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Foreword 
 

If you’re reading this book, you’re probably already enrolled in an introductory university course 
in Mechanical Engineering.  The primary goals of this textbook are, to provide you, the student, 
with: 

 
1. An understanding of what Mechanical Engineering is and to a lesser extent what it is not 
2. Some useful tools that will stay with you throughout your engineering education and career  
3. A brief but significant introduction to some of the major topics of Mechanical Engineering 

and enough understanding of these topics so that you can relate them to each other 
4. A sense of common sense 
 

The challenge is to accomplish these objectives without overwhelming you so much that you won’t 
be able to retain the most important concepts. 

In regards to item 2 above, I remember nothing about some of my university courses, even in 
cases where I still use the information I learned therein.  In others I remember “factoids” that I still 
use.  One goal of this textbook is to provide you with a set of useful factoids so that even if you 
don’t remember any specific words or figures from this text, and don’t even remember where you 
learned these factoids, you still retain them and apply them when appropriate. 

In regards to item 3 above, in particular the relationships between topics, this is one area where I 
feel engineering faculty (myself included) do not do a very good job.  Time and again, I find that 
students learn something in class A, and this information is used with different terminology or in a 
different context in class B, but the students don’t realize they already know the material and can 
exploit that knowledge.  As the old saying goes, “We get too soon old and too late smart…”  
Everyone says to themselves several times during their education, “oh… that’s so easy… why didn’t 
the book [or instructor] just say it that way…”  I hope this text will help you to get smarter sooner 
and older later. 

A final and less tangible purpose of this text (item 4 above) is to try to instill you with a sense of 
common sense.  Over my 33 years of teaching at the university level, I have found that students 
have become more technically skilled and well-rounded but have less ability to think and figure out 
things for themselves.  I attribute this in large part to the fact that when I was a teenager, cars were 
relatively simple and my friends and I spent hours working on them.  When our cars weren’t broken, 
we would sabotage (nowadays “hack” might be a more descriptive term) each other’s cars.  The best 
hacks were those that were difficult to diagnose, but trivial to fix once you figured out what was 
wrong.  We learned a lot of common sense working on cars.  Today, with electronic controls, cars 
are very difficult to work on or hack.  Even with regards to electronics, today the usual solution to a 
broken device is to throw it away and buy a newer device, since the old one is probably nearly 
obsolete by the time it breaks.  Of course, common sense per se is probably not teachable, but a sense 
of common sense, that is, to know when it is needed and how to apply it, might be teachable.  If I may 
be allowed an immodest moment in this textbook, I would like to give an anecdote about my son 
Peter.  When he was not quite 3 years old, like most kids his age had a pair of shoes with lights 
(actually light-emitting diodes or LEDs) that flash as you walk.  These shoes work for a few months 
until the heel switch fails (usually in the closed position) so that the LEDs stay on continuously for a 
day or two until the battery goes dead.  One morning he noticed that the LEDs in one of his shoes 
were on continuously.  He had a puzzled look on his face but said nothing.  Instead, he went to look 
for his other shoe, and after rooting around a bit, found it.  He then picked it up, hit it against 
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something and the LEDs flashed as they were supposed to.  He then said, holding up the good shoe, 
“this shoe - fixed… [then pointing at the other shoe] that shoe - broken!”  I immediately thought, “I 
wish all my students had that much common sense…”  In my personal experience, about half of 
engineering is common sense as opposed to specific, technical knowledge that needs to be learned 
from coursework.  Thus, to the extent that common sense can be taught, a final goal of this text is 
to try to instill this sense of when common sense is needed and even more importantly how to 
integrate it with technical knowledge.  The most employable and promotable engineering graduates 
are the most flexible ones, i.e. those that take the attitude, “I think I can handle that” rather than “I 
can’t handle that since no one taught me that specific knowledge.”  Students will find at some point 
in their career, and probably in their very first job, that plans and needs change rapidly due to testing 
failures, new demands from the customer, other engineers leaving the company, etc. 

In most engineering programs, retention of incoming first-year students is an important issue; at 
many universities, less than half of first-year engineering students finish an engineering degree.  Of 
course, not every incoming student who chooses engineering as his/her major should stay in 
engineering, nor should every student who lacks confidence in the subject drop out, but in all cases 
it is important that incoming students receive a good enough introduction to the subject that they 
make an informed, intelligent choice about whether he/she should continue in engineering. 

Along the lines of retaining first-year students in engineering, I would like to give an anecdote.  
At Princeton University, in one of my first years of teaching, a student in my thermodynamics class 
came to my office, almost in tears, after the first midterm.  She did fairly poorly on the exam, and 
she asked me if I thought she belonged in Engineering.  (At Princeton thermodynamics was one of 
the first engineering courses that students took).  What was particularly distressing to her was that 
her fellow students had a much easier time learning the material than she did.  She came from a 
family of artists, musicians and dancers and got little support or encouragement from home for her 
engineering studies.  While she had some of the artistic side in her blood, she said that her real love 
was engineering, but she wondered was it a lost cause for her?  I told her that I didn’t really know 
whether she should be an engineer, but I would do my best to make sure that she had a good 
enough experience in engineering that she could make an informed choice from a comfortable 
position, rather than a decision made under the cloud of fear of failure.  With only a little 
encouragement from me, she did better and better on each subsequent exam and wound up 
receiving a very respectable grade in the class.  She went on to graduate from Princeton with honors 
and earn a Ph.D. in engineering from a major Midwestern university.  I still consider her one of my 
most important successes in teaching.  Thus, a goal of this text is (along with the instructor, teaching 
assistants, fellow students, and infrastructure) is to provide a positive first experience in engineering. 

There are also many topics that should be (and in some instructors’ views, must be) covered in an 
introductory engineering textbook but are not covered here because the overriding desire to keep 
the book’s material manageable within the limits of a one-semester course: 
 

1. History of engineering 
2. Philosophy of engineering 
3. Engineering ethics 
 
Finally, I offer a few suggestions for faculty using this book: 
 
1. Projects.  I assign small, hands-on design projects for the students, examples of which are 

given in Appendix A. 
2. Demonstrations.  Include simple demonstrations of engineering systems – thermoelectrics, 

piston-type internal combustion engines, gas turbine engines, transmissions, … 
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3. Computer graphics.  At USC, the introductory Mechanical Engineering course is taught in 
conjunction with a computer graphics laboratory where an industry-standard software 
package is used. 



Nomenclature 
 

Symbol Meaning SI units and/or value 
A Area m2 
BTU British Thermal Unit 1 BTU = 1055 J 
CD Drag coefficient --- 
CL Lift coefficient --- 
CP Specific heat at constant pressure J/kgK 
CV Specific heat at constant volume J/kgK 
c Sound speed m/s 
COP Coefficient Of Performance --- 
d Diameter m (meters) 
E Energy J (Joules) 
E Elastic modulus N/m2 
e Internal energy per unit mass J/kg 
F Force N (Newtons) 
f Friction factor (for pipe flow) --- 
g Acceleration of gravity m/s2 (earth gravity = 9.81) 
gc USCS units conversion factor  32.174 lbm ft/ lbf sec2 = 1 
h Convective heat transfer coefficient W/m2K 
I Area moment of inertia m4 
I Electric current amps 
k Boltzmann’s constant 1.380622 x 10-23 J/K 
k Thermal conductivity W/mK 
L Length m 
M Molecular Mass kg/mole 

M Moment of force N m  (Newtons x meters) 
M Mach number --- 
m Mass kg 

 Mass flow rate kg/s 
n Number of moles --- 
NA Avogadro’s number (6.0221415 x 1023) --- 
P Pressure N/m2 
P Point-load force N 
Q Heat transfer J 
q Heat transfer rate W (Watts) 
Â Universal gas constant 8.314 J/mole K 
R Mass-based gas constant = Â/M J/kg K 
R Electrical resistance ohms 
Re Reynolds number --- 
r Radius m 
S Entropy J/K 
T Temperature K 
T Tension (in a rope or cable) N 

m
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t Time s (seconds) 
U Internal energy J 
u Internal energy per unit mass J/kg 
V Volume m3 
V Voltage Volts 
V Shear force N 
v Velocity m/s 
W Weight N (Newtons) 
W Work J 
w Loading (e.g. on a beam) N/m 
Z Thermoelectric figure of merit 1/K 
z elevation m 
 
a Thermal diffusivity m2/s 
g Gas specific heat ratio --- 
h Efficiency --- 
e Strain --- 
e Roughness factor (for pipe flow) --- 
µ Coefficient of friction --- 
µ Dynamic viscosity kg/m s 
q Angle --- 
n Kinematic viscosity = µ/r m2/s 
n Poisson’s ratio --- 
r Density kg/m3 
r Electrical resistivity ohm m 
s Normal stress N/m2 
s Stefan-Boltzmann constant 5.67 x 10-8 W/m2K4 
s Standard deviation [Same units as sample set] 
t Shear stress N/m2 
t Thickness (e.g. of a pipe wall) m 
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Units conversions 
 

Base units 
Type SI unit USCS unit Other conversions 
Length meter (m) 3.281 foot (ft) = 1 m 1 m = 100 centimeters (cm)  

       = 1000 millimeters (mm) 
       = 39.37 inches (in) 
1 kilometer (km) = 1000 m 
1 mile (mi) = 5280 ft 

Mass kilogram (kg) 2.205 pounds mass (lbm) 
= 1 kg 

1000 grams (g) = 1 kg 
1 slug = 32.174 lbm 

Time second (s) s 1 minute (min) = 60 s 
1 hour (hr) = 60 min 

Charge coulomb 
(coul) 

coul 1 coul = charge on 6.241506 x 
1018 electrons 

Derived units 
Type SI unit USCS unit Other conversions 
Area (length2) m2 10.76 ft2 = 1 m2 1 acre = 43,560 ft2 

640 acres = 1 mi2 
1 hectare = 10,000 m2 = 2.471 
acre 

Volume (length3) m3 35.32 ft2 = 1 m3  1 ft3 = 7.48 gallons (gal)  
        = 28,317 cm3 (ml, cc) 
1 m3 = 264.2 gal 
1 liter = 0.001 m3 
          = 1000 cm3  
          = 61.02 in3 

Velocity 
(length/time) 

m/s 3.281 ft/s = 1 m/s 60 mi/hr = 88 ft/s 

Acceleration 
(length/time2) 

m/s2 3.281 ft/s2 = 1 m/s2 1 g (standard earth gravity)  
= 9.806 m/s2  = 32.174 ft/s2 

