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Preface

Circuit theory is fundamental to the study of important engineering applications such as power
systems and communication. As such, it forms part of the first course to engineering and science
students in several disciplines. This book is written for engineering, computer science and physics
students, and engineers and scientists. Both the theory and practice by programming and in laboratory
are two important aspects of the learning process of circuit theory. The objective in writing this book
is to present the fundamentals of circuit theory systematically in a clear and concise textbook and
provide the required programming part online. Hopefully, this approach is expected to improve the
readability and understandability of the theory without clutter. Plenty of examples, figures, tables,
programs, analogy, and physical explanations make it easy for the reader to get a good grounding in
the basics of circuit theory and some of its applications.

The learning of the circuit theory requires calculus, linear algebra, transform analysis, program-
ming, and laboratory practice. These tools are also required for other courses and in professional
career later. However, these topics are difficult for new students. But, through the methods suggested,
students can learn well this all-important subject with sufficient practice. Further, the learning process
for this subject will certainly help the students in their ensuing study of the other subjects.

Learning of the circuit theory consists of four aspects: (1) systematic presentation of the
mathematical methods in the text; (2) verification of the analytically obtained results by coding; (3)
verification of the results by simulation; and (4) verification of the results using actual components
in laboratory experiments. The last component gives physical appreciation of the circuit elements
and their values in practice, the voltages, currents, frequencies, measuring instruments, and all other
practical aspects involved. Students must take a coordinated laboratory course. Both coding and
simulation of the analysis of circuits are presented in the online programming part. Each student can
practice using these four methods as much as it is required for a good understanding of the subject.

This book is intended to be a textbook for the first course in circuit theory to the new undergraduate
students in several disciplines of engineering and science, which includes the primary disciplines of
electrical and electronics engineering. For engineering professionals, this book will be useful for self-
study. In addition, this book will be a reference for anyone, student or professional, specializing in
practical applications of circuit theory. The prerequisite for reading this book is a good knowledge of
physics and calculus at the high school level.

As mentioned already, programming is an important component in learning and practicing circuit
theory, as well as other subjects. While several software packages are available, it is better to use a
popular general-purpose software package that the students are likely to use in their other courses
and ensuing professional carrier in several areas of engineering and science. Therefore, learning of
only one package is required. The programming part is presented using the popular, user-friendly
and widely used, both in universities and industries, MATLAB R© software package. While the use
of a software package is inevitable in most applications, it is better to use the software in addition to
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self-developed programs. The effective use of a software package or to develop own programs requires
a good grounding in the basic principles of the circuit theory. Answers to selected exercises marked
∗ are given at the end of the book. A Solutions Manual and slides are available for instructors at the
website of the book.

I assume the responsibility for all the errors in this book and would very much appreciate receiving
readers’ suggestions and pointing out any errors (email:d_sundararajan@yahoo.com). I am grateful
to my Editor and the rest of the team at Springer for their help and encouragement in completing this
project. I thank my family for their support during this endeavor.

D. Sundararajan
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1Basic Concepts

Electrical and electronic engineering is indispensable in all applications of science and engineering,
either in home, office, or industry. In applications, signals occur in different forms, such as
temperature, pressure, audio, video, medical, and optical. All the signals are converted to electrical
signals using appropriate transducers, which convert signals from other forms to electrical, for easier
and efficient analysis, control, generation, and transmission. For example, a microphone converts
sound waves into an electrical signal. A turbogenerator, a steam turbine coupled to an electric
generator, produces electrical power. Windmills serve a similar purpose. Once the signals are available
in electrical form, there are two major types of activities in electrical and electronic engineering those
are indispensable for all applications, power systems and communication. For these and other types of
applications, circuit theory is of fundamental importance. That is why, this subject is learnt by students
from several disciplines, in addition to the primary disciplines of electrical and electronic engineering.
By analogy, the basic principles of circuit theory are applicable to other systems, such as mechanical,
optical, and acoustical.

The effects of electrical power are clearly visible in the bulb emitting light, a water heater making
the water hot and a fan creating a current of air. However, the flow of electric current is invisible and
this aspect makes it difficult to visualize it. Fortunately, it is similar to the flow of water in a pipe. This
analogy enables us to visualize the current flow in an electrical system. The analogy is similar to the
operation of a computer providing a good analogy to the working of the brain. Water head determines
the flow of water through a hose and pinching it increases the resistance to the flow. Parallel pipes
decrease the resistance to the flow and pipes in series increase the resistance. Water towers provide
the pressure to supply water to our homes. When the tank is full, the flow is more compared with
when it is near empty. Water pressure is the analog to electrical voltage and water flow is the analog
to current. Figure 1.1a shows water flowing from a tap, with the tap partly open. Figure 1.1b shows
water flowing from the tap, with the tap fully open. In this case, the resistance to the flow of water is
relatively reduced. For the same opening of the tap, the flow can be increased by increasing the water
pressure from the overhead tank.

Electricity is the movement of charged particles, such as electrons. A circuit is a closed loop, which
allows the flow of charges from one place to another. Components in the circuit control the flow and
use it to do work. Charge is similar to the amount of water. Voltage is similar to water pressure.
Current is flow of charge. More water in the tank results in increasing the flow at the exit. Flash light
gets dimmer as the batteries run down. Less pressure results in reduced water flow. The measure of
water flow is cubic meter/second. The measure of current flow is coulomb/second.
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2 1 Basic Concepts

Fig. 1.1 (a) Water flow
with the tap partly open;
(b) more flow with the tap
fully open

(a) (b)

Fig. 1.2 Batteries in series

V

V

Bulb Bright
2VV

Bulb Dim
V

(a)

(b)

An electrical system is similar to a water supply system. Water flows through the pipes of a water
system. Electricity flows through the wires of an electrical system. Electrical pressure is measured in
volts. Electrical current flow is measured in amperes. A wire serves the purpose of a pipe. A battery
serves the purpose of a pump or a reservoir. A resistor serves the purpose of a narrow constriction in
a pipe. Current flow is similar to water flow. Current is the number of electrons moving past a point in
the circuit per second. Voltage is the pressure difference between two points, due to which the current
flows. A larger conductor offers less resistance and enables a larger current flow in the circuit with
the same voltage applied. With the resistance remaining the same, applying a higher voltage results
in a larger current flow, as shown in Fig. 1.2. In Fig. 1.2a, V volts of electrical pressure is applied
to the bulb and the resulting light is dim. In (b), two batteries connected in series produce 2 V volts
of pressure resulting in the bulb becoming bright. With a higher voltage applied to the circuit, more
current flows making the bulb emit more light. A water supply system has water tank, pumps, pipes
connected in various configurations, and valves. Similarly, an electric circuit has voltage and current
sources, wires and circuit elements, connected in various configurations.

No analogy can be exact. Here is another one. Cars cross tollgate in the highway. If there is only
one gate, certain number of cars can cross the gate per unit time. If the cars have to cross two gates,
one after another, then the rate of cars passing through the gates becomes one-half. If there are two
parallel gates, double the number of cars can pass through. If there are only few cars, then one gate
may be sufficient. But, a large number of cars forces opening of more gates resulting in a higher rate
of flow. In electrical systems, this is called Ohm’s law. A higher voltage produces a larger current in
the circuit. Processing time at the gate has to be reduced by opening more gates. Similarly, a higher
voltage has to be applied for more current and more light from the bulb. Similarly, a larger conductor
offers less resistance and enables a larger current flow in the circuit with the same voltage applied.
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1.1 Ohm’s Law 3

Fig. 1.3 Resistor R in
ohm or conductance G in
mho

R= 1
GV =RI

I =GV
+

-

V =4V,R=2Ω, G=0.5 , I = 4
2 =4(0.5)=2A

A voltage is developed by creating a separation of positive and negative charges. One coulomb
of charge is the total charge of 6.242 × 1018 electrons. To develop 1 volt (V) between two points,
1 coulomb of charge has to be moved by applying 1 joule of energy. This is similar to pumping water
to a higher level. Since potential energy is due to position, the word potential is also used to refer
voltage levels. When a connection is made between two points with a potential difference, current
flows. If 1 coulomb of charge passes through a point per second, then the flow of charge or current is
said to be 1 ampere (A). Typical voltage sources are batteries, solar cells, and generators.

In a practical electrical circuit, the elements are physical devices. For the purpose of analysis,
any system can be represented by mathematical models with acceptable tolerances. Therefore, the
elements of an electric circuit are represented by mathematical definitions. The opposition to the flow
of current is called as the resistance. The resistance is 1 � if 1 ampere current flows through it, when
1 V is applied across it. The resistor, a device used to control the flow of current, is denoted by the
symbol R. The reciprocal of resistance is conductance, denoted by G. That is,

R = 1

G
and G = 1

R
.

The unit of measurement of resistance is �, called ohm. The unit of measurement of conductance is �,
called mho. Figure 1.3 shows the input–output relationship of a resistor of value R�. With 4 V applied
across the resistor of value 2 �, the current I through it is 4/2 = 2 A. The conductance is 1/2 = 0.5�.
Then, I = 4 × 0.5 = 2 A, as found earlier. The resistance is similar to friction. If a surface is rough,
more force is required to move an object on it. The more the roughness of the surface, the more is the
heat generated. The higher the current flowing through the resistor, the higher is the voltage across it.
Both the frictional devices and resistors dissipate energy, when a force is applied.

1.1 Ohm’s Law

The voltage across a resistor, V , is the current, I , flowing through it times its value R, known as Ohm’s
law. That is,

I = V

R
, R = V

I
and V = IR.

It is assumed that R is a constant to a required accuracy, since R varies with temperature, pressure, etc.
This law, as is the case with most of the other laws, is applicable to both the DC and AC circuits. By
convention, the current enters the positive terminal and leaves the negative terminal. That is, current
flows from a higher voltage to a lower voltage. Therefore, the current direction determines the polarity
of the voltage at the terminals of the resistor. If R is zero, it is called a short-circuit and the voltage
across it is zero. If R is ∞, it is called an open-circuit and the current through it is zero. Resistors are
essential to control the flow of current and are commonly used in such applications as controlling the
speed of a fan, audio volume control in amplifiers, and emission of light by a bulb.
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4 1 Basic Concepts

The power dissipated by a resistor, the rate of energy dissipation, is

P = V I = V 2

R
= I 2R.

The unit of measurement is joules per second or watts (W). Note that the expressions for the power
are quadratic. That is, they are nonlinear. The power varies inversely as the resistance with a voltage
source. The power varies proportionally as the resistance with a current source. The power consumed
in a circuit is the sum of the powers consumed by all the constituent resistors, found using either of
the defining expressions. Alternatively, when there is only one source, the equivalent resistance of the
whole circuit can be computed. Then, the power dissipated in this resistor is the power consumed by
the whole circuit. When more than one source is present, the power consumed by the circuit is the
sum of the powers consumed by each resistor.

Example 1.1 Determine the resistance of a bulb, when the current through it is 0.2 A and the voltage
across it is 220 V. Find the power consumed by the bulb.

Solution

R = 220

0.2
= 1100�

P = 220 × 0.2 = 2202

1100
= 0.221100 = 44W.

�

Example 1.2 Determine the resistance of a smoothing iron, when the current through it is 10 A and
the voltage across it is 110 V. Find the power consumed by the iron.

Solution

R = 110

10
= 11�

P = 110 × 10 = 1102

11
= 10211 = 1100W.

�

1.2 Resistors Connected in Series

In practice, the desired resistor is often not available and we have to use a combination of more
than one resistor to make an equivalent one. Resistors can be connected in series and/or parallel
configurations. Resistors have two terminals and, therefore, they come under the class of two-terminal
devices or elements. In a series connection, one, and only one, terminal of a resistor is connected to
adjoining resistors. Figure 1.4a shows two resistors connected in series, called a series circuit. A
circuit is an interconnection of elements. The determination of current and voltages at all parts of the
circuit is the essence of circuit analysis. When resistors are connected in series, the voltage across
them increases, with the same current flowing through them. It is similar to connecting hoses to make
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VR1 = V R1
R1+R2

VR2 = V R2
R1+R2

V

R1

R2

VR1

VR2
++

+

)c()b()a(

VR1 = 10 3
3+2 = 6V

VR2 = 10 2
3+2 = 4V

10V

+ −
+

−

3Ω

2Ω

VR1

VR2

I

VR1 = 5 2
2+3 = 2V

VR2 = 5 3
2+3 = 3V
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2Ω

3Ω
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VR2

− +
−

+
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Fig. 1.4 Series circuit with a voltage source

a longer hose. The combined resistance is the sum of all the resistances. That is, with N number of
resistors connected in series, the equivalent resistance Req of the series circuit is

Req = R1 + R2 + · · · + RN.

The value of Req will be larger than the largest resistor in the series connection. The same current I

pass through all the resistors. Therefore, the voltage V across the series connection is

V = IR1 + IR2 + · · · + IRN = IReq.

The total resistance remains unchanged, irrespective of the order in which they are connected.
Obviously, if all of them have the same value, then Req = NR. The source voltage applied across
them gets divided in proportion to their individual values. The current through the series circuit is

I = V

Req

and the voltage across any resistor Rn is

VRn = V

Req

Rn.

With just two resistors, R1 and R2, and V , the voltages across the series connection are

VR1 = V
R1

R1 + R2
and VR2 = V

R2

R1 + R2
.

Consider the circuit shown in Fig. 1.4b. The circuit is energized by a voltage source of 10 V. An
ideal voltage source maintains a constant voltage at its terminals, irrespective of the current drawn
from it. A voltage source is a constraint, clamping the voltage at a certain point in the circuit. The
voltage drops across the resistors are

VR1 = V

R1 + R2
R1 = 10

3 + 2
3 = 6 V and VR2 = V

R1 + R2
R2 = 10

3 + 2
2 = 4 V.
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VR1 = IR1

VR2 = IR2

IA

R1

R2

VR1

VR2

)c()b()a(

VR1 = 2 × 3 = 6V

VR2 = 2 × 2 = 4V

2A

+ −
+

−

3Ω

2Ω

VR1

VR2

VR1 = 1 × 2 = 2V

VR2 = 1 × 3 = 3V

1A
2Ω

3Ω

VR1

VR2

− +
−

+

Fig. 1.5 Series circuit with a current source

The voltage drops add up to the source voltage 10 = 6 + 4. The current through the circuit is 10
3+2 =

2 A. The power consumed by the circuit is

P = 10 × 2 = 20 W.

Consider the circuit shown in Fig. 1.4c. The circuit is energized by a voltage source of 5 V. As the
polarity of the source voltage is reversed, the polarity of the voltage drops across the resistors is also
reversed. The voltage drops across the resistors are

VR1 = V

R1 + R2
R1 = 5

3 + 2
2 = 2 V and VR2 = V

R1 + R2
R2 = 5

3 + 2
3 = 3 V

The voltage drops add up to the source voltage 5 = 2 + 3. The current through the circuit is − 5
3+2 =

−1 A. The power consumed by the circuit is

P = −5 × −1 = 5 W

Consider the circuit shown in Fig. 1.5a. The circuit is energized by a current source of IA. An
ideal current source maintains a constant current at its terminals, irrespective of the voltage across its
terminals. A current source is a constraint, clamping the current at a certain point in the circuit. As the
same current flows through the two resistors, the respective voltage drops are

VR1 = IR1 and VR2 = IR2.

Consider the circuit shown in Fig. 1.5b. The circuit is energized by a current source of I = 2 A.
The respective voltage drops are

VR1 = IR1 = 2 × 3 = 6 V and VR2 = IR2 = 2 × 2 = 4 V.

The power consumed by the circuit is

P = 10 × 2 = 20 W.
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1.3 Resistors Connected in Parallel 7

Consider the circuit shown in Fig. 1.5c. The circuit is energized by a current source of I = 1 A.
As the direction of current flow is reversed, the polarities of the voltage drops are also reversed. The
respective voltage drops are

VR1 = IR1 = 1 × 2 = 2 V and VR2 = IR2 = 1 × 3 = 3 V.

The power consumed by the circuit is

P = −5 × −1 = 5 W.

1.3 Resistors Connected in Parallel

In a parallel connection of elements, all of them are connected such that they have two points in
common. Figure 1.6 shows two resistors connected in parallel, called a parallel circuit. When resistors
are connected in parallel, the voltage across all of them remains the same, with different currents
flowing through them. It is similar to connecting hoses to make a wider hose. The length remains the
same, but the flowing capacity increases. The combined resistance is the reciprocal of the sum of all
the conductances. That is, with N number of resistors connected in parallel, the equivalent resistance
Req of the parallel circuit is

Geq = G1 + G2 + · · · + GN and Req = 1

Geq

,

where Gn = 1/Rn. The value of Req will be smaller than the smallest resistor in the parallel
connection, since the total current is more. The same voltage V is applied across all the resistors.
Therefore, the total current I flowing through the parallel connection is

I = V G1 + V G2 + · · · + V GN = V Geq.

The total resistance remains unchanged, irrespective of the order in which they are connected.
Obviously, if all of them have the same value then Req = R/N . The total current gets divided in
proportion to their individual conductance values. The current through the whole circuit is

I = V Geq

IR1 =I G1
G1+G2

IR2 =I G2
G1+G2

IA R1 R2

IR1 IR2

G1= 1
R1

G2 = 1
R2

(a) (b) (c)

IR1 =3 0.5
1+0.5 = 1A

IR2 =3 1
1+0.5 =2A

3A 2Ω 1Ω

IR1 IR2

IR1 =5 1/2
1/2+1/3 =3A

IR2 =5 1/3
1/2+1/3 =2A

5A 2Ω 3Ω

IR1 IR2

Fig. 1.6 Parallel circuit with a current source
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8 1 Basic Concepts

and the current through any resistor Rn is

IRn = I

Geq

Gn.

In terms of resistance values, with just two resistors,

Req = R1 ‖ R2 = R1R2

R1 + R2
.

The parallel combination of two elements is denoted by the symbol ‖.
Consider the circuit shown in Fig. 1.6a. The circuit is energized by a current source of V = IA.

The current through the two resistors are

IR1 = I

G1 + G2
G1 and IR2 = I

G1 + G2
G2.

Consider the circuit shown in Fig. 1.6b. The circuit is energized by a current source of I = 3 A.
The current through the two resistors are

IR1 = 3

1 + 0.5
0.5 = 1 A and IR2 = 3

1 + 0.5
1 = 2 A.

The voltage across both the resistors are the same, 1 × 2 = 2 × 1 = 2 V. The power consumed by the
circuit is

P = 2 × 3 = 6 W.

Consider the circuit shown in Fig. 1.6c. The circuit is energized by a current source of I = 5 A.
The current through the two resistors are

IR1 = 5

2(1/2 + 1/3)
= 3 A and IR2 = 5

3(1/2 + 1/3)
= 2 A.

As the source direction is reversed, the direction of current flow is also reversed. The voltage across
both the resistors is the same, 3 × 2 = 2 × 3 = 6 V. The power consumed by the circuit is

P = −5 × −6 = 30 W.

Consider the circuit shown in Fig. 1.7a. The circuit is energized by a voltage source of V . The
currents through the resistors are

IR1 = V

R1
and IR2 = V

R2
.

Consider the circuit shown in Fig. 1.7b. The circuit is energized by a voltage source of 2 V. The
currents through the resistors are

IR1 = 2

2
= 1 A and IR2 = 2

1
= 2 A.
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IR1 = V
R1

IR2 = V
R2

V
R1 R2

IR1 IR2

(a) (b) (c)

+ +
+

IR1 = 2
2 = 1A

IR2 = 2
1 =2A

2V
2Ω 1Ω

IR1 IR2

IR1 = 6
2 =3A

IR2 = 6
3 =2A

6V
2Ω 3Ω

IR1 IR2

Fig. 1.7 Parallel circuit with a voltage source

The power consumed by the circuit is

P = 2 × 3 = 6 W.

Consider the circuit shown in Fig. 1.7c. The circuit is energized by a voltage source of 6 V. The
currents through the resistors are

IR1 = 6

2
= 3 A and IR2 = 6

3
= 2 A.

As the polarity of the source is reversed, the direction of the current is also reversed. The power
consumed by the circuit is

P = −5 × −6 = 30 W.

1.4 Resistors Connected in Series and Parallel

The analysis of series and parallel circuits is relatively straightforward. In general, most circuits are a
combination of series and parallel circuits or connected in a random configuration in which none of
the elements is in series or parallel or a combination of both. Obviously, combinations of the concepts
of series and parallel circuits are used to analyze series-parallel circuits. Analysis of circuits with
random configurations is presented in later chapters.

First, we have to identify the parts of the circuit with series and parallel configurations and simplify
them separately. Now, the circuit gets reduced to a simpler form. These steps must be repeated until we
can determine the source current. Then, using the voltage-division and current-division laws governing
series and parallel circuits repeatedly, find the voltages and currents at all parts of the circuit.

Consider the circuit shown in Fig. 1.8a. The circuit is energized by a current source of I = IR1 =
1 A. The source current flows through R1 and, therefore, IR1 = 1 A. The voltage across it is 1 × 2 =
2 V. The source current gets divided between R2 and R3. Using current-division formula, we get

IR2 = I

G2 + G3
G2 = 1

1 + (1/3)
1 = 3

4
A

IR3 = I

G2 + G3
G3 = 1

1 + (1/3)

1

3
= 1

4
A
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IR1 =1A, IR2 = 3
4A, IR3 = 1

4A

+ −+

−

+

−

1A

R1

2Ω

R3 3ΩR2 1Ω

IR1

IR3IR2

Req =2+ 1×3
4 = 11

4 Ω,IR1 = 1
11/4 = 4

11A

IR2 =IR1
3
4 = 3

11A, IR3 = IR1
1
4 = 1

11A

1V
R1

2Ω

R3 3ΩR2 1Ω

IR1

IR3IR2

(b)(a)

+ −+

−

+

−

Fig. 1.8 Resistors in series and parallel

as shown in the figure.

I = IR1 = IR2 + IR3 = 3

4
+ 1

4
= 1 A.

The voltage across the parallelly connected R2 and R3 is

3

4
1 = 1

4
3 = 3

4
V.

The power dissipated in the circuit is

P = 12 × 2 + 3

4
× 1 = 2.75 W.

Consider the circuit shown in Fig. 1.8b. The circuit is energized by a voltage source of 1 V. First,
we have to find the combined resistance of the circuit, which is

Req = R1 + (R2 ‖ R3) = 11

4
�.

Now, the current drawn from the source is

I = IR1 = 1

11/4
= 4

11
A.

This current gets divided between R2 and R3. Using current-division formula, we get

IR2 = I

G2 + G3
G2 =

4
11

1 + (1/3)
1 = 3

11
A

IR3 = I

G2 + G3
G3 =

4
11

1 + (1/3)

1

3
= 1

11
A
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1.5 Kirchhoff’s Voltage and Current Laws 11

as shown in the figure.

I = IR1 = IR2 + IR3 = 3

11
+ 1

11
= 4

11
A

The voltage across the parallelly connected R2 and R3 is

3

11
1 = 1

11
3 = 3

11
V.

The combined voltage across the series-parallel combination is

2
4

11
+ 3

11
= 11

11
= 1 V,

which is equal to the source voltage. The power dissipated in the circuit is

P = 4

11
× 1 = 4

11
W.

1.5 Kirchhoff’s Voltage and Current Laws

Kirchhoff’s voltage and current laws are two of the few fundamental laws in electrical engineering.
Voltage means electric potential difference. These laws are required to find the equilibrium of the
circuit in terms of its currents and voltages. A circuit can be characterized by a set of independent
variables, current or voltage. If currents are chosen as the variables, then Kirchhoff’s voltage law
(KVL) is used to express the equilibrium of the circuit. The voltage at a point in the circuit is similar
to the height of a point in a hilly terrain. Let us start at some point in a hill and climb the hill, visit the
peaks, and climb down to the starting point. Then, the net height traversed by us is zero. Similarly, let
us start at some point in a circuit, go through the circuit visiting junction points of elements and return
back to the starting point. Then, the algebraic sum of the voltages around the loop is zero, which is
KVL.

Kirchhoff’s Voltage Law
The algebraic sum of voltage drops across the circuit elements around a closed path of a circuit must
be zero. That is,

� ± V = 0.

Consider the circuit shown in Fig. 1.9a. Let us start at point 1 and traverse the circuit in the clockwise
direction. Voltage at point 1 minus the voltage at point 2 is the voltage drop from point 1 to 2, which is

Fig. 1.9 Kirchhoff’s
voltage and current laws

−V + VR1 + VR2 = 0

V

R1

R2

VR1

VR2

I1 + I2 − I3 = 0

I1

I2

I3N

)b()a(

+ - +

-

+

1 2

3

www.TechnicalPDF.com



12 1 Basic Concepts

positive. Similarly, the voltage drop from point 2 to 3 is also positive. However, the voltage drop from
point 3 to 1 is negative. Therefore, some of the voltage drops must be negative and the rest positive so
that the sum around the closed path (loop) is zero. In the circuit shown in Fig. 1.4b, we have

6 + 4 − 10 = 0 or 6 + 4 = 10 or − 6 − 4 + 10 = 0.

In the circuit shown in Fig. 1.4c, we have

−2 − 3 + 5 = 0 or 2 + 3 = 5 or 2 + 3 − 5 = 0.

We can traverse the loop in the anticlockwise direction also.

Kirchhoff’s Current Law (KCL)
In a market, at the end of the day, the money spent by the customers must be equal to the money
received by the merchants. In a traffic junction, the number of vehicles entering must be equal to the
number of vehicles leaving. At the junction of water pipes, the inflow of water must be equal to the
outflow. Similarly, at the junction of several branches of a circuit, the algebraic sum of the currents
must be zero. That is the sum of the incoming currents is equal to the sum of the outgoing currents.

The algebraic sum of currents flowing from branches towards a node in a circuit must be zero. That
is,

� ± I = 0.

When voltages are chosen to characterize the circuit, the equilibrium of the circuit is expressed by the
KCL. In Fig. 1.9b, applying KCL, we get

I1 + I2 − I3 = 0 or I1 + I2 = I3 or − I1 − I2 + I3 = 0.

The incoming currents must be assigned the opposite sign assigned to the outgoing currents.
In Fig. 1.8a,

IR1 = IR2 + IR3 = 3

4
+ 1

4
= 1 A.

In Fig. 1.8b,

IR1 = IR2 + IR3 = 3

11
+ 1

11
= 4

11
A.

Characterization of circuits on a current or voltage basis has a dual nature in that they are essentially
similar with the roles of the current and voltage variables interchanged. The dual nature of the series
and parallel circuits is shown in Table 1.1.

Table 1.1 The dual
nature of the series and
parallel circuits

Parallel circuit Series circuit

Geq = G1 + G2 Req = R1 + R2

I = I1 + I2 = V G1 + V G2 V = V1 + V2 = IR1 + IR2

I1 = I G1
G1+G2

, I2 = I G2
G1+G2

V1 = V R1
R1+R2

, V2 = V R2
R1+R2

I1 = I,G1 → ∞,I2 = I,G2 → ∞ V1 = V,R1 → ∞,V2 = V,R2 → ∞
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1.7 Summary 13

1.6 Applications

In almost all electric circuits used in applications, series and parallel connection of elements will
occur in some parts of the circuit. Circuit elements, such as resistors, are readily available only at
certain values. It is a common practice to connect them in series and/or parallel to find the element
with the required value. Another common occurrence day-to-day is the use of electric cells in series
in appliances, such as torchlight. Usually, all devices, such as a motor, fan, and bulb, are connected in
series with a switch to put the device on or off. Our house wiring is in parallel, connecting group of
devices to each line. This prevents the shutdown of the whole power supply, when a problem occurs
in a certain device.

In water heaters, the heater is connected with a thermostat, to stop and start the power supply as
required to control the temperature of the water at the set level, and a switch. In electrical filters,
which pass some frequency components of a signal while attenuating others, resistors, inductances,
and capacitances are connected in series and/or parallel. In sensor circuits, a voltage is applied to the
series connection of a standard resistor and a sensing resistor. The resistance of this resistor changes
with some parameters such as pressure, temperature, etc. By measuring the change of the voltage
drop across the standard resistor, the change in resistance of the sensor and, hence, the required
parameter is measured. Airport runway lights are connected in series with a constant current through
them. Therefore, the current, for a given voltage source, through them is kept low, requiring small
conductors for the circuit. Certain mechanism is included so that the failure of one bulb will not
prevent illuminating by the rest.

1.7 Summary

• Electrical and electronic engineering is indispensable in all applications of science and engineering,
either in home, office, or industry.

• Electricity is the movement of charged particles, such as electrons.
• The flow of current is similar to the flow of water in a pipe.
• A circuit is a closed loop, which allows the flow of charges from one place to another. Components

in the circuit control the flow and use it to do work.
• Charge is similar to the amount of water. Voltage is similar to water pressure.
• Current is the number of electrons moving past a point in the circuit per second. Voltage is the

pressure difference between two points, due to which the current flows.
• The opposition to the flow of current is called the resistance. The resistance is 1 � if 1 ampere

current flows through it, when 1 V is applied across it.
• The voltage across a resistor V is the current I flowing through it times its value R, known as

Ohm’s law.
• Resistors can be combined in a series and/or parallel or arbitrary configurations.
• An electric circuit is an interconnection of components, such as battery, resistors, etc.
• In a series circuit, same current flows through the circuit.
• In a parallel circuit, same voltage is applied across all the elements in the circuit.
• Kirchhoff’s voltage law states that the algebraic sum of voltage drops across the circuit elements

around a closed path of a circuit must be zero.
• Kirchhoff’s current law states that the algebraic sum of currents flowing from branches towards a

node in a circuit must be zero.
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14 1 Basic Concepts

• Characterization of circuits on a current or voltage basis has a dual nature in that they are essentially
similar with the roles of the current and voltage variables interchanged.

• Electric circuits are used in almost all applications of science and engineering.

Exercises

1.1 Find the current I and the voltages across the resistors,

VR1, VR2, VR3, VR4, VR5

in the series circuit, shown in Fig. 1.10. Verify KVL.
1.1.1

V = 2 V, R1 = 3�, R2 = 2�, R3 = 4�, R4 = 1�, R5 = 5�.

* 1.1.2

V = −3V, R1 = 1�, R2 = 2�, R3 = 3�, R4 = 4�, R5 = 5�.

1.1.3

V = −4 V, R1 = 2�, R2 = 1�, R3 = 4�, R4 = 3�, R5 = 6�.

1.2 Find the voltages across the resistors,

VR1, VR2, VR3, VR4, VR5

in the series circuit, shown in Fig. 1.11.
1.2.1

I = 2 A, R1 = 3�, R2 = 2�, R3 = 4�, R4 = 1�, R5 = 5�.

1.2.2

I = −3 A, R1 = 1�, R2 = 2�, R3 = 3�, R4 = 4�, R5 = 5�.

* 1.2.3
I = −4A, R1 = 2�, R2 = 1�, R3 = 4�, R4 = 3�, R5 = 6�.

1.3 Find the voltage across the resistors,

Fig. 1.10 Series circuit
with a voltage source

V

R1 R2

R5 R4

R3

VR1 VR2

VR5 VR4

VR3

I

+
+

+ +

+ +
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Fig. 1.11 Series circuit
with a current source

I

R1 R2

R5 R4

R3

VR1 VR2

VR5 VR4

VR3

I+
+ +

+ +

Fig. 1.12 Parallel circuit
with a current source

IA R1 R2 R3 R4 R5

IR1 IR2 IR3 IR4 IR5

Fig. 1.13 Parallel circuit
with a voltage source

V

I

+
R1 R2 R3 R4 R5

IR1 IR2 IR3 IR4 IR5

VR1, VR2, VR3, VR4, VR5

in the parallel circuit, shown in Fig. 1.12. Find the currents through the resistors,

IR1, IR2, IR3, IR4, IR5

Verify that the sum of the currents through the resistors is equal to the source current.
1.3.1

I = 2 A, R1 = 3�, R2 = 2�, R3 = 4�, R4 = 1�, R5 = 5�.

1.3.2

I = −3 A, R1 = 1�, R2 = 2�, R3 = 3�, R4 = 4�, R5 = 5�.

* 1.3.3

I = −4 A, R1 = 2�, R2 = 1�, R3 = 4�, R4 = 3�, R5 = 6�.

1.4 Find the current I and the voltages across the resistors,

VR1, VR2, VR3, VR4, VR5

in the parallel circuit, shown in Fig. 1.13. Find the currents through the resistors,

IR1, IR2, IR3, IR4, IR5

Verify that the sum of the currents through the resistors is equal to the total current, I .
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1.4.1
V = 2 V, R1 = 3�, R2 = 2�, R3 = 4�, R4 = 1�, R5 = 5�

* 1.4.2

V = −3 V, R1 = 1�, R2 = 2�, R3 = 3�, R4 = 4�, R5 = 5�

1.4.3

V = −4 V, R1 = 2�, R2 = 1�, R3 = 4�, R4 = 3�, R5 = 6�

1.5 Find the current I and the voltages across the resistors,

VR1, VR2, VR3, VR4, VR5

and current through
IR1, IR2, IR3, IR4, IR5

in the series-parallel circuit, shown in Fig. 1.14. Verify KVL around the loops and KCL at node
x.

1.5.1
V = 2 V, R1 = 3�, R2 = 2�, R3 = 4�, R4 = 1�, R5 = 5�.

* 1.5.2

V = −3 V, R1 = 1�, R2 = 2�, R3 = 3�, R4 = 4�, R5 = 5�.

1.5.3

V = −4 V, R1 = 2�, R2 = 1�, R3 = 4�, R4 = 3�, R5 = 6�.

1.6 Find the voltages across the resistors,

VR1, VR2, VR3, VR4, VR5

in the series-parallel circuit, shown in Fig. 1.15. Verify KCL at node x.
1.6.1

I = 2 A, R1 = 3�, R2 = 2�, R3 = 4�, R4 = 1�, R5 = 5�.

Fig. 1.14 Series-parallel
circuit with a voltage
source

V

x

+
R1 R2 R3 R4

R5

IR1 IR2 IR3 IR4

I
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Fig. 1.15 Series-parallel
circuit with a current
source

I

x

R1 R2 R3 R4

R5

IR1 IR2 IR3 IR4

I

* 1.6.2

I = −3 A, R1 = 1�, R2 = 2�, R3 = 3�, R4 = 4�, R5 = 5�.

1.6.3

I = −4 A, R1 = 2�, R2 = 1�, R3 = 4�, R4 = 3�, R5 = 6�.
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An electric circuit, for theoretical analysis, is an interconnection of idealized representation of physical
components, such as voltage and current sources, switches, resistors, inductors, and capacitors. Any
physical device can be approximated for practical purposes by idealized devices with sufficient
accuracy. The relationship between the voltage across an element and the current through it is called its
volt–ampere relationship and is assumed to be linear in the specified operating ranges. In this chapter,
we consider circuits with DC sources and resistors only. DC is abbreviated form for direct current, a
common designation for constant voltage or current. AC is abbreviated form for alternating current, a
common designation for sinusoidally varying voltage or current.

Apart from its practical importance, the study of the basic principles of DC circuit analysis,
without considering the transient response, is relatively simpler. Further, it has the priority since
the mathematical process of computing the circuit response for a constant excitation is relatively
easier to learn. The same basic principles can be easily adapted for AC circuit analysis. Therefore, a
good understanding of the DC circuit analysis is essential and it makes the learning of the AC circuit
analysis that much simpler.

With the sources and circuit elements specified, the purpose of circuit analysis is to determine the
voltages and currents at all parts of the circuit. There is a voltage across any circuit element, called
a branch of the circuit, and a current through it. Since the current and voltage in an element are
related through its volt–ampere relationship, circuits can be analyzed in terms of the branch currents
alone or branch voltages alone. A minimum set of independent branch voltages or currents has to
be determined. There is no unique choice. The method of circuit analysis based on currents is called
mesh or loop analysis. The other method based on voltages is called nodal analysis. Either method
results in a set of equilibrium equations. The solution to these equations is obtained using linear
algebra, yielding the values of the independent variables. From these values, all the values of other
branch voltages and currents of the circuit can be determined, using KVL and KCL, completing the
circuit analysis. The analysis presented, hereafter, is an extension of the analysis presented in the first
chapter applicable to circuits with random configurations. We use the same input–output relationship
of elements, Ohm’s law, KVL, and KCL, but in a systematic manner as the circuit complexity is high.
The equilibrium conditions for a circuit can be established in either of the two ways:
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Fig. 2.1 (a) Ideal and (b)
practical voltage sources
and their volt–ampere
characteristics

I

V
+
−

I

V

IRs

V
+
−

I

V

Vt

)b()a(

Vt

1. Through a set of N equations, using KVL, in which the mesh currents are the independent
variables.

2. Through a set of M equations, using KCL, in which the branch voltages are the independent
variables.

Voltage Sources
A source is required to energize a circuit. An ideal voltage source is characterized by its volt–ampere
relationship of keeping its terminal voltage same irrespective of the current drawn by the load circuit
connected to it, as shown in Fig. 2.1a. A practical voltage source can be approximated by an ideal
voltage source in series with a resistance Rs , called the source resistance. Therefore, the voltage at the
terminals of a practical voltage source, Vt , will decrease as the current drawn from it is increased, as
shown in Fig. 2.1b. A voltage source is an applied constraint in the circuit. Due to this constraint, the
voltages at various nodes of the circuit are fixed, depending on the characteristics of the voltage source
and the circuit. The + sign or an arrow indicates that a voltage raise in that direction is considered as
a positive quantity.

Two voltage sources with capacities V1 and V2 volts, connected in series, are equivalent to a single
source with capacity, which is equal to the algebraic sum of V1 and V2. Two voltage sources with
unequal voltage capacities are not allowed to be connected in parallel, since it is a violation of KVL.

2.1 Mesh Analysis

Mesh analysis is also called loop analysis. The response of a circuit is completely characterized by
the values of currents and voltages in all its branches. A circuit, geometrically, is characterized by its
branches and nodes. A branch represents a single element, such as a resistor. That is, a branch is any
two-terminal element. However, in certain problems, it is possible to regard series, parallel, or series-
parallel combination of elements as a branch. The point where the terminals of two or more branches
are connected together is called a node. Nodes, with selected independent voltages, are indicated by
a dot in the circuit diagram. If two nodes are connected by a conductor (a short circuit), then the two
nodes constitute a single node. A loop is a closed path in a circuit. It starts at a node, passes through
a set of nodes (passing through each node only once), and returns to the starting node. A loop is
independent if it contains at least one branch that is not part of any other independent loop.
Two or more elements are connected in series if they carry the same current. Two or more elements
are connected in parallel if their terminal voltages are the same.

A tree is any set of branches of the circuit that is sufficient to connect all its nodes. As the structure
of the selected set of branches resembles that of a tree, it is called a tree. The number of branches
forming a tree is TB = N − 1, where TB is the number of branches of the tree, called tree branches,
and N is the number of nodes of the circuit. A tree contains no closed paths. There are several possible
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2.1 Mesh Analysis 21

Fig. 2.2 (a) A bridge
circuit; (b) the circuit with
branch currents

+1V

R1 1 Ω R2 3 Ω

R3 3 Ω R4 1 Ω

R5

1 Ω

1V

0.4A
R1 1 Ω R2 3 Ω

R3
0.2A
3 Ω R4 1 Ω

R5

1 Ω, 0.2A

I1 = 0.6A

I3 = 0.4A

I2 = 0.2A

)b()a(

different trees for a given circuit. There is no unique tree corresponding to a circuit. But, the number of
tree branches is always TB. Any one of the possible trees is sufficient for analyzing the corresponding
circuit. Branches removed from a circuit, in forming a tree, are called the links. The number of links
is M . Then, the total number of branches, B, in the circuit is B = TB + M . The equilibrium state
of a circuit is determined by L independent link currents flowing through the L selected loops. That
is, L branch currents only, of the B branch currents, are independent and it is the smallest number of
currents in terms of which the rest can be expressed uniquely as a linear combination, using KCL at
the nodes.

Given a circuit, the problem is to determine all the voltages across the branches and currents
through the branches. The branch voltages are related to branch currents through volt–ampere
characteristics of the particular circuit elements. Therefore, the behavior of any circuit is adequately
characterized by branch currents alone or branch voltages alone. Based on this, there are two basic
methods of circuit analysis: (1) mesh or loop analysis and (2) nodal analysis. In mesh analysis,
the values of the independent current variables are determined. In nodal analysis, the values of the
independent voltage variables are determined.

In order to reduce mistakes and confusion, the problem has to be approached systematically
through several steps. Steps in establishing equilibrium equations for the mesh analysis of a circuit
and finding the solution are as follows:

1. Select an appropriate number of independent current variables and the directions of current flow
2. Express the dependent current variables, by applying KCL at nodes, in terms of independent

current variables
3. Apply KVL around the selected loops to set up a set of simultaneous equations
4. Solve for the independent currents and find the currents in all the branches
5. Verify the solution using KVL and KCL

The concepts are better presented through examples. Consider the analysis of the bridge circuit,
shown in Fig. 2.2a. The circuit consists of 5 resistors with their values, designated R1 to R5, and a
1 V voltage source. Each circuit is different in the kinds of elements involved and the way they are
interconnected. A resistor is characterized by its volt–ampere relationship of the voltage across it
being proportional to the current through it, the constant of proportionality being its resistance value
in ohms.

One possible set of independent current variables is shown in Fig. 2.2b. There are three links in the
circuit and, therefore, the number of independent current variables is three, designated as
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R1 1 Ω

R3 3 Ω

R5

1 Ω

1V

R1 1 Ω

R3 3 Ω

I1

R1 1 Ω R2 3 Ω
R5

1 Ω

I2

R3 3 Ω R4 1 Ω

R5

1 Ω

I3

Fig. 2.3 A tree, with four nodes shown by discs, corresponding to the bridge circuit and the three independent loops

{I1, I2, I3}.

The tree corresponding to the circuit, with four nodes shown by discs, is shown on the left side in
Fig. 2.3, followed by the three loops formed by inserting the three links, in turn, in the tree. The
three links are the voltage source and resistors R2 and R4. The three branches pertaining to the three
independent currents must be the links associated with the selected tree. The insertion of one of the
links in the tree must result in only one closed loop, which is different for each link. Therefore, a
distinct set of loops is obtained.

Step 1 Independent and Dependent Variables
The three independent current variables are I1, I2, and I3. By applying KCL at three nodes in Fig. 2.2b,
the three dependent currents, flowing through resistors R1, R3, and R5, are expressed in terms of the
independent currents as

IR1 = I1 − I2

IR3 = I1 − I3

IR5 = IR1 − IR3 = I3 − I2.

The directions of all the branch currents, which can be arbitrary, must be assigned. If the assumed
direction of the current is not correct, then the value of the current found in the analysis will be
negative.

Step 2 Setting Up the Equilibrium Equations
The equilibrium conditions for a circuit can be expressed, in mesh analysis, by a set of N equations
using KVL in which the N loop currents are the variables. Assuming no current sources and N

independent loops, the equilibrium equations, in general, are of the form

Z11I1 + Z12I2 + Z13I3 + · · · + Z1NIN =
∑

V1

Z21I1 + Z22I2 + Z23I3 + · · · + Z2NIN =
∑

V2

· · · = · · ·
ZN1I1 + ZN2I2 + ZN3I3 + · · · + ZNNIN =

∑
VN,
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where {I1, I2, . . . , IN } are the currents in the N chosen loops of the circuit, {Zi1, Zi2, . . . , ZiN } are
the total impedances in the respective loops and {∑V1,

∑
V2, . . . ,

∑
VN } are the algebraic sum of

the source voltages in the respective loops. For example, Z12 is the impedance in the branch common
to loops 1 and 2. It is positive or negative depending on the directions of the flow of the currents in
the common branch. Impedance has a resistive part and a reactive part. In this chapter, we use only
resistors. Therefore, Z = R. The equilibrium equations hold whether the circuit consists of resistors
only or otherwise. In order to emphasize this fact and to make the understanding of the analysis of AC
circuits easier, we use Z mostly instead of R.

Using vector and matrix quantities, the equilibrium equations and the solution are concisely
given by

ZI = V and I = Z−1V ,

where Z is the impedance matrix, I is the current vector, and V is the voltage vector.

Z =

⎡

⎢⎢⎣

Z11 Z12 Z13 · · · Z1N

Z21 Z22 Z23 · · · Z2N

· · · · · ·
ZN1 ZN2 ZN3 · · · ZNN

⎤

⎥⎥⎦ , I =

⎡

⎢⎢⎢⎢⎢⎣

I1

I2

I3
...

IN

⎤

⎥⎥⎥⎥⎥⎦
, V =

⎡

⎢⎢⎢⎢⎢⎣

∑
V1∑
V2∑
V3
...∑
VN

⎤

⎥⎥⎥⎥⎥⎦
.

For the circuit shown in Fig. 2.2b, applying KVL around the chosen loops, we get the three
equilibrium equations.

Z1(I1 − I2) + Z3(I1 − I3) = 1

−Z1(I1 − I2) − Z5(I3 − I2) + Z2I2 = 0

−Z3(I1 − I3) + Z5(I3 − I2) + Z4I3 = 0.

These are the equations obtained traversing each loop either in the clockwise or anticlockwise
direction. For example, the first equation corresponds to the loop with current I1. Considering the
direction of the current flow, the voltage drops across R1 and R3 add up, whereas the source voltage
polarity is opposite of this drop. Therefore,

IR1Z1 + IR3Z3 = Z1(I1 − I2) + Z3(I1 − I3) = 1.

This is a straightforward application of KVL to loop 1. There are no sources in the other loops.
Simplifying the equilibrium equations, we get

(Z1 + Z3)I1 − Z1I2 − Z3I3 = 1

−Z1I1 + (Z1 + Z2 + Z5)I2 − Z5I3 = 0

−Z3I1 − Z5I2 + (Z3 + Z4 + Z5)I3 = 0.

Using matrices, we get

⎡

⎣
(Z1 + Z3) −Z1 −Z3

−Z1 (Z1 + Z2 + Z5) −Z5

−Z3 −Z5 (Z3 + Z4 + Z5)

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
1
0
0

⎤

⎦ .
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Ensure that the correct values for the impedances and sources and the appropriate equations
are used before proceeding with any numerical computation. With

Z1 = 1, Z2 = 3, Z3 = 3, Z4 = 1 and Z5 = 1,

we get ⎡

⎣
4 −1 −3

−1 5 −1
−3 −1 5

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
1
0
0

⎤

⎦ .

The determinant of the impedance matrix must be nonzero. Otherwise, the equilibrium equations
are dependent and must be checked. The determinant is 40 for this example.

Step 3 Solving the Equilibrium Equations
In order to solve for currents, we have to find the inverse of the impedance matrix. For this example,
the inverse is found, as shown in Appendix A. In order to verify the inverse, it must be multiplied
by the impedance matrix to get a 3 × 3 identity matrix, a matrix with all zeros except 1 on the main
diagonal.

I = Z−1V
⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
4 −1 −3

−1 5 −1
−3 −1 5

⎤

⎦
−1⎡

⎣
1
0
0

⎤

⎦ =
⎡

⎣
0.6000 0.2000 0.4000
0.2000 0.2750 0.1750
0.4000 0.1750 0.4750

⎤

⎦

⎡

⎣
1
0
0

⎤

⎦ =
⎡

⎣
0.6
0.2
0.4

⎤

⎦

{IR1 = I1 − I2 = 0.4 A, IR3 = I1 − I3 = 0.2 A, IR5 = I3 − I2 = 0.2 A}.
All the currents are shown in Fig. 2.2b.

Verifying the Solutions
Applying KVL to each loop, in turn, we get

IR1R1 + IR3R3 = (0.4)1 + (0.2)3 = 1

−I2R2 + IR5R5 + IR1R1 = −(0.2)3 + (0.2)1 + (0.4)1 = 0

IR5R5 + I3R4 − IR3R3 = (0.2)1 + (0.4)1 − (0.2)3 = 0.

Verifying the solution using KCL at the four nodes

I1 − IR1 − I2 = 0.6 − 0.4 − 0.2 = 0

IR1 − IR3 − IR5 = 0.4 − 0.2 − 0.2 = 0

IR5 + I2 − I3 = 0.2 + 0.2 − 0.4 = 0

IR3 − I1 + I3 = 0.2 − 0.6 + 0.4 = 0.

Symmetry of the Impedance Matrix
The procedure for loop analysis described is applicable for any circuit. However, for certain type
of circuits under some conditions, the general procedure can be simplified. Of course, if a shortcut
is available for the analysis of circuits it should be taken advantage of. The impedance matrix of
the bridge circuit is symmetrical about its principal diagonal. That is, Zij = Zji . It is useful to
verify the setting of the equilibrium equations. It is not an inherent property of linear circuits. This

www.TechnicalPDF.com



2.1 Mesh Analysis 25

is due to the setting of KVL equations using the same loops defining the link currents and using
consistently clockwise or anticlockwise direction for the independent currents in a mappable circuit.
The graph of a mappable circuit does not have any branches crossing each other. Further, all the
voltage sources in the circuit must be independent. In the first loop of the example circuit, shown in
Fig. 2.3, the independent current I1 flows in the same direction through all the elements. Therefore,
the contribution of the voltage due to I1 is the current multiplied by the sum of the values of all
resistors in the first loop. Consequently, the first value in the main diagonal of the impedance matrix
is 4. Similarly, the other values in the main diagonal are, respectively, the sum of the values of the
resistors in the corresponding loops. The second and third values are 5 and 5. The other entries in
the matrix are negative and symmetric. Their values are the values of the resistance common to the
two loops. For example, the value of the resistor between the first and third loops is 3 and, therefore,
z13 = z31 = −3. That is, the voltage drop in loop 1 by the current I3 is −3 V, since it flows in the
opposite direction of that of I1. In the other cases, the values are −1. If an independent current does
not flow in a certain loop, then the entry in the matrix is zero. It is possible to use two different sets of
independent loops for the independent currents and the KVL equations. Then, the symmetry may not
exist. Further, the determinant of the impedance matrix should be nonzero in any case.

Changed Assumption of the Current Directions
It is better to choose the current directions to be consistently clockwise or counterclockwise. However,
the selection of the direction of the currents in the branches can be arbitrary. In that case, of course,
the symmetry of the impedance matrix may be lost. If a current flows in the direction opposite to that
assumed, the analysis result will be negative-valued. Let us do the analysis of the bridge circuit again
with different direction for the currents, as shown in Fig. 2.4. Applying KCL at the nodes, we get

IR1 = −(I1 + I2)

IR3 = I3 − I1

IR5 = I3 + I2.

The equilibrium equations are

−Z1(I1 + I2) − Z3(I1 − I3) = 1

Z1(I1 + I2) + Z5(I2 + I3) + Z2I2 = 0

Z3(I3 − I1) + Z5(I2 + I3) + Z4I3 = 0.

Fig. 2.4 The bridge
circuit with different
current directions

1V

R1 1 Ω R2 3 Ω

R3 3 Ω R4 1 Ω

R5

1 Ω
1V

0.4A
R1 1 Ω R2 3 Ω

R3
0.2A
3 Ω R4 1 Ω

R5

1 Ω,−0.2A

I1 = −0.6A

I3 = −0.4A

I2 = 0.2A
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Simplifying, we get

−(Z1 + Z3)I1 − Z1I2 + Z3I3 = 1

Z1I1 + (Z1 + Z2 + Z5)I2 + Z5I3 = 0

−Z3I1 + Z5I2 + (Z3 + Z4 + Z5)I3 = 0.

In matrix form,

⎡

⎣
−(Z1 + Z3) −Z1 Z3

Z1 (Z1 + Z2 + Z5) Z5

−Z3 Z5 (Z3 + Z4 + Z5)

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
1
0
0

⎤

⎦ .

With
Z1 = 1, Z2 = 3, Z3 = 3, Z4 = 1, Z5 = 1

⎡

⎣
−4 −1 3

1 5 1
−3 1 5

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
1
0
0

⎤

⎦ .

Solving the equilibrium equations, we get

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
−4 −1 3

1 5 1
−3 1 5

⎤

⎦
−1⎡

⎣
1
0
0

⎤

⎦ =
⎡

⎣
−0.6000 −0.2000 0.4000

0.2000 0.2750 −0.1750
−0.4000 −0.1750 0.4750

⎤

⎦

⎡

⎣
1
0
0

⎤

⎦ =
⎡

⎣
−0.6

0.2
−0.4

⎤

⎦

{IR1 = 0.4, IR3 = 0.2, IR5 = −0.2}.
A negative value for the current indicates current flow in the opposite direction from that assumed.
After correcting the directions, we get the direction shown in Fig. 2.2b.

The power consumed by the circuit can be computed by multiplying both sides of the equilibrium
equations, by the currents

{I1, I1, I3, . . . , IN , }
respectively, and summing

I1(Z11I1 + Z12I2 + Z13I3 + · · · + Z1NIN) =
∑

V1I1

I2(Z21I1 + Z22I2 + Z23I3 + · · · + Z2NIN) =
∑

V2I2

· · · = · · ·
IN(ZN1I1 + ZN2I2 + ZN3I3 + · · · + ZNNIN) =

∑
VNIN .

For the specific example, we get

⎡

⎣
0.6(4 −1 −3)

0.2(−1 5 −1)

0.4(−3 −1 5)

⎤

⎦

⎡

⎣
0.6
0.2
0.4

⎤

⎦ =
⎡

⎣
1(0.6)

0
0

⎤

⎦ .

Summing either side yields the power consumed by the circuit as 0.6 W. This procedure is useful to
compute the power with multiple sources.
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2.2 Nodal Analysis

The equilibrium state of a circuit can also be determined by TB independent voltages, where TB
is the number of branches of the circuit forming a tree. KCL is applied at each node (except one,
which becomes the ground node) of the selected tree of the circuit to set up the required equilibrium
equations. The steps in nodal analysis are as follows:

1. Select an appropriate number of independent voltage variables
2. Express the dependent voltage variables, by applying KVL around the loops, in terms of

independent voltage variables
3. Apply KCL at the selected nodes to set up a set of simultaneous equations
4. Solve for the independent voltages and find the voltages at all the nodes
5. Verify the solution using KVL and KCL

Prefer the node connected to the maximum number of elements and sources as the ground node. A
ground node acts as a reference for voltage levels at various points in the circuit. The voltage at the
ground node is assumed to be zero.

Let us analyze the same bridge circuit, shown again in Fig. 2.5a, by nodal analysis.

Step 1 Independent and Dependent Variables
The nodes are shown in Fig. 2.5b. The three independent voltages are V1, V2, and V3. By applying
KVL around the three loops in Fig. 2.5b, the other three dependent voltages, across the resistors R1,
R2, and R5, are expressed in terms of the independent voltages as

VR1 = V1 − V2

VR2 = V1 − V3

VR5 = V2 − V3.

For example, applying KVL to the top right loop, we get

VR1 + (V2 − V3) + (V3 − V1) = 0 and VR1 = V1 − V2.

Fig. 2.5 Nodal analysis of
the bridge circuit

1V

R1 1 Ω R2 3 Ω

R3 3 Ω R4 1 Ω

R5

1 Ω
1V

0.4V
R1 1 Ω R2 3 Ω

R3 3 Ω R4 1 Ω

R5

1 Ω, 0.2 V

V1 =1V

0.6V
V3 =0.4VV2

)b()a(
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Step 2 Setting Up the Equilibrium Equations
Assuming no voltage sources and N independent nodes, applying KCL at each node in turn, the
equilibrium equations, in general, are of the form

Y11V1 + Y12V2 + Y13V3 + · · · + Y1NVN =
∑

I1

Y21V1 + Y22V2 + Y23V3 + · · · + Y2NVN =
∑

I2

· · · = · · ·
YN1V1 + YN2V2 + YN3V3 + · · · + YNNVN =

∑
IN ,

where {V1, V2, . . . , VN } are the voltages at the chosen N nodes of the circuit with respect to the
ground node, {Yi1, Yi2, . . . , YiN } are the admittances in the branches joining nodes i and j , and
{∑ I1,

∑
I2, . . . ,

∑
IN } are the algebraic sum of the currents from current sources, connected to the

ground node, feeding the respective nodes. Admittance has a conductive part and a susceptive part.
In this chapter, we use only resistors. Therefore, Y = G. The equilibrium equations hold whether
the circuit consists of resistors only or otherwise. In order to emphasize this fact and to make the
understanding of the analysis of AC circuits easier, we use Y instead of G.

Using vector and matrix quantities, the equilibrium equations and the solution are concisely
given by

YV = I and V = Y−1I ,

where V is the voltage vector, Y is the admittance matrix, and I is the current vector.

Y =

⎡

⎢⎢⎣

Y11 Y12 Y13 · · · Y1N

Y21 Y22 Y23 · · · Y2N

· · · · · ·
YN1 YN2 YN3 · · · YNN

⎤

⎥⎥⎦ , V =

⎡

⎢⎢⎢⎢⎢⎣

V1

V2

V3
...

VN

⎤

⎥⎥⎥⎥⎥⎦
, I =

⎡

⎢⎢⎢⎢⎢⎣

∑
I1∑
I2∑
I3
...∑
IN

⎤

⎥⎥⎥⎥⎥⎦
.

Let us solve for the node voltages for the circuit shown in Fig. 2.5. Since V1 = 1 is known, there
are only 2 unknowns, {V2, V3}. When a voltage source is connected between a node and the ground
node, the problem is simplified. With Z = R and applying KCL at nodes with voltages V2 and V3, we
get the equilibrium equations, respectively, at nodes 2 and 3 as

(V2 − 1)

Z1
+ (V2 − V3)

Z5
+ V2

Z3
= 0

(V3 − 1)

Z2
+ (V3 − V2)

Z5
+ V3

Z4
= 0.

In loop analysis, we can traverse the loop in the clockwise or counterclockwise direction. Similarly,
in nodal analysis, we can write the KCL equations at each node so that the currents are directed out of
the node or flowing towards the node. For this example, the KCL equations at each node are written
so that the currents are directed out of the node.

Simplifying the equilibrium equations, we get

(Z3Z1 + Z1Z5 + Z3Z5)V2 − Z3Z1V3 = Z3Z5

−Z2Z4V2 + (Z2Z4 + Z2Z5 + Z4Z5)V3 = Z4Z5.
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With
Z1 = 1, Z2 = 3, Z3 = 3, Z4 = 1, Z5 = 1

7V2 − 3V3 = 3

−3V2 + 7V3 = 1.

In matrix form [
7 −3

−3 7

] [
V2

V3

]
=
[

3
1

]
.

The determinant of the admittance matrix is 40.

Step 3 Solving the Equilibrium Equations

V = Y−1I

The inverse of an arbitrary 2 × 2 matrix A exists if

|A| = (a11a22 − a12a21) �= 0.

Then, A−1 is given by

A =
[

a11 a12

a21 a22

]
and A−1 = 1

(a11a22 − a12a21)

[
a22 −a12

−a21 a11

]

[
V2

V3

]
=
[

7 −3
−3 7

]−1 [
3
1

]
=
[

0.1750 0.0750
0.0750 0.1750

] [
3
1

]
=
[

0.6
0.4

]

{VR1 = 0.4, VR2 = 0.6, VR5 = 0.2}.
These values are the same as those obtained by loop analysis.

2.3 Examples

A bridge circuit, with the voltage source in the middle, is shown in Fig. 2.6b. The tree corresponding
to the circuit has 4 nodes. With the polarities marked same as in Fig. 2.2b, three independent currents

R6 1Ω
1V

R1 1Ω R2 3Ω

R3 3Ω R4 1Ω

R5

1Ω

I1

I3

I2

R6 1Ω
1V

R1 1Ω R2 3Ω

R3 3Ω R4 1Ω

R5

1Ω

I10.125A 0.25A

0.125A

0.375A

I3 =0.25A

I2 =0.125A
V1 =0.125V

V3−0.25V
V2

0.375V
0.75V

(a) (b)

Fig. 2.6 A bridge circuit, with the voltage source in the middle
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R6 1Ω

R1 1Ω

R3 3Ω

I1

1V

R1 1Ω

R3 3Ω

R5

1Ω
V2 V3

V1

)b()a(

1V

R3 3Ω R4 1Ω

R5

1Ω

I31V

R1 1Ω R2 3Ω
R5

1Ω

I2

(c) (d)

Fig. 2.7 A tree, with four nodes shown by discs, corresponding to the bridge circuit and the three independent loops

are to be found using the mesh analysis. The equilibrium equations are similar to that for the circuit in
Fig. 2.2. The tree corresponding to the circuit, with four nodes shown by discs, is shown in Fig. 2.7a.
Figure 2.7b–d show the three loops formed by inserting the three links, in turn, in the tree. The three
links are the resistors R6, R2, and R4.

The three independent current variables are I1, I2 and I3. By applying KCL at three nodes in
Fig. 2.6b, the other three dependent currents, flowing through resistors R1, R3 and R5, are expressed
in terms of the independent currents as

IR1 = I1 − I2

IR3 = I1 − I3

IR5 = I3 − I2.

The equilibrium equations are, respectively, for the loops corresponding to the independent
currents, I1, I2, and I3.

Z1(I1 − I2) + Z3(I1 − I3) + Z6I1 = 0

−Z1(I1 − I2) − Z5(I3 − I2) + Z2I2 = 1

−Z3(I1 − I3) + Z5(I3 − I2) + Z4I3 = −1.

Simplifying, the equations in matrix form are

⎡

⎣
(Z1 + Z3 + Z6) −Z1 −Z3

−Z1 (Z1 + Z2 + Z5) −Z5

−Z3 −Z5 (Z3 + Z4 + Z5)

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
0
1

−1

⎤

⎦ .

With
Z1 = 1, Z2 = 3, Z3 = 3, Z4 = 1, Z5 = 1, Z6 = 1,
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we get

5I1 − I2 − 3I3 = 0

−I1 + 5I2 − I3 = 1

−3I1 − I2 + 5I3 = −1.

In matrix form, ⎡

⎣
5 −1 −3

−1 5 −1
−3 −1 5

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
0
1

−1

⎤

⎦ .

For this circuit, we can get the impedance matrix from inspection. The determinant of the impedance
matrix is 64. Solving for the currents, we get

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
5 −1 −3

−1 5 −1
−3 −1 5

⎤

⎦
−1⎡

⎣
0
1

−1

⎤

⎦ =
⎡

⎣
0.375 0.125 0.250
0.125 0.250 0.125
0.250 0.125 0.375

⎤

⎦

⎡

⎣
0
1

−1

⎤

⎦ =
⎡

⎣
−0.125

0.125
−0.250

⎤

⎦

{IR1 = −0.250, IR3 = 0.125, IR5 = −0.375}.
Some of the currents happen to flow in the reverse direction, indicated by a negative value, to that

with the initial assumption. Figure 2.6a shows the circuit with correct current directions and the node
voltages. From inspection, current and voltage values satisfy KCL and KVL. For example, at the top
left node, the incoming current is 0.25 and the sum of the outgoing currents is 0.125 + 0.125 = 0.25.
For the left most loop, the sum of the voltage drops across resistors R1 and R6 is 0.375 and the drop
across R3 is also 0.375 with the polarities reversed.

Let us do the nodal analysis for the circuit. The equilibrium equations are

(V1 − V2)

Z1
+ V1

Z6
+ (V1 − V3)

Z2
= 0

(V2 − V1)

Z1
+ V2

Z3
+ (V2 − (V3 + 1))

Z5
= 0

V3

Z4
+ (V3 − V1)

Z2
+ ((V3 + 1) − V2)

Z5
= 0.

Simplifying, we get

(Z2Z6 + Z1Z2 + Z1Z6)V1 − Z2Z6V2 − Z1Z6V3 = 0

−Z3Z5V1 + (Z3Z5 + Z1Z5 + Z1Z3)V2 − Z1Z3V3 = Z3Z1

−Z4Z5V1 − Z2Z4V2 + (Z2Z5 + Z4Z5 + Z4Z2)V3 = −Z2Z4.

With
Z1 = 1, Z2 = 3, Z3 = 3, Z4 = 1, Z5 = 1, Z6 = 1,

the equilibrium equations, in matrix equation form, are

⎡

⎣
7 −3 −1

−3 7 −3
−1 −3 7

⎤

⎦

⎡

⎣
V1

V2

V3

⎤

⎦ =
⎡

⎣
0
3

−3

⎤

⎦ .
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The determinant of the admittance matrix is 192. Solving for the voltages, we get

⎡

⎣
V1

V2

V3

⎤

⎦ =
⎡

⎣
7 −3 −1

−3 7 −3
−1 −3 7

⎤

⎦
−1⎡

⎣
0
3

−3

⎤

⎦ =
⎡

⎣
0.2083 0.1250 0.0833
0.1250 0.2500 0.1250
0.0833 0.1250 0.2083

⎤

⎦

⎡

⎣
0
3

−3

⎤

⎦ =
⎡

⎣
0.125
0.375

−0.250

⎤

⎦

{VR1 = −0.250, VR2 = 0.375, VR5 = −0.375}.
Let us analyze the circuit with correct current directions.

IR1 = I1 + I2

IR3 = I3 − I1

IR5 = I3 + I2.

The equilibrium equations are

Z1(I1 + I2) + Z3(I1 − I3) + Z6I1 = 0

Z1(I1 + I2) + Z5(I3 + I2) + Z2I2 = 1

Z3(I3 − I1) + Z5(I3 + I2) + Z4I3 = 1.

Simplifying, we get

(Z1 + Z3 + Z6)I1 + Z1I2 − Z3I3 = 0

Z1I1 + (Z1 + Z2 + Z5)I2 + Z5I3 = 1

−Z3I1 + Z5I2 + (Z3 + Z4 + Z5)I3 = 1.

With
Z1 = 1, Z2 = 3, Z3 = 3, Z4 = 1, Z5 = 1, Z6 = 1, V = 1,

we get

5I1 + I2 − 3I3 = 0

I1 + 5I2 + I3 = 1

−3I1 + I2 + 5I3 = 1.

In matrix form, ⎡

⎣
5 1 −3
1 5 1

−3 1 5

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
0
1
1

⎤

⎦ .

Solving for the currents, we get

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
5 1 −3
1 5 1

−3 1 5

⎤

⎦
−1⎡

⎣
0
1
1

⎤

⎦ =
⎡

⎣
0.3750 −0.1250 0.2500

−0.1250 0.2500 −0.1250
0.2500 −0.1250 0.3750

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦ =
⎡

⎣
0.1250
0.1250
0.2500

⎤

⎦

{IR1 = 0.2500, IR3 = 0.1250, IR5 = 0.3750}.
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Let us compute the power consumed by the circuit. The resistors are

R1 = 1, R2 = 3, R3 = 3, R4 = 1, R5 = 1, R6 = 1.

The currents through the resistors due to the source, respectively, are

I1 = 0.25, I2 = 0.125, I3 = 0.125, I4 = 0.25, I5 = 0.375, I6 = 0.125.

The power consumed is 0.375 W. The current supplied by the voltage source is 0.375. Therefore, the
power supplied is 0.375 W, as obtained before.

