” sand ps Sand | A
(density psa). Above resides a layer
of dry sand (density ps).

Determine the thickness = of the
concrete base (density pc), such
that a safety factor n = 2 against
lifting is reached. It is assumed that
the weight of the dry sand is acting
on the cross section of the tunnel.

Given: pp = 2.5-10% kg/m?, ps = 2.0 - 10* kg/m?,
psa=10-10° kg/m* [ =10m, 7, =4 m, h =7 m.

Solution The weight (per unit length) of the tunnel cross section and
sand load is given by

l2

| —rf)]+psgzh.

l T
G=pcyg [ml—l— (2 —ri)Qh—l— 2(
With the buoyancy force (per unit length)

B:PSAQ[(h‘I-a?)l'f';rz]

we can determine the height of the concrete base, such that a safety
factor against lifting

G
B

is achieved. Solving for z yields:

7]:2:

l 2
(ZpSAl—pBl)ZE:pslh-f—pB[(Q —Ti)2h+ 721'(4 —7’12)]
7 12

—2ps,4(hl+ 9 4).

With the given data we get
™ ™
(20 — 25) 2 =270 + 2.5 [14+ 2(25—16)] —2 (7o+ 0 25)
~  —5z=210.34 — 218.54

~ x = 1.64m.



Problem 7.4 A cylindrical plug P (cross sect-
ion Ap, length a) is elastically supported and
closes straight with the bottom of a basin for
the water line hg. In this situation the force
vanishes in the rope (length [) to which a
floater S is attached (cross section Ag > Ap).

a) Determine the weight Gg of the floater.

b) Which maximal water height hi can be
reached before leaking occurs?

Solution to a) The weight Gs of the floater
is computed from equilibrium and geometry in
the reference situation:

pgAsto =Gg

~  Gs=(ho—1)pgAs.
ho =1+ to

to b) For a water line h the plug is elevated
by a distance y due to the force in the rope S.
The equilibrium conditions for the floater, for
the plug, and the geometric conditions are

pgAst==Gs + S,
h=l+t+y.

S_FP:Cya

In the equilibrium expression, F), is the diffe-
rence in the pressure force in the displaced and
the reference situation (the forces due to lateral
pressure are in equilibrium):

Fy, = pg(h—y)Ap—pgho A, = pg(h—y—ho) A, .

Eliminating Gs, S, Fp, and ¢ yields

h o= y[l - pg(Asc— AP)} '
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P7.4

f)AP » r
N v
R

L]
F,,*
cy

The maximal heighth = h; is reached, if y = a is attained:

hi1 = ho —I—a[l—i— pg(Asc— AP):| .
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Problem 7.5 A dam of length [ has a Y
surface of parabolic shape with a a
horizontal tangent at the bottom of
the water basin. = T
Determine the force resulting from P
the pressure, the position of the point h
of action, and the line of action for a
water height h. .
Given: h, I, a = h/4, p.
Solution The vertical
component of the force
is Fv = pgV with the
volume V =1 A. The area is
determined by the function yr
2
y(z) = 16 x*/h of the para- 1
bola x .
A= / (h—y)de dz
0
“ 16 16 370 R?
= [ (h- do=[ho- 1P="
/0 (h=), @) dz Y A P

Thus the vertical component of the pressure force becomes:
1
Fv=pg h?l.

The vertical force acts at the centroid C' of the area

1 16 o . [,2> 162*]° 3
xF—A/Ox(h hx)dw—{hz hoal, T 2

The horizontal component of the fluid pressure is computed by the
projected area A* = hl and the pressure pg+ = 21! pgh in the centroid
of the projected area:

h.