Force = 

 

1 Newton (N) 
  = 1 kg m/s2 

1 pound force (lbf)  
  = 4.448 N 

1 dyne = 1 g cm/s2 = 10-5 N 

Energy = 

 

1 Joule (J) =  
1 kg m2/s2 = 
1 N m 

1 J = 0.7376 (ft lbf)  
(foot-pound) 

1 British Thermal Unit (BTU) 
  = 1055 J = 778 ft lbf 
1 calorie (cal) = 4.184 J 
1 diet calorie = 1000 cal 
1 erg = 1 g cm2/s2 = 10-7 J 

Power = 

 

1 Watt (W) = 
1 kg m2/s3 =  
1 N m/s 

1 horsepower (hp)  
  = 746 W 

1 hp = 550 ft lbf/s 

Pressure = 
force/length2 

1 Pascal (Pa) 
  = 1 N/m2  
  = 1 kg/m s2 

1 lbf/in2 = 6899 Pa 1 standard atmosphere (atm) 
  = 101325 Pa 
  = 14.696 lbf/in2 
1 bar = 105 Pa 

mass× length
time2

mass× length2

time2

mass× length2

time3
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Type SI unit USCS unit Other conversions 
Temperature Kelvin (K) 1.8 Rankine (R) = 1 K See notes below 
Heat capacity = 

 

1 J /kg K  
  = 1 J/kg˚C 

1 BTU/lbm˚F 
  = 1 BTU/lbmR 
  = 1 cal/g˚C 
 

(Note: that’s not a misprint, the 
conversion factor between 
BTU/lbm˚F and cal/g˚C is 
exactly 1) 

Current = 
charge/time 

1 Ampere  
 (A or amp)  
= 1 coul/s 

n/a 1 milliamp (mA) = 0.001 A 

Voltage = 
energy/charge 

1 Volt (V) 
 = 1 J/coul 

n/a n/a 

Capacitance = 
coul/Volt 

1 Farad (f) 
= 1 coul/Volt 
= 1 coul2/J 

n/a 1 microfarad (µf) = 10-6 f 
1 picofarad (pf) = 10-12 f 

Inductance = 
Volt / (amp/s) 

1 Henry (H) 
= 1 J s2/coul2 

n/a 1 millihenry (mH) = 0.001 H 

Resistance = 
Volt/amp 

1 Ohm (W) 
= 1 Volt/amp 
= 1 J s/coul2 

n/a n/a 

 
Temperature conversion formulae: 
Kelvins (K, not ˚K) is the absolute temperature scale in SI units.  
Rankines (R, not ˚R) is the absolute temperature scale in USCS units. 
T (in units of ˚F) = T (in units of R) - 459.67 
T (in units of ˚C) = T (in units of K) - 273.15 
T (in units of ˚C) = [T (in units of ˚F) – 32]/1.8 
T (in units of ˚F) = 1.8[T (in units of ˚C)] + 32 
 
1 K of temperature change = 1˚C of temperature change  
   = 1.8˚F of temperature change = 1.8 R of temperature change 
 
Revolution conversion formulae: 
1 revolution = 2π radians = 360 degrees 
 
Ideal gas law - note that there are many “flavors” of the ideal gas law: 

PV=nÂT  
PV=mRT 
Pv=RT 
P = rRT – most useful form for engineering purposes; more useful to work with mass than 
moles, because moles are not conserved in chemical reactions!  
 
P = pressure (N/m2); V = volume (m3); n = number of moles of gas 
Â = universal gas constant (8.314 J/moleK); T = temperature (K) 
m = mass of gas (kg); R = mass-specific gas constant = R/M 
M = gas molecular mass (kg/mole); v = V/m = specific volume (m3/kg) 
r = 1/v = density (kg/m3)  

 

Energy
mass ×  temperature



Chapter 1.  What is Mechanical Engineering? 
“The journey of a thousand miles begins with a single step.” 
- Lao Tzu 
 
Definition of Mechanical Engineering 
 

My personal definition of Mechanical Engineering is 
 

If it needs engineering but it doesn’t involve electrons, chemical reactions, arrangement of molecules, life forms, isn’t 
a structure (building/bridge/dam) and doesn’t fly, a mechanical engineer will take care of it… but 
 
if it does involve electrons, chemical reactions, arrangement of molecules, life forms, is a structure or does fly, 
mechanical engineers may handle it anyway 

 
Although every engineering faculty member in every engineering department will claim that 

his/her field is the broadest engineering discipline, in the case of Mechanical Engineering that’s 
actually true (I claim) because the core material permeates all engineering systems (fluid mechanics, 
solid mechanics, heat transfer, control systems, etc.) 

Mechanical engineering is one of the oldest engineering fields (though perhaps Civil Engineering 
is even older) but in the past 20 years has undergone a rather remarkable transformation as a result 
of a number of new technological developments including 

 
• Computer Aided Design (CAD).  The average non-technical person probably thinks that 

mechanical engineers sit in front of a drafting table drawing blueprints for devices having nuts, 
bolts, shafts, gears, bearings, levers, etc.  While that image was somewhat true 100 years ago, 
today the drafting board has long since been replaced by CAD software, which enables a part to 
be constructed and tested virtually before any physical object is manufactured.   

• Simulation.  CAD allows not only sizing and checking for fit and interferences, but the 
resulting virtual parts are tested structurally, thermally, electrically, aerodynamically, etc. and 
modified as necessary before committing to manufacturing. 

• Sensor and actuators.  Nowadays even common consumer products such as automobiles have 
dozens of sensors to measure temperatures, pressures, flow rates, linear and rotational speeds, 
etc.  These sensors are used not only to monitor the health and performance of the device, but 
also as inputs to a microcontroller.  The microcontroller in turn commands actuators that adjust 
flow rates (e.g. of fuel into an engine), timings (e.g. of spark ignition), positions (e.g. of valves), etc. 

• 3D printing.  Traditional “subtractive manufacturing” consisted of starting with a block or 
casting of material and removing material by drilling, milling, grinding, etc.  The shapes that can 
be created in this way are limited compared to modern “additive manufacturing” or “3D 
printing” in which a structure is built in layers.  Just as CAD + simulation has led to a new way 
of designing systems, 3D printing has led to a new way of creating prototypes and in limited 
cases, full-scale production. 

• Collaboration with other fields.  Historically, a nuts-and-bolts device such as an automobile 
was designed almost exclusively by mechanical engineers.  Modern vehicles have vast electrical 
and electronic systems, safety systems (e.g. air bags, seat restraints), specialized batteries (in the 
case of hybrids or electric vehicles), etc., which require design contributions from electrical, 
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biomechanical and chemical engineers, respectively.  It is essential that a modern mechanical 
engineer be able to understand and accommodate the requirements imposed on the system by 
non-mechanical considerations. 

 
These radical changes in what mechanical engineers do compared to a relatively short time ago 
makes the field both challenging and exciting. 
 
Mechanical Engineering curriculum 
 

In almost any accredited Mechanical Engineering program, the following courses are required: 
 
• Basic sciences - math, chemistry, physics 
• Breadth or distribution (called “General Education” at USC) 
• Computer graphics and computer aided design (CAD) 
• Experimental engineering & instrumentation 
• Mechanical design - nuts, bolts, gears, welds 
• Computational methods - converting continuous mathematical equations into discrete 

equations solved by a computer 
• Core “engineering science” 

o Dynamics – essentially F = ma applied to many types of systems 
o Strength and properties of materials 
o Fluid mechanics 
o Thermodynamics 
o Heat transfer 
o Control systems 

• Senior “capstone” design project 
 

Additionally you may participate in non-credit “enrichment” activities such as undergraduate 
research, undergraduate student paper competitions in ASME (American Society of Mechanical 
Engineers, the primary professional society for mechanical engineers), the Formula SAE racecar 
project, etc. 

 
Figure 1.   SAE Formula racecar project at USC (photo: http://www.uscformulasae.com) 
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Examples of industries employing MEs 
 

Many industries employ mechanical engineers; a few industries and the type of systems MEs 
design are listed below. 

o Automotive 
• Combustion 
• Engines, transmissions 
• Suspensions 

o Aerospace (w/ aerospace engineers) 
• Control systems 
• Heat transfer in turbines 
• Fluid mechanics (internal & external) 

o Biomedical (w/ physicians) 
• Biomechanics – prosthesis 
• Flow and transport in vivo 

o Computers (w/ computer engineers) 
• Heat transfer 
• Packaging of components & systems 

o Construction (w/ civil engineers) 
• Heating, ventilation, air conditioning (HVAC) 
• Stress analysis 

o Electrical power generation (w/ electrical engineers) 
• Steam power cycles - heat and work 
• Mechanical design of turbines, generators, ... 

o Petrochemicals (w/ chemical, petroleum engineers) 
• Oil drilling - stress, fluid flow, structures 
• Design of refineries - piping, pressure vessels 

o Robotics (w/ electrical engineers) 
• Mechanical design of actuators, sensors 
• Stress analysis 
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Chapter 2.  Units 
 
I often say that when you can measure what you are speaking about, and express it in numbers, you know something 
about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and 
unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the 
stage of science, whatever the matter may be 
 – William Thomson (Lord Kelvin) 

 
All engineered systems require measurements for specifying the size, weight, speed, etc. of 

objects as well as characterizing their performance.  Understanding the application of these units is 
the single most important objective of this textbook because it applies to all forms of engineering 
and everything that one does as an engineer.  Understanding units is far more than simply being able 
to convert from feet to meters or vice versa; combining and converting units from different sources 
is a challenging topic.  For example, if building insulation is specified in units of BTU inches per 
hour per square foot per degree Fahrenheit, how can that be converted to thermal conductivity in 
units of Watts per meter per degree C?  Or can it be converted?  Are the two units measuring the 
same thing or not?  (For example, in a new engine laboratory facility that was being built for me, the 
natural gas flow was insufficient… so I told the contractor I needed a system capable of supplying a 
minimum of 50 cubic feet per minute (cfm) of natural gas at 5 pounds per square inch (psi).  His 
response was “what’s the conversion between cfm and psi?”  Of course, the answer is that there is 
no conversion; cfm is a measure of flow rate and psi a measure of pressure. One might as well be 
asking what’s the conversion between kilograms and miles.)  Engineers must struggle with these 
misconceptions every day. 