Circuit Analysis with a Supernode
If a voltage source, independent or dependent, is not connected to the ground node, then its two nodes
and any elements connected in parallel with it is called a supernode. The current through that source
has to be found in order to solve the problem by nodal analysis. The voltage difference between the
terminals of the source is the given constraint. Sufficient number of KVL and KCL equations has to be
set up and solved to find the current through the voltage source between the two nonreference nodes.

Consider the bridge circuit shown in Fig. 2.8. The voltage source is in the middle of the bridge.
Same nodes and links are assumed as in earlier bridge circuit analysis. Usually, two equations using
KCL is set up at the two ends of the supernode. Let the current through the source be i. At the left
side node, we get

(V2 − V1)

1
+ V2

3
= i. (2.1)

At the right side node, we get

(V1 − (V2 − 1))

3
+ (1 − V2)

1
= i. (2.2)

Eliminating i and simplifying, we get

V1 − 2V2 = −1. (2.3)

Applying KCL at node 1, we get

V1

1
+ (V1 − V2)

1
+ (V1 − (V2 − 1))

3
= 0.

Fig. 2.8 A bridge circuit
with the voltage source in
the middle

1V

R1 1Ω

R5 1Ω

R2 3Ω

R3 3Ω R4 1Ω

0.4A
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Note that the current in the source is flowing towards node 2. Since there is no other source in the
circuit, this current gets split up at node 1. Simplifying, we get

7V1 − 4V2 = −1. (2.4)

Solving Eqs. (2.3) and (2.4), we get

V1 = 0.2 and V2 = 0.6

V3 = V2 − 1 = 0.6 − 1 = −0.4 V. From Eq. (2.1), we get the current through the source as

(0.6 − 0.2)

1
+ 0.6

3
= i = 0.6.

Since we have determined the two independent voltages, there is no need to use this current for the
analysis of this circuit.

{VR1 = −0.4, VR2 = 0.6}.
An alternative method to avoid processing a supernode is that we connect a resistance in series

with the source, as presented in an earlier example. As its value gets reduced compared with other
resistances in the circuit, the circuit becomes more closer with a zero resistance series circuit and the
result becomes closer to the exact values. A suitable small series resistance R is to be selected. For
the example circuit with R = 0.1 �, we get, by simulation, for V1, V2, V3

{0.1887, 0.566, −0.3774}.

With R = 0.01 �, we get
{0.1988, 0.5964, −0.3976}.

With R = 0.001 �, we get
{0.1999, 0.5966, −0.3998}.

With R = 0.0001 �, we get
{0.2, 0.6, −0.4}.

Mesh Analysis
The loop current directions are assumed to be as in Fig. 2.2b. The equilibrium equations are similar to
that in Fig. 2.6.

Z1(I1 − I2) + Z3(I1 − I3) + Z5I1 = 0

−Z1(I1 − I2) + Z2I2 = 1

−Z3(I1 − I3) + Z4I3 = −1.

In matrix form,

⎡

⎣
(Z1 + Z3 + Z5) −Z1 −Z3

−Z1 (Z1 + Z2) 0
−Z3 0 (Z3 + Z4)

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
0
1

−1

⎤

⎦ .
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With
Z1 = 1, Z2 = 3, Z3 = 3, Z4 = 1, Z5 = 1, V = 1,

we get ⎡

⎣
5 −1 −3

−1 4 0
−3 0 4

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
0
1

−1

⎤

⎦ .

For this circuit, we can get the impedance matrix from inspection. The determinant of the impedance
matrix is 40.

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
5 −1 −3

−1 4 0
−3 0 4

⎤

⎦
−1⎡

⎣
0
1

−1

⎤

⎦ =
⎡

⎣
0.4000 0.1000 0.3000
0.1000 0.2750 0.0750
0.3000 0.0750 0.4750

⎤

⎦

⎡

⎣
0
1

−1

⎤

⎦ =
⎡

⎣
−0.2

0.2
−0.4

⎤

⎦ .

Figure 2.8 shows the circuit with correct current directions and the node voltages.
Let us compute the power consumed by the circuit. The resistors are

R1 = 1, R2 = 3, R3 = 3, R4 = 1, R5 = 1.

The currents through the resistors due to the source, respectively, are

I1 = 0.4, I2 = 0.2, I3 = 0.2, I4 = 0.4, I5 = 0.2.

The power consumed is 0.6 W. The current supplied by the voltage source is 0.6. Therefore, the power
supplied is 0.6 W, as obtained before.

Current Sources
Without sources, a circuit is dead with no currents through the elements and no voltage across the
elements. In practice, there is no such thing as an ideal device. However, we analyze engineering
systems with ideal elements first, since it simplifies the analysis. Then, the ideal element is modified
to represent actual elements. An ideal current source is characterized by its volt–ampere relationship
of keeping its terminal current same irrespective of the voltage across the load circuit connected to it,
as shown in Fig. 2.9a. A practical current source can be approximated by an ideal current source with
a shunt resistance in parallel with its terminals, as shown in Fig. 2.9b. Therefore, the current supplied
by a practical current source will decrease as the terminal voltage is increased. A current source is
an applied constraint in the circuit. Due to this constraint, the currents through various branches of
the circuit are fixed depending on the characteristics of the current source and the circuit. An arrow
indicates that a current raise in that direction is considered as a positive quantity. A voltage source
appearing in series with a branch or a current source appearing in parallel with a branch does not

Fig. 2.9 (a) Ideal and (b)
practical current sources
and their volt–ampere
characteristics
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affect the structure of the circuit. That is, the number of independent voltages and currents remains
the same.

Two current sources with capacities I1A and I2A, connected in parallel, are equivalent to a single
source with current capacity, which is equal to the algebraic sum of I1 and I2. Two unequal current
sources are not allowed to be connected in series, since it is a violation of KCL.

Circuit Analysis with Current and Voltage Sources
Consider a circuit energized by current and voltage sources, shown in Fig. 2.10a. One possible tree
is shown in Fig. 2.10b. With two voltages known and the current constrained in one branch, both the
nodal and loop analysis reduce to two variable problems. Let us do the nodal analysis. V1 = 1 is
known. Therefore, we have to determine V2 and V3 only. The equilibrium equations at nodes 2 and 3,
respectively, are

(V2 − 1)

1
+ V2

3
= 1 or 4V2 = 6, V2 = 1.5 V

(V3 + 1)

3
+ V3

4
= −1 or 7V3 = −16, V3 = −16

7
V.

Mesh Analysis
Applying KVL around the left side loop, we get, with I2 = −1,

(I1)1 + 3(I1 − I2) = 1 or 4I1 = −2, I1 = −0.5 A.

Applying KVL around the right side loop, we get, with I2 = −1,

−(I2 − I3)3 + 4I3 = −1 or 7I3 = −4, I3 = −4

7
A.

A supermesh occurs when a current source is connected between two nonreference nodes without
a parallel resistance. We apply KVL to the neighboring loops to find the voltage across the current
source. An alternative method to avoid processing a supermesh is that we connect a resistance in
parallel with the current source. As the value gets increased compared with other resistances in the
circuit, the circuit becomes more closer with an infinite resistance parallel circuit and the result

1A

1V

1V

R3

2Ω

R1 1Ω

R2 3Ω

R4 3Ω
R5 4Ω

I1 I2 I3

V1

V2 V3

1V

1V

R1 1Ω R4 3Ω

V1

V2 V3

(a) (b)

Fig. 2.10 (a) A circuit energized by current and voltage sources and (b) a possible tree
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becomes closer to the exact values. A suitable high parallel resistance R is to be selected. For the
example circuit, with R = 1000 �, we get, by simulation,

{I1 = −0.496 A, I2 = −0.9942 A, I3 = −0.569 A}.

With R = 10000 �, we get

{−0.5 A, −0.9994 A, −0.5713 A}.

2.3.1 Linearity Property of Circuits

This property is called the superposition theorem. When circuits consist of linear elements, such as
resistors, inductors, capacitors or, equivalently, circuits characterized by a linear differential equation
with constant coefficients, the circuits are linear circuits. Most of the systems, although to some extent
are nonlinear, can be approximated adequately by linear systems. For example, in theoretical analysis,
we assume a pure resistor with no other parasitic elements. A resistor may be nonlinear to some
extent and may have some inductive effect. It is assumed that the resistor is sufficiently pure for the
accuracies required in practical applications. As the assumed linearity provides a simpler analysis,
linear systems analysis is widely used in the study of signals and systems. Similarly, signals, usually,
have arbitrary amplitude profile and are decomposed into a linear combination of well-defined basic
signals in transform analysis, as presented later.

Mathematically, the response of a circuit to a linear combination of inputs is linear if the output is
also the same linear combination of the individual outputs to the respective inputs. For example, let
the response of a circuit to 1 V input is 1 A. Then, the output must be 2 A for the input 2 V. Therefore,
the analysis becomes somewhat simpler with a normalized input voltage of 1 V, although the electric
power is supplied at 220/110 V. And it is much higher in power transmission systems. Further, typical
resistor values are in kiloohms or megaohms. These aspects are to be learnt in a concurrent laboratory
course. Another implication of linearity is that the output of a circuit, with a number of sources, can
be obtained by finding the output to each source separately and adding all the responses. Voltages and
currents due to each source and their total in the circuit, shown in Fig. 2.10, are shown in Table 2.1.
Determining the response to each source is much simpler. The use of this property may result in
simpler analysis, compared with nodal and loop methods. The circuit has two voltage sources and
one current source. When the response to one source is considered, the rest of the voltage sources are
replaced by short-circuits and the current sources are replaced by open-circuits. Let us consider the
response to the left voltage source alone, case (a). The right voltage source is short-circuited and the
current source is open-circuited. The response is shown in the left side of Fig. 2.11a. Let us consider
the response to the right voltage source alone, case (b). The left voltage source is short-circuited and
the current source is open-circuited. The response is shown in the right side of Fig. 2.11a. Let us
consider the response to the current source alone. The two voltage sources are short-circuited. The

Table 2.1 Voltages and
currents due to each source
and their total in the circuit
shown in Fig. 2.10

Case V1 V2 V3 I1 I2 I3

(a) 1 0.75 0 0.25 0 0

(b) 0 0 − 4
7 0 0 − 1

7

I2 only 0 0.75 − 12
7 −0.75 −1 − 3

7

Total 1 1.5 − 16
7 −0.5 −1 − 4

7
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1V

1V

R1 1Ω

R2 3Ω

R4 3Ω
R5 4Ω

I1 0.25A I3

V1

V2 =0.75V V3 =− 4
7V

(b) (a)

1
7A

1
7A

1AR3

2Ω

R1 1Ω

R2 3Ω

R4 3Ω
R5 4Ω

I1 0.75A I2 I3

0.25A

4
7A 3

7A

V2 =0.75V V3 =− 12
7 V

(a) (b)

Fig. 2.11 Analysis of a circuit using the linearity property

response is shown in Fig. 2.11b. The currents are obtained by using the current-division formula for
resistors connected in parallel.

Let us compute the power consumed by the circuit. The resistors are

R1 = 1, R2 = 3, R3 = 2, R4 = 3, R5 = 4.

The net currents through the resistors due to all the sources, respectively, are

I1 = 0.5, I2 = 0.5, I3 = 1, I4 = 3

7
, I5 = 4

7
.

The power consumed is

0.25 + 0.75 + 2 + 27

49
+ 64

49
= 4.8571 W.

The equation defining the power is nonlinear. Therefore, the total power supplied may not be equal
to the sum of the powers supplied by the sources acting alone. Let the currents supplied by two sources
acting alone be I1 and I2. Then, the sum of the powers supplied is proportional to I 2

1 + I 2
2 . The power

supplied by the sources acting together is proportional to (I1 + I2)
2 and

(I 2
1 + I 2

2 ) �= (I1 + I2)
2.

The total power is always equal to the sum of the powers consumed by the separate branches of the
circuit, irrespective of the number of sources in the circuit. When all the sources acting simultaneously,
the total power supplied by the sources is the sum of the powers supplied by the individual sources.
The power supplied by a source is the product of its terminal voltage and current. The voltage across
a current source depends jointly upon the intensities of all the sources and vice versa for a voltage
source. Therefore, the power supplied by a source can vary, when it is acting alone or jointly with
other sources.

With all the sources acting, the net current through the left voltage source is −0.5. Therefore, it
consumes power, which is equal to −0.5 W. Similarly, the right voltage source consumes −3/7 W.
The voltage across the current source is 1.5 + 2 + 16/7, when it is acting jointly. Therefore, the total
power is

−0.5 − 3/7 + (1.5 + 2 + 16/7) = 4.8571 W,

as obtained before.
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2A

1V

R1

3Ω

R2 1Ω R3 4Ω

I1 I2
I3

V2

V1

(a) (b)

1V
R3 4Ω

I3

V2

V1

Fig. 2.12 (a) A circuit with a current source between two loops and (b) a possible tree

Circuit Analysis with the Current Source Between Two Loops
Consider the circuit with a current source between two loops, shown in Fig. 2.12a. A possible tree is
shown in Fig. 2.12b. With 3 nodes and one independent voltage and one independent current given,
the analysis reduces to a one-variable problem.

Mesh Analysis
With I1 − I3 = 2 A and applying KVL, we get

3I1 + 4I3 = 1

I1 − I3 = 2.

Solving, we get {
I1 = 9

7
= 1.2857, I3 = −5

7
= −0.7143

}

and V2 = −20/7 V. Current in the rightmost resistor flows opposite to the direction of initial
assumption.

Nodal Analysis

V2

4
+ V2 − 1

3
= −2 and V2 = −20

7
V.

Let us compute the power consumed by the circuit. The resistors are

R1 = 3, R2 = 1, R3 = 4.

The net currents through the resistors due to all the sources, respectively, are

I1 = 1.2857, I2 = 2, I3 = 0.7143.

The power consumed is
1.28572(3) + 22 + 0.71432(4) = 11 W.

The net current through the voltage source is 9/7. The voltage across the current source is (−20/7−2),
when it acts jointly. Therefore, the total power is

9/7 + (−2)(−34/7) = 11 W

as obtained before.
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Fig. 2.13
Voltage-controlled voltage
source and its volt–ampere
characteristics −+
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Fig. 2.14
Current-controlled current
source and its volt–ampere
characteristics
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Controlled Sources
Sources can both supply and absorb power. In charging, a battery absorbs power. It delivers power
when connected to a device, such as a light bulb. Batteries and generators are commonly used to
energize circuits and those are approximations to ideal sources. The voltage or current provided by
a controlled or dependent source, a 3-terminal device, is controlled by another voltage or current at
some other part of the circuit. The 3 terminals, with one common terminal, form two pairs, one pair
for input and the other for the output. Four possible types are as follows:

1. voltage-controlled voltage source
2. current-controlled voltage source
3. voltage-controlled current source
4. current-controlled current source

Dependent sources are necessary to model devices such as transistors.
Voltage-controlled voltage source and its volt–ampere characteristics are shown in Fig. 2.13. It is

a 3-terminal device. The source voltage is k, a constant, times the control voltage V1, irrespective of
the value of I2. Current-controlled current source and its volt–ampere characteristics are shown in
Fig. 2.14. The source current is k, a constant, times the control current I1, irrespective of the value
of V2.

2.3.2 Analysis of a Circuit with a Controlled Voltage Source

A circuit with a voltage-controlled voltage source is shown in Fig. 2.15. A possible tree corresponding
to the circuit is shown in Fig. 2.16. Loops corresponding to the currents I1, I2, and I3 are shown in
Figs. 2.17 and 2.18. The voltage-controlled voltage source generates a voltage of 2(V1 − V4). The
circuit has five nodes. As there is a dependent source and a branch current is known, the analysis
involves only three independent current or voltage variables. Let us analyze the circuit using the loop
method. Every element has to be included in a loop. At least one element in each loop is not part of
any other independent loop. The equilibrium equations corresponding to the middle, left, and right
loops, respectively, are
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Fig. 2.15 A circuit with a
voltage-controlled voltage
source

−+

2A
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R1 2Ω R3 4Ω R4 3Ω

I1 −4.75A

I2 1.75A I3 2A
V1 −3.5V

−1.75A 2(V1 − V4)

V2,15.5V V3,7V V46V1V

Fig. 2.16 A possible tree
corresponding to the circuit
in Fig. 2.15

2A

R2

1Ω

R1 2Ω

V1 V2 V3 V41V

Fig. 2.17 The loop
corresponding to current I1

2A

R5

2Ω
R2

1Ω

R1 2Ω

I1

V1 V2 V3 V41V

Fig. 2.18 Loops
corresponding to the
currents I2 and I3
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R2

1Ω

R3 4Ω

I2

V2 V3

2A

R2

1Ω

R4 3Ω

I3

V2 V3 V41V

(Z5I1 + Z4I3 − 2Z5I1) + (Z2(I1 − I2 − I3)) − Z3I2 = 0

−Z1(I (2) + I (3) − 2) = Z5I1 + Z4I3

Z3I2 − Z4I3 = 1.

The first equation corresponds to the middle loop involving resistors Z2 and Z3. To write the KVL
equation around the loop, we need the voltage V2.

V1 = Z5I1 + Z4I3 and V1 − V4 = Z5I1.
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Therefore, the voltage across the controlled voltage source is 2Z5I1, with opposite polarity to that of
V1. Consequently,

V2 = (Z5I1 + Z4I3 − 2Z5I1).

The current IZ2 is (I1 − I2 − I3).
The second equation corresponds to the leftmost loop involving resistor Z1. We have the equation

V1 = Z5I1 + Z4I3.

The current entering Z1 is (I (2)+I (3)−2) from the ground side. Therefore, we get another expression
for V1 involving the current source.

V1 = −Z1(I (2) + I (3) − 2).

Equating these two equations yields an equilibrium equation. The last equation corresponds to the
rightmost loop involving resistors Z3 and Z4. Simplifying, the three equilibrium equations are

(−Z5 + Z2)I1 − (Z2 + Z3)I2 + (Z4 − Z2)I3 = 0

Z5I1 + Z1I2 + (Z1 + Z4)I3 = 4

0I1 + Z3I2 − Z4I3 = 1.

With
Z1 = 2, Z2 = 1, Z3 = 4, Z4 = 3, Z5 = 2,

we get ⎡

⎣
−1 −5 2

2 2 5
0 4 −3

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
0
4
1

⎤

⎦ .

The determinant of the impedance matrix is 12.

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
−1 −5 2

2 2 5
0 4 −3

⎤

⎦
−1⎡

⎣
0
4
1

⎤

⎦ =
⎡

⎣
−2.1667 −0.5833 −2.4167

0.5000 0.2500 0.7500
0.6667 0.3333 0.6667

⎤

⎦

⎡

⎣
0
4
1

⎤

⎦ =
⎡

⎣
−4.75

1.75
2

⎤

⎦ .

The other currents and voltages are shown in Fig. 2.15.

Nodal Analysis
The voltage source is not connected to the ground node. Therefore, we have to find the current through
it. Setting up two KCL equations at the terminals of the source, we get

(V4 − V1)

Z5
+ V4

Z4
+ (V3 − V2)

Z2
+ V3

Z3
= 0.

The sum of the first two terms is the current leaving from node 4 towards node 3, which is the negative
of the current leaving from node 3 towards node 4. The dependent voltage source is also not connected
to the ground node. Therefore, we have to find the current through it. Setting up two KCL equations
at the terminals of the source, we get
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− (V2 − V3)

Z2
+ (2) − (V1 − V4)

Z5
− V1

Z1
= 0.

Further,
V1 − V2 = 2(V1 − V4) or V1 + V2 − 2V4 = 0.

The equilibrium equations are

− (V2 − V3)

Z2
+ (2) − (V1 − V4)

Z5
− V1

Z1
= 0 (2.5)

(V4 − V1)

Z5
+ V4

Z4
+ (V3 − V2)

Z2
+ V3

Z3
= 0 (2.6)

V1 + V2 − 2V4 = 0. (2.7)

Replacing
V3 = (V4 + 1),

we get

((V4 + 1) − V2)

Z2
+ (2) − (V1 − V4)

Z5
− V1

Z1
= 0 (2.8)

(V4 − V1)

Z5
+ V4

Z4
− (V2 − (V4 + 1))

Z2
+ (V4 + 1)

Z3
= 0 (2.9)

V1 + V2 − 2V4 = 0. (2.10)

Simplifying, we get

−(Z1Z2 + Z2Z5)V1 − Z1Z5V2 + (Z1Z2 + Z1Z5)V4 = −Z1Z5 − 2Z1Z2Z5

−Z2Z3Z4V1− Z3Z4Z5V2 + (Z2Z3Z4+Z2Z3Z5 + Z3Z4Z5 + Z2Z4Z5)V4 = −Z2Z4Z5 − Z3Z4Z5

V1 + V2 − 2V4 = 0.

With
Z1 = 2, Z2 = 1, Z3 = 4, Z4 = 3, Z5 = 2,

we get ⎡

⎣
−4 −4 6

−12 −24 50
1 1 −2

⎤

⎦

⎡

⎣
V1

V2

V4

⎤

⎦ =
⎡

⎣
−12
−30

0

⎤

⎦ .

The determinant of the admittance matrix is −24.

⎡

⎣
V1

V2

V4

⎤

⎦ =
⎡

⎣
−4 −4 6

−12 −24 50
1 1 −2

⎤

⎦
−1⎡

⎣
−12
−30

0

⎤

⎦

=
⎡

⎣
0.0833 0.0833 2.3333

−1.0833 −0.0833 −5.3333
−0.5000 0 −2.0000

⎤

⎦

⎡

⎣
−12
−30

0

⎤

⎦ =
⎡

⎣
−3.5
15.5

6

⎤

⎦ .

The voltages are the same as those found using loop analysis.

www.TechnicalPDF.com



44 2 DC Circuits

The resistors and the respective currents are

R1 = 2, R2 = 1, R3 = 4, R4 = 3, R5 = 2

and
I1 = 1.75, I2 = 8.5, I3 = 1.75, I4 = 2, I5 = 4.75.

The power consumed is 147.75 W.

P = I12R1 + I22R2 + I32R3 + I42R4 + I52R5 = 147.75 W

The power supplied is

(−6.5)(−19) − (1)(6.75) + 2(15.5) = 147.75,

as obtained above.

2.3.3 Analysis of a Circuit with a Controlled Current Source

Nodal Analysis
A circuit with a current-controlled current source is shown in Fig. 2.19. A tree corresponding to the
circuit is shown in Fig. 2.20. Since V3 = 1 V is known, there are only 2 unknowns, {V1, V2}. The two
equilibrium equations are

(V2 − V1)

Z2
+ (V2 − 1)

Z4
+ V2

Z3
= 0

Fig. 2.19 A circuit with a
current-controlled current
source

2Ix
1.833A

R5

2Ω
R2

1Ω

R4

2Ω

R1 2Ω R3 4Ω

I1 0.4167

I2
1
3 I3 0.5833Ix 0.9167

V1 1.833V V2
4
3 V3 1

1V

Fig. 2.20 A possible tree
corresponding to the circuit
in Fig. 2.19

R1 2Ω

Ix

V1 V2 V3
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V1

Z1
+ (V1 − 1)

Z5
− 2

V1

Z1
+ (V1 − V2)

Z2
= 0.

The first equation is due to the application of KCL at node with voltage V2. The second equation is
due to the application of KCL at node with voltage V1. Simplifying, we get

−Z3Z4V1 + (Z3Z4 + Z2Z4 + Z2Z3)V2 = Z2Z3

(−Z2Z5 + Z1Z5 + Z1Z2)V1 − Z1Z5V2 = Z1Z2.

With
Z1 = 2, Z2 = 1, Z3 = 4, Z4 = 2, Z5 = 2,

we get

−4V1 + 7V2 = 2

2V1 − 2V2 = 1.

Solving for the voltages, we get [
V1

V2

]
=
[ 11

6
4
3

]
.

All the currents and voltages are shown in Fig. 2.19.

Mesh Analysis
The three loops are shown in Fig. 2.21. In a controlled source, the output current does not have any
influence on the input. Therefore,

IZ1 = I2 + I3.

The equilibrium equations are

Z1(I2 + I3) + Z2(I1 − I2 − I3) − Z3I2 = 0

Z3I2 + Z4(I1 − I3) = 1

Z1(I2 + I3) − Z5I1 = 1.

R5

2Ω
R2

1Ω

R4

2Ω

I1

V1 V2 V3

R2

1Ω

R1 2Ω R3 4Ω

I2Ix

V1 V2 R2

1Ω

R4

2Ω

R1 2Ω

I3Ix

V1 V2 V3

1V

Fig. 2.21 A circuit with a controlled current source, the three loops
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The first equation is obtained by equating the voltages on both sides of the current source. The second
equation is obtained by applying KVL to the rightmost loop involving the voltage source. The third
equation is obtained by applying KVL to the loop involving the voltage source and impedances Z1

and Z5. Voltage source is 1 V. Simplifying, we get

Z2I1 + (Z1 − Z2 − Z3)I2 + (Z1 − Z2)I3 = 0

Z4I1 + Z3I2 − Z4I3 = 1

−Z5I1 + Z1I2 + Z1I3 = 1.

With
Z1 = 2, Z2 = 1, Z3 = 4, Z4 = 2, Z5 = 2,

we get ⎡

⎣
1 −3 1
2 4 −2

−2 2 2

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
0
1
1

⎤

⎦ .

The determinant of the impedance matrix is nonzero, 24.

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎣
1 −3 1
2 4 −2

−2 2 2

⎤

⎦
−1⎡

⎣
0
1
1

⎤

⎦

=
⎡

⎣
0.5000 0.3333 0.0833

0 0.1667 0.1667
0.5000 0.1667 0.4167

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦ =
⎡

⎣
0.4167
0.3333
0.5833

⎤

⎦ .

The resistors and the respective currents are

R1 = 2, R2 = 1, R3 = 4, R4 = 2, R5 = 2

and
I1 = 0.9167, I2 = −0.4997, I3 = 0.3333, I4 = −0.1666, I5 = 0.4167.

The power consumed is 2.7776 W.

P = I12R1 + I22R2 + I32R3 + I42R4 + I52R5 = 2.7777 W

The power supplied by the sources is −0.5833 + (11/6)2 = 2.7777.

Circuits with One or Two Variables
Now, we are going to present the analysis of simpler circuits with one or two variables, which can be
solved manually.

Circuit in Fig. 2.22
The circuit shown in Fig. 2.22 has two voltage sources.

Nodal Analysis

Z1 = 2, Z2 = 4, Z3 = 3, V1 = 1, V3 = 2
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Fig. 2.22 A circuit with
two voltage sources

2V1V

R1

2Ω

R2 4Ω

R3

3ΩI1 I2 I3

V2

V1 V3

Voltage V2 is the only unknown. Therefore, applying KCL at node 2, we get

(V2 − 1)

Z1
+ (V2 − 2)

Z3
+ V2

Z2
= 0.

Solving for V2, we get

V2 = Z2Z3 + 2Z1Z2

Z1Z2 + Z2Z3 + Z1Z3
= 28

26
= 14

13
V.

The currents are

I1 = − (V2 − 1)

Z1
= − 1

26
A, I2 = (V2)

Z2
= 14

52
= 7

26
A, I3 = (V2 − 2)

Z3
= − 4

13
A.

With −I1 + I2 + I3 = 0, KCL is satisfied.
The total power dissipated by the resistors is

1

262 (2 + 49 × 4 + 64 × 3) = 390

262 = 15

26
= 0.5769 W.

The total power supplied by the sources is

− 1

26
+ 16

26
= 15

26
= 0.5769 W.

Current enters the positive terminal of the 1 V source, while current leaves in the 2 V source.
Therefore, 1 V source absorbs power, while 2 V source delivers power.

If the current flow in a voltage source is into the positive terminal, then it absorbs power and the
power is negative. If the current flow in a voltage source is out of the positive terminal, then it delivers
power and the power is positive.

While the current from an ideal current source is fixed, the voltage across it may be positive or
negative, depending on the circuit constraints. If the current flow in a current source is into the positive
voltage terminal, then it absorbs power and the power is negative. If the current flow in a current source
is out of the positive voltage terminal, then it delivers power and the power is positive.

Mesh Analysis
I2 = I1 − I3.

Z1I1 + Z2(I1 − I3) = 1

Z3I3 − Z2(I1 − I3) = −2.
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Simplifying, we get

(Z1 + Z2)I1 − Z2I3 = 1

−Z2I1 + (Z2 + Z3)I3 = −2.

Substituting the numerical values, we get

6I1 − 4I3 = 1

−4I1 + 7I3 = −2.

Solving the equations, we get the same values of currents, as found earlier.
Let us do the problem by superposition method. Let us find the response to 1 V source. Then, we

replace 2 V source by a short-circuit. Current I1 is

I1 = 1

Z1 + (Z2||Z3)
= 7

26
.

By current division, we get

I2 = I1
Z3

Z2 + Z3
= 3

26
, I3 = I1 − I2 = 4

26
.

Let us find the response to 2 V source. Then, we replace 1 V source by a short-circuit. Current I3 is

I3 = − 2

Z3 + (Z2||Z1)
= − 6

13
.

By current division, we get

I1 = I3
Z2

Z2 + Z1
= − 4

13
, I2 = I1 − I3 = 2

13
.

Adding the corresponding two responses, we get the same values for the currents.

Circuit in Fig. 2.23
The circuit shown in Fig. 2.23 has voltage and current sources.

Fig. 2.23 A circuit with
voltage and current sources

2V1A

R1

2Ω

R2 4Ω

R3

3ΩI1 I2 I3

V2

V3
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Nodal Analysis

Z1 = 2, Z2 = 4, Z3 = 3, I1 = −1, V3 = 2.

Voltage V2 is the only unknown. Therefore, applying KCL at node 2, we get

(V2 − 2)

Z3
+ V2

Z2
= −1.

Solving for V2, we get

V2 = −Z2Z3 + 2Z2

Z2 + Z3
= −4

7
V.

The currents are

I1 = −1 A, I2 = V2

Z2
= −1

7
A, I3 = (V2 − 2)

Z3
= −6

7
A.

With I1 − I2 − I3 = 0, KCL is satisfied.
The total power dissipated by the resistors is

2 + 1

72
(1 × 4 + 36 × 3) = 2 + 112

72
= 30

7
= 4.2857 W.

The total power supplied by the sources is

(
2 + 4

7

)
+ 2

6

7
= 30

7
= 4.2857 W.

Both sources deliver power.

Mesh Analysis
I2 = I1 − I3, I1 = −1.

Z3I3 − Z2(I1 − I3) = −2.

Solving for I3, we get

(Z3 + Z2)I3 = −6, I3 = −6

7
A.

We get the same values of currents, as found earlier.
Let us solve the problem by superposition method. Let us find the response due to voltage source.

The current source is open-circuited. Then, I3 = −2/7, I2 = 2/7. Let us find the response due to
current source. The voltage source is short-circuited. Then, by current division, I3 = −4/7, I2 =
−3/7. Adding the corresponding two responses, we get the same values for the currents.

Circuit in Fig. 2.24
The circuit shown in Fig. 2.24 has voltage and current sources. Source voltage is 2 V. Source current
is 1 A.

Z1 = 2, Z2 = 4, Z3 = 3, I3 = 1.
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Fig. 2.24 A circuit with
voltage and current sources

2V 1A

R1

2Ω

R2 4Ω

R3

3ΩI1 I2 I3

V2

Mesh Analysis

I1 − I3 = I2

I1Z1 + I2Z2 = I1Z1 + (I1 − I3)Z2 = 2, I1 = 2 + I3Z2

Z2 + Z1
= 1, I2 = 0.

With −I1 + I2 + I3 = 0, KCL is satisfied.
The total power dissipated by the resistors is

3 + 2 = 5 W.

The total power supplied by the sources is

3 + 2 = 30

7
= 5 W.

Both sources deliver power.

Nodal Analysis

V2

Z2
+ (V2 − 2)

Z1
= −1.

Solving, V2 = 0 and VR3 = 3 V. The voltage across the current source is −3 V.
Let us do the problem by superposition method. Consider the response due to the voltage source

alone. The current source is open-circuited. Then,

I1 = I2 = 1

3
.

Consider the response due to the current source alone. The voltage source is short-circuited. Then, by
current division, we get

I1 = 2

3
, I2 = −1

3
.

Adding the partial currents, we get the same results.

Circuit in Fig. 2.25
The circuit shown in Fig. 2.25 has current sources. Source currents 2 and 1 A.

Z1 = 2, Z2 = 4, Z3 = 3.
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Fig. 2.25 A circuit with
current sources

2A 1A

R1

2Ω

R2 4Ω

R3

3ΩI1 I2 I3

V2

Nodal Analysis

V2

Z2
= −3 and V2 = −12 V

I1 = −2, I2 = −12

4
= −3 A, I3 = 1 A

With −I1 + I2 + I3 = 0, KCL is satisfied.

Mesh Analysis

I3 = 1, I1 = −2, I2 = (I1 − I3) = −3 A

Let us do the problem by superposition method. Consider the response due to the 2 A current source
alone. The other current source is open-circuited. Then, we get

I1 = −2, I2 = −2, I3 = 0

Consider the response due to the 1 A current source alone. The other current source is open-circuited.
Then, by current division, we get

I1 = 0, I2 = −1, I3 = 1.

Adding the two partial results, we get the same currents.
The total power dissipated by the resistors is

8 + 36 + 3 = 47 W.

The total power supplied by the sources is

16 × 2 + 15 = 47 W.

Both sources deliver power.

Circuit in Fig. 2.26
A circuit with a voltage-controlled voltage source is shown in Fig. 2.26. Source voltage is 1 V.

Z1 = 2, Z2 = 4, Z3 = 3.
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Fig. 2.26 A circuit with a
voltage-controlled voltage
source −+

1V

R3

3Ω

R1 2Ω

R2 4Ω

I1 I2

I3

V1

V2

(V2−V1)

Nodal Analysis

(V2 − 1)

2
+ V2

4
+ V2 − (V2 − 1)

3
= 0.

Solving, we get V2 = 2/9. The currents are

I1 = − 7

18
A, I2 = −(I3 + I1) = 1

18
A, I3 = 1

3
A.

With I1 + I2 + I3 = 0, KCL is satisfied.
The total power dissipated by the resistors is

1

182
(98 + 4 + 108) = 35

54
= 0.6481 W.

The total power supplied by the sources is

7

18
+ (−7)

9

(−1)

3
= 35

54
= 0.6481 W.

Both sources deliver power.

Mesh Analysis

2I1 + 4(I3 + I1) = −1, or 6I1 + 4I3 = −1

3I3 + 2I1 + 4(I3 + I1) = 0, or 6I1 + 7I3 = 0.

Solving, we get the same currents obtained earlier.

Circuit in Fig. 2.27
A circuit with a current-controlled voltage source is shown in Fig. 2.27. Source voltage is 1 V.

Z1 = 2, Z2 = 4, Z3 = 3.
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Fig. 2.27 A circuit with a
current-controlled voltage
source −+

1V

R3

3Ω

R1 2Ω

R2 4Ω

I1 I2

I3

V1

V2

2I2

Nodal Analysis
Since 4I2 = V2, 2I2 = 0.5V2.

(V2 − 1)

2
+ V2

4
+ V2 − 0.5V2

3
= 0.

Solving, we get V2 = 6/11. The currents are

I1 = − 5

22
A, I2 = 3

22
A, I3 = 1

11
A.

With I1 + I2 + I3 = 0, KCL is satisfied.
The total power dissipated by the resistors is

1

222
(50 + 36 + 12) = 98

222
= 0.2025 W.

The total power supplied by the sources is

5

22
+ 3

11

(−1)

11
= 0.2025 W.

The controlled source absorbs power.

Mesh Analysis

2I1 + 4(I3 + I1) = −1, or 6I1 + 4I3 = −1

3I3 − 2(I3 + I1) + 4(I3 + I1) = 0, or 2I1 + 5I3 = 0.

Solving, we get the same currents obtained earlier.

Circuit in Fig. 2.28
A circuit with a voltage-controlled current source is shown in Fig. 2.28. Source current is 1 A.

Z1 = 2, Z2 = 4, Z3 = 3.
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Fig. 2.28 A circuit with a
voltage-controlled current
source

1A

R3

3Ω

R1 2Ω

R2 4Ω

I1 I2

I3

V2

2V2

Nodal Analysis

−1 − 2V2 + V2

4
= 0.

Solving, we get V2 = −4/7. The currents are

I1 = −1 A, I2 = −1

7
A, I3 = 8

7
A.

With I1 + I2 + I3 = 0, KCL is satisfied.
The total power dissipated by the resistors is

2 + 4

49
+ 192

49
= 6 W.

The total power supplied by the sources is

10

7
(1) + (−4)

(−8)

7
= 42

7
= 6 W.

Both sources deliver power.

Mesh Analysis

4(2V2 + 1) = V2, or V2 = −4/7 V

as before.

Circuit in Fig. 2.29
A circuit with a current-controlled current source is shown in Fig. 2.29. Source current is 1 A.

Z1 = 2, Z2 = 4, Z3 = 3.

Nodal Analysis

−1 − 0.5V2 + V2

4
= 0.
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Fig. 2.29 A circuit with a
current-controlled current
source

1A

R3

3Ω

R1 2Ω

R2 4Ω

I1 I2

I3

V2

2I2

Solving, we get V2 = −4. The currents are

I1 = −1 A, I2 = −1 A, I3 = 2 A.

With I1 + I2 + I3 = 0, KCL is satisfied.
The total power dissipated by the resistors is

2 + 4 + 12 = 18 W.

The total power supplied by the sources is

(−2)(1) + (−2)(−10) = 18 W.

Current source 1 A absorbs power.

Mesh Analysis
Since 4I2 = V2, 2I2 = 0.5V2.

4(0.5V2 + 1) = V2, or V2 = −4 V

as before.

2.3.4 Y − � and� − Y Transformations

In major applications, such as three-phase power systems and electrical filters, certain configurations
of circuits often appear and it is required to transform one form from another for simpler circuit
analysis. One is called the Y (wye) circuit, since it can be drawn resembling the letter Y , shown in
Fig. 2.30a. That is, it has a common point between its three branches. The other one is called the �

(delta) circuit, since it can be drawn resembling the Greek letter �, shown in Fig. 2.30b. That is, it
has no common point and its three branches are circularly connected in series. They are also called
star-delta and T-π configurations. The transformation is such that the impedance between each pair of
terminals remains the same before and after transformation.

� − Y Transformation
The impedance between terminals a and b in the Y circuit is Za + Zb. The impedance between
terminals a and b in the � circuit is the parallel connection of Zab and Zac + Zbc. Since the values of
the impedances between the terminals have to be same in both the configurations, we get
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Fig. 2.30 Y − � circuits Za

Zb

Zc

Zab

Zbc

Zacn

c

b

a

c

b

a

)b()a(

Za + Zb = Zab(Zac + Zbc)

Zac + Zab + Zbc

.

Similarly, we get

Za + Zc = Zac(Zab + Zbc)

Zac + Zab + Zbc

Zb + Zc = Zbc(Zab + Zac)

Zac + Zab + Zbc

.

Solving the three equations, we get

Za = ZabZac

Zac + Zab + Zbc

Zb = ZbaZbc

Zac + Zab + Zbc

Zc = ZcaZcb

Zac + Zab + Zbc

.

In words, the Y -impedances are given by the product of the two �-impedances connected at the
corresponding node divided by the sum of the three �-impedances. We can solve the first set of
equations to get the Y − � transformations. However, it is simpler to get this using duality property.

Duality
A number and its logarithm are equivalent representation of the same entity. However, the logarithmic
representation reduces the difficult multiplication problem into the simpler addition problem. We use
the more useful representation of the two to solve a problem. Similarly, transform methods reduce the
problem of solving a differential equation into solving algebraic equations.

The formulation of circuit analysis problem using loop analysis is of the form

IZ = V,

where I is the current variable, V is the voltage variable, and Z is the resistance in the case of DC
circuits. Let us replace I by V , V by I , and Z by 1/Z. Then, the equation becomes

V

Z
= I = V G,
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Table 2.2 Dual concepts
and variables

Voltage Current

Loop Node

Resistance Conductance

Inductance Capacitance

Voltage source Current source

KVL KCL

Short-circuit Open-circuit

Parallel paths Series paths

where G is the conductance if Z is the resistance. This equation is another form of formulation of the
circuit analysis problem using nodal analysis. The roles played by the voltage and current variables
are interchanged. Since the variables play a dual role, they are called as dual variables. We know the
nodal analysis is simpler for some circuits and vice versa. Obviously, we use the simpler one. Voltage
is the dual of current and conductance is the dual of resistance.

Consider again the finding of the equivalent resistor Req of connecting resistors in series and
parallel. If the resistors R1 and R2 are connected in series, we get

Req = R1 + R2.

If the resistors are connected in parallel, we get

1

Req

= 1

R1
+ 1

R2
or Req = R1R2

R1 + R2
= 1

G1 + G2
.

It is obvious that use of conductance is more convenient when analyzing parallel circuits. Some of the
dual concepts and variables are shown in Table 2.2.

Y − � Transformation
Using the duality and assuming that the circuit consists of resistors, we get

1

Zbc

=
1

Zb
× 1

Zc

1
Za

+ 1
Zb

+ 1
Zc

= Gbc = GbGc

Ga + Gb + Gc

or Zbc = ZaZb + ZbZc + ZcZa

Za

1

Zac

=
1

Za
× 1

Zc

1
Za

+ 1
Zb

+ 1
Zc

= Gac = GaGc

Ga + Gb + Gc

or Zac = ZaZb + ZbZc + ZcZa

Zb

1

Zab

=
1

Za
× 1

Zb

1
Za

+ 1
Zb

+ 1
Zc

= Gab = GaGb

Ga + Gb + Gc

or Zab = ZaZb + ZbZc + ZcZa

Zc

.

In words, the �-impedance connecting nodes a and b is obtained by dividing the sum of the
pairwise products of the three Y -impedances by the Y -impedance at the opposite node, Zc. Similar
interpretations hold for the other two impedances. If all the impedances are equal, it is called a
balanced circuit. Then,

ZY = Z�

3
and Z� = 3ZY .

The difference in the conversion formulas for balanced circuits is due to the fact that Y -connection is
similar to a series circuit while the other is similar to a parallel circuit.
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Fig. 2.31 A bridge circuit

1V

R1 1 Ω R2 3 Ω

R3 3 Ω R4 1 Ω

R5

1 Ω
1V

R3 3Ω R4 1Ω

I = 0.6A

)b()a(

a b

c

0.2Ω 0.6Ω

0.6Ω

Example
Find the current I drawn by the bridge circuit, shown in Fig. 2.31a, from the source.

The circuit can be considered as the combination of two � circuits with a shared resistor. To make
the analysis simpler, we have to convert one of them into an equivalent circuit. Replacing the top half
of the � circuit, we get, with

Zbc = 3, Zac = 1, Zab = 1

Za = 1 × 1

3 + 1 + 1
= 0.2

Zb = 3 × 1

3 + 1 + 1
= 0.6

Zc = 3 × 1

3 + 1 + 1
= 0.6.

The transformed circuit is shown in Fig. 2.31b. Now,

Zeq = 0.6 + (0.6 + 1)(3 + 0.2)

(0.6 + 1 + 3 + 0.2)
= 5

3
.

Therefore,

I = V

Zeq

= (1)
3

5
= 0.6 A,

which is the same as found by nodal and loop analyses.
Let us get back the � circuit from the Y circuit.

Zbc = ZaZb + ZbZc + ZcZa

Za

= (0.2)(0.6) + (0.2)(0.6) + (0.6)(0.6)

0.2
= 3

Zac = ZaZb + ZbZc + ZcZa

Zb

= (0.2)(0.6) + (0.2)(0.6) + (0.6)(0.6)

0.6
= 1

Zab = ZaZb + ZbZc + ZcZa

Zc

= (0.2)(0.6) + (0.2)(0.6) + (0.6)(0.6)

0.6
= 1.
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2.4 Circuit Theorems

2.4.1 Thévenin’s Theorem and Norton’s Theorem

If the interest is to find the current and voltage in a restricted part of a circuit, then simplified
procedures can be used rather than complete nodal or mesh analysis. In one of the two procedures,
using Thévenin’s theorem, the rest of the circuit is replaced by an equivalent voltage source acting
at the point of interest. Thévenin’s theorem is convenient in such applications as to find the load for
maximum average power transfer in a circuit. In the other procedure using Norton’s theorem, the rest
of the circuit is replaced by an equivalent current source acting at the point of interest. The procedures
are, respectively, special cases of nodal and loop analysis.

Thévenin’s Theorem
Any linear combination of voltage and current sources, independent or dependent, and resistors with
two terminals can be replaced by a fixed voltage source Voc, called the Thévenin equivalent voltage,
in series with a resistor Req , called Thévenin equivalent resistance. The Thévenin equivalent circuit
has an equivalent volt–ampere relationship only from the point of view of the load. It is a restricted
kind of source equivalence. The equivalent source is derived as follows:

1. Remove the load circuit, any combination of independent and dependent voltage and current
sources, and linear and nonlinear resistors. Find the open-circuit voltage, called Voc, across the
load circuit terminals.

2. Find the resistance across the load terminals, after short-circuiting all independent voltage sources
and open-circuiting all independent current sources, called Req . This step can also be carried out
by finding the short-circuit current Isc through the load circuit terminals and Req = Voc/Isc.

Thévenin equivalent circuit is shown in Fig. 2.32a. The equivalent voltage source, replacing a circuit,
is shown on the left side of the two nodes a and b. The constraint is that the current through the load
circuit, represented by the resistor RL in the figure, is the same as that produced by the actual circuit.

The bridge circuit, we analyzed earlier in this chapter, is shown in Fig. 2.33. The load resistor is
R5. The problem is to find the load current in the actual circuit using Thévenin’s theorem.

Solution: Thévenin’s Theorem Method
First, we have to find the open-circuit voltage Voc = Vab. With the load resistor removed, the current
in each of the two parallel branches is 1/(3 + 1) = 0.25 A. Therefore,

Va = 0.75, Vb = 0.25, Vab = Voc = 0.5 V.

Fig. 2.32 Thévenin and
Norton equivalent circuits

b

a
IL

Req

RLVoc

b

a
IL

Req RLIsc

)b()a(
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Fig. 2.33 A bridge circuit
with the load resistor R5

1V

R1 1Ω R2 3Ω

R3 3Ω R4 1Ω

R5

1ΩI =?
Va Vb

Fig. 2.34 Equivalent
resistance from ab and the
Thévenin equivalent circuit
replacing the actual circuit R1 1Ω R2 3Ω

R3 3Ω R4 1Ω

a b Voc

0.5V

Req
3
2Ω

R5

1Ω IL
0.2A

Fig. 2.35 A bridge circuit
and the load resistor
replaced by a current
source supplying current I

1V

R1 1Ω R2 3Ω

R3 3Ω R4 1Ω

R5

1Ω
1V

R1 1Ω R2 3Ω

R3 3Ω R4 1Ω

IV

V1

V2

Now, we have to find the equivalent resistance, Req . For that purpose, the load resistor has to
be removed and the voltage source short-circuited, as shown on the left side of Fig. 2.34. The net
resistance at the terminal pair ab is the sum of the resistances of the pair of parallelly connected
resistors 1 and 3 �. That is,

Req = 1 × 3

1 + 3
+ 1 × 3

1 + 3
= 3

2
�.

The right side of the Fig. 2.34 shows the load resistor connected to the Thévenin equivalent circuit
replacing the actual circuit. The current in the load resistor is

IL = 0.5

1.5 + 1
= 0.2 A,

as found in our earlier analysis by the loop method.

Nodal Analysis
The load current supplied by a circuit, to be replaced by an equivalent circuit, was open-circuited to
find the Thévenin equivalent circuit in the first approach. Alternatively, the same effect can be achieved
by inserting a bucking voltage to make the current through the load circuit zero, as shown in Fig. 2.35.
Thévenin equivalent circuit is characterized by the equation
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V = IReq + Voc,

where I is the load current. If I = 0, V = Voc, the open-circuit voltage. If V = 0, Isc = − Voc

Req
, the

short-circuit current.
Applying KVL and KCL at the top and bottom nodes at the right side of Fig. 2.35, the equilibrium

equations are

V1 − V2 = 1

V1

3
+ V1 − V

1
+ V 2

1
+ V2 − V

3
= 0.

The second equation is obtained using the fact that the current leaving the bottom node and entering
the top node must be equal. Solving for V1 and V2 in terms of V , we get

V1 = V + 1

2
and V2 = V − 1

2
.

The equilibrium equation at node with voltage V is

V − V1

1
+ V − V2

3
= I.

Substituting for V1 and V2 in this equation, we get

V = 3

2
I + 1

2
= IReq + Voc.

The first method seems to be easier for this problem.

Norton’s Theorem
Any linear combination of voltage and current sources, independent or dependent, and resistors with
two terminals can be replaced by a fixed current source Isc, called Norton equivalent circuit, in parallel
with a resistor Req , as shown in the right side of Fig. 2.32b. The equivalent source is derived as
follows:

1. Remove the load circuit, any combination of independent and dependent voltage and current
sources, and linear and nonlinear resistors, and find the short-circuit current, called Ieq or Isc,
through the load circuit terminals.

2. Find the resistance across the load terminals, after short-circuiting all independent voltage sources
and open-circuiting all independent current sources, called Req . This step can also be carried out
by finding the short-circuit current Isc through the load circuit terminals and Req = Voc/Isc.

By current division, from Fig. 2.32b, we get

IL = Isc

Req

Req + RL

= Voc

Req + RL

.
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Fig. 2.36 The
short-circuit current Isc

and the Norton equivalent
circuit replacing the actual
circuit

0.5V 0.5V1V

2
3A

1
2A 1

6A

1
6A 1

2A

R1 1Ω R2 3Ω

R3 3Ω R4 1Ω

Isc
1
3A

b

a
0.2A

3
2Ω 1Ω1

3A

Norton equivalent circuit is characterized by the equation

V = IReq + Voc or I = V

Req

− Isc.

For the bridge circuit, we have found Req = 3
2 , which is the same for both equivalent circuits. Finding

the short-circuit by short-circuiting the load resistor is shown in the left side of Fig. 2.36. The total
resistance, after short-circuiting the load resistor, becomes

1 ‖ 3 + 1 ‖ 3 = 3

2
, and Itotal = 1/(3/2) = 2

3
A.

This current gets divided between the resistors. The current flowing through R1 = (1 − 0.5)/1 =
1/2 A. The current flowing through R3 = 0.5/3 = 1/6 A. Therefore,

Isc = 1

2
− 1

6
= 1

3
A.

The load current is

IL =
1
3

3
2 + 1

(
3

2

)
= 2

15

(
3

2

)
= 0.2 A.

The Norton equivalent circuit is shown on the right side of Fig. 2.36. The voltage across the load
resistor in the Thévenin equivalent circuit is

VL = Voc

Req + RL

RL.

The voltage across the load resistor in the Norton equivalent circuit is

VL = ReqIsc

Req + RL

RL,

which are the same as
Voc = IscReq

A circuit with voltage and current sources is shown in Fig. 2.37. The problem is to find the current
through the resistor R4. In order to find Req , we have to short-circuit the voltage sources and open-
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Fig. 2.37 A circuit with
voltage and current sources

1A

1V

1V

R3

2Ω

R1 1Ω

R2 3Ω

×

×

R4 3Ω
R5 4Ω

I1 I2 I3
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Fig. 2.38 The circuit with
a bucking voltage across
R4

1A

1V

1V

R3

2Ω

R1 1Ω

R2 3Ω
R5 4Ω

I

V1

V2 V3 = V

V

circuit the current source and find the resistance across the terminals marked × in the figure, with
R4 disconnected. The rightmost part of the circuit remains and the rest disconnected. Therefore,
Req = 4�.

Let us find the open-circuit voltage across terminals, with R4 disconnected. At node 3, the
equilibrium equation is

V3

4
= −1 and V3 = −4 V.

Now, Voc = −4 + 1 = −3 V. Therefore, the current through R4 is

Voc

R4 + Req

= −3

4 + 3
= −3

7
A.

The sign of Voc and Req may be positive or negative, depending on the circuit constraints.
Using the alternative approach, let us insert a bucking voltage across R4, as shown in Fig. 2.38. At

the node 3, the equilibrium equation is

I − (V − 1)

4
= 1.

Simplifying, we get
V = 4I − 3 and V = IReq + Voc.
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−+

1V
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2Ω

R1 1Ω

R2 3Ω

I

V1

V2
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V2
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Fig. 2.39 A circuit with a controlled voltage source

A circuit with a controlled voltage source is shown in Fig. 2.39. The problem is to find the current
through the resistor R2. By nodal analysis, we get

(V2 − 1)

1
+ V2

3
+ V2 + 2(V2 − 1)

2
= 0.

Solving, we get V2 = 12/17 and the current through R2 is 4/17 A.

Thévenin Theorem Method
Applying KVL to the middle figure, we get

(1 − V2) + 2(1 − V2) = 1 + 2(V2 − 1) and V2 = Voc = 0.8 V.

We can find the short-circuit current Isc = 1 + 1 = 2 and Req = 0.8/2 = 0.4�. There is another
method to find Req . In order to find Req and the application of linearity, leave the dependent sources.
Short-circuit independent voltage sources and open-circuit independent current sources. Then, apply
a voltage source, such as 1 V, across the load terminals, as shown in the rightmost figure. Find the
current through this source and the inverse of the current is Req . For the example, the current is 2.5 A.
Therefore, Req = 1/2.5 = 0.4�. Alternatively, insert a current source, such as 1 A, between the load
terminals. The voltage across the source is Req . For the example, applying KCL at node 2, we get

V2

1
+ 3V2

2
= 1.

Solving, we get V2 = 0.4 and Req = 0.4�. The current through R2 is

0.8

3 + (0.4)
= 4

17
A.

By applying a bucking voltage across the load terminals and applying KCL, we get

(V − 1)

1
− I + V + 2(V − 1)

2
= 0 and V = 0.4I + 0.8.
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Fig. 2.40 (a) A circuit
with voltage sources; (b)
equivalent circuit with
current sources

V
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1Ω

R3

3Ω

In circuits with both independent and dependent sources, the dependent source and its controlling
variable must not be split when the circuit is broken to find the Thévenin or Norton equivalent.

Source Transformation
Thévenin and Norton equivalent circuits provide the same volt–ampere relationship at the terminals.
It is possible to substitute one source by another, called source transformation, to simplify the circuit
analysis. Source transformation is most useful if the source is localized to some portion of the circuit.

Consider the circuit shown in Fig. 2.40a with voltage sources. The problem is to find the current
through R3. Applying KCL at the middle node, we get

(V − 1)

1
+ V

3
+ (V + 1)

2
= 0 and V = 3

11
V.

Consider the transformed circuit shown in Fig. 2.40b with current sources. By current division, we get

IR3 = 0.5
2

11
= 1

11
A

and the voltage across the resistor is 3/11, as obtained above. With current sources, we got the result
by using the simpler current-division formula.

2.4.2 Maximum Power Transfer Theorem

Systems absorb maximum power only for short periods. For most of the time, the load resistance is
high compared with the source resistance resulting in a high efficiency. For an ideal source, Req = 0.
It is often of interest in applications to find the condition for maximum power transfer from source to
load. Using Thévenin’s theorem, any linear circuit can be represented by an ideal voltage source Voc

in series with a resistance Req . A load resistor RL is connected across this equivalent circuit, as shown
on the left side of Fig. 2.32. The problem is to find out the value of RL for a given Req .

The current through RL in Fig. 2.32 is

I = Voc

RL + Req

.
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The power absorbed by RL is

PL = I 2RL = V 2
oc

(RL + Req)2 RL.

To find the maximum power transfer, we differentiate this expression with respect to RL and equate
to zero. That is,

dPL

dRL

= (RL + Req)2V 2
oc − 2V 2

ocRL(RL + Req)

(RL + Req)4 = 0,

which yields RL = Req . The maximum power delivered is

Pmax = V 2
oc

4Req

.

Maximum power transfer theorem requires that maximum power is transferred between the source
and load, when RL = Req .

At maximum power transfer, half of the power is wasted in the source. However, circuits absorb
maximum power only for short periods. For most of the time, the load resistance is high compared
with the source resistance resulting in a low loss of power. For an ideal source, Req = 0 providing
100% efficiency of power transfer.

Example
Find the load resistance Rm in the bridge circuit, shown in Fig. 2.41a, for maximum power transfer
from the source to the load.

We have to find the Thévenin’s equivalent voltage and resistance across the load resistance
terminals. Replacing the bottom half of the � circuit by Y -circuit, we get, with

Zbc = 1, Zac = 3, Zab = 1

Za = 3 × 1

3 + 1 + 1
= 0.6

Zb = 1 × 1

3 + 1 + 1
= 0.2

Zc = 3 × 1

3 + 1 + 1
= 0.6.

Fig. 2.41 (a) A bridge
circuit; (b) circuit
reduction using � − Y

transformation

1V

R1 1 Ω Rm

R3 3 Ω R4 1 Ω

R5

1 Ω

R1 1Ω

)b()a(

a b

c
0.6Ω

0.2Ω0.6Ω

Req =Rm
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0.6 0.6364 0.8
 RL

0.20510

0.2078

 P

Fig. 2.42 Load resistor versus power transferred

The transformed circuit, with the voltage source short-circuited, is shown in Fig. 2.41b. Now,

Zeq = 0.2 + (0.6 ‖ (0.6 + 1)) = 0.2 + (0.6 + 1)(0.6)

(0.6 + 1 + 0.6)
= 0.6364.

The Voc across the load terminals of the transformed circuit, with the voltage source inserted, is

Voc = (1 + 0.6)1

1 + 0.6 + 0.6
= 0.7273.

Therefore, the maximum power transferred is

Pm = V 2
oc

4Zeq

= (0.72732)

(4 × 0.6364)
= 0.2078 W.

Figure 2.42 shows power transferred for a range of values of the load resistance. The peak value
occurs when the load resistance is equal to the Thévenin’s equivalent resistance. In power system
applications, efficiency of power transmission is important, while maximum power transfer is
important in signal transmission.

2.5 Application

While AC power supply is advantageous for generation, transmission, and distribution, the DC power
supply is equally important in utilization of electrical energy. In some industrial applications, DC
supply is preferred. In electrical traction, DC supply is extensively used. In numerous electrical and
electronic appliances, the circuit works with a DC supply. Invariably, the AC input is converted to
provide the required DC supply. The automobile electrical system is typical one of the many systems
in day-to-day usage.

2.5.1 Strain GaugeMeasurement

When we apply a force to a body, the amount of deformation of it is the strain. Strain is defined as the
ratio of the increment in length to the original length.

ε = δL

L
.
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Fig. 2.43 Wheatstone
bridge circuit for strain
measurement

A
+V

R1 R2

R3
Rs

It can be tensile or compressive. The metallic strain gauge is a thin wire, a foil arranged in a
grid pattern. It is bonded to a thin backing and attached to the test specimen. When the specimen
experiences a strain, the electrical resistance of the gauge varies linearly. Typical value of the
resistance is about 1000 �.

The sensitivity of a strain gauge, expressed as the gauge factor (GF), is the ratio of fractional change
in resistance to the fractional change in length.

GF = δR/R

δL/L
= δR/R

ε
.

Typical value for GF is 2. The strain gauge is compensated suitably to reduce its effect with
temperature changes. The change in resistance is typically 0.1 �. In order to measure this small
change accurately and also compensate for temperature changes, strain gauges are usually used in
bridge circuits, called Wheatstone bridge, with voltage or current source. The Wheatstone bridge
circuit for strain measurement is shown in Fig. 2.43. The variable resistance R3 consists of R and δR.
Initially, δR = 0. The bridge is balanced by adjusting R so that the current through the ammeter is
zero. That is

Rs = R2

R1
R.

When the gauge experiences strain, its value becomes Rs + δRs . Now, the bridge is unbalanced. By
adjusting δR, the bridge is again balanced. Then,

Rs + δRs = R2

R1
(R + δR) and δRs = R2

R1
δR.

With δRs , Rs and the gauge factor known, the strain is determined.

2.6 Summary

• An electric circuit, for theoretical analysis, is an interconnection of idealized representation of
physical components, such as voltage and current sources, switches, resistors, inductors, and
capacitors.

• The relationship between the voltage across an element and the current through it is called its
volt–ampere relationship and is linear in the specified operating ranges.

• With the sources and circuit elements specified, the purpose of circuit analysis is to determine the
voltages and currents at all parts of the circuit.

• Since the current and voltage in an element are related through its volt–ampere relationship, circuits
can be analyzed in terms of the branch currents alone or branch voltages alone.
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• The method of circuit analysis based on currents is called mesh or loop analysis. The other method
based on voltages is called nodal analysis.

• The equilibrium conditions for a circuit can be established in either of the two ways: (1) through
a set of N equations, using KVL, in which the mesh currents are the independent variables; (2)
through a set of M equations, using KCL, in which the branch voltages are the independent
variables.

• An ideal voltage source is characterized by its volt–ampere relationship of keeping its terminal
voltage same irrespective of the current drawn by the load circuit connected to it.

• A circuit, geometrically, is characterized by its branches and nodes.
• A loop is a closed path in a circuit. It starts at a node, passes through a set of nodes (passing through

each node only once), and returns to the starting node. A loop is independent if it contains at least
one branch that is not part of any other independent loop.

• A tree is any set of branches of the circuit that is sufficient to connect all its nodes. A tree contains
no closed paths. There is no unique tree corresponding to a circuit.

• Any of the left out branches of a circuit in forming a tree are called the links.
• The equilibrium state of a circuit is determined by the chosen independent link currents flowing

through the selected loops.
• Procedure for circuit analysis using loops involves: (1) selection of an appropriate number of

independent current variables and the directions of current flow; (2) expressing the dependent
current variables, by applying KCL at nodes, in terms of independent current variables; (3) applying
KVL around the loops to set up a set of simultaneous equations; (4) solving for the independent
currents and finding the currents in all the branches; (5) verifying the solution using KVL and KCL.

• For certain type of circuits under some conditions, the general procedure can be simplified.
• The selection of the direction of the currents in the branches can be arbitrary. If a current flows in

the direction opposite to that assumed, the analysis result will be negative-valued.
• The equilibrium state of a circuit can also be determined by a set of independent voltages, called

the nodal method.
• KCL is applied at nodes of the selected tree of the circuit to find the required equilibrium equations.
• The determinant of the impedance matrix must be nonzero.
• The determinant of the admittance matrix must be nonzero.
• If a voltage source, independent or dependent, is not connected to the ground node, then its two

nodes and any elements connected in parallel with it is called a supernode.
• An ideal current source is characterized by its volt–ampere relationship of keeping its terminal

current same irrespective of the voltage across the load circuit connected to it.
• The response of a circuit to a linear combination of inputs is linear if the output is also the same

linear combination of the individual outputs to the inputs.
• The voltage or current provided by a controlled or dependent source, a 3-terminal device, is

controlled by another voltage or current at some other part of the circuit.
• Certain configurations of circuits, such as Y and � circuits, often appear in applications and it is

required to transform one form from another for simpler circuit analysis.
• Using Thévenin’s theorem, the current through a part of the circuit can be easily found by replacing

the rest of the circuit by an equivalent voltage source acting at the point of interest.
• Using Norton’s theorem, the current through a part of the circuit can be easily found by replacing

the rest of the circuit by an equivalent current source acting at the point of interest.
• It is possible to substitute one source by another, called source transformation, to simplify the

circuit analysis.
• Maximum power transfer theorem gives the condition for maximum power transfer from source to

load.

www.TechnicalPDF.com



70 2 DC Circuits

Exercises

2.1 Given a circuit diagram with the independent currents, find the corresponding tree and the loops.
Analyze the circuit by both nodal and loop methods to find the voltages and currents at all parts
of the circuit. Verify that the results are the same by both the methods. Verify the results using
KVL and KCL. Find the power consumed by the circuit.

2.1.1 The circuit is shown in Fig. 2.44.
* 2.1.2 The circuit is shown in Fig. 2.45.

2.1.3 The circuit is shown in Fig. 2.46.
2.2 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and loop

methods to find the voltages and currents at all parts of the circuit. Verify that the results are the
same by both the methods. Verify the results using KVL and KCL. Find the power consumed by
the circuit.

2.2.1 The circuit is shown in Fig. 2.47.
* 2.2.2 The circuit is shown in Fig. 2.48.

2.3 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and loop
methods to find the voltages and currents at all parts of the circuit. Verify that the results are the
same by both the methods. Verify the results using KVL and KCL. Find the power consumed by
the circuit.

2.3.1 The circuit is shown in Fig. 2.49.
* 2.3.2 The circuit is shown in Fig. 2.50.

2.4 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and
loop methods to find the voltages and currents at all parts of the circuit. Verify that the results
are the same by both the methods. Find the power consumed by the circuit. Verify the results
using KVL and KCL. Analyze the circuit using the linearity property also. Verify that the power
consumed is equal to the power supplied.

2.4.1 The circuit is shown in Fig. 2.51.
* 2.4.2 The circuit is shown in Fig. 2.52.

2.5 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and loop
methods to find the voltages and currents at all parts of the circuit. Verify that the results are the
same by both the methods. Verify the results using KVL and KCL. Find the power consumed by
the circuit. Analyze the circuit using the linearity property also.

2.5.1 The circuit is shown in Fig. 2.53.
* 2.5.2 The circuit is shown in Fig. 2.54.

Fig. 2.44 Circuit for
Exercise 2.1.1

1V

R1 2 Ω R2 1 Ω

R3 2 Ω R4 3 Ω

R5

1 Ω

I1

I3

I2
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Fig. 2.45 Circuit for
Exercise 2.1.2

1V

R1 4 Ω R2 1 Ω

R3 2 Ω R4 3 Ω

R5

1 Ω

I1

I3

I2

Fig. 2.46 Circuit for
Exercise 2.1.3

1V

R1 2 Ω R2 1 Ω

R3 3 Ω R4 4 Ω

R5

1 Ω

I1

I3

I2

Fig. 2.47 Circuit for
Exercise 2.2.1

R6 1Ω

1V

R1 1Ω R2 4Ω

R3 3Ω R4 1Ω

R5

2Ω

I1

I3

I2

Fig. 2.48 Circuit for
Exercise 2.2.2

R6 1Ω

2V

R1 1Ω R2 3Ω

R3 4Ω R4 1Ω

R5

1Ω

I1

I3

I2
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Fig. 2.49 Circuit for
Exercise 2.3.1

1V

R1 2Ω

R3 1Ω

R2 3Ω

R3 3Ω R4 4Ω

I1

I3

I2

Fig. 2.50 Circuit for
Exercise 2.3.2

1V

R1 1Ω

R5 1Ω

R2 3Ω

R3 3Ω R4 2Ω

I1

I3

I2

Fig. 2.51 Circuit for
Exercise 2.4.1

1A

1V

1V

R3

3Ω

R1 1Ω

R2 2Ω

R4 3Ω
R5 4Ω

I1 I2 I3

Fig. 2.52 Circuit for
Exercise 2.4.2

1A

1V

1V

R3

2Ω

R1 1Ω

R2 3Ω

R4 3Ω
R5 4Ω

I1 I2 I3

www.TechnicalPDF.com



Exercises 73

Fig. 2.53 Circuit for
Exercise 2.5.1

3A 1V

R1

1Ω

R2 3Ω
R3 2Ω

I1 I2

Fig. 2.54 Circuit for
Exercise 2.5.2

2A 1V

R1

4Ω

R2 3Ω
R3 2Ω

I2I1

Fig. 2.55 Circuit for
Exercise 2.6.1

−+

2A

R5

2Ω
R2

4Ω

R1 1Ω R3 4Ω R4 3Ω

I1 I2 I3

V1

2(V1 − V4)

V41V

2.6 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and loop
methods to find the voltages and currents at all parts of the circuit. Verify that the results are the
same by both the methods. Verify the results using KVL and KCL. Find the power consumed by
the circuit.