1 1
Fu= _pgh®l with yr = _h.
2 3
By the theorem of Pythagoras, we obtain the resulting force, its line of
action passes through the point (zr,yr) and forms an angle a to the
y-axis:

1 F
F = \/Fﬁ[—i—F2 =4 V10pgh®l, o= arctan Fl‘j = arctan 3 = 71.5°.
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Problem 7.6 A prismatic body with _ P7.6
the mass mp, width a, and length [ ) c AV
is floating in the water. Its centroid B B = pw
Cp is in the height hp. ma
h]_g
Determine the additional point mass h
ma, such that the body floats in a ‘ ‘
stable manner. ‘ a ‘

Given: pw, mg, hsg, I, a.

Solution Stable floating of the body is defined by the position of the
meta center hayr = I, /V —e > 0 . For har = 0 the limit of the stable
state is reached.

The volume V of the displaced fluid is obtained by equilibrium (buoyan-
cy = weight of the body and added mass):
1
pwgV =(mp+ma)g ~ V= " (mp+ma)

The second mom-

ent of area is AV [ Cp __ z I
Coo l i/

Lo ;

_ta e

L=y ! l_lp Thr e [

For e = he¢ — hp

we need the cen- ‘ a ! a

ter of gravity hc
of the floating construction and hr of the displaced fluid. They are
determined by

hc (mB +ma)=hpmp ~ hc=hg e ,
mp+ma
mp+ma
= 2 =
V=al(2hr) ~ hp Salpw

The limit for stable floating is reached if has = 0:

2
1 _12he . ™ 120medma)” g

la3 pw 2102 a* pw?
Solving for the required additional mass m 4 yields

2
ma = ta”pw 12 hen mp

V6 la3 pw

—1 —mpg.
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Problem 7.7 A cone-shaped floa-
ting device is made of two materials
with densities p; and pa.

Determine the diameter d of the
cone, such that it floats stable in a
fluid of density pr.

Given:

T S

2 1
pl—SPF, p2—3PF7
hi=2h, ha =4h.

Solution The cone has a stable floating position, if the following con-
ditions are met:

(1) : G=A4,
I
(2): hu= v —e>0.
. o - d—~
(1) Floating condition: hy
d _ ha 2
hi+hy  he - dl_dh1+h2_3d e
]
dy

The force due to weight is

G=Vipig+Vapag
= (Pt dd + &2 L d?
=157 1 (d” 4 ddy + 1)019+127f 2dy p29

2

= Si’ Thd® prg=0892hd® prg.

The immersion depth ¢ and the diameter dr = d¢/(h1+ h2) of the cone
at the water line of the fluid follows the buoyancy force

1
A= 127rtd§~ng

1 & e
Tz T p2 PRI
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For G = A we obtain

368

5 h® ~  t=4.969h.

t3

(2) Stability condition:
The volume of the displaced fluid is given by

2
Lod s Qi’whd2:o.892hd2,

V= g3 ™2l =g

and the second moment of area I, is

_dpm (0.828d)"' 7

- 4
L="¢" = oL =0.023d".

The distance of the centroid of the body from the centroid of the dis-
placed fluid is provided by

e =Is — t
S 4

3 1 3 1
4(h1+h2)p1 167Td2(h1+h2)+4h2(p2—p1) 167Td%h2

e 1 1,
pr e md” (hatha)+ (p2 = p1) | i he
18h—196h
= 16 =4.761 h
4 —
27

~ e:4.761h—i~4.969h:1.034h.

For the diameter of the cone we finally obtain

0.023 d*

hat = 892 1 a2

—1.034 >0 ~ d>6.333h.
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Problem 7.8 A block-shaped iceberg of dimensions a x h x [ calves of

a floating ice shelf. It is assumed that a > h. The density of the water
is pw, the density of the ice pr = [} pw.

/‘

W |

Eisberg Schelfeis

For which length [ does the iceberg float in a stable way?