Base units 
 

Engineers in the United States are burdened with two systems of units and measurements:  
(1) the English or USCS (US Customary System) L and (2) the metric or SI (Système International 
d’Unités) J.  Either system has a set of base units , that is, units which are defined based on a 
standard measure such as a certain number of wavelengths of a particular light source.  These base 
units include: 

 
• Length (meters (m), centimeters (cm), millimeters (mm); feet (ft), inches (in), kilometers 

(km), miles (mi)) 
• 1 m = 100 cm = 1000 mm = 3.281 ft = 39.37 in 
• 1 km = 1000 m 
• 1 mi = 5280 ft 

• Mass (lbm, slugs, kilograms); (1 kg = 2.205 lbm = 0.06853 slug) (lbm = “pounds mass”) 
• Time (seconds; the standard abbreviation is “s” not “sec”) (same units in USCS and SI!) 
• Electric current (really electric charge in units of coulombs [abbreviation: ‘coul’] is the base 

unit and the derived unit is current = charge/time)  (1 coulomb = charge on 6.241506 x 1018 
electrons) (1 ampere [abbreviation: amp]= 1 coul/s) 

 
Moles are often reported as a fundamental unit, but it is not; it is just a bookkeeping 

convenience to avoid carrying around factors of 1023 everywhere.  The choice of the number of 
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particles in a mole of particles is completely arbitrary; by convention Avogadro’s number is defined 
by NA = 6.0221415 x 1023, the units being particles/mole (or one could say individuals of any kind, 
not limited just to particles, e.g. atoms, molecules, electrons or students). 

Temperature is frequently interpreted as a base unit but again it is not, it is a derived unit, that is, 
one created from combinations of base units.  Temperature is essentially a unit of energy divided by 
Boltzman’s constant.  Specifically, the average kinetic energy of an ideal gas particle in a 3-
dimensional box is 1.5kT, where k is Boltzman’s constant = 1.380622 x 10-23 J/K (really 
(Joules/particle)/K; every textbook will state the units as just J/K but you’ll see below how useful it 
is to include the “per particle” part as well).  Thus, 1 Kelvin is the temperature at which the kinetic 
energy of an ideal gas (and only an ideal gas, not any other material) molecule is 1.5kT =2.0709 x 
10-23 J.   

The ideal gas constant (Â) with which you are very familiar is simply Boltzman’s constant 
multiplied by Avogadro’s number, i.e.  

 

 (Equation 1) 

 
In the above equation, note that we have multiplied and divided units such as Joules as if they were 
numbers; this is valid because we can think of 8.314 Joules as 8.314 x (1 Joule) and additionally we 
can write (1 Joule) / (1 Joule) = 1.  Extending that further, we can think of (1 Joule)/(1 kg m2/s2) = 
1, which will be the basis of our approach to units conversion – multiplying and dividing by 1 
written in different (and sometimes odd-looking) forms. Note also the value of the “hidden unit” 
‘particle’ in the above equation. I find it extremely useful to include such units because the real units 
aren’t J/K; if you have 2 particles you’ll have twice as much energy (J) at the same value of K 
(temperature), so the real units ARE in fact J/(particle K). 

Why does this discussion apply only for an ideal gas?  By definition, ideal gas particles have 
only kinetic energy and negligible potential energy due to inter-molecular attraction; if there is 
potential energy, then we need to consider the total internal energy of the material (E, units of 
Joules) which is the sum of the microscopic kinetic and potential energies, in which case the 
temperature for any material (ideal gas or not) is defined as 

        (Equation 2) 

where U is the internal energy of the material (units J), S is the entropy of the material (units J/K) 
and V is the volume.  This intimidating-looking definition of temperature, while critical to 
understanding thermodynamics, will not be needed in this course.  (Until you read this you thought 
you understood temperature because of its common usage and a handy device called a thermometer; 
in fact, temperature is quite difficult to understand. The one thing you should understand is that it’s 
the driving force for heat transfer, that is, heat must always flow from a higher to a lower 
temperature and never the reverse.) 
 

ℜ = kNA = 1.38×10−23 J
particle K

⎛
⎝⎜

⎞
⎠⎟

6.02×1023 particle
mole

⎛
⎝⎜

⎞
⎠⎟
= 8.314 J

mole K
= 1.987 cal

mole K

T ≡ ∂U
∂S

#

$
%

&

'
(
V=const.
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Derived units 
 
Derived units are units created from combinations of base units; there are an infinite number of 
possible derived units.  Some of the more important/common/useful ones are: 
 

• Area = length2; 640 acres = 1 mile2, or 1 acre = 43,560 ft2 
• Volume = length3; 1 ft3 = 7.481 gallons = 28,317 cm3; also 1 liter = 1000 cm3 = 61.02 in3 
• Velocity = length/time 
• Acceleration = velocity/time = length/time2 (standard gravitational acceleration on earth = 

g = 32.174 ft/s2 = 9.806 m/s2) 
• Force = mass * acceleration = mass*length/time2 

o 1 kg m/s2 = 1 Newton = 0.2248 pounds force (pounds force is usually abbreviated 
lbf and Newton N) (equivalently 1 lbf = 4.448 N) 

• Energy = force x length = mass x length2/time2 
o 1 kg m2/s2 = 1 Joule (J) 
o 778 ft lbf = 1 British thermal unit (BTU) 
o 1055 J = 1 BTU 
o 1 J = 0.7376 ft lbf 
o 1 calorie = 4.184 J 
o 1 dietary calorie = 1000 calories 

• Power (energy/time = mass x length2/time3)  
o 1 J/s = 1 kg m2/s3 = 1 Watt 
o 746 W = 550 ft lbf/sec = 1 horsepower 

• Heat capacity = J/moleK or J/kgK or J/mole˚C or J/kg˚C (see note below) 
• Pressure = force/area 

o 1 N/m2 = 1 Pascal 
o 101325 Pascal = 101325 N/m2 = 14.696 lbf/in2 = 1 standard atmosphere 

• Current = charge/time (1 amp = 1 coul/s) 
• Voltage = energy/charge (1 Volt = 1 J/coul) 
• Capacitance = amps / (volts/s) (1 farad = 1 coul2/J) 
• Inductance = volts / (amps/s) (1 Henry = 1 J s2 / coul2) 
• Resistance = volts/amps (1 ohm = 1 volt/amp = 1 Joule s / coul2) 
• Torque = force x lever arm length = mass x length2/time2 – same as energy but one would 

usually report torque in Nm (Newton meters), not Joules, to avoid confusion. 
• Radians, degrees, revolutions – these are all dimensionless quantities, but must be converted 

between each other, i.e. 1 revolution = 2π radians = 360 degrees. 
 

Special consideration 1: pounds force vs. pounds mass 
 
By far the biggest problem with USCS units is with mass and force.  The problem is that pounds is 
both a unit of mass AND force.  These are distinguished by lbm for pounds (mass) and lbf for 
pounds (force).  We all know that W = mg where W = weight, m = mass, g = acceleration of 
gravity.  So  
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1 lbf = 1 lbm x g = 32.174 lbm ft/s2     (Equation 3) 
Sounds ok, huh?  But wait, now we have an extra factor of 32.174 floating around.  Is it also true 
that 

1 lbf = 1 lbm ft/s2         

which is analogous to the SI unit statement that 
 
 1 Newton = 1 kg m/s2       (Equation 4) 
 
No, 1 lbf cannot equal 1 lbm ft/s2 because 1 lbf equals 32.174 lbm ft/sec2.  So what unit of mass 
satisfies the relation  

1 lbf = 1 (mass unit) ft/s2?        

This mass unit is called a “slug” believe it or not.  With use of equation (2) it is apparent that  

1 slug = 32.174 lbm = 14.59 kg     (Equation 5) 

Often when doing USCS conversions, it is convenient to introduce a conversion factor called gc; by 
rearranging Equation 3 we can write  

      (Equation 6). 

Since Equation 2 shows that gc = 1, one can multiply and divide any equation by gc as many times as 
necessary to get the units into a more compact form (an example of “why didn’t somebody just say that?”).  
Keep in mind that any units conversion is simply a matter of multiplying or dividing by 1, e.g. 
 

 

 
For some reason 32.174 lbm ft/ lbf s2 has been assigned a special symbol called gc even though there 
are many other ways of writing 1 (e.g. 5280 ft / mile, 1 kg m / N s2, 778 ft lbf / BTU) all of which 
are also equal to 1 but none of which are assigned special symbols. 
 
If this seems confusing, I don’t blame you.  That’s why I recommend that even for problems in 
which the givens are in USCS units and where the answer is needed in USCS units, first convert 
everything to SI units, do the problem, then convert back to USCS units.  I disagree with some 
authors who say an engineer should have “native fluency” in both systems; it is somewhat useful but 
not necessary.  The second example in the next sub-section below uses the approach of converting 
to SI, do the problem, and convert back to USCS.  The third example shows the use of USCS units 
employing gc. 
 

Special consideration 2: temperature 
 
Many difficulties also arise with units of temperature.  There are four temperature scales in 
“common” use:  Fahrenheit, Rankine, Celsius (or Centigrade) and Kelvin.  Note that one speaks of 

gc =
32.174 lbm ft

lbf s2 =1

5280 ft
mile

 = 1; 1 kg m
N s2

 = 1; 778 ft lbf
BTU

 = 1; etc.
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“degrees Fahrenheit” and “degrees Celsius” but just “Rankines” or “Kelvins” (without the 
“degrees”). 
 

T (in units of ˚F) = T (in units of R) - 459.67 
T (in units of ˚C) = T (in units of K) - 273.15 
1 K = 1.8 R 
T (in units of˚C) = [T (in units of ˚F) – 32]/1.8,  
T (in units of ˚F) = 1.8[T (in units of ˚C)] + 32 
Water freezes at 32˚F / 0˚C, boils at 212˚F / 100˚C 

 
Special note (another example of “that’s so easy, why didn’t somebody just say that?”):  when using units 
involving temperature (such as heat capacity, units J/kg˚C, or thermal conductivity, units 
Watts/m˚C), one can convert the temperature in these quantities these to/from USCS units (e.g. 
heat capacity in BTU/lbm˚F or thermal conductivity in BTU/hr ft ˚F) simply by multiplying or 
dividing by 1.8.  You don’t need to add or subtract 32.  Why?  Because these quantities are really 
derivatives with respect to temperature (heat capacity is the derivative of internal energy with respect 
to temperature) or refer to a temperature gradient (thermal conductivity is the rate of heat transfer 
per unit area by conduction divided by the temperature gradient, dT/dx).  When one takes the 
derivative of the constant 32, you get zero.  For example, if the temperature changes from 84˚C to 
17˚C over a distance of 0.5 meter, the temperature gradient is (84-17)/0.5 = 134˚C/m.  In 
Fahrenheit, the gradient is [(1.8*84 +32) – (1.8*17 + 32)]/0.5 = 241.2˚F/m or 241.2/3.281 = 
73.5˚F/ft.  The important point is that the 32 cancels out when taking the difference.  So for the 
purpose of converting between ˚F and ˚C in units like heat capacity and thermal conductivity, one can use 1˚C = 
1.8˚F.  That doesn’t mean that one can just skip the + or – 32 whenever one is lazy. 
 