2.6.1 The circuit is shown in Fig. 2.55.
* 2.6.2 The circuit is shown in Fig. 2.56.

2.7 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and loop
methods to find the voltages and currents at all parts of the circuit. Verify that the results are the
same by both the methods. Verify the results using KVL and KCL. Find the power consumed by
the circuit.
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Fig. 2.56 Circuit for
Exercise 2.6.2

−+

2A

R5

2Ω
R2

4Ω

R1 3Ω R3 4Ω R4 1Ω

I1

I2 I3

V1

2(V1 − V4)

V41V

Fig. 2.57 Circuit for
Exercise 2.7.1

2Ix

R5

2Ω
R2

1Ω

R4

2Ω

R1 4Ω R3 3Ω

I1

Ix I2 I3

1V

Fig. 2.58 Circuit for
Exercise 2.7.2

2Ix

R5

2Ω
R2

1Ω

R4

4Ω

R1 1Ω R3 3Ω

I1

Ix I2 I3

1V

2.7.1 The circuit is shown in Fig. 2.57.
* 2.7.2 The circuit is shown in Fig. 2.58.

2.8 Find the Thévenin and Norton equivalent circuits and determine the current through the load
resistor.

2.8.1 The load resistor is R1 in Fig. 2.2a.
2.8.2 The load resistor is R3 in Fig. 2.6b.
2.8.3 The load resistor is R3 in Fig. 2.8.
2.8.4 The load resistor is R2 in Fig. 2.10a.
2.8.5 The load resistor is R3 in Fig. 2.12.
2.8.6 The load resistor is R1 in Fig. 2.15.
2.8.7 The load resistor is R3 in Fig. 2.19.

2.9 Find the value of the resistor R for maximum power transfer from the source to the resistor R.
2.9.1 The circuit is shown in Fig. 2.59.

* 2.9.2 The circuit is shown in Fig. 2.60.
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Fig. 2.59 Circuit for
Exercise 2.9.1

+1V

2 Ω 3 Ω

R 4 Ω
5 Ω

Fig. 2.60 Circuit for
Exercise 2.9.2

+1V

2 Ω

3 ΩR

4 Ω
1 Ω

Fig. 2.61 A circuit with
current sources

1A

0.5A
R2

2Ω

R1

1Ω

R3 3Ω

Fig. 2.62 A circuit with
voltage sources

V

2V

3V

R2 2Ω

R1 3Ω

R3

1Ω

2.10 Find the current through the resistor R3 by analyzing the circuit as shown and also after source
transformation.
* 2.10.1 The circuit is shown in Fig. 2.61.

2.10.2 The circuit is shown in Fig. 2.62.
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Alternating current (AC) is also movement of electrical charge, but changes direction periodically. As
the current is alternating, voltage must also alternate. That is, the polarity is changed in each cycle.
The advantages of AC power supply are:

1. Power transmission and distribution is more efficient. Power has to be transmitted over long
distances from source to consumption. Transmitting power at high voltages reduce transmission
losses. But, power is utilized at low voltages. Transformers are used to provide the change in
levels.

2. AC power generation is easier. It is also used in most high power applications.

However, DC is used in majority of electrical appliances and certain industrial applications, such as
electric traction. Nowadays, DC power is mostly generated by batteries, solar cells, or by converting
AC to DC. Therefore, the study of both DC and AC circuits is required. The basic principles
are essentially the same. However, the study of DC circuit analysis, without transient analysis, is
relatively simpler, as the amplitude profile of voltages and currents is a straight line. Therefore,
we study DC circuit analysis first followed by AC circuit analysis. While the DC waveform is
a straight line, as can be seen on the screen of an oscilloscope, the AC waveform is sinusoidal.
The well-known trigonometric sine and cosine functions are the mathematical definitions of this
waveform.

3.1 Sinusoids

A sinusoidal waveform is a linear combination of sine and cosine waveforms. Sinusoidal representa-
tion of signals is indispensable in the analysis of signals and systems for the following reasons. The
steady-state waveform, due to an input sinusoid, in any part of a linear system is also a sinusoid of
the same frequency as that of the input differing only in its magnitude and phase. In addition, the
sum of any number of sinusoids of the same frequency is also a sinusoid of the same frequency.
The frequency of a sinusoid remains the same in its derivative form also. Therefore, system models,
such as differential equation and convolution, reduce to algebraic equations for a sinusoidal input
for linear systems. Further, due to the orthogonal property, an arbitrary signal can be decomposed
into a set of sinusoids easily. In addition, this decomposition can be implemented faster, in practice,
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78 3 AC Circuits

using efficient numerical algorithms resulting in finding the system output faster than other methods.
Physical systems also, such as a combination of an inductor and a capacitor, produce an output of
sinusoidal nature. The motion of a simple pendulum is approximately sinusoidal.

The Polar Form of Sinusoids
There are two forms of representation of real sinusoids. At a given angular frequency ω, a sinusoid
is characterized by its amplitude A and its phase θ (called the polar form) or by the amplitudes of its
sine and cosine components (called the rectangular form). Signal amplitude can be either positive or
negative. However, magnitude is always positive.

The polar form of a sinusoid is

x(t) = A cos(ωt + θ), −∞ < t < ∞.

A sinusoidal waveform has a positive peak and a negative peak in each cycle. The distance of either
peak of the waveform from the horizontal axis is its amplitude A. The cosine function is periodic, as

cos(ωt) = cos(ωt + 2π).

It repeats its values for t = t + T = t + 2π/ω, where T is its period in seconds. Then, the cyclic
frequency of the sinusoid is f = 1/T Hz (cycles/second). The independent variable t , while time in
most applications, can be anything else also, such as distance.

Sinusoids x(t) = cos( 2π
8 t) and x(t) = 2 sin( 2π

8 t) are shown in Fig. 3.1a. Cosine and sine
waveforms are special cases of a sinusoidal waveform. Cosine waveform has its peak value 1 at t = 0.
Taking it as a reference, its phase is defined as zero radians. The radian frequency is ω = 2π/8 rad/s.
Its period is T = 2π/ω = 8 s. That is, it makes one complete cycle in 8 s, as shown in the figure, and
repeats indefinitely for −∞ < t < ∞. Its cyclic frequency is f = 1/8 Hz. The sine waveform x(t) =
2 sin( 2π

8 t) has its peak value 2 at t = 2. Taking the cosine waveform as the reference, its first peak
occurs at t = 2, after a delay of 2 s, which is one-fourth of a cycle in the period 8. Since one complete
cycle corresponds to 2π radians or 360◦, its phase is defined as −π/2 radians or −90◦. That is,

2 sin(
2π

8
t) = 2 cos(

2π

8
t − π

2
).

0 2 4 6 8
t

-1

0

0.5

0.8660

x(
t)

(b)
0 2 4 6 8

t

-2

-1

0

1

2

x(
t)

(a)

Fig. 3.1 (a) x(t) = cos( 2π
8 t) and x(t) = 2 sin( 2π

8 t); (b) xe(t) = 0.5 cos( 2π
8 t), xo(t) =

√
3

2 sin( 2π
8 t), and x(t) =

cos( 2π
8 t − π

3 )

www.TechnicalPDF.com
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Therefore, given a sinusoidal waveform in terms of sine waveform, it can be expressed, in terms of
cosine waveform as A sin(ωt + θ) = A cos(ωt + (θ − π

2 )). Sinusoids remain the same by a shift of an
integral number of their periods, as they are periodic. Similarly, A cos(ωt +θ) = A sin(ωt +(θ + π

2 )).

3.1.1 The Rectangular Form of Sinusoids

Figure 3.1b shows the sinusoid

x(t) = cos(
2π

8
t − π

3
)

in solid line. Its peak value of 1 occurs at t = 4/3 s. Therefore, its phase is −((4/3)/8)2π = −π/3
radians or −60◦. Using the trigonometric subtraction formula, we get the rectangular form as

cos(
2π

8
t − π

3
) = cos(

π

3
) cos(

2π

8
t) + sin(

π

3
) sin(

2π

8
t)

= 1

2
cos(

2π

8
t) +

√
3

2
sin(

2π

8
t).

The rectangular form expresses a sinusoid as the sum of its sine and cosine components, which
are also, respectively, its odd and even components. The sine and cosine components are shown,
respectively, by dotted and dashed lines in the figure. In general, we get

A cos(ωt + θ) = A cos(θ) cos(ωt) − A sin(θ) sin(ωt) = C cos(ωt) + D sin(ωt),

where
C = A cos θ and D = −A sin θ.

The inverse relation is

A =
√

C2 + D2 and θ = cos−1(
C

A
) = sin−1(

−D

A
).

3.1.2 The Complex Sinusoids

While the sinusoidal waveform is used in practical systems, its mathematically equivalent form, called
the complex sinusoid,

v(t) = V ej(ωt+θ) = V ejθ ejωt , −∞ < t < ∞

is found to be indispensable for analysis due to its compact form and ease of manipulation of the
exponential function. ejωt is the complex sinusoid with unit magnitude and zero phase. The complex
(amplitude) coefficient is V ejθ . The amplitude and phase of the sinusoid is represented by the single
complex number V ejθ , in contrast to using two real values in the real sinusoid. Due to Euler’s identity,
we get

v(t) = V

2

(
ej (ωt+θ) + e−j (ωt+θ)

)
= V cos(ωt + θ).
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The complex exponential functions separately have no physical significance. Their sum represents a
physical voltage. However, the response of a circuit to V ejωt yields enough information with ease to
deduce the response to real sinusoids. With ω = 0 and θ = 0,

v(t) = V ej(ωt+θ) = V.

Therefore, AC circuit analysis is of the same form as that of the DC. The difference is that the variables
are characterized by 2 values, (V , θ) at a given frequency ω, rather than one, V , in the DC case. Note
that ω = 0 and θ = 0 for DC.

3.2 AC Circuit Analysis

AC circuit analysis is carried out using sinusoidal input. The reason for that is the steady-state
voltages and currents in any part of a linear circuit are of the same frequency as that of the source.
The input–output relationship becomes algebraic and, hence, the circuit analysis. Any nonsinusoidal
source can be decomposed into frequency components with different frequencies. The total output
is the sum of the partial outputs due to sources with various frequencies. That is transform theory.
Therefore, although most practical source waveforms are not sinusoidal, emphasis is given to analysis
with sinusoidal inputs. Further, the real sinusoidal functions are difficult to manipulate. Therefore,
circuit analysis boils down to analysis with sources of the form Aej(ωt+θ), which is a mathematically
equivalent representation of the real sinusoid. Then, the output to the real sinusoid is deduced from
the analysis results.

3.2.1 Time- and Frequency-Domain Representations of Circuit Elements

In addition to the resistor used in DC circuit analysis, two more circuit elements, inductor and
capacitor, are used in AC circuit analysis. Figure 3.2a, b show, respectively, the input–output
relationship of an inductor of value L henries and a capacitor of value C farads in the time-domain.
The voltage across a capacitor is the time integral of the current flowing through it times the reciprocal
of its value. The voltage across an inductor is the time derivative of the current flowing through it times
its value.

When the complex exponential source is used, the circuit elements, resistors, inductors, and
capacitors, are to be represented appropriately. Volt–ampere relationships of circuit elements are
shown in Table 3.1. The resistance R is not a function of frequency and remains the same in both the
domains. For a resistor, the impedance is Z = R, and the admittance is the reciprocal of impedance.
In the case of resistor circuits, they are also called, respectively, resistance and conductance. In the

Fig. 3.2 Input–output
relationships of an inductor
and a capacitor in the
time-domain

Lv L di
dt

i= 1
L

t

−∞vdt

C

i=C dv
dt

v 1
C

t

−∞idt

(a) (b)
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Table 3.1 Volt–ampere
relationships of circuit
elements

Element Time-domain Frequency-domain Impedance Admittance

R v = Ri(t) V = RI Z = R Y = 1
R

L v = L
di(t)
dt

V = jωLI Z = jωL Y = 1
jωL

C i = C
dv(t)
dt

V = I
jωC

Z = 1
jωC

Y = jωC

case of inductors and capacitors, the volt–ampere relationships involve differential equations in the
time-domain. However, for complex exponential input only, the relationships become algebraic, as in
the case of the DC circuit analysis. The exponential is the only function that is its own derivative. This
is the reason for the importance of decomposing an arbitrary input into frequency components, finding
the output to each component, and summing all the responses to find the total output. Specifically, in
the case of inductor, with the current being ejωt , V = jωLejωt . That is, V/I = jωL = Z, the
complex form of the Ohm’s law. In the case of capacitor, with the voltage being ejωt , I = jωCejωt .
That is, V/I = 1/(jωC) = Z, the complex form of the Ohm’s law. The equivalent impedance of

series connected impedances is the sum of the individual impedances. The equivalent admittance
of parallelly connected admittances is the sum of the individual admittances. In the analysis of
complicated circuits, one may need to convert repeatedly from an admittance basis to an impedance
basis, and vice versa. The impedance of a series connected resistor R and inductor L is Z = R+jωL.
That is, the real part is a resistance. In general, the real part is called the resistive part and the imaginary
part is called the reactive part. Both the parts may be combination of resistance, inductance, and
capacitance elements.

The differential equation characterizing a series RL circuit, with the input V ejωt and the response
i(t), is

L
di(t)

dt
+ Ri(t) = V ejωt .

A function of the form i(t) = Iejωt satisfies the differential equation. Therefore, the differential
equation reduces to an algebraic equation, in the frequency-domain, yielding the solution

I = V

R + jωL
= V

Z
,

where Z = R + jωL is called the impedance of the circuit. The impedance is the opposition to the
flow of current by the circuit for a complex exponential excitation. The admittance is the reciprocal
of the impedance. The magnitude and the phase of the current, assuming the phase angle of V is zero,
are, respectively,

V√
R2 + (ωL)2

and θ = − tan−1(
ωL

R
).

Differentiating a sinusoid any number of times results in the sinusoid of the same frequency with
only changes in the amplitude and phase. Therefore, the differential and integral equations become
algebraic equations, making it easy to find the solution. No other waveform has this property. Further,
an arbitrary signal can be decomposed into sinusoidal components of various frequencies in transform
analysis, as presented in later chapters. These are the major reasons for the importance of AC circuit
analysis using sinusoids.
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3.2.2 Time-Domain Analysis of a Series RC Circuit

Let us solve a simple problem of finding the steady-state current in a series RC circuit shown in
Fig. 3.3, excited by a sinusoidal voltage source, v(t) = V cos(ωt) with V = 1 V and ω = 1. The
differential equation characterizing the circuit, with input V cos(ωt), is

1

C

∫ t

−∞
i(t) + Ri(t) = V cos(ωt).

Differentiating this equation and dividing both sides by R, with zero initial condition, we get

di(t)

dt
+ 1

RC
i(t) = −ωV

R
sin(ωt).

The response is expected to be of the form

I cos(ωt + θ)

and its derivative with respect to t is
−Iω sin(ωt + θ).

Substituting in the differential equation, we get

(−ω sin(ωt + θ) + 1

RC
cos(ωt + θ))I = −ωV

R
sin(ωt).

Expanding sine and cosine functions on the left side, we get

(−ω(sin(ωt) cos(θ) + cos(ωt) sin(θ)) + 1

RC
(cos(ωt) cos(θ) − sin(ωt) sin(θ)))I

= −ωV

R
sin(ωt).

Combining the terms associated with cos(ωt) and equating it to zero, we get

(−ω cos(ωt) sin(θ)) + 1

RC
(cos(ωt) cos(θ)) I = 0

and
sin(θ)

cos(θ)
= tan(θ) = 1/RC

ω
= 1

ωRC
and θ = tan−1(

1

ωRC
).

Fig. 3.3 A series RC
circuit
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i(t)
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By trigonometric definition,

cos(θ) = x

r
, sin(θ) = y

r
and r =

√
x2 + y2.

With x = ω and y = 1
RC

, we get

cos(θ) = ω√
ω2 + ( 1

RC
)2

and sin(θ) =
1

RC√
ω2 + ( 1

RC
)2

.

Combining the terms associated with sin(ωt) and equating, we get

(ω(sin(ωt) cos(θ)) + 1

RC
(sin(ωt) sin(θ)))I = ωV

R
sin(ωt).

Simplifying, we get

(ω cos(θ) + 1

RC
sin(θ))I = ωV

R
.

Substituting for cos(θ) and sin(θ), we get

I =
ωV
R√

ω2 + ( 1
RC

)2
= V√

R2 + ( 1
ωC

)2
.

With
V = 1, R = 2, C = 1, ω = 1, I = 0.4472, θ = � (0.4636) rad

For RL circuit, with

V = 1, R = 2, L = 1, ω = 1, I = 0.4472, θ = � (−0.4636) rad

The input and the response are shown in Figs. 3.4 and 3.5. The current leads the voltage in the RC

circuit. The current lags the voltage in the RL circuit.

0 5.8196
t

0

0.4472

1

x(
t)

Fig. 3.4 Excitation and response of a series RC circuit
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0 0.4636 6
t

0

0.4472

1
x(

t)

Fig. 3.5 Excitation and response of a series RL circuit

3.2.3 Frequency-Domain Analysis of a RC Circuit

When the independent variable of signals, such as time t , is not frequency, then that representation is
called the time-domain representation. On the other hand, when the independent variable of signals is
frequency, such as f and ω, then that representation is called frequency-domain representation. In the
frequency-domain, circuit analysis becomes algebraic, rather than solving a differential equation in
the time-domain. Transforms, such as Fourier transform and Laplace transform, are used to transform
signals and systems from one domain into another.

The differential equation characterizing the RC circuit, with input V ejωt , is

1

C

∫ t

−∞
i(t) + Ri(t) = V ejωt .

Differentiating both sides and assuming that the initial condition is zero, we get

di(t)

dt
+ 1

RC
i(t) = jV ω

R
ejωt .

The response is expected to be of the form Iejωt and its derivative is jωIejωt . Substituting for i(t) in
the differential equation, we get

(
1

RC
+ jω)Iejωt = jV ω

R
ejωt

and

I = jV ω

R

RC

1 + jωRC
= jωCV

1 + jωRC
= V

Z
= V

R + 1
jωC

= V

R − j
ωC

.

The magnitude and phase of I are the same as those obtained by the time-domain method. Comparing
the time-domain and frequency-domain analyses, the simplicity of the latter is obvious.

The steps involved in transform analysis of AC circuits are:

1. Transform the circuit from the time-domain to the frequency-domain.
2. Find the required output using nodal or mesh analysis.
3. Transform the solution back to the time-domain.
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The first task in formulating the equilibrium equations for an electric circuit is to select a set of vari-
ables, voltages or currents. They must be independent and adequate to describe the state of the network
at any instant. They must be uniquely and reversibly related to all the branch variables. After selecting
an appropriate set of variables, we have to use Kirchhoff’s laws. The volt–ampere relations of the
circuit elements are required at this stage. Of course, voltage or current sources are required to energize
a circuit and their characteristics must be taken into account. Further, we used circuit theorems in
analyzing circuits. All these aspects presented for DC circuits remain the same for AC circuit analysis.

One important difference in AC circuit analysis is that the independent variable is frequency. At
any given frequency, a sinusoid is characterized by two parameters, amplitude and phase. These two
parameters are combined into a complex quantity, called a phasor, for the convenience of analysis.
A phasor is a two-element vector that represents the amplitude and phase of sinusoidal voltages and
currents. Therefore, complex quantities are involved in the analysis of AC circuits. Otherwise, the
analysis is similar to that of DC circuits. Same equilibrium equations are applicable for DC and AC
circuits of the same structure with the circuit elements denoted by Z1, Z2, etc. The circuit elements
for DC circuits are resistors, while those for AC circuits are resistors, inductors and capacitors. This
difference comes into play only when the values of the elements are substituted in the same set of
equations for the same circuit structure. We use real arithmetic in the analysis of DC circuits, while
complex arithmetic is required for AC circuit analysis. Therefore, the essential part of the procedure
remains the same for DC and AC circuits. Therefore, AC circuit analysis is no more complex than
that of DC circuit analysis, except that of using complex arithmetic. Of course, visualization of DC
voltages and currents is easier.

A suggested procedure for feeling comfortable and getting used to AC circuit analysis is as follows:
Denote each circuit element by Z1, Z2, etc. With the same structure of the circuit, use resistors with
suitable values, such as 1 and 2 � for Z1, Z2, etc. Replace the AC sources by DC sources. Write
down the equilibrium equations for the type of analysis desired (nodal or mesh). Solve the equations.
Verify the solution by applying KVL and KCL. Then, use the same equilibrium equations with the
appropriate impedance values and AC sources. Finally, verify the solution by applying KVL and KCL.
The process is similar to real and complex number arithmetic. We are more used to real arithmetic but
the basic principle behind both arithmetic are the same.

Another inherent property of AC circuits is that the circuit must be analyzed at each frequency
individually, if sources with more than one frequency are present in the circuit. The value of the
impedance changes with the frequency of the source. The response of the circuit at all frequencies
must be added to find the total response. Therefore, we analyze circuits with the same structure,
studied in Chap. 2, with resistors, inductances, and capacitors, and AC sources, so that the differences
in DC and AC circuit analyses are clearly highlighted.

As the sinusoidal waveform is everlasting, using a sinusoid as a source will result in the steady-
state analysis. In practice, we switch on the sinusoidal source at some finite time, not from at some
remote time. Due to this, there will be a transient response. For stable systems, such as the circuits,
we study that the transient response will die down in a short time after switching a sinusoidal source,
leaving only steady-state response. Transient response will be presented later.

For proper steady-state analysis, ensure that the effective transient response time of the circuit is
short enough compared with that of the period of the excitation.

3.2.4 Impedances Connected in Series

AC circuit analysis is also based on the same concepts for the DC analysis. The difference is that
the source, the sinusoid, is characterized, at a particular frequency, by two parameters, magnitude
and phase, rather than the magnitude alone in DC analysis. Further, the impedances of inductors
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Fig. 3.6 Series circuit with a voltage source

and capacitors are also characterized, at a particular frequency, by two parameters, magnitude and
phase, rather than the magnitude alone for the resistor. Due to these reasons, AC circuit analysis,
while based on the same concepts, requires more arithmetic. AC circuit analysis is also indispensable
since AC is widely used. In addition, most of the signals occurring in practice have arbitrary
amplitude profile and it is difficult to analyze circuits with them. It becomes a necessity to decompose
the signals in terms of well-defined basis signals and the sinusoid is the most suitable for that
purpose.

In practice, the desired circuit elements are often not available and we have to use a combination
of more than one element as an equivalent one. Impedances can be combined in series and/or parallel
configurations, exactly as in resistor circuits. Resistors, inductors, and capacitors have two terminals
and, therefore, they come under the class of two-terminal devices or elements. In a series connection,
one, and only one, terminal of an element is connected to adjoining elements. Figure 3.6a shows a
resistor, an inductance and a capacitor connected in cascade, called a series circuit. A circuit is an
interconnection of elements. The determination of currents and voltages at all parts of the circuit is
the essence of circuit analysis. When impedances are connected in series, the voltage across them
increases, with the same current flowing through them. It is similar to connecting hoses to make a
longer hose. The combined impedance is the sum of all the impedances. That is, with N number of
impedances connected in series, the equivalent impedance Zeq of the series circuit is

Zeq = Z1 + Z2 + · · · + ZN.

The same current I pass through all the impedances. Therefore, the voltage V across the series
connection is

V = IZ1 + IZ2 + · · · + IZN = IZeq .

The equivalent impedance remains unchanged, irrespective of the order in which they are connected.
Obviously, if all of them have the same value, then Zeq = NZ. The source voltage applied across
them gets divided in proportion to their individual values. The current through the series circuit is

I = V

Zeq
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and the voltage across any impedance Zn is

Vn = V

Zeq

Zn.

With just two impedances, Z1 and Z2, and V , the applied voltage, in the series connection, we get

V1 = V

Z1 + Z2
Z1 and V2 = V

Z1 + Z2
Z2.

Consider the circuit in Fig. 3.6a. The circuit is energized by a voltage source V . The impedances
corresponding to resistor R, inductor L, and capacitor C, respectively, are

ZR = R, ZL = jωL, ZC = 1

jωC
.

The impedances of the inductor and capacitor are a function of the frequency. The equivalent
impedance is

Zeq = R + jωL + 1

jωC
.

The voltage across the impedances are, respectively,

VZR = V
ZR

ZL + ZC + ZR

, VZL = V
ZL

ZL + ZC + ZR

, VZC = V
ZC

ZL + ZC + ZR

.

Alternatively, we can find the current through the series circuit

I = V

Zeq

and
VZR = IZR, VZL = IZL, VZC = IZC.

According to KVL,
V = VZR + VZL + VZC.

Consider the circuit in Fig. 3.6b. The circuit is energized by a voltage source of V = 2 cos(2t)V .
The magnitude of the source is 2 V and its frequency ω = 2 rad/s. An ideal voltage source maintains
a constant voltage at its terminals, irrespective of the current drawn from it. A voltage source is a
constraint, clamping the voltage at certain point in the circuit. The equivalent impedance is

Zeq = 3 + j2 × 2 + 1

j2 × 1
= 3 + j4 − j0.5 = 3 + j3.5.

The voltage source is the real part of the complex exponential

2ej2t = 2 cos(2t) + j2 sin(2t).

Therefore, with the understanding that only the real parts of resulting complex expressions in the
circuit analysis are to be considered, we use the exponential 2ej2t as the source voltage instead of
2 cos(2t) for mathematical convenience. As the response is of the same form throughout the circuit, the
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Fig. 3.7 Source and responses of a series RLC circuit

complex exponentials cancel out and we use its coefficient 2, called the phasor, in the manipulations.
Phasor is a rotating vector representing an AC sinusoidal voltage or current. As it is a complex
number, it may be written in exponential, polar, or rectangular form. The voltage drops across the
impedances are

VZR = V
ZR

Zeq

= 2 × 3

3 + j3.5
= 0.8471 − j0.9882,

VZL = V
ZL

Zeq

= 2 × j4

3 + j3.5
= 1.3176 + j1.1294, VZC = V

ZC

Zeq

= 2 × (−j0.5)

3 + j3.5
= −0.1647 − j0.1412

The three voltage drops add up to 2 V, the source voltage, satisfying KVL around the only loop of the
circuit. Alternatively,

I = V

Zeq

= 2

3 + j3.5
= 0.2824 − j0.3294

and
VZR = IZR = (0.2824 − j0.3294)3 = 0.8471 − j0.9882,

VZL = IZL = (0.2824 − j0.3294)(j4) = 1.3176 + j1.1294,

VZC = IZC = (0.2824 − j0.3294)(−j0.5) = −0.1647 − j0.1412

Figure 3.7 shows the real sinusoidal waveforms of the voltages and the current in the circuit.
Although we use the complex frequency-domain representation of the circuit in its analysis, for
mathematical convenience, it should be always remembered that the voltages and currents in practical
circuits are real sinusoids. The real sinusoidal form of the voltages and the current are obtained by
taking the real part of their corresponding form obtained in the frequency-domain analysis.

i(t) = |I | cos(2t + � I ) = 0.4339 cos(2t − 49.3987◦)

vR(t) = |VZR| cos(2t + � VZR) = 1.3016 cos(2t − 49.3987◦)

vL(t) = |VZL| cos(2t + � VZL) = 1.7354 cos(2t + 40.6013◦)

vC(t) = |VZC | cos(2t + � VZC) = 0.2169 cos(2t − 139.3987◦)
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Fig. 3.8 The voltages and
the currents represented in
the complex plane
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The current through and voltage across the resistor have the same phase. That is, their positive peaks
occur at the same instant. The current through the inductor lags the voltage across it. Choosing the
current waveform as the reference, the nearest positive peak of the voltage drop occurs earlier in a
period. The current through the capacitor leads voltage across it. The positive peak of the voltage drop
occurs later in a period.

The voltages and the current are represented in the complex plane in Fig. 3.8. While absolute and
angle values can be computed using formulas or calling functions, it is recommended that they are
visualized in the complex plane. It helps understanding and also serves as a check on numerical
computation. For example, the complex value corresponding to the current is located in the middle
of the bottom right quadrant. That is, the angle is about −45◦ and the exact value is −49.3987◦.
The phase of the voltage across the resistor is also the same. The absolute value can be estimated
using a scale. Similarly, the other values can be estimated. Further, the results of complex arithmetic
operations can also be estimated graphically, as shown in Appendix B.

While we checked KVL using the complex values, it can be checked using the real sinusoids also.
The sum of the voltages, in rectangular form of sinusoid, are

(0.8471 + 1.3176 − 0.1647) cos(2t) = 2 cos(2t) and (0.9882 − 1.1294 + 0.1412) sin(2t) = 0

That is, the sine component is zero, while the magnitude of the cosine component is 2.
Consider the circuit shown in Fig. 3.6c. The circuit is energized by the same voltage source in

Fig. 3.6b, but with the polarities reversed. The voltages and the current are the same with their phases
added or subtracted by π radians or 180◦.

Consider the circuit shown in Fig. 3.9a. The circuit is energized by a current source of IA. An
ideal current source maintains a constant current at its terminals, irrespective of the voltage across its
terminals. A current source is a constraint, clamping the current at certain point in the circuit. As the
same current flows through the impedances, the respective voltage drops are

VZR = IZR, and VZL = IZL, and VZC = IZC.

An important step in the frequency-domain analysis of circuits is to convert the real sinusoidal
sources into the mathematically equivalent complex sinusoidal sources. The conversion formulas are

V cos(ωt + θ) → V � θ
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Fig. 3.9 Series circuit with a current source

and
V sin(ωt + θ) → V � (θ − π

2
).

These formulas hold both for current and voltage sources. For example,

i(t) = 2 cos(ωt − π

3
) → 2� − π

3

and
v(t) = 3 sin(ωt + π

6
) → 3� (

π

6
− π

2
).

The last equation is due to the fact that

sin(θ) = cos(θ − π

2
).

Consider the circuit in Fig. 3.9b. The circuit is energized by a current source of i(t) = sin(t)A.
The magnitude of the source is 1 A and its frequency ω = 1 rad/s. In the frequency-domain, the
corresponding current source is

I = 1� − π

2
= cos(

π

2
) − j sin(

π

2
) = −j.

The respective voltage drops are

VZR = (−j) × 3 = −j3V and VZL = (−j) × j2 = 2V

VZC = (−j) × (−j1) = −1V.

In the time-domain, the values are, respectively,

vR(t) = 3 sin(t), vL(t) = 2 cos(t), vC(t) = − cos(t).

The equivalent impedance of the circuit is 3 + j2 − j1 = 3 + j1. The total voltage drop across the
circuit is (−j)(3 + j1) = 1 − j3. The sum of the individual drops −j3 + 2 − 1 = 1 − j3 is equal to
this value.
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Consider the circuit in Fig. 3.9c. The circuit is energized by a current source of i(t) = − sin(t)A.
As the direction of current flow is reversed, the polarities of the voltage drops are also reversed.

3.2.5 Impedances Connected in Parallel

In parallel connection, one terminal of all the elements is connected to one node and the other
terminals are connected to another node. Therefore, the voltage across each element is equal.
Figure 3.10 shows a resistor, an inductor, and a capacitor connected in parallel, called a parallel circuit.
When elements are connected in parallel, while the voltage across all of them is the same, different
currents flow through them, unless some or all of them are the same. It is similar to connecting hoses
to make a wider hose. The length remains the same, but the flowing capacity increases. The combined
admittance, the reciprocal of the impedance Y = 1/Z, is the sum of all the admittances. That is, with
N number of elements connected in parallel, the equivalent admittance Yeq of the parallel circuit is

Yeq = Y1 + Y2 + · · · + YN and Zeq = 1

Yeq

,

where Yn = 1/Zn. The value of Zeq will be smaller than the smallest of the impedances in the parallel
connection, since the total current is more. The same voltage V is applied across all the elements.
Therefore, the total current I flowing through the parallel connection is

I = V Y1 + V Y2 + · · · + V YN = V Yeq.

The equivalent admittance remains unchanged, irrespective of the order in which they are connected.
Obviously, if all of them have the same value, then Yeq = NY . The total current gets divided in
proportion to their individual admittance values. The total current through the circuit is

I = V Yeq

and the current through any admittance Yn is

In = I

Yeq

Yn.

∼

IR =I YR

YR+YL+YC

IL =I YL

YR+YL+YC

IC =I YC

YR+YL+YC

IA R L C

IR IL IC

(a) (b)

YR = 1
R

YC =jωC
YL = 1

jωL

∼

IL =(−j) −j0.5
0.3333+j0.5 =−0.4615 + j0.6923

IC =(−j) j
0.3333+j0.5 =0.9231−j1.3846

IR =(−j) 0.3333
0.3333−j0.5+j =−0.4615−j0.3077

si
n(

t)
A

3Ω 2H 1F

IR IL IC

Fig. 3.10 Parallel circuit with a current source
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∼

IR =V YR

IL =V YL

IC =V YC

V R L C

IR IL IC

(a) (b)

YR = 1
R

YC =jωC
YL = 1

jωL

∼

IR =(−j)0.3333=−j0.3333

IL =(−j)(−j0.5)=−0.5

IC =(−j)j =1

si
n(

t)
V

3Ω 2H 1F

IR IL IC

Fig. 3.11 Parallel circuit with a voltage source

With just two admittances, Y1 and Y2, and I , the total current, we get

I1 = I

Y1 + Y2
Y1 and I2 = I

Y1 + Y2
Y2.

Consider the circuit in Fig. 3.10a. The circuit is energized by a current source of V = IA. The
admittances are

YR = 1

R
, YC = jωC YL = 1

jωL
.

The currents are

IR = I
YR

YR + YL + YC

IL = I
YL

YR + YL + YC

IC = I
YC

YR + YL + YC

.

Consider the circuit in Fig. 3.10b. The circuit is energized by a current source of I = sin(t)A. The
magnitude of the source is 1 A and its frequency ω = 1 rad/s. In the frequency-domain, the source is
represented by −j . The currents through the three elements are shown in the figure. The total current
adds up to −j1, which is equal to the source current. The voltages across all the elements must be the
same. That is,

IR

YR

= IL

YL

= IC

YC

= −1.3846 − j0.9231.

Consider the circuit in Fig. 3.11a. The circuit is energized by a voltage source of V . The currents
through the impedances are

IR = V YR, IL = V YL, IC = V YC.

Consider the circuit in Fig. 3.11b. The circuit is energized by a voltage source of sin(t)V . The
currents through the impedances are

IR = (−j)0.3333 = −j0.3333, IL = (−j)(−j0.5) = −0.5, IC = (−j)j = 1.

The total admittance is 0.3333 − j0.5 + j = 0.3333 + j0.5. The current through the circuit is
(−j1)(0.3333 + j0.5) = 0.5 − j0.3333, which is equal to the sum of the individual currents through
the elements.
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3.2.6 Impedances Connected in Series and Parallel

The analysis of series and parallel circuits is relatively straightforward. In general, most circuits are
a combination of series and parallel circuits or connected in a random configuration in which none
of the elements is in series or parallel. Obviously, combinations of the concepts of series and parallel
circuits are used to analyze series-parallel circuits. Analysis of circuits with random configurations
are presented in the next section.

First, we have to identify the parts of the circuit with series and parallel configurations and simplify
them separately. Now, the circuit gets reduced to a simpler form. These steps must be repeated until we
can determine the source current. Then, using the voltage-division and current-division laws governing
the series and parallel circuits repeatedly, we find the voltages and currents at all parts of the circuit.

Consider the circuit in Fig. 3.12a. The circuit is energized by a voltage source, V = cos(2t + π
6 )V .

The magnitude of the source is 1V and its frequency ω = 2 rad/s. In the frequency-domain, it is
1� π

6 = 0.866 + j0.5.
First, we have to find the combined impedance of the circuit, which is

Zeq = ZC + (ZR ‖ ZL) = ZC + 1

YR + YL

= 0.6897 − j3.2759.

Now, the current drawn from the source is

I = IC = 0.866 + j0.5

0.6897 − j3.2759
= −0.0929 + j0.2839A.

This current gets divided between YR and YL. Using current-division formula, we get

IR = I

YR + YL

YR = −0.1107 + j0.0071 A

IL = I

YR + YL

YL = I − IR = 0.0179 + j0.2768 A.

Applying KCL at the common point of the three elements, we get

−IC + IL + IR = 0.

The current through the circuit multiplied by the equivalent impedance is

(−0.0929 + j0.2839)(0.6897 − j3.2759) = 0.866 + j0.5,

which is equal to the source voltage.

∼
+

co
s(

2t
+

π 6
)V

5Ω 1H

0.1F

IR IL

IC

(a) (b)

YR =0.2

ZC = 1
jωC

YL = 1
jωL

=−j5

=−j0.5

∼

si
n(

2t
+

π 6
)A

5Ω 1H

0.1F

IR IL

IC

YR =0.2

ZC = 1
jωC

YL = 1
jωL

=−j5

=−j0.5

Fig. 3.12 Impedances connected in series and parallel. (a) with a voltage source; (b) with a current source
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Consider the circuit in Fig. 3.12b. I = sin(2t + π
6 )A. The magnitude of the current source is 1 and

its frequency ω = 2 rad/s. In the frequency-domain, it is 1� − π
3 = 0.5 − j0.866. The source current

flows through C and, therefore, I = IC = (0.5 − j0.866)A. This current gets divided between YR

and YL. Using current-division formula, we get

IR = I

YR + YL

YR = (0.3676 + j0.0530)A

IL = I

YR + YL

YL = I − IR = (0.1324 − j0.9190)A.

Applying KCL at the common point of the three elements, we get

−IC + IL + IR = 0.

The voltage across R and L must be the same.

(0.3676 + j0.0530)/0.2 = (0.1324 − j0.9190)/(−j0.5) = 1.8380 + j0.2648

3.2.7 Analysis of Typical Circuits

Circuit 3.1
Consider the bridge circuit shown in Fig. 3.13a. The structure of the circuit is the same as that we
analyzed in Chap. 2. The first difference is that the DC voltage source has been changed to AC source
v(t) = cos(t + π/6). The five branches of the bridge are combinations of resistors, inductance, and
capacitances rather than resistors only in the circuit for DC analysis. In AC circuit analysis, the circuit
has to be transformed to the frequency-domain as shown in Fig. 3.13b so that we follow essentially the
same procedure for DC analysis, although elements characterized by differential equations are part of
the circuit.

The Source
The source v(t) = cos(t + π/6) is replaced by

v(t) = ej (t+ π
6 ) = ej π

6 ejt .

∼
+

co
s(

t+
π 6
)V C1

0.1F

C4

0.1F

R2

3Ω

L3 1H

L2 1H

R4
1Ω

R5

1Ω
∼

1 π
6 V

Z1

−j10

Z2

j3
3+j

Z3 j1 Z4−j10
1−j10

Z5

1

I1 I2

I3

V1

V2 V3

(a) (b)

Fig. 3.13 (a) A bridge circuit; (b) its frequency-domain version
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The magnitude and phase of the complex exponential is only required in the analysis, as ejt remains
unchanged throughout the circuit. The frequency ω is 1. The use of complex exponential source makes
the analysis compact and easier. As the complex exponential has a real part and an imaginary part

v(t) = ej (t+ π
6 ) = cos(t + π

6
) + j sin(t + π

6
)

and our input is the cosine waveform, the real part is implied. Therefore, the complex coefficient of
the exponential V = 1� π

6 represents the input source voltage in Fig. 3.13b.

The Impedances
Using the formulas in Table 3.1 for volt–ampere relationships of elements and formulas for series and
parallelly connected impedances, we get, with ω = 1 of the source,

Z1 = 1

jωC1
= −j10, Z2 = R2jωL2

R2 + jωL2
= j3

3 + j1
, Z3 = jωL3 = j1,

Z4 = R4
1

jωC4

R4 + 1
jωC4

= −j10

1 − j10
, Z5 = R5 = 1,

shown in Fig. 3.13b. When computing the impedance values, it is important to take into account the
frequency of the voltage or current source. For each source frequency, the analysis has to be repeated.

Mesh Analysis
The impedance concept enables us to use the same methods, those are applicable to DC circuits, to
analyze AC circuits in the steady state. The Ohm’s and Kirchoff’s laws, in terms of complex voltage,
current, and impedance, are equally applicable to AC steady-state analysis. Therefore, for an AC
circuit with a similar geometrical structure as that of a DC circuit, the equilibrium equations of the
DC circuit, for both mesh and nodal methods of analysis, remain the same. The difference is that the
elements are characterized by real quantities for DC circuits, while they are characterized by complex
quantities for AC circuits. Therefore, the formal procedure of DC circuit analysis remains the same
for the AC case in steady state. The resistance values are replaced by impedance values and the DC
sources are replaced by AC sources.

The equilibrium equations are of the same form as those we derived for the DC bridge with the
source changed and are

Z1(I1 − I2) + Z3(I1 − I3) = 1� π

6
(3.1)

−Z1(I1 − I2) − Z5(I3 − I2) + Z2I2 = 0 (3.2)

−Z3(I1 − I3) + Z5(I3 − I2) + Z4I3 = 0. (3.3)

Simplifying, we get

(Z1 + Z3)I1 − Z1I2 − Z3I3 = (

√
3

2
+ j

1

2
) (3.4)

−Z1I1 + (Z1 + Z2 + Z5)I2 − Z5I3 = 0 (3.5)

−Z3I1 − Z5I2 + (Z3 + Z4 + Z5)I3 = 0. (3.6)
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The equilibrium equations, in matrix form, are

⎡

⎢⎣
(Z1 + Z3) −Z1 −Z3

−Z1 (Z1 + Z2 + Z5) −Z5

−Z3 −Z5 (Z3 + Z4 + Z5)

⎤

⎥⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎢⎣
(
√

3
2 + j 1

2 )

0

0

⎤

⎥⎦

With

Z1 = −j10, Z2 = j3

3 + j1
, Z3 = j1, Z4 = −j10

1 − j10
, Z5 = 1,

the determinant of the impedance matrix is 27.8624 − j7.0762.
Solving the equilibrium equations, we get

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎢⎣
0.0000 − j9.000 0.0000 + j10.000 0.0000 − j1.000

0.0000 + j10.000 1.3000 − j9.100 −1.0000 + j0.000

0.0000 − j1.000 −1.0000 + j0.000 1.9901 + j0.901

⎤

⎥⎦

−1⎡

⎢⎣
(
√

3
2 + j 1

2 )

0

0

⎤

⎥⎦

=
⎡

⎢⎣
0.4750 − j0.4873 0.4656 − j0.5601 0.3813 − j0.2154

0.4656 − j0.5601 0.4605 − j0.5259 0.4142 − j0.2178

0.3813 − j0.2154 0.4142 − j0.2178 0.7104 − j0.2395

⎤

⎥⎦

⎡

⎢⎣
(
√

3
2 + j 1

2 )

0

0

⎤

⎥⎦

=
⎡

⎢⎣
0.6550 − j0.1845

0.6833 − j0.2523

0.4379 + j0.0041

⎤

⎥⎦

{IZ1 = −0.0283 + j0.0677, IZ3 = 0.2171 − j0.1886, IZ5 = −0.2454 + j0.2564}

Verifying the Solutions
Applying KVL around the loops, we get

IZ1Z1 + IZ3Z3 =
(−0.0283 + j0.0677)(−j10) + (0.2171 − j0.1886)(j1)

= (0.6774 + j0.2829) + (0.1886 + j0.2171) = (

√
3

2
+ j

1

2
)

−I2Z2 + IZ5Z5 + IZ1Z1 =

−(0.6833 − j0.2523)(
j3

3 + j
) + (−0.2454 + j0.2564)(1) + (−0.0283 + j0.0677)(−j10)

= (−0.4320 − j0.5393) + (−0.2454 + j0.2564) + (0.6774 + j0.2829) = 0

IZ5Z5 + I3Z4 − IZ3Z3 =

(−0.2454 + j0.2564)(1) + (0.4379 + j0.0041)(
−j10

1 − j10
) − (0.2171 − j0.1886)(j1)

= (−0.2454 + j0.2564) + (0.4340 − j0.0393) − (0.1886 + j0.2171) = 0
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While these verifications in complex form are correct, as the given excitation is a real sinusoid, we
have to relate the excitation to the branch voltages and currents. Consider the loop involving Z1, Z3

and the excitation.

IZ1Z1 + IZ3Z3 = (0.6774 + j0.2829) + (0.1886 + j0.2171) = (

√
3

2
+ j

1

2
).

In terms of complex exponentials, this equation corresponds to

0.7341ej (t+0.3956) + 0.2876ej (t+0.8554) = ej (t+ π
6 ).

The magnitudes and phases are the absolute values and angles of the corresponding complex
coefficients. By taking the real parts, this equation corresponds to, in terms of real sinusoids,

0.7341 cos(t + 0.3956) + 0.2876 cos(t + 0.8554) = cos(t + π

6
).

Expressing the sinusoids in rectangular form, we get

(0.6774 cos(t) − 0.2829 sin(t)) + (0.1886 cos(t) − 0.2171 sin(t)) = (0.866 cos(t) − 0.5 sin(t))

In a similar manner, we can interpret the other complex quantities in terms of real sinusoids.
Verifying the solution using KCL at nodes, we get

I1 − IZ1 − I2 = (0.6550 − j0.1845) − (−0.0283 + j0.0677) − (0.6833 − j0.2523) = 0

IZ1 − IZ3 − IZ5 = (−0.0283 + j0.0677) − (0.2171 − j0.1886) − (−0.2454 + j0.2564) = 0

IZ5 + I2 − I3 = (−0.2454 + j0.2564) + (0.6833 − j0.2523) − (0.4379 + j0.0041) = 0

IZ3 − I1 + I3 = (0.2171 − j0.1886) − (0.6550 − j0.1845) + (0.4379 + j0.0041) = 0

Nodal Analysis
Except for the differences pointed out for loop analysis, the equilibrium equations are of the same
form as those derived for the DC bridge in Chap. 2.

V1 = 1� π

6
= (

√
3

2
+ j

1

2
)

(V2 − V1)

Z1
+ (V2 − V3)

Z5
+ V2

Z3
= 0 (3.7)

V3 − V1

Z2
+ (V3 − V2)

Z5
+ V3

Z4
= 0. (3.8)

The first equation is the application of KCL at the left middle node. The second equation is the
application of KCL at the right middle node. Simplifying, we get

(Z3Z5 + Z1Z3 + Z1Z5)V2 − Z1Z3V3 = Z3Z5V1 (3.9)

−Z2Z4V2 + (Z4Z5 + Z2Z4 + Z2Z5)V3 = Z4Z5V1. (3.10)
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With

Z1 = −j10, Z2 = j3

3 + j
, Z3 = j1, Z4 = −j10

1 − j10
, Z5 = 1

[
10.0000 − j9.0000 −10.0000 + j0.0000

−0.3861 − j0.8614 1.6762 + j1.6624

][
V2

V3

]
=
[−0.5000 + j0.8660

0.9070 + j0.4093

]
.

The determinant of the admittance matrix is 27.8624 − j7.0762.
Solving the equilibrium equations, we get

[
V2

V3

]
=
[

10.0000 − j9.0000 −10.0000 + j0.0000

−0.3861 − j0.8614 1.6762 + j1.6624

]−1 [−0.5000 + j0.8660

0.9070 + j0.4093

]

=
[

0.0423 + j0.0704 0.3372 + j0.0856

0.0056 + j0.0323 0.4142 − j0.2178

][
−0.5000 + j0.8660

0.9070 + j0.4093

]

=
[

0.1886 + j0.2171

0.4340 − j0.0393

]

{VZ1 = 0.6774 + j0.2829, VZ2 = 0.4320 + j0.5393, VZ5 = −0.2454 + j0.2564}.

Circuit 3.2
Consider the loop analysis of the circuit shown in Fig. 3.14a. The corresponding frequency-domain
circuit is shown in Fig. 3.14b. The equilibrium equations are of the same form as those derived for the
corresponding to DC bridge in Chap. 2 with the source changed.

Z1(I1 − I2) + Z3(I1 − I3) + Z6I1 = 0 (3.11)

−Z1(I1 − I2) − Z5(I3 − I2) + Z2I2 = 1� π

3
(3.12)

−Z3(I1 − I3) + Z5(I3 − I2) + Z4I3 = −1� π

3
(3.13)

∼+
cos(t+ π

3 )V

C3 0.1F
C4

0.1F

R2

2Ω
R6

1Ω

R5 1Ω

L1

1H

L6
1H

L2 1H

R4
3Ω

∼
1 π

3 V

Z1

j1

Z2

j2
2+j

Z3 −j10 Z4−j30
3−j10

Z6

1+j

Z5

1

I1 I2

I3

V1

V2 V3

(a) (b)

Fig. 3.14 (a) A bridge circuit, with the voltage source in the middle; (b) its frequency-domain version
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Simplifying, we get, in matrix form,

⎡

⎢⎣
(Z1 + Z3 + Z6) −Z1 −Z3

−Z1 (Z1 + Z2 + Z5) −Z5

−Z3 −Z5 (Z3 + Z4 + Z5)

⎤

⎥⎦

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
0

1� π
3

−1� π
3

⎤

⎥⎦

With

Z1 = j1, Z2 = j2

2 + j1
, Z3 = −j10, Z4 = −j30

3 − j10
, Z5 = 1, Z6 = 1 + j1

⎡

⎢⎣
1 − j8 0.0000 − j1.0000 0.0000 + j10.0000

−j1 1.4000 + j1.8000 −1.0000 + j0.0000

j10 −1.0000 + j0.0000 3.7523 − j10.8257

⎤

⎥⎦

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
0

0.5 + j0.866

−0.5 − j0.866

⎤

⎥⎦

The determinant of the impedance matrix is 80.2771 − j29.1431. Solving the equilibrium equations,
we get

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
1 − j8 0.0000 − j1.0000 0.0000 + j10.0000

−j1 1.4000 + j1.8000 −1.0000 + j0.0000

j10 −1.0000 + j0.0000 3.7523 − j10.8257

⎤

⎥⎦

−1⎡

⎢⎣
0

0.5 + j0.866

−0.5 − j0.866

⎤

⎥⎦

=
⎡

⎢⎣
0.2949 + j0.0024 0.1441 − j0.0255 0.2501 − j0.0712

0.1441 − j0.0255 0.3519 − j0.3810 0.1530 − j0.0441

0.2501 − j0.0712 0.1530 − j0.0441 0.2225 − j0.0363

⎤

⎥⎦

⎡

⎢⎣
0

0.5 + j0.866

−0.5 − j0.866

⎤

⎥⎦

=
⎡

⎢⎣
−0.0925 − j0.0689

0.3912 + j0.0038

−0.0280 − j0.0640

⎤

⎥⎦

{IZ1 = −0.4837 − j0.0727, IZ3 = −0.0645 − j0.0049, IZ5 = −0.4192 − j0.0678}

Nodal Analysis

(V1 − V2)

Z1
+ V1

Z6
+ (V1 − V3)

Z2
= 0 (3.14)

(V2 − V1)

Z1
+ V2

Z3
+ ((V2 − 1� π

3 ) − V3)

Z5
= 0 (3.15)

V3

Z4
+ (V3 − V1)

Z2
+ ((V3 + 1� π

3 ) − V2)

Z5
= 0 (3.16)

(Z2Z6 + Z1Z2 + Z1Z6)V1 − Z2Z6V2 − Z1Z6V3 = 0 (3.17)

−Z3Z5V1 + (Z3Z5 + Z1Z5 + Z1Z3)V2 − Z1Z3V3 = Z1Z31� π

3
(3.18)

−Z4Z5V1 − Z2Z4V2 + (Z2Z5 + Z4Z5 + Z4Z2)V3 = −Z2Z41� π

3
. (3.19)
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The determinant of the admittance matrix is −52.5644 + j55.4253. Solving the equilibrium
equations, we get

⎡

⎢⎣
V1

V2

V3

⎤

⎥⎦=
⎡

⎢⎣
−2.2000 + j2.6000 0.4000 − j1.2000 1.0000 − j1.0000

0.0000 + j10.0000 10.0000 − j9.0000 −10.0000

−2.7523 + j0.8257 −1.7615 − j1.8716 4.9138 + j1.8459

⎤

⎥⎦

−1⎡

⎢⎣
0

5.0000+j8.6603

0.7401−j2.4613

⎤

⎥⎦

=
⎡

⎢⎣
−0.8561 − j0.0565 0.1183 + j0.0287 0.3395 − j0.2318

−0.9594 + j0.0803 0.1721 + j0.0837 0.4501 − j0.2103

−0.8306 + j0.0876 0.1186 + j0.0472 0.4925 − j0.2759

⎤

⎥⎦

⎡

⎢⎣
0

5.0000 + j8.6603

0.7401 − j2.4613

⎤

⎥⎦

=
⎡

⎢⎣
0.0236 + j0.1614

−0.0491 + j0.6452

−0.1299 − j0.1531

⎤

⎥⎦

Circuit 3.3
Consider the nodal analysis of the circuit shown in Fig. 3.15a. The corresponding frequency-domain
circuit is shown in Fig. 3.15b. The voltage source is in the middle of the bridge. Usually, two equations
using KCL is set up at the two ends of the supernode. Let the current through the source be i flowing
from right to left. At the left side node, we get

(V2 − V1)

Z1
+ V2

Z3
= i. (3.20)

At the right side node, we get

((V2 − 1� π
3 ) − V1)

Z2
+ i + (V2 − 1� π

3 )

Z4
= 0. (3.21)

Since the currents are flowing in the opposite directions, their sum must be equal to zero.

((V2 − 1� π
3 ) − V1)

Z2
+ (V2 − V1)

Z1
+ V2

Z3
+ (V2 − 1� π

3 )

Z4
= 0. (3.22)

∼+
cos(t+ π

3 )V

C3 0.1F
C4

0.1F

R2

2Ω
R5

1Ω

L1

1H

L5
1H

L2 1H

R4
3Ω

∼
1 π

3 V

Z1

j1

Z2

j2
2+j

Z3 −j10 Z4−j30
3−j10

Z5

1+j

I1 I2

I3

V1

V2 V3

(a) (b)

Fig. 3.15 (a) A bridge circuit with the voltage source in the middle; (b) its frequency-domain version
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Eliminating i and simplifying, we get

−(Z1Z3Z4+Z2Z3Z4)V1+(Z1Z3Z4+Z2Z3Z4+Z1Z2Z4+Z1Z2Z3)V2 = (Z1Z2Z3+Z1Z3Z4)1� π

3
(3.23)

Applying at KCL at node 1, we get

V1

Z5
+ (V1 − V2)

Z1
+ (V1 − (V2 − 1� π

3 ))

Z2
= 0.

(Z1Z2 + Z2Z5 + Z1Z5)V1 − (Z2Z5 + Z1Z5))V2 = (−Z1Z5)1� π

3
(3.24)

Note that the current in the source is flowing towards node 2. Since there is no other source in the
circuit, this current gets split up at node 1. With

Z1 = j1, Z2 = j2

2 + j1
, Z3 = −j10, Z4 = −j30

3 − j10
, Z5 = 1 + j1

solving for V1 and V2, we get

[
−46.2385 + j25.8716 48.3670 − j16.1101

−2.2000 + j2.6000 1.4000 − j2.2000

]
.

[
V1

V2

]
=
[

15.9839 + j27.1712

1.3660 + j0.3660

]

The determinant of the admittance matrix is 56.7046− j23.2514, which is nonzero. This is one of the
checks on the problem formulation. Solving the equilibrium equations, we get

[
V1

V2

]
=
[

−46.2385 + j25.8716 48.3670 − j16.1101

−2.2000 + j2.6000 1.4000 − j2.2000

]−1 [
15.9839 + j27.1712

1.3660 + j0.3660

]

=
[

0.0348 − j0.0245 −0.8299 − j0.0562

0.0493 − j0.0256 −0.8582 + j0.1043

][
15.9839 + j27.1712

1.3660 + j0.3660

]

=
[

0.1094 + j0.1714

0.2741 + j0.7585

]
.

Substituting for V1 and V2, from either of the previous equations set up at the ends of the source,
we get the current through the voltage source as 0.5112 − j0.1373. Since we have determined the
two independent voltages, there is no need to use this current for the analysis of this circuit. V3 =
(0.2741 + j0.7585) − (0.5 + j0.866) = −0.2259 − j0.1075 V.

An alternate method to avoid processing a supernode is that we insert an impedance in series
with the source, as presented in an earlier example. As its value gets reduced compared with other
impedances in the circuit, the circuit becomes more closer with a zero impedance series circuit and
the result becomes closer to the exact values. A suitably small series impedance is to be selected. For
the example circuit, an impedance of Z = 10−9 + j10−9 in series with the voltage source yields
almost the exact values.
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Loop Analysis
The equilibrium equations are of the same form as those derived for the corresponding DC bridge in
Chap. 2 with the source changed.

Z1(I1 − I2) + Z3(I1 − I3) + Z5I1 = 0 (3.25)

−Z1(I1 − I2) + Z2I2 = 1� π

3
(3.26)

−Z3(I1 − I3) + Z4I3 = −1� π

3
(3.27)

⎡

⎢⎣
(Z1 + Z3 + Z5) −Z1 −Z3

−Z1 (Z1 + Z2) 0

−Z3 0 (Z3 + Z4)

⎤

⎥⎦

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
0

1� π
3

−1� π
3

⎤

⎥⎦ .

With

Z1 = j1, Z2 = j2

2 + j1
, Z3 = −j10, Z4 = −j30

3 − j10
, Z5 = 1 + j1

⎡

⎢⎣
1.0000 − j8.0000 0.0000 − j1.0000 0.0000 + j10.0000

0.0000 − j1.0000 0.4000 + j1.8000 0.0000 + j0.0000

0.0000 + j10.0000 0.0000 + j0.0000 2.7523 − j10.8257

⎤

⎥⎦

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
0

0.5 + j0.866

−0.5 − j0.866

⎤

⎥⎦

The determinant of the impedance matrix is 68.3303 + j5.1009. Solving the equilibrium equations,
we get

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
1.0000 − j8.0000 0.0000 − j1.0000 0.0000 + j10.0000

0.0000 − j1.0000 0.4000 + j1.8000 0.0000 + j0.0000

0.0000 + j10.0000 0.0000 + j0.0000 2.7523 − j10.8257

⎤

⎥⎦

−1⎡

⎢⎣
0

0.5 + j0.866

−0.5 − j0.866

⎤

⎥⎦

=
⎡

⎢⎣
0.3003 − j0.0133 0.1605 + j0.0283 0.2576 − j0.0778

0.1605 + j0.0283 0.1993 − j0.4955 0.1455 − j0.0109

0.2576 − j0.0778 0.1455 − j0.0109 0.2284 − j0.0375

⎤

⎥⎦

⎡

⎢⎣
0

0.5 + j0.866

−0.5 − j0.866

⎤

⎥⎦

=
⎡

⎢⎣
−0.1404 − j0.0310

0.4466 − j0.1958

−0.0645 − j0.0584

⎤

⎥⎦

Circuit 3.4
Figure 3.16a shows a circuit with a current source. The corresponding tree is shown in Fig. 3.16b. The
left voltage source is sin(t) = cos(t − π

2 ). Therefore, V1 = −j is known and we have to solve for V2

and V3 only. The equilibrium equations are

(V2 − (−j1))

Z1
+ V2

Z2
= −j1 (3.28)

(V3 + 2)

Z4
+ V3

Z5
= j1. (3.29)
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Fig. 3.16 (a) A circuit with a current source; (b) the corresponding tree

Simplifying and solving, we get

(Z1 + Z2)V2 = (−j1)(Z1Z2 + Z2) (3.30)

(Z4 + Z5)V3 = j (Z4Z5) − 2Z5 (3.31)

V2 = (−j1)(Z1Z2 + Z2)

(Z1 + Z2)
(3.32)

V3 = j (Z4Z5) − 2Z5

(Z4 + Z5)
. (3.33)

With
Z1 = j0.1, Z2 = 2 − j5, Z3 = 2, Z4 = −j10, Z5 = 1 + j0.2

we get {V2 = 0.0946 − j1.0182, V3 = −0.0791 + j0.8244}.

Mesh Analysis
Applying KVL around the left side loop, we get, with I2 = j1,

I1Z1 + Z2(I1 − I2) = −j1

I1(Z1 + Z2) = −j1 + Z2j1

I1 = j1(Z2 − 1)

Z1 + Z2
= 0.1821 + j0.9461

V2 = −I1Z1 − j = 0.0946 − j1.0182

Applying KVL around the right side loop, we get,

−(I2 − I3)Z4 + Z5I3 = −2

I3 = −2 + jZ4

Z4 + Z5
= 0.0824 + j0.8079

V3 = I3Z5 = −0.0791 + j0.8244.
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An alternative method to avoid processing a supermesh is that we insert an impedance in parallel
with the source. As its value gets increased compared with other impedances in the circuit, the circuit
becomes more closer with an infinite impedance in parallel and the result becomes closer to the exact
values. A suitably high parallel impedance is to be selected. For the example circuit, the values are
almost the same as the exact ones, with parallel impedance 100 + j100.

Circuit 3.5
In the last example, a current source exists only in one loop. Let us consider a circuit with a current
source between two loops. The circuit and the tree are shown, respectively, in Fig. 3.17a, b. There are
two nodes. But, one node voltage is given. Similarly, there are two loops. But, the currents are related.
Therefore, the circuit analysis reduces to one variable problem for both the nodal and loop analyses.
With

Z1 = j0.1, Z2 = −j5

1 − j5
, Z3 = 2, V1 = −jV .

With the current source supplying 2 A towards the ground node, KVL around the circuit and the
current source constraint yields

Z1I1 + Z3I3 = −j1.

Since

I1 − I3 = 2

Z1I1 + Z3(I1 − 2) = −j1 or (Z1 + Z3)I1 = −j1 + 2Z3.

Solving, we get I1 = 1.9701 − j0.5985 and I3 = I1 − 2 = −0.0299 − j0.5985.

Nodal Analysis

(V2 − (−j1))

Z1
+ V2

Z3
= −2.

∼∼

si
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t)
V

2
co

s(
t)

A

+
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1Ω
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2
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Fig. 3.17 (a) A circuit with a current source between loops; (b) the corresponding tree
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Solving for V2, we get

V2 = −2Z1Z3 − jZ3

Z1 + Z3
= −0.0599 − j1.1970.

Let us do this problem considering one source at a time. When we consider the voltage source alone,
the current source has to be open-circuited. Then, by voltage division, we get the voltage across the
2 � resistor as

2
−j

2 + j0.1
= −0.0499 − j0.9975.

When we consider the current source alone, the voltage source has to be short-circuited. Then, by
current division, we get the voltage across the 2 � resistor as

−2
j0.1(2)

2 + j0.1
= −0.0100 − j0.1995.

By adding the partial voltages, we get

V2 = −0.0599 − j1.1970

as obtained earlier.

3.2.8 Linearity Property of Circuits

Consider the circuit shown in Fig. 3.18. The circuit has three sources, A DC voltage source with
magnitude 2 V with the positive terminal connected to the ground node. An AC voltage source sin(t +
π
3 ) V, with magnitude 1 V at frequency 1 rad/s, is placed with the negative terminal connected to
the ground node. An AC current source 2 cos(5t) A, with magnitude 2 A at frequency 5 rad/s, is
placed with the the current flowing from right to left. Since different frequencies are involved and
impedances vary with frequencies, we have to use the linearity property of the circuits and the resulting
superposition theorem to analyze this circuit. The total response is the sum of the individual time-
domain responses. In the analysis of AC circuits with sources of different frequencies, the use of
linearity is required. The transform analysis of circuits is based on linearity. For DC circuits, linearity
may provide simplified analysis for some circuits.

Fig. 3.18 A circuit with
voltage and current sources
of different frequencies ∼

∼

si
n(

t+
π 3
)V

2V

2 cos(5t)A

+

+

Z2
1

1+jω0.2

Z3 10

Z
5=

2
1+

j
2ω

0.
1

Z7 1

Z
6=

jω
0.

2

Z4

2Ω
Z1

jω0.1

I1 I2 I3

V1 1 − π
6

V2 V3
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Table 3.2 Voltages due to each source and their total in circuit shown in Fig. 3.18

Source V1 V2 V3

V source, ω = 1 1� (− π
6 ) 0.8615 − j0.5079 0

DC, ω = 0 0 0 − 2
3

I source, ω = 5 0 0.0476 + j1 −2

Total cos(t − π
6 ) cos(t − 0.5327) + 1.0011 cos(5t + 1.5232) −2 cos(5t) − 2

3

Table 3.3 Currents due to each source and their total in circuit shown in Fig. 3.18

Source I1 I2 I3

V source 0.0794 − j0.0449 0 0

DC 0 0 − 2
3

I source −(2.0000 − j0.0952) −2 (−1 + j1)

Total 0.0912 cos(t − 0.5152) − 2.0023 cos(5t − 0.0476) −2 cos(5t)
√

2 cos(5t + 3π
4 ) − 2

3

Consider the effect of the DC source alone. Since the frequency of DC source is zero, the reactance
due to an inductance is zero and that due to a capacitance is infinity. Therefore, an inductance, in effect,
is a short-circuit and a capacitance is an open-circuit. Further, an ideal current source is replaced by
an open-circuit and an ideal voltage source is replaced by a short-circuit. Consequently, the circuit
reduces to the DC source with amplitude −2 V and the two resistors, with values 2 � in Z5 and 1 �

in Z7, connected in series. Therefore, I3 = − 2
3 A and V3 = − 2

3 V. All other voltages and currents are
zero, as shown in Tables 3.2 and 3.3.

With

Z1 = jω0.1, Z2 = 1

1 + jω0.2
, Z3 = 10, Z4 = 2, Z5 = 2

1 + j2ω0.1
, Z6 = jω0.2, Z7 = 1,

let us find the response of the circuit to the voltage source

sin(t + π

3
) = cos(t − π

6
)

alone. Impedance Z2 is due to the parallel connection of a resistor with 1 � and a capacitor with
C = 0.2 F. With ω = 1,

Z1 = j0.1, Z2 = (1)( 1
j0.2 )

1 + 1
j0.2

= 0.9615 − j0.1923, Z3 = 10, V = 1 � − π

6
= 0.8660 − j0.5

Impedance Z5 is due to the parallel connection of a resistor with 2 � and a capacitor with C = 0.1
F. The right side of the circuit gets disconnected as the current source is replaced by an open-circuit.
The DC source is replaced by a short-circuit. Therefore, V3 = 0, I2 = 0, and I3 = 0. V1 = 1 � (−π

6 ).