Solution We start by determining the immersion depth ¢ of the iceberg.
Equilibrium between iceberg and buoyancy force renders for the given
density ratio the immersion depth
9
prghla = pwgtla ~ t= 10h .
To analyze the floating stability we consider the position has of the meta
center:

al®
I, = ,
12
V*altfgalh h =
I [V tJ PB
o h t_h
T2 2720 m /
|
By combining all relations we derive
50° h
MM Sy T a0

We consider the limit of floating stability (has = 0). This determines
the length o :

27 \/27
2=""h lo = h ~ 0.735h .
0= 50 ~ 0 5o/t~ 0-735

In a stable floating state, we must have hys > 0. Thus, the iceberg
floats stable for | > lo. For [ < ly the iceberg tips over.
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Problem 7.9 A circular shaped hatch P7.9
closes the outflow of a tank. =

a) Determine the mass m, such

Ava b
that the hatch opens if m is - m a
attached in the distance ¢ from d

the hinge point. P e
b) Determine the distance by &

which the mass m has to be B c
shifted, for the hatch to open —/5 45°
when the water level reaches

the height b.
Given: a, b, ¢, d, e, m, p.

Solution zu a) The force acting on the hatch is

yp —V2a
wd?
F=pgAhs=pg , (ate). F

B

The point of action of F' is determined by s mg

d2
+ .
16v/2 (a + e)

The hatch opens, if B = 0. Equilibrium of moments provides

I
=ys + =V2(a+e
yp=ys+ "y ( )

F(yp—Vv2a)—mgec=0.
From this we compute the required mass

wd? d?

m=py, (ate \/26+16\/2(a+e)

to b) For the water level b the force acting on the hatch is

7 d>
F=pgAh.=pg , (b+e).

With the point of action
d2
+
162 (b + )

of F the equilibrium condition F' (yp — v/2b) — mgc = 0 yields the
distance c:

7w d? d? 1
= b+e) |V2e+ )
TPy (bte) ‘ 16vV2(b+e)] m

yp =V2(b+e)
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Problem 7.10 A trapezoidal hatch AV .
closes the outflow of the depicted -
basin. 7m

Determine the resulting force on
the hatch together with the support B 2m

reactions in point B. S N
. kg m M 3m
. — 103 _
Given: pw = 10 m3 9= 9.81 2 A 1
B
¢
C

m

Solution The area A = 10m?, the
centroid of the hatch

o = (5-2,5+5-§-5) 110 - ‘?; -

and the pressure

(7s) = 94 3 35| _ 43

pYs)=pg 5 12| 4 Py

are used to compute the resulting

force e [m]

4
F=pgAp(gs) = 10.9,81.10- j =1.05MN.

The position of the line of action follows from

5.1 35 2 5 35 10\ 4
Ie= ", +51 (12—2,5) +2 g0 51 (12— 3> =19.1m",
Ys =Ys+ 15m and yp =¢yp+ 15m to be

I, ys A+
S ys A

_ _ I¢ 35 19,1
Yp = Ys + =

Yo =
ys A 12 (¥ 4+15) 10

=3.02m.

The support reaction is determined by equilibrium of moments with
regard to the hinge point C' of the hatch

"2
C: B-5—F(5-3,02)=0

5—3,02

~ B=1,05 = 0.415MN.
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Problem 7.11 A concrete dam
(density pc) closes a basin
that is filled up to the height 7

h =15 m. =

3m

Determine rw 19m

a) the safety factor against m pe
sliding at the bottom (adhesion -
coefficient po), —
b) the safety against tilting, 3mI 3m
c) the stress distribution at the ‘ ‘ 7

bottom, if it assumed to be a ‘ ‘ \

linear distribution.

6m 8m Lo

Given: pc = 2.5-10% kg/m®, pw = 10 kg/m?®, po = 0.5, g = 10 m/s?

Solution to a) To determine the safety factor against sliding we com-
pute the horizontal forces due to the water pressure and compare them
to the adhesion forces acting at the bottom. The horizontal force due
to water pressure is computed from

Fy = ;pwghA:;103-10-15-15-1:1125 kN/m.
The resulting force due to the weight of the concrete and the water
pressure is

Fy =25-10° (3-2+4-18+3-8+ ; -12-8) +10% (2-12) = 3990 kN /m.