Also, one often sees thermal conductivity in units of W/m˚C or W/mK.  How does one convert 
between the two?  Do you have to add or subtract 273?  And how do you add or subtract 273 when 
the units of thermal conductivity are not degrees?  Again, thermal conductivity is heat transfer per 
unit area per unit temperature gradient.  This gradient could be expressed in the above example as 
(84˚C-17˚C)/0.5 m = 134˚C/m, or in Kelvin units, [(84 + 273)K – (17 + 273)K]/0.5 m = 134K/m 
and thus the 273 cancels out.  So one can say that 1 W/m˚C = 1 W/mK, or 1 J/kg˚C = 1 J/kgK.  
And again, that doesn’t mean that one can just skip the + or – 273 (or 460, in USCS units) 
whenever one is lazy. 

Examples of the use (and power) of units 
 
Example 1 
 
An object has a weight of 300 lbf at earth gravity. What is its mass in units of lbm? 
 

 

This shows that an object that weighs 300 lbf at earth gravity has a mass of 300 lbm. At any other 
gravity level, its mass would still be 300 lbm but its weight would be different, but in all cases this 
weight would still be calculated according to F = ma (force = mass x acceleration) or, specifically for 
weights, we can use W = mg (weight = mass x acceleration of gravity). 

F =ma⇒ m = F
a
=
F
a
1( ) = Fa gc( ) = 300 lbf

32.174 ft
s2

32.174 lbm ft
lbf s2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= 300 lbm
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Example 2   
 
What is the weight (in lbf) of one gallon of air at 1 atm and 25˚C?  The molecular mass of air is 
28.97 g/mole = 0.02897 kg/mole. 
 

Ideal gas law:  PV = nÂT 
 
(P = pressure, V = volume, n = number of moles, Â = universal gas constant, T = 
temperature) 
 
Mass of gas (m) = moles x mass/mole = nM  (M = molecular mass) 
 
Weight of gas (W) = mg, where g = acceleration of gravity = 9.81 m/s2 
 
Combining these 3 relations:  W = PVMg/ÂT 
 

 

 
Note that it’s easy to write down all the formulas and conversions.  The tricky part is to 
check to see if you’ve actually gotten all the units right.  In this case I converted everything 
to the SI system first, then converted back to USCS units at the very end – which is a pretty 
good strategy for most problems.  The tricky parts are realizing (1) the temperature must be 
an absolute temperature, i.e. Kelvin not ˚C, and (2) that moles are not the same as mass, so 
you have to convert using M.  If in doubt, how do you know whether to multiply or divide 

by M?  Check the units! 
 
Example 3 
 
A car with a mass of 3000 lbm is moving at a velocity of 88 ft/s.  What is its kinetic energy (KE) in 
units of ft lbf?  What is its kinetic energy in Joules? 
 

W =
PVMg
ℜT

=

1atm101325N/m2

atm
"

#
$

%

&
' 1gal ft3

7.481gal
m

3.281ft
"

#
$

%

&
'

3"

#
$$

%

&
''

0.02897kg
mole

"

#
$

%

&
'

9.81m
s2

"

#
$

%

&
'

8.314J
moleK

(25+273)K

= 0.0440

N
m2

"

#
$

%

&
' m3( ) kg

mole
"

#
$

%

&
'

m
s2

"

#
$

%

&
'

J
mole

= 0.0440
N( ) m( ) kg( ) m

s2

"

#
$

%

&
'

J
= 0.0440

Nm( ) kg m
s2

"

#
$

%

&
'

J

= 0.0440 N 0.2248 lbf
N

 = 0.00989 lbf ≈ 0.01 lbf
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Now what can we do with lbm ft2/s2???  The units are (mass)(length)2/(time)2, so it is a unit of 
energy, so at least that part is correct.  Dividing by gc, we obtain 
 

 

 

 

 
Note that if you used 3000 lbf rather than 3000 lbm in the expression for KE, you’d have the wrong 
units – ft lbf2/lbm, which is NOT a unit of energy (or anything else that I know of…)  Also note 
that since gc = 1, we COULD multiply by gc rather than divide by gc; the resulting units 
(lbm2 ft3/lbf s4) is still a unit of energy, but not a very useful one! 
 
Example 4 
 
The thermal conductivity of a particular brand of ceramic insulating material is  (I’m not 

kidding, these are the units commonly reported in commercial products!) where the standard 

abbreviations in = inch and hr = hour are used.  What is the thermal conductivity in units of ?  

(Here “W” = Watt, not weight.) 
 

 
 

Note that the thermal conductivity of air at room temperature is 0.026 Watt/m˚C, i.e., about 3 times 
lower than the insulation.  So why don’t we use air as an insulator?  We’ll discuss that in Chapter 7. 

KE =
1
2

mass( ) velocity( )2
=

1
2

3000 lbm( ) 88 ft
s

!

"
#

$

%
&

2

=1.16×107 lbm ft2

s2

KE =1.16×107 lbm ft2

s2
×

1
gc
= 1.16×107 lbm ft2

s2

⎛

⎝
⎜

⎞

⎠
⎟

lbf s2

32.174 lbm ft

⎛

⎝
⎜

⎞

⎠
⎟= 3.61×105  ft lbf

€ 

KE = 3.61×105  ft lbf( ) 1 J
0.7376 ft lbf
# 

$ 
% 

& 

' 
( = 4.89 ×105  J

0.5 BTU in
ft2  hr °F 

W
m˚C

0.5 BTU in
ft2  hr °F 

×
1055 J
BTU

×
ft

12 in
×

3.281 ft
m

×
hr

3600 s
×

1 W
1 J/s

×
1.8˚F

˚C
= 0.0721 W

m˚C
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Chapter 3.  “Engineering scrutiny” 
“Be your own worst critic, unless you prefer that someone else be your worst critic.” 
- I dunno, I just made it up.  But, it doesn’t sound very original. 

Scrutinizing analytical formulas and results 
 
I often see analyses that I can tell within 5 seconds must be wrong.  I have three tests, which should 
be done in the order listed, for checking and verifying results.  These tests will weed out 95% of all 
mistakes.  I call these the “smoke test,” “function test,” and “performance test,” by analogy with 
building electronic devices. 
 
1. Smoke test.  In electronics, this corresponds to turning the power switch on and seeing if the 

device smokes or not.  If it smokes, you know the device can’t possibly be working right (unless 
you intended for it to smoke.)  In analytical engineering terms, this corresponds to checking 
the units.  You have no idea how many results people report that can’t be correct because the 
units are wrong (i.e. the result was 6 kilograms, but they were trying to calculate the speed of 
something.)  You will catch 90% of your mistakes if you just check the units.  For example, 
if I just derived the ideal gas law for the first time and predicted PV = nÂ/T you can quickly see 
that the units on the right-hand side of the equation are different from those on the left-hand 
side.  There are several additional rules that must be followed: 

 
• Anything inside a square root, cube root, etc. must have units that are a perfect square (e.g. 

m2/sec2), cube, etc.)  This does not mean that every term inside the square root must be a 
perfect square, only that the combination of all terms must be a perfect square.  For 
example, the speed (v) of a frictionless freely falling object in a gravitational field is 

, where g = acceleration of gravity (units length/time2) and h is the height from 
which the object was dropped (units length).  Neither g nor h have units that are a perfect 
square, but when multiplied together the units are (length/time2)(length) = length2/time2, 
which is a perfect square, and when you take the square root, the units are 

as required. 
• Anything inside a log, exponent, trigonometric function, etc., must be dimensionless (I can 

take the log of 6 but I don’t know how to take the log of 6 kilograms).  Again, the individual 
terms inside the function need not all be dimensionless, but the combination must be 
dimensionless. 

• Any two quantities that are added together must have the same units (I can’t add 6 kilograms 
and 19 meters/second.  Also, I can add 6 miles per hour and 19 meters per second, but I 
have to convert 6 miles per hour into meters per second, or convert 19 meters per second 
into miles per hour, before adding the terms together.) 

 
2. Function test.  In electronics, this corresponds to checking to see if the device does what I 

designed it to do, e.g. that the red light blinks when I flip switch on, the meter reading increases 
when I turn the knob to the right, the bell rings when I push the button, etc. – assuming that 
was what I intended that it do.  In analytical terms this corresponds to determining if the result 
gives sensible predictions.  Again, there are several rules that must be followed: 

v = 2gh

v = length2 time2 = length time
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• Determine if the sign (+ or -) of the result is reasonable.  For example, if your prediction of 

the absolute temperature of something is –72 Kelvin, you should check your analysis again. 
• For terms in an equation with property values in the denominator, can that value be zero? 

(In which case the term would go to infinity).  Even if the property can’t go to zero, does it 
make sense that as the value decreases, the term would increase? 

• Determine whether what happens to y as x goes up or down is reasonable or not.  For 
example, in the ideal gas law, PV = nÂT: 

o At fixed volume (V) and number of moles of gas (n), as T increases then P increases 
– reasonable 

o At fixed temperature (T) and n, as V increases then P decreases – reasonable 
o Etc. 

• Determine what happens in the limit where x goes to special values, e.g. zero, one or infinity 
as appropriate.  For example, consider the equation for the temperature as a function of time 
T(t) of an object starting at temperature Ti at time t = 0 having surface area A (units m2), 
volume V (units m3), density r (units kg/m3) and heat capacity CP (units J/kg˚C) that is 
suddenly dunked into a fluid at temperature T∞ with heat transfer coefficient h (units 
Watts/m2˚C).  It can be shown that in this case T(t) is given by 

 

      (Equation 7) 

 

hA/rVCP has units of (Watts/m2˚C)(m2)/(kg/m3)(m3)(J/kg˚C) = 1/s, so (hA/rVCP)t is 
dimensionless, thus the formula easily passes the smoke test.  But does it make sense?  At t = 
0, Ti = 0 as expected.  What happens if you wait for a long time?  The temperature can reach 
T∞ but cannot overshoot it (a consequence of the Second Law of Thermodynamics, 
discussed in Chapter 7).  In the limit t ® ∞, the term exp(-(hA/rVCP)t) goes to zero, thus T 
® T∞ as expected.  Other scrutiny checks: if h or A increases, heat can be transferred to the 
object more quickly, thus the time to approach T∞ decreases.  Also, if r, V or CP increases, 
the “thermal inertia” (resistance to change in temperature) increases, so the time required to 
approach T∞ increases.  So, the formula makes sense. 