I1 = V1

Z1 + Z2 + Z3
= 0.0794 − j0.0449

V2 = I1(Z2 + Z3) = V1 − I1Z1 = 0.8615 − j0.5079.
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With ω = 5,

Z1 = j0.5, Z2 = 0.5 − j0.5, Z3 = 10, Z4 = 2, Z5 = 1 − j1, Z6 = j1, Z7 = 1

Let us find the response of the circuit with the current source 2 cos(5t) alone. Note that the frequency
ω is 5 radians, not 1 compared with the AC voltage source. Therefore, the impedance values are
different. The two voltages sources are replaced by short-circuits. Applying KCL at nodes 3 and 2

V3

Z5
+ V3

Z6 + Z7
+ 2 = 0

V3 = −2(Z5(Z6 + Z7))

Z5 + Z6 + Z7
= −2

V2

Z1
+ V2

Z2 + Z3
− 2 = 0

V2 = 2(Z1(Z2 + Z3))

Z1 + Z2 + Z3
= 0.0476 + j1

−I1 = V2

Z1
= 2 − j0.0952, I2 = −2, I3 = V3

Z6 + Z7
= −1 + j1.

Using current-division formula also, we can find the currents I1 and I3. Voltages and currents due to
each source and their totals are shown in Tables 3.2 and 3.3.

Circuit 3.6
Consider the circuit with a voltage-controlled voltage source, shown in Fig. 3.19. Voltage source is
2 cos(t) V. Current source is sin(t) = cos(t − π

2 ) A. In the frequency-domain, the voltage source is 2
and the current source is −j1 = 1� (−π

2 ). The circuit contains a controlled voltage source. Therefore,
although there are five nodes, three equilibrium equations are enough. With the angular frequency of
the sources being 1 radian,

Z1 = 2 + j0.1, Z2 = 1, Z3 = 3 − j10, Z4 = 3, Z5 = 2.

Fig. 3.19 A circuit with a
voltage-controlled voltage
source

−+ ∼

∼
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+
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R4 3Ω

i1

i2 i3
v1
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v4

2 cos(t)V
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Loop Analysis
The equilibrium equations are

(Z5I1 + Z4I3 − 2Z5I1) + (Z2(I1 − I2 − I3)) − Z3I2 = 0

−Z1(I (2) + I (3) + j1) = Z5I1 + Z4I3

Z3I2 − Z4I3 = 2.

The first equation corresponds to the middle loop involving resistors R2 and R3. To write the KVL
equation around the loop, we need the voltage V2.

V1 = Z5I1 + Z4I3 and V1 − V4 = Z5I1.

Therefore, the voltage across the controlled voltage source is 2Z5I1, with opposite polarity to that of
V1. Consequently,

V2 = (Z5I1 + Z4I3 − 2Z5I1).

The second equation corresponds to the leftmost loop involving resistor Z1. The current entering Z1

is (I (2) + I (3) − (−j1) from the ground side. Therefore, we get another expression for V1 involving
the current source.

V1 = −Z1(I (2) + I (3) + j1)

Equating these two equations yields an equilibrium equation. The last equation corresponds to the
rightmost loop involving impedances Z3 and Z4. Rearranging the equations, we get

(−Z5 + Z2)I1 − (Z2 + Z3)I2 + (Z4 − Z2)I3 = 0

Z5I1 + Z1I2 + (Z1 + Z4)I3 = −jZ1

0I1 + Z3I2 − Z4I3 = 2.

Substituting the numerical values for the impedances and using matrices, we get

⎡

⎢⎣
−1 −4 + j10 2

2 2 5 + j0.1

0 3 − j10 −3

⎤

⎥⎦

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
0

−jZ1

2

⎤

⎥⎦

The determinant of the impedance matrix is nonzero, 10 − j29.4. The determinant of the impedance
matrix must be nonzero. Otherwise, the equations are not independent. Verify that the product of the
impedance matrix and its inverse is the identity matrix of the same size. One of the equations must be
based on the relation between dependent and independent source. Solving for the currents, we get

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
−1 −4 + j10 2

2 2 5 + j0.1

0 3 − j10 −3

⎤

⎥⎦

−1⎡

⎣
0

0.1 − j2
2

⎤

⎦
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=
⎡

⎢⎣
−1.7342 − j0.1584 −0.3671 − j0.0792 −1.7653 − j0.2499

0.0622 + j0.1829 0.0311 + j0.0915 0.0903 + j0.2754

0.6719 − j0.0245 0.3360 − j0.0122 0.6750 − j0.0255

⎤

⎥⎦

⎡

⎢⎣
0

0.1 − j2
2

⎤

⎥⎦

=
⎡

⎢⎣
−3.7257 + j0.2264

0.3666 + j0.4978

1.3591 − j0.7242

⎤

⎥⎦

Let us find the node voltages and verify their relations.

V3 = I2Z3 = (0.3666 + j0.4978)(3 − j10) = 6.0774 − j2.1726

V4 = I3Z4 = (1.3591 − j0.7242)(3) = 4.0774 − j2.1726

V1 = V4 + I1Z5 = (4.0774 − j2.1726) + (−3.7257 + j0.2264)(2) = −3.3741 − j1.7197

V2 = 2V4 − V1 = 2(4.0774 − j2.1726) − (−3.3741 − j1.7197) = 11.5288 − j2.6254

Now,
V3 − V4 = 2

V1 − V2 = (−3.3741 − j1.7197) − (11.5288 − j2.6254) = −14.9028 + j0.9057

= 2I1Z1 = 2(−3.7257 + j0.2264)(2 + j0.1)

V3 − V2 = −5.4514 + 0.4529 = (I1 − I2 − I3)Z2

The current through the independent voltage source flowing from left to right is

ir = I1 − I3 = −5.0848 + j0.9506.

The current through the dependent voltage source flowing from left to right is

il = I1 − I2 − I3 − j = −5.4514 + j0.4529 − j = −5.4514 − j0.5471.

Nodal Analysis
The voltage source is not connected to the ground node. Therefore, we have to find the current through
it. Setting up two KCL equations at the terminals of the source, we get

(V4 − V1)

Z5
+ V4

Z4
− (V2 − V3)

Z2
+ V3

Z3
= 0.

The dependent voltage source is also not connected to the ground node. Therefore, we have to find
the current through it. Setting up two KCL equations at the terminals of the source, we get

(V3 − V2)

Z2
+ (−j1) − (V1 − V4)

Z5
− V1

Z1
= 0.
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Now, applying KVL to the branches involving the dependent voltage source, we get the equilibrium
equations as

(V3 − V2)

Z2
+ (−j1) − (V1 − V4)

Z5
− V1

Z1
= 0 (3.34)

(V4 − V1)

Z5
+ V4

Z4
− (V2 − V3)

Z2
+ V3

Z3
= 0 (3.35)

V1 + V2 − 2V4 = 0. (3.36)

Replacing
V3 = (V4 + 2),

we get

((V4 + 2) − V2)

Z2
+ (−j1) − (V1 − V4)

Z5
− V1

Z1
= 0 (3.37)

(V4 − V1)

Z5
+ V4

Z4
− (V2 − (V4 + 2))

Z2
+ (V4 + 2)

Z3
= 0 (3.38)

V1 + V2 − 2V4 = 0 (3.39)

Simplifying, we get

−(Z1Z2 + Z2Z5)V1 − Z1Z5V2 + (Z1Z2 + Z1Z5)V4 = −2Z1Z5 + jZ1Z2Z5

−Z2Z3Z4V1 − Z3Z4Z5V2 + (Z2Z3Z4 + Z2Z3Z5 + Z3Z4Z5 + Z2Z4Z5)V4 = −2(Z2Z4Z5 + Z3Z4Z5)

V1 + V2 − 2V4 = 0

With
Z1 = 2 + j0.1, Z2 = 1, Z3 = 3 − j10, Z4 = 3, Z5 = 2

⎡

⎢⎣
−0.0400 − j0.0010 −0.0400 − j0.0020 0.0600 + j0.0030

−0.0900 + j0.3000 −0.1800 + j0.6000 0.3900 − j1.1000

0.0100 + j0.0000 0.0100 + j0.0000 −0.0200 + j0.0000

⎤

⎥⎦

⎡

⎢⎣
V1

V2

V4

⎤

⎥⎦ =
⎡

⎢⎣
−0.082 + j0.036

−0.480 + j1.200
0

⎤

⎥⎦

The determinant of the admittance matrix is −20 + j58.8.

⎡

⎢⎣
V1

V2

V4

⎤

⎥⎦ =
⎡

⎢⎣
−0.040 − j0.001 −0.0400 − j0.002 0.060 + j0.003

−0.090 + j0.300 −0.180 + j0.600 0.390 − j1.100

0.010 + j0.000 0.010 + j0.000 −0.020 + j0.000

⎤

⎥⎦

−1⎡

⎣
−0.082 + j0.036

−0.480 + j1.200
0

⎤

⎦

= 100

⎡

⎢⎣
−0.1369 + j0.0976 0.0088 + j0.0310 1.4525 + j0.3903

−0.8710 − j0.0609 −0.0119 − j0.0300 −4.4842 − j0.2435

−0.5040 + j0.0184 −0.0015 + j0.0005 −2.0158 + 0.0734

⎤

⎥⎦

⎡

⎢⎣
−0.082 + j0.036

−0.480 + j1.200

0

⎤

⎥⎦

=
⎡

⎢⎣
−3.3741 − j1.7197

11.5288 − j2.6254

4.0774 − j2.1726

⎤

⎥⎦

The voltages are the same as those obtained by the loop method.
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Nodal or Mesh Analysis
Basically, both types of circuit analysis are important, since one type may be conceptually and/or
computationally simpler for a given circuit. In certain applications, one of the two methods is preferred
or applicable. Further, the solution obtained by one method can be checked using the other method.
Therefore, it is good to be familiar with both the methods. In nodal analysis, if the circuit has a voltage
source connected to the ground node, then that voltage can be considered as one independent variable
and the number of equilibrium equations can be reduced. Further, if a current source, without a parallel
resistance, is connected between non-ground nodes, then nodal method is advantageous. Similarly, if a
voltage source is connected between two non-ground nodes, then mesh analysis is easier. The solution
to the last example is simpler by the mesh method. Further, if the circuit has a current source connected
to the ground node, then that current can be considered as one independent variable and the number
of equilibrium equations can be reduced.

Circuit 3.7
A circuit with a current-controlled current source is shown in Fig. 3.20.

Nodal Analysis
Since V3 = j V is known, there are only 2 unknowns, {V1, V2}. When a voltage source is connected
between a reference node and a nonreference node, the problem is simplified. The equilibrium
equations are

(V2 − V1)

Z2
+ (V2 − j)

Z4
+ (V2)

Z3
= 0 (3.40)

V1

Z1
+ (V1 − j)

Z5
− 2

V1

Z1
+ (V1 − V2)

Z2
= 0. (3.41)

The first equation is due to the application of KCL at node with voltage V2. The second equation
is due to the application of KCL at node with voltage V1. Simplifying, we get

− Z3Z4V1 + (Z3Z4 + Z2Z4 + Z2Z3)V2 = jZ2Z3 (3.42)

(−Z2Z5 + Z1Z5 + Z1Z2)V1 − Z1Z5V2 = jZ1Z2. (3.43)

Fig. 3.20 A circuit with a
current-controlled current
source

∼
2ix

R5 1Ω
R2

3Ω

R4

3Ω

R1 1Ω

L1 0.1H
R3
1Ω

L3
0.1H

i1

i2 i3ix

v1
v2 v3

sin(t)V

+
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With

Z1 = 1 + j0.1, Z2 = 3, Z3 = j0.1

1 + j0.1
, Z4 = 3, Z5 = 1,

we get, in matrix form,

[ −0.0297 − j0.2970 9.0594 + j0.5941

1.0000 + j0.4000 −1.0000 − j0.1000

][
V1

V2

]
=
[−0.2970 + j0.0297

−0.3 + j3

]
.

The determinant of the admittance matrix is −8.8218 − j3.9178. Solving for the voltages, we get

[
V1

V2

]
=
[

−0.0297 − j0.2970 9.0594 + j0.5941

1.0000 + j0.4000 −1.0000 − j0.1000

]−1 [−0.2970 + j0.0297

−0.3 + j3

]

=
[

0.0989 − j0.0326 0.8827 − j0.3247

0.1115 − j0.0042 0.0153 + j0.0269

][
−0.2970 + j0.0297

−0.3 + j3

]

=
[

0.6808 + j2.7582

−0.1182 + j0.0424

]

I1 = (V1 − j)

Z5
= 0.6808 + j1.7582

I2 = V2

Z3
= 0.3058 + j1.2245

I3 = I1 + (V2 − j)

Z4
= 0.6414 + j1.4390.

Mesh Analysis

IZ1 = I2 + I3

Z1(I2 + I3) + Z2(I1 − I2 − I3) − Z3I2 = 0

Z3I2 + Z4(I1 − I3) = j

Z1(I2 + I3) − Z5I1 = j.

The first equation is obtained by equating the voltages on both sides of the current source. The second
equation is obtained by applying KVL to the rightmost loop involving the voltage source. The third
equation is obtained by applying KVL to the loop involving the voltage source and impedances Z1

and Z5. Voltage source is sin(t) V. Simplifying, we get

Z2I1 + (Z1 − Z2 − Z3)I2 + (Z1 − Z2)I3 = 0

Z4I1 + Z3I2 − Z4I3 = j

−Z5I1 + Z1I2 + Z1I3 = j.
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With

Z1 = 1 + j0.1, Z2 = 3, Z3 = j0.1

1 + j0.1
, Z4 = 3, Z5 = 1

⎡

⎢⎣
3.0000 + j0.0000 −2.0099 + j0.0010 −2.0000 + j0.1000

3.0000 + j0.0000 0.0099 + j0.0990 −3.0000 + j0.0000

−1.0000 + j0.0000 1.0000 + 0.1000 1.0000 + j0.1000

⎤

⎥⎦

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
0

j

j

⎤

⎥⎦ .

The determinant of the impedance matrix is nonzero, 2.9406 + j1.3059.

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
3.0000 + j0.0000 −2.0099 + j0.0010 −2.0000 + j0.1000

3.0000 + j0.0000 0.0099 + j0.0990 −3.0000 + j0.0000

−1.0000 + j0.0000 1.0000 + 0.1000 1.0000 + j0.1000

⎤

⎥⎦

−1⎡

⎢⎣
0

j

j

⎤

⎥⎦

=
⎡

⎢⎣
0.9026 − j0.2648 0.0126 + j0.0284 1.7456 − j0.7093

−0.0378 − j0.0852 0.3345 − j0.0125 0.8900 − j0.2932

0.9053 − 0.2664 −0.3192 + j0.0394 1.7582 − j0.6808

⎤

⎥⎦

⎡

⎢⎣
0

j

j

⎤

⎥⎦

=
⎡

⎢⎣
0.6808 + j1.7582

0.3058 + j1.2245

0.6414 + j1.4390

⎤

⎥⎦ .

Circuits with One or Two Variables
Now, we are going to present the analysis of simpler circuits with one or two variables, which can be
solved manually.

Circuit in Fig. 3.21
The circuit shown in Fig. 3.21 has two voltage sources.

Nodal Analysis

Z1 = 2, Z2 = j2, Z3 = 3, V1 = 1, V3 = 2.

Voltage V2 is the only unknown. Therefore, applying KCL at node 2, we get

Fig. 3.21 A circuit with
two voltage sources

∼∼ 2 cos(2t)Vcos(2t)V ++

R1

2Ω

L2 1H

R3

3Ωi1 i2 i3

v2

v1 v3
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(V2 − 1)

Z1
+ (V2 − 2)

Z3
+ V2

Z2
= 0.

Solving, we get

V2 = Z2Z3 + 2Z1Z2

Z1Z2 + Z2Z3 + Z1Z3
= (1.0294 + j0.6176) V.

The currents are

I1 = − (V2 − 1)

Z1
= (−0.0147 − j0.3088) A, I2 = (V2)

Z2
= (0.3088 − j0.5147) A,

I3 = (V2 − 2)

Z3
= (−0.3235 + j0.2059) A.

With −I1 + I2 + I3 = 0, KCL is satisfied.

Mesh Analysis
I2 = I1 − I3.

Z1I1 + Z2(I1 − I3) = 1

Z3I3 − Z2(I1 − I3) = −2.

Simplifying, we get
(Z1 + Z2)I1 − Z2I3 = 1

−Z2I1 + (Z2 + Z3)I3 = −2.

Substituting the numerical values, we get the impedance matrix Z as

Z =
[

2 + j2 −j2
−j2 3 + j2

]
.

Solving the equations, we get the same values of currents, as found earlier.

Let us do the problem by superposition method. Let us find the response to the source at the left
side. Then, we replace other source by a short-circuit. Current I1 is

I1 = 1

Z1 + (Z2||Z3)
= (0.2794 − j0.1324).

By current division, we get

I2 = I1
Z3

Z2 + Z3
= (0.1324 − j0.2206), I3 = I1 − I2 = (0.1471 + j0.0882).

Let us find the response to the response to the source at the right side. Then, we replace the other
source by a short-circuit. Current I3 is

I3 = − 2

Z3 + (Z2||Z1)
= (−0.4706 + j0.1176).

By current division, we get
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I1 = I3
Z2

Z2 + Z1
= (−0.2941 − j0.1765), I2 = I1 − I3 = (0.1765 − j0.2941).

Adding the corresponding two responses, we get the same values for the currents.
Let us find the current I2 through Z2 using Thev́enin’s theorem. The equivalent impedance, with

Z2 disconnected, is

Zeq = Z1 ‖ Z2 = 2 ‖ 3 = 6

5
.

Due to the 1 V source alone, V2 = 3/5 V. Due to the 2 V source alone, V2 = 4/5 V. Therefore,
V2 = Voc = 7/5. The current through Z2 is

I2 = Voc

Z2 + Zeq

= 7/5

6/5 + j2
= 7

6 + j10
= 0.3088 − j0.5147

as found earlier.

Circuit in Fig. 3.22
Figure 3.22 shows a circuit with voltage and current sources.

Nodal Analysis

Z1 = 2, Z2 = j2, Z3 = 3, I1 = −1, V3 = 2.

Voltage V2 is the only unknown. Therefore, applying KCL at node 2, we get

(V2 − 2)

Z3
+ (V2)

Z2
= −1.

Solving, we get
V2 = −Z2Z3 + 2Z2

Z2 + Z3
= (−0.3077 − j0.4615) V.

The currents are

I1 = − (V2 − 1)

Z1
= (−0.0147 − j0.3088)A, I2 = (V2)

Z2
= (0.3088 − j0.5147)A,

I3 = (V2 − 2)

Z3
= (−0.3235 + j0.2059)A

With −I1 + I2 + I3 = 0, KCL is satisfied.

Fig. 3.22 A circuit with
voltage and current sources

∼∼ 2 cos(2t)Vcos(2t)A +

R1

2Ω

L2 1H

R3

3Ωi1 i2 i3

v2

v3
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Mesh Analysis
I2 = I1 − I3, I1 = −1.

Z3I3 − Z2(I1 − I3) = −2.

Solving, we get

I3 = −2 + I1Z2

Z3 + Z2
, I3 = (−0.7692 − j0.1538) A.

We get the same values of currents, as found earlier.

Let us solve the problem by superposition method. Let us find the response due to the voltage
source. The current source is open-circuited. Then,

I3 = − 2

Z2 + Z3
= (−0.4615 + j0.3077), I2 = −I3.

Let us find the response due to the current source. The voltage source is short-circuited. Then, by
current division,

I3 = − Z2

Z2 + Z3
= (−0.3077 − j0.4615), I2 = − Z3

Z2 + Z3
= (−0.6923 + j0.4615)

Adding the corresponding two responses, we get the same values for the currents.
Let us find the current I3 through Z3 using Thev́enin’s theorem. The equivalent impedance, with

Z3 disconnected, is
Zeq = Z2 = j2.

Remember that the current source is open-circuited. Due to the 1 A source, V2 = −j2V . Then,
Voc = −j2 − 2. Therefore, the current through Z3 is

I3 = Voc

Z3 + Zeq

= −j2 − 2

3 + j2
= −0.7692 − j0.1538

as found earlier.

Circuit in Fig. 3.23
Figure 3.23 shows a circuit with voltage and current sources.

Z1 = 2, Z2 = j2, Z3 = 3, I3 = 1, V1 = 2.

Mesh Analysis

I1 − I2 = I3

I1Z1 + I2Z2 = I1Z1 + (I1 − I3)Z2 = 2, I1 = 2 + I3Z2

Z2 + Z1
= 1, I2 = 0.

With −I1 + I2 + I3 = 0, KCL is satisfied.

V2 = I2Z2 = 0.
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Fig. 3.23 A circuit with
voltage and current sources

∼∼2 cos(2t)V cos(2t)A+

R1

2Ω

L2 1H

R3

3Ωi1 i2 i3

v2

v1

Nodal Analysis

V2

Z2
+ (V2 − 2)

Z1
= −1.

Solving, V2 = 0 and VR3 = 3V . The voltage across the current source is −3 V.
Let us do the problem by superposition method. Consider the response due to the voltage source

alone. The current source is open-circuited. Then,

I1 = I2 = 2

2 + j2
.

Consider the response due to the current source alone. The voltage source is short-circuited. Then, by
current division, we get

I1 = j2

2 + j2
, I2 = I1 − I3 = − 2

2 + j2
.

Adding the partial currents, we get the same results.
Let us find the current I2 through Z2 using Thev́enin’s theorem. The equivalent impedance, with

Z2 disconnected, is
Zeq = Z1 = 2.

Remember that the current source is open-circuited. Due to the 1 A source alone,

V2 = −j2 × 2

2 + j2
.

Due to the 2 V source alone,

V2 = j2 × 2

2 + j2
.

Then, Voc = 0 and I2 = 0, as found earlier.

Circuit in Fig. 3.24
Figure 3.24 shows a circuit with two current sources.

Z1 = 2, Z2 = j2, Z3 = 3, I3 = 1, I1 = −2.
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Fig. 3.24 A circuit with
two current sources

∼∼2 cos(2t)A cos(2t)A

R1

2Ω

L2 1H

R3

3Ωi1 i2 i3

v2

Nodal Analysis

V2

Z2
= −3 and V2 = −j6V

I1 = −2, I2 = −j6

j2
= −3A, I3 = 1 A.

With −I1 + I2 + I3 = 0, KCL is satisfied.

Mesh Analysis

I3 = 1, I1 = −2, I2 = (I1 − I3) = −3A.

Let us do the problem by superposition method. Consider the response due to the 2 A current source
alone. The other current source is open-circuited. Then, by current division, we get

I1 = −2, I2 = −2, I3 = 0.

Consider the response due to the 1 A current source alone. The other current source is open-circuited.
Then, by current division, we get

I1 = 0, I2 = −1, I3 = 1.

Adding the two partial results, we get the same currents.

Circuit in Fig. 3.25
A circuit with a voltage-controlled voltage source is shown in Fig. 3.25.

Z1 = 2, Z2 = j1, Z3 = 3

By nodal analysis, we get

(V2 − 1)

Z1
+ V2

Z2
+ V2 − (V2 − 1)

Z3
= 0 or V2 = Z3Z2 − Z1Z2

Z1Z3 + Z2Z3
= (0.0667 + j0.1333)

The currents are

I1 = − (V2 − 1)

Z1
= (0.4667−j0.0667)A, I2 = V2

Z2
= (0.1333−j0.0667)A, I3 = I1−I2 = 1

3
A

With −I1 + I2 + I3 = 0, KCL is satisfied.
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Fig. 3.25 A circuit with a
voltage-controlled voltage
source −+

∼cos(t)V
+

R3

3Ω

R1 2Ω

L2 1H

i1 i2
i3

v1

v2

(v2−v1)

Mesh Analysis

Z1(I2 + I3) + I2Z2 = 1, or (Z2 + Z1)I2 + Z1I3 = 1

Z3I3 − Z2I2 = Z1(I3 + I2), or − (Z2 + Z1)I2 + (Z3 − Z1)I3 = 0.

Solving, we get the same currents obtained earlier.
Let us find the current I2 through Z2 using Thev́enin’s theorem.

(V2 − 1)

Z1
+ V2 − (V2 − 1)

Z3
= 0 or V2 = Voc = Z3 − Z1

Z3
= 1

3
.

Let us apply a 1 A current source instead of the load impedance and short-circuit the independent
voltage source. Then,

Zeq = V2 = Z1 = 2.

Therefore, the current through Z2 is

I2 = Voc

Z2 + Zeq

= 1/3

2 + j1
= 0.1333 − j0.0667

as found earlier.

Circuit in Fig. 3.26
A circuit with a current-controlled voltage source is shown in Fig. 3.26.

Z1 = 2, Z2 = j1, Z3 = 3.

By nodal analysis, we get
(V2 − 1)

Z1
+ V2

Z2
+ V2 + 2jV2

Z3
= 0.

Solving, we get

V2 = Z3Z2

Z3Z2 + Z3Z1 + Z1Z2 + j2Z1Z2
= (0.5172 + j0.2069) V.
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Fig. 3.26 A circuit with a
current-controlled voltage
source −+

∼cos(t)V
+

R3

3Ω

R1 2Ω

L2 1H

i1 i2
i3

v1

v2

2i2

The currents are

I1 = (0.2414 − j0.1034)A, I2 = (0.2069 − j0.5172)A, I3 = (0.0345 + j0.4138)A

With −I1 + I2 + I3 = 0, KCL is satisfied.

Mesh Analysis

Z1I1 + I2Z2 = 1

(I1 − I2)Z3 − I2Z2 + 2I2 = 0 or Z3I1 + I2(2 − Z3 − Z2) = 0

Solving, we get the same currents obtained earlier.
Let us find the current I3 through Z3 using Thev́enin’s theorem.

(V2 − 1)

Z1
+ V2

Z2
= 0 or V2 = Z2

Z1 + Z2
= j1

2 + j1

Voc = V2 − 2V2

Z2
= −0.6 + j0.8.

Let us apply a 1 A current source instead of the load impedance and short-circuit the independent
voltage source. Then, the voltage across the current source is Zeq .

I2 = 2

2 + j1
and V2 = j2

2 + j1

Zeq = V2 − 2I2 = −1.2 + j1.6.

Therefore, the current through Z3 is

I3 = Voc

Z3 + Zeq

= (−0.6 + j0.8)

1.8 + j1.6
= 0.0345 + j0.4138

as found earlier.
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Circuit in Fig. 3.27
A circuit with a voltage-controlled current source is shown in Fig. 3.27.

Z1 = 2, Z2 = 2 − j1, Z3 = 3.

By nodal analysis, we get

−1 − 2V2 + V2

Z2
= 0.

Solving, we get V2 = Z2
1−2Z2

= −0.6154 − j0.0769. The currents are

I1 = −1A, I2 = V2

Z2
= −0.2308 − j0.1538A, I3 = −(I1 + I3) = 1.2308 + j0.1538A

With I1 + I2 + I3 = 0, KCL is satisfied.

Mesh Analysis

Z2(2V2 + 1) = V2, or V2 = Z2

1 − 2Z2
V

as before.

Let us find the current I2 through Z2 using Thev́enin’s theorem.

−1 − 2V2 = 0 and V2 = Voc = −1

2
.

Let us apply a 1 A current source instead of the load impedance and open-circuit the independent
current source. Then,

1 + 2V2 = 0 or Zeq = V2 = −0.5.

Therefore, the current through Z2 is

I2 = Voc

Z2 + Zeq

= −0.5

1.5 − j1
= −0.2308 − j0.1538

as found earlier.

Fig. 3.27 A circuit with a
voltage-controlled current
source

∼cos(t)A

R3

3Ω

R1 2Ω

C2 1F
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Fig. 3.28 A circuit with a
current-controlled current
source

∼cos(t)A

R3

3Ω

R1 2Ω

C2

1F R2
2Ω

i1 i2
i3

v2

2i2

Circuit in Fig. 3.28
A circuit with a current-controlled current source is shown in Fig. 3.28.

Z1 = 2, Z2 = 0.4 − j0.8, Z3 = 3

Nodal Analysis

−1 − 2
V2

Z2
+ V2

Z2
= 0.

Solving, we get V2 = −Z2 = −0.4 + j0.8. The currents are

I1 = −1 A, I2 = −1 A, I3 = 2 A.

With I1 + I2 + I3 = 0, KCL is satisfied.

Mesh analysis

Z2(2
V2

Z2
+ 1) = V2, or V2 = −Z2V

as before.

3.3 Circuit Theorems

Except for the same two differences between AC and DC circuit analysis, the theory remains the
same as for DC circuits. The values of circuit elements become complex quantities involving complex
arithmetic. The AC circuit must be analyzed separately at each frequency of interest.

3.3.1 Thévenin’s Theorem

Any linear combination of voltage and current sources, independent or dependent, and impedances
with two terminals can be replaced by a fixed voltage source Veq or Voc, called Thévenin equivalent
voltage, in series with an impedance Zeq , called Thévenin equivalent impedance. The equivalent
source is derived as follows:
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Fig. 3.29 Thévenin and
Norton equivalent circuits
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(a) (b)

Va Vb

I =?

Fig. 3.30 A bridge circuit and its frequency-domain version

1. Remove the load circuit, any combination of independent voltage and current sources and
impedances and find the open-circuit voltage, called Veq , across the load circuit terminals.

2. Find the impedance across the load terminals, after short-circuiting all independent voltage sources
and open-circuiting all independent current sources, called Zeq . This step can also be carried out
by finding the short-circuit current Isc through the load circuit terminals and Zeq = Veq/Isc.

Thev́enin equivalent circuit is shown in Fig. 3.29a. The bridge circuit, we analyzed earlier, is shown
in Fig. 3.30a. The frequency-domain version of the circuit is shown in Fig. 3.30b. The problem is to
find the current I through Z5 using Thévenin’s theorem. The impedance values are

Z1 = −j10, Z2 = j3

3 + j1
, Z3 = j1, Z4 = −j10

1 − j10
, Z5 = ZL = 1.

With the impedance Z5 disconnected in Fig. 3.30b, the voltages Va , Vb and Vab, the open-circuit
voltage, are found as

Va = V
Z3

Z1 + Z3
= −0.0962 − j0.0556, Vb = V

Z4

Z2 + Z4
= 0.6496 − j0.0860,

Vab = Va − Vb = −0.7458 + j0.0305.

The equivalent impedance at terminals a and b in Fig. 3.31a, which is the series combination of
parallel impedances Z1||Z3 and Z2||Z4 is determined as

Zeq = Z1Z3

Z1 + Z3
+ Z2Z4

Z2 + Z4
= 0.5152 + j1.4589.
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Fig. 3.31 (a) Circuit to
determine the equivalent
impedance from ab; (b)
circuit showing the
determination of the load
current
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Fig. 3.32 (a) A bridge circuit; (b) with a bucking voltage V replacing the load impedance

Now, the load current IL is determined as shown in Fig. 3.31b

IL = Vab

Zeq + ZL

= −0.7458 + j0.0305

(0.5152 + j1.4589) + 1
= −0.2454 + j0.2564,

which is the same as found in the complete analysis of the circuit in an earlier example.

Bucking Voltage Method
Thev́enin equivalent circuit is characterized by the equation

V = IZeq + Voc.

If I = 0, V = Voc, the open-circuit voltage. If V = 0, Isc = − Voc

Zeq
, the short-circuit current. Applying

KVL and KCL at the top and bottom nodes at the right side of Fig. 3.32b, the equilibrium equations
are

V1 − V2 = (0.8660 + j0.5)

V1

Z2
+ V1 − V

Z1
+ V 2

Z4
+ V2 − V

Z3
= 0.

The second equation is obtained using the fact that the current leaving the bottom node and entering
the top node must be equal. Simplifying, we get

V1 − V2 = (0.8660 + j0.5)

V1(Z1Z3Z4 + Z2Z3Z4) + V2(Z1Z2Z3 + Z1Z2Z4) = V (Z1Z2Z4 + Z2Z3Z4).
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Fig. 3.33 (a) A bridge circuit with a current source; (b) its frequency-domain version

Solving for V1 and V2 in terms of V , we get

V1 = V (0.3229−j0.2391)+(0.4499+j0.3978) and V2 = V (0.3229−j0.2391)−(−0.4161−j0.1022)

The equilibrium equation at node with voltage V is

V − V1

Z1
+ V − V2

Z3
= I.

Substituting for V1 and V2 in this equation, we get

V = (0.5152 + j1.4589)I + (−0.7458 + j0.0305) = IZeq + Voc.

The first method seems to be easier for this problem.

Consider the bridge circuit with a current source shown in Fig. 3.33a and its frequency-domain
version shown in Fig. 3.33b.

I = cos(
π

6
) + j sin(

π

6
) = (0.8660 + j0.5) A

The problem is to find the current through Z5. With Z5 disconnected, the voltages Va , VbVab = Voc

are computed as

Va = Z3
I (Z2 + Z4)

Z1 + Z2 + Z3 + Z4
= −0.1104 − j0.1459

Vb = Z4
I (Z1 + Z3)

Z1 + Z2 + Z3 + Z4
= 1.0405 + j0.2856

Vab = Va − Vb = (−1.1509 − j0.4315)V

In order to find Zeq , the current source is replaced by an open-circuit. Then, we get

Zeq = (Z1 + Z2)(Z3 + Z4)

Z1 + Z3 + Z2 + Z4
= (1.1993 + j0.8475)�.
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Fig. 3.34 A circuit with
voltage and current sources
with different frequencies

∼

∼
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Therefore, the current through Z5 is

IL = Vab

Zeq + ZL

= −1.1509 − j0.4315

(1.1993 + j0.8475) + 1
= −0.5215 + j0.0048.

Consider the circuit with voltage and current sources with different frequencies, shown in Fig. 3.34.
The problem is to find the current through the impedance Z5. Let us find the current due to the current
source

I = 2 cos(5t) = 2� 0 A

alone, with the voltage sources short-circuited. With ω = 5,

Z5 = 1 − j1, Z6 = 1 + j1.

The voltages at the top and bottom terminals of Z5 and across, with Z5 disconnected, are

Va = −2(1 + j1), Vb = 0 and Vab = Va − Vb = −2(1 + j1).

In order to find Zeq , we replace the two voltage sources by short-circuits and the current source by
open-circuit. Then,

Zeq = Z6 = 1 + j1.

Due to the AC current source alone, the current through Z5 is

IL = Vab

Zeq + ZL

= −2(1 + j1)

(1 − j1) + (1 + j1)
= −1 − j1.

Due to the rightmost DC source alone

IL = 2

3
A.

The current source is open-circuited and the other voltage source is short-circuited. The sum of the
two currents is the total current in RL,

2

3
+ √

2 cos(5t − 3π

4
).

No contribution from the leftmost voltage source, since the current source becomes open-circuited.
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Fig. 3.35 A circuit with
voltage and current sources
with different frequencies
with a bucking voltage
inserted
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Bucking Voltage Method
Circuit analysis using Thévenin’s theorem is a special case of nodal analysis, characterized by the
equation

V = IZeq + Veq.

Impedance Z5 has been replaced by a current source with current I and voltage V at its top terminal,
as shown in Fig. 3.35. Applying KCL at node with voltage V for the current source alone, we get

I − V

1 + j1
= 2 (3.44)

V = I (1 + j1) − 2(1 + j1)

Vab = Veq = −2(1 + j1), Zeq = 1 + j1

Due to the AC current source alone

IL = Vab

Zeq + ZL

= −2(1 + j1)

(1 − j1) + (1 + j1)
= (−1 − j1) A

as found before.

Due to the DC source alone

I = V − 2

1
or V = I + 2

Vab = Veq = 2, Zeq = 1

and
IL = 2

2 + 1
= 2

3
A

Consider the circuit with a voltage-controlled voltage source, shown in Fig. 3.36a. The problem is
to find the current through Z2 = 1 �.

Nodal Analysis
With

Z1 = j1, Z2 = 1, Z3 = 5 − j10, V = cos(t)

(V2 − 1)

Z1
+ V2

Z2
+ V2 + 2(V2 − 1)

Z3
= 0
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Fig. 3.36 (a) A circuit with a voltage-controlled voltage source; (b) with the load resistor disconnected; (c) the load
resistor replaced by a voltage cos(t)

V2 = Z2Z3 + 2Z1Z2

Z2Z3 + Z1Z3 + 3Z1Z2
= 0.3974 − j0.4803

IZ2 = V2

Z2
= 0.3974 − j0.4803.

Thévenin’s Theorem Approach
The circuit is shown in Fig. 3.36b with the load resistor disconnected. Let us find the open-circuit
voltage at the terminals shown by small discs. Applying KCL at node V2, we get

(V2 − 1)

Z1
+ V2 + 2(V2 − 1)

Z3
= 0

V2 = Veq = Z3 + 2Z1

Z3 + 3Z1
= 1.0946 − j0.0676.

In order to find the short-circuit current, we turn off all independent sources only. Then, a voltage
source of 1� (0) V is applied at the open-circuited load terminals, as shown in Fig. 3.36c. The resultant
current in that branch is found. Then, the inverse of that current is Zeq . Applying 1 � 0 V,

i = 1

Z1
+ 1 + 2

Z3
= 0.1200 − j0.7600

Zeq = 1

i
= 0.2027 + j1.2838.

For linearity and Thévenin’s theorem, leave the dependent sources, as they are controlled by circuit
variables. Alternatively, applying a current of 1� 0 A,

V2

Z1
+ V2 + 2V2

Z3
= 1

V2(3Z1 + Z3) = Z1Z3

V2 = Zeq = Z1Z3

(3Z1 + Z3)
= 0.2027 + j1.2838.
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Fig. 3.37 (a) A circuit with a voltage-controlled voltage source; (b) with the load impedance disconnected; (c) the load
impedance replaced by a voltage source cos(t)

Bucking Voltage Method

(V − 1)

Z1
+ V + 2(V − 1)

Z3
= I

V (3Z1 + Z3) = (Z3 + 2Z1) + IZ1Z3

V = (Z3 + 2Z1) + IZ1Z3

(3Z1 + Z3)
= (1.0946 − j0.0676) + I (0.2027 + j1.2838)

IL = (1.0946 − j0.0676)

Z2 + (0.2027 + j1.2838)
= 0.3974 − j0.4803.

Let us find the current through the resistor and capacitor in the circuit, shown in Fig. 3.37a, which
is the same as the last one. The circuit is shown in Fig. 3.37b with the load impedance disconnected.
By nodal analysis, in the last example, we found

V2 = Va = 0.3974 − j0.4803

Vb = −2(V2 − 1) = 1.2052 + j0.9607

IL = Va − Vb

Z3
= 0.0830 − j0.1223.

Thévenin’s Theorem Approach
With the load impedance disconnected, let us find the open-circuit voltage. Applying KCL at node V2,
we get

(V2 − 1)

Z1
+ V2

Z2
= 0

V2 = Z2

Z1 + Z2
= 0.5 − j0.5.

By voltage division also, we get the result.

Voc = V2 − (−2(V2 − 1)) = 3V2 − 2 = (−0.5 − j1.5).

Let us find Zeq . The circuit is shown in Fig. 3.37c. Applying 1� 0 V,

V2 − 1 = −2V2 or V2 = 1

3
.
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The current through the 1 − V source, which is the sum of the currents through Z1 and Z2, is

1

3
(

1

j1
+ 1) = 1 + j1

j3
.

The inverse of it is Zeq ,

Zeq = j3

1 + j1
= j1.5(1 − j1) = 1.5 + j1.5.

Alternatively, applying 1� 0 A,

V2 = j1

1 + j1
.

The voltage across the 1 − A source is

V2 + 2V2 = 3V2 = Zeq = j3

1 + j1
= j1.5(1 − j1) = 1.5 + j1.5.

With Z3 = 5 − j10, Zeq = 1.5 + j1.5 and Voc = −0.5 − j1.5,

IL = −0.5 − j1.5

Z3 + (1.5 + j1.5)
= 0.0830 − j0.1223 A.

3.3.2 Norton’s Theorem

Admittance is the reciprocal of the impedance.

E = ZI, I = YE

The first form is more convenient to find E, when I (the excitation) is given. The second form is
more convenient to find I , when E (the excitation) is given. Any linear combination of voltage and
current sources, independent or dependent, and impedances with two terminals can be replaced by
a fixed current source Isc, called Norton equivalent current, in parallel with an impedance Zeq . The
equivalent source is derived as follows:

1. Remove the load circuit, any combination of independent voltage and current sources and
impedances. and find the short-circuit current, called Isc, through the load circuit terminals.

2. Find the impedance across the load terminals, after short-circuiting all independent voltage sources
and open-circuiting all independent current sources, called Zeq . This step can also be carried out by
finding the short-circuit current Isc through the load circuit terminals and the open-circuit voltage
Voc. Then, Zeq = Voc/Isc.

Figure 3.29b shows the Norton equivalent circuit. Norton equivalent circuit is characterized by the
equation

I = V

Zeq

− Isc = V Yeq − Isc.

It is better use Thévenin’s theorem for small Zeq and Norton’s theorem for large Zeq compared with
other impedances in the circuit. Once we find Voc and Zeq , as showed for Thévenin’s equivalent
circuit, then Isc = Voc/Zeq .
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3.3.3 MaximumAverage Power Transfer Theorem

An AC circuit to find the condition for maximum average power transfer between a source and a load
is shown in Fig. 3.38. A load impedance ZL = RL+jXL is connected to the AC source and its source
impedance is Zs = Rs +jXs . The value of ZL, for which the maximum average power transfer occurs
from the source to the load, is to be found.

The current through the load impedance is

I = V

Zs + ZL

.

The average power absorbed by the load, as shown in a later chapter, is

PL = 0.5|I |2RL = 0.5
|V |2RL

(Rs + RL)2 + (Xs + XL)2 .

Intuitively, as (Xs + XL) absorbs no power, it must be zero for maximum power transfer. That is,
XL = −Xs . Differentiating this expression with respect to XL and equating to zero, we get

dPL

dXL

= |V |2RL

( −(Xs + XL)

((Rs + RL)2 + (Xs + XL)2)2

)
= 0

For PL to be maximum, XL = −Xs . Substituting this condition in the expression for power, we get

PL = 0.5
|V |2RL

(Rs + RL)2 .

This expression is the same as that obtained for DC circuits and yields the maximum power with
RL = Rs . The maximum average power delivered to the load is

PL = |V |2
8RL

.

Therefore, the condition for maximum average power transfer is that the source and load impedances
are conjugate symmetric,

ZL = Z∗
s .

When this condition is satisfied, the total impedance of the circuit becomes resistive. For a purely
resistive load RL, the condition for maximum power transfer is RL = |Zs | = √

R2
s + X2

s .

Fig. 3.38 An AC circuit
to find the condition for
maximum average power
transfer ∼

V

ZLRL+jXL

Zs

Rs+jXs

I
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Example
Find the load impedance Z2 in the bridge circuit, shown in Fig. 3.39a, for maximum power transfer
from the source to the load.

The source voltage is 0.8660 + j0.5. We have to find the Thévenin’s equivalent voltage and
impedance across the load impedance terminals. Replacing the bottom half of the Δ circuit by Y -
circuit, we get, with

Zbc = Z4 = 0.9901 − j0.0990, Zac = Z3 = j1, Zab = Z5 = 1.

Za = j1 × 1

(0.9901 − j0.0990) + j1 + 1
= 0.1888 + j0.4170

Zb = (0.9901 − j0.0990) × 1

(0.9901 − j0.0990) + j1 + 1
= 0.3942 − j0.2282

Zc = (0.9901 − j0.0990) × j1

(0.9901 − j0.0990) + j1 + 1
= 0.2282 + j0.3942.

The transformed circuit, with the voltage source short-circuited, is shown in Fig. 3.39b. Now,

Zeq = (0.3942−j0.2282)+ (−j10 + (0.1888 + j0.4170))(0.2282 + j0.3942)

((−j10 + (0.1888 + j0.4170)) + (0.2282 + j0.3942))
= 0.6425+j0.1763

The maximum average power transfer occurs with ZL = Z∗
eq = 0.6425 − j0.1763. The Voc across

the load terminals of the transformed circuit, with the voltage source inserted, is

Voc = ((−j10 + (0.1888 + j0.4170)))(0.866 + j0.5)

−j10 + (0.1888 + j0.4170) + (0.2282 + j0.3942)
= 0.9155+j0.4977 = 1.0420� (0.4979)

Therefore, the maximum power transferred is

Pm = |Voc|2
8RL

= (1.04202)

(8 × 0.6425)
= 0.2113 W.

∼
+

co
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t
+

π 6
)V C1
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L

Fig. 3.39 (a) A bridge circuit; (b) circuit to find Zeq
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Fig. 3.40 Load resistor versus power transferred
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Fig. 3.41 (a) A circuit with current sources; (b) and (c) the circuits with one of the two current sources replaced by an
open-circuit; (d) equivalent circuit with voltage sources in the frequency-domain

Figure 3.40 show the power transferred for a range of values of the load resistor. The peak value
occurs when the load resistance is equal to the Thévenin equivalent resistance.

3.3.4 Source Transformation

Thévenin and Norton equivalent circuits provide the same volt–ampere relationship at the terminals.
It is possible to substitute one source by another, called source transformation, to simplify the circuit
analysis. Source transformation is most useful if the source is localized to some portion of the circuit.

Consider the circuit shown in Fig. 3.41a with current sources. The problem is to find the current
through R1. The sources are 2 cos(t − π

4 )A and cos(t + π
6 )A. In the frequency-domain, they are

2� (−π
4 ) and 1� (π

6 ).

Nodal Method
Applying KCL at the right side nodes, we get, with ZL = j0.1, ZC = −j5 and ZR1 = 1,

V1

j0.1
+ V1 − V2

1
= −2�

(
−π

4

)

V2

−j5
+ V2 − V1

1
= 1�

(π

6
.
)

www.TechnicalPDF.com



134 3 AC Circuits

Simplifying, we get

V1(1 + j0.1) − j0.1V2 = −0.2�
(π

4

)

V1(j5) + (1 − j5)V2 = 5�
(
−π

3

)

[
1 + j0.1 −j0.1

j5 1 − j5

][
V1

V2

]
=
[

−0.1414 − j0.1414

2.5000 − j4.3301

]
.

The determinant of the admittance matrix is 1 − j4.9.
Solving the equilibrium equations, we get

[
V1

V2

]
=
[

1 + j0.1 −j0.1

j5 1 − j5

]−1 [−0.1414 − j0.1414

2.5000 − j4.3301

]

=
[

1.0196 − j0.0040 −0.0196 + j0.0040

0.9796 − j0.1999 0.0204 + j0.1999

][
−0.1414 − j0.1414

2.5000 − j4.3301

]

=
[

−0.1764 − j0.0488

0.7498 + j0.3012

]
.

Since the resistance value is 1 �, the current through it, from bottom to top, is V1 −V2 = (−0.9263 −
j0.35) A.

Let us find the current using the linearity property. The currents due to each of the two current
sources, I1 in Fig. 3.41b and I2 in Fig. 3.41c, are found separately and added to find the total current.
When one of the sources is open-circuited, the circuit becomes a current source feeding a parallel
circuit. In Fig. 3.41b, the equivalent impedance is (j0.1) ‖ (1 − j5). In Fig. 3.33c, the equivalent
impedance is (−j5) ‖ (1 + j0.1). The currents can be found by current division.

I1 = − (j0.1)(2(cos(−π
4 ) + j sin(−π

4 )))

(1 + j1 − j5)
= 0.0221 − j0.0334

I2 = − (−j5)(cos(π
6 ) + j sin(π

6 ))

(1 + j0.1 − j5)
= −0.9483 − j0.3167.

Now, I = I1 + I2 = (−0.9263 − j0.35) A, as found by nodal analysis.
Consider the transformed circuit shown in Fig. 3.41d with voltage sources. It is a series circuit.

The current sources are multiplied by the respective shunt impedances to get the equivalent voltage
sources and the shunt impedances becomes the series impedances for the voltage sources. In the
frequency-domain, the voltage sources are

2(0.1)�
(
−π

4
+ π

2

)
= 0.1414 + j0.1414 and 1(5)�

(π

6
− π

2

)
= 2.5 − j4.3301.

The current through the resistance is the sum of the voltages divided by the three impedances in series

2.6414 − j4.1887

1 + j0.1 − j5
= (0.9263 + j0.35) A.
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This current flows in the opposite direction. The current is I = (−0.9263 − j0.35) A, as obtained
earlier. With voltage sources, we got the result by using the simpler Ohm’s law.

3.4 Application

3.4.1 Filters

A practical signal is composed of different frequency components. At the time of generation or
in transmission, desired signals get contaminated with undesirable signals, called noise signals.
Typically, the desired signals are composed of low frequency components and noise signals are
composed of high frequency components. Filters are commonly used in signal processing applications
to filter out the unwanted noise component. Basic lowpass filters, which pass low frequency
components and suppress high frequency components, are presented.

RL Filter
The RL lowpass filter is shown in Fig. 3.42a. The input signal to the filter is

v1(t) = cos(10t) + 0.1 cos(1000t).

It is desired that the output v2(t) contains the high frequency component of magnitude less than 10%
of that at the input. By voltage division, the input–output relationship of the filter, in the frequency
domain, is

V2

V1
= R

R + jωL
.

The output, for a given input is inversely proportional with the frequency due to the frequency ω

appearing in the denominator. The magnitude has to meet the constraint

∣∣∣∣
R

R + jωL

∣∣∣∣ = 0.1.

Substituting for the magnitude, we get

R√
R2 + (ωL)2

= 0.1 or 100R2 = R2 + (ωL)2.

With ω = 1000 and R = 1000 �, solving for L, we get L = 9.9499 H. The magnitude of the
transfer function, the input–output relationship in the frequency-domain, is shown in Fig. 3.43a. It

v1(t) v2(t)

+ +L

R

(a) (b)

v1(t) v2(t)

++ R

C

Fig. 3.42 (a) A RL lowpass filter circuit; (b) a RC lowpass filter circuit
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Fig. 3.43 (a) Magnitude of the transfer function of the filter; (b) excitation and the response of the RL circuit

is a plot of the magnitude and the phase (not shown) of the filter output for the input ejωt with the
frequency varying. Since the filter is a lowpass one, it attenuates the high frequency components
more. At ω = 10 rad/s, the attenuation is 0.9951. At ω = 1000 rad/s, the attenuation is 0.1. While
the attenuation of the high frequency component is desirable, the low frequency components are also
attenuated to a lesser extent. Filters are designed to suit the application requirements. The input and
the output waveforms of the filter are shown in Fig. 3.43b. The period of the low frequency component
is 2π/10 = 0.6283 s. The output waveform, shown by the dashed line, has negligible undesirable high
frequency component of the input. The filter circuit is a variable frequency voltage divider, since the
impedance of the inductor increases with increasing frequency. Therefore, most of the voltage drop
due to high frequency components occur across it and, thereby, the filter output, the voltage across
the resistor, contains a low percent of the high frequency components. The output waveform is shifted
due to the filtering operation.

RC Filter
The RC lowpass filter is shown in Fig. 3.42b. The input signal to the filter is

V1(t) = cos(10t) + 0.1 cos(1000t).

It is desired that the output v2(t) contains the high frequency component of magnitude less than 10%
of that at the input. By voltage division, the input–output relationship of the filter, in the frequency
domain, is

V2

V1
= 1

1 + jωRC
.

The magnitude has to meet the constraint

∣∣∣∣
1

1 + jωRC

∣∣∣∣ = 0.1.

Substituting for the magnitude, we get

1

1 + (ωRC)2
= 0.1 or 100 = 1 + (ωRC)2.

With ω = 1000 and R = 1000 �, solving for C, we get C = 9.9499µF. The transfer function and
the output are similar to that in Fig. 3.43.
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3.5 Summary

• Alternating current (AC) is also movement of electrical charge, but changes direction periodically.
• A sinusoidal waveform is a linear combination of sine and cosine waveforms.
• System models, such as differential equation and convolution, reduce to algebraic equations for a

sinusoidal input for linear systems.
• The polar form of a sinusoid is x(t) = A cos(ωt + θ), −∞ < t < ∞
• The rectangular form of a sinusoid is A cos(ωt + θ) = C cos(ωt) + D sin(ωt).
• The complex sinusoid, v(t) = V ej(ωt+θ) = V ejθ ejωt , −∞ < t < ∞ is found to be

indispensable for analysis due to its compact form and ease of manipulation of the exponential
function. Due to Euler’s identity,

v(t) = V

2

(
ej (ωt+θ) + e−j (ωt+θ)

)
= V cos(ωt + θ)

• AC circuit analysis boils down to analysis with sources of the form Aej(ωt+θ), which is a
mathematical equivalent of the real sinusoid. Then, the output to the real sinusoid is deduced from
the results.

• When the complex exponential source is used, the circuit elements, resistors, inductors, and
capacitors, are to be represented appropriately.

• When the independent variable of signals, such as time t , is not frequency, then that representation
is called the time-domain representation. On the other hand, when the independent variable of
signals is frequency, such as f and ω, then that representation is called the frequency-domain
representation.

• The first task in formulating the equilibrium equations for an electric circuit is to select a set of
variables, voltages or currents. They must be independent and adequate to describe the state of the
network at any instant. They must be uniquely and reversibly related to all the branch variables.

• After selecting an appropriate set of variables, we have to use Kirchhoff’s laws.
• AC circuits must be analyzed at each frequency individually, if sources with more than one

frequency are present in the circuit.
• As the sinusoidal waveform is everlasting, using a sinusoid as a source will result in the steady-state

analysis.
• Any linear combination of voltage and current sources, independent or dependent, and impedances

with two terminals can be replaced by a fixed voltage source Veq , called Thévenin’s equivalent
voltage, in series with an impedance Zeq , called Thévenin’s equivalent impedance.

• Any linear combination of voltage and current sources, independent or dependent, and impedances
with two terminals can be replaced by a fixed current source Isc, called Nortan’s equivalent current,
in parallel with an impedance Zeq .

• The condition for maximum power transfer is that the source and load impedances are conjugate
symmetric,

ZL = Z∗
s

When this condition is satisfied, the total impedance of the circuit becomes resistive.
• Source transformation is replacing a current source by a voltage source and vice versa for simpler

circuit analysis. It is most useful if the source is localized to some portion of the circuit.
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Exercises

3.1 Find the sinusoid in cosine form. Find the value of t closest to t = 0, where the first positive
peak of the sinusoid occur.

3.1.1 x(t) = sin( 2π
8 t + π

4 ).
3.1.2 x(t) = 2 sin( 2π

6 t − π
6 ).

* 3.1.3 x(t) = −5 sin(2πt + π
3 ).

3.2 Find the rectangular form of the sinusoid. Find the value of t closest to t = 0, where the first
positive peak of the sinusoid occur. Find the values of t at which the next two consecutive
positive peaks occur. Get back the polar form from the rectangular form and verify that the
given sinusoid is obtained.

3.2.1 x(t) = sin( 2π
6 t + π

6 ).
3.2.2 x(t) = 3 cos( 2π

3 t − π
3 ).

3.2.3 x(t) = −2 sin(2πt + 2π
3 ).

* 3.2.4 x(t) = 4 sin(2πt − π
4 ).

3.2.5 x(t) = 5 cos( 2π
4 t + 2π

6 ).
3.3 Express the signal in terms of complex exponentials.

3.3.1 x(t) = sin( 2π
8 t)

3.3.2 x(t) = cos(2πt)

3.3.3 x(t) = 2 cos( 2π
4 t − π

3 )

*3.3.4 x(t) = 3 sin( 2π
6 t + π

6 )

3.4 Find the current i(t) in the series circuit in cosine sinusoidal form, using the frequency-domain
representation.

3.4.1

v(t) = 2 cos(
2π

8
t − π

3
), R = 3, C = 0.2

* 3.4.2

v(t) = 2 sin(
2π

4
t − π

3
), R = 2, L = 0.1

3.5 Find the current I and the voltages across the impedances,

VZ1, VZ2, VZ3, VZ4, VZ5

in the series circuit, shown in Fig. 3.44. Verify KVL.
3.5.1

v(t) = 3 cos(2t)V , Z1 = 1

jω0.3
, Z2 = 2,

Z3 = (2)(jω0.1)

(2 + jω0.1)
, Z4 = 1, Z5 = jω0.2

Fig. 3.44 Series circuit
with a voltage source

∼V
Z1

Z2

Z5 Z4

Z3

VZ1 VZ2

VZ5 VZ4

VZ3

I
+
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Fig. 3.45 Series circuit
with a current source

∼I
Z1

Z2

Z5 Z4

Z3

VZ1 VZ2

VZ5 VZ4

VZ3

I

* 3.5.2

v(t) = 2 sin(3t)V , Z1 = 1

jω0.1
, Z2 = 3,

Z3 = (2)(jω0.2)

(2 + jω0.2)
, Z4 = 2, Z5 = jω0.3

3.5.3

v(t) = cos(2t + π

3
)V , Z1 = 1

jω0.2
, Z2 = 1,

Z3 = (3)(jω0.1)

(3 + jω0.1)
, Z4 = 1, Z5 = jω0.4

3.6 Find the voltages across the impedances,

VZ1, VZ2, VZ3, VZ4, VZ5

in the series circuit, shown in Fig. 3.45.
3.6.1

i(t) = sin(2t + π

3
)A, Z1 = 1

jω0.1
, Z2 = 2,

Z3 = (4)( 1
jω0.1 )

(4 + ( 1
jω0.1 ))

, Z4 = 3, Z5 = jω0.1

* 3.6.2

i(t) = 2 sin(2t)A, Z1 = 1

jω0.2
, Z2 = 1,

Z3 = (3)( 1
jω0.1 )

(3 + ( 1
jω0.1 ))

, Z4 = 4, Z5 = jω0.1

3.6.3

i(t) = cos(2t − π

3
)A, Z1 = 1

jω0.1
, Z2 = 2,

Z3 = (3)( 1
jω0.1 )

(3 + ( 1
jω0.1 ))

, Z4 = 3, Z5 = jω0.4
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Fig. 3.46 Parallel circuit
with a current source

∼IA Z1 Z2 Z3 Z4
Z5

IZ1 IZ2 IZ3 IZ4 IZ5

Fig. 3.47 Parallel circuit
with a voltage source

∼
+

V Z1 Z2 Z3 Z4
Z5

I IZ1 IZ2 IZ3 IZ4 IZ5

3.7 Find the voltage across the impedances,

VZ1, VZ2, VZ3, VZ4, VZ5

in the parallel circuit, shown in Fig. 3.46. Find the currents through the impedances,

IZ1, IZ2, IZ3, IZ4, IZ5

Verify that the sum of the currents through the impedances is equal to the source current.
3.7.1

i(t) = sin(2t + π

4
)A, Z1 = 1, Z2 = jω0.1,

Z3 = 2, Z4 = 1

jω0.2
, Z5 = 3

3.7.2

i(t) = 2 cos(t)A, Z1 = 3, Z2 = jω0.2, Z3 = 2,

Z4 = 1

jω0.1
, Z5 = 1

* 3.7.3

i(t) = cos(t + π

6
)A, Z1 = 1, Z2 = jω0.1,

Z3 = 2, Z4 = 1

jω0.2
, Z5 = 3

3.8 Find the current I and the voltages across the impedances,

VZ1, VZ2, VZ3, VZ4, VZ5

in the parallel circuit, shown in Fig. 3.47. Find the currents through the impedances,

IZ1, IZ2, IZ3, IZ4, IZ5

Verify that the sum of the currents through the impedances is equal to the total current, I .
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3.8.1

v(t) = 2 cos(t + π

6
)V , Z1 = 2, Z2 = jω0.2, Z3 = 1,

Z4 = 1

jω0.3
, Z5 = 4

* 3.8.2

v(t) = 2 sin(2t + π

4
)V , Z1 = 3, Z2 = jω0.3, Z3 = 2,

Z4 = 1

jω0.2
, Z5 = 3

3.8.3

v(t) = 3 cos(3t − π

3
)V , Z1 = 2, Z2 = jω0.2, Z3 = 1,

Z4 = 1

jω0.3
, Z5 = 4

3.9 Find the current I and the voltages across the impedances,

VZ1, VZ2, VZ3, VZ4, VZ5

and current through
IZ1, IZ2, IZ3, IZ4, IZ5

in the series-parallel circuit, shown in Fig. 3.48. Verify KVL around the loops and KCL at
node x.

3.9.1

v(t) = cos(2t)V , Z1 = 1

jω0.3
, Z2 = 3,

Z3 = jω0.3, Z4 = 2, Z5 = 1

* 3.9.2

v(t) = sin(t)V , Z1 = 1

jω0.1
, Z2 = 2,

Z3 = jω0.2, Z4 = 3, Z5 = 2

Fig. 3.48 Series-parallel
circuit with a voltage
source

∼V

x

+
Z1

Z2 Z3 Z4

Z5

IZ1 IZ2 IZ3 IZ4

I
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Fig. 3.49 Series-parallel
circuit with a current
source

∼I

x

Z1
Z2 Z3 Z4

Z5

IZ1 IZ2 IZ3 IZ4

I

3.9.3

v(t) = cos(2t + π

6
)V , Z1 = 1

jω0.2
, Z2 = 4,

Z3 = jω0.1, Z4 = 3, Z5 = 3

3.10 Find the voltages across the impedances,

VZ1, VZ2, VZ3, VZ4, VZ5

in the series-parallel circuit, shown in Fig. 3.49. Verify KCL at node x.
3.10.1

i(t) = 2 cos(2t + π

3
)A, Z1 = 1

jω0.3
, Z2 = 2,

Z3 = jω0.2, Z4 = 1, Z5 = 3

* 3.10.2

i(t) = cos(t − π

6
)A, Z1 = 1

jω0.2
, Z2 = 3, Z3 = jω0.3,

Z4 = 4, Z5 = 1

3.10.3

i(t) = 3 sin(2t + π

6
)A, Z1 = 1

jω0.4
, Z2 = 1, Z3 = jω0.2,

Z4 = 1, Z5 = 4

3.11 Given a circuit diagram with the independent currents, find the corresponding tree and the loops.
Analyze the circuit by both nodal and loop methods to find the voltages and currents at all parts
of the circuit. Verify that the results are the same by both the methods. Verify the results using
KVL and KCL.

3.11.1 The circuit is shown in Fig. 3.50.
* 3.11.2 The circuit is shown in Fig. 3.51.

3.11.3 The circuit is shown in Fig. 3.52.
3.12 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and

loop methods to find the voltages and currents at all parts of the circuit. Verify that the results
are the same by both the methods. Verify the results using KVL and KCL.

3.12.1 The circuit is shown in Fig. 3.53.
* 3.12.2 The circuit is shown in Fig. 3.54.
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Fig. 3.50 Circuit for
Exercise 3.11.1

i1

i3

i2

∼
+

si
n(

2t
−

π 3
)V C1

0.1F

C4

0.1F

R2

3Ω

L3 1H

L2 1H

R4
1Ω

R5

1Ω

Fig. 3.51 Circuit for
Exercise 3.11.2

i1

i3

i2

∼
+

si
n(

t)
V C1

0.1F

C4

0.1F

R2

3Ω

L3 1H

L2 1H

R4
1Ω

R5

2Ω

Fig. 3.52 Circuit for
Exercise 3.11.3

i1

i3

i2

∼
+

co
s(

t)
V C1

0.1F

C4 0.1F

R2

3Ω

L3 1H

L2 1H

R4
1Ω

R5

3Ω

Fig. 3.53 Circuit for
Exercise 3.12.1 i1

i3

i2

∼+
sin(2t− π

3 )V

C3 0.1F
C4

0.1F

R2

2Ω
R6

1Ω

R5 2Ω

L1

1H

L6
1H

L2 1H

R4
3Ω
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Fig. 3.54 Circuit for
Exercise 3.12.2

∼+
cos(t− π

3 )V

C3 0.1F
C4

0.1F

R2

2Ω
R6

1Ω

R5 3Ω

L1

1H

L6
1H

L2 1H

R4
3Ω

i1

i3

i2

Fig. 3.55 Circuit for
Exercise 3.13.1

∼+
sin(2t+ π

3 )V

R3 2Ω
C4

0.1F

R2

2Ω
R5

1Ω

L1

1H

L5
1 RH 4

3Ω

i1

i3

i2

Fig. 3.56 Circuit for
Exercise 3.13.2

∼+
cos(t− π

6 )V

R3 2Ω
C4

0.1F

R2

3Ω
R5

1Ω

L1

1H

L5
1 RH 4

3Ω

i1

i3

i2

3.13 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and
loop methods to find the voltages and currents at all parts of the circuit. Verify that the results
are the same by both the methods. Verify the results using KVL and KCL.

3.13.1 The circuit is shown in Fig. 3.55.
* 3.13.2 The circuit is shown in Fig. 3.56.

3.14 Analyze the circuit using the linearity property.
3.14.1 The circuit is shown in Fig. 3.57.

* 3.14.2 The circuit is shown in Fig. 3.58.
3.15 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and

loop methods to find the voltages and currents at all parts of the circuit. Verify that the results
are the same by both the methods. Verify the results using KVL and KCL.

3.15.1 The circuit is shown in Fig. 3.59.
* 3.15.2 The circuit is shown in Fig. 3.60.

3.16 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and
loop methods to find the voltages and currents at all parts of the circuit. Verify that the results
are the same by both the methods. Verify the results using KVL and KCL.
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Fig. 3.57 Circuit for
Exercise 3.14.1 ∼

∼

si
n(

t)
V

1V

2 cos(2t)A

+

+

Z2
1

1+jω0.2

Z3 10

Z
5=

2
1+

j
2ω

0.
1

Z7 1

Z
6=

jω
0.

2

Z4

2Ω
Z1

jω0.1

I1 I2 I3

V1 −j

V2 V3

Fig. 3.58 Circuit for
Exercise 3.14.2

∼∼
co

s(
t)

V

si
n(

2t
)A

1V

+

Z2
1

1+jω0.2

Z3 10

Z
5=

2
1+

j
2ω

0.
1

Z7 1

Z
6=

jω
0.

2

Z4

2Ω
Z1

jω0.1

I1 I2 I3

V1 1

V2 V3

Fig. 3.59 Circuit for
Exercise 3.15.1

∼∼

2
si

n(
2t

)V

co
s(

2t
)A+

L1

0.1H

R2
1Ω

C2 0.2F

R3 2Ω

i1 i2 i3

v2

3.16.1 The circuit is shown in Fig. 3.61.
* 3.16.2 The circuit is shown in Fig. 3.62.

3.17 Given a circuit diagram with the independent currents, analyze the circuit by both nodal and
loop methods to find the voltages and currents at all parts of the circuit. Verify that the results
are the same by both the methods. Verify the results using KVL and KCL.