Using Coulomb’s friction law we determine the safety factor ns against
the onset of sliding

o Py 0.5-3990

Fu T 1125 =1.77.

ns

TBi
to b) The dam can tilt around
point B. The safety against
tilting is determined by compa-
ring the moment of forces. The Fy i

moment of the water pressure h
is given by 31 Fy;

Mpw = Fu Z = 1125 135 = 5625 kNm.
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The moment related to the weights is

Mpa = ZFVi TBi

=25-10°(3-2-134+4-18-10+3-8-4
1 2

+,12:8--8) 10° (212 - 13) = 31870 kNm.
This results in a safety factor against tilting
Mpc 31780

nr = Mpw — 5625 = 5.67.

to ¢) To compute the stress distribution in the bottom gap of the dam
we determine the excentricity of the resulting force Ry = >, Fv;. The
vertical component of the force acting in the gap yields, according to
the sketch below,

Ry (a —e) = Mpc — Mpw

_ Mpg — Mpw _ 31870 — 5625
Ry B 3990

=0422m.

~> e=a

With the introduced coordinate-
system we compute the normal
stresses in the bottom gap (like in
a beam cross section)

N

M
o= y

A+Iy x.

Here we have to insert the fol-
lowing data: A = 14m? I,
1-14%/12 = 28867m* N
—Ry = —3990 kN, M, = N -e

—1685 kNm. As a result we obtain @=Tm a=7m
for the stress distribution
—3990 —1685 2
o 14 +228.67m 85 — 7.37x kN/m

For the selected points C' and B evaluation yields

oo = —0.23MPa and op = —0.34 MPa.
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Problem 7.12 A rectangular plate
of width b closes the outlet of a
basin. It is hinged at point D. =

a) Determine the water height ¢, P T .
for which the plate starts to rotate h
around point D.

. —_ 1
b) Compute the bending moment
at point D for this situation. o

Given: b, [, h, p.

to a) The plate starts to rotate, if the resulting force R of the water
pressure is above point D. In the limit case the resulting force of the
water pressure passes through point D. From this we can determine the

water height
R
o - y
Mp
b 3
a

to b) To compute the bending moment in the plate we start with the
moment at point D. With the resultant R of the upper plate and the
pressure at point D,

_ ]
R=,pp2ab, pp=pg2h,

we obtain

Mp =—-R ngbazz—gpg(lz—l—hQ)hb.

2
3
The distribution of the bending moment is cubic for a linearly varying
load. The maximum occurs at the hinge point D.

Mp

P7.12
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Problem 7.13 The pressure p in gases depends on the density p. The
relation between the two state variables is provided by the universal
gas equation p = pRT (universal gas constant R, temperature 7). E.
g. for air at sea level and at T = 0° it holds: po = 101325 Pa and
po = 1.293 kg/m>.

Determine the dependency of air pressure on height for the case of
a constant temperature (barometric height relation).

Solution First, we apply the universal gas law at sea level. This yields

po = poRT or RT ="
Po p+dp

Equilibrium of an infinitesimal air
column with cross section A and
height dz

T pA—pgAdz— (p+dp)A=0

leads to
dp
=~ P9
Using the universal gas equation yields
dp _ _pg
dz RT
By separation of variables and integration we obtain:
d Pdp z
P__ 9 42 ~ d}j:— Iz ~ m?P =-9 .
p RT PO P 0 RT Po RT

This renders the air pressure as a function of the height

gz
p=poe RT .

The air pressure decreases exponentially with the height. From the
relation RT = po/po and the gravity constant g = 9.80665 m/s* we
deduce

z
p=101325Pae 7991m .

Note: In a height of 5,5km the pressure has dropped to one half of
its original value.
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