• If your formula contains a difference of terms, determine what happens if those 2 terms are 
equal.  For example, in the above formula, if Ti = T∞, then the formula becomes simply T(t) 
= T∞ for all time.  This makes sense because if the bar temperature and fluid temperature are 
the same, then there is no heat transfer to or from the bar and thus its temperature never 
changes (again, a consequence of the Second Law of Thermodynamics … two objects at the 
same temperature cannot exchange energy via heat transfer.) 

 
3. Performance test.  In electronics, this corresponds to determining how fast, how accurate, etc. the 

device is.  In analytical terms this corresponds to determining how accurate the result is.  This 
means of course you have to compare it to something else that you trust, i.e. an experiment, a 
more sophisticated analysis, someone else’s published result (of course there is no guarantee that 
their result is correct just because it got published, but you need to check it anyway.)  For 
example, if I derived the ideal gas law and predicted PV = 7nRT, it passes the smoke and 
function tests with no problem, but it fails the performance test miserably (by a factor of 7).  But 

€ 

T(t) = T∞ + (Ti −T∞)exp −
hA

ρVCP

t
% 

& 
' 

( 

) 
* 
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of course the problem is deciding which result to trust as being at least as accurate as your own 
result; this of course is something that cannot be determined in a rigorous way, it requires a 
judgment call based on your experience. 

 

Scrutinizing computer solutions 
 
(This part is beyond what I expect you to know for AME 101 but I include it for completeness). 
 
Similar to analyses, I often see computational results that I can tell within 5 seconds must be wrong.  
It is notoriously easy to be lulled into a sense of confidence in computed results, because 
the computer always gives you some result, and that result always looks good when plotted 
in a 3D shaded color orthographic projection.  The corresponding “smoke test,” “function test,” 
and “performance test,” are as follows: 
 
1.  Smoke test.  Start the computer program running, and see if it crashes or not.  If it doesn’t crash, 
you’ve passed the smoke test, part (a).  Part (b) of the smoke test is to determine if the computed 
result passes the global conservation test.  The goal of any program is to satisfy mass, momentum, 
energy and atom conservation at every point in the computational domain subject to certain constituitive 
relations (e.g., Newton’s law of viscosity tx = µ∂ux/∂y), Hooke’s Law s = Ee) and equations of state 
(e.g., the ideal gas law.)  This is a hard problem, and it is even hard to verify that the solution is 
correct once it is obtained.  But it is easy to determine whether or not global conservation is satisfied, 
that is, 
 

• Is mass conserved, that is, does the sum of all the mass fluxes at the inlets, minus the mass 
fluxes at the outlets, equal to the rate of change of mass of the system (=0 for steady 
problems)? 

• Is momentum conserved in each coordinate direction? 
• Is energy conserved? 
• Is each type of atom conserved? 

 
If not, you are 100% certain that your calculation is wrong.  You would be amazed at how many 
results are never “sanity checked” in this way, and in fact fail the sanity check when, after months or 
years of effort and somehow the results never look right, someone finally gets around to checking 
these things, the calculations fail the test and you realize all that time and effort was wasted. 
 
2.  Performance test.  Comes before the function test in this case.  For computational studies, a critical 
performance test is to compare your result to a known analytical result under simplified conditions.  For 
example, if you’re computing flow in a pipe at high Reynolds numbers (where the flow is turbulent), 
with chemical reaction, temperature-dependent transport properties, variable density, etc., first 
check your result against the textbook solution that assumes constant density, constant 
transport properties, etc., by making all of the simplifying assumptions (in your model) that the 
analytical solution employs.  If you don’t do this, you really have no way of knowing if your 
model is valid or not.  You can also use previous computations by yourself or others for testing, 
but of course there is no absolute guarantee that those computations were correct. 
 
3.  Function test.  Similar to function test for analyses. 
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By the way, even if you’re just doing a quick calculation, I recommend not using a calculator.  Enter 
the data into an Excel spreadsheet so that you can add/change/scrutinize/save calculations as 
needed.  Sometimes I see an obviously invalid result and when I ask, “How did you get that result?  
What numbers did you use?” the answer is “I put the numbers into the calculator and this was the 
result I got.”  But how do you know you entered the numbers and formulas correctly?  What if you 
need to re-do the calculation for a slightly different set of numbers? 

Examples of the use of units and scrutiny 
 
These examples, particularly the first one, also introduce the concept of “back of the envelope” (that 
is, simple, approximate but instructive) estimates, a powerful engineering tool. 
 
Example 1.  Drag force and power requirements for an automobile 
 
A car with good aerodynamics has a drag coefficient (CD) of 0.3.  The drag coefficient is defined as 
the ratio of the drag force (FD) to the dynamic pressure of the flow = ½rv2 (where r is the fluid density 
and v the fluid velocity far from the object) multiplied by the cross-section area (A) of the object, i.e.  

       (Equation 8) 

The density of air at standard conditions is 1.18 kg/m3.   
 
(a) Estimate the power (in units of horsepower) required to overcome the aerodynamic drag of such 

a car at 60 miles per hour. 

 

 

Estimate the cross-section area of the car as 2 m x 1.5 m = 3 m2 

 

which is reasonable. 
 
(b) Estimate the gas mileage of such a car.  The heating value of gasoline is 4.3 x 107 J/kg and its 

density is 750 kg/m3. 
 

 

 

FD =
1
2
CDρv

2A

P = Fv (P = power,F = force,v = velocity);  v = 60mi
hr

5280 ft
mi

m
3.281 ft

hr
60min

min
60s

= 26.8m
s
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1
2
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2A= 1
2
0.3( )1.18kgm3
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s

⎛
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⎜
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⎛

⎝
⎜

⎞

⎠
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s
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Why is this value of miles/gallon so high? 
o The main problem is that conversion of fuel energy to engine output shaft work is about 

20% efficient at highway cruise conditions, thus the gas mileage would be 199.0706726 x 0.2 
= 39.81413452 mpg 

o Also, besides air drag, there are other losses in the transmission, driveline, tires – at best the 
drivetrain is 80% efficient – so now we’re down to 31.85130761 mpg 

o Also – other loads on engine – air conditioning, generator, … 
 
What else is wrong?  There are too many significant figures; at most 2 or 3 are acceptable.  When we 
state 31.85130761 mpg, that means we think that the miles per gallon is closer to 31.85130761 mpg 
than 31.85130760 mpg or 31.85130762 mpg.  Of course we can’t measure the miles per gallon to 
anywhere near this level of accuracy.  31 is probably ok, 31.9 is questionable and 31.85 is ridiculous.  
You will want to carry a few extra digits of precision through the calculations to avoid round-off 
errors, but then at the end, round off your calculation to a reasonable number of significant figures 
based on the uncertainty of the most uncertain parameter.  That is, if I know the drag coefficient only to the 
first digit, i.e. I know that it’s closer to 0.3 than 0.2 or 0.4, but not more precisely than that, there is 
no point in reporting the result to 3 significant figures. 
 
Example 2.  Scrutiny of a new formula 
 
I calculated for the first time ever the rate of heat transfer (q) (in Watts) as a function of time t from 
an aluminum bar of radius r, length L, thermal conductivity k (units Watts/m˚C), thermal diffusivity 
a (units m2/s), heat transfer coefficient h (units Watts/m2˚C) and initial temperature Tbar conducting 
and radiating to surroundings at temperature T∞ as 
 

     (Equation 9) 
 
Using “engineering scrutiny,” what “obvious” mistakes can you find with this formula?  What is the 
likely “correct” formula? 
 

1.  The units are wrong in the first term (Watts/m, not Watts) 
 
2.  The units are wrong in the second term inside the parenthesis (can’t add 1 and something 
with units of temperature) 
 
3.  The first term on the right side of the equation goes to infinity as the time (t) goes to 
infinity – probably there should be a negative sign in the exponent so that the whole term 
goes to zero as time goes to infinity. 
 
4.  The length of the bar (L) doesn’t appear anywhere 
 
5.  The signs on (Tbar – T∞) are different in the two terms – but heat must ALWAYS be 
transferred from hot to cold, never the reverse, so the two terms cannot have different signs.  
One can, with equal validity, define heat transfer as being positive either to or from the bar, 
but with either definition, you can’t have heat transfer being positive in one term and 
negative in the other term. 
 

q = k(Tbar −T∞)e
αt/r2 − hr2 (Tbar −T∞ −1)
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6.   Only the first term on the right side of the equation is multiplied by the  factor, 
and thus will go to zero as t ® ∞.  So the other term would still be non-zero even when t ® 
∞, which doesn’t make sense since the amount of heat transfer (q) has to go to zero as t ® 

∞.  So probably both terms should be multiplied by the  factor.  
 
Based on these considerations, a possibly correct formula, which would pass all of the smoke 
and function tests is 
 

 
 
Actually even this is a bit odd since the first term (conduction heat transfer) is proportional 
to the length L but the second term (convection heat transfer) is independent of L … a still 
more likely formula would have both terms proportional to L, e.g. 
 

 
 
Example 3.  Thermoelectric generator 
 
The thermal efficiency (h) = (electrical power out) / (thermal power in) of a thermoelectric power 
generation device (used in outer planetary spacecraft (Figure 2), powered by heat generated from 
radioisotope decay, typically plutonium-238) is given by 

     (Equation 10) 

where T is the temperature, the subscripts L, H and a refer to cold-side (low temperature), hot-side 
(high temperature) and average respectively, and Z is the “thermoelectric figure of merit”: 

         (Equation 11) 

where S is the Seebeck coefficient of material (units Volts/K, indicates how many volts are produced for 
each degree of temperature change across the material), r is the electrical resistivity (units ohm m) 
(not to be confused with density!) and k is the material’s thermal conductivity (W/mK).   
 