3.17.1 The circuit is shown in Fig. 3.63.
* 3.17.2 The circuit is shown in Fig. 3.64.

3.18 Find the Thévenin and Norton equivalent circuits and determine the current through the load
impedance.

3.18.1 The load impedance is Z1 in Fig. 3.13a.
3.18.2 The load impedance is Z3 in Fig. 3.14a.
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Fig. 3.60 Circuit for
Exercise 3.15.2

∼ ∼

si
n(

t)
V

2
co

s(
t)

A

+

L1

0.1H

R2
1Ω

C2 0.2F

R3 2Ω

i1 i2 i3

v2

Fig. 3.61 Circuit for
Exercise 3.16.1

−+ ∼

∼
sin(t)A

R5 2Ω
R2

1Ω

R1 2Ω

L1 0.1H

+

C3 0.1F

R3 3Ω

R4 2Ω

i1 i2 i3
v1

(v1−v4)

v2 v3
v4

2 cos(t)V

Fig. 3.62 Circuit for
Exercise 3.16.2

−+ ∼

∼
2 cos(t)A

R5 2Ω
R2

1Ω

R1 2Ω

L1 0.1H

+

C3 0.1F

R3 3Ω

R4 3Ω

i1

i2 i3
v1

2(v1−V4)

v2 v3
v4

sin(t)V

3.18.3 The load impedance is Z3 in Fig. 3.15a.
3.18.4 The load impedance is Z1 in Fig. 3.16a.
3.18.5 The load impedance is R3 in Fig. 3.17a.
3.18.6 The load impedance is Z1 in Fig. 3.19.
3.38.7 The load impedance is Z3 in Fig. 3.20.

3.19 Find the value of the impedance Z for maximum power transfer from the source to the
impedance Z.
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Fig. 3.63 Circuit for
Exercise 3.17.1

∼
2ix

R5 1Ω
R2

1Ω

R4

4Ω

R1 2Ω

L1 0.1H
R3
3Ω

L3
0.1H

i1

i2 i3ix

v1
v2 v3

cos(t)V

+

Fig. 3.64 Circuit for
Exercise 3.17.2

∼
2ix

R5 1Ω
R2

2Ω

R4

3Ω

R1 3Ω

L1 0.1H
R3
1Ω

L3
0.1H

i1

i2 i3ix

v1
v2 v3

sin(t)V+

Fig. 3.65 Circuit for
Exercise 3.19.1

∼
+cos(t)V

2 Ω 3 Ω

Z 4 Ω
1F

3.19.1 The circuit is shown in Fig. 3.65.
* 3.19.2 The circuit is shown in Fig. 3.66.

3.20 Find the current through the impedance Z3 by analyzing the circuit as shown and also after
source transformation.
* 3.20.1 The circuit is shown in Fig. 3.67.

3.20.2 The circuit is shown in Fig. 3.68.
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Fig. 3.66 Circuit for
Exercise 3.19.2

∼
+cos(t)V

2 Ω

3 ΩZ

4 Ω
1F

Fig. 3.67 A circuit with
current sources

∼

∼

i

cos(t)A

sin(t)A

Z2

2Ω

Z1

1Ω

Z3 1F

Fig. 3.68 A circuit with
voltage sources

∼

∼

v
i

sin(t)V

cos(t)V

+

+

Z2 2Ω

Z1 3Ω

Z3

1F
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Electric power is the rate at which electric energy is transferred from an electric power source to a
sink that absorbs power. For example, a bulb emits light by absorbing electric power. All the three
entities, voltage, current, and power, are important in the generation, transmission, distribution, and
utilization of electric power. All the devices, such as a generator, a motor, a heater, and an amplifier,
are characterized by their ability to generate power or consume power to do some work.

Circuit element resistor dissipates energy. However, capacitors and inductors store energy,
respectively, in their electric and magnetic fields, and, hence, are called storage elements. The stored
energy in inductors and capacitors can sustain current in the circuit for some time after the power is
switched off. That is why we get light, although diminishing, from the bulb for some time after the
power is switched off. While the expression for the power is still of the form V I , the power in AC
circuits has two components to take into account, the active power and reactive power. The stored
energy is returned to the source. Therefore, the average power consumed by the storage devices, in
the sinusoidal steady state, is zero. The kinetic energy is stored in the magnetic field generated by the
flow of current in the inductor. Similar to the kinetic energy, 1

2Mv2 in a mechanical system, the energy
stored in an inductor of L henries is 1

2Li2(t). The current i(t) flowing through an inductor generates

a voltage L
di(t)
dt

. Therefore, power has to be delivered by the source deriving a current through the
inductor to oppose the generated voltage. This power is used to store energy in the inductor. Therefore,
energy delivered, dT (t), during an infinitesimal interval dt is

dT (t) = v(t)i(t)dt = i(t)L
di(t)

dt
dt.

Integrating this expression, we get the expression for the instantaneous energy stored in the inductor as

T (t) = L

∫ t

−∞
i(x)

di(x)

dx
dx = 1

2
Li2(t),

since i(−∞) = 0.
A capacitor is made of two conducting surfaces separated by a dielectric (nonconductor or

insulator) material. When we apply a voltage v(t) across a capacitor, an electric field is set up.
Therefore, power has to be delivered by the source. This power is used to store energy in the capacitor.
Therefore, energy delivered, dV (t), during an interval dt is

© Springer Nature Switzerland AG 2020
D. Sundararajan, Introductory Circuit Theory,
https://doi.org/10.1007/978-3-030-31985-4_4

149

www.TechnicalPDF.com

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31985-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-31985-4_4


150 4 Steady-State Power

dV (t) = v(t)i(t)dt = v(t)C
dv(t)

dt
dt.

Integrating this expression, we get the expression for the instantaneous energy stored in the capacitor
as

V (t) = C

∫ t

−∞
v(x)

dv(x)

dx
dx = 1

2
Cv2(t)

The current i(t) and the voltage v(t) may be any functions of time and T (t) and V (t) are the
corresponding time functions representing the stored energies at instants of time.

Work has to be done to move a charge in a certain direction in a conductor. The work is carried out
by the voltage between the two points of interest. Therefore,

v = dw

dq
,

where w is the work in joules, v is the voltage in volts, and q is the charge in coulombs. That is, one
volt is one joule per coulomb. Now, power p is the rate of doing work measured in watts.

p = dw

dt
= dw

dq

dq

dt
= vi.

If p is positive, power is absorbed by the element. Otherwise, power is generated by the element.
Energy measured in joules, is the integral of power over an interval. A resistor always absorbs power.
The average power absorbed by inductors and capacitors is zero. The power supplied by the sources
is equal to the power dissipated in the resistors and that stored in the reactive elements.

4.1 Energy in Reactive Elements with Sinusoidal Sources

Let the source to a capacitor C be v(t) = V cos(ωt). The instantaneous energy stored in its electric
field associated with the capacitor is

V (t) = 1

2
CV 2 cos2(ωt) = 1

4
CV 2(1 + cos(2ωt)).

We used the trigonometric identity

cos2(ωt) = 1

2
(1 + cos(2ωt)).

This expression represents a shifted double-frequency sinusoid with its amplitude varying from 0 to
0.5CV 2. The average energy is

Vav = 1

4
CV 2.

Differentiating the expression for V (t) with respect to t , we get

dV (t)

dt
= −ω

2
CV 2 sin(2ωt).

www.TechnicalPDF.com



4.2 Power Relations in a Circuit 151

Therefore,
dV (t)

dt
|av = 0,

since the integral of a sinusoid over an integral number of its cycles is zero.
Let the source to an inductor L be i(t) = I cos(ωt). The instantaneous energy stored in its magnetic

field associated with the inductor is

T (t) = 1

2
LI 2 cos2(ωt) = 1

4
LI 2(1 + cos(2ωt)).

The average energy is

Tav = 1

4
LI 2.

Differentiating the expression for T (t) with respect to t , we get

dT (t)

dt
= −ω

2
LI 2 cos(2ωt).

Therefore,
dT (t)

dt
|av = 0.

A reactive element cannot absorb energy indefinitely.

4.2 Power Relations in a Circuit

Let the voltage applied to a circuit be v(t) = V cos(ωt + θ). Let the current through the circuit be
i(t) = I cos(ωt + φ). The instantaneous power absorbed by the circuit is

s(t) = v(t)i(t) = V I cos(ωt + θ) cos(ωt + φ).

Using the trigonometric identity

2 cos(A) cos(B) = cos(A − B) + cos(A + B),

we get
s(t) = 0.5V I cos(θ − φ) + 0.5V I cos(2ωt + θ + φ).

The first of the two components of s(t) is a constant and its value depends on the difference between
the phases of the voltage and current. The second component is a sinusoid of double the frequency of
that of the source. Since s(t) is time varying, the average value S of s(t) over one period, with unit
watts, is measured by the wattmeter, the instrument to measure the average power. Let the period of
the source be 2T . Since the period of s(t) is T , the apparent average power, with unit volt amperes, is
given by

S = 1

T

∫ T

0
0.5V I cos(θ − φ)dt + 1

T

∫ T

0
0.5V I cos(2ωt + θ + φ)dt = 0.5V I cos(θ − φ).

The second integral involves a sinusoid and the integral of a sinusoid over its period is zero.
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In the frequency-domain representation of circuits, the voltages and currents are, respectively,
represented as

V � θ and I � φ.

Then,

S = 0.5(V � θ)(I � (−φ)) = 0.5V I � (θ − φ) = 0.5V I (cos(θ − φ) + j sin(θ − φ)) = Pav + jQav.

For passive circuits, S will lie in the first or fourth quadrants of the complex plane. If S lies in the
first quadrant, the load is inductive. If S lies in the fourth quadrant, the load is capacitive. Taking the
magnitude, we get

|S| =
√

P 2
av + Q2

av,

S is the apparent power. The first component, which is the power actually consumed, is called the
active power Pav . The power that is swapped back and forth from the source and the circuit is called
the reactive or wattless power Qav . Therefore,

Pav = 0.5Re((V � θ)(I � (−φ))) = 0.5V I cos(θ − φ)

Qav = 0.5Im((V � θ)(I � (−φ))) = 0.5V I sin(θ − φ).

That is the real part of the 0.5 times the product of the complex amplitude of the voltage and the
conjugated complex amplitude of the current is the active power. The imaginary part is the reactive
power. The active power is usually denoted by the symbol Pav and the reactive power by the symbol
Qav . Therefore, the power in complex form is

S = 0.5V I ∗ = 0.5II ∗Z = 0.5|I |2Z = 0.5|V |2Y ∗ = Pav + jQav,

where Z is the impedance, Y = 1/Z is the admittance, and

V = V � θ and I = I � φ.

The active power in a linear passive circuit is always positive, while the reactive power is negative in
capacitive circuits and positive in inductive circuits. The unit for reactive power is vars (volt–amperes
reactive). The total power consumed by a circuit is the sum of the powers consumed by the constituent
branches of the circuit. Since the reactive power may be positive or negative, it is possible to change
its value by adding suitable passive circuits, a process called power-factor correction. It should be
mentioned that the meters used to measure currents and voltages measure the RMS values, which is
equal to 1/

√
2 of the peak value of a sinusoid. If we use RMS values, then the expressions for the

power become VRMSIRMS , as in the case of DC circuits without the term 1/2.
If θ = φ, as in resistive circuits with the phase difference zero, the average power is

P = 0.5 VI.

That is, the effective impedance has only resistive component. If θ −φ = ±0.5π , the average power is
zero. That is, the effective impedance has only reactive component. In the term cos(θ − φ), the phase
difference is usually represented by θ . As cos(θ) indicates the extent the circuit absorbs power from
the source, it is called the power factor of the circuit, denoted by pf. The cosine of the phase difference
between the voltage and current is the power factor. It is also the cosine of the angle of the impedance.
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A capacitive impedance has a negative phase angle. Consequently, the reactive power Qav , which is
a function of the angle, is negative and vice versa for an inductive impedance. The pf is an indication
of the relative magnitudes of the resistive and reactive components of a circuit. A higher pf indicates
that the resistive component is greater. The total average power supplied is the sum of Pav for each
element of the circuit.

Pav = Pav1 + Pav2 + Pav3 + · · ·
Similarly, the total reactive power supplied is the algebraic sum of Qav for each element of the circuit.

Qav = Qav1 + Qav2 + Qav3 + · · ·

Therefore,
Sav = Sav1 + Sav2 + Sav3 + · · ·

The equivalent definitions of the power factor are

pf = active power

|apparent power| = cos(θ) = R

|Z| .

Angle θ is the phase angle of the current with respect to the voltage. If the current leads the voltage,
the power factor is said to be leading and is lagging if current lags voltage. A pf of 0.8 lagging implies
that the current lags the voltage by cos−1(0.8) = 0.6435 radians or 36.8699◦.

1. For resistive loads, Q = 0 and pf = 1.
2. For inductive loads, Q > 0 with a lagging pf.
3. For capacitive loads, Q < 0 with a leading pf.

Example 4.1 Find the average active and reactive power consumed by the circuit, shown in Fig. 4.1a.
What is the power factor of the circuit? Verify that the power supplied is equal to the sum of the power
consumed by the components. Relate the stored energy with the reactive power.

Solution The source voltage is 0.5 − j0.866 V. The frequency of the source is ω = 2 radians. The
values of the impedances are

Z1 = 1, Z2 = j4.

The source current is I = 0.5−j0.866
1+j4 = −0.1744 − j0.1686 A.

The values of the currents through the impedances are

{IZ1 = −0.1744 − j0.1686, IZ2 = −0.1744 − j0.1686}.

∼

co
s(

2t
−

π 3
)V 2H

1Ω

+

)c()b()a(

∼

co
s(

t+
π 6
)V

1F

1Ω

+
∼

co
s(

2t
)V

2H

0.2F

3Ω

+

Fig. 4.1 (a) A RL series circuit; (b) a RC series circuit; (c) a RLC series circuit

www.TechnicalPDF.com



154 4 Steady-State Power

The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2 are

0.0294, j0.1176.

The total apparent power consumed by the circuit is the sum of those of all the impedances,

S = Pav + jQav = 0.0294 + j0.1176 va.

The power supplied by the source V I ∗/2 is also the same. The average power consumed by the
resistor is

0.0294 W

and is equal to Pav . The impedance of the circuit is Z = V/I = 1 + j4.

pf = Re(Z)

|Z| = 0.0294

|S| = cos(� (V ) − � (I )) = 0.2425 lagging.

The instantaneous energy dissipated by the resistor is given, in the time-domain, by

p(t) = i2(t)R.

For this example, R = 1� and

i(t) = |I | cos(2t + � (I ))A = 0.2425 cos(2t − 2.373).

Using the trigonometric double-angle formula

cos2(x) = 1 + cos(2x)

2
,

we can find p(t) = i2(t) to be

0.24252 cos2(2t − 2.373) = 0.0294 + 0.0294 cos(4t + 1.5372).

The period of this waveform is 2π/(4) = π/2 seconds. Alternatively, p(t) can also be computed
numerically at discrete points with sufficiently small interval to approximate the instantaneous power.
The result is shown in Fig. 4.2a. It oscillates about the average power 0.0294. The phase is about 90◦.

8075.10
t

00.0000

0.0294

0.0588

P

(a)
8075.10

t

-0.0294

0

0.0294

P

(b)

Fig. 4.2 (a) Instantaneous energy dissipated by the resistor; (b) the oscillating component of the energy
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That is, it is an inverted sine wave. The oscillating part alone is shown in Fig. 4.2b. The oscillating
part is a double-frequency sinusoid. Manually, one can do the computation at few points and find that
the power waveform has two peaks and two valleys, in a period of the current through the resistor,
with all the values positive.

Let the time-domain sinusoidal current be expressed in complex form. Then,

ip(t) = 1

2

(
Ipejωt + I ∗

pe−jωt
)

.

The product of two currents ip(t) and iq(t) is

ip(t)iq(t) = 1

4

(
Ipejωt + I ∗

pe−jωt
) (

Iqejωt + I ∗
q e−jωt

)

= 1

4

(
IpIqej2ωt + I ∗

pI ∗
q e−j2ωt + IpI ∗

q + I ∗
pIq

)

= 1

2

(
IpI ∗

q

)
+ 1

2
Re
(
IpIqej2ωt

)
.

Since ip(t) = iq(t) = i(t) and the energy dissipated in a resistor is

Ri2(t),

we get the instantaneous power dissipated as

P(t) = R

2
|I |2 + R

2
Re
(
I 2ej2ωt

)
.

The formula i2R is for a DC current. Since the amplitude profile of a sinusoidal waveform is time
varying, it is found that

Ieff = IRMS = 0.7071|I |
serves the same purpose in power calculations, where |I | is the peak value. The constant value Ieff

dissipates the same power in a resistor as that by a sinusoidal current with a peak value of |I | on the
average. That is the average power dissipated in a resistor due to a sinusoidal current flowing through
it is

I 2
eff R = |I |2

2
R = |I |√

2

|I |√
2
R

which is the first part of the expression for power derived above. The values |I |√
2

and |V |√
2

are referred as
the effective values of sinusoidal current or voltage. They are also known as RMS (root-mean-square)
values by their definition.

A similar expression for the instantaneous energy stored in a magnetic field is

T (t) = L

4
|I |2 + L

4
Re
(
I 2ej2ωt

)
.

The first part is the average energy stored. As the energy stored is 0.5Li2(t) rather than Ri2(t), L

replaces R and the denominator is multiplied by 2. For this example, as L = 2 and R = 1 and with
the same current, we get the same figure, Fig. 4.3, for the stored energy.
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Fig. 4.3 Instantaneous energy stored in the inductor

As expected, the stored energy is related to the reactive power by a constant factor 2ω. The
equilibrium equation for the circuit, in the frequency-domain with

v(t) → V ejωt and i(t) → Iejωt ,

is
IR + jωLI = V.

Multiplying both sides by 0.5I ∗, we get

0.5II ∗R + j2ωL0.25(II ∗) = 0.5V I ∗ = Pav + jQav.

Therefore, for this example, the average reactive power is

2(2)0.0294 = 0.1176

as obtained above. �

Example 4.2 Find the average active and reactive power consumed by the circuit, shown in Fig. 4.1b.
What is the power factor of the circuit? Verify that the power supplied is equal to the sum of the power
consumed by the components. Relate the stored energy with the reactive power.

Solution The source voltage is 0.8660 + j0.5 V. The source frequency is ω = 1 radian. The values
of the impedances are

Z1 = 1, Z2 = −j1.

The source current is I = 0.8660+j0.5
1−j1 = 0.1830 + j0.6830 A = 0.7071� 1.3090. The values of the

currents through the impedances are

{IZ1 = 0.1830 + j0.6830, IZ2 = 0.1830 + j0.6830}.

The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2 are

0.25, −j0.25.

The total apparent power consumed by the circuit is the sum of those of all the impedances,

S = Pav + jQav = 0.25 − j0.25 va.
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Fig. 4.4 (a) Instantaneous energy dissipated by the resistor; (b) the oscillating component of the energy

The power supplied by the source V I ∗/2 is also the same. The average power consumed by the
resistor is

0.25 W

and is equal to Pav . The impedance of the circuit is Z = V/I = 1 − j .

pf = Re(Z)

|Z| = 0.25

|S| = cos(� (V ) − � (I )) = 0.7071 leading.

The instantaneous energy dissipated by the resistor is

0.70712 cos2(t + 1.3090) = 0.25 + 0.25 cos(2t + 2.618).

The period of this waveform is 2π/(2) = π seconds. The result is shown in Fig. 4.4a. It oscillates
about the average power 0.25. The phase is about 150◦. That is, it is an inverted and shifted sine wave.
The oscillating part alone is shown in Fig. 4.4b.

An expression, similar to that for magnetic energy, for the instantaneous energy stored in an electric
field is

V (t) = 1

4Cω2 |I |2 − 1

4Cω2 Re
(
I 2ej2ωt

)
,

where I is the current through the capacitor and C is the value of the capacitor. Note that

V = I

jωC
.

The first part is the average energy stored.
The equilibrium equation for the circuit, in the frequency-domain with

v(t) → V ejωt and i(t) → Iejωt ,

is
IR − j

I

ωC
= V.

Multiplying both sides by 0.5I ∗, we get

0.5II ∗R − j2ω

(
0.25

(II ∗)
Cω2

)
= 0.5V I ∗ = Pav + jQav.

www.TechnicalPDF.com



158 4 Steady-State Power
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Fig. 4.5 Instantaneous energy stored in the capacitor

The reactive power is −2ω times the energy stored in the capacitor. Therefore, for this example, the
average reactive power, with the squared magnitude of the current being 0.5, is

−2(1)0.125 = −0.25

as obtained above. The instantaneous energy stored in the electric field is shown in Fig. 4.5. �

Example 4.3 Find the average active and reactive power consumed by the circuit, shown in Fig. 4.1c.
What is the power factor of the circuit? Verify that the power supplied is equal to the sum of the power
consumed by the components. Relate the stored energy with the reactive power.

Solution The source voltage is 1 V. The frequency of the source is ω = 2 radians. The values of the
impedances are

Z1 = 3, Z2 = j4, Z3 = −j2.5.

The source current is

I = 1

3 + j1.5
= (0.2667 − j0.1333) A.

The values of the currents through the impedances are

{IZ1 = 0.2667 − j0.1333, IZ2 = 0.2667 − j0.1333, IZ3 = 0.2667 − j0.1333}.

The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2 are

0.1333, j0.1778, −j0.1111.

The total apparent power consumed by the circuit is the sum of those of all the impedances,

S = Pav + jQav = 0.1333 + j0.0667 va.

The power supplied by the source V I ∗/2 is also the same. The average power consumed by the
resistor is

0.1333 W

and is equal to Pav .
The impedance of the circuit is Z = V/I = 3 + j1.5.
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Fig. 4.6 (a) Instantaneous energy dissipated by the resistor; (b) instantaneous energy stored in the inductor; (c)
instantaneous energy stored in the capacitor; (d) reactive energy component of the circuit

pf = Re(Z)

|Z| = 0.1333

|S| = cos( � (V ) − � (I )) = 0.8944.

The instantaneous energy dissipated by the resistor is

(3)0.29812 cos2(2t − 0.4636) = 0.1333 + 0.1333 cos(4t − 0.9273).

The period of this waveform is 2π/(4) = π/2 seconds. The result is shown in Fig. 4.6a. It oscillates
about the average energy 0.1333. The phase is about −53.1301◦.

The instantaneous energy stored in the magnetic field is shown in Fig. 4.6b. The instantaneous
energy stored in the electric field is shown in Fig. 4.6c. Figure 4.6d shows the reactive energy
consumed by the circuit, which is obtained by multiplying the difference in the stored energies by
the inductor and capacitor multiplied by 2ω. The lower limit is negative indicating that the source
receives part of the reactive energy from the storage elements.

�

4.3 Power-Factor Correction

Most of the loads, such as induction motors and furnaces, are inductive. The power has two
components: (1) active power to do the work such as heating, producing light, motion, etc.; and (2) the
reactive power to sustain the magnetic field associated with such loads. With a pf of 0.8, 100 va is re-
quired to get 80 watts of power. As the pf decreases, a higher current is required from the supply line to
do the same work. If the used power is charged on va basis, obviously, pf correction saves money. If the
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used power is charged on watts basis, then no additional charges are made for pf between some limits,
say 0.9 to 1. If the pf goes lower than 0.9, then additional charges are made as per the agreed contract.

For inductive loads with a voltage source, a suitable parallel capacitor C has to be connected
to improve the power factor. With a fixed terminal voltage, the current to the net impedance will
be reduced. The active power remains the same, while the reactive power gets reduced resulting
in improved pf. To improve the pf, capacitors can be installed at the load itself or at the feeder or
substation. Let the reactive power be Q1 and the desired one be Q2. Since,

Q1 − Q2 = 0.5
V 2

XC

= 0.5ωCV 2,

C = 2
Q1 − Q2

ωV 2 .

Although most practical loads are inductive, it is possible to improve the power factor for capacitive
loads also in a similar manner by connecting an inductor L in parallel. Since,

Q1 − Q2 = 0.5
V 2

XL

= 0.5
V 2

ωL
,

L = V 2

2ω (Q1 − Q2)
.

With a current source, an appropriate impedance has to be connected in series with the load
impedance.

Consider a circuit, shown in Fig. 4.7a, with the voltage applied being

v(t) = cos
(

2t + π

6

)
.

The impedance of the circuit is composed of a resistor 1� connected in series with a capacitor 0.5
F. Find the apparent, active, and reactive powers and the pf of the circuit. If the pf is to be 0.8 and 1,
what is the value of the inductor to be connected in parallel with the impedance in each case?

The frequency-domain representation of the voltage and the impedance is

V = 1� π

6
= 1� 30◦ = 0.8660 + j0.5 and Z = 1 − j1

pf = R

|Z| = 0.7071

∼

co
s(

2t
+

π 6
)V

1Ω

0.5F
+

)c()b()a(
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∼
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Fig. 4.7 (a) A RC series circuit; (b) the circuit with a pf correction inductor of 4 H ; (c) the circuit with a pf correction
inductor of 1 H
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leading. The current through the circuit is

I = V

Z
= 0.1830 + j0.6830 = 0.7071� 75◦

S = 0.5V I ∗ = 0.5(0.8660 + j0.5)(0.1830 − j0.6830) = 0.25 − j0.25 = Pav + jQav

pf = Pav

|S| = 0.7071

as obtained above. The power consumed by the resistor is

0.5I ∗I (1) = 0.25W.

Figure 4.8a shows the voltage and the current. The current is leading the voltage by 45◦. Figure 4.8d
shows the active and reactive power components.

The desired pf is 0.8. As the circuit is capacitive, an inductor has to be connected in parallel with
the impedance to improve the pf from 0.7071 to 0.8. The active power remains the same, but the
reactive power drawn from the source has to be reduced. The balance is supplied by the inductor, as
shown in Fig. 4.7b. In the steady state, part of the reactive power is supplied by the inductor. That is,
energy stored in the magnetic field associated with the inductor is swapped back and forth with the
electric field associated with the capacitor, reducing the amount of reactive power to be supplied by
the voltage source. The new apparent power is

Pav

0.8
= 0.3125 va.

Therefore, the new reactive power is

0.3125 sin
(

cos−1(0.8)
)

= 0.1875vars.
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Fig. 4.8 (a) V and I in Fig. 4.7a; (b) V and I in Fig. 4.7b; (c) V and I in Fig. 4.7c; (d) apparent power in Fig. 4.7a;
(e) apparent power in Fig. 4.7b; (f) apparent power in Fig. 4.7c
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The difference between the reactive powers is 0.25−0.1875 = 0.0625. Now, with ω = 2 and |V | = 1,

L = 12

(2)(2)0.0625
= 4H.

The current through the inductor is

V

j2(4)
= 0.0625 − j0.1083.

The new current supplied by the source is

In = (0.1830 + j0.6830) + (0.0625 − j0.1083) = 0.2455 + j0.5748.

The power supplied is

S = 0.5V In∗ = 0.5(0.8660 + j0.5)(0.2455 − j0.5748) = 0.2500 − j0.1875 = Pav + jQav.

The new pf is
pf = Pav

|S| = 0.8.

Figure 4.8b shows the voltage, currents from the source and the inductor. The phase difference
between the voltage and the current has been reduced, improving the pf (which is the cosine of this
phase angle). Figure 4.8e shows the active and reactive power components.

The desired pf is 1. The whole reactive power 0.25 has to be supplied by the inductor. Obviously,
the inductor has to supply more current and it requires a smaller inductor, as shown in Fig. 4.7c.

L = 12

(2)(2)0.25
= 1H.

The current through the inductor is

V

j2(1)
= 0.2500 − j0.4330.

The new current supplied by the source is

In = (0.1830 + j0.6830) + (0.2500 − j0.4330) = 0.4330 + j0.25.

The power supplied is

S = 0.5V In∗ = 0.5(0.8660 + j0.5)(0.4330 − j0.25) = 0.2500 − j0 = Pav + jQav.

The new pf is
pf = Pav

|S| = 1.

Figure 4.8c shows the voltage, currents from the source and the inductor. The phase difference
between the voltage and the current is zero, making the pf equal to 1. Figure 4.8f shows the active and
reactive power components. Figure 4.9 shows the instantaneous power consumed in the circuit with
different pf.
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Fig. 4.9 The instantaneous power consumed by the circuit is the sum of a constant and a double-frequency sinusoidal
component

Example 4.4 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.13a.
What is the power factor of the circuit? Verify that the power supplied is equal to the sum of the
power consumed by the components. Find the value of the capacitor for power-factor improvement,
for pf = 0.8 lagging and pf = 1.

Solution The source voltage is 0.866 + j0.5 V. The source current is I = I1 = 0.6550 − j0.1845 A.
The values of the impedances are

Z1 = −j10, Z2 = j3

3 + j1
= 0.3 + j0.9, Z3 = j1, Z4 = −j10

1 − j10
= 0.9901 − j0.0990, Z5 = 1.

The values of the currents through the impedances are

{IZ1 = −0.0283 + j0.0677, IZ2 = 0.6833 − j0.2523, IZ3 = 0.2171 − j0.1886,

IZ4 = 0.4379 + j0.0041, IZ5 = −0.2454 + j0.2564}.
The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2 are

−j0.0269, 0.0796 + j0.2387, j0.0414, 0.0950 − j0.0095, 0.0630.

The total apparent power consumed by the circuit is the sum of those of all the impedances,

S = Pav + jQav = 0.2375 + j0.2437 va.

The power supplied by the source V I ∗/2 is also the same.
Now, let us compute the power consumed by the resistors alone, which is the active average power

Pav . The resistors are
3, 1, 1

and the corresponding currents are found from the branch currents, respectively, as

0.1440 + j0.1798, 0.4340 − j0.0393 − 0.2454 + j0.2564.
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The total power consumed by the resistors is

0.0796 + 0.0950 + 0.063 = 0.2375 W

and is equal to Pav found earlier.
The impedance of the circuit is Z = V/I = 1.0257 + j1.0523.

pf = Re(Z)

|Z| = Pav

|S| = cos(� (V ) − � (I )) = 0.698.

The desired power factor is 0.8. The corresponding apparent power is

Pav

0.8
= 0.2969.

The corresponding reactive power is

0.2969 sin(cos−1(0.8)) = 0.1781.

The difference between the reactive powers is 0.2437 − 0.1781 = 0.0655. Now, with ω = 1 and
|V | = 1,

C = 2
0.0655

(1)(12)
= 0.1311F.

The current through the capacitor is

jV (1)(0.1311) = −0.0655 + j0.1135.

The new current supplied by the source is

(0.6550 − j0.1845) + (−0.0655 + j0.1135) = 0.5895 − j0.0710.

The new pf is

cos
(π

6
− � (0.5895 − j0.0710)

)
= 0.8.

The desired power factor is 1. The corresponding apparent power is

Pav

1
= 0.2375.

The corresponding reactive power is

0.2375 sin
(

cos−1(1)
)

= 0.

The difference between the reactive powers is 0.2437 − 0 = 0.2437. Now, with ω = 1 and |V | = 1,

C = 2
0.2437

(1)(12)
= 0.4873F.
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The current through the capacitor is

jV (1)(0.4873) = −0.2437 + j0.4220.

The new current supplied by the source is

(0.6550 − j0.1845) + (−0.2437 + j0.4220) = 0.4114 + j0.2375.

The new pf is

cos
(π

6
− � (0.4114 + j0.2375)

)
= 1.

�

Example 4.5 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.14a.
What is the power factor of the circuit? Verify that the power supplied is equal to the sum of the
power consumed by the components. Find the value of the capacitor for power-factor improvement,
for pf = 0.8 lagging.

Solution The source voltage is 0.5 + j0.866 V. The source current is I = Iz5 = −0.4192 − j0.0678
A. The values of the impedances are

Z1 = j1, Z2 = j2

2 + j1
= 0.4 + j0.8, Z3 = −j10,

Z4 = −j30

3 − j10
= 2.7523 − j0.8257, Z5 = 1, Z6 = 1 + j1.

The values of the corresponding currents are

{IZ1 = −0.4837 − j0.0727, IZ2 = 0.3912 + j0.0038, IZ3 = −0.0645 − j0.0049,

IZ4 = −0.0280 − j0.0640, IZ5 = −0.4192 − j0.0678, IZ6 = −0.0925 − j0.0689}.
The apparent power consumed by the impedances, the product of the current, its conjugate and the

impedance divided by 2 are

j0.1196, 0.0306 + j0.0612,−j0.0209, 0.0067 − j0.0020, 0.0902, 0.0067 + j0.0067.

The total apparent power consumed by the circuit is the sum of those of all the impedances,

S = Pav + jQav = 0.1342 + j0.1646 va.

The power supplied by the source V I ∗/2 is also the same.
Now, let us compute the power consumed by the resistors alone, which is the active average power

Pav . The resistors are
2, 3, 1, 1

and the corresponding currents are found from the branch currents, respectively, as

0.0767 − j0.1572, −0.0433 + j0.0510 − 0.4192 + j0.0678, −0.0925 + j0.0689.
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The total power consumed by the resistors is

0.0306 + 0.0067 + 0.0902 + 0.0067 = 0.1342 W

and is equal to Pav found earlier.
The impedance of the circuit is Z = V/I = 1.4878 + j1.8252.

pf = Re(Z)

|Z| = Pav

|S| = cos(� (V ) − � (I )) = 0.6318.

The desired power factor is 0.8. The corresponding apparent power is

Pav

0.8
= 0.1677.

The corresponding reactive power is

0.2969 sin
(

cos−1(0.8)
)

= 0.1006.

The difference between the reactive powers is 0.1646 − 0.1006 = 0.0640. Now, with ω = 1 and
|V | = 1,

C = 2
0.0640

(1)
(
12
) = 0.1279F.

The current through the capacitor is

jV (1)(0.1279) = −0.1108 + j0.0640.

The new current supplied by the source is

(0.4192 + j0.0678) + (−0.1108 + j0.0640) = 0.3084 + j0.1318.

The new pf is

cos
(π

3
− � (0.3084 + j0.1318)

)
= 0.8.

�

Example 4.6 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.15a.
What is the power factor of the circuit? Verify that the power supplied is equal to the sum of the
power consumed by the components. Find the value of the capacitor for power-factor improvement,
for pf= 0.9 lagging.

Solution The source voltage is 0.5 + j0.8660 V. The source current is I = −0.5112 + j0.1373 A.
The values of the impedances are

Z1 = j1, Z2 = j2

2 + j1
= 0.4 + j0.8, Z3 = −j10,

Z4 = −j30

3 − j10
= 2.7523 − j0.8257, Z5 = 1 + j1.
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The values of the corresponding currents are

{IZ1 = −0.4837 − j0.0727, IZ2 = 0.3912 + j0.0038, IZ3 = −0.0645 − j0.0049,

IZ4 = −0.0280 − j0.0640, IZ5 = −0.4192 − j0.0678, IZ6 = −0.0925 − j0.0689}.
The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2 are

j0.1859, 0.0476 + j0.0951,−j0.0325, 0.0104 − j0.0031, 0.0103 + j0.0103.

The total apparent power consumed by the circuit is the sum of those of all the impedances,

S = Pav + jQav = 0.0683 + j0.2557 va.

The power supplied by the source V I ∗/2 is also the same.
Now, let us compute the power consumed by the resistors alone, which is the active average power

Pav . The resistors are
2, 3, 1

and the corresponding currents are found from the branch currents, respectively, as

0.1676 + j0.1395, −0.0753 − j0.0359 − 0.1404 − j0.0310.

The total power consumed by the resistors is

0.0476 + 0.0104 + 0.0103 = 0.0683 W

and is equal to Pav found earlier.
The impedance of the circuit is Z = V/I = 0.4878 + j1.8252.

pf = Re(Z)

|Z| = Pav

|S| = cos(� (V ) − � (I )) = 0.2582.

The desired power factor is 0.9. The corresponding apparent power is

Pav

0.9
= 0.0759.

The corresponding reactive power is

0.0759 sin
(

cos−1(0.9)
)

= 0.0331.

The difference between the reactive powers is 0.2557 − 0.0331 = 0.2226. Now, with ω = 1 and
|V | = 1,

C = 2
0.2226

(1)(12)
= 0.4452F.

The current through the capacitor is

jV (0.4452) = −0.3855 + j0.2226.
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The new current supplied by the source is

(0.5112 − j0.1373) + (−0.3855 + 0.2226) = 0.1257 + j0.0853.

The new pf is
cos

(π

3
− � (0.1257 + j0.0853)

)
= 0.9.

�

Example 4.7 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.16a.
What is the power factor of the circuit?

Solution The source voltages are −j and 2 V. The source current is −j A. The values of the
impedances are

Z1 = j0.1, Z2 = 2 − j5, Z3 = 2, Z4 = −j10, Z5 = 1 + j0.2.

The values of the corresponding currents are

{IZ1 = 0.1821 + j0.9461, IZ2 = 0.1821 − j0.0539, IZ3 = j1,

IZ4 = −0.0824 + j0.1921, IZ5 = 0.0824 + j0.8079}.

The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2, are

j0.0464, 0.0361 − j0.0901, 1,−j0.2185, 0.3298 + j0.0660.

The total apparent power consumed by the circuit is the sum of those of all the impedances

S = Pav + jQav = 1.3658 − j0.1962 va.

The power supplied by the sources is

(−0.4730 − j0.0910) + (1.9213 + j0.0869) + (−0.0824 − j0.1921)

also the same.
Now, let us compute the power consumed by the resistors alone, which is the active average power

Pav . The resistors are
2, 2, 1

and the corresponding currents are found from the branch currents, respectively, as

0.1821 − j0.0539, 1, 0.0824 + j0.8079.

The total power consumed by the resistors is

0.0361 + 1 + 0.3298 = 1.3658 W

and is equal to Pav found earlier.
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The power factor of the circuit is

pf = Pav

|S| = 0.9898

leading. As it is close to 1, power-factor correction may not be needed.
�

Example 4.8 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.17a.
What is the power factor of the circuit?

Solution The source voltage is −j . The source current is 2 A. The values of the impedances are

Z1 = j0.1, Z2 = 0.9615 − j0.1923, Z3 = 2.

The values of the corresponding currents are

{IZ1 = 1.9701 − j0.5985, IZ2 = 2, IZ3 = −0.0299 − j0.5985}.

The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2, are

j0.2120, 1.9231 − j0.3846, 0.3591.

The total apparent power consumed by the circuit is the sum of those of all the impedances,

S = Pav + jQav = 2.2822 − j0.1726 va.

The power supplied by the sources is

(0.2993 − j0.9850) + (1.9830 + j0.8124)

also the same.
Now, let us compute the power consumed by the resistors alone, which is the active average power

Pav . The resistors are
1, 2

and the corresponding currents are found from the branch currents, respectively, as

1.9231 − j0.3846, −0.0299 − j0.5985.

The total power consumed by the resistors is

1.9231 + 0.3591 = 2.2822 W

and is equal to Pav found earlier.
The power factor of the circuit is

pf = Pav

|S| = 0.9972

leading. As it is close to one, power-factor correction may not be needed. �
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170 4 Steady-State Power

If the current enters the positive terminal of the source, the source is absorbing power. Otherwise,
the source is supplying power. The total average power is equal to the sum of the powers supplied
by each source acting alone, when the frequencies are harmonic. That is, the higher frequencies are
integral multiple of the lowest nonzero frequency.

Example 4.9 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.18.
What is the power factor of the circuit?

Solution The DC source is 2 V. The AC source voltage is 0.8660 − j0.5 V at ω = 1 radian. The
source current is 2 A at ω = 5 radians. The impedances are

Z1 = jω0.1, Z2 = 1

(1 + jω0.2)
, Z3 = 10, Z4 = 2, Z5 = (1/(jω0.1))2

(2 + (1/(jω0.1))
, Z6 = jω0.2, Z7 = 1.

With the DC source alone, the resistor values are 1 and 2 in series. The current is 2/3 A. Therefore,
the power consumed is

2

3

2

3
3 = 4

3
= 2

2

3
W.

The pf is equal to 1.
With ω = 1, the values of the impedances are

Z1 = j0.1, Z2 = 0.9615 − j0.1923, Z3 = 10.

The value of the current is
I = 0.0794 − j0.0449.

The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2 are

j0.0004, 0.0040 − j0.0008, 0.0416.

The total apparent power consumed by the circuit is the sum of those of all the impedances,

S = Pav + jQav = 0.0456 − j0.0004 va.

The power supplied by the source is
0.0456 − j0.0004

also the same.
Now, let us compute the power consumed by the resistors alone, which is the active average power

Pav . The resistors are
10, 1

and the corresponding currents are found from the branch currents, respectively, as

0.0794 − j0.0449, 0.0677 − j0.0585.

The total power consumed by the resistors is

0.0416 + 0.0040 = 0.0456 W

and is equal to Pav found earlier.
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The power factor of the circuit is

pf = Pav

|S| = 0.999965

leading. As it is close to 1, power-factor correction may not be needed.
With ω = 5, the values of the impedances are

Z1 = j0.5, Z2 = 0.5 − j0.5, Z3 = 10

Z4 = 2, Z5 = 1 − j1, Z6 = j1, Z7 = 1.

The value of the currents, respectively, are

2 − j0.0952, j0.0952, j0.0952, 2, 1 + j1, 1 − j1, 1 − j1.

The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2 are

j1.0023, 0.0023 − j0.0023, 0.0454, 4, 1 − j1, j1, 1.

The total apparent power consumed by the circuit is the sum of those of all the impedances

S = Pav + jQav = 6.0476 + j1 va.

The power supplied by the source is also the same.
Now, let us compute the power consumed by the resistors alone, which is the active average power

Pav . The resistors are
1, 10, 2, 2, 1

and the corresponding currents are found from the branch currents, respectively, as

0.0476 + j0.0476, j0.0952, 2, 1, 1 − j1.

The total power consumed by the resistors is

0.0023 + 0.0454 + 4 + 1 + 1 = 6.0476 W

and is equal to Pav found earlier.
The power factor of the circuit is

pf = Pav

|S| = 0.9866

lagging. �

Example 4.10 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.19.
What is the power factor of the circuit? Verify that the power supplied is equal to the sum of the power
consumed by the components.
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Solution The source voltage is V = 2 V. The source current is I = −j A. The values of the
impedances are

Z1 = 2 + j0.1, Z2 = 1, Z3 = 3 − j10, Z4 = 3, Z5 = 2.

The values of the corresponding currents are

{IZ1 = 1.7257 + j0.7736, IZ2 = −5.4514 + j0.4529, IZ3 = 0.3666 + j0.4978,

IZ4 = 1.3591 − j0.7242, IZ5 = −3.7257 + j0.2264}.

The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2 are

3.5765 + j0.1788, 14.9615, 0.5732 − j1.9107, 3.5575, 13.9321.

The total apparent power consumed by the circuit is the sum of those of all the impedances,

S = Pav + jQav = 36.6008 − j1.7319 va.

The power supplied by the sources is also the same.

(1.3127 + j5.7644) + (−5.0848 − j0.9506) + (40.3729 − j6.5457) = 36.6008 − j1.7319.

Now, let us compute the power consumed by the resistors alone, which is the active average power
Pav . The resistors are

2, 1, 3, 3, 2

and the corresponding currents are the same as the branch currents. The total power consumed by the
resistors is

3.5765 + 14.9615 + 0.5732 + 3.5575 + 13.9321 = 36.6008 W

and is equal to Pav found earlier.

pf = Pav

|S| = 0.9989

leading. �

Example 4.11 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.20.
What is the power factor of the circuit? Verify that the power supplied is equal to the sum of the power
consumed by the components.

Solution The source voltage is j V. The values of the impedances are

Z1 = 1 + j0.1, Z2 = 3, Z3 = 0.0099 + j0.0990, Z4 = 3, Z5 = 1.

The values of the corresponding currents, respectively, are

0.9472 + j2.6635,−0.2664 − j0.9053, 0.3058 + j1.2245, 0.0394 + j0.3192, 0.6808 + j1.7582.
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The apparent power consumed by the impedances, the product of the current, its conjugate and the
impedance divided by 2 are

3.9958 + j0.3996, 1.3357, 0.0079 + j0.0789, 0.1552, 1.7775.

The total apparent power consumed by the circuit is the sum of those of all the impedances,

S = Pav + jQav = 7.2720 + j0.4784 va.

The power supplied by the sources is also the same.

(−0.7195 − j0.3207) + (7.9915 + j0.7992) = 7.2720 + j0.4784.

The first component is the power supplied by the voltage source.
Now, let us compute the power consumed by the resistors alone, which is the active average power

Pav . The resistors are
1, 3, 1, 3, 1

and the corresponding currents are the same as the branch currents. The total power consumed by the
resistors is

3.9958 + 1.3357 + 0.0079 + 0.1552 + 1.7775 = 7.2720 W

and is equal to Pav found earlier.

pf = Pav

|S| = 0.9978

lagging. �

4.4 Application

While electric power provides comfort in home, office, and industry, of course, we have to pay for it.
Periodically, the reading of the kilowatthour meter is taken and we are billed for our use of power by
the utility. A kilowatthour meter is used to measure the consumption of electric power. It is located
between the power lines and the distribution panel of the building. The energy is the product of rate
of power and the time period over which the power is used and its unit is wattseconds or joules.
Since wattseconds is too small, watthour and kilowatthour are often used. One kilowatthour (kWh) is
the energy dissipated by a 200 W bulb in 5 h. Typical wattage ratings of a laptop computer, washing
machine, and a smoothing iron are, respectively, 70, 500, and 1000. For example, using a laptop for
7 h a day requires (70 × 7)/1000 = 0.49 kWh of energy.

4.5 Summary

• Electric power is the rate at which electric energy is transferred by an electric source to a sink that
absorbs power.

• Circuit element resistor dissipates energy. Capacitors and inductors store energy, respectively, in
their electric and magnetic fields and, hence, are called storage elements.

• The stored energy is returned to the source. Therefore, the average power consumed by the storage
devices, in the sinusoidal steady state, is zero.
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• The power in AC circuits has two components to take into account, as the sinusoid and the
impedance are characterized, at a frequency, by two parameters, the magnitude and the phase.

• The instantaneous energy stored in an inductor is 1
2Li2(t). The instantaneous energy stored in a

capacitor is 1
2Cv2(t).

• Energy measured in joules is the integral of power over an interval. A resistor always absorbs
power. The average power absorbed by inductors and capacitors is zero.

• The instantaneous power absorbed by the circuit is

s(t) = 0.5V I cos(θ − φ) + 0.5V I cos(2ωt + θ + φ).

• In the frequency-domain representation of circuits, the voltages and currents are, respectively,
represented as

V � θ and I � φ.

Then,

0.5(V � θ)(I � (−φ)) = 0.5V I � (θ − φ) = 0.5V I (cos(θ − φ) + j sin(θ − φ)).

The first component, which is the power actually consumed, is called the active power Pav . The
power that is swapped back and forth from the source and the circuit is called the reactive or
wattless power Qav .

• Since the reactive power may be positive or negative, it is possible to change its value by adding
suitable passive circuits, a process called power-factor correction.

• The equivalent definitions of the power factor are

pf = active power

|apparent power| = cos(θ) = R

|Z| .

Angle θ is the phase angle of the current with respect to the voltage.
• For inductive loads, with a voltage source, a suitable parallel capacitor C has to be connected

to improve the power factor. It is possible to improve the power factor for capacitive loads by
connecting an inductor L in parallel.

Exercises

4.1 Consider the circuit, shown in Fig. 4.10, with the voltage applied being

v(t) = sin(2t) V .

The impedance of the circuit is composed of a resistor 2� connected in series with an inductor
1 H. Find the apparent, active, and reactive powers and the pf of the circuit. If the pf is to be 0.8

Fig. 4.10 A RL series
circuit

∼

si
n(

2t
)V

2Ω

1H
+
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Fig. 4.11 A RC series
circuit

∼

co
s(

t)
A

1Ω

0.5F

and 1, what is the value of the capacitor to be connected in parallel with the impedance in each
case?

* 4.2 Consider the circuit, shown in Fig. 4.11, with the current source

i(t) = cos(t) A.

The impedance of the circuit is composed of a resistor 1� connected in series with a capacitor
0.5 F. Find the apparent, active, and reactive powers and the pf of the circuit. If the pf is to be
0.8 and 1, what is the value of the inductor to be connected in series with the impedance in each
case?

4.3 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.50. What is
the power factor of the circuit? Verify that the power supplied is equal to the sum of the power
consumed by the components. Find the value of the capacitor for power-factor improvement,
for pf = 0.8 lagging and pf = 1.

* 4.4 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.53. What is
the power factor of the circuit? Verify that the power supplied is equal to the sum of the power
consumed by the components. Find the value of the capacitor for power-factor improvement,
for pf = 0.8 lagging.

4.5 Find the average active and reactive power consumed by the circuit, shown in Fig. 3.55. What is
the power factor of the circuit? Verify that the power supplied is equal to the sum of the power
consumed by the components. Find the value of the capacitor for power-factor improvement,
for pf = 1.
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5.1 Mutual Inductance

The circuit elements in circuits, we analyzed thus far, are conductively coupled. Conductors are used to
connect elements. Circuit elements can also be connected through magnetic fields, called magnetically
coupled. An inductor is basically a conducting coil. The induction of a voltage in another inductance
by the current flowing in an inductance is mutual induction. A flywheel is a mechanical device that
stores rotational energy and returns it to the system. Similarly, an inductor stores magnetic energy
and returns it to the system. It does not dissipate energy like a resistor. While a resistor is required to
limit the current in the circuit, an inductor smooths the flow of current. A time-varying current i(t)

flowing through an inductor of value L11 henries induces a voltage, which tends to oppose the current
increase,

v(t) = L11
di(t)

dt
.

The positive value L11 of the inductance is its self-inductance, or inductance because the voltage
induced is due to the current flowing through itself, as we have seen earlier. A voltage

v(t) = L12
dx(t)

dt

is also induced in the inductor, which is affected by the magnetic field of another inductance due to
current x(t). The mutually induced voltage may be positive or negative depending upon the relative
directions of the induced voltages. The value L12 is called the mutual inductance between the two
inductances and also measured in henries. A current in an inductance may induce voltages in a number
of other inductances in its proximity, in addition to its self-induced voltage, and the open-circuit
mutual voltages are designated as

v1(t) = L11
di1(t)

dt
, v2(t) = L21

di1(t)

dt
, v3(t) = L31

di1(t)

dt
, . . . .

In the determination of the mutual inductances, only a pair of coils is considered at a time, assuming
that no other induced currents in the other inductances (by open-circuiting others). The study of mutual
inductance is mandatory in analyzing circuits with often used components such as induction motors,
transformers, induction heaters, etc.
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The currents and voltages induced in various inductances (for example with three inductances) are
related as

v1(t) = L11
di1(t)

dt
+ L12

di2(t)

dt
+ L13

di3(t)

dt

v2(t) = L21
di1(t)

dt
+ L22

di2(t)

dt
+ L23

di3(t)

dt

v3(t) = L31
di1(t)

dt
+ L32

di2(t)

dt
+ L33

di3(t)

dt
.

The self-inductances and the mutual inductances are, respectively,

{L11, L22, L33} and {L12, L13, L21, L23, L31, L32}

with Lij = Lji . In these expressions, i1, i2, i3 are the respective currents and v1, v2, v3 are the
respective voltage drops. As Lij = Lji , the mutual inductance between two coils is also denoted
by M .

5.2 Stored Energy

Consider the case of two mutually coupled inductors with their coefficients being

{L11, L12, L21, L22}

with L12 = L21. Then, equations relating their voltages and currents are

v1(t) = L11
di1(t)

dt
+ L12

di2(t)

dt
(5.1)

v2(t) = L21
di1(t)

dt
+ L22

di2(t)

dt
. (5.2)

Multiplying the two equations, respectively, by i1(t) and by i2(t) and adding, we get

v1(t)i1(t) + v2(t)i2(t) = L11i1(t)
di1(t)

dt
+ L12i1(t)

di2(t)

dt
+ L21i2(t)

di1(t)

dt
+ L22i2(t)

di2(t)

dt

Let

T (t) = 1

2

(
L11i

2
1(t) + L12i1(t)i2(t) + L21i1(t)i2(t) + L22i

2
2(t)

)
= 1

2

n∑

p,q=1

Lpqip(t)iq(t)

where n is the number of coupled inductors. Then, with n = 2, we get

dT (t)

dt
= L11i1(t)

di1(t)

dt
+L12i1(t)

di2(t)

dt
+L21i2(t)

di1(t)

dt
+L22i2(t)

di2(t)

dt
= v1(t)i1(t)+v2(t)i2(t)

The instantaneous power absorbed by the two coils is equal to the derivative of the energy T stored in
the associated magnetic fields.
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The equation for T (t) is in quadratic form. That is,

2T (t) = [
i1(t) i2(t)

] [L11 L12

L21 L22

] [
i1(t)

i2(t)

]
= L11i

2
1(t) ± 2L12i1(t)i2(t) + L22i

2
2(t).

The energy stored in the magnetic fields must be positive regardless of the signs of the currents. The
sign is positive for the mutual inductance term, if both the currents leave or enter the dotted terminals
of the coils (as shown in Fig. 5.1). Otherwise, the energy contribution is negative.

A quadratic form is positive definite if all the principle minors in the top-left corner of its
corresponding matrix are all zero. That is,

|L11 > 0,

∣∣∣∣
L11 L12

L21 L22

∣∣∣∣ > 0.

Then,

L11 > 0, L22 > 0, and L11L22 − L2
12 > 0 or

L2
12

L11L22
< 1

The coupling coefficient is defined as

k = |L12|√
L11L22

,

the magnitude of which must be less than 1 for practical inductances. The mutual inductance increases
or decreases the stored energy of the two isolated inductors. Obviously, the closer the coils are placed
the larger is the value of k. The linkage between the magnetic fields is stronger. If they play music at a
place, the audibility decreases directly proportional to the distance of the point of the listener and we
cannot hear it after a certain distance.

We are particularly interested in the values of the associated energies when the sources and
variables are steady sinusoids, as is the case in the analysis of circuits. Let the time-domain currents
and voltages be sinusoids expressed in complex form. Then,

ip(t) = 1

2
(Ipejωt + I ∗

pe−jωt ).

The product of two currents ip(t) and iq(t) is given by

ip(t)iq(t) = 1

4
(Ipejωt + I ∗

pe−jωt )(Iqejωt + I ∗
q e−jωt )

= 1

4
(IpIqej2ωt + I ∗

pI ∗
q e−j2ωt + IpI ∗

q + I ∗
pIq)

= 1

2
Re(IpI ∗

q ) + 1

2
Re(IpIqej2ωt ).

Since the stored energy in an inductor is

1

2
Lpqip(t)iq(t),
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we get

T (t) = 1

4

n∑

p,q=1

(LpqIpI ∗
q ) + 1

4
Re

⎛

⎝ej2ωt
n∑

p,q=1

(LpqIpIq)

⎞

⎠ .

The real part of an expression is denoted by the symbol “Re.” The Re sign is not needed in the first
term.

Similarly, energy stored in the electric field associated with a capacitor C is

1

4ω2

n∑

p,q=1

(
IpI ∗

q

Cpq

)
− 1

4ω2 Re

⎛

⎝ej2ωt
n∑

p,q=1

(
IpIq

Cpq

)⎞

⎠ .

Note that

v(t) = 1

C

∫
i(t)dt and V = 1

C

1

j2ω
(Iejωt − I ∗e−jωt )

Similar expressions can also be derived using voltage variables.
Figure 5.1 shows the voltages induced by mutual inductance. The polarity of the voltage depends on

the way both the coils are physically wound. Any conductor has inductive effect. In order to enhance
the inductive effect, a practical inductor is essentially a coil of current conducting wire. To determine
the polarity, dots are placed in the circuit. Current entering the dotted end of a coil induces a voltage
in the other coil such that the polarity of the mutually induced voltage is positive at the dotted end, as
shown in Fig. 5.1a. That is, the polarity of the voltage is the same as that of the self-induced voltage
due to current entering the inductor. Current entering the undotted end of a coil induces a voltage in
the other coil such that the polarity of the mutually induced voltage is positive at the undotted end, as
shown in Fig. 5.1c. In the other two cases, shown in Fig. 5.1b and d, one current enters at the dotted
end while the other current leaves the dotted end and the polarity of the mutually induced voltage is
negative.

Assume that the circuit is excited by a sinusoidal source and the circuit is represented in the
frequency-domain. Then, two magnetically coupled inductors, with self-inductances L1 and L2 and
currents I1 and I2 through them, respectively, and mutual inductance M , can be replaced, using
Eqs. (5.1) and (5.2), by two isolated inductors, in series with current-controlled voltage sources.

V1 = jωL1I1 ± jωMI2 and V2 = jωL2I2 ± jωMI1

Remember that any source waveform, in practice, can be decomposed into sinusoidal components by
Fourier analysis. As already mentioned earlier also, this is the reason for the importance of analyzing
circuits assuming sinusoidal sources.

i1

v2=M di1
dt

+

−

i1

v2=−M di1
dt

+

−

i2

v1=M di2
dt

+

−

i2

v1=−M di2
dt

+

−
)d()c()b()a(

Fig. 5.1 Determining the polarity of the mutually induced voltage
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5.3 Examples

Example 5.1 Analyze the circuit shown in Fig. 5.2a. The circuit includes two coupled inductors, with
the coupling coefficient 0.5.

Solution Source is cos(t)V . With

V = 1 � 0, ω = 1, Z1 = R1 = 1, Z2 = jωL1 = j1, Z3 = jωL2 = j4, k = 0.5,

ZM = jωk
√

L1L2 = j1, Z4 = R2 = 2.

The frequency-domain version of the equivalent circuit, with two isolated inductors in series with
current-controlled voltage sources, is shown in Fig. 5.2b. The current flowing into the dotted terminal
of L1 induces a voltage that is positive at the dotted terminal of L2. Therefore, the controlled voltage
source is jI1. The current flowing out of the dotted terminal of L2 induces a voltage that is negative at
the dotted terminal of L1. Therefore, the controlled voltage source is −jI2. The equilibrium equations,
using mesh analysis, are

[
(Z1 + Z2) −ZM

−ZM (Z3 + Z4)

] [
I1

I2

]
=
[

1� 0
0

]
.

Substituting the numerical values, we get

[
1 + j1 −j1

−j1 2 + j4

] [
I1

I2

]
=
[

1
0

]
.

Determinant of the impedance matrix is −1 + j6. Solving for I1 and I2, we get

[
I1

I2

]
=
[

1 + j1 −j1
−j1 2 + j4

]−1 [
1
0

]

=
[

0.5946 − j0.4324 0.1622 − j0.0270
0.1622 − j0.0270 0.1351 − j0.1892

] [
1
0

]

=
[

0.5946 − j0.4324
0.1622 − j0.0270

]
.

∼

i1 i2

cos(t)V+

R1

1Ω
k=
0.5

L1
1H

L2
4H

R2
2Ω ∼

I1 I2

1 0+

R1

1Ω

jω1 jω4
R2
2Ω

−+ −+
−jI2 jI1

(a)

(b)

Fig. 5.2 (a) Circuit with a mutual inductance; (b) its equivalent frequency-domain representation
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Let us find the power stored and consumed by the circuit. The values of the impedances are

Z1 = 1, Z2 = j1, Z3 = j4, Z4 = 2.

The values of the corresponding currents are

{0.5946 − j0.4324, 0.5946 − j0.4324, 0.1622 − j0.0270, 0.1622 − 0.0270}.

The average apparent power consumed by the impedances, the product of the current, its conjugate
and the impedance divided by 2 are

0.2703, j0.2703, j0.0541, 0.0270.

The sum of these powers is 0.2973 + j0.3243. The mutual coupling between the inductances is
destructive. Therefore, the power due to mutual impedance,

0.5Zm(I1I
∗
2 + I2I

∗
1 ) = j0.1081

has to be subtracted. The total average apparent power consumed by the circuit is the sum of those of
all the impedances,

S = Pav + jQav = 0.2973 + j0.2162 va.

The power supplied by the source V I ∗
1 /2 is also the same. The pf is 0.8087 lagging.

Now, let us compute the power consumed by the resistors alone, which is the active average power
Pav . The resistors are

1, 2

and the corresponding currents are, respectively,

0.5946 − j0.4324, 0.1622 − j0.0270.

The total power consumed by the resistors is

0.2703 + 0.0270 = 0.2973 W

and is equal to Pav found earlier. The time-domain representation of the currents are

i1(t) = 0.7352 cos(t − 0.6288), i2(t) = 0.1644 cos(t − 0.1651).

The instantaneous energy dissipated by the resistors is i2
1(t) + 2i2

2(t), shown in Fig. 5.3.
Let us find the energy stored in the circuit. The energy stored at t = 1 is

0.5(1)0.68512 + 0.5(4)(0.1104)2 − 1(0.6851)(0.1104) = 0.1835J.

The energy stored at t = 1 is, using the frequency-domain representation of the currents,

0.25(I1I
∗
1 (1) + I ∗

2 I2(4) + 2I1I
∗
2 (−1) + Re(ej2(1)(I1I1(1) + I2I2(4) + 2I1I2(−1))) = 0.1835,

as found earlier.
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10 3.1416
t

0

0.2973

0.4938
0.5846

P

Fig. 5.3 The instantaneous energy dissipated in the resistors of the circuit with a sinusoidal current of frequency 1 rad/s

3210
t

0.0107

0.1081

0.1835
0.2056

T

Fig. 5.4 The instantaneous energy stored in the magnetic field of the circuit with a sinusoidal current of frequency
1 rad/s

Figure 5.4 shows the instantaneous energy stored in the magnetic field of the circuit with a
sinusoidal current of frequency 1 rad/s. The stored energy, which is sinusoidal, varies about the
average value. As the frequency is double that of the current, it completes a cycle in one-half period of
that of the current. That is, 2π/ω = π/1 = 3.1416 s. The average value is 0.1081. As the frequency
is 1, the average reactive power is twice this value 0.2162, as found earlier.

A magnetically coupled circuit can also be replaced by equivalent T or � circuits with no magnetic
coupling. Figure 5.5a and b shows, respectively, a magnetically coupled circuit and its equivalent T

circuit. The input–output relationship for the circuit is

[
jωL1 jωM

jωM jωL2

] [
I1

I2

]
=
[

V1

V2

]
.

The input–output relationship for the equivalent T circuit with three isolated inductors is

[
jω(La + Lc) jωLc

jωLc jω(Lb + Lc)

] [
I1

I2

]
=
[

V1

V2

]
.

Therefore,
La = L1 − M, Lb = L2 − M, Lc = M.

This model can be adapted to suit different current directions.
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Fig. 5.5 (a) A
magnetically coupled
circuit; (b) its equivalent T

circuit

I1 I2

V1 V2

+ +k

L1 L2

I1 I2

+

V1

+

V2

La

Lc

Lb

(a) (b)

Fig. 5.6 An equivalent
frequency-domain version
of the circuit in Fig. 5.2a

∼

I1 I2

I3
+1
V

Vx

Z1

1

Z3j1
Z2

2+j3

The input–output relationship for the circuit, shown in Fig. 5.2b, is

[
jωL1 −jωM

jωM −jωL2

][
I1

I2

]
=
[

V1

V2

]
.

The input–output relationship for the equivalent T circuit with three isolated inductors is

[
jω(La + Lc) −jωLc

jωLc −jω(Lb + Lc)

][
I1

I2

]
=
[

V1

V2

]
.

Therefore,
La = L1 − M, Lb = L2 − M, Lc = M.

Let us redo the problem using the T circuit model, shown in Fig. 5.6. It consists of three isolated
inductors and two resistors.

V = 1� 0, Z1 = 1, Z2 = 2 + j3, Z3 = j1

Using nodal analysis, we get

Vx − 1

Z1
+ Vx

Z2
+ Vx

Z3
= 0 and Vx = Z2Z3

Z1Z2 + Z2Z3 + Z1Z3
.

This result could also be obtained using voltage division formula. Substituting numerical values and
solving, we get Vx = 0.4054 + j0.4324. Now,

I1 = −Vx − 1

Z1
= 0.5946 − j0.4324, I2 = Vx

Z2
= 0.1622 − j0.0270, I3 = Vx

Z3
= 0.4324 − 0.4054

Note that I1 = I2 + I3.
Let us find the power stored and consumed by the circuit. The values of the impedances are

V = 1� 0, Z1 = 1, Z2 = 2 + j3, Z3 = j1.
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The values of the corresponding currents are

{0.5946 − j0.4324, 0.1622 − j0.0270, 0.4324 − 0.4054}.

The average apparent power consumed by the impedances, the product of the current, its conjugate
and the impedance divided by 2 are

0.2703, 0.0270 + 0.0405, j0.1757.

Therefore, the total average apparent power consumed by the circuit is the sum of those of all the
impedances,

S = Pav + jQav = 0.2973 + j0.2162 va.

The power supplied by the source V I ∗
1 /2 is also the same. The pf is 0.8087.

The time-domain representation of the currents are

i1(t) = 0.7352 cos(t − 0.6288), i2(t) = 0.1644 cos(t − 0.1651), i3(t) = 0.5927 cos(t − −0.7532)

The instantaneous power dissipated by the resistors is i2
1(t) + 2i2

2(t), shown in Fig. 5.3.
Let us find the energy stored in the circuit. The energy stored at t = 1 is

0.5(0)(0.6851)2 + 0.5(3)(0.1104)2 + (0.5)1(0.5748)2 = 0.1835 J.

The instantaneous energy stored, which can also be computed in the frequency-domain, is shown in
Fig. 5.4. �

Example 5.2 Analyze the circuit shown in Fig. 5.7a. The circuit includes two coupled inductors, with
the coupling coefficient 0.5.

Solution Source is sin(2t)V . With

V = −j, ω = 2, Z1 = R1 = 2, Z2 = jωL1 = j8, Z3 = jωL2 = j2, k = 0.5,

ZM = jωk
√

L1L2 = j2, Z4 = R2 = 1, Z5 = 1/(jωC2) = −j2.5.

∼

i1

i2

C2
0.2F

sin(2t)V+

R1

2Ω
k=
0.5

L1
4H

L2
1H

R2
1Ω ∼

I1

I2

−j+

R1

2Ω

jω4 jω1
R2
1Ω

−+ −+
jωI2 jωI1

(a)

(b)

−j2.5

Fig. 5.7 (a) Circuit with a mutual inductance; (b) its equivalent frequency-domain representation
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The frequency-domain version of the equivalent circuit, with two isolated inductors in series with
current-controlled voltage sources, is shown in Fig. 5.7b. The current flowing into the dotted terminal
of L1 induces a voltage that is positive at the dotted terminal of L2. Therefore, the controlled voltage
source is j2I1. Similarly, the other controlled voltage source is j2I2. The equilibrium equations, using
mesh analysis, are [

(Z1 + Z2) ZM

ZM (Z3 + Z4 + Z5)

] [
I1

I2

]
=
[−j

0

]
.

Substituting the numerical values, we get

[
2 + j8 j2

j2 1 − j0.5

] [
I1

I2

]
=
[−j

0

]
.

Determinant of the impedance matrix is 10 + j7. Solving for I1 and I2, we get

[
I1

I2

]
=
[

2 + j8 j2
j2 1 − j0.5

]−1 [−j

0

]

=
[

0.0436 − j0.0805 −0.0940 − 0.1342
−0.0940 − j0.1342 0.5101 + j0.4430

] [−j

0

]

=
[−0.0805 − j0.0436

−0.1342 + j0.0940

]
.

Let us find the power stored and consumed by the circuit. The values of the impedances are

Z1 = 2, Z2 = j8, Z3 = j2, Z4 = 1, Z5 = −j2.5.

The values of the corresponding currents are

{−0.0805−j0.0436, −0.0805−j0.0436, −0.1342+j0.0940, −0.1342+j0.0940, −0.1342+j0.0940}
The average apparent power consumed by the impedances, the product of the current, its conjugate
and the impedance divided by 2 are

0.0084, j0.0336, j0.0268, 0.0134, −j0.0336.

The sum of these powers is 0.0218 + j0.0268. The mutual coupling between the inductances is
constructive. Therefore, the power due to mutual impedance,

0.5Zm(I1I
∗
2 + I2I

∗
1 ) = j0.0134

has to be added. The total average apparent power consumed by the circuit is the sum of those of all
the impedances,

S = Pav + jQav = 0.0218 + j0.0403 va.

The power supplied by the source V I ∗
1 /2 is also the same. The pf is 0.4763 lagging.

Now, let us compute the power consumed by the resistors alone, which is the active average power
Pav . The resistors are

2, 1
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0 1.5708
t

0.0164

0.0218

0.0272

P

Fig. 5.8 The instantaneous energy dissipated in the resistors of the circuit with a sinusoidal current of frequency 2 rad/s

and the corresponding currents are, respectively,

−0.0805 − j0.0436, −0.1342 + j0.0940.

The total power consumed by the resistors is

0.0084 + 0.0134 = 0.0218 W

and is equal to Pav found earlier. The time-domain representation of the currents are

i1(t) = 0.0916 cos(2t − 2.6452), i2(t) = 0.1638 cos(2t + 2.5309).

The instantaneous power dissipated by the resistors is 2i2
1(t) + i2

2(t), is shown in Fig. 5.8.
Let us find the energy stored in the circuit. The energy stored in the magnetic fields at t = 1 is

0.5(4)0.07322 + 0.5(1)(−0.0296)2 + 1(0.0732)(−0.0296) = 0.0090 J.

The voltage across the capacitor is 0.2349 + j0.3356. Its time-domain representation is

v1(t) = 0.4096 cos(2t + 0.9601).

The energy stored in the electric field at t = 1 is

0.5(0.2)(−0.4029)2 = 0.0162 J.

The energy stored in the inductors at t = 1 is, using the frequency-domain representation of the
currents,

0.25(I1I
∗
1 (4) + I ∗

2 I2(1) + 2I1I
∗
2 (1) + Re(ej4(1)(I1I1(4) + I2I2(1) + 2I1I2(1))) = 0.0090,

as found earlier.
The energy stored at t = 1 in the capacitor is, using the frequency-domain representation of the

currents,
1

4ω2C
(I2I

∗
2 ) − 1

4ω2C
(I2I2e

j4t ) = 0.0162

as found earlier.
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8075.110
t

0.0041

(a) (b)

0.0090

0.0185

0.0328

T

8075.110
t

0.0000

8.3889

16.2317

V

10-3

Fig. 5.9 (a) The instantaneous energy stored in the magnetic field of the circuit with a sinusoidal current of frequency
2 rad/s; (b) the instantaneous energy stored in the electric field

Fig. 5.10 An equivalent
frequency-domain version
of the circuit in Fig. 5.7a

∼

I1 I2

I3−j1
V

Vx

Z1

2+j6

Z3j2
Z2

1−j5
2

Figure 5.9a shows the instantaneous energy stored in the magnetic fields of the circuit with a
sinusoidal current of frequency 2 rad/s. The stored energy, which is sinusoidal, varies about the
average value. As the frequency is double that of the current, it completes a cycle in one-half period
of that of the current. That is, π/ω = π/2 = 1.5708 s. The average value is 0.0185.

Figure 5.9b shows the instantaneous energy stored in the electric field of the circuit with a
sinusoidal current of frequency 2 rad/s. The average value is 0.0084.

As the frequency is 2, the average reactive power in the circuit is the difference between the average
energy stored in the magnetic and electric fields multiplied by 2ω, 4(0.0185 − 0.0084) = 0.0403, as
found earlier.

Let us redo the problem using the T circuit model, shown in Fig. 5.10. It consists of two isolated
inductor, two resistors, and a capacitor. Since M = 1 and ω = 2,

V = −j1, Z1 = 2 + j6, Z2 = 1 − j2.5, Z3 = j2.

Using nodal analysis, we get

Vx − j1

Z1
+ Vx

Z2
+ Vx

Z3
= 0 and Vx = (−j1)Z2Z3

Z1Z2 + Z2Z3 + Z1Z3
.

This result could also be obtained using voltage division formula. Substituting numerical values and
solving, we get Vx = −0.1007 − j0.4295. Now,

I1=− Vx−j1

Z1
=−0.0805−j0.0436, I2=− Vx

Z2
=−0.1342+j0.0940, I3=Vx

Z3
=−0.2148+j0.0503

Note that I1 + I2=I3.
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Let us find the power stored and consumed by the circuit. The values of the impedances are

Z1 = 2 + j6, Z2 = 1 − j2.5, Z3 = j2.

The values of the corresponding currents are

{−0.0805 − j0.0436, −0.1342 + j0.0940, −0.2148 + j0.0503}.

The average apparent power consumed by the impedances, the product of the current, its conjugate
and the impedance divided by 2 are

0.0084 + j0.0252, 0.0134 − j0.0336, j0.0487.

Therefore, the total average apparent power consumed by the circuit is the sum of those of all the
impedances,

S = Pav + jQav = 0.0218 + j0.0403 va.

The power supplied by the source V I ∗
1 /2 is also the same. The pf is 0.4763.

The time-domain representation of the currents are

i1(t) = 0.0916 cos(2t − 2.6452), i2(t) = 0.1638 cos(2t + 2.5309), i3(t) = 0.2206 cos(2t + 2.9114)

The instantaneous power dissipated by the resistors is 2i2
1(t) + i2

2(t), is shown in Fig. 5.8.
Let us find the energy stored in the circuit. The energy stored at t = 1 is

0.5(3)0.07322 + 0.5(0)(−0.0296)2 + 0.5(1)(0.0436)(0.0436) = 0.0090 J,

as found earlier. The instantaneous energy stored, which can also be computed in the frequency-
domain, is shown in Fig. 5.9.

Example 5.3 Analyze the bridge circuit, with mutually coupled inductors, shown in Fig. 5.11a. The
coupling coefficient is 0.5.

Solution An equivalent frequency-domain circuit is shown in Fig. 5.11b.
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Fig. 5.11 (a) A bridge circuit with mutually coupled inductors; (b) an equivalent frequency-domain circuit
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Mesh Analysis
The equilibrium equations are

Z1(I1 − I2) + Z3(I1 − I3) + ZmI2 = 1 � π

6

Z1(I1 − I2) + Z5(I3 − I2) − I2Z2 − Zm(I1 − I3) = 0

−Z3(I1 − I3) + Z5(I3 − I2) + Z4I3 − ZmI2 = 0.

As expected, these equations are the same as those derived in Chaps. 2 and 3 for the bridge circuit
with additional terms added to take into account of the mutual coupling of inductors.

Simplifying, we get

(Z1 + Z3)I1 + (Zm − Z1)I2 − Z3I3 =
(√

3

2
+ j

1

2

)

(Z1 − Zm)I1 − (Z1 + Z2 + Z5)I2 + (Zm + Z5)I3 = 0

−Z3I1 − (Zm + Z5)I2 + (Z3 + Z4 + Z5)I3 = 0

The equations in matrix form is

⎡

⎣
(Z1 + Z3) (Zm − Z1) −Z3

(Z1 − Zm) −(Z1 + Z2 + Z5) (Zm + Z5)

−Z3 −(Zm + Z5) (Z3 + Z4 + Z5)

⎤

⎦

⎡

⎣
I1

I2

I3

⎤

⎦ =
⎡

⎢⎣

(√
3

2 + j 1
2

)

0
0

⎤

⎥⎦ .

With

Z1 = −j10, Z2 = j1, Z3 = j4, Z4 = −j10

1 − j10
, Z5 = 1, Zm = j1

⎡

⎢⎣
I1

I2

I3

⎤

⎥⎦ =
⎡

⎢⎣
−j6.0000 0.0000 + j11.0000 0.0000 − j4.0000

−j11.0000 −1.0000 + j9.0000 1.0000 + j1.0000

−j4.0000 −1.0000 − j1.0000 1.9901 + j3.9010

⎤

⎥⎦

−1⎡

⎢⎣

(√
3

2 + j 1
2

)

0

0

⎤

⎥⎦

=
⎡

⎢⎣
0.4325 − j0.3237 −0.4502 + j0.3538 0.5892 − j0.2374

0.4502 − j0.3538 −0.4751 + j0.2780 0.6314 − j0.2337

0.5892 − j0.2374 −0.6314 + j0.2337 0.8524 − j0.2867

⎤

⎥⎦

⎡

⎢⎣

(√
3

2 + j 1
2

)

0

0

⎤

⎥⎦

=
⎡

⎢⎣
0.5364 − j0.0641

0.5667 − j0.0813

0.6290 + j0.0890

⎤

⎥⎦

{IZ1 = −0.0304 + j0.0172, IZ3 = −0.0926 − j0.1531, IZ5 = 0.0623 + j0.1704}

Nodal Analysis
We have to express the current variables in terms of voltage variables and we get

I2 = − (V2 − V3)

Z5
+ V3

Z4
, (I1 − I3) = (V1 − V2)

Z1
− (V2 − V3)

Z5
.
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The voltage source is

V1 = 1� π

6
=
(√

3

2
+ j

1

2

)
.

The equilibrium equations are

(V2 − V1)

Z1
+ (V2 − V3)

Z5
+ (V2 − jI2)

Z3
= 0

(V3 − V1 + j (I1 − I3))

Z2
+ (V3 − V2)

Z5
+ V3

Z4
= 0.

As expected, these equations are the same as those derived in Chaps. 2 and 3 for the bridge circuit with
additional terms added to take into account of the mutual coupling of inductors. The first equation is
the application of KCL at the left middle node. The second equation is the application of KCL at the
right middle node. Substituting for I2 and I1 − I3, we get

(V2 − V1)

Z1
+ (V2 − V3)

Z5
+
(
V2 + j

(V2−V3)
Z5

− j
V3
Z4

)

Z3
= 0

(
V3 − V1 + j

(V1−V2)
Z1

− j
(V2−V3)

Z5

)

Z2
+ (V3 − V2)

Z5
+ V3

Z4
= 0.

Simplifying, we get

(Z3Z5 + jZ1 + Z1Z3 + Z1Z5)V2 −
(

Z1Z3 + (jZ1) +
(

jZ1Z5

Z4

))
V3 = Z3Z5V1

−
(

Z2Z4 + jZ4 +
(

jZ4Z5

Z1

))
V2 + (Z4Z5 + Z2Z4 + jZ4 + Z2Z5)V3 =

(
Z4Z5 +

(
−j

Z4Z5

Z1

))
V1

With

Z1 = −j10, Z2 = j1, Z3 = j4, Z4 = −j10

1 − j10
, Z5 = 1, Zm = j1

[
50.0000 − j6.0000 −60.0000 − j1.0000

−0.0990 − j1.9901 1.1881 + j2.8812

][
V2

V3

]
=
[

−2.0000 + j3.4641

0.9977 + j0.4502

]
.

The determinant of the admittance matrix is 72.7426 + j17.4257.
Solving the equilibrium equations, we get

[
V2

V3

]
=
[

50.0000 − j6.0000 −60.0000 − j1.0000

−0.0990 − j1.9901 1.1881 + j2.8812

]−1 [−2.0000 + j3.4641

0.9977 + j0.4502

]

=
[

0.0244 + j0.0338 0.7832 − j0.1739

0.0075 + j0.0256 0.6314 − j0.2337

][
−2.0000 + j3.4641

0.9977 + j0.4502

]

=
[

0.6938 + j0.1962

0.6316 + j0.0259

]

{VZ1 = 0.1722 + j0.3038, VZ2 = 0.2344 + j0.4741, VZ5 = 0.0623 + j0.1704}.
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Let us get the currents in the various branches of the circuit from the voltages found by the nodal
analysis.

V1 = 0.8660 + j0.5, V2 = 0.6938 + j0.1962, V3 = 0.6316 + j0.0259

The voltage induced across a magnetically coupled inductor is the sum of the self- and mutually
induced voltages. Therefore, in order to find the current through a coupled inductor, we subtract the
mutually induced voltage from the voltage across it and then divide the result by its self-impedance.

IZ1 = V1 − V2

Z1
= −0.0304 + j0.0172

IZ5 = V2 − V3

Z5
= 0.0622 + j0.1703

IZ3 = V2 − jI2

Z3
= −0.0926 − j0.1531 = IZ1 − IZ5

I3 = V3

Z4
= 0.6290 + j0.0891

I1 = IZ3 + I3 = 0.5364 − j0.0641

I2 = V1 − V3 − j (I1 − I3)

Z2
= 0.5667 − j0.0813 = I1 − IZ1 .

Let us find the power stored and consumed by the circuit. The values of the impedances are

Z1 = −j10, Z2 = j1, Z3 = j4, Z4 = 0.9901 − j0.0990, Z5 = 1.

The values of the corresponding currents are

{−0.0304+j0.0172, 0.5667−j0.0813, −0.0926−j0.1531, 0.6290+j0.0890, 0.0623+j0.1704}

The average apparent power consumed by the impedances, the product of the current, its conjugate
and the impedance divided by 2 are

−j0.0061, j0.1639, j0.0641, 0.1998 − j0.0200, 0.0164.

The sum of these powers is 0.2162 + j0.2019. The mutual coupling between the inductances is
constructive. Therefore, the power due to mutual impedance,

0.5Zm(I2I
∗
3 + I3I

∗
2 ) = −j0.04

has to be added. Therefore, The total average apparent power consumed by the circuit is the sum of
those of all the impedances,

S = Pav + jQav = 0.2162 + j0.1618 va.

The power supplied by the source V I ∗
1 /2 is also the same. The pf is 0.8006 lagging.

Now, let us compute the power consumed by the resistors alone, which is the active average power
Pav . The resistors are

1, 1
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10 3.1416
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Fig. 5.12 The instantaneous energy dissipated in the resistors of the circuit with a sinusoidal current of frequency
1 rad/s

6141.310
t

0.0475

(a) (b)
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0.0040

0.0130

0.0221

V

Fig. 5.13 (a) The instantaneous energy stored in the magnetic field of the circuit with a sinusoidal current of frequency
1 rad/s; (b) the instantaneous energy stored in the electric field

and the corresponding currents are, respectively,

0.0623 + j0.1704, 0.6316 + j0.0259

The total power consumed by the resistors is

0.0164 + 0.1998 = 0.2162 W

and is equal to Pav found earlier.
The instantaneous energy dissipated in the resistors of the circuit is shown in Fig. 5.12. The average

value is 0.2162, as found earlier.
Figure 5.13a shows the instantaneous energy stored in the magnetic fields of the circuit with

a sinusoidal current of frequency 1 rad/s. The stored energy, which is sinusoidal, varies about the
average value. As the frequency is double that of the current, it completes a cycle in one-half period
of that of the current. That is, 2π/ω = 2π/2 = 3.1416 s. The average value is 0.0940. Figure 5.13b
shows the instantaneous energy stored in the electric field of the circuit with a sinusoidal current of
frequency 1 rad/s. The average value is 0.0130. As the frequency is 1, the average reactive power
in the circuit is the difference between the average energy stored in the magnetic and electric fields
multiplied by 2ω, 2(0.0940 − 0.0130) = 0.1618, as found earlier.

Example 5.4 Analyze the circuit, with mutually coupled inductors, shown in Fig. 5.14a. The coupling
coefficient is 0.5.
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Fig. 5.14 (a) A circuit with mutually coupled inductors; (b) an equivalent frequency-domain circuit

Solution An equivalent frequency-domain circuit is shown in Fig. 5.14b.

Mesh Analysis
The equilibrium equations are

Z1(I1 − I2) + Z3I1 − ZmI2 = 1� −π

3

Z1(I1 − I2) − Z5I2 − I2Z2 + ZmI1 = 0.

Simplifying, we get

(Z1 + Z3)I1 − (Zm + Z1)I2 =
(

1

2
− j

√
3

2

)

(Z1 + Zm)I1 − (Z1 + Z2 + Z5)I2 = 0.

The equations in matrix form is

[
(Z1 + Z3) −(Zm + Z1)

(Z1 + Zm) −(Z1 + Z2 + Z5)

] [
I1

I2

]
=
[(

1
2 − j

√
3

2

)

0

]
.

With
Z1 = −j10, Z2 = j1, Z3 = j4, Z5 = 10, Zm = j1

[
I1

I2

]
=
[

0.0000 − j6.0000 0.0000 + j9.0000

0.0000 − j9.0000 −10.0000 + j9.0000

]−1 [(
1
2 − j

√
3

2

)

0

]

=
[

0.1871 + j0.0825 −0.1247 + j0.0561

0.1247 − j0.0561 −0.0832 + j0.0374

][(
1
2 − j

√
3

2

)

0

]

=
[

0.1650 − j0.1208

0.0138 − j0.1361

]

{I1 − I2 = IZ1 = 0.1512 + j0.0153}.
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Nodal Analysis
We have to express the current variables in terms of voltage variables and we get

I2 = (V3 − V2)

Z5
, I1 = (V1 − V2)

Z1
+ (V3 − V2)

Z5
.

The voltage source is

V1 = 1 � −π

3
=
(

1

2
− j

√
3

2

)
.

The equilibrium equations are

(V2 − V1)

Z1
+ (V2 − V3)

Z5
+ (V2 + jI2)

Z3
= 0

(V3 − V1 − jI1)

Z2
+ (V3 − V2)

Z5
= 0.

The first equation is the application of KCL at the left middle node. The second equation is the
application of KCL at the right middle node. Substituting for I2 and I1, we get

(V2 − V1)

Z1
+ (V2 − V3)

Z5
+
(
V2 + j

(V3−V2)
Z5

)

Z3
= 0

(
V3 − V1 − j

(V1−V2)
Z1

− j
(V3−V2)

Z5

)

Z2
+ (V3 − V2)

Z5
= 0.

Simplifying, we get

(Z3Z5 − jZ1 + Z1Z3 + Z1Z5)V2 − (Z1Z3 − jZ1)V3 = Z3Z5V1
(

−Z2 + j +
(

jZ5

Z1

))
V2 + (Z5 + Z2 − j)V3 =

(
Z5 +

(
j
Z5

Z1

))
V1.

With
Z1 = −j10, Z2 = j1, Z3 = j4, Z5 = 10, Zm = j1

[
30.0000 − j60.0000 −30.0000 + j0.0000
−1.0000 + j0.0000 10.0000 + j0.0000

] [
V2

V3

]
=
[

34.6410 + j20.0000
4.5000−j7.7942

]
.

The determinant of the admittance matrix is 270 − j600.
Solving the equilibrium equations, we get

[
V2

V3

]
=
[

30.0000 − j60.0000 −30.0000 + j0.0000
−1.0000 + j0.0000 10.0000 + j0.0000

]−1 [
34.6410 + j20.0000

4.5000 − j7.7942

]

=
[

0.0062 + j0.0139 0.0187 + j0.0416
0.0006 + j0.0014 0.1019 + j0.0042

] [
34.6410 + j20.0000

4.5000 − j7.7942

]

=
[

0.3471 + j0.6461
0.4847 − j0.7148

]
.

Example 5.5 Analyze the circuit, with mutually coupled inductors, shown in Fig. 5.15a. The coupling
coefficient is 0.5.
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Fig. 5.15 (a) A circuit with mutually coupled inductors; (b) an equivalent frequency-domain circuit

Solution An equivalent frequency-domain circuit is shown in Fig. 5.15b.

Mesh Analysis
The equilibrium equations are

Z1(I1 − I2) + Z3I1 + ZmI2 = 1� −π

3

Z1(I1 − I2) − Z5I2 − I2Z2 − ZmI1 = 0.

Simplifying, we get

(Z1 + Z3)I1 + (Zm − Z1)I2 =
(

1

2
− j

√
3

2

)

(Z1 − Zm)I1 − (Z1 + Z2 + Z5)I2 = 0.

The equations in matrix form is

[
(Z1 + Z3) (Zm − Z1)

(Z1 − Zm) −(Z1 + Z2 + Z5)

] [
I1

I2

]
=
[(

1
2 − j

√
3

2

)

0

]
.

With
Z1 = −j10, Z2 = j1, Z3 = j4, Z5 = 10, Zm = j1

[
I1

I2

]
=
[

0.0000 − j6.0000 0.0000 + j11.0000
0.0000 − j11.0000 −10.0000 + j9.0000

]−1
[(

1
2 − j

√
3

2

)

0

]

=
[

0.1496 − j0.0004 −0.0816 + j0.0911
0.0816 − j0.0911 −0.0445 + j0.0497

][( 1
2 − j

√
3

2

)

0

]

=
[

0.0745 − j0.1297
−0.0381 − j0.1162

]

{I1 − I2 = IZ1 = 0.1126 − j0.0135}.
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Nodal Analysis
We have to express the current variables in terms of voltage variables and we get

I2 = (V3 − V2)

Z5
, I1 = (V1 − V2)

Z1
+ (V3 − V2)

Z5
.

The voltage source is

V1 = 1 � −π

3
=
(

1

2
− j

√
3

2

)
.

The equilibrium equations are

(V2 − V1)

Z1
+ (V2 − V3)

Z5
+ (V2 − jI2)

Z3
= 0

(V3 − V1 + jI1)

Z2
+ (V3 − V2)

Z5
= 0.

The first equation is the application of KCL at the left middle node. The second equation is the
application of KCL at the right middle node. Substituting for I2 and I1, we get

(V2 − V1)

Z1
+ (V2 − V3)

Z5
+
(
V2 − j

(V3−V2)
Z5

)

Z3
= 0

(
V3 − V1 + j

(V1−V2)
Z1

+ j
(V3−V2)

Z5

)

Z2
+ (V3 − V2)

Z5
= 0.

Simplifying, we get

(Z3Z5 + jZ1 + Z1Z3 + Z1Z5)V2 − (Z1Z3 + jZ1)V3 = Z3Z5V1
(

−Z2 − j −
(

jZ5

Z1

))
V2 + (Z5 + Z2 + j)V3 =

(
Z5 −

(
j
Z5

Z1

))
V1.

With
Z1 = −j10, Z2 = j1, Z3 = j4, Z5 = 10, Zm = j1

[
50.0000 − j60.0000 −50.0000 + j0.0000

1.0000 − j2.0000 10.0000 + j2.0000

][
V2

V3

]
=
[

34.6410 + j20.0000

5.5000 − j9.5263

]
.

The determinant of the admittance matrix is 670 − j600.
Solving the equilibrium equations, we get

[
V2

V3

]
=
[

50.0000 − j60.0000 −50.0000 + j0.0000

1.0000 − j2.0000 10.0000 + j2.0000

]−1 [
34.6410 + j20.0000

5.5000 − j9.5263

]

=
[

0.0068 + j0.0091 0.0414 + j0.0371

−0.0023 + j0.0009 0.0859 − j0.0126

][
34.6410 + j20.0000

5.5000 − j9.5263

]

=
[

0.6351 + j0.2598
0.2541 − j0.9024

]
.
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5.4 Application

Two of the most commonly used devices in electrical systems are transformers and induction motors.
Induction motors are most often used to convert electrical power to mechanical power. Currents in the
secondary winding of the rotor are induced by the magnetic field of the primary winding of the stator.

5.4.1 Transformers

Transformers are used for changing voltage levels, isolating circuits and impedance matching. It
transfers energy through coupled magnetic fields from one circuit to another. The operation of
transformers is based on mutual inductance. The transformer consists of a core, which makes a path for
the coupling of the magnetic field. Typically, iron is used to make the core and it improves the coupling
coefficient. The primary winding on the core receives the energy from a AC source. The secondary
winding receives the energy from the primary winding and delivers it to the load. The transformer
has an enclosure to protect it due to mechanical damage, dirt, and moisture. Transformers provide
electrical isolation, since there is no electrical connection between the two windings. Transformers
provide DC isolation, since it does not pass DC.

Ideal Transformers
In introducing practical devices, their ideal form is usually first presented. It is easier to analyze and
they set an ideal bound in terms of performance for their practical approximations. For example, the
ideal filter, which is practically unrealizable, is introduced first in the study of filters. In practice, ideal
devices are approximated to satisfy the required specifications. Similarly, the ideal transformer is
presented here as an example of the applications of mutual inductance. This implies that coils making
the inductances have zero resistance and infinite inductance.

Consider the frequency-domain relations for two coupled inductors L1 and L2, presented earlier.

V1 = jωL1I1 + jωMI2 and V2 = jωL2I2 + jωMI1.

From the first equation, we get

I1 = V1 − jωMI2

jωL1
.

Substituting for I1 in the second equation, we get

V2 = jωL2I2 + MV1

L1
− jωM2I2

L1
.

With perfect coupling, k = 1 and M = √
L1L2. Therefore,

V2 = jωL2I2 +
√

L1L2V1

L1
− jωL1L2I2

L1
=
√

L2

L1
V1 = nV1.

As the values of the inductances tend to infinity, n, called the turns ratio, remains the same. The
inductance L of the windings is proportional to the square of the number of turns N2 and N1 of the
wire in the windings and, therefore,

V2

V1
= N2

N1
= n.
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Further, the input and output powers are equal in an ideal transformer, since there are no losses. That is,

V1I1 = V2I2.

Consequently,
I2

I1
= N1

N2
= 1

n
.

For an isolation transformer, n = 1. With n > 1, the transformer is called a step-up transformer, since
V2 > V1. For a step-down transformer n < 1, since V2 < V1.

5.5 Summary

• Circuit elements can also be connected through magnetic fields, called magnetically coupled.
• The induction of a voltage in another inductance by the current flowing in an inductance is mutual

induction.
• A voltage

v(t) = L12
dx(t)

dt

is also induced in the inductor, which is affected by the magnetic field of another inductance due to
current x(t). The mutually induced voltage may be positive or negative depending upon the relative
directions of the induced voltages. The value L12 is called the mutual inductance between the two
inductances and also measured in henries.

• In the determination of the mutual inductances, only a pair of coils is considered at a time, assuming
that no other induced currents in the other inductances (by open-circuiting others).

• The coupling coefficient is defined as

k = |L12|√
L11L22

,

the magnitude of which must be less than 1 for practical inductances. The mutual inductance
increases or decreases the stored energy of the two isolated inductors.

• Two magnetically coupled inductors, with self-inductances L1 and L2 and currents I1 and I2

through them, respectively, and mutual inductance M , can be replaced, in the frequency-domain,
by two isolated inductors, in series with current-controlled voltage sources.

V1 = jωL1I1 ± jωMI2 and V2 = jωL2I2 ± jωMI1

• A magnetically coupled circuit can also be replaced by equivalent T or � circuits with no magnetic
coupling.

• The average reactive power in the circuit is the difference between the average energy stored in the
magnetic and electric fields multiplied by 2ω, where ω is the frequency of sinusoidal excitation.

• Two of the most commonly used devices in electrical systems are transformers and induction
motors. Induction motors are most often used to convert electrical power to mechanical power.
Currents in the secondary winding of the rotor are induced by the magnetic field of the primary
winding of the stator.

• Transformers are used for changing voltage levels, isolating circuits and impedance matching. It
transfers energy through coupled magnetic fields from one circuit to another.
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Exercises

5.1 Analyze the circuit. Find the average energy consumed and stored in the circuit. Relate the
reactive energy of the circuit to the energy stored in the magnetic fields. Find the energy stored
in the magnetic fields at t = 1 s. Verify the results using two equivalent circuits.

5.1.1 The circuit is shown in Fig. 5.16.
* 5.1.2 The circuit is shown in Fig. 5.17.

5.2 Analyze the circuit. Find the average energy consumed and stored in the circuit. Relate the
reactive energy of the circuit to the energy stored in the magnetic and electric fields. Find
the energy stored in the magnetic and electric fields at t = 1 s. Verify the results using two
equivalent circuits.

5.2.1 The circuit is shown in Fig. 5.18.
* 5.2.2 The circuit is shown in Fig. 5.19.

Fig. 5.16 Circuit for
Exercise 5.1.1

∼

i1 i2

sin(2t)V+

R1

2Ω
k=
0.75

L1
2H

L2
2H

R2
3Ω

Fig. 5.17 Circuit for
Exercise 5.1.2

∼

i1 i2

cos(2t)V+

R1

3Ω
k=

1√
2

L1
2H

L2
1H

R2
2Ω

Fig. 5.18 Circuit for
Exercise 5.2.1

∼

i1

i2

C1 0.5F

cos(t)V+

R1

1Ω
k=
0.75

L1
4H

L2
1H

R2
2Ω

Fig. 5.19 Circuit for
Exercise 5.2.2

∼

i1

i2

L 0.1H

sin(2t)V+

R1

2Ω
k=
0.5

L1
2H

L2
2H

R2
3Ω
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Fig. 5.20 Circuit for
Exercise 5.3.1

∼
+

co
s(

t+
π 6
)V C1

0.2F

L3 4H
L4 1H

R2
2Ω

R5

3Ω

i1 i2

i3

v1

v2 v3

Fig. 5.21 Circuit for
Exercise 5.3.2

∼
+

co
s(

t+
π 6
)V C1

0.2F

L3 4H
L4 1H

R2
2Ω

R5

3Ω

i1 i2

i3

v1

v2 v3

5.3 Analyze the circuit. Find the average energy consumed and stored in the circuit. Relate the
reactive energy of the circuit to the energy stored in the magnetic and electric fields. Find the
energy stored in the magnetic and electric fields at t = 1 s. Verify the results using both the
mesh and loop methods of analysis.

5.3.1 The circuit is shown in Fig. 5.20.
* 5.3.2 The circuit is shown in Fig. 5.21.
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6.1 Three-Phase Voltages

The sinusoidal waveform, at a given frequency, is characterized by its amplitude and phase. In a single-
phase source we studied so far, it is assumed that a sinusoidal wave is the input. However, keeping the
amplitude the same, a source with three sinusoidal waveforms differing in equal amount of phase turns
out to be better for electric-power generation, transmission and distribution systems, and in various
other practical applications. The resulting circuits exhibit symmetry both with respect to geometrical
structure and element values. Circuits with three sources differing in phase by 120◦ and of the same
amplitude, called three-phase circuits, are mostly used in electrical power systems. The two major
advantages of three-phase systems are reduced losses in transmission and the net instantaneous power
is uniform, not pulsating. A single-phase source can be obtained just by taking from one of the three
sources. The three sinusoidal voltage sources, Va , Vb, and Vc, forming the three-phase source are
related as

Va = Vc
� ± 2π

3
, Vb = Va

� ± 2π

3
, Vc = Vb

� ± 2π

3
.

If the algebraic signs of the phase displacements are consistently negative,

Va = Vc
� − 2π

3
, Vb = Va

� − 2π

3
, Vc = Vb

� − 2π

3

the voltages form a positive or (abc) sequence as shown in Fig. 6.1a. That is, Vb lags Va by 2π/3
radians. Further, it is normally assumed that � Va = 0. A set of example waveforms are

va(t) = 1 sin

(
2π

3
t

)
, vb(t) = 1 sin

(
2π

3
t − 2π

3

)
, vc(t) = 1 sin

(
2π

3
t − 4π

3

)
.

The peak value of the waveforms is 1 and the angular frequency is 2π/3 radians. Therefore, the period
is 3. The peak (zero) of vb(t) occurs after 1/3 of the cycle of that of va(t). The peak of vc(t) occurs
after 1/3 of the cycle of that of vb(t).

If the algebraic signs of the phase displacements are consistently positive,

Va = Vc
� + 2π

3
, Vb = Va

� + 2π

3
, Vc = Vb

� + 2π

3
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1
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va(t) vb(t) vc(t)

Fig. 6.1 (a) Three-phase positive sequence voltages; (b) three-phase negative sequence voltages

the voltages form a negative or (acb) sequence as shown in Fig. 6.1b. A set of example waveforms
are

va(t) = 1 sin

(
2π

3
t

)
, vb(t) = 1 sin

(
2π

3
t + 2π

3

)
, vc(t) = 1 sin

(
2π

3
t + 4π

3

)
.

The peak (zero) of vc(t) occurs after 1/3 of the cycle of that of va(t). The peak of vb(t) occurs after
1/3 of the cycle of that of vc(t). One effect of applying the two sequences to a motor results in the
change of direction of the rotation of the motor.

Given vc(t) = 1 cos
(

π
8 t + π

4

)
, find va(t) and vb(t) for positive and negative sequence three-phase

voltages.

Positive Sequence
Since

Va = Vc
� − 2π

3
, Vb = Va

� − 2π

3
, Vc = Vb

� − 2π

3
,

the voltages are

va(t) = 1 cos

(
π

8
t + π

4
+ 4π

3

)
, vb(t) = 1 cos

(
π

8
t + π

4
+ 2π

3

)
, vc(t) = 1 cos

(π

8
t + π

4

)

Negative Sequence
Since

Va = Vc
� + 2π

3
, Vb = Va

� + 2π

3
, Vc = Vb

� + 2π

3
,

the voltages are

va(t) = 1 cos

(
π

8
t + π

4
− 4π

3

)
, vb(t) = 1 cos

(
π

8
t + π

4
− 2π

3

)
, vc(t) = 1 cos

(π

8
t + π

4

)

The sum of the set of such voltages or currents is zero. For example,

1 sin

(
2π

3
t

)
+ 1 sin

(
2π

3
t + 2π

3

)
+ 1 sin

(
2π

3
t + 4π

3

)

= (1 − 0.5 − 0.5) sin

(
2π

3
t

)
+
(

0 +
√

3

2
−

√
3

2

)
cos

(
2π

3
t

)
= 0.
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6.1.1 The Instantaneous Power

Consider the instantaneous voltage and current in phase a of a balanced three-phase system,

va(t) = V cos(ωt) and ia(t) = I cos(ωt + θ).

The instantaneous power pa(t), which is the product of the voltage and current, is

pa(t) = V I cos(ωt) cos(ωt + θ)

= V I

2
(cos(2ωt + θ) + cos(θ)).

Depending on the sequence of the phases (positive or negative), the voltages and currents in the other
two phases have additional phases of ∓ 2π

3 and ∓ 4π
3 , respectively. Therefore, the total instantaneous

power p in the system is

p(t) = pa(t)+pb(t)+pc(t) = V I

2

(
cos(2ωt+θ)+3 cos(θ)+cos

(
2ωt+θ∓4π

3

)
+cos

(
2ωt+θ∓8π

3

))
.

Since the terms, except 3 cos(θ), add up to zero, the total instantaneous power in the system is

p(t) = 3
V I

2
cos(θ)W.

As it is constant with respect to time, power delivery is smooth.
In this chapter, it is assumed that the three-phase circuit is balanced. In an unbalanced circuit, the

amplitudes of the source voltages are not equal and the phases differ by unequal angles or the load
impedances are unequal. Unbalanced circuits can be decomposed into three balanced circuits by the
symmetrical components method of analysis using complex linear transformation.

6.2 The Three-Phase Balanced Y − Y Circuit

A balanced 3-phase Y −Y circuit consists of three identical and symmetrically associated circuits with
voltages of equal amplitude and phase differences equal to 2π/3 radians. The points, called neutral,
are at the same potential, since Ia + Ib + Ic = 0. Therefore, the current in the neutral line In is zero
in a balanced system. However, the neutral line is usually provided in the system to reduce the extent
of system unbalance in case of an accidental unbalance occurring in the system.

Under balanced conditions, we can compute the current in a single phase considering it as a single-
phase system. Then, the other currents in the other phases can be obtained by adding suitable phases to
the result. It is simpler to analyze �-connected circuits by converting them to equivalent Y -connected
circuits, using the transformation formulas presented in Chap. 2. These transformations are equally
applicable to the analysis of circuits with impedances.

Let the phase voltages, the voltages between the lines and the neutral, be

Van = Vp
� 0, Vbn = Vp

� − 2π

3
, Vcn = Vp

� 2π

3
.
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Fig. 6.2 Balanced
three-phase Y − Y circuit

+−

+−

+−

Zy

Zy

Zy

Ia

Ib

Ic

In

Van

Vbn

Vcn

The line voltages, the voltage between the lines, can be found from the phase voltages.

Vab = Van − Vbn = Vp

(
1 + 1

2
+ j

√
3

2

)
= Vp

√
3

(√
3

2
+ j

1

2

)
= √

3Vp
� 30◦

(6.1)
Vbc = Vbn − Vcn = √

3Vp
� − 90◦ (6.2)

Vca = Vcn − Van = √
3Vp

� − 210◦. (6.3)

The last two expressions are obtained using the phase difference between the phases. Alternatively,

Vbc = Vab
� − 120◦, Vca = Vab

� 120◦.

Therefore, the magnitude of the line voltage, VL, in a Y -connected source is

VL = √
3Vp.

All the line voltages lead their corresponding phase voltages by 30◦.
In balanced systems, only one phase of a Y − Y circuit needs to be analyzed. For example,

Ia = Van

ZY

.

The other phase currents are deduced from this result by adding suitable phase angles. That is,

Ib = Ia
� − 120◦, Ic = Ia

� 120◦.

Example 6.1 Analyze the balanced three-phase Y − Y circuit shown in Fig. 6.2. Let the phase
voltages be

Van = 1 � 0, Vbn = 1� − 2π

3
, Vcn = 1 � 2π

3
at frequency ω = 1 rad/s. The impedance is ZY = 1 + j2. Determine the currents Ia, Ib, Ic. Find also
the power consumed and the pf of the circuit. Find the value of the capacitors required to improve the
pf to 0.9.

Solution The current Ia = 1/(1 + j2) = 0.2 − j0.4 and

Ibn = Ia
� − 2π

3
= −0.4464 + j0.0268, Icn = Ia

� 2π

3
= 0.2464 + j0.3732

Ia + Ib + Ic = 0.
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6.3 The Three-Phase Balanced Y − � Circuit 207

The power stored and consumed by the circuit in phase a is

0.5IaI
∗
a ZY = S = Pav + jQav = 0.1 + j0.2 va.

The power supplied by the source VanI
∗
a /2 is also the same. The total power consumed by the circuit

is three times that of a phase, 3(0.1 + j0.2) = 0.3 + j0.6. The pf is

pf = real(ZY )

abs(ZY )
= real(S)

abs(S)
= 0.4472.

The desired power factor is 0.9. The corresponding apparent power is

Pav

0.9
= 0.1111.

The corresponding reactive power is

0.1111 sin(cos−1(0.9)) = 0.0484.

The difference between the reactive powers is 0.2 − 0.0484 = 0.1516. Now, with ω = 1 and |V | = 1,

C = 2
0.1516

(1)(12)
= 0.3031 F.

The current through the capacitor is

jVan(0.3031) = j0.3031.

The new current supplied by the source is

I ′
a = (0.2 − j0.4) + j0.3031) = 0.2000 − j0.0969.

The power supplied by the source VanI
′∗
a /2 is 0.1000 + j0.0484 and the pf is 0.9. �

In each phase, a capacitor of value C is connected in parallel with the load impedance for power-
factor improvement.

6.3 The Three-Phase Balanced Y − � Circuit

� − Y transformation derived in Chap. 2 is

Za = ZabZac

Zac + Zab + Zbc

Zb = ZbaZbc

Zac + Zab + Zbc

Zc = ZcaZcb

Zac + Zab + Zbc.
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Fig. 6.3 (a) Balanced
three-phase Y − � circuit;
(b) its equivalent Y − Y

circuit
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In a balanced circuit, the transformation reduces to

ZY = Z�

3
.

For supplying the same reactive power, the Y -connected load circuit requires three times the value
of the capacitor required for an equivalent �-connected load circuit.

Example 6.2 Analyze the balanced three-phase Y − � circuit shown in Fig. 6.3a. Let the phase
voltages be

Van = 1 � 0, Vbn = 1� − 2π

3
, Vcn = 1 � 2π

3
at frequency ω = 1 rad/s. The impedance is Z� = 3 + j6. Determine the currents Ia, Ib, Ic. Find also
the power consumed and the pf of the circuit. Find the value of the capacitors required to improve the
pf to 0.9.

Solution The equivalent Y − Y circuit shown in Fig. 6.3b. The impedance is ZY = Z�/3 = 1 + j2.
Now, the problem reduces to Example 6.1. The current Ia = 1/(1 + j2) = 0.2 − j0.4 and

Ibn = Ia
� − 2π

3
= −0.4464 + j0.0268, Icn = Ia

� 2π

3
= 0.2464 + j0.3732

Ia + Ib + Ic = 0.

The power stored and consumed by the circuit in phase a is

0.5IaI
∗
a ZY = S = Pav + jQav = 0.1 + j0.2 va.

The power supplied by the source VanI
∗
a /2 is also the same. The total power consumed by the circuit

is three times that of a phase, 3(0.1 + j0.2) = 0.3 + j0.6. The pf is

pf = real(ZY )

abs(ZY )
= real(S)

abs(S)
= 0.4472.

The desired power factor is 0.9. The corresponding apparent power is

Pav

0.9
= 0.1111.
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The corresponding reactive power is

0.1111 sin(cos−1(0.9)) = 0.0484.

The difference between the reactive powers is 0.2 − 0.0484 = 0.1516. Now, with ω = 1 and |V | = 1,

C = 2
0.1516

(1)(12)
= 0.3031 F.

The current through the capacitor is

jVan(0.3031) = j0.3031.

The new current supplied by the source is

I ′
a = (0.2 − j0.4) + j0.3031) = 0.2000 − j0.0969.

The power supplied by the source VanI
′∗
a /2 is 0.1000 + j0.0484 and the pf is 0.9. A capacitor of

value 0.3031/3 F is to be connected across the lines of the �-connected load. That is C = 0.1010 F is
connected in parallel with each Z�. Then, the effective load impedance is

Z� ‖ ZC = (3 + j6) ‖ (−j9.8966) = 12.1500 + j5.8845.

The improved pf is
pf = 12.15

|12.1500 + j5.8845| = 12.15

13.5
= 0.9.

The line voltages are

VAB = √
3Van

� π

6
= 1.5+j0.866, VBC = VAB

� − 2π

3
= −j1.7321, VCA = VAB

� 2π

3
= −1.5+j0.866

The currents through the impedances of the �-connected load are obtained by dividing the line
voltages by Z�.

IAB = VAB

Z�

= 0.2155−j0.1423, IBC = VBC

Z�

= −0.2309−j0.1155, ICA = VCA

Z�

= 0.0155+j0.2577

The power consumed can also be computed from these values to get the same values obtained earlier.
For example,

0.5VABI ∗
AB = 0.5(1.5 + j0.866)(0.2155 + j0.1423) = 0.1 + j0.2.

�
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6.4 The Three-Phase Balanced� − Y Circuit

Let the � source be

Vab = VL
� 0◦, Vbc

� −120◦, Vca
� 120◦.

Since, from Eq. (6.1), with Vp being the phase voltage

Vab = √
3Vp

� 30◦ and Vp = Vab√
3

� −30◦.

Then, an equivalent Y source, with VL being the line voltage, is

Van = VL√
3

� −30◦ = Vp
� −30◦, Vbn = VL√

3
� −150◦ = Vp

� −150◦, Vcn = VL√
3

� −270◦ = Vp
� 90◦

Therefore, in analyzing circuits with a � source, the source can be converted to an equivalent Y

source. Then, the circuit can be analyzed using the Y source.

Example 6.3 Analyze the balanced three-phase � − Y circuit shown in Fig. 6.4a. Let the phase
voltages be

VAB = 1
√

3 �
(

0 + π

6

)
, VBC = 1

√
3 �
(

−2π

3
+ π

6

)
, VCA = 1

√
3 �
(

2π

3
+ π

6

)

at frequency ω = 1 rad/s. The impedance is ZY = 1 + j2. Determine the currents Ia, Ib, Ic. Find also
the power consumed and the pf of the circuit.

Solution The equivalent Y -connected source phase voltages are

Van = 1� 0, Vbn = 1� −2π

3
, Vcn = 1� 2π

3
.

Now, the problem reduces to Example 6.1. The equivalent Y − Y circuit is shown in Fig. 6.4b. The
current Ia = 1/(1 + j2) = 0.2 − j0.4 and

Fig. 6.4 (a) Balanced
three-phase � − Y circuit;
(b) its equivalent Y − Y

circuit
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Ibn = Ia
� − 2π

3
= −0.4464 + j0.0268, Icn = Ia

� 2π

3
= 0.2464 + j0.3732

Ia + Ib + Ic = 0.

The power stored and consumed by the circuit in phase a is

0.5IaI
∗
a ZY = S = Pav + jQav = 0.1 + j0.2 va.

The power supplied by the source VanI
∗
a /2 is also the same. The total power consumed by the circuit

is three times that of a phase, 3(0.1 + j0.2) = 0.3 + j0.6. The pf is

pf = real(ZY )

abs(ZY )
= real(S)

abs(S)
= 0.4472.

�

6.5 The Three-Phase Balanced� − � Circuit

Example 6.4 Analyze the balanced three-phase � − � circuit shown in Fig. 6.5a. Let the phase
voltages be

VAB = 1
√

3 �
(

0 + π

6

)
, VBC = 1

√
3 �
(

−2π

3
+ π

6

)
, VCA = 1

√
3 �
(

2π

3
+ π

6

)

at frequency ω = 1 rad/s. The impedance is Z� = 3 + j6. Determine the currents Ia, Ib, Ic. Find also
the power consumed and the pf of the circuit.

Solution The equivalent Y -connected source phase voltages are

Van = 1� 0, Vbn = 1� −2π

3
, Vcn = 1� 2π

3
.

The impedance is ZY = Z�/3 = 1 + j2. Now, the problem reduces to Example 6.1. The equivalent
Y − Y circuit is shown in Fig. 6.5b. The current Ia = 1/(1 + j2) = 0.2 − j0.4 and

Fig. 6.5 (a) Balanced
three-phase � − � circuit;
(b) its equivalent Y − Y

circuit
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Ibn = Ia
� − 2π

3
= −0.4464 + j0.0268, Icn = Ia

� 2π

3
= 0.2464 + j0.3732

Ia + Ib + Ic = 0.

The power stored and consumed by the circuit in phase a is

0.5IaI
∗
a ZY = S = Pav + jQav = 0.1 + j0.2 va.

The power supplied by the source VanI
∗
a /2 is also the same. The total power consumed by the circuit

is three times that of a phase, 3(0.1 + j0.2) = 0.3 + j0.6. The pf is

pf = real(ZY )

abs(ZY )
= real(S)

abs(S)
= 0.4472.

�

6.6 Application

The two major advantages of three-phase systems are that they supply uniform instantaneous power
and provide efficient power transmission. The power loss in transmission of a certain amount of power
by a three-phase system is one-fourth of that of a single-phase line.

The three-phase induction motor is the workhorse in practical applications for converting electric
power to mechanical power. Such machines produce a steady torque.

6.7 Summary

• Systems with three sources differing in phase by 120◦ and of the same amplitude, called three-
phase systems, are mostly used in electrical power systems.

• The two major advantages of three-phase systems are reduced losses in transmission and the net
instantaneous power is uniform, not pulsating.

• A single-phase source can be obtained just by taking from one of the three sources.
• In the positive sequence, the peak (zero) of vb(t) occurs after 1/3 of the cycle of that of va(t). The

peak of vc(t) occurs after 1/3 of the cycle of that of vb(t).
• In the negative sequence, the peak (zero) of vc(t) occurs after 1/3 of the cycle of that of va(t). The

peak of vb(t) occurs after 1/3 of the cycle of that of vc(t).
• The sum of the set of three-phase voltages or currents is zero.
• The total power consumed by the circuit is three times that of a phase.
• The total instantaneous power in the system is

p(t) = 3
V I

2
cos(θ)W.

As it is constant with respect to time, power delivery is smooth.
• In an unbalanced system, the amplitudes of the source voltages are not equal and the phases differ

by unequal angles or the load impedances are unequal.
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• Unbalanced systems are decomposed into three balanced systems by the symmetrical components
method of analysis using complex linear transformation.

• A balanced three-phase system consists of three identical and symmetrically associated circuits
with voltages of equal amplitude and phase differences equal to 2π/3 radians.

• Under balanced conditions, we can compute the current in a single phase of a Y -connected circuits,
considering it as a single-phase system. Then, the other currents in the other phases can be obtained
by adding suitable phases to the result.

• It is simpler to analyze �-connected circuits by converting them to equivalent Y -connected circuits,
using transformation formulas.

• In each phase, a capacitor of value C is connected in parallel with the load impedance for power-
factor improvement.

• For supplying the same reactive power, the Y -connected load circuit requires three times the value
of the capacitor required for an equivalent �-connected load circuit.

Exercises

* 6.1.1 Given va(t) = 2 cos
(

2π
15 t
)

, find vb(t) and vc(t) for positive and negative sequence three-

phase voltages.

6.1.2 Given vb(t) = 3 cos
(

2π
9 t − π

3

)
, find va(t) and vc(t) for positive and negative sequence three-

phase voltages.
* 6.2.1 Analyze the balanced three-phase Y − Y circuit. Let the phase voltages be

Van = 2� 0, Vbn = 2� −2π

3
, Vcn = 2� 2π

3

at frequency ω = 2 rad/s. The impedance is ZY = 1 + j3. Determine the currents Ia, Ib, Ic.
Find also the power consumed and the pf of the circuit. Find the value of the capacitors
required to improve the pf to 0.8.

6.2.2 Analyze the balanced three-phase Y − Y circuit. Let the phase voltages be

Van = 3� 0, Vbn = 3� −2π

3
, Vcn = 3� 2π

3

at frequency ω = 2 rad/s. The impedance is ZY = 1 + j4. Determine the currents Ia, Ib, Ic.
Find also the power consumed and the pf of the circuit. Find the value of the capacitors
required to improve the pf to 0.7.

6.3.1 Analyze the balanced three-phase Y − � circuit. Let the phase voltages be

Van = 2� 0, Vbn = 2� −2π

3
, Vcn = 2� 2π

3

at frequency ω = 2 rad/s. The impedance is Z� = 3 + j9. Determine the currents Ia, Ib, Ic.
Find also the power consumed and the pf of the circuit. Find the value of the capacitors
required to improve the pf to 0.8.

* 6.3.2 Analyze the balanced three-phase Y − � circuit. Let the phase voltages be

Van = 3� 0, Vbn = 3� − 2π

3
, Vcn = 3� 2π

3

www.TechnicalPDF.com



214 6 Three-Phase Circuits

at frequency ω = 2 rad/s. The impedance is Z� = 3 + j12. Determine the currents Ia, Ib, Ic.
Find also the power consumed and the pf of the circuit. Find the value of the capacitors
required to improve the pf to 0.7.

* 6.4.1 Analyze the balanced three-phase � − Y circuit. Let the phase voltages be

VAB = 2
√

3�
(

0 + π

6

)
, VBC = 2

√
3 �
(

−2π

3
+ π

6

)
, VCA = 2

√
3�
(

2π

3
+ π

6

)

at frequency ω = 2 rad/s. The impedance is ZY = 1 + j3. Determine the currents Ia, Ib, Ic.
Find also the power consumed and the pf of the circuit. Find the value of the capacitors
required to improve the pf to 0.8.

6.4.2 Analyze the balanced three-phase � − Y circuit. Let the phase voltages be

VAB = 3
√

3�
(

0 + π

6

)
, VBC = 3

√
3 �
(

−2π

3
+ π

6

)
, VCA = 3

√
3�
(

2π

3
+ π

6

)

at frequency ω = 2 rad/s. The impedance is ZY = 1 + j4. Determine the currents Ia, Ib, Ic.
Find also the power consumed and the pf of the circuit. Find the value of the capacitors
required to improve the pf to 0.7.

* 6.5.1 Analyze the balanced three-phase � − � circuit. Let the phase voltages be

VAB = 2
√

3�
(

0 + π

6

)
, VBC = 2

√
3 �
(

−2π

3
+ π

6

)
, VCA = 2

√
3�
(

2π

3
+ π

6

)

at frequency ω = 2 rad/s. The impedance is Z� = 3 + j9. Determine the currents Ia, Ib, Ic.
Find also the power consumed and the pf of the circuit. Find the value of the capacitors
required to improve the pf to 0.8.

6.5.2 Analyze the balanced three-phase � − � circuit. Let the phase voltages be

VAB = 3
√

3 �
(

0 + π

6

)
, VBC = 3

√
3�
(

−2π

3
+ π

6

)
, VCA = 3

√
3�
(

2π

3
+ π

6

)

at frequency ω = 2 rad/s. The impedance is Z� = 3 + j12. Determine the currents Ia, Ib, Ic.
Find also the power consumed and the pf of the circuit. Find the value of the capacitors
required to improve the pf to 0.7.
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7Two-Port Networks

A pair of terminals, which are external terminal points for currents to enter or leave a circuit, is called
a port. Elements, such as a resistor with two terminals, are one-port circuit. A two-port circuit has
two separate ports for input and output. Several currents flow through circuit elements in a circuit
and, consequently, voltages appear at their terminals. But, not all of them are interest in applications.
Modeling a circuit by a two-port circuit reduces the current variables to two. The two currents and the
corresponding voltages are related by nodal and loop analysis. A two-port circuit may have dependent
sources but no independent source. Although a circuit may have any number of ports, two-port models
are widely used in the study of amplifier, communication and power system circuits. Depending on
the choice of dependent and independent variables, one has to choose the most appropriate two-port
model. This model is a generalization of Thévenin’s theorem and Norton’s theorem. Each port can be
represented by Thévenin or Norton equivalent circuit. In Thévenin’s theorem, a part of a circuit across
a pair of terminals is replaced by a simple model. However, in modeling devices such as amplifiers
and filters with input and output ports, a part of a circuit across pairs of terminals has to be replaced
by a simple model.

7.1 Impedance Parameters

Figure 7.1 shows a two-port circuit with conventional voltage and current reference directions
indicated. The top terminals are positive with respect to the lower terminals and currents enter the
ports at the top terminals. The left port is the input port and the right is the output.

The relations between the voltage and current variables can be derived by nodal or loop analysis.
With loop analysis, we get

Z11I1 + Z12I2 = V1 (7.1)

Z21I1 + Z22I2 = V2, (7.2)

where

Z11 = V1

I1
|I2=0 and Z22 = V2

I2
|I1=0

are the driving-point impedances. Current zero implies an open-circuit at the corresponding port. That
is, Z11 multiplied by the excitation current at terminal pair 1 equals the voltage across the terminal
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216 7 Two-Port Networks

Fig. 7.1 A two-port
circuit with conventional
voltage and current
reference directions
indicated

Two-port
network

I1 I2

V1 V21 2

Fig. 7.2 A bridged-T
circuit V1 V3 V2

1V

Z1

Z3

Z2

Z4

Z5

1Ω

3Ω

2Ω

4Ω

5Ω

a c bI1 I2

pair 1 with I2 = 0. Similarly, Z22 multiplied by the excitation current at terminal pair 2 equals the
voltage across the terminal pair 2 with I1 = 0.

Z12 = V1

I2
|I1=0 and Z21 = V2

I1
|I2=0

are called transfer impedances. That is, Z12 multiplied by the excitation current at terminal pair 2
equals the voltage across the terminal pair 1 with I1 = 0. Similarly, Z21 multiplied by the excitation
current at terminal pair 1 equals the voltage across the terminal pair 2 with I2 = 0. In matrix form,
we get [

Z11 Z12

Z21 Z22

] [
I1

I2

]
=
[

V1

V2

]
.

In this model, voltages V1 and V2 are expressed in terms of currents I1 and I2.
Consider the bridged-T circuit shown in Fig. 7.2. It is a T -circuit with the impedance Z4 bridged

across the top part. Let us find the voltages V3 and V2 by nodal analysis, with V1 = 1. The equilibrium
equations at the nodes are

V3 − 1

Z1
+ V3

Z3
+ V3 − V2

Z2
= 0

V2

Z5
+ V2 − V3

Z2
+ V2 − 1

Z4
= 0.

Simplifying, we get

V3(Z1Z2 + Z1Z3 + Z2Z3) − V2Z1Z3 = Z2Z3

−V3Z4Z5 + V2(Z2Z4 + Z4Z5 + Z2Z5) = Z2Z5.

With
Z1 = 1, Z2 = 2, Z3 = 3, Z4 = 4, Z5 = 5

[
11 −3

−20 38

] [
V3

V2

]
=
[

6
10

]
.
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The determinant of the admittance matrix is 358. Solving for V3 and V2, we get

[
V3

V2

]
=
[

11 −3

−20 38

]−1 [
6

10

]
=
[

0.1061 0.0084

0.0559 0.0307

][
6

10

]
=
[

0.7207
0.6425

]
.

Now, the terminal currents are

I1 = V3

Z3
+ V2

Z5
= 0.3687 and I2 = −V2

Z5
= −0.1285.

Let us find the impedance and admittance matrices of the two-port circuit and verify that the currents
and voltages found by the nodal analysis satisfy the governing relations for the circuit.

Determining the Impedance Matrix
In all the models, the procedure to determine the parameter matrix is the same. An appropriate voltage
or current is applied at one port, short-circuit or open-circuit on the other port depending on the
parameter of interest, and use regular circuit analysis. Figure 7.3a shows the equivalent circuit in
Fig. 7.2 with the � part of the bridged-T circuit, indicated by terminals {a, b, c}, replaced by an
equivalent T-circuit and the source and load parts removed. The impedances are obtained, using the
conversion formulas, as

Z1Z4

Z1 + Z2 + Z4
= 0.5714

Z2Z4

Z1 + Z2 + Z4
= 1.1429

Z1Z2

Z1 + Z2 + Z4
= 0.2857.

By adding the series connected resistors with values 3 and 0.2857, the value of the bottom branch
becomes 3.2857 (Fig. 7.3b). That is,

Z1 = 0.5714 �, Z2 = 1.1429 �, Z3 = 3.2857 �.

V1 V2
Z1

Z3

Z4

Z2
0.5714Ω

0.2857Ω

3Ω

1.1429Ω
a c bI1 I2

)c()b()a(

V1 V2
Z1

Z3

Z2
0.5714Ω

3.2857Ω

1.1429ΩI1 I2

V1 V2
Y1

Y3

Y2
1.75

0.3043

0.875I1 I2

Fig. 7.3 (a) The � part of the bridged-T circuit, indicated by terminals {a, b, c}, replaced by an equivalent T-circuit;
(b) simplified version of (a); (c) the admittance version
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Fig. 7.4 Determination of
the impedance parameters
Z11 and Z21

V1 V3 V2

1V

Z1

Z3

Z2

Z4

1Ω

3Ω

2Ω

4Ω

I1 I2 =0

Now,

Z11 = V1

I1
|I2=0 = I1(0.5714 + 3.2857)

I1
= 3.8571

Z12 = V1

I2
|I1=0 = I2(3.2857)

I2
= 3.2857

Z21 = V2

I1
|I2=0 = I1(3.2857)

I1
= 3.2857

Z22 = V2

I2
|I1=0 = I1(1.1429 + 3.2857)

I1
= 4.4286.

The first subscript indicates the origin of the voltage and the second indicates the origin of the current.
Z11 is the impedance, which multiplied by the current at the terminal pair 1, I1, produces the open-
circuit voltage at the terminal pair 11, V1 with open-circuit condition at terminal pair 2. Z12 is the
impedance, which multiplied by the current at the terminal pair 2, I2, produces the open-circuit voltage
at the terminal pair 1, V1 with open-circuit condition at terminal pair 1. Z22 is the impedance, which
multiplied by the current at the terminal pair 2, I2, produces the open-circuit voltage at the terminal
pair 2, V2 with open-circuit condition at terminal pair 1. Z21 is the impedance, which multiplied by
the current at the terminal pair 1, I1, produces the open-circuit voltage at the terminal pair 2, V2 with
open-circuit condition at terminal pair 2. The impedance matrix is

Z =
[

Z11 Z12

Z21 Z22

]
=
[

Z1 + Z3 Z3

Z3 Z2 + Z3

]
=
[

3.8571 3.2857
3.2857 4.4286

]
.

The determination of the two-port model parameters looks formidable, in the derivation using
symbols. However, it just requires only basic circuit theory. Here, we make a much simplified
presentation of deriving the Z parameters using circuits and numerical values. The same approach
holds for other models. Consider the circuit, shown in Fig. 7.4, for the determination of the impedance
parameter Z11. The output port is open-circuited, I2 = 0. V1 = 1. We have to find I1. The equivalent
impedance of the circuit is

Zeq = Z3 + (Z1 ‖ (Z2 + Z4)) = Z3 + Z1(Z2 + Z4)

(Z1 + Z2 + Z4)
= V1

I1
= Z11.

Substituting the numerical values, we get Z11 = 3.8571 as obtained earlier.
Consider the circuit, shown in Fig. 7.4, for the determination of the impedance parameter Z21.

I1 = V1

Zeq
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Fig. 7.5 Determination of
the impedance parameters
Z22 and Z12

V1 V3 V2

1V

Z1

Z3

Z2

Z4

1Ω

3Ω

2Ω

4Ω

I1 =0 I2

Iz4 = I1
Z1

(Z1 + Z2 + Z4)

V2 = V1 − Iz4Z4 and Z21 = V2

I1
= Z21.

Substituting the numerical values, we get Z21 = 3.2857 as obtained earlier.
Consider the circuit, shown in Fig. 7.5, for the determination of the impedance parameter Z22. The

input port is open-circuited, I1 = 0. V2 = 1. We have to find I2. The equivalent impedance of the
circuit is

Zeq = Z3 + Z2 ‖ (Z1 + Z4) = Z3 + Z2(Z1 + Z4)

(Z1 + Z2 + Z4)
= V2

I2
= Z22

Substituting the numerical values, we get Z22 = 4.4286 as obtained earlier.
Consider the circuit, shown in Fig. 7.5, for the determination of the impedance parameter Z12.

I2 = V2

Zeq

Iz4 = I2
Z2

(Z1 + Z2 + Z4)

V1 = V2 − Iz4Z4 and Z12 = V1

I2
= Z12

Substituting the numerical values, we get Z12 = 3.2857 as obtained earlier.

The Impedance Matrix of Circuits Connected in Series
A large circuit is an interconnection of a set of smaller circuits. The interconnection may be series,
parallel, or cascade. When they are in series, it is advantageous to characterize them by Z matrices,
since the Z matrix of two circuits connected in series is the sum of the individual Z matrices. When
they are in parallel, it is advantageous to characterize them by Y matrices, since the Y matrix of two
circuits connected in parallel is the sum of the individual Y matrices.

The circuit in Fig. 7.3a can be considered as a series of two circuits with the top three resistors
comprising the first part and the resistor with value 3 � being the second part. The input currents are
the same and their voltages add up. The common reference point between the two parts is connected
together, when connected in series. The Z matrices of the top and bottom parts, respectively, are

Z =
[

Z11 Z12

Z21 Z22

]
=
[

0.8571 0.2857

0.2857 1.4286

]
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and

Z =
[

Z11 Z12

Z21 Z22

]
=
[

3 3
3 3

]
.

The sum of the two matrices is the same as found earlier.
The circuit in Fig. 7.2 has three independent current variables, whereas the corresponding two-port

model has only two current variables. That is, the original circuit has been abridged into a two-terminal
pair circuit, eliminating the terminal pair that is of no interest. Now, using this model (Eqs. (7.1)
and (7.2)), we can determine two of the four of the terminal variables

{V1, V2, I1, I2},

with the other two known. We have determined the terminal currents I1 = 0.3687 and I2 = −0.1285
by nodal analysis. Using the two-port model, we get

[
V1

V2

]
=
[

3.8571 3.2857

3.2857 4.4286

][
0.3687

−0.1285

]
=
[

1
0.6425

]
.

Along with the defining equations of the two-port network, such as Eqs. (7.1) and (7.2) and the
constraints imposed at the input and output, we can determine the parameters such as the input
impedance. Form the nodal analysis, we found V1 = 1 and I1 = 0.3687. Now, the input impedance is

Zin = V1

I1
= 1

0.3687
= 2.7121 �.

The constraint at the output side is
V2 = −I2ZL.

From the characterizing equation of the two-port network, we have

Z21I1 + Z22I2 = V2.

Eliminating V2, we get

Z21I1 + Z22I2 = −I2ZL or
I2

I1
= − Z21

Z22 + ZL

.

Substituting for I2 in the characterizing equation

Z11I1 + Z12I2 = V1,

we get

Zin = V1

I1
= Z11 − Z12Z21

Z22 + ZL

= 2.7121

as obtained earlier. With ZL = ∞, I2 = 0 and Zin = Z11. To determine the output impedance Zo,
which is the Thévenin’s Zeq from the terminal pair 2 with the load impedance disconnected and the
voltage source short-circuited, V1 = 0. Assuming that the series source impedance is Zs , from the
defining equations of two-port circuit, we have
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I1 = − Z12I2

Z11 + Zs

and I2 = V2 − Z12I1

Z22
.

Substituting for I1 in Eq. (7.1), we get

Zo = V2

I2
= Z22 − Z12Z21

Z11 + Zs

= 1.6296

with Zs = 0. From Thévenin’s theorem and Fig. 7.3b,

Z2 + Z1Z3

Z1 + Z3
= 1.6296.

Let us find V2/V1.

Z21I1 + Z22(− V2

ZL

) = V2 = I1
Z21ZL

Z22 + ZL

V1 = I1
(Z11ZL + Z11Z22 − Z12Z21)

Z22 + ZL

.

Therefore,
V2

V1
= Z21ZL

(Z11ZL + Z11Z22 − Z12Z21)
= 0.6425.

7.2 Admittance Parameters

With nodal analysis, we get

Y11V1 + Y12V2 = I1 (7.3)

Y21V1 + Y22V2 = I2 (7.4)

Y11 = I1

V1
|V2=0 and Y22 = I2

V2
|V1=0

are called driving-point admittances. That is, Y11 multiplied by the excitation voltage at terminal pair
1 equals the current at the terminal pair 1, when terminal pair 2 is short-circuited, V2 = 0. Similarly,
Y22 multiplied by the excitation voltage at terminal pair 2 equals the current at the terminal pair 2,
when terminal pair 1 is short-circuited, V1 = 0.