(a) show that the units are valid (passes smoke test) 
 

Everything is obviously dimensionless except for ZTa, which must itself be dimensionless so that 
I can add it to 1.  Note 

  OK 
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(b) show that the equation makes physical sense (passes function test) 
 

o If the material Z = 0, it produces no electrical power thus the efficiency should be zero.  If Z 
= 0 then  

 

  OK 

 
o If TL = TH, then there is no temperature difference across the thermoelectric material, and 

thus no power can be generated.  In this case 
 

   OK 

 
o Even the best possible material (ZTa ® ∞) cannot produce an efficiency greater than the 

theoretically best possible efficiency (called the Carnot cycle efficiency, see page 91) = 1 – 
TL/TH, for the same temperature range.  As ZTa ® ∞, 

 

     OK 

 
Side note #1:  a good thermoelectric material such as Bi2Te3 has ZTa ≈ 1 and works up to about 
200˚C before it starts to melt, thus  
 

 

 
By comparison, your car engine has an efficiency of about 25%.  So practical thermoelectric 
materials are, in general, not very good sources of electrical power, but are extremely useful in some 
niche applications, particularly when either (1) it is essential to have a device with no moving parts 
or (2) a “free” source of thermal energy at relatively low temperature is available, e.g. the exhaust of 
an internal combustion engine. 
 
Side note #2:  a good thermoelectric material has a high S, so produces a large voltage for a small 
temperature change, a low r so that the resistance of the material to the flow of electric current is 
low, and a low k so that the temperature across the material DT is high.  The heat transfer rate (in 
Watts) q = kADT/Dx (see Chapter 7) where A is the cross-sectional area of the material and Dx is its 
thickness.  So for a given DT, a smaller k means less q is transferred across the material.  One might 
think that less q is worse, but no.  Consider this:   

The electrical power = IV = (V/R)V = V2/R = (SDT) 2/(rDx/A) = S2DT2A/rDx. 
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The thermal power = kADT/Dx 
The ratio of electrical to thermal power is [S2DT2A/rDx]/[kADT/Dx] = (S2/rk)DT = ZDT, 
which is why Z is the “figure of merit” for thermoelectric generators.) 
 

 
Figure 2.   Radioisotope thermoelectric generator used for deep space missions.  Note that 

the plutonium-238 radioisotope is called simply, “General Purpose Heat Source.” 
 

Example 4.  Density of matter 
 

Estimate the density of a neutron.  Does the result make sense?  The density of a white dwarf star is 
about 2 x 1012 kg/m3 – is this reasonable?   
 

The mass of a neutron is about one atomic mass unit (AMU), where a carbon-12 atom has a mass of 
12 AMU and a mole of carbon-12 atoms has a mass of 12 grams.  Thus one neutron has a mass of 
 

 

 

A neutron has a radius (r) of about 0.8 femtometer = 0.8 x 10-15 meter.  Treating the neutron as a 
sphere, the volume is 4πr3/3, and the density (r) is the mass divided by the volume, thus 
 

 

By comparison, water has a density of 103 kg/m3, so the density of a neutron is far higher (by a 
factor of 1014) than that of atoms including their electrons.  This is expected since the nucleus of an 
atom occupies only a small portion of the total space occupied by an atom – most of the atom is 
empty space where the electrons reside.  Also, even the density of the white dwarf star is far less 
than the neutrons (by a factor of 105), which shows that the electron structure is squashed by the 
mass of the star, but not nearly down to the neutron scale (protons have a mass and size similar to 
neutrons, so the same point applies to protons too.)  
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Chapter 4.  Forces in structures 
“The Force can have a strong influence on the weak-minded” 
- Ben Obi-wan Kenobi, explaining to Luke Skywalker how he made the famous “these aren’t the 

Droids you’re looking for” Jedi Mind Trick work. 
 
Main course in AME curriculum on this topic:  AME 201 (Statics). 

Forces   
 
Forces acting on objects are vectors that are characterized by not only a magnitude (e.g. Newtons or 
pounds force) but also a direction.  A force vector F (vectors are usually noted by a boldface letter) 
can be broken down into its components in the x, y and z directions in whatever coordinate system 
you’ve drawn: 
 

 F = Fxi + Fyj + Fzk       Equation 12 

 
Where Fx, Fy and Fz are the magnitudes of the forces (units of force, e.g. Newtons or pounds force) 
in the x, y and z directions and i, j and k are the unit vectors in the x, y and z directions (i.e. vectors 
whose directions are aligned with the x, y and z coordinates and whose magnitudes are exactly 1 (no 
units)). 
 
Forces can also be expressed in terms of the magnitude = (Fx

2 + Fy
2 + Fz

2)1/2 and direction relative 
to the positive x-axis (= tan-1(Fy/Fx) in a 2-dimensional system).  Note that the tan-1(Fy/Fx) function 
gives you an angle between +90˚ and -90˚ whereas sometimes the resulting force is between +90˚ 
and +180˚ or between -90˚ and -180˚; in these cases you’ll have to examine the resulting force and 
add or subtract 180˚ from the force to get the right direction. 
 

Degrees of freedom   
 
Imagine a one-dimensional (1D) world, i.e. where objects can move (translate) back and forth along 
a single line but in no other way.  For this 1D world there is only one direction (call it the x-
direction) that the object can move linearly and no way in which it can rotate, hence only one force 
balance equation is required.  For the field of dynamics this equation would be Newton’s Second Law, 
namely that the sum of the forces Fx,1 + Fx,2 + Fx,3 + … + Fx,n = max where m is the mass of the 
object and ax is the acceleration of the object in the x direction, but this chapter focuses exclusively 
on statics, i.e. objects that are not accelerating, hence the force balance becomes simply 
 

         Equation 13. 

 
 
So a 1D world is quite simple, but what about a 2D world?  Do we just need a second force balance 
equation for translation in the y direction (that is, SFy = 0) and we’re done?  Well, no.  Let’s look at 

Fx ,i = 0
i=1

n

∑
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a counter-example (Figure 3).  The set of forces on the object in the left panel satisfies the 
requirements SFx = 0 and SFy = 0 and would appear to be in static equilibrium.  In the right panel, 
it is also true that SFx = 0 and SFy = 0, but clearly this object would not be stationary; instead it 
would be rotating clockwise.  Why is this?  In two dimensions, in addition to the translational degrees 
of freedom in the x and y directions, there is also one rotational degree of freedom, that is, the object 
can rotate about an axis perpendicular to the x-y plane, i.e., an axis in the z-direction.  How do we 
ensure that the object is not rotating?  We need to account for the moments of force (M) (discussed in 
the next sub-section) in addition to the forces themselves, and just as the forces in the x and y 
directions must add up to zero, i.e. SFx = 0 and SFy = 0, we need to have the moments of force add 
up to zero, i.e. SM = 0.   So to summarize, in order to have static equilibrium of an object, the sum of 
all the forces AND the moments of force must be zero.  In other words, there are two ways that a 
2-dimensional object can translate (in the x and y directions) and one way that in can rotate (with the 
axis of rotation perpendicular to the x-y plane.)  So there are 3 equations that must be satisfied in 
order to have equilibrium, 
 

      Equation 14 

 
where the number of forces in the x direction is n, the number of forces in the y direction is m and 
p = n + m is the number of moments of force calculated with respect to some point A in the (x,y) 
plane.  (The choice of location of point A is discussed below, but the bottom line is that any point 
yields the same result. 
 

  
Figure 3.  Two sets of forces on an object, both satisfying SFx = 0 and SFy = 0, but one 
(left) in static equilibrium, the other (right) not in static equilibrium. 
 
This is all fine and well for a 2D (planar) situation, what about 3D?  For 3D, there are 3 directions 
an object can move linearly (translate) and 3 axes about which it can rotate, thus we need 3 force 
balance equations (in the x, y and z directions) and 3 moment of force balance equations (one each 
about the x, y and z axes.)  Table 1 summarizes these situations. 
 

Fx ,i = 0;
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∑ ; Mi ,A = 0
i=1
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200 lbf 

100 lbf 100 lbf 

50 lbf 50 lbf  

200 lbf 

200 lbf 0 lbf 

50 lbf 50 lbf 
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# of spatial 
dimensions 

Maximum # of 
force balances 

Minimum # of moment 
of force balances 

Total # of unknown 
forces & moments 

1 1 0 1 
2 2 1 3 
3 3 3 6 

 

Table 1.  Number of force and moment of force balance equations required for static 
equilibrium as a function of the dimensionality of the system.  (But note that, as just 
described, moment of force balance equations can be substituted for force balance 
equations.) 

Moments of forces 
 
Some types of structures can only exert forces along the line connecting the two ends of the 
structure, but cannot exert any force perpendicular to that line.  These types of structures include 
ropes, ends with pins, and bearings.  Other structural elements can also exert a force perpendicular 
to the line (Figure 4).  This is called the moment of force (often shortened to just “moment”, but to 
avoid confusion with “moment” meaning a short period of time, we will use the full term “moment 
of force”) which is the same thing as torque.  Usually the term torque is reserved for the forces on 
rotating, not stationary, shafts, but there is no real difference between a moment of force and a 
torque. 

 
The distinguishing feature of the moment of force is that it depends not only on the vector force 
itself (Fi) but also the distance (di) from that line of force to a reference point A.  (I like to call this 
distance the moment arm) from the anchor point at which it acts.  If you want to loosen a stuck bolt, 
you want to apply whatever force your arm is capable of providing over the longest possible di.  The 
line through the force Fi is called the line of action.  The moment arm is the distance (di again) 
between the line of action and a line parallel to the line of action that passes through the anchor 
point.  Then the moment of force (Mi) is defined as 
 

 
Figure 4.  Force, line of action and moment of force (= Fd) about a point A.  The example 
shown is a counterclockwise moment of force, i.e. force Fi is trying to rotate the line 
segment d counterclockwise about point A. 

 A 

Force Fi 

Line of action 
d 
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Mi = Fidi         Equation 15 
 
where Fi is the magnitude of the vector F.  Note that the units of Mo is force x length, e.g. ft lbf or 
N m.  This is the same as the unit of energy, but the two have nothing in common – it’s just 
coincidence.  So one could report a moment of force in units of Joules, but this is unacceptable 
practice – use N m, not J. 
 
Note that it is necessary to assign a sign to Mi depending on whether the moment of force is trying 
to rotate the free body clockwise or counter-clockwise.  Typically we will define a clockwise moment 
of force as positive and counterclockwise as negative, but one is free to choose the opposite 
definition – as long as you’re consistent within an analysis.   
 