Y12 = I1

V2
|V1=0 and Y21 = I2

V1
|V2=0

are called transfer admittances. That is, Y12 multiplied by the excitation voltage at terminal pair 2
equals the current at the terminal pair 1, when terminal pair 1 is short-circuited, V1 = 0. Similarly,
Y21 multiplied by the excitation voltage at terminal pair 1 equals the current at the terminal pair 2,
when terminal pair 2 is short-circuited, V2 = 0. In matrix form, we get

[
Y11 Y12

Y21 Y22

][
V1

V2

]
=
[

I1

I2

]
.

In this model, currents I1 and I2 are expressed in terms of voltages V1 and V2.
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The impedance and admittance matrices are the inverses of each other.

[
V1

V2

]
=
[

Y11 Y12

Y21 Y22

]−1 [
I1

I2

]
and

[
I1

I2

]
=
[

Z11 Z12

Z21 Z22

]−1 [
V1

V2

]
.

The conversion formulas for the impedance and admittance matrices, from the 2 × 2 matrix inverse,
are

Z11 = Y22

Y11Y22 − Y12Y21
(7.5)

Z12 = −Y12

Y11Y22 − Y12Y21
(7.6)

Z21 = −Y21

Y11Y22 − Y12Y21
(7.7)

Z22 = Y11

Y11Y22 − Y12Y21
(7.8)

and

Y11 = Z22

Z11Z22 − Z12Z21
(7.9)

Y12 = −Z12

Z11Z22 − Z12Z21
(7.10)

Y21 = −Z21

Z11Z22 − Z12Z21
(7.11)

Y22 = Z11

Z11Z22 − Z12Z21
. (7.12)

Let us find the admittance matrix of the two-port circuit shown in Fig. 7.3c. The conductances,
which are the inverses of the resistances of the elements, are

Y1 = 1

0.5714
= 1.75�, Y2 = 1

1.1429
= 0.875�, Y3 = 1

3.2857
= 0.3043�

Y11 = I1

V1
|V2=0 = I1((1.75) ‖ (0.875 + 0.3043))

I1
= 0.7045�

Y12 = I1

V2
|V1=0 = − (1.75)(0.875)

1.75 + 0.875 + 0.3043
= −0.5227

Y21 = I2

V1
|V2=0 = − (1.75)(0.875)

1.75 + 0.875 + 0.3043
= −0.5227

Y22 = I2

V2
|V1=0 = I2((0.875) ‖ (1.75 + 0.3043))

I2
= 0.6136�.

The first subscript indicates the origin of the current and the second indicates the origin of the voltage.
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Y11 is the admittance, the inverse of which multiplied by the current at the terminal pair 1, I1,
produces the open-circuit voltage at the terminal pair 11, V1 with short-circuit condition at terminal
pair 2. Then, conductances 0.875 and 0.3043 are parallel and add up to 1.1793. Now, conductances
1.75 and 1.1793 are in series and

Y11 = (1.75)(1.1793)

1.75 + 1.1793
= 0.7045

V1 = I1(Y1 ‖ (Y2 + Y3)) and Y11 = V1

I1
= (Y1)(Y2 + Y3)

Y1 + Y2 + Y3
.

In terms of impedances,

I1 = V1

Z1 + (Z2 ‖ Z3)
.

Simplifying, we get

Y11 = I1

V1
= Z2 + Z3

Z1Z2 + Z1Z3 + Z3Z2
.

Y12 is the admittance, the inverse of which multiplied by the current at the terminal pair 1, I1,
produces the open-circuit voltage at the terminal pair 22, V2 with short-circuit condition at terminal
pair 1.

I2 = V2(Y2 ‖ (Y1 + Y3)) and I1 = −I2
Y1

Y1 + Y3
.

Eliminating I2, we get

Y12 = I1

V2
= −Y1Y2

Y1 + Y2 + Y3

Y12 = − (1.75)(0.875)

1.75 + 0.875 + 0.3043
= −0.5227 = Y21.

Y22 is the admittance, the inverse of which multiplied by the current at the terminal pair 2, I2,
produces the open-circuit voltage at the terminal pair 22, V2 with short-circuit condition at terminal
pair 1. Then, conductances 1.75 and 0.3043 are parallel and add up to 2.0543. Now, conductances
0.875 and 2.0543 are in series and

Y22 = (0.875)(2.0543)

0.875 + 2.0543
= 0.6136

Y =
[

Y11 Y12

Y21 Y22

]
=
[

0.7045 −0.5227

−0.5227 0.6136

]
.

Multiplying the admittance and impedance matrices will result in an identity matrix of size 2×2. The
general formula in terms of conductances are

Y11 = (Y1)(Y2 + Y3)

Y1 + Y2 + Y3
(7.13)

Y12 = −Y1Y2

Y1 + Y2 + Y3
(7.14)

Y21 = −Y1Y2

Y1 + Y2 + Y3
(7.15)
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Y22 = (Y2)(Y1 + Y3)

Y1 + Y2 + Y3.
(7.16)

In general, the formulas for the admittance matrix for a T-circuit, in terms of impedances, are

Y11 = Z2 + Z3

Z1Z2 + Z1Z3 + Z3Z2
(7.17)

Y12 = −Z3

Z1Z2 + Z1Z3 + Z3Z2
(7.18)

Y21 = −Z3

Z1Z2 + Z1Z3 + Z3Z2
(7.19)

Y22 = Z1 + Z3

Z1Z2 + Z1Z3 + Z3Z2.
(7.20)

The Admittance Matrix of Circuits Connected in Parallel
A large circuit is an interconnection of a set of smaller circuits. When they are in parallel, it is
advantageous to characterize them by Y matrices, since the Y matrix of two circuits connected in
parallel is the sum of the individual Y matrices.

The circuit in Fig. 7.2 can be considered as a parallel combination of two circuits with the bottom
three resistors comprising the first part and the resistor with value 4 � as the second part. The input
voltages are the same and their currents add up. The common reference points between the two
parts are tied together, when connected in parallel. The Z matrices of the top and bottom parts,
respectively, are

Z =
[

Z11 Z12

Z21 Z22

]
=
[

4 3

3 5

]

Y1 = Z−1 =
[

Y11 Y12

Y21 Y22

]
=
[

0.4545 −0.2727

−0.2727 0.3636

]

Y2 =
[

Y11 Y12

Y21 Y22

]
=
[

0.25 −0.25

−0.25 0.25

]
.

The sum of the two matrices is the same as found earlier.

We have determined the input and output terminal voltages as V1 = 1 and V2 = 0.6425 by nodal
analysis. Using the two-port admittance model, we get

[
I1

I2

]
=
[

0.7045 −0.5227
−0.5227 0.6136

] [
1

0.6425

]
=
[

0.3687
−0.1285

]
.

7.3 Hybrid Parameters

Some two-port models are convenient or applicable to some physical devices. In this model, V1 and I2

are the dependent variables, while I1 and V2 are the independent variables. It is especially important
in the analysis of amplifying devices and ideal transformers. They are called hybrid parameters, since
they are a hybrid combination of ratios.
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h11I1 + h12V2 = V1 (7.21)

h21I1 + h22V2 = I2, (7.22)

where

h11 = V1

I1
|V2=0 �, h12 = V1

V2
|I1=0, h21 = I2

I1
|V2=0, h22 = I2

V2
|I1=0 �.

They are, respectively, short-circuit input impedance, open-circuit reverse voltage gain, short-circuit
forward current gain, and open-circuit output admittance. In matrix form,

[
h11 h12

h21 h22

][
I1

V2

]
=
[

V1

I2

]
.

The h parameters can be obtained from the corresponding Z parameters by the formula

[
h11 h12

h21 h22

]
=
[

�Z

Z22

Z12
Z22

−Z21
Z22

1
Z22

]
,

where �Z = Z11Z22 − Z11Z22, the determinant of the Z matrix. With the impedance matrix

Z =
[

Z11 Z12

Z21 Z22

]
=
[

3.8571 3.2857

3.2857 4.4286

]

and �Z = 6.2857, we get [
h11 h12

h21 h22

]
=
[

1.4194 0.7419

−0.7419 0.2258

]
.

We have determined the terminal voltages and currents as V1 = 1, V2 = 0.6425, I1 = 0.3687, and
I2 = −0.1285 by nodal analysis in an earlier example. Using the two-port hybrid model, we get

[
V1

I2

]
=
[

1.4194 0.7419

−0.7419 0.2258

][
0.3687

0.6425

]
=
[

1
−0.1285

]
.

7.4 Transmission Parameters

As there is no restriction in the choice of the independent and dependent variables, we get different
models with each choice. This is the fourth of the commonly used models. In this model, V1 and I1

are the dependent variables and V2 and I2 are the independent variables. This model is particularly
useful in the analysis of transmission lines and referred as transmission or ABCD parameters.

AV2 − BI2 = V1 (7.23)

CV2 − DI2 = I1, (7.24)

where

A = V1

V2
|I2=0, B = −V1

I2
|V2=0 �, C = I1

V2
|I2=0 �, D = −I1

I2
|V2=0.
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They are, respectively, the open-circuit voltage ratio, the negative short-circuit transfer impedance, the
open-circuit transmission admittance and the negative short-circuit current ratio. In matrix form,

[
A B

C D

] [
V2

−I2

]
=
[

V1

I1

]
.

The sign of I2 is changed, as this current is considered to be leaving the circuit. A and D are
dimensionless, while B is an impedance and C is an admittance. If AD − BC = 1, then the circuit is
reciprocal. A circuit is reciprocal, with a single input source, if the points of input and output can be
interchanged with the ratio of input and output, remains the same. The parameter matrix is symmetric.
This property is known as reciprocity theorem. The ABCD parameter matrix of a circuit, which is a
combination of two networks connected in cascade (the output of the first circuit is the input to the
second), is the matrix product in that order of their individual parameter matrices.

Let the impedance matrix be

Z =
[

Z11 Z12

Z21 Z22

]
=
[

3.8571 3.2857

3.2857 4.4286

]

and �Z = 6.2857. The transmission parameters can be obtained from the corresponding Z parameters
by the formula [

A B

C D

]
=
[ Z11

Z21

�Z

Z21

1
Z21

Z22
Z21

]
=
[

1.1739 1.9130

0.3043 1.3478

]
,

where �Z = Z11Z22 − Z11Z22, the determinant of the Z matrix.
We have determined the terminal voltages and currents as V1 = 1, V2 = 0.6425, I1 = 0.3687, and

I2 = −0.1285 by nodal analysis in an earlier example. Using the two-port ABCD model, we get

[
V1

I2

]
=
[

1.1739 1.9130

0.3043 1.3478

][
0.6425

0.1285

]
=
[

1

0.3687

]
.

7.5 Examples

7.5.1 Analysis of a π Circuit

Find I1, I2, and V2 for the π circuit shown in Fig. 7.6 by the nodal method. The source voltage is
cos(t + π/3) with the positive terminal connected to the ground. Find the admittance parameters and
verify the derived model. Let us find the voltage V2 by nodal analysis. The equilibrium equation at
node 2 is

Fig. 7.6 A π circuit

∼
+

co
s(

t+
π 3
)V

V1 V2

Z1 Z3

Z2

ZL

2−
j3

Ω

1+
j1

Ω

2Ω

5Ω

I1 I2
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V2 + (0.5 + j0.866)

Z2
+ V2

Z3
+ V2

ZL

= 0.

Simplifying, we get

V2(Z3ZL + Z2ZL + Z2Z3) = −ZLZ3(0.5 + j0.866).

With
Z1 = 2 − j3, Z2 = 2, Z3 = 1 + j1, ZL = 5, V = −(0.5 + j0.866),

we get V2 = (−0.0494 − j0.3814) V. Now, the terminal currents are

I1 = V1

Z1
+ V2

Z3
+ V2

ZL

= (−0.1024 − j0.4909) A and I2 = − V2

ZL

= 0.0099 + j0.0763.

Let us find the admittance matrix of the two-port circuit and verify that the currents and voltages found
by the nodal analysis satisfy the governing relations for the circuit. The admittance of the branches,
in �, is the inverse of the impedances shown in the figure. That is,

{Y1 = 0.1538 + j0.2308, Y (2) = 0.5, Y (3) = 0.5 − j0.5}.

With the output terminals short-circuited,

I1 = V1(Y1 + Y2) and Y11 = I1

V1
= Y1 + Y2.

With the input terminals short-circuited,

I1 = −V2Y2 and Y12 = − I1

V2
= −Y2 = Y21.

With the input terminals short-circuited,

I2 = V2(Y3 + Y2) and Y22 = I2

V2
= Y3 + Y2.

Therefore, the admittance matrix is

Y =
[

Y11 Y12

Y21 Y22

]
=
[

Y1 + Y2 −Y2

−Y2 Y3 + Y2

]
=
[

0.6538 + j0.2308 −0.5
−0.5 1 − j0.5

]
.

We have determined the input and output terminal voltages V1 = −(0.5 + j0.866) and V2 =
(−0.0494 − j0.3814) by nodal analysis. Using the two-port model, we get

[
I1

I2

]
=
[

0.6538 + j0.2308 −0.5
−0.5 1 − j0.5

] [ −(0.5 + j0.866)

(−0.0494 − j0.3814)

]
=
[−0.1024 − j0.4909

0.0099 + j0.0763

]

as found earlier.

www.TechnicalPDF.com



228 7 Two-Port Networks

7.5.2 Analysis of a Common-Emitter Transistor Amplifier

When we speak in an auditorium, the people sitting in the first few rows can hear the speech. However,
with the aid of an amplifier system, all the people can hear. An amplifier amplifies the speech signal.
Basic devices used in amplifiers are usually of two types. In one type, called the current-controlled
current source, the ratio between the output and input current is high.

The hybrid model of a commonly used transistor amplifier circuit is shown in Fig. 7.7. A source
voltage Vs with internal resistance Rs is connected to the input side. A load resistance of RL is
connected to the output side. The parameters h11, h12, h21, and h22 are, respectively, short-circuit
input impedance, the open-circuit reverse voltage gain, the short-circuit forward current gain, and
open-circuit output admittance. Since a combination of different parameters are used, it is called a
hybrid model. The principal component is a current-controlled current source. Let us determine the
voltage gain, current gain, input and output impedances of the circuit.

In the analysis of practical systems, a mathematical model is formulated. The complexity of the
model depends upon the required accuracy of the analysis. Further, it also depends on the operating
environment. For example, the complexity of the model may be high for high-frequency operation.
For understanding the basic behavior of the system, the simplest model is sufficient. The parameters
h12 and h22 can be, for a first approximation, assumed to be 0. The ratio of the output and input current
is high. That is, the device is, basically, a current-controlled current source.

Let us find the current gain I2/I1. Since V2 = −I2ZL,

I2 = h21I1 − h22I2ZL and Ai = I2

I1
= h21

1 + h22ZL

.

Let us find the input impedance. From the first defining equation of the hybrid model and the current
gain Ai , we get

V1 = h11I1 − h12I2ZL and Zin = V1

I1
= h11 − h12h21ZL

1 + h22ZL

.

The output impedance is the Thévenin equivalent impedance at the output terminals. The input voltage
source is short-circuited, leaving Zs . Since the circuit contains dependent sources, we apply a 1-V
voltage source at the output terminals and disconnect ZL, V2 = 1. Now, Zo = 1/I2.

I1 = − h12

h11 + Zs

.

Fig. 7.7 The hybrid
model of a transistor
amplifier circuit

∼ −+
Zs

+
Vs

h12V2
h21I1

h11

h22 ZL

I1 I2

V1 V2

www.TechnicalPDF.com



7.5 Examples 229

Fig. 7.8 The hybrid
model of a bipolar
transistor amplifier circuit

+
−

−+
Zs0.5kΩ

1mV
0.0002V2

100I1

0.0001

1kΩ
h11

h22 ZL2kΩ

I1 I2

V1 V2

Since I2 = h22 + h21I1 and substituting for I1, we get

Zo = 1

I2
= h11 + Zs

(h11 + Zs)h22 − h12h21
.

Let us find the voltage gain. From the current gain,

I2 = I1
h21

1 + h22ZL

= I1h21 + h22V2 and I1 = h22V2
h21

1+h22ZL
− h21

.

Since V1 = h11I1 + h21V2 and substituting for I1, we get

Av = V2

V1
= − h21ZL

h11 + ZL(h11h22 − h12h21)
.

Example
Let us determine the voltage gain, current gain, input and output impedances of the circuit shown in
Fig. 7.8. All the required parameter values are shown in the figure. The voltage gain, current gain,
input and output impedances, using the formulas derived, are, respectively, −172.4138, 83.3333,
999.9833 � and 11,538 �. Now, we have to find V2, I1 and I2. Let us find

I1 = h22V2
h21

1+h22ZL
− h21

V1 = V2

Av

.

Applying KVL to the left side of the circuit, we get

Vs = ZsI1 + V1.

Substituting for I1 and V1 in this equation, we get

Vs =
(

Zs

h22
h21

1+h22ZL
− h21

+ 1

Av

)
V2 and

V2

Vs

= −113.6364,

which is the circuit voltage gain. Therefore, this gain multiplied by the input source voltage gives V2

V2 = (0.001)(−113.6364) = −113.6 × 10−3 V = −113.6 mV
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I2 = V2

ZL

= 0.1136

2000
= 56.88 × 10−6 A = 56.8µA

I1 = I2

Ai

= 0.0000568

83.3333
= 0.6818 × 10−6 A = 0.6818µA

V1 = V2

Av

= −113.6 mV

−172.4138
= 0.6591 × 10−3 V = 0.6591 mV

7.5.3 Analysis of a Bridge Circuit

Let us find the impedance parameters for the bridge circuit shown in Fig. 7.9, assuming that R4 is the
load resistor and DC source. Using the model derived, let us find V1 and V2. The parameter definitions
are

Z11 = V1

I1
|I2=0 and Z22 = V2

I2
|I1=0.

Z12 = V1

I2
|I1=0 and Z21 = V2

I1
|I2=0

Figure 7.10 is appropriate for finding Z11 and Z21. The load circuit is open-circuited, so that the
constraint I2 = 0 is met. The DC source is 1V. We have to find the equivalent resistance to find I1 and
V2.

Zeq = Z11 = 3 + (1) ‖ (3 + 1) = 19

5
and

1

Zeq

= I1 = 5

19
A.

Fig. 7.9 A bridge circuit

V1 V2

R1 1 Ω R2 3 Ω

R3 3 Ω R4 1 Ω

R5

1 Ω

I1 = 0.6A

I2 = −0.4A

Fig. 7.10 Determination
of Z11

V1 =1V V2 = 16
19

R1 1 Ω R2 3 Ω

R3 3 Ω

R5

1 Ω

I1 = 5
19A

IZ2 = 1
19A

I2 =0A
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Fig. 7.11 Determination
of Z22

V1 = 16
19V

V2 = 1V

R1 1 Ω R2 3 Ω

R3 3 Ω

R5

1 Ω

I1 = 0A

I2 = 5
19A

By current division,

IZ2 = I1

5
= 1

19
and V2 = 1 − 3

19
= 16

19
V

Z21 = V2

I1
|I2=0 = 16

5
.

Figure 7.11 is appropriate for finding Z22 and Z12. As the circuit is reciprocal, however, the parameter
matrix is symmetric. Therefore,

Z =
[

19
5

16
5

16
5

19
5 .

]

Using the input–output relations, we get

[
Z11 Z12

Z21 Z22

] [
I1

I2

]
=
[

V1

V2

]
and

[
19
5

16
5

16
5

19
5

][
0.6

−0.4

]
=
[

1
0.4

]

as found in loop analysis earlier.
From this example, it is clear that the circuit is considered as completely enclosed in a box with

access being restricted to the terminals of the input and output ports only. Any two terminal pair of
the circuit can be chosen for the two-port model. The model is useful in practice, since we are not
usually interested in all the currents and voltages in the circuit. Therefore, in deriving the model,
we systematically eliminate all the variables whose accessibility is not called for. Consequently, a N

terminal pair circuit is abridged to a two-terminal pair.

7.5.4 Ladder Circuit

Ladder circuits are interconnection of repeating units of impedances with the same structure. Digital-
to-analog conversion circuits, transmission lines, and filters are typical applications. As it has a
structure, a general loop or nodal analysis is not required. Most of the circuits encountered in practice
have some geometrical symmetry. In general, any short cuts applicable to the circuit that is being
analyzed should be taken advantage to simplify the analysis.

Figure 7.12 shows a resistive ladder circuit with the resistance values indicated. A 1-V source
energizes the circuit. First, let us find the currents and voltages at all parts of the circuit. Then, a
two-port model will be derived using the transmission parameters.

The approach is to ignore the source voltage to start with and assume the voltage at the rightmost
node to be v3 = 1 V. Then, find the value of the input source voltage that gives v3, the assumed
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Fig. 7.12 A resistive
ladder circuit

+
−1V

1Ω 3Ω 5Ω

2Ω 4Ω 6Ω

I1 I2

V1 V2

i1 i3 i5

i2 i4 i6

v1 v2 v3

voltage. Now, i6 = i5 = 1/6 A.

v2 = 11

6
V and i4 = 11

24
A

v1 = 11

6
+ 3

6
+ 33

24
= 89

24
V and i2 = 89

48
A

V1 = 89

24
+ 1

6
+ 11

24
+ 89

48
= 297

48
V.

To obtain 1V at the output, an input of 297/48 V is required. For 1 V input, we have to divide all the
currents and voltages by 297/48. Then, we get

V1 = 1, v1 = 0.5993, v2 = 0.2963, v3 = 0.1616

and
i1 = 0.4007, i2 = 0.2997, i3 = 0.1010, i4 = 0.0741, i5 = i6 = 0.0269 A.

Two-Port Model with Transmission Parameters
The characterizing equations of this model are

A = V1

V2
|I2=0, B = −V1

I2
|V2=0 �, C = I1

V2
|I2=0 �, D = −I1

I2
|V2=0.

In matrix form, [
A B

C D

] [
V2

−I2

]
=
[

V1

I1

]
.

In deriving this model, we use the property that the transmission parameters of a model of two circuits
connected in cascade is the matrix product of their individual parameters. The order of the matrix
multiplication has to be the same as that of the interconnection.

Consider the part of the circuit with resistors Z1 = 1 � and Y2 = 1/Z2 = 1/2�.

V2 = V1Z2

Z1 + Z2
and A = V1

V2
= 1 + Z1Y2

B = − V1

−V1/Z1
= Z1

V2 = V1Z2

Z1 + Z2
, I1 = V1

Z1 + Z2
and C = Y2
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[
A B

C D

]
=
[

1 + Z1Y2 Z1

Y2 1

]
.

As three sections are connected, the transmission parameters of the whole network is the product of
the three.

[
A B

C D

]
=
[

1.5000 1

0.5000 1

][
1.7500 3

0.2500 1

][
1.8333 5

0.1667 1

]
=
[

6.1875 19.8750

2.4792 8.1250

]
.

Assume that a ZL = 1 � load resistor is connected to the output side, making the circuit terminated.
Substituting V2 = −I2ZL in the defining equations of the transmission model, we get the input
impedance Zin.

AV2 − BI2 = V1 = −I2AZL − BI2 = −I2(AZL + B) (7.25)

CV2 − DI2 = I1 = −I2CZL − DI2 = −I2(CZL + D) (7.26)

Zin = V1

I1
= AZL + B

CZL + D
.

Substituting numerical values, we get Zin = 2.4578 � and, with 1 V input, Iin = 1/2.4578 =
0.4069 A. With the load resistor disconnected, the output voltage is 0.1616 V, as found earlier. The
Thévenin equivalent resistance, the output resistance of the circuit, with the input source short-
circuited and the load resistor disconnected is

Zo = ((((1 ‖ 2) + 3) ‖ 4) + 5) ‖ 6 = 3.2121 �.

The current through the load resistor 1 � is

−I2 = 0.1616

3.2121 + 1
= 0.0384 A.

Substituting V2 = −I2ZL = 0.0384 and −I2 = 0.0384 in the defining equation of the model, we get
back V1 = 1 V and I1 = 0.4069 A.

[
6.1875 19.8750

2.4792 8.1250

][
0.0384

0.0384

]
=
[

1

0.4069

]
=
[

V1

I1

]
.

Using the defining equation for V1 in the model, the voltage gain is

V2

V1
= ZL

AZL + B
= 0.0384.

7.6 Application

7.6.1 Digital-to-Analog Converter: TheR − 2R Ladder Circuit

As digital circuits are advantageous, although most naturally occurring signals are analog, signals are
converted to digital form, processed and converted back to analog form. This type of transformation
is common in signal processing. We learnt that the mathematically equivalent complex sinusoid is
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more convenient for analysis, although the real sinusoids occur in practical applications. Similarly,
signals naturally occur in the time-domain form, but are transformed to frequency-domain for efficient
processing and converted back to time-domain. In using digital systems for processing analog signals,
an analog-to-digital converter converts the signal to the digital form. The digital signal is processed
and converted back to analog form by a digital-to-analog converter. The R − 2R ladder circuit is a
simple converter. The input digital signals are in binary form. The binary digits, called bits, consist of
1 and 0 only.

The Number System
A number is a sequence of digits. In a radix-N number system, there are N distinct digits. In the
decimal number system with radix 10, there are 10 distinct digits,

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

The weight of each digit depends on its position. A number is, in general, is written as

bN−1, bN−2, . . . , b1, b0.

For example,
125 = 1 × 102 + 2 × 101 + 5 × 100.

While the digital system is suitable for human beings, the binary number system, with only two digits
(0,1), is used in digital computers. For example,

10 = 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20.

Each digit in the binary number system is called a bit, an abbreviation for binary digit. The rightmost
digit has the smallest weight and it is called the least significant bit (LSB). The leftmost digit has the
highest weight and it is called the most significant bit (MSB). Decimal numbers from 0 to 15 and the
corresponding binary numbers are shown, respectively, in the first and second columns of Table 7.1.

Table 7.1 Decimal
numbers from 0 to 15 and
the corresponding binary
numbers

Decimal number Binary number b3b2b1b0

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111
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R − 2R Ladder Circuit
The block diagram of a 4-bit digital-to-analog converter with voltage output is shown in Fig. 7.13.
The converter converts a 4-bit digital input to an analog output. The 4-bit input can be any of the
combination shown in the binary column in Table 7.1. Figure 7.14 shows the R−2R ladder circuit for
4-bit digital-to-analog conversion. In this circuit, only resistors with two values are used. The binary
input is applied in bit-reversed form to the converter. That is, the least significant bit is applied to
the leftmost input point. Let us assume that a “1” input implies that 16 V is applied to the circuit. A
“0” input implies that 0 V is applied to the circuit (connected to the ground terminal). The converted
output will be from 0 to 15 V. The expression for the analog output voltage is given by

Vo = b0

16
+ b1

8
+ b2

4
+ b3

2
.

The analog output for any of the digital inputs can be determined using Thévenin’s and
superposition theorems. Let us find the output with the value of the b0-bit to be “1” and all the other
bits input terminal points grounded (zero voltage). Let us replace the b0-bit stage by its Thévenin
equivalent circuit, shown to the left of the circle in Fig. 7.15. The equivalent resistance R is the parallel
combination of two resistors, each with value 2R. The open-circuit voltage is b0/2. At the next stage
this voltage further divided by a factor of 2 to become b0/4. In each stage, it gets divided by a factor
of 2 and finally the output becomes b0/16. With the input voltage applied at the terminal being 16 V,
the output voltage is 1 V. The input voltage can be changed to get the required range of output. In a

Fig. 7.13 Block diagram
of a 4-bit digital-to-analog
converter with voltage
output

Vo

b0

4-bit DACb1

b2

b3

Fig. 7.14 R − 2R ladder
circuit for 4-bit
digital-to-analog
conversion

Vo

2R 2R 2R 2R

2R

R R R

b0 b1 b2 b3

Vo = b0
16 + b1

8 + b2
4 + b3

2

Fig. 7.15 R − 2R ladder
circuit with the b0-bit stage
replaced by its Thévenin
equivalent circuit

Vo = b0
16

2R 2R 2R

R R RR

b0
2

b0
4

b0
8
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similar way, the output due to b1 is 2 V. The total output is the some of the voltages contributed by the
bits with value “1.” Table 7.1 shows the output for all combination of the bits. The output resistance
is always equal to R.

7.7 Summary

• A two-port circuit has two separate ports for input and output.
• A two-port circuit may have dependent sources but no independent source. Two-port models are

widely used in the study of amplifier, communication and power system circuits.
• In modeling a circuit with impedance parameters, voltages V1 and V2 are expressed in terms of

currents I1 and I2.
• In all the models, the procedure to determine the parameter matrix is the same. An appropriate

voltage or current is applied at one port, short-circuit or open-circuit on the other port depending
on the parameter of interest, and use regular circuit analysis.

• A large circuit is an interconnection of a set of smaller circuits. The interconnection may be in
series, parallel, or cascade. The model for the whole circuit can be expressed as an appropriate
combination of its component parts.

• Along with the defining equations of the two-port network, such as Eqs. (7.1) and (7.2) and the
constraints imposed at the input and output, we can determine the parameters such as the input
impedance.

• In modeling a circuit with admittance parameters, currents I1 and I2 are expressed in terms of
voltages V1 and V2.

• The impedance and admittance matrices are the inverses of each other. Conversion formulas are
available to convert one model into another.

• In modeling a circuit with hybrid parameters, V1 and I2 are the dependent variables, while I1 and
V2 are the independent variables. It is especially important in the analysis of amplifying devices
and ideal transformers. They are called hybrid parameters, since they are a hybrid combination of
ratios.

• In modeling a circuit with transmission parameters, V1 and I1 are the dependent variables and V2

and I2 are the independent variables. This model is useful in the analysis of transmission lines and
referred as transmission or ABCD parameters.

Exercises

* 7.1 Find the impedance parameters for the bridged-T circuit shown in Fig. 7.16 by two methods and
verify that both are the same.

Fig. 7.16 A bridged-T
circuit

V1 V2
Z1

Z3

Z2

Z4

1−j2Ω

2+j1Ω

1+j1Ω

3+j2Ω

I1 I2
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Fig. 7.17 A bridge circuit

V1 V2

R1 1 Ω R2 3 Ω

R3 3 Ω R4 1 Ω

R5

1 Ω, 0.2A

I1 = 0.6A

I2

Fig. 7.18 Circuit with a
mutual inductance

∼

I1

I2

C2
0.2F

V1

V2

R1

2Ω
k=
0.5

L1
4H

L2
1H

R2
1Ω

Fig. 7.19 A π circuit
V1 V2

Z1 Z3

Z2

−j
Ω

−j
Ω

2+j1Ω

I1 I2

7.2 Find the impedance parameters for the bridge circuit shown in Fig. 7.17, assuming that R5 is
the load resistor and DC source. Using the model derived, find V1 and V2.

* 7.3 Find the admittance parameters for the bridged-T circuit shown in Fig. 7.16 by decomposing it
into a combination of two parallel circuits with Z4 constituting one part and the rest another.

7.4 Find the impedance parameters for the mutually coupled inductors shown in Fig. 7.18, assuming
that R2 is the load resistor. The frequency of operation is 2 rad/s. Given that I1 = −0.08054 −
j0.04362 and I2 = −0.13423 + j0.09396. Using the model derived, find V1 and V2. Use the
equivalent T model.

* 7.5 Find the transmission parameters for the circuit shown in Fig. 7.19. Given that V2 = (0.1379 −
j0.3448) V and I2 = (0.0690 − j0.1724) A. Using the model derived, find V1 and I1.
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Transform means change in form. For example, in finding the derivative of the product of two
functions, we use the product rule and transform the problem into an easier one. Multiplication
operation is more difficult than addition operation. By expressing the numbers in logarithmic form,
we reduce the multiplication operation into an addition. For example,

8 × 4 = 23 × 22 = 25 = 32.

Signals occur mostly in the time-domain form, x(t). Time t is the independent variable and x(t),
the signal amplitude, is the dependent variable. Practical systems can be mathematically modeled,
for analysis and design, by differential equations. For example, the input–output relationship of an
inductor is

v(t) = L
di(t)

dt
.

Practical systems are composed of large number of elements interconnected. Consequently, the order
of the differential equation characterizing the system becomes large and solving it also becomes
difficult. The principal transforms, Fourier series, Fourier transform, and Laplace transform used in
signal and system analysis reduce the differential equation into an algebraic equation. For example,
the input–output relationship of an inductor, in the Laplace transform domain, is

V (s) = sLI (s).

In the transform domain, frequency becomes the independent variable. Both the time-domain and
frequency-domain representation completely specify a signal or a system. As the analysis, in general,
is easier in the frequency-domain and the signals occur in the time-domain, we transform the signal
to the frequency-domain, find the solution, and transform it back to the time-domain.

Thus far, we mostly studied the response of a circuit to a single frequency sinusoidal voltage and
current sources and the DC source with zero frequency. In presenting the linearity property, it was
pointed out that the response to an input source, that is a combination of waves of different frequencies,
must be individually found and added to find the total response. One reason for the importance of the
response to sinusoidal sources with single frequency is that analysis of circuits is easier. Another
important reason is that any waveform, encountered in practice, can be decomposed into a set of
sinusoidal waveforms by transforms. In applications, the input sources may be periodic or aperiodic
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240 8 Transform Analysis and Transient Response

with arbitrary amplitude profile. The frequency components of the input waveform are first separated
using a transform, the response to each frequency component is found separately, and the sum of all
the responses is the total response of the circuit. Fourier series is most suitable to decompose periodic
waveforms. Therefore, the steps involved in practical circuit analysis are as follows:

1. Decompose the periodic input source into its frequency components by finding the correspond-
ing Fourier series

2. Find the frequency-domain representation of the circuit, as we do in AC circuit analysis
3. Find the response of the circuit to each of the frequency component separately
4. Using the linearity property of linear systems, we add up the individual responses to find the

total response

All the tools, such as nodal and mesh analysis and circuit theorems, remain the same with the
constraint that each frequency component of the source must be considered individually.

Therefore, the first step in analyzing the response to an arbitrary periodic input is to decompose
it in terms of its constitutional sinusoids of various frequencies. While this decomposition, in the
mathematical form, looks formidable, it is as simple as finding the amount of a bag of coins with
various denominations. The details make it looks difficult. One can easily get used to transform
analysis with sufficient paper-and-pencil and programming practice. The amount of coins in a bag
can be found by taking one coin at a time, adding its value to a partial sum. After the values of all
the coins are added up, we get the total amount. This procedure is preferable if the number of coins is
small. For a large number of coins, a better procedure is to sort the coins into various denominations,
count the number of coins in each denomination, multiply this number by their corresponding values,
and sum all the partial amounts of the various denominations. In the transform analysis of a system, the
same procedure is used. The various frequency components are separated by an appropriate transform
such as Fourier series, Fourier transform, or Laplace transform. The individual responses of the circuit
are found and all the responses are added to find the total response.

8.1 Fourier Series

A periodic signal x(t) satisfies the condition x(t) = x(t + T ), for all values of t from −∞ to ∞ and
T > 0 is a positive constant. The period is the minimum value of T that satisfies the condition. As it
repeats its value over a period indefinitely, it remains unchanged by a shift of an integral number of
its period. All the signals those do not satisfy x(t) = x(t + T ) are called aperiodic signals. That is,
the period is infinity.

Each room in a house has a lock and a key. Only a particular key will open the lock of the
corresponding room. That is, the key and the lock are a matched pair. Any other key cannot open that
lock. Similarly, a signal is composed of a set of frequency components. The frequency components
have a property, called the orthogonal property, in that the integral of the product of the signal,
over a period, with the conjugate of a certain frequency component will yield the coefficient of that
component in the signal alone. This is a similarity test. Repeating this procedure for all the components
of interest, we know the frequency content of the signal, called its spectrum.

While practical signal generators, such as an oscillator, generate real sinusoidal waveforms, for
analysis purposes, the mathematically equivalent complex exponentials are used due to its compact
form and ease of use. In this case, orthogonality of two complex exponentials is that the integral of
the product of an exponential and the conjugate of the other exponential over a period is zero or a

constant. For the two periodic complex exponentials ej 2π
T

kt and ej 2π
T

lt over a period of T seconds, the
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orthogonality condition is given by

∫ T

0
ej 2π

T
(k−l)t dt =

{
T for k = l

0 for k �= l

For k = l, the integral evaluates to T . For k �= l, the integral evaluates to zero. This is also obvious
from the fact that the sine and cosine components of the exponentials are symmetrical about the x-
axis. The integral of a cosine or sine waveform, over an integral number of periods, with a nonzero
frequency index is always zero. That is, with k − l = m,

∫ T

0
ej 2π

T
mtdt = 0.

Fourier analysis problem is to find the coefficients X(k) in the complex exponential polynomial
representation of a time-domain function x(t) with period T and the fundamental frequency ω0 =
2π/T

x(t) =
∞∑

k=−∞
X(k)ejkω0t , (8.1)

where

X(k) = 1

T

∫ T

0
x(t)e−jkω0t dt, −∞, . . . ,−1, 0,−1, . . . ,∞. (8.2)

where k is an integer. As x(t) is periodic with period T , the integral can be evaluated over any
continuous interval of duration T . In the second equation, x(t) and the exponentials are known. The
coefficients X(k) are found, using the orthogonality property, by integrating the product of x(t) with
the conjugate of each of the exponentials, in turn, composing x(t). The Fourier synthesis problem is
to find x(t), given X(k) and the exponentials. It is the sum of all the exponentials multiplied by their
respective coefficients. The Fourier reconstructed waveform is with respect to the least squares error
criterion.

Example 8.1 Find the FS for the signal

x(t) = 2 − 2 sin

(
2

2π

5
t + π

6

)
+ 4 cos

(
4

2π

5
t − π

3

)
.

Solution One period of the signal is shown in Fig. 8.1a. As the signal is given in terms of cosine and
sine functions, we just have to express these functions in terms of complex exponentials using Euler’s
formula. The fundamental frequency of the waveform is ω0 = 2 2π

5 , as the DC component is periodic
with any period. The period is 2.5. All the components of x(t) are rewritten using cosine waveform
with positive amplitude for each frequency.

x(t) = 2 + 2 cos

(
2

2π

5
t + 2π

3

)
+ 4 cos

(
4

2π

5
t − π

3

)

Using Euler’s formula, we get

x(t) = 2 + 1e
j
(

2 2π
5 t+ 2π

3

)

+ 1e
−j
(

2 2π
5 t+ 2π

3

)

+ 2e
j
(

4 2π
5 t− π

3

)

+ 2e
−j
(

4 2π
5 t− π

3

)

.

www.TechnicalPDF.com



242 8 Transform Analysis and Transient Response
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Fig. 8.1 (a) A periodic waveform, x(t) = 2 − 2 sin
(

2 2π
5 t + π

6

)
+ 4 cos

(
4 2π

5 t − π
3

)
, with period 2.5 s; (b) the

frequency components of the waveform in (a); (c) its frequency-domain representation, the magnitude; (d) the phase

Comparing this expression with the definition, Eq. (8.1), we get the exponential form of the FS
coefficients as

{X(0) = 2, X(1) = 1� 2π

3
, X(−1) = 1� −2π

3
, X(2) = 2� −π

3
, X(−2) = 2� π

3
.

Figure 8.1b shows the three frequency components of the signal. The FS magnitude spectrum and the
phase spectrum of the signal are shown, respectively, in Fig. 8.1c, d. �

8.1.1 Fourier Series of a Rectified SineWave

Although AC power supply is widely used in the generation, transmission, distribution, and utilization
of electrical power, DC power supply is equally important in that it is used in important applications
such as traction and most electronic appliances require DC power supply. DC power is mostly derived
from the AC supply by rectifiers, followed by filters and regulators. As the AC source is a periodic
waveform, Fourier series version of Fourier analysis is appropriate for the analysis and design of DC
power supplies.

A rectifier converts the sinusoidal voltage with average value zero into a voltage with a nonzero
average value. The negative half-cycle of the sinusoidal waveform is also changed into a positive half-
cycle. Then, we have to analyze the rectified voltage using Fourier series representation to find out
the magnitude of the various unwanted harmonic components and the extent to which they have to be
reduced. Let us find the FS representation of the full-wave rectified waveform given by

v(t) = 110| sin(ω0t)| V
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with the fundamental frequency f0 = 60 Hz, ω0 = 2πf0 = 377 rad/s and period T = 1/f0 =
0.0167 s. One period of the waveform is shown in Fig. 8.2a. A waveform is even-symmetric, if the
signal is symmetric with respect to the vertical axis at the origin, v(−t) = v(t). As finding the
amplitude of each frequency component is the integral of the product and the integral of the product
of an even-symmetric signal with an odd-symmetric signal is zero, the rectified waveform v(t) consists
of cosine components only. Further, the waveform makes two cycles in its period. That is, it repeats
its amplitude profile two times. This type of symmetry is called half-wave symmetry, v(t) = v(t ±
T/2). Consequently, the integral of its product with odd-indexed harmonics is zero. Therefore, the
constituent frequency components of v(t) are even-indexed cosine waves only. The Fourier series
definition for this type of waveform reduces to finding the integrals of the product of v(t) with even-
indexed cosine waves only. The average value, with the harmonic index k = 0, is

X(0) = 110

(
2

T

)∫ T
2

0
sin

(
2π

T
t

)
dt = 110

(
2

π

)
= 70.0282.

For other even-indexed k, we get

X(2k) = 4

T

∫ T
2

0
110 sin(ω0t) cos(2kω0t)dt

= 2
110

T

∫ T
2

0
(sin((1 − 2k)ω0t) + sin((1 + 2k)ω0t))dt

= −2
110

T

(
cos((1 − 2k)ω0t)

(1 − 2k)ω0
+ cos((1 + 2k)ω0t)

(1 + 2k)ω0

) ∣∣∣∣
T
2
0

= 220

π

(
1

1 − 4k2

)

v(t) = 220

π
+

∞∑

k=1

440

π(1 − 4k2)
cos(2k(377)t)

= 220

π
− 440

3π
cos(2ω0t) − 4

15π
cos(4ω0t) − 4

35π
cos(6ω0t) + · · · .

Figure 8.2b shows its DC component and its reconstruction with the DC and the second harmonic.
Figure 8.2c shows its reconstruction with the DC and the second and fourth harmonics. Figure 8.2d
shows its reconstruction with the DC and the second, fourth, and sixth harmonics. The decomposition
of waveforms in Fourier analysis basically serves two purposes. One is to reconstruct the waveform by
truncating the series (for compression). In this type of application, all the harmonics are of interest. In
another type, the harmonic content has to be reduced. For example, they are unwanted in making a DC
power supply. Sometimes, they may represent noise components of a signal. In Fourier reconstruction
of the waveform, the waveform resembles the original waveform as more and more harmonics are used
in the reconstruction, as shown in Fig. 8.2b–d. In applications, where the magnitude of the harmonics
has to be reduced, the harmonic content is reduced to a desired level. Figure 8.2e, f shows, respectively,
the fourth and sixth harmonics of the rectified voltage waveform. For filtering, harmonics have to be
reduced to an acceptable level.
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Fig. 8.2 (a) Full-wave rectified sine wave; (b) its reconstruction with DC and second harmonic; (c) and (d) its
reconstruction with the DC, second, fourth, and sixth harmonics, respectively; (e) its fourth harmonic; (f) its sixth
harmonic

Fourier decomposition of the square wave is usually presented as the first example in teaching
Fourier analysis. One reason is that it is important in the operation of digital circuits. Another reason
is that it brings out a minor shortcoming of the Fourier analysis. The sinusoidal waveforms are used in
Fourier reconstruction of waveforms. It is not possible to reconstruct a square pulse with sharp edges
exactly by smooth sinusoids, as presented later.

Example 8.2 Find the FS for a square wave defined over one period as

v(t) =
{

1 for 0 < t < π

0 for π < t < 2π
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t
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Fig. 8.3 The FS reconstructed square wave. (a) Using up to the first harmonic; (b) using up to the third harmonic; (c)
using up to the seventh harmonic; (d) using up to the fifteenth harmonic

Solution The waveform is shown in Fig. 8.3. The period of the waveform is T = 2π and the
fundamental frequency is ω0 = 1. In contrast to the rectified waveform in the last example, this
waveform is odd- and odd half-wave symmetric. Therefore, it is composed of odd-indexed sine
components only, in addition to the DC component.

X(0) = 1

2π

∫ π

0
dt = 1

2

X(k) = 2

2π

∫ π

0
sin(k t)dt =

{ 2
kπ

for k odd
0 for k even and k �= 0

The coefficient X(0) is the average value of v(t).

v(t) = 1

2
+ 2

π
(sin(t) + 1

3
sin(3t) + 1

5
sin(5t) − · · · ). (8.3)

In exponential form, the magnitude of the components, except DC, gets divided by 2. The FS
magnitude spectrum and the phase spectrum of the signal in exponential form are shown, respectively,
in Fig. 8.4a, b. �
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Fig. 8.4 (a) The FS magnitude spectrum and (b) the phase spectrum of the square wave in exponential form

8.1.2 Gibbs Phenomenon

The reconstructed square waveforms using up to the first, third, seventh, and fifteenth harmonics
are shown in Fig. 8.3a–d, respectively. The magnitude of the harmonics decreases with increasing fre-
quency. The more smoother the waveform, the faster is the decay. For waveforms with discontinuities,
such as the square wave, the magnitude decrease is inversely proportional to the harmonic number. For
waveforms without any discontinuity, the reconstructed waveform converges to the original waveform
with more number of harmonics.

At any discontinuity, the reconstructed waveform never converges even in the limit. There is a
8.69% deviation, called the Gibbs phenomenon. However, the area under the deviation tends to zero.
Let p and q be the values of the given waveform at either side of a discontinuity. The reconstructed
waveform converges to a value r . As the criterion of convergence is in a least squares error sense, at
the point of discontinuity,

(p − r)2 + (q − r)2

must be minimum. By differentiating the expression with respect to r and then equating it to zero, we
get p− r +q − r = 0 and r = (p+q)/2. The expression for the FS reconstructed waveform up to the
first harmonic is v(t) = 1

2 + 2
π

sin(t). Differentiating this expression with respect to t and equating it
to zero, we get cos(t) = 0. The point t = π/2 is a solution to this equation. Substituting t = π/2 in
the expression for v(t), we get the value of the peak as 1.1366, as shown in Fig. 8.3a. The maximum
overshoots in other cases can be found similarly.

8.2 Fourier Transform

The FT is the limiting case of the FS as the period of the waveform tends to infinity. The frequency
increment tends to zero. Then, we get a transform pair in which both the time-domain signal and its
spectrum are aperiodic and continuous. The process of finding the spectrum remains the same in that
we find the integral of products of the signal with complex exponentials. The limit of the integral is
from −∞ to ∞ and there are an infinite number of frequency components in the continuous spectrum.
The FT X(jω) of v(t) is defined as

X(jω) =
∫ ∞

−∞
v(t)e−jωtdt. (8.4)
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Fig. 8.5 (a) The pulse v(t) = u(t) − u(t − π) and (b) its FT spectrum

The inverse FT v(t) of X(jω) is defined as

v(t) = 1

2π

∫ ∞

−∞
X(jω)ejωtdω. (8.5)

Example 8.3 Find the FT of the rectangular pulse v(t) = u(t) − u(t − a), where u(t) is the unit-step
signal.

Solution

X(jω) =
∫ a

0
e−jωtdt = 2 sin(0.5ωa)

ω
e−j0.5ωa

u(t) − u(t − a) ↔ 2 sin(0.5ωa)

ω
e−j0.5ωa.

The pulse and its FT are shown, respectively, in Fig. 8.5a, b with a = π . �

Fourier transform is the most generalized version of the Fourier analysis. The FS of signal, which
is a repetition of an aperiodic signal, can be deduced from the FT. The relationship is given by

X(k) = 1

T
X(jkω0).

The discrete samples of the FT spectrum at intervals of the fundamental frequency, ω0, divided by
the period are the FS spectrum. The reason for the FT spectrum to be continuous is that it has to
reconstruct the pulse, in addition to the infinite extent zeros on either side of the pulse.

Let us determine the FS for the example from the corresponding FT. Since X(k) = 1
T

X(jkω0),
with T = 2π and ω = kω0 = k 2π

2π
= k, we get

X(k) = 2

2π

sin(0.5πk)

k
e−j0.5πk = 1

π

sin(π
2 k)

k
e−j π

2 k, k �= 0 and X(0) = 1

2
.

The FS is

x(t) = 1

2
+

∞∑

k=−∞

1

π

sin(π
2 k)

k
e−j π

2 kejkt , k �= 0,

as found earlier. The even-indexed coefficients are zero and the coefficients of the sine component of
the complex exponentials are 2/(kπ). For example, with k = 1 and k = −1 and leaving the factor π
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in the denominator, we get

(1)(−j1)ejt = −jejt = ejt

j
, (1)(j1)e−j t = je−j t = −e−j t

j
,

ejt − e−j t

j
= 2 sin(t).

Since t or ω is zero, the values X(j0) and v(0) can be easily determined and can be used to verify
the closed-form expressions for X(jω) or v(t).

X(j0) =
∫ ∞

−∞
v(t)dt and v(0) = 1

2π

∫ ∞

−∞
X(jω)dω.

For the example waveform, the area of v(t) is π , which is X(j0). The area of the spectrum is the
area inscribed by the main lobe of the oscillating spectrum. The area is 2π , which divided by 2π is
v(0) = 1.

8.2.1 The Transfer Function and the Frequency Response

The FT extends Fourier analysis for the analysis of circuits with aperiodic source signals, which is
important in that most signals in applications are aperiodic. The transfer function is a frequency-
domain model of systems that relates the input and output. As multiplication with it transfers input
to output, it is called as a transfer function, H(jω). It is defined as the ratio of the output response,
Y (jω), to the input excitation, V (jω), where V (jω) and Y (jω) are, respectively, the FT of input v(t)

and output y(t). That is,

H(jω) = Y (jω)

V (jω)
.

The transfer function is also called the frequency response, as it is the response to the input ejωt

with the frequency continuously varying from −∞ to ∞. The frequency response clearly depicts the
response of the circuit for various frequency components.

The sinusoidal and the impulse signals are the most important waveforms in the analysis of signals
and systems. The sinusoid is the basis signal in the frequency-domain and the impulse is the basis
signal in the time-domain. The unit-impulse, as presented in detail later, is characterized by its unit
area enclosed at t = 0.

Example 8.4 Determine the FT of the unit-impulse signal v(t) = δ(t).

Solution As it encloses unit area at t = 0, we get

X(jω) =
∫ ∞

−∞
δ(t)e−jωtdt = e−jω0

∫ ∞

−∞
δ(t)dt = 1 and δ(t) ↔ 1.

Since the spectrum is 1, the impulse is composed of components of all frequencies from ω = −∞ to
ω = ∞ in equal proportion. That is,
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Fig. 8.6 (a) v(t) = e−t u(t) and (b) its FT spectrum. The real part of the FT is shown by the continuous line and the
imaginary part is shown by the dashed line

δ(t) = 1

2π

∫ ∞

−∞
ejωtdω = 1

π

∫ ∞

0
cos(ωt)dω.

�

The real exponential signal is also important in that the natural response of systems is of that
form and it occurs in problems involving exponential growth and decay of signals, such as capacitor
discharge and computation of compound interest.

Example 8.5 Find the FT X(jω) of the exponential signal v(t) = e−t u(t), where u(t) is the unit-step
signal.

Solution

X(jω) =
∫ ∞

0
e−t e−jωtdt =

∫ ∞

0
e−(1+jω)t dt = −e−(1+jω)t

1 + jω

∣∣∣∣∣

∞

0

= 1

1 + jω

e−t u(t) ↔ 1

1 + jω
.

Figure 8.6a, b show, respectively, the signal e−t u(t) and its FT spectrum. The real part of the
spectrum (continuous line) is an even function with a peak value of 1 at ω = 0 and the imaginary part
(dashed line) is an odd function with peaks of value ±0.5 at ω = ∓1. �

8.3 Transient Response

So far, we considered the steady-state response of circuits. In applications, such as control systems,
both the steady-state and transient responses are important. The response of systems can be considered
as composed of two parts. One is the steady-state response, which is the state of the system after
equilibrium conditions prevail upon the application of a source, whose form is similar to the input
source. The other one is the transient response, which dies down in relatively short time for stable
systems. If we start a water pump, we do not get the full flow of water instantly. The connecting pipes
in the system have to be filled up first. Therefore, at the instant we start, there is no water flow. After
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250 8 Transform Analysis and Transient Response

a short while, the water flow is as expected. Again, when we put the pump off, the water flows for
some time and then only it stops. The behavior of a system, before it attains its steady state after
the excitation is applied or to become dead from its steady-state behavior after the removal of the
excitation is called its transient response.

The transient response may be due to the input source or the initial conditions. For circuits
consisting of energy storage elements, such as an inductor or a capacitor, the characterizing equation
of the system is a differential equation. The more the number of such elements in the circuit, the
higher is the order of the system and of the characterizing differential equation. Therefore, transform
analysis is required for solving higher-order differential equations. Consequently, we use transform
methods to solve the differential equations.

8.3.1 The Unit-Impulse and Unit-Step Signals

In addition to the sinusoid, the unit-impulse and the unit-step signals, shown in Fig. 8.7a, b
respectively, are often required in the analysis of signals and systems, particularly for transient
analysis. Switching on a power supply to a system is a common operation. While practical switches
require finite time in transition from one state to the other state, for mathematical convenience, we
assume that the switching occurs instantaneously. Although it has a discontinuity and no derivative in
the normal function theory, the impulse is derived by a limiting process to be its derivative.

The unit-impulse is characterized by its unit area enclosed at t = 0. It is defined by an integral of
the product of a continuous signal and itself as

∫ ∞

−∞
v(t)δ(t) dt = v(0).

The impulse with zero width and infinite area is difficult to visualize. In practice, an approximation
with a suitable finite width and unit area is adequate for understanding and measurement purposes.
The integral of the product of a function with unit-area pulse evaluates to the average value of the
function during the width of the pulse. As the width is reduced, the pulse resembles more like an
impulse and the accuracy improves. In the limit as the width tends to zero, the exact value of the
function is returned.

The pulse, δq(t) which approximates the impulse, and the signal v(t) = et are shown in Fig. 8.8a
over a width 2. Their product v(t)δq(t) is shown by the dotted line. The integral of the product is
1.1752 with four-digit precision. v(t) is approximated by, in terms of the pulse, (1.1752)(2)δq(t)

during the width.

-4 -2 0 2 4
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1

(t)

(a)
-4 -2 0 2 4
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1

u(
t)

(b)

Fig. 8.7 (a) The unit-impulse signal; (b) the unit-step signal
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Fig. 8.8 (a) The pulse δq(t) (solid line) with width 2 and height 1
2 = 0.5. The function v(t) = e−t (dashed line) and

the product δq(t)v(t) (dotted line). (b) Same as (a) with width 0.8. (c) Same as (a) with width 0.2. (d) The area enclosed
by the product δq(t)v(t) for various values of width a

Figure 8.8b, c shows the functions with widths 0.8 and 0.2, respectively. As the pulse width is
reduced, the variation in the amplitude of the function v(t) = e−t is also reduced and the integral of
the product δq(t)v(t), which is the local average of v(t), approaches the value v(0) = 1, as shown in
Fig. 8.8d.

The Unit-Impulse as the Derivative of the Unit-Step
The unit-impulse has an area of 1 at t = 0. If we integrate it from t = −∞ to ∞, the integral will
evaluate to zero for t < 0 and to 1 for t ≥ 0, which is the unit-step function. Consider the unit-area
pulse of width 1 and height 1, shown in Fig. 8.9a by a solid line, which is an approximation to the
unit-impulse. The integral of it is a ramp function with slope 1 from t = 0 to 1 and remains 1 after that,
which is an approximation to the unit-step function. As we reduce the width of the unit-area pulse, as
shown by the dashed line, the pulse becomes a better approximation to the impulse and, consequently,
its integral approximates the unit-step function better, as shown in Fig. 8.9b. As the width tends to
zero, the pulse becomes the unit-impulse and its integral becomes the unit-step. The result is obtained
by limiting process. Therefore,

du(t)

dt
= δ(t) and

∫ t

−∞
δ(τ )dτ = u(t).

For example, the current through an inductor is proportional to the integral of the voltage across it.
Therefore, a unit-impulse voltage applied across an inductor of one henry will produce a unit-step
current through it.
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Fig. 8.9 (a) The quasi-impulse δq(t) with width 1 and height 1
1 = 1 (solid line), and with width 0.5 and height 1

0.5 = 2
(dashed line); (b) their integrals uq(t), approximating the unit-step function better as the width of the quasi-impulse
tends to zero

8.4 Laplace Transform

For system analysis, where both the transient and steady-state responses are required, the gener-
alization of Fourier analysis, called the Laplace transform, is more convenient. There are three
differences from Fourier analysis. One is that it is specifically designed for causal signals, for signals
v(t) = 0, t < 0, which enables the easier analysis of systems with initial conditions, such as a charged
capacitor. Another difference is that it can be used to study unstable systems also, as the basis signals
include exponentially growing and decaying sinusoids in contrast to constant amplitude sinusoids
used in Fourier analysis. Another difference is that the frequency variable is s rather than jω making
it easier to manipulate expressions. These differences make it highly suitable for system analysis. The
basic principle of transforms, correlation of the signal with the basis signals to find the frequency
content remains the same.

The one-sided or unilateral Laplace transform X(s) of the time-domain signal x(t) is defined as

X(s) =
∫ ∞

0−
x(t)e−st dt,

where s = (σ + jω). If σ = 0, the definition resembles that of the FT. The lower limit is 0−, which
implies that the condition of the signal immediately before t = 0 is taken into account. That is, any
jump discontinuities or impulses at t = 0 are included in the analysis. Further, with this definition,
handling of the initial conditions at t = 0− becomes easier.

Example 8.6 Determine the Laplace transform of the unit-impulse signal, δ(t) from the definition.

Solution

X(s) =
∫ ∞

0−
δ(t)e−st dt = 1, for all s and δ(t) ↔ 1, for all s.

Remember that the impulse is characterized by its unit area at t = 0. �
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Example 8.7 Determine the Laplace transform of the real exponential signal, e−atu(t) from the
definition. Substitute a = 0 in the transform obtained and get the Laplace transform of the unit-step
signal, u(t).

Solution

X(s) =
∫ ∞

0−
e−atu(t)e−st dt =

∫ ∞

0−
e−at e−st dt

=
∫ ∞

0−
e−(s+a)t dt = −e−(s+a)t

s + a

∣∣∣∣∣

∞

0−
= 1

s + a
−e−(s+a)t

s + a

∣∣∣∣∣
t=∞

.

While the Laplace transform is applicable to a larger class of signals, for some signals the transform
does not exist. Therefore, the condition, called the region of convergence, has to be mentioned for
each transform. The Laplace transform pair for the exponential signal becomes

e−atu(t) ↔ 1

s + a
, Re(s) > −a.

For complex-valued a, the convergence condition is Re(s) > Re(−a).
Substituting a = 0, we get the transform pair for the unit-step signal u(t) as

u(t) ↔ 1

s
, Re(s) > 0.

�

With a = ∓jω0,

ejω0t u(t) ↔ 1

s − jω0
, and e−jω0t u(t) ↔ 1

s + jω0
, Re(s) > 0.

Then,
sin(ω0t)u(t) = −0.5j (ejω0t u(t) − e−jω0t u(t)) ↔ ω0

s2 + ω2
0

, Re(s) > 0.

8.4.1 Properties of the Laplace Transform

The use of properties makes the analysis easier. Signals and their transforms can be decomposed in
terms of simpler components. This makes it easy to find the transform of complicated signals. Further,
the inverse transform is easily obtained.

Linearity
The transform of a linear combination of signals is the same linear combination of their individual
transforms. This property is the basis for transform analysis. Complex signals and their transforms
can be easily obtained by decomposing them into a linear combination of simpler signals.
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8.4.2 Time-Differentiation

This property expresses the transform of the time derivative of a signal in terms of its transform. If
v(t) ↔ X(s), then

d v(t)

dt
↔ sX(s) − v(0−),

where v(0−) the initial value of the signal at t = 0−. As the signal is expressed in terms of
exponentials of the form X(s)est , the transform of the derivative is sX(s), as given by the first term.
The second term is the derivative at t = 0. This property makes the analysis of systems with initial
conditions easier.

This property can be extended, by repeated application, to find the transform of higher-order
derivatives. For example,

d

dt

(
d v(t)

dt

)
= d2v(t)

dt2
↔

s(sX(s) − v(0−)) − d v(t)

dt
|t=0− = s2X(s) − sv(0−) − d v(t)

dt
|t=0−

The entity
d v(t)

dt
|t=0−

is the value of the derivative of v(t) at t = 0−.
In circuit analysis, this property is used to model inductors with initial conditions. The input–output

relationship of an inductor is

v(t) = L
di(t)

dt
,

where v(t) is the voltage across the inductor and i(t) is the current flowing through it. The value of
the inductor is L henries. Let the initial value of current in the inductor be i(0−). From the time-
differentiating property, we get the value of the voltage across the inductor as, in the frequency-
domain,

V (s) = L(sI (s) − i(0−)).

In common with other transforms, the linearity and time-differentiation properties reduce the
differential equation characterizing a system into algebraic equations, making the analysis simpler.
In addition, transform methods bring out the salient properties of signals and systems.

8.4.3 Integration

If v(t) ↔ X(s), then ∫ t

0−
v(τ) dτ ↔ 1

s
X(s).

As the integration can be considered as the inverse of the derivative property for a signal with zero DC
component, the variable s appears in the denominator in the transform of the integral of the signal.

Of particular interest to circuit analysis is that this property enables easier analysis of components
with initial conditions, such as a capacitor with some initial charge. The input–output relationship of
a capacitor is

v(t) = 1

C

∫ t

0−
i(τ )dτ + v(0−),
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where v(0−) is the initial value of voltage across the capacitor, v(t) is the voltage across the capacitor,
and i(t) is the current flowing through it. The value of the capacitor is C farads. From the time-
integration property, we get the value of the voltage across capacitor as, in the frequency-domain,

V (s) = I (s)

sC
+ v(0−)

s
.

8.4.4 Initial Value

The initial and final values of a function can be easily found using the initial and final value properties
of the transform. These values can be used to check the transforms of the signals. If v(t) ↔ X(s) and
the degree of the numerator polynomial of X(s) is less than that of the denominator polynomial, then

v(0+) = lim
s→∞ sX(s).

8.4.5 Final Value

If v(t) ↔ X(s) and the ROC of sX(s) includes the jω axis, then

lim
t→∞ v(t) = lim

s→0
sX(s).

The use of these properties is demonstrated in the following examples.

8.4.6 Circuit Analysis in the Frequency-Domain

Circuits are composed of sources, resistors, capacitors, and inductors. In the time-domain, circuits
are characterized by differential equations. We can write down the differential equation and use the
Laplace transform to solve it. However, it is easier to represent the circuits in the frequency-domain
directly and solve it, as though it is a resistive circuit. We used this procedure in Chap. 3 to find the
steady-state response of circuits. Now, we study the Laplace transform method of analyzing circuits
with or without initial conditions to find the complete response. The complete response consists of
both the transient and steady-state responses. Using the Laplace transform to represent the circuit
elements, the analysis of circuits becomes algebraic, as is the case with other transforms also. It is
no longer necessary to solve the differential equations to find the response. The Laplace transform
is a generalization of the Fourier analysis and is particularly useful to analyze circuits with initial
conditions. Further, the response can be found to unbounded signals also. In the transform domain
representation also, all the analysis methods, such as loop and nodal, and all the circuit theorems are
equally applicable.

The input–output relationship of an inductor with no initial current is

v(t) = L
di(t)

dt
,

where v(t) and i(t) are, respectively, the voltage across and the current through the inductor of value L

henries. In the transform domain, the independent variable is the frequency and the basis functions are
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of the form est . The derivative of this function with respect to t , sest , is of the same form and multiplied
by the frequency variable s. In taking the Laplace transform, the input waveform is decomposed in
terms of frequency components of all frequency. Therefore, the representation of an inductor is similar
to that of a resistor. That is,

V (s) = LsI (s).

If we replace s by jω, then it becomes a Fourier-domain representation. The difference is that
the Laplace transform is a generalized version of the Fourier analysis. This generalization brings
the advantages of analyzing circuits with initial conditions and also with unbounded signals. Each
transform is more suitable for certain types of circuit analysis.

For a capacitor with no initial voltage, the input–output relationship is

v(t) = 1

C

∫ t

0
i(t) dt,

where v(t) and i(t) are, respectively, the voltage across and the current through the capacitor of value
C farads. The representation of a capacitor, in the transform domain, is similar to that of a resistor.
That is,

V (s) = 1

Cs
I (s).

For a resistor of value R �,
V (s) = RI (s).

The resistance offered by a resistor for the flow of current through it is independent of the frequency of
excitation. Summarizing, in the frequency-domain, the voltage–current relationship of all the elements
is algebraic, with their impedance values R, sL, and 1/Cs. The impedance of an element is the ratio
V (s)/I (s), assuming zero initial conditions.

Resistor is not a storage device. The current through and the voltage across it are instantaneous.
Capacitors and inductors have the capability to store energy. These devices can be represented as a
device with zero initial condition and an appropriate source in addition. For a capacitor with an initial
voltage v(0−),

i(t) = C
dv(t)

dt
.

Taking the Laplace transform of this expression, we get

I (s) = C(sV (s) − v(0−)) or V (s) = I (s)

sC
+ v(0−)

s
.

The charged capacitor is represented as an impedance 1
sC

in series with an ideal voltage source v(0−)
s

.
The additional voltage source in series becomes a short-circuit with no initial charge.

By rearranging the expression for V (s), we get an alternative representation as

V (s) = 1

sC

(
I (s) + Cv(0−)

)
.

The voltage across the capacitor is due to the current (I (s) + Cv(0−)) flowing through it, impedance
multiplied by the current. This form of representation implies an uncharged capacitor in parallel with
an impulsive current source Cv(0−). There is an additional current source in parallel, which becomes
an open-circuit with no initial charge.
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Fig. 8.10 Modeling of inductors and capacitors with initial conditions in the frequency-domain

In the time-domain, an inductor is characterized by

v(t) = L
di(t)

dt
.

In the frequency-domain, we get

V (s) = L(sI (s) − i(0−)) = LsI (s) − Li(0−) = sL

(
I (s) − i(0−)

s

)
.

The inductor is modeled as an impedance sL in series with an ideal impulsive voltage source
−Li(0−), which becomes a short-circuit with no initial current.

Alternatively, the voltage across the inductor is due to the current (I (s)− i(0−)
s

) flowing through it.
An inductor with initial current i(0−) is modeled as an inductor, with no initial current, in parallel with
a current source − i(0−)

s
, which becomes an open-circuit with no initial current. Modeling of inductors

and capacitors with initial conditions in the frequency-domain is shown in Fig. 8.10. Figure 8.10a
shows a RLC series circuit in the time-domain with initial current i(0−) in the inductor and initial
voltage v(0−) in the capacitor. Figure 8.10b, c shows, respectively, the circuit in the frequency-domain
with series and parallel initial condition generators with impedances Ls and 1/sC.