Note that the moment of forces must be zero regardless of the choice of the origin (i.e. not just at the 
center of mass).  So one can take the origin to be wherever it is convenient (e.g. make the moment 
of one of the forces = 0.)  Consider the very simple set of forces below: 
 

 
Figure 5.  Force diagram showing different ways of computing moments of force 

Because of the symmetry, it is easy to see that this set of forces constitutes an equilibrium condition.  
When taking moments of force about point ‘B’ we have: 
 
SFx = +141.4 cos(45˚) lbf + 0 - 141.4 cos(45˚) lbf = 0  
SFy = +141.4 sin(45˚) lbf - 200 lbf + 141.4 sin(45˚) = 0  
SMB = -141.4 lbf * 0.707 ft - 200 lbf * 0 ft +141.4 lbf * 0.707 ft = 0. 
 
But how do we know to take the moments of force about point B?  We don’t.  But notice that if we 
take the moments of force about point ‘A’ then the force balances remain the same and  
 
SMA = -141.4 lbf * 0 ft - 200 lbf * 1 ft + 141.4 lbf * 1.414 ft = 0.   
 
The same applies if we take moments of force about point ‘C’, or a point along the line ABC, or 
even a point NOT along the line ABC.  For example, taking moments of force about point ‘D’,  
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SMD = -141.4 lbf * (0.707 ft + 0.707 ft) + 200 lbf * 0.5 ft +141.4 lbf * 0.707 ft = 0 
 
The location about which to take the moments of force can be chosen to make the problem as 
simple as possible, e.g. to make some of the moments of forces = 0.  
 
Example of “why didn’t the book just say that…?”  The state of equilibrium merely requires that 3 
constraint equations are required.  There is nothing in particular that requires there must be 2 force 
and 1 moment of force constraint equations.  So one could have 1 force and 2 moment of force 
constraint equations: 

      Equation 16 

where the coordinate direction x can be chosen to be in any direction, and moments of force are 
taken about 2 separate points A and B.  Or one could even have 3 moment of force equations: 

       Equation 17 

Also, there is no reason to restrict the x and y coordinates to the horizontal and vertical directions.  
They can be (for example) parallel and perpendicular to an inclined surface if that appears in the 
problem.  In fact, the x and y axes don’t even have to be perpendicular to each other, as long as they 
are not parallel to each other, in which case SFx = 0 and SFy = 0 would not be independent 
equations. 
 

Types of forces and moments of force 
 
A free body diagram is a diagram showing all the forces and moments of forces acting on an object.  
We distinguish between two types of objects: 
 

1. Particles that have no spatial extent and thus have no moment arm (d).  An example of this 
would be a satellite orbiting the earth because the spatial extent of the satellite is very small 
compared to the distance from the earth to the satellite or the radius of the earth.  Particles 
do not have moments of forces and thus do not rotate in response to a force. 

2. Rigid bodies that have a finite dimension and thus has a moment arm (d) associated with each 
applied force.  Rigid bodies have moments of forces and thus can rotate in response to a 
force. 

 
There are several types of forces that act on particles or rigid bodies: 
 

1. Rope, cable, etc. – Force (tension) must be along line of action; no moment of force (1 
unknown force) 
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2. Rollers, frictionless surface – Force must be perpendicular to the surface; no moment of 
force (1 unknown force).  There cannot be a force parallel to the surface because the roller 
would start rolling!  Also the force must be away from the surface towards the roller (in 
other words the roller must exert a force on the surface), otherwise the roller would lift off 
of the surface.  

 

 
3. Frictionless pin or hinge – Force has components both parallel and perpendicular to the 

line of action; no moment of force (2 unknown forces) (note that the coordinate system 
does not need to be parallel and perpendicular to either the gravity vector or the bar) 

 
 

4. Fixed support – Force has components both parallel and perpendicular to line of action 
plus a moment of force (2 unknown forces, 1 unknown moment force).  Note that for our 
simple statics problems with 3 degrees of freedom, if there is one fixed support then we 
already have 3 unknown quantities and the rest of our free body cannot have any unknown 
forces if we are to employ statics alone to determine the forces.  In other words, if the free 
body has any additional unknown forces the system is statically indeterminate as will be 
discussed shortly. 
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5. Contact friction – Force has components both parallel (F) and perpendicular (N) to 
surface, which are related by F = µN, where µ is the coefficient of friction, which is usually 
assigned separate values for static (no sliding) (µs) and dynamic (sliding) (µd) friction, with the 
latter being lower.  (2 unknown forces coupled by the relation F = µN).  µ depends on both 
of the surfaces in contact.  Most dry materials have friction coefficients between 0.3 and 0.6 
but Teflon in contact with Teflon, for example, can have a coefficient as low as 0.04.  
Rubber (e.g. tires) in contact with other surfaces (e.g. asphalt) can yield friction coefficients 
of almost 2. 

  
 

Actually the statement F = µsN for static friction is not correct at all, although that’s how it’s almost 
always written.  Consider the figure on the right, above.  If there is no applied force in the horizontal 
direction, there is no need for friction to counter that force and keep the block from sliding, so F = 
0.  (If F ≠ 0, then the object would start moving even though there is no applied force!)  Of course, 
if a force were applied (e.g. from right to left, in the –x direction) then the friction force at the 
interface between the block and the surface would counter the applied force with a force in the +x 
direction so that  SFx = 0.  On the other hand, if a force were applied from left to right, in the +x 
direction) then the friction force at the interface between the block and the surface would counter 
the applied force with a force in the -x direction so that  SFx = 0.  The expression F = µsN only 
applies to the maximum magnitude of the static friction force.  In other words, a proper 
statement quantifying the friction force would be |F| ≤ µsN, not F = µsN.  If any larger force is 
applied then the block would start moving and then the dynamic friction force F = µdN is the 
applicable one – but even then this force must always be in the direction opposite the motion – so 
|F| = µdN is an appropriate statement.  Another, more precise way of writing this would be 

, where is the velocity of the block and is the magnitude of this velocity, thus is a 

unit vector in the direction of motion. 
 
Special note:  while ropes, rollers and pins do not exert a moment of force at the point of contact, 
you can still sum up the moments of force acting on the free body at that point of contact.  In 
other words, SMA = 0 can be used even if point A is a contact point with a rope, roller or pin joint, 
and all of the other moments of force about point A (magnitude of force x distance from A to the 
line of action of that force) are still non-zero.  Keep in mind that A can be any point, within or 
outside of the free body.  It does not need to be a point where a force is applied, although it is often 
convenient to use one of those points as shown in the examples below. 
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Statically indeterminate system 
 
Of course, there is no guarantee that the number of force and moment of force balance equations 
will be equal to the number of unknowns.  For example, in a 2D problem, a beam supported by one 
pinned end and one roller end has 3 unknown forces and 3 equations of static equilibrium.  
However, if both ends are pinned, there are 4 unknown forces but still only 3 equations of static 
equilibrium.  Such a system is called statically indeterminate and requires additional information beyond 
the equations of statics (e.g. material stresses and strains, discussed in the next chapter) to determine 
the forces. 
 

Analysis of statics problems 
 
A useful methodology for analyzing statics problems is as follows: 
 

1. Draw a free body diagram – a free body must be a rigid object, i.e. one that cannot bend in 
response to applied forces 

2. Draw all of the forces acting on the free body.  Is the number of unknown forces equal to 
the total number of independent constraint equations shown in Table 1 (far right column)?  
If not, statics can’t help you. 

3. Decide on a coordinate system.  If the primary direction of forces is parallel and 
perpendicular to an inclined plane, usually it’s most convenient to have the x and y 
coordinates parallel and perpendicular to the plane, as in the cart and sliding block examples 
below. 

4. Decide on a set of constraint equations.  As mentioned above, this can be any combination 
of force and moment of force balances that add up to the number of degrees of freedom of 
the system (Table 1). 

5. Decide on the locations about which to perform moment of force constraint equations.  
Generally you should make this where the lines of action of two or more forces intersect 
because this will minimize the number of unknowns in your resulting equation. 

6. Write down the force and moment of force constraint equations.  If you’ve made good 
choices in steps 2 – 5, the resulting equations will be “easy” to solve. 

7. Solve these “easy” equations. 
 
 
Example 1.  Ropes 
 
The US Civil War Union ship Monitor and the Confederate ship Merrimack are pulling a Peace 
Barge due west up Chesapeake Bay toward Washington DC.  The Monitor’s tow rope is at an angle 
of 53 degrees north of due west with a tension of 4000 lbf.  The 
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Merrimack ’s tow rope is at an angle of 34 degrees 
south of due west but their scale attached to the rope is broken so the tension is unknown to the 
crew. 
 

The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.
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Figure 6.  Free body diagram of Monitor-Merrimack system 

a) What is the tension in the Merrimack’s tow rope? 
 
Define x as positive in the easterly direction, y as positive in the northerly direction.  In order for 
the Barge to travel due west, the northerly pull by the Monitor and the Southerly pull by the 
Merrimack have to be equal, or in other words the resultant force in the y direction, Ry, must be 
zero.  The northerly pull by the Monitor is 4000 sin(53˚) = 3195 lbf.  In order for this to equal 
the southerly pull of the Merrimack, we require FMerrimacsin(34˚) = 3195 lbf, thus FMerrimac = 5713 
lbf. 
 

b) What is the tension trying to break the Peace Barge (i.e. in the north-south direction)? 
 
This is just the north/south force just computed, 3195 lbf 
 

c) What is the force pulling the Peace Barge up Chesapeake Bay?   

 
Monitor 

Merrimac 

53˚ 

y 

x 
34˚ Barge 

4000 lbf 

??? lbf 
The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

Monitor 

Merrimack 
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The force exerted by the Monitor is 4000 cos(53˚) = 2407 lbf.  The force exerted by the 
Merrimack is 5713 cos(34˚) = 4736 lbf.  The resultant is Rx = 7143 lbf. 

 
Example 2.  Rollers 
 
A car of known weight W is being held by a cable with tension T on an of angle q with respect to 
horizontal.  The wheels are free to rotate, so there is no force exerted by the wheels in the direction 
parallel to the ramp surface.  The center of gravity of the vehicle is a distance “c” above the ramp, a 
distance “a” behind the front wheels, and a distance “b” in front of the rear wheels.  The cable is 
attached to the car a distance “d” above the ramp surface and is parallel to the ramp. 
 

 
Figure 7.  Free body diagram for car-on-ramp with cable example 

 
(a) What is the tension in the cable in terms of known quantities, i.e. the weight W, dimensions a, b, 

c, and d, and ramp angle q? 
 