Example 8.8 The input voltage is the unit-step function, u(t). Assume that the series circuit consists
of only the resistor with value R = 2� and the inductor with value L = 3 H, shown in Fig. 8.11a. Let
the initial current through the inductor be zero. Find the current through the circuit and the voltage
across the inductor after the excitation is applied. Deduce the impulse response of the circuit.

Solution The excitation and the impedance, in the Laplace transform domain, are

V (s) = 1

s
and Z(s) = R + Ls

Therefore,

IL(s) = V (s)

Z(s)
= 1

s(R + Ls)
= 1

Ls(s + R/L)
= 1

R

(
1

s
− 1

(s + R/L)

)
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Fig. 8.11 A RL circuit in time-domain

Applying initial and final value theorems, we get

i(0+) = lim
s→∞ s

1

s(R + Ls)
= 0

lim
t→∞ i(t) = lim

s→0
s

1

s(R + Ls)
= 1

R

For the example, R = 2 and limt→∞ i(t) = 0.5. These values can be used to check the complete
response derived. Taking the inverse Laplace transform, we get

iL(t) = 1

R
(1 − e− R

L
t )u(t).

With ZL(s) = Ls,

VL(s) = IL(s)ZL(s) = 1

(s + R/L)
and vL(t) = e− R

L
tu(t).

The unit-step responses are

vL(t) = e− R
L

tu(t) and iL(t) = 1

R
(1 − e− R

L
t )u(t).

Since the impulse is the derivative of the unit-step function, as the circuit is linear, the impulse
response is the derivative of the response to the unit-step excitation. The derivative of these
expressions, the unit-impulse responses are

vL(t) = −R

L
e− R

L
tu(t) and iL(t) = 1

L
e− R

L
tu(t).

�

Figure 8.12a, b shows, respectively, the voltage across the inductor and the current through for the
unit-step source voltage for the example. The voltage is 1 at t = 0 and asymptotically approaches zero
as t → ∞. For larger values of inductance, the rate of fall is low. The current is 0 at t = 0 and reaches
the limit 1/2 = 0.5. The inductor influences the nature of the response only during the initial period,
called the transient interval. In steady state, the impedance of the inductor is zero, as frequency of
excitation is zero. That is, the excitation is constant. Figure 8.13a, b shows, respectively, the voltage
across the inductor and the current through for the unit-impulse source voltage. These responses are
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Fig. 8.12 The unit-step response of the series RL circuit. (a) the voltage across the inductor; (b) the current
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Fig. 8.13 The unit-impulse response of the series RL circuit. (a) the voltage across the inductor; (b) the current

the derivative of the responses for the unit-step excitation. The voltage across the resistor and that
induced in the inductor are of the same magnitude with opposite polarities, since the excitation is zero
for t > 0 and KVL has to be satisfied.

With the source connected, the inductor stores energy 0.5Li2(t) and the resistor dissipates energy
at the rate of Ri2(t). When the source disconnected, the stored energy is eventually dissipated by the
resistor. The rate of energy dissipation, which is controlled by the ratio L/R, decreases with the time
and finally both the energy and the current become zero. The larger the value of L/R, the smaller will
be the rate of decay.

The value of the exponential signal e−ktu(t) is 1 at t = 0. At t = 1/k, the value gets reduced to
e−1 = 1/e = 0.3679. At t = 2/k, the value gets reduced to e−2 = e−1e−1 = 0.1353. The value
1/k is called time constant of the corresponding circuit. The time constant is useful for comparison
of different responses. The time constant for the RL circuit is L/R. The transient response is zero,
only when t → ∞. For practical purposes, the duration of four time constants is considered as the
duration of the transient response, as the response increases to 98% of the final value for a growing
exponential and the response reduces to below 2% for a decaying exponential.

AC or DC and transient or steady state, the constraint is that KVL and KCL are to be satisfied at
any part of a linear circuit at any instant. The usual difference of impedances replacing resistors has
to be taken into account. The DC excitation is replaced by an AC excitation.
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Example 8.9 The input voltage is v(t) = sin(t)u(t). Assume that the series circuit consists of only
the resistor with value R = 2� and the inductor with value L = 3 H, shown in Fig. 8.11b. Let the
initial current through the inductor be zero. Find the current through the circuit and the voltage across
the inductor after the excitation is applied.

Solution The excitation and the impedance, in the Laplace transform domain, are

V (s) = 1

s2 + 1
and Z(s) = R + Ls.

Therefore,

IL(s) = V (s)

Z(s)
= 1

(s2 + 1)(R + Ls)
= 1

L(s2 + 1)(s + R/L)

= 1

3

(−9(0.5 + j/3)/13

s − j
+ −9(0.5 − j/3)/13

s + j
+ (0.6923)

(s + 2/3)

)

= 1

3

(−0.3462 − j0.2308

s − j
+ −0.3462 + j0.2308

s + j
+ (0.6923)

(s + 2/3)

)
.

For this example, applying the initial value theorem, we get i(0+) = 0. The final value theorem is not
applicable, as the response is oscillatory. Taking the inverse Laplace transform, we get

iL(t) = (0.8320 cos(t −2.5536)+0.6923e− 2
3 t )/3u(t) = (0.2773 cos(t −2.5536)+0.2308e− 2

3 t )u(t)

Since vL(t) = L(diL(t)/dt), by differentiating, we get

vL(t) = (0.8320 sin(t − 2.5536) − 0.4615e− 2
3 t )u(t) = (0.8320 cos(t − 0.9828) − 0.4615e− 2

3 t )u(t)

�

Figure 8.14a, b shows, respectively, the voltage across the inductor and the current through
for the v(t) = sin(t)u(t) source voltage. The steady-state response is given by the sinusoidal

0 6.2832 12.5664
t

-0.8618

0

0.8280

v L(t)

(a)

R=2
L=3

0 6.2832 12.5664
t

-0.2772

0

0.3207

i L(t)

(b)

R=2
L=3

Fig. 8.14 The response of the series RL circuit to the input v(t) = sin(t)u(t). (a) the voltage across the inductor; (b)
the current
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Fig. 8.15 A RC circuit in time-domain

component while the exponential component is the transient. The magnitude of the steady-state
current component is ∣∣∣∣

−j

2 + j3

∣∣∣∣ = 0.2774.

The transient response eventually dies down. For cos(t)u(t) input, since the cosine function is the
derivative of the sine function, we have to differentiate the expressions.

Example 8.10 The input voltage is the unit-step function, u(t). Assume that the series circuit consists
of only the resistor with value R = 2� and the capacitor with value C = 1 F, shown in Fig. 8.15a.
Let the initial voltage across the capacitor be zero. Find the current through the circuit and the voltage
across the capacitor after the excitation is applied. Deduce the impulse response of the circuit.

Solution The excitation and the impedance, in the Laplace transform domain, are

V (s) = 1

s
and Z(s) = R + (1/Cs).

Therefore,
IC(s) = V (s)

Z(s)
= 1

s(R + (1/Cs))
= 1

R

(
1

s + (1/RC)

)
.

Applying initial and final value theorems, we get

i(0+) = 1

R
and lim

t→∞ i(t) = 0.

With R = 2, 1/R = 1/2 = 0.5. Taking the inverse Laplace transform, we get

iC(t) = 1

R
e− t

RC u(t).

With ZC = 1/Cs,

VC(s) = I (s)ZC(s) = 1

RCs(s + (1/RC))
=
(

1

s
− 1

(s + 1/RC)

)
and vC(t) = (1 − e− t

RC )u(t)

The unit-step response is

vC(t) = (1 − e− t
RC )u(t) and iC(t) = 1

R
e− t

RC u(t).
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The derivative of these expressions, the unit-impulse response is

vC(t) = 1

RC
e− t

RC u(t) and iC(t) = − 1

R2C
e− t

RC u(t).

�

Initially the impedance of the capacitor is zero and the current is limited by the resistor. In steady
state, the excitation becomes DC and the current in the circuit becomes 0 as the impedance of the
capacitor is infinite. The excitation voltage appears across the capacitor. With the source connected,
the capacitor stores energy 0.5Cv2(t) and the resistor dissipates energy at the rate of Ri2(t). When
the source disconnected, the stored energy is eventually dissipated by the resistor. The rate of energy
dissipation, which is controlled by the product RC, decreases with the time and finally both the energy
and the current become zero. The larger the value of RC, the smaller will be the rate of decay. The time
constant for the circuit is RC. Figure 8.16a, b shows, respectively, the voltage across the capacitor and
the current through for the unit-step source voltage. Figure 8.17a, b shows, respectively, the voltage
across the capacitor and the current through for the unit-impulse source voltage.
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0

0.6321

0.8647
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0

0.0677

0.1839

0.5

i C
(t)

(b)

R=2

C=1

C=2

Fig. 8.16 The unit-step response of the series RC circuit. (a) the voltage across the capacitor; (b) the current
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0.5

v C
(t)

(a)

R=2

C=2

C=1

0 2 4
t
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-0.0920

-0.0338

0

i C
(t)

(b)

R=2

C=2

C=1

Fig. 8.17 The unit-impulse response of the series RC circuit. (a) the voltage across the capacitor; (b) the current
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Example 8.11 The input voltage is v(t) = sin(t)u(t). Assume that the series circuit consists of only
the resistor with value R = 2� and the capacitor with value C = 1 F, shown in Fig. 8.15b. Let the
initial current through the capacitor be zero. Find the current through the circuit and the voltage across
the capacitor after the excitation is applied.

Solution The excitation and the impedance, in the Laplace transform domain, are

V (s) = 1

s2 + 1
and Z(s) = R + (1/Cs).

Therefore,

I (s) = V (s)

Z(s)
= s

R(s2 + 1)(s + (1/RC))
= 0.5s

(s2 + 1)(s + 0.5)

=
(

0.1 − j0.2

s − j
+ 0.1 + j0.2

s + j
+ (−0.2)

(s + 0.5)

)
.

Taking the inverse Laplace transform, we get

iC(t) = (0.4472 cos(t − 1.1071) − 0.2e−0.5t )u(t).

Since vC(t) = 1
C

∫
iC(t) dt , by integrating, we get

vC(t) = (0.4472 sin(t − 1.1071) + 0.4e−0.5t )u(t).

�

Figure 8.18a, b shows, respectively, the voltage across the capacitor and the current through for
v(t) = sin(t)u(t) source voltage. The steady-state response is given by the sinusoidal component
while the exponential component is the transient. The magnitude of the steady-state current compo-
nent is ∣∣∣∣

−j

2 − j1

∣∣∣∣ = 0.4472.

For cos(t)u(t) input, since the cosine function is the derivative of the sine function, we have to
differentiate the expressions.

0 6.2832 12.5664
t

-0.4463

0

0.5549

v C
(t)

(a)

R=2
C=1

0 6.2832 12.5664
t

-0.4712

0

0.4422

i C
(t)

(b)

R=2
C=1

Fig. 8.18 The response of the series RC circuit to the input v(t) = sin(t)u(t). (a) the voltage across the capacitor (b)
the current
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Analysis of Circuits with Arbitrary Initial Conditions
The initial condition of a capacitor or an inductor can be represented by an appropriate equivalent
voltage or current source. The sum of the responses due to these sources and the response due to some
specific excitation, all computed with zero initial conditions, yields the total response of the circuit.
Therefore, the procedure for analyzing a circuit with zero initial conditions is adequate to analyze
circuits with arbitrary initial conditions.

Example 8.12 Assume that the series circuit consists of only the resistor with value R = 2� and the
capacitor with value C = 0.1 F. Let the initial voltage across the capacitor be v−

0 = 1 V. Find the
current through the circuit and the voltage across the capacitor for t ≥ 0.

Solution The circuit is shown in Fig. 8.19a in the time-domain. The equivalent frequency-domain
circuit is shown in Fig. 8.19b, with a voltage source representing the initial condition. The excitation
and the impedance, in the Laplace transform domain, are

v−
0

s
and R + (1/Cs).

Therefore,
I (s) = v−

0

s(R + (1/Cs))
= v−

0

R

(
1

s + (1/RC)

)
.

Applying the initial and final value theorems, we get initial and final values of current, respectively,
as

v−
0

R
and 0.

Taking the inverse Laplace transform, we get

i(t) = v−
0

R
e− t

RC u(t).

The initial and final currents are i+0 = v−
0 /R and i∞ = 0. Multiplying current i(t) by the resistance

R, we get
v(t) = v−

0 (e− t
RC )u(t).

�

The response of the series RC circuit, for example, with R = 2� and C = 0.1 F, to the initial
capacitor voltage 1 V is shown in Fig. 8.20. The voltage across the capacitor is shown in (a) and the
current in (b).

+v(0−)V

i(t)

t = 0

CF
R Ωv(t)

(a)

1
sC

v(0−)
s

+−I(s)

R ΩV (s)

(b)

I(s)

R Ω 1
sC

Cv(0−)
V (s)

(c)

Fig. 8.19 Modeling of capacitors with initial conditions in the frequency-domain
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Fig. 8.20 The response of the series RC circuit to the initial capacitor voltage 1 V. (a) the voltage across the capacitor;
(b) the current

i(0−)A

i(t)

t = 0

LH
R Ωv(t)

(a)

Li(0−)+−I(s)

R ΩV (s)

(b)

Ls

I(s)

R Ω Ls
i(0−)

s
V (s)

(c)

Fig. 8.21 Modeling of inductors with initial conditions in the frequency-domain

Using the alternative model shown in Fig. 8.19c, we get

Cv−
0 = V (s)

R
+ V (s)Cs and V (s) = v−

0

s + (1/RC)
.

This model is the same as obtained by source transformation. The equivalent source is a current source
model of the voltage source.

Example 8.13 Assume that the series circuit consists of only the resistor with value R = 2� and the
inductor with value L = 1 H. Let the initial current in the inductor be i−0 = 1 A. Find the current
through the circuit and the voltage across the inductor.

Solution The circuit is shown in Fig. 8.21a in the time-domain. The equivalent frequency-domain
circuit is shown in Fig. 8.21b, with a voltage source representing the initial condition. The excitation
and the impedance, in the Laplace transform domain, are

Li−0 and R + Ls.

Therefore,

I (s) = Li−0
R + Ls

= i−0
(R/L) + s

.
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Fig. 8.22 The response of the series RL circuit to the initial inductor current 1 A. (a) the current through the inductor;
(b) the voltage across

Fig. 8.23 A RLC circuit
in time-domain

i(0−)=2A
+

u(t)
v(0−)=1V

i(t)

3H

1F

2Ω

Taking the inverse Laplace transform, we get

i(t) = i−0 e− R
L

tu(t).

The initial and final currents are i+0 = Li−0 and i∞ = 0. Multiplying current i(t) by the resistance R,
we get

v(t) = i−0 Re− R
L

tu(t).

The response of the series RL circuit, for example, to the initial current in the inductor i−0 = 1 A
is shown in Fig. 8.22. The voltage across the inductor is shown in (b) and the current in (a).

The source in the model in Fig. 8.21c is a current source model of the voltage source in
Fig. 8.21b. �

Example 8.14 Determine the current in the RLC circuit, shown in Fig. 8.23. The initial current
through the inductor i(0−) = 2A and the initial voltage across capacitor v(0−) = 1 V and, the
input x(t) = u(t)V , the unit-step signal.

Solution The RLC circuit is shown in Fig. 8.24 in the frequency-domain. The net voltage in the
circuit is

1

s
+ 6 − 1

s
= 6.

The impedance of the circuit is

2 + 3s + 1

s
= 3s2 + 2s + 1

s
.
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Fig. 8.24 The RLC

circuit in
frequency-domain

∼ 1
s

∼
6

+

∼ 1
s

1
s +

+
2 3s

I(s)

We get the current in the circuit by dividing the voltage by the impedance

I (s) = 6
s

3s2 + 2s + 1
= 2s

s2 + 2
3 s + 1

3

.

Applying the initial and final value theorems, we get the currents as 2 and zero. The excitation voltage
source gets cancelled with the equivalent voltage source due to the initial capacitor charge. Therefore,
the only source that is effective is the equivalent impulsive voltage source due to the initial current
in the inductor. As the rate of current raise is infinite, the impedances of the resistance and capacitor
become negligible. Therefore, the current at t = 0 is controlled by the inductor, 6/3 = 2.

Expanding into partial fractions, we get

I (s) = 1 + j0.7071

s + (0.3333 − j0.4714)
+ 1 − j0.7071

s + (0.3333 + j0.4714)
.

Expressing the numerators in polar form, we get

I (s) = 1.2247� 0.6155

s + (0.3333 − j0.4714)
+ 1.2247� − 0.6155

s + (0.3333 + j0.4714)
.

If two terms are conjugate in a partial fraction expansion, then the inverse is the twice the real part of
any one of the inverses. For example,

I (s) = r � θ

s + (a − jb)
+ r � − θ

s + (a + jb)
.

Taking the inverse Laplace transform, we get the current in the circuit as

i(t) = 2re−at cos(bt + θ)u(t).

For this example, we get

i(t) = 2.4495e−0.3333t cos(0.4714t + 0.6155)u(t).

The current through the series RLC circuit with initial conditions is shown in Fig. 8.25. �

Let us find the response with zero initial conditions. The net voltage in the circuit is

1

s
.

The impedance of the circuit is

2 + 3s + 1

s
= 3s2 + 2s + 1

s
.
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Fig. 8.25 The current
through the series RLC

circuit with initial
conditions
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t

-0.5178
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Fig. 8.26 The current
through the series RLC

circuit with zero initial
conditions
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t

-0.0319
0

0.2938
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)

We get the current in the circuit by dividing the voltage by the impedance

I (s) = 1

3s2 + 2s + 1
= (1/3)

s2 + 2
3 s + 1

3

.

Applying the initial and final value theorems, we get the currents as 0 and 0. Expanding into partial
fractions, we get

I (s) = −j0.3536

s + (0.3333 − j0.4714)
+ j0.3536

s + (0.3333 + j0.4714)
.

Expressing the numerators in polar form, we get

I (s) = 0.3536� − π/2

s + (0.3333 − j0.4714)
+ 0.3536� π/2

s + (0.3333 + j0.4714)
.

Taking the inverse Laplace transform, we get the current in the circuit as

i(t) = 0.7071e−0.3333t cos
(

0.4714t − π

2

)
u(t).

The current through the series RLC circuit with zero initial conditions is shown in Fig. 8.26.
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8.5 Application

To design a suitable filter, Fourier analysis is required to analyze the waveforms before and after
filtering. Let the full-wave rectified waveform, presented earlier, be applied to the lowpass filter circuit,
shown in Fig. 8.27. The filter is a resistor-capacitor series circuit, with the resistor 10 � and capacitor
0.01 F. The output voltage is across the capacitor, vo(t). The FS for the full-wave rectified sine wave,
with ω0 = 377 rad/s, is

v(t) = 220

π
− 440

3π
cos(2ω0t) − 4

15π
cos(4ω0t) − 4

35π
cos(6ω0t) + · · · .

An ideal lowpass filter will pass the DC component only, suppressing rest of the components.
However, practical filters can attenuate the unwanted components to any desired level. We learn the
filter concept through the RC filter. More complex, both active and passive, filters are used in practice.
The RC filter is a frequency-dependent voltage divider, since the reactance offered by the capacitor
to the flow of current depends on the frequency of the constituent components of the rectified input
waveform. The resistor is invariant with respect to frequency and, therefore, remains constant. The
reactance of the capacitor, −j/ωC, is very high at low frequencies and low at high frequencies. In
particular, at ω = 0, its reactance is ∞ and at ω = ∞, its reactance is zero. Therefore, most of the
voltage drop across the capacitor occurs at low frequencies. The voltage across the capacitor in the
frequency-domain, by voltage division, is

Vo(jω) = V (jω)
1/(jωC)

R + 1/(jωC)
= V (jω)

1

1 + jωRC
.

Note that, with ωRC = 1, the magnitude of the attenuation becomes 0.7071. For DC, with the
fundamental frequency ω0 = 377, k = 0 and ω = 0, we get

vo(t) = 220

π
.

The capacitor is an open-circuit to DC, so that the output voltage is equal to the input voltage in steady
state.

The cutoff frequency of a filter is defined as the frequency at which its magnitude response is
0.7071 of its nominal passband value. Beyond this point the attenuation increases rapidly. For RC
filter, the cutoff frequency is defined, in radians, as

ωc = 1

RC
.

Let us fix ωc = 10. The cutoff frequency has to be fixed to just satisfy the attenuation requirements.
Otherwise, the filter cost and complexity will increase unnecessarily. Then, RC = 0.1. Let R = 10 �.

Fig. 8.27 A
resistor-capacitor lowpass
filter circuit

∼
+

vo(t)

11
0|

si
n(

2π
60

t)
|V

v(t) C

0.01F

R

10Ω
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Then, C = 0.01 F. For the second harmonic, with the fundamental frequency ω0 = 377, k = 2, and
ω = 2(377), we get

H(jω) = 1

1 + j2(377)0.1
= |H(jω)|� (H(jω)

vo(t) = −440

3π
|H(jω)| cos(2(377)t + � (H(jω)).

With R = 10 � and capacitor C = 0.01 F, the magnitude of the output is

∣∣∣∣
440

3π

1

1 + j2(377)(0.1)

∣∣∣∣ = 440

3π
0.0133 = 0.6191 V.

The magnitude of the second harmonic has been attenuated from 46.6854 to 0.6191. The reduction
of the harmonic components makes the output waveform closer to the desired, which is DC. In a
similar way, the other frequency components are attenuated. The higher the frequency, the higher is
the attenuation. The total output is the sum of the response to all the infinite harmonics in theory.
In practice, after a relatively small number of harmonics, the amplitude of the harmonics becomes
negligible, as it reduces in proportion to the square of the frequency. Note the k2 term in the
denominator of the amplitude of the frequency components. As the circuit attenuates high frequency
components more, it is called a lowpass filter circuit. The magnitude response, |H(jω)| of the lowpass
filter and its phase response, versus the frequency ω are shown in Fig. 8.28.

A resistor-inductor series circuit, which is a highpass filter, is shown in Fig. 8.29. It is also
a frequency-dependent voltage divider circuit. The input–output relationship is, in the frequency-
domain, given by voltage division

H(jω) = jωL

1 + jωRL
= |H(jω)|� (H(jω)

vo(t) = v(t + � (H(jω))| jωL

1 + jωRL
|.

The voltage across the inductor is the output of the circuit. The reactance of the inductor increases
with frequency. Therefore, most of the voltage drop occurs across the inductor at high frequencies.
For DC, the reactance is zero and, hence, the output is zero. As it passes high frequency components
readily, it is a highpass filter. For DC input, from the input–output relationship with ω = 0,

vo(t) = 0.

45701
, rad/sec

0.0133

0.7071

1

|H
(j

)| lowpass

(a)
4570

, rad/sec

-90

0

 H
(j

), 
de

g

(b)

Fig. 8.28 (a) The magnitude response, |H(jω)| of the lowpass filter; (b) the phase response
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Fig. 8.29 A
resistor-inductor highpass
filter circuit
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Fig. 8.30 (a) The magnitude response, |H(jω)| of the highpass filter; (b) the phase response

For the second harmonic, with ω = 2,

vo(t) = | − j2L

R + j2L
| 4

3π
cos(2t + � (H(jω))

ωc = R

L
= 1.

With R = 1 � and L = 1 H, the magnitude of the output is

∣∣∣∣
j2 × 1

1 + j2 × 1

∣∣∣∣ = 0.8944

times that of the input, assuming the input is 1. As the frequency increases, the attenuation reduces
and, hence, it is called a highpass filter. The total response of the circuit is the sum of the responses to
all the harmonic components of the input. The magnitude response, |H(jω)| of a highpass filter and
its phase response versus the frequency ω are shown in Fig. 8.30.

8.6 Summary

• Transform means change in form.
• The principal transforms, Fourier series, Fourier transform, and Laplace transform used in signal

and system analysis reduce the differential equation, which is a model for linear systems, into an
algebraic equation.

• In the transform domain, frequency becomes the independent variable. We transform the signal to
the frequency-domain, find the solution, and transform it back to the time-domain.
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• Any waveform, encountered in practice, can be decomposed into a set of sinusoidal waveforms by
transforms.

• All the tools, such as nodal and mesh analysis and circuit theorems, remain the same with the
constraint that each frequency component of the source must be considered individually.

• The various frequency components are separated by an appropriate transform such as Fourier
series, Fourier transform, and Laplace transform. The individual responses of the circuit are found
and all the responses are added to find the total response.

• The frequency components have a property, called the orthogonal property, in that the integral of
the product of the signal and the conjugate of a certain frequency component, over a period, will
yield the coefficient of that component in the signal alone. This is a similarity test. Repeating this
procedure for all the components of interest, we know the frequency content of the signal, called
its spectrum.

• While practical signal generators, such as an oscillator, generate real sinusoidal waveforms, for
analysis purposes, the mathematically equivalent complex exponentials are used due to its compact
form and ease of use.

• Fourier analysis problem is to find the coefficients X(k) in the complex exponential polynomial
representation of a time-domain function x(t) with period T and the fundamental frequency ω0 =
2π/T

• The Fourier synthesis problem is to find x(t), given X(k) and the exponentials. It is the sum of all
the exponentials multiplied by their respective coefficients. The Fourier reconstructed waveform is
with respect to the least squares error criterion.

• At any discontinuity, the reconstructed waveform never converges even in the limit. There is a
8.69% deviation, called the Gibbs phenomenon. However, the area under the deviation tends to
zero.

• In the Fourier transform, which is the limiting case of the FS as the period of the waveform tends
to infinity, both the time-domain signal and its spectrum are aperiodic and continuous. The process
of finding the spectrum remains the same in that we find the integral of products of the signal with
complex exponentials.

• The transfer function is a frequency-domain model of systems that relates the input and output, in
the frequency-domain.

• The behavior of a system, before it attains its steady-state after the excitation is applied or to
become dead from its steady-state behavior after the removal of the excitation is called its transient
response.

• The unit-impulse signal is characterized by its unit area enclosed at t = 0. It is the derivative of the
unit-step signal.

• For system analysis with or without initial conditions, where both the transient and steady-state
responses are required, the generalization of Fourier analysis, called the Laplace transform, is more
convenient.

• We can write down the differential equation circuit model and use the Laplace transform to solve
it. However, it is easier to represent the circuits in the frequency-domain and solve it, as though it
is a resistive circuit.

• In most of the signal and system analysis, it is found that transform methods are found to be more
advantageous.
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Exercises

* 8.1.1 Find the FS for the signal

x(t) = −1 + cos

(
2π

8
t − π

3

)
+ 3 sin

(
3

2π

8
t + π

3

)
.

8.1.2 Find the FS for the signal

x(t) = 3 + 3 cos

(
2

2π

8
t + π

6

)
+ sin

(
5

2π

8
t − π

6

)
.

8.1.3 Find the FS for the signal

x(t) = 1 + 2 cos

(
3

2π

8
t + π

4

)
+ 2 sin

(
2π

8
t + π

3

)
.

* 8.2 Determine the FS expansion for the periodic sawtooth waveform, one period of which is
shown in Fig. 8.31. Use the time-differentiation property

dnx(t)

dtn
↔ (jkω0)

n X(k).

8.3 Determine the FT of the aperiodic sawtooth pulse waveform, shown in Fig. 8.31. From the FT
obtained, deduce the FS expansion of the periodically extended periodic signal. Verify that it
is same as that obtained in Exercise 8.2. Use the time-differentiation property

dnx(t)

dtn
↔ (jω)n X(jω).

8.4 Let the impulse be approximated by a rectangular pulse, centered at t = 0, of width 2w and
height 1

2w
. The signal x(t) is sampled by this quasi-impulse. Compare the sample values of

x(t) at t with w = 1, w = 0.1, w = 0.01 with the exact value of x(t) at t .
8.4.1 x(t) = e−t , t = 1.
8.4.2 x(t) = sin(t), t = −π/6.

* 8.4.3 x(t) = cos(t), t = π/6.
8.4.4 x(t) = sin(t)

t
, t = 0. Use numerical integration.

8.4.5 x(t) = ejt , t = π/3.
8.5 The input current is the unit-step function, u(t) A. Assume that the parallel circuit consists of

only the resistor with value R = 2 � and the inductor with value L = 1 H, shown in Fig. 8.32.

Fig. 8.31 One period of
the sawtooth waveform

0 1
t

0

1

x(
t)
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Fig. 8.32 A parallel RL
circuit

u
(t

)A 2Ω 1H

IL

Fig. 8.33 A parallel RC
circuit

u
(t

)A 2Ω 1F

IC

Fig. 8.34 A parallel RLC
circuit

V

δ(
t)

A 2Ω 1F 2H

Let the initial current through the inductor be zero. Find the current through and the voltage
across the inductor after the excitation is applied. Deduce the corresponding impulse response
of the circuit.

* 8.6 The input current is the unit-step function, u(t) A. Assume that the parallel circuit consists
of only the resistor with value R = 2 � and the capacitor with value C = 1 F, shown in
Fig. 8.33. Let the initial voltage across the capacitor be zero. Find the current through and
the voltage across the capacitor after the excitation is applied. Deduce the corresponding the
impulse response.

* 8.7 The input current is the unit-impulse function, u(t) A. Assume that the parallel circuit consists
of only the resistor with value R = 2 �, inductor with value L = 2 and the capacitor with
value C = 1 F, shown in Fig. 8.34. Let the initial conditions be zero. Find the voltage across
the capacitor after the excitation is applied. Deduce the corresponding unit-step response.
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AMatrices

Linear algebra is an important branch of mathematics that includes the theory of systems of linear
equations, matrices, determinants and linear transformations. For solving circuit analysis problems,
matrix multiplication, inversion and determinants are often required.

In both mesh and nodal analysis, the problem is formulated in terms of a set of linear equations.
These equations are solved to find the independent currents or voltages. The solution can be found
using the equations themselves by the substitution method, as we learnt from our high school
mathematics. For example, consider the two equations with variables V2 and V3, we came across
in Chap. 2.

− 7V2 + 3V3 = −3 (A.1)

3V2 − 7V3 = −1. (A.2)

Solving Eq. (A.1) for V3, we get

V3 = −3 + 7V2

3
Substituting for V3 in Eq. (A.2), we get

3V2 − 7

(−3 + 7V2

3

)
= −1 or 9V2 − 7 (−3 + 7V2) = −3

and V2 = 0.6.

V3 = −3 + 7V2

3
= −3 + 7(0.6)

3
= 0.4

These values satisfy the given equations, verifying that the solution is correct.
Using matrices, these equations are written as

[−7 3
3 −7

] [
V2

V3

]
=
[−3

−1

]
. (A.3)

This form is very compact and leads to efficient algorithms for solving problems, such as solving
systems of simultaneous equations. Matrix is any rectangular array of numbers. Any matrix consists
of horizontal rows and vertical columns, numbered, respectively, from top to bottom and left to right.
A general 2 × 2 matrix (containing two rows and two columns) is written as

[
a11 a12

a21 a22

]
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276 A Matrices

This matrix with equal number of rows and columns is called a square matrix. A general 2 × 1 matrix
(containing two rows and one column, called column vector) is written as

[
a1

a2

]

Equation (A.3) can represent the two equations only if the product of the left two matrices get back
the equations. That requires the rows of the 2 × 2 matrix is multiplied, elementwise, by the column of
the 2×1 matrix and the partial products added. That is matrix multiplication. The product of matrices
is defined if and only if the number of columns in the first matrix is equal to number of rows in the
second matrix. That is, the product of m×n and n×p matrices, A and B, is of size m×p, the number
of rows in the first matrix times the number of columns in the second matrix. The product of A and
B, AB, is the m × p matrix, whose ij th entry is given by

ai1b1j + ai2b2j + · · · + ainbnj

and AB, in general, is not equal to BA. The main diagonal of a n × n matrix consists of the elements

{a11, a22, . . . , ann}

The (i, j)-th minor of a 3 × 3 matrix, denoted Mij is the determinant of the 2 × 2 matrix that is left
after the ith row and j th column are deleted. Let us find Mij for the 2 × 2 matrix

[−7 3
3 −7

]

[

| − 7|
] [

|3|
] [ |3|] [ | − 7| ]

As the determinant of a 1 × 1 matrix is itself,

Mij =
[−7 3

3 −7

]

The given matrix happens to be symmetric. For a nonsymmetric matrix, the elements get swapped.
The (i, j)th cofactor of the matrix, denoted by Cij is (−1)i+jMij . Therefore,

Cij =
[−7 −3

−3 −7

]

The adjoint of A, denoted by adj A, is defined as

adj A(i, j) = C(j, i)

The determinant of |A| is
|A| = a11a22 − a12a21

The inverse of the square matrix A is defined as

A−1 = adj A

|A|
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[
V2

V3

]
=
[−7 3

3 −7

]−1 [−3
−1

]
= 1

40

[−7 −3
−3 −7

] [−3
−1

]
=
[

0.6
0.4

]

The product of a matrix and its inverse must be an identity matrix. An identity matrix has 1s on the
main diagonal with the rest 0s. In the circuit analysis problems, the inverse always exists. In that
case, the determinant of the matrix will be nonzero. If the determinant is zero, most probably the
equilibrium equations are not independent and must be checked for errors. For the example matrix

[−7 3
3 −7

]
1

40

[−7 −3
−3 −7

]
=
[

1 0
0 1

]

A.1 Determinants

A matrix is an orderly arrangement of elements, whereas a determinant has a numerical value.

det

⎡

⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎥⎥⎦ =

∣∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣

In terms of minors ∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11M11 − a12M12 + a13M13

In terms of cofactors ∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11C11 + a12C12 + a13C13

In general, the determinant of a matrix can be obtained by multiplying each entry in any column or
row by the corresponding cofactor and adding the products. For a 2 × 2 matrix,

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21

For a 3 × 3 matrix,

∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11

∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣− a12

∣∣∣∣∣
a21 a23

a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣
a21 a22

a31 a32

∣∣∣∣∣

Let A be a square matrix. If a matrix B of the same size exists such that AB = I , then B is said to be
the inverse of A and denoted as B = A−1. I is the identity matrix of the same size as A with the main
diagonal elements equal to 1 and the rest of the elements equal to zero.
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The inverse of an arbitrary 3 × 3 matrix A is

A =

⎡

⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎥⎥⎦ and A−1 = 1

|A|

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

| a22 a23

a32 a33
| −| a21 a23

a31 a33
| | a21 a22

a31 a32
|

−| a12 a13

a32 a33
| | a11 a13

a31 a33
| −| a11 a12

a31 a32
|

|a12 a13

a22 a23
| −| a11 a13

a21 a23
| | a11 a12

a21 a22
|

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

The transpose AT of an m × n matrix A is the n × m matrix, obtained by interchanging the rows
and columns in A. That is, the ith row of A becomes the ith column of AT . A square matrix A is
symmetric, if aij = aji . If the matrix is symmetric, its inverse is also symmetric. Therefore, the
determination of about one half of the elements is sufficient.

Let us find the inverse of the matrix

A =
⎡

⎢⎣
4 −1 −3

−1 5 −1

−3 −1 5

⎤

⎥⎦ and A−1 =
⎡

⎢⎣
0.6000 0.2000 0.4000

0.2000 0.2750 0.1750

0.4000 0.1750 0.4750

⎤

⎥⎦

which appears in an example in Chap. 2. The determinant of A is

4(24) − 8 − 3(16) = 40

⎡

⎢⎣
4 −1 −3

−1 5 −1

−3 −1 5

⎤

⎥⎦

⎡

⎢⎣
0.6000 0.2000 0.4000

0.2000 0.2750 0.1750

0.4000 0.1750 0.4750

⎤

⎥⎦ =
⎡

⎢⎣
1 0 0

0 1 0

0 0 1

⎤

⎥⎦

Let us find the inverse of the matrix

A =
⎡

⎢⎣
4 0 3

0 −2 2

2 0 1

⎤

⎥⎦ and A−1 =
⎡

⎢⎣
−0.50 0 1.50

1.00 −0.50 −2.00

1.00 0 −2.00

⎤

⎥⎦

The determinant of A is
4(−2) − 0 + 3(4) = 4

⎡

⎢⎣
4 0 3

0 −2 2

2 0 1

⎤

⎥⎦

⎡

⎢⎣
−0.50 0 1.50

1.00 −0.50 −2.00

1.00 0 −2.00

⎤

⎥⎦ =
⎡

⎢⎣
1 0 0

0 1 0

0 0 1

⎤

⎥⎦

Consider the equation 5x = 15. Solving for x, we get

x = 1

5
(15) = 3

1
5 is the multiplicative inverse of 5. The multiplicative inverse of a number x is a number which when
multiplied by x yields 1. Similarly,

AX = V and X = A−1V
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Matrix algebra is an extension of finding the solution of a single equation to a set of equations. It
provides compactness and efficiency.

The inverse of an arbitrary 2 × 2 matrix A exists if

|A| = (a11a22 − a12a21) �= 0

Then, A−1 is given by

A =
[

a11 a12

a21 a22

]
and A−1 = 1

(a11a22 − a12a21)

[
a22 −a12

−a21 a11

]

Let us find the inverse of the matrix

A =
[

−10.0000 + j9.0000 10.0000 + j0.0000

0.3861 + j0.8614 −1.6762 − j1.6624

]

A−1 =
[

−0.0423 − j0.0704 −0.3372 − j0.0856

−0.0056 − j0.0323 −0.4142 + j0.2178

]

which appears in an example in Chap. 3. The determinant is

(−10 + j9)(−1.6762 − j1.6624) − (10)(0.3861 + j0.8614) = 27.8626 − j7.0758

and

[
−10.0000 + j9.0000 10.0000 + j0.0000

0.3861 + j0.8614 −1.6762 − j1.6624

][
−0.0423 − j0.0704 −0.3372 − j0.0856

−0.0056 − j0.0323 −0.4142 + j0.2178

]

=
[

1 0

0 1

]

Note that, only with higher precision, the product will be exactly equal to the identity matrix.
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The resistance of a resistor is completely specified by a single number. However, the impedance is
characterized by an ordered pair of real numbers. A 2-element vector is an ordered pair of elements,
(a, b). Several entities in science and engineering are characterized by vectors, such as velocity,
sinusoid, point in a plane and color. For such entities, analysis using vector form of representation
is advantageous. The complex number system is an extension of the real number system. A complex
number is an ordered pair of real numbers, a 2-element vector. The complex number z = 2+j1, called
its rectangular form, is shown in Fig. B.1. The two real numbers a and b are called, respectively, the
real and imaginary parts of the complex number z = a + jb and j = √−1 is the imaginary unit.
The necessity for complex numbers is that it is more efficient to represent related entities in the vector
form. For example, at a given frequency, a sinusoid is characterized by its amplitude and phase. In
signal analysis, the complex form of representing the amplitude and phase of a sinusoid is more
convenient than by two scalars. In a Cartesian coordinate system, a point is represented by its distance
from a set of perpendicular lines that intersect at the origin of the system. A Cartesian coordinate
system in which the horizontal and vertical axes represent, respectively, the real and imaginary parts
of a complex number is called a complex plane. Complex number z = a + jb and p = c + jd are
equal, if and only if a = c and b = d.

A complex number z = a+jb can also be written in its polar form A� θ or exponential form Aejθ .
The exponential form of representing the complex number z = 2 + j1 is

√
5ej26.5651 using degree

measure for the angle, as shown in Fig. B.1. The magnitude A and angle θ are, respectively,

A = +
√

a2 + b2 and θ = tan−1 b

a

Fig. B.1 The complex
plane with some complex
numbers
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The correct angle has to be determined, depending on the polarities of a and b. Assuming a and b are
positive, the angle of

• z = a + jb lies in the first quadrant of the complex plane.
• z = −a + jb lies in the second quadrant
• z = −a − jb lies in the third quadrant
• z = a − jb lies in the fourth quadrant

As A� θ = A � (θ + 2Nπ), where N is an integer, the value of θ = −π < θ ≤ π is called its principal
value.

The inverse relations are

a = A cos(θ) and b = A sin(θ)

The real number system is a subset of the complex number system. Therefore, all the operations, if
the imaginary parts are zero, reduce to real arithmetic operations.

Addition and Subtraction
Let the two numbers be z = a + jb and p = c + jd. Then,

q = z ± p = (a ± c) + j (b ± d)

With z = 2 + j3 and p = 1 − j4, q = z + p = 3 − j1 and q = z − p = 1 + j7. The sum of
two complex numbers is another complex number, in which the real part is the sum of their real parts
and the imaginary part is the sum of their imaginary parts. The addition and subtraction operations
are shown in the complex plane in Fig. B.2a, b, respectively.

Multiplication
Let the two numbers be z = a + jb and p = c + jd. Then,

q = (z)(p) = (a + jb)(c + jd) = (ac − bd) + j (ad + bc),

where j2 = −1. With z = 2 + j3 and p = 1 − j4, q = (z)(p) = 14 − j5.
In exponential form,

q = (z)(p) = (a + jb)(c + jd) = AejθCejφ = ACej(θ+φ)

0 1 2 3
Re

-4

-1
0

3

Im

A+B

A

B
3-j1

2+j3

1-j4

(a)
-1 0 1 2

Re

0

3
4

7

Im

A-B

A-B
1+j7

2+j3-1+j4

(b)

Fig. B.2 (a) Addition; (b) subtraction
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41210
Re

-5
-4

0

3

Im

AB=|A||B|( (A)+ (B))

A

B 14-j5

2+j3

1-j4

(a)
41210

Re

-5
-4

0

3

Im

AB

A

B=AB/A=|AB|/|A|( (AB)- (A)) 14-j5

2+j3

1-j4

(b)

Fig. B.3 (a) Multiplication; (b) division

(2 + j3)(1 − j4) = 3.6056ej0.98284.1231e−j1.3258 = 14.8661e−j0.3430 = 14 − j5

using radian measure. The product of two complex numbers is another complex number, whose
magnitude is the product of their magnitudes and the angle is the sum of their angles. The
multiplication and division operations are shown in the complex plane in Fig. B.3a, b. respectively.

Complex Conjugate
The conjugate of a complex number z = a + jb is z∗ = a − jb, obtained by replacing j by −j . z∗ is
the mirror image of z about the real axis in the complex plane. In polar form, the conjugate of Aejθ is
Ae−jθ . Obviously, the product of a complex number with its conjugate is its magnitude squared, A2.
That is,

(z)z∗ = (a + jb)(a − jb) = a2 + b2

z + z∗ = 2a and z − z∗ = j2b

Division
With z = a + jb and p = c + jd.

q = z

p
= zp∗

pp∗ = zp∗

|p|2 = ac + bd

c2 + d2 + j
bc − ad

c2 + d2

In exponential form,

q = z

p
= Aejθ

Cejφ
= A

C
ej(θ−φ)

For example,
(14 − j5)

(2 + j3)
= 14.8661e−j0.3430

3.6056ej0.9828 = 4.1231e−j1.3258 = (1 − j4)

Powers and Roots of Complex Numbers
Since x2 ≥ 0 for all real numbers, the quadratic equation x2 = −1 has no solution in the real number
system. In the complex number system, the two roots are j and −j and, in fact, every polynomial
equation does have a solution.

zN = (Aejθ )N = AnejNθ
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Replacing N by 1/N and adding 2kπ to θ , we get

z
1
N = + N

√
Ae

j(θ+2kπ)
N = + N

√
A

(
cos

(
(θ + 2kπ)

N

)
+ j sin

(
(θ + 2kπ)

N

))
, k = 0, 1, 2, . . . , N − 1

With A = 1 and θ = 0, we get the N th roots of unity, which form the DFT basis functions.

1
1
N = cos

(
2kπ

N

)
+ j sin

(
2kπ

N

)
, k = 0, 1, 2, . . . , N − 1

For example, with N = 4, we get the roots as {1, j,−1,−j}. Each root raised to the power of 4
will yield 1. Since the magnitude of the roots is 1, their angles add to {0, 2π, 4π,−2π}. The complex
number with these arguments is 1.

www.TechnicalPDF.com



Answers to Selected Exercises

Chapter 1

1.1.2
Req = 15, I = −3/15 = −0.2

VR1 = (−0.2)1 = −0.2, VR2 = (−0.2)2 = −0.4, VR3 = (−0.2)3 = −0.6,

VR4 = (−0.2)4 = −0.8, VR5 = (−0.2)5 = −1

1.2.3
VR1 = (−4)2 = −8, VR2 = (−4)1 = −4, VR3 = (−4)4 = −16,

VR4 = (−4)3 = −12, VR5 = (−4)6 = −24

1.3.3
Yeq = 2.25, IR1 = −4/(2Yeq) = −0.8889, IR2 = −4/(1Yeq) = −1.7778,

IR3 = −4/(4Yeq) = −0.4444, IR4 = −4/(3Yeq) = −0.5926, IR5 = −4/(6Yeq) = −0.2963 A

The voltage across the resistors is −1.7778 V.
1.4.2

Yeq = 2.2833, I = V Yeq = −6.85, IR1 = I/(1Yeq) = −3, IR2 = I/(2Yeq) = −1.5,

IR3 = I/(3Yeq) = −1, IR4 = I/(4Yeq) = −0.75, IR5 = I/(5Yeq) = −0.6 A

1.5.2 The equivalent admittance of the four parallelly connected resistors is Yeq = 2.0833. The
equivalent impedance of the circuit is Zeq = 5 + (1/2.0833) = 5.48 �.

I = V/Zeq = −0.5474

IR1 = I/(1Yeq) = −0.2628, IR2 = I/(2Yeq) = −0.1314,

IR3 = I/(3Yeq) = −0.0876, IR4 = I/(4Yeq) = −0.0657

IR5 = I

The voltage across the parallel resistors is −0.2628. The voltage across R5 is −2.7372.
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1.6.2 The equivalent admittance of the four parallelly connected resistors is Yeq = 2.0833.

IR1 = I/(1Yeq) = −1.44, IR2 = I/(2Yeq) = −0.72,

IR3 = I/(3Yeq) = −0.48, IR4 = I/(4Yeq) = −0.36

IR5 = I

The voltage across the parallel resistors is −1.44. The voltage across R5 is −15.

Chapter 2

2.1.2
I1 = 0.4730, I2 = 0.3514, I3 = −0.1351

{IR1 = I1 − I2 = 0.1216, IR4 = I2 + I3 = 0.2162, IR3 = I1 − I2 − I3 = 0.2568}
The power consumed is 0.4730 W.

2.2.2
I1 = −0.2750, I2 = 0.2500, I3 = −0.7250

{IR1 = −0.5250, IR3 = 0.2, IR4 = −0.4750}
The power consumed is 1.45 W.

2.3.2
I1 = 0.1186, I2 = 0.2203, I3 = 0.2712

Power consumed is 0.4915 W.
2.4.2

I1 = −1/2. I2 = −1, I3 = −3/7

Power consumed is

1(1/2)2 + 3(1/2)2 + 2(1)2 + 3(3/7)2 + 4(4/7)2 = 4.8571 W

2.5.2
I1 = 1/2, I2 = −3/2

The power consumed is 17.5 W.
2.6.2

I1 = 1.8333, I2 = −1.1667, I3 = 0.3333

Power consumed is 18.0553 W.
2.7.2

I1 = −3, I2 = −2, I3 = −4

Power consumed is 54 W.
2.9.2 The maximum power transferred is 0.1246 W.
2.10.1 The current through R3 is 1/3.
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Chapter 3

3.1.3 x(t) = 5 cos(2πt + 5π
6 ), t = − 5

12 .

3.2.4 x(t) = 4 sin(2πt − π
4 ) = −2

√
2 cos(2πt) + 2

√
2 sin(2πt), t = 3

8 , 11
8 , 19

8 .
3.3.4

x(t) = 3 sin

(
2π

6
t + π

6

)
= 1.5(e

j
(

2π
6 t− π

3

)

+ e−j ( 2π
6 t− π

3 ))

3.4.2

i(t) = 0.9969 cos

(
2π

4
t − 2.6964

)

3.5.2

I = V

Zeq

= 0.1246 − j0.3418

VZ1 = −1.1393 − j0.4153, VZ2 = 0.3738 − j1.0254, VZ3 = 0.2087 + j0.0121,

VZ4 = 0.2492 − j0.6836, VZ5 = 0.3076 + j0.1121

3.6.2
VZ1 = −5, VZ2 = −j2, VZ3 = −2.6471 − j4.4118,

VZ4 = −j8, VZ5 = 0.4

3.7.3
IZ1 = −0.0333 + j0.0946, IZ2 = 0.9460 + j0.3332, IZ3 = −0.0167 + j0.0473,

IZ4 = −0.0189 − j0.0067, IZ5 = −0.0111 + 0.0315

3.8.2
IZ1 = 0.4714 − j0.4714, IZ2 = −2.3570 − j2.3570, IZ3 = 0.7071 − j0.7071,

IZ4 = 0.5657 + j0.5657, IZ5 = 0.4714 − j0.4714

3.9.2

IZ1 = 0.0026+j0.0095, IZ2 = 0.0475−j0.0129, IZ3 = −0.1293−j0.4750, IZ4 = 0.0317−j0.0086

VZ5 = −0.0950 − j0.9741

3.10.2

IZ1 = −0.0477+j0.0408, IZ2 = 0.0680+j0.0795, IZ3 = 0.7947−j0.6799, IZ4 = 0.0510+j0.0596

VZ5 = 0.8660 − j0.5

3.11.2
I1 = −0.4272 − j0.5434, I2 = −0.5130 − j0.5303, I3 = 0.2276 + j0.1187

3.12.2

I1 = −0.0344 + j0.0598, I2 = −0.0255 − j0.2326, I3 = −0.0105 + j0.2538
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3.13.2
I1 = −0.0260 − j0.1236, I2 = 0.1753 − j0.2164, I3 = 0.1928 − j0.1237

3.14.2 See Tables B.1 and B.2

Table B.1 Voltages due to
each source in circuit in
Exercise 3.14.2

Source V1 V2 V3

V source, ω = 1 1 1.0038 + j0.0421 0.3357 + j0.0586

DC, ω = 0 0 0 − 1
3

I source, ω = 2 0 0.0694 + j0.0116 0.1976 − j0.6799

Table B.2 Currents due to
each source in circuit in
Exercise 3.14.2

Source I1 I2 I3

V source 0.4206 − j0.0382 0.3341 − j0.0083 0.3341 − j0.0083

DC − 1
3 − 1

3 − 1
3

I source −0.0578 + j0.3470 −0.0641 + j0.3457 −0.0641 − j0.6543

3.15.2
I1 = 2.0200 + j0.3990 and I3 = I1 − 2 = 0.0200 + j0.3990

V2 = 0.0399 − j0.2020

3.16.2
I1 = −1.7024 + j1.3750, I2 = 3.4048 − j1.7499, I3 = 1.3208 − j0.6567

3.17.2
I1 = 0.0236 + j0.1376, I2 = −0.0253 − j0.4250, I3 = 0.0483 + j0.4668

3.19.2
Pm = 0.0646 W

3.20.1
I = (−0.5000 + j0.5000) A

Chapter 4

4.2
L = 1.25 H, pf = 0.8

L = 2 H, pf = 1

4.4
C = 0.0186 F
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Chapter 5

5.1.2
I1 = 0.16 − j0.12 I2 = 0.14 + j0.02

S = Pav + jQav = 0.08 + j0.06 va.

The average value of the energy stored is 0.0150.
The energy stored at t = 1 is 0.08 J.

5.2.2
I1 = −0.1891 − j0.1317 I2 = −0.0289 − j0.0875

S = Pav + jQav = 0.0659 + j0.0946 va.

The average value of the energy stored is 0.0236.
The energy stored at t = 1 is 0.0316 J.

5.3.2
I1 = 0.4268 + j0.4854, I2 = 0.4576 + j0.1912, I3 = 0.2722 + j0.2673

S = Pav + jQav = 0.3062 − j0.1035 va.

The average value of the magnetic fields is 0.0577.
The average value of the electric field is 0.1094.
At t = 1, the values of the magnetic fields and the electric field are 0.0153 and 0.0443,

respectively.

Chapter 6

6.1.1 Positive sequence
The voltages are

va(t) = 2 cos

(
2π

15
t

)
, vb(t) = 2 cos

(
2π

15
t − 2π

3

)
, vc(t) = 2 cos

(
2π

15
t − 4π

3

)

Negative sequence

va(t) = 2 cos

(
2π

15
t

)
, vb(t) = 2 cos

(
2π

15
t + 2π

3

)
, vc(t) = 2 cos

(
2π

15
t + 4π

3

)

6.2.1

Ia = 2/(1 + j3) = 0.2 − j0.6, Ibn = −0.6196 + j0.1268, Icn = 0.4196 + j0.4732

The power stored and consumed by the circuit in phase a is 0.2 + j0.6 va.

pf = 0.3162, C = 0.1125 F

6.3.2

Ia = 3/(1+j4) = 0.1765−j0.7059, Ibn = −0.6995+j0.2001, Icn = 0.5231+j0.5058
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The power stored and consumed by the circuit in phase a is 0.2647 + j1.0588 va.

pf = 0.2425, C = 0.0876 F

6.4.1 Same as for Exercise 6.2.1
6.5.1 Same as for Exercise 6.2.1

Chapter 7

7.1

Z =
[

Z11 Z12

Z21 Z22

]
=
[

3.7308 − j0.3462 2.5385 + j0.6923

2.5385 + j0.6923 2.9231 + j1.6154

]

7.3

Y =
[

Y11 Y12

Y21 Y22

]
=
[

0.5692 + j0.1385 −0.4615 + j0.0000

−0.4615 + j0.0000 0.6154 − j0.2308

]

7.5 [
A B

C D

]
=
[

1 0

Y1 1

][
1 Z1

0 1

][
1 0

Y3 1

]
=
[

j2 2 + j1

−2 + j1 j2

]

[
V1

I1

]
=
[

j2 2 + j1

−2 + j1 j2

][
0.1379 − j0.3448

0.0690 − j0.1724

]
=
[

1

0.4138 + j0.9655

]

Chapter 8

8.1.1

X(0) = 1� π, X(1) = 0.5� −π

3
, X(−1) = 0.5� π

3
, X(3) = 1.5� −π

6
, X(−3) = 1.5� π

6

8.2

x(t) = 1

2
− 1

π

(
sin(2πt) + sin(2(2π)t)

2
+ sin(3(2π)t)

3
+ · · ·

)

8.4.3 The sample values are
0.7287, 0.8646, 0.8660

The exact value is 0.8660.

8.6 The unit-step response is

vC(t) = R(1 − e− t
RC )u(t) and iC(t) = e− t

RC u(t)

The unit-impulse response is

vC(t) = 1

C
e− t

RC u(t) and iC(t) = − 1

RC
e− t

RC u(t)
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8.7 The unit-impulse response is

v(t) = 1.069e−0.25t cos(0.6614t + 0.3614)u(t)

Since the unit-step response is the integral of that of the unit-impulse response, we integrate v(t)

to get

y(t) = 1.069e−0.25t

0.252 + 0.66142 ( 0.9354((−0.25) cos(0.6614t) + (0.6614) sin(0.6614t))+

(−0.3536)((−0.25) sin(0.6614t) − (0.6614) cos(0.6614t)) )

Bibliography

Alexander, C. K., & Sadiku, M. N. O. (2013). Fundamentals of electric circuits. New York: McGraw Hill.
Boylestad, R. L. (2012). Introductory circuit analysis. New York: Pearson.
Carlson, A. B. (2002). Circuits. New York: Thomson.
Guillemin, E. A. (1963). Introductory circuit theory. New York: Wiley.
Irwin, J. D., & Nelms, R. M. (2006). Basic engineering circuit analysis. New York: Wiley.
Sundararajan, D. (2008). Signals and systems – a practical approach. Singapore: Wiley.
The MathWorks. (2019). Matlab/Simulink user’s guide. Natick: The MathWorks, Inc.
The MathWorks. (2019). Matlab signal processing tool box user’s guide. Natick: The MathWorks, Inc.
Van Valkenburg, M. E. (1974). Network analysis. Englewood Cliffs: Prentice-Hall.

www.TechnicalPDF.com



Index

A
Admittance, 28, 81

matrix, 28
parameters, 221
connected in parallel, 81

Alternating current (AC), 19, 77
advantages of, 77
DC circuit analysis

differences, 85
circuit analysis, 80

advantages of sinusoidal input, 80
circuit elements, 80
frequency dependence, 85
importance of, 86
the importance of using sinusoids, 81
Ohm’s law, 81
superposition theorem, 134

Ampere, 3
Amplitude, 78
Analysis of circuits with one or two variables, 113
Aperiodic signal, 240
Approximation of, 250
Average apparent power, 182
Average energy stored, 150

B
Balanced three-phase circuits, 205

� − � connection, 211
Y − Y connection, 205
Y − � connection, 207
� − Y connection, 210
advantages, 203
instantaneous power, 205
line voltage, 206
negative sequence, 204
phase voltage, 205
positive sequence, 203
power-factor improvement, 207, 208
sum of voltages or currents, 204
typical applications, 212
voltages, 203

Branch, 19, 20

Bridge circuit, 58, 59, 94
Bridged-T circuit, 216

C
Capacitor, 80

with initial voltage, 256
input-output relationship in frequency domain, 81
input-output relationship in time domain, 80

Circuit, 1, 4, 19
transform analysis, 84

Circuit analysis, 4, 19
complete response, 255
equilibrium conditions, 20
in the frequency-domain, 255
practical, 240

Circuit analysis (AC)
superposition method, 114, 116

Circuit theorems, 59, 122
Column vector, 276
Common-emitter transistor amplifier, 228
Complex amplitude, 79
Complex and real sinusoids

equivalency, 80
Complex numbers, 281

addition and subtraction, 282
angle, 281
complex plane, 281
conjugate, 283
division, 283
equality, 281
exponential form, 281
imaginary unit, 281
magnitude, 281
multiplication, 282
polar form, 281
real and imaginary parts, 281
rectangular form, 281

Complex plane representation of voltages and currents,
89

Complex sinusoids, 79
advantages, 79

Conductance, 3
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Conductively coupled, 177
Controlled sources, 40
Coulomb, 1
Coupling coefficient, 179
Current, 1, 3

directions, 25
source, 6, 35

arrow sign, 35
in parallel, 36
in series, 36

through a capacitor, 89
through an inductor, 89

Current-controlled current source, 40
Current-controlled voltage source, 40
Cutoff frequency, 269

D
�-circuit

defined, 55
� − � circuit, 211
� − Y circuit, 210
� − Y transformation, 55, 57, 207
Δ − Y transformation (AC), 132
Determinant, 96, 98–102, 108, 110, 112, 113, 134, 191,

195, 197, 277, 295
Difference between AC and DC circuit analysis,

80
Digital-to-analog converter, 233
Direct current (DC), 19
Driving-point admittances, 221
Driving-point impedances, 215
Duality, 56
Dual nature, 12

E
Electricity, 1
Energy in reactive elements with sinusoidal sources,

150
Energy stored in the magnetic fields, 179
Equilibrium conditions, 19
Equilibrium equations, 22
Equivalent circuit

magnetically coupled inductors, 180, 183
Euler’s identity, 79
Even-symmetric, 243

F
Filters, 135

RC circuit, 136
RL circuit, 135

Fourier and Laplace transforms
differences, 256

Fourier series
Gibbs phenomenon, 246
of a rectified sine wave, 242
signal analysis, 241

signal synthesis, 241
of a square wave, 244

Fourier transform, 246
definition, 246
of exponential, 249
of impulse, 248
inverse, 247
of pulse, 247
relation to FS, 247

Frequency domain, 84
Frequency response, 248

G
Gibbs phenomenon, 246
Ground node, 27

H
Highpass filter, 271
Hybrid parameters, 224

I
Ideal current source, 89
Ideal voltage source, 87
Identity matrix, 24
Impedance, 23, 81

matrix, 23, 24, 217
parameters, 215
connected in series, 81
in parallel, 91

combined admittance, 91
defined, 91
voltage across, 91

in series, 85
combined impedance, 86
current through, 86
defined, 86
voltage across, 87

Impedances in series and parallel, 93
combined impedance, 93

Impulse representation of signals, 250
Impulse signal

as the derivative of step signal, 251
Induction motor, 198, 212
Inductor, 80, 177

with initial voltage, 257
input-output relationship in frequency domain, 81
input-output relationship in time domain, 80

Instantaneous power, 205

K
Kilowatthour (kWh), 173
Kirchhoff’s current law (KCL)

defined, 12
Kirchhoff’s voltage law (KVL), 11, 89

defined, 11
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L
Ladder circuit, 231
Laplace transform

definition, 252
of an exponential, 253
properties

final value, 255
initial value, 255
integration, 254
time-differentiation, 254

of sine signal, 253
of unit-impulse, 252
of unit-step, 253

Linearity, 37
Link, 21
Link currents, 21
Loop, 20
Loop analysis, 95, 103, 111, 112
Loop analysis (DC), 20

M
Magnetically coupled, 177
Magnetically coupled circuits, 177
Magnitude, 78
Matrices, 275

adjoint, 276
cofactor, 276
complex, 279
definition, 275
determinant of, 277
identity, 277
inverse, 276, 278
minor, 276
multiplication, 276
square, 276
symmetric, 278
transpose, 278

Maximum power transfer theorem, 65
Maximum power transfer theorem (AC), 131
Mesh analysis, 21, 95, 103, 111, 112

controlled voltage source, 107
Mesh analysis (AC), 104, 114, 116, 119, 120

bridge circuit, 94, 98, 102
current-controlled current source, 112
current source, 103
determinant of the impedance matrix, 96
differences from DC analysis, 94
equilibrium equations, 95
impedances, 95
solving the equilibrium equations, 96
source, 94
superposition theorem, 105
verifying the solutions, 96
voltage and current sources of different frequencies,

105
Mesh analysis (DC), 20, 21, 34, 39, 40, 45, 47, 49–55,

118, 121
bridge circuit, 21, 29
current directions, 25

determinant of the impedance matrix, 24
equilibrium equations, 21–23
independent and dependent variables, 22
loop independence, 20
negative value for the current, 26
power consumed, 26, 33, 35, 38, 39, 44, 46
solving equilibrium equations, 24
supermesh, 36
supernode, 33
superposition method, 37, 48, 49
symmetry of the impedance matrix, 24
verifying the solutions, 24

Mesh and nodal analysis
comparison, 111

Mutual inductance, 177
Mutual induction, 177

coupling coefficient, 179
Mutually induced voltage

polarity, 180

N
Negative sequence, 204
Nodal analysis, 97, 99, 104, 109, 111, 127

controlled voltage source, 109
Nodal analysis (AC), 104, 113, 115, 118, 119, 121

bridge circuit, 97, 99
current-controlled current source, 111
current source, 102
determinant of the admittance matrix, 100
supernode, 100

Nodal analysis (DC), 21, 27, 36, 39, 42, 44, 46, 49–54,
118, 122

bridge circuit, 27, 31, 33
determinant of the admittance matrix, 29
equilibrium equations, 28

matrix form, 28
independent and dependent variables, 27
steps of, 27

Node, 20
Nortan’s theorem (AC), 123, 130
Norton’s theorem, 59, 61

steps of, 61

O
Odd-symmetric, 245
Ohm’s law, 3

in AC circuit analysis, 81
Orthogonality, 241

P
Parallel circuit, 7
Parallel DC circuits, 7

combined resitance, 7
current, 7
current division, 8
definition, 7
power, 8
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Parallel DC circuits (cont.)
symbol, 8
voltage, 7

Periodic signal, 240
Pf, 152
Phasor, 85, 88
Phasor and real sinusoids, 88
π circuit, 226
Polarity of the mutually induced voltage, 180
Port, 215
Positive sequence, 203
Power, 4, 149

active, 152
apparent, 152
factor, 152
factor correction, 159
reactive, 152
relations in a circuit, 151
sign convention, 47
steady state, 149

Power-factor correction, 152

R
R-2R ladder circuit, 233
RC circuit, 82
RC circuit with initial voltage, 264
RC lowpass filter, 269
Reciprocal, 226
Relation between stored energy and reactive power,

156
Representation of sources in time and frequency,

89
Resistance, 3
Resistor, 21
RLC circuit analysis, 266, 267
RL circuit analysis, 81
RL circuit with initial current, 266
RMS value, 155

S
Self-inductance, 177
Series and parallel DC circuits, 9
Series circuit, 4
Series DC circuits

combined resistance, 5
current, 4
defined, 4
element interchange, 5
power, 6
resistance, 5
voltage, 5
voltage division, 5

Series RC Circuit
frequency-domain analysis, 84
time-domain analysis, 82

Signal
aperiodic, 240
periodic, 240

Sinusoidal analysis
importance, 239

Sinusoids, 77
advantages of, 77
amplitude, 78
angular frequency, 78
complex, 79
cosine and sine waveforms, 78
cosine waveform in terms of sine, 79
cyclic frequency, 78
odd and even components, 79
period, 78
the periodic nature, 79
phase, 78
polar form, 78
polar form to rectangular, 79
rectangular form, 79
rectangular form to polar, 79
sine waveform in terms of cosine, 79

Sources
controlled, 40

Source transformation, 65
Source transformation (AC), 133
Spectrum

magnitude, 242
phase, 242

Steady-state analysis, 85
Steady-state response, 249
Storage elements, 149
Stored energy, 178, 182, 185, 187, 189, 193

capacitor, 150
discharge, 259
electric field, 157
magnetic field, 155
sinusoidal source, 179, 180

Stored energy, inductor, 149
Strain gauge measurement, 67
Substitution method, 275
Supermesh, 36, 104
Supernode, 33, 34, 100, 101
Superposition, 37
Symmetrical components, 205
Symmetry of the impedance matrix, 24

T
Thévenin’s theorem, 59

bucking voltage method, 60
equivalent resistance, 59
equivalent voltage, 59
steps of, 59

Thévenin’s theorem (AC), 122
bucking voltage method, 124
current source, 125
sources with different frequencies, 126
voltage-controlled voltage source, 127

Three-phase circuits, 203
line voltages, 209
unbalanced, 205

Three-phase voltages, 203
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Time constant, 259
Time domain, 84
Transfer admittances, 221
Transfer function, 248
Transfer impedances, 216
Transform, 239
Transform analysis of circuits

steps of, 84
Transformers, 198

ideal, 198
Transient response, 249
Transmission parameters, 225
Tree, 20
Two-port circuit, 215

applications, 215
input impedance, 220
necessity, 215
output impedance, 220
parallel circuits, 224
parameter matrix, 217
series circuits, 219

Two-port model
bridge circuit, 230

Two-port networks, 215

U
Unit-impulse signal, 250

the integral of, 251

Unit-step responses
RC circuit, 261, 290
RL circuit, 258

Unit-step signal, 250
the derivative of, 251

V
Volt, 3
Voltage, 3
Voltage-controlled current source, 40
Voltage-controlled voltage source, 40
Voltage source, 5, 20

in parallel, 20
+ sign, 20
in series, 20

W
Watt, 4

Y
Y -circuit

defined, 55
Y − � and � − Y transformations, 55
Y − � circuit, 207
Y − � transformation, 56
Y − Y circuit, 206
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