Define x as the direction parallel to the ramp surface and y perpendicular to the surface as 
shown.  The forces in the x direction acting on the car are the cable tension T and 
component of the vehicle weight in the x direction = Wsinq, thus SFx = 0 yields 
 

Wsinq - T = 0  Þ T = Wsinq 
 

(b) What are the forces where the wheels contact the ramp (Fy,A and Fy,B)? 
 
The forces in the y direction acting on the car are Fy,A, Fy,B and component of the vehicle 
weight in the y direction = Wcosq.  Taking moments of force about point A, that is SMA = 
0 (so that the moment of force equation does not contain Fy,A which makes the algebra 
simpler), and defining moments of force as positive clockwise yields 

 

a 

Fy,B 

A 

B 

W 

b 

c 

Fy,A 

θ 

T 

d 

y 

x 
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(Wsinq)(c) + (Wcosq)(a) – Fy,B(a+b) – T(d) = 0 

 
Since we already know from part (a) that T = Wsinq, substitution yields 
 

(Wsinq)(c) + (Wcosq)(a) – Fy,B(a+b) – (Wsinq)(d) = 0 
 
Since this equation contains only one unknown force, namely Fy,B, it can be solved directly to 
obtain 
 

 
 
Finally taking SFy = 0 yields 
 

Fy,A + Fy,B - Wcosq = 0 
 
Which we can substitute into the previous equation to find Fy,A: 
 

 

 
Note the function tests: 
 

2) For q = 0, T = 0 (no tension required to keep the car from rolling on a level road) 
3) As q increases, the tension T required to keep the car from rolling increases 
4) For q = 90˚, T = W (all of the vehicle weight is on the cable) but note that Fy,A and 

Fy,B are non-zero (equal magnitudes, opposite signs) unless c = d, that is, the line of 
action of the cable tension goes through the car’s center of gravity. 

5) For q = 0, Fy,A = (b/(a+b)) and Fy,B = (a/(a+b)) (more weight on the wheels closer 
to the center of gravity.) 

6) Because of the – sign on the 2nd term in the numerator of Fy,A (-(c-d)sin(q)) and the + 
sign in the 2nd term in the numerator of Fy,B (+(c-d)sin(q)), as q increases, there is a 
transfer of weight from the front wheels to the rear wheels. 

 
Note also that Fy,A < 0 for b/(c-d) < tan(q), at which point the front (upper) wheels lift off 
the ground, and that Fy,A < 0 for a/(d-c) > tan(q), at which point the back (lower) wheels lift 
off the ground.  In either case, the analysis is invalid.  (Be aware that c could be larger or 
smaller than d, so c-d could be a positive or negative quantity.) 

 
 
Example 3.  Friction 
 

Fy,B =W
acos(θ )+ (c− d)sin(θ )

a+ b

Fy,A =W
bcos(θ )− (c− d)sin(θ )

a+ b



 31 

A 100 lbf acts on a 300 lbf block placed on an inclined plane with a 3:4 slope.  The coefficients of 
friction between the block and the plane are µs = 0.25 and µd = 0.20.  The gravitational acceleration 
is standard earth gravity. 
 
a)  Determine whether the block is in equilibrium 
b)  If the block is not in equilibrium (i.e. it’s sliding), find the net force on the block 
c)  If the block is not in equilibrium, find the acceleration of the block 

 
Figure 8.  Free body diagram for sliding-block example 

(a)  To maintain equilibrium, we require that SFx = 0 and SFy = 0.  Choosing the x direction parallel 
to the surface and y perpendicular to it,  
 

SFy = N – (4/5)(300 lbf) = 0 Þ N = 240 lbf 
 
so the maximum possible friction force is  
 
 Ffriction, max = µsN = 0.25 * 240 lbf = 60 lbf. 
 
The force needed to prevent the block from sliding is 

 
SFx = 100 lbf – (3/5)(300 lbf) + Fneeded = 0 
Fneeded = -100 lbf + (3/5)(300 lbf) = 80 lbf 

 
Which is more than the maximum available friction force, so the block will slide down the plane. 
 
(b)  The sliding friction is given by  

 
Ffriction, max = µdN = 0.20 * 240 lbf = 48 lbf 

 
so the net force acting on the block in the x direction (not zero since the block is not at equilibrium) 
is 

SFx = 100 lbf – (3/5)(300 lbf) + 48 lbf = -32 lbf 
 

 

3 5 

4 

100 lbf 

300 lbf 
x 

y 

F = µN N 
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(b) Note that the mass of an object that weighs 300 lbf at earth gravity is 300 lbm (see example 1, 
chapter 2). Thus 

 
F = ma Þ -32 lbf = (300 lbm)(a) Þ  a = -32 lbf/300 lbm ??? 

 
what does -32 lbf/300 lbm mean?  lbf/lbm has units of force/mass, so it is an acceleration.  But 
how to convert to something useful like ft/s2?  Multiply by 1 in the funny form of gc = 1  = 
32.174 lbm ft / lbf s2, of course! 
 
 acceleration = (-32 lbf/300 lbm) (32.174 lbm ft / lbf s2) = -3.43 ft/s2 
 
or, since gearth = 32.174 ft/s2,  
  

acceleration = (-3.43 ft/s2)/(32.174 ft/s2gearth) = -0.107 gearth. 
 
The negative sign indicates the acceleration is in the –x direction, i.e. down the slope of course.   
 
A good function test is that the acceleration has to be less than 1 gearth, which is what you would get 
if you dropped the block vertically in a frictionless environment.  Obviously a block sliding down a 
slope (not vertical) with friction and with an external force acting up the slope must have a smaller 
acceleration. 
 
Example 4.  Rollers and friction 
 
A car of known weight W is equipped with rubber tires with coefficient of static friction µs.  Unlike 
the earlier example, there is no cable but the wheels are locked and thus the tires exert a friction 
force parallel to and in the plane of the ramp surface.  As with the previous example, the car is on a 
ramp of angle q with respect to horizontal.  The center of gravity of the vehicle is a distance “c” 
above the ramp, a distance “a” behind the front wheels, and a distance “b” in front of the rear 
wheels.  
 

 

 

a 

µFy,A 

Fy,B 

A 

B 

W 

b 

c 

Fy,A 

µFy.B 

θ 
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Figure 9.  Free body diagram for car-on-ramp with friction 
example 

 
(a) What is the minimum µs required to keep the car from sliding down the ramp? 
 

The unknowns are the resulting forces at the wheels (Fy,A and Fy,B) and the coefficient of 
friction µs.  Taking SFx = 0, SFy = 0 and SMA = 0 yields, respectively, 
 
-µsFy,A - µsFy,B + Wsinq = 0 
 
Fy,A + Fy,B - Wcosq = 0 
 
 (Wsinq)(c) + (Wcosq)(a) – Fy,B(a+b) = 0 
 
Which may be solved to obtain 
 

 

 
Note the function tests 
 

1) For q = 0, µs = tan(q) = 0 (no friction required to keep the car from sliding on a 
level road) 

2) As q increases, the friction coefficient µs required to keep the car from sliding 
increases 

3) For q = 0, Fy,A = (b/(a+b)) and Fy,B = (a/(a+b)) (more weight on the wheels closer 
to the center of gravity) 

4) Because of the – sign on the 2nd term in the numerator of Fy,A (-c sin(q)) and the + 
sign in the 2nd term in the numerator of Fy,B (+c sin(q)), as q increases, there is a 
transfer of weight from the front wheels to the rear wheels. 

 
Note also that we could have also tried SFy = 0, SMA and SMB = 0: 
 
Fy,A + Fy,B - Wcosq = 0 
(Wsinq)(c) + (Wcosq)(a) – Fy,B(a+b) = 0 
(Wsinq)(c) - (Wcosq)(b) + Fy,A(a+b) = 0 
 
In which case, the second equation could have been subtracted from the third to obtain:  
 
Fy,A + Fy,B - Wcosq = 0 
 
which is the same as the first equation.  So the three equations are not independent of each 
other, and we can’t solve the system.  What’s wrong?  The coefficient of friction µs doesn’t appear in 
the set of equations SFx = 0, SMA and SMB = 0.  We need to have each of the three unknowns 

€ 

Fy,A =W bcos(θ) − c sin(θ)
a + b

;Fy,B =W acos(θ) + c sin(θ)
a + b

;µs =
sin(θ)
cos(θ)

= tan(θ)
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Fy,A, Fy,B and µs in at least one of the three equations.  The set SFx = 0, SMA and SMB = 0 
doesn’t satisfy that criterion. 

 
(b)  At what angle will the car tip over backwards, assuming that it doesn’t start sliding down the 
ramp at a smaller angle due to low µs? 

 
This will occur when Fy,A = 0, i.e. when sin(q)/cos(q) = tan(q) = b/c.  This is reasonable 
because the tip-over angle should increase when c is made larger (center of gravity closer to 
the ground) or b made smaller (center of gravity shifted forward).  Notice also that it doesn’t 
depend on µs, that is, as long as it doesn’t slide due to low µs, the tip-over angle only depends 
on the force balance. 
 
For what it’s worth, also note that the tip-over angle equals the sliding angle when tan(q) = 
µs = b/c.  Since generally µs < 1, except for a very top-heavy (large c) or rear-weight-shifted 
(small b) vehicles, the vehicle will slide down the ramp before it flips over backwards.  
 

 
Example 5.  Pinned joint 

 
 

Figure 10.  Free body diagram for pinned joint example 
 
A straight bar of negligible mass 12 inches long is pinned at its lower end (call it point A) and has a 
roller attached to its upper end (call it point B) as shown in the figure.  The bar is at a 30˚ angle from 
horizontal.  A weight of 100 lbf is hung 4 inches from the lower end (call it point C). 
 
a) What are the forces in the x and y directions on the pinned end?  What is the force in the x 

direction on the roller end? 
 

The pinned end can sustain forces in both the x and y directions, but no moment of force.  The 
roller end can sustain a force only in the x direction, and again no moment of force. Summing 
the forces in the y direction  
 

Fy,A + Fy,B + Fy,C = 0 Þ Fy,A + 0 - 100 lbf = 0  Þ Fy,A = +100 lbf. 

 

100 lbf 

4 

12 

30˚ 

A 

B 

12 sin(30˚) C 

4 cos(30˚) 8 cos(30˚) 

All dimensions in inches 
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In other words, in the y direction the vertical force at point A must be +100 lbf since that is the 
only force available to counteract the 100 lbf weight.  Next, taking moments of force about 
point A (since the lines of action of two of the unknown forces intersect at point A),  

 
SMA = 0 Þ +(4 in)(cos(30˚))(100 lbf) + (6 in)Fx,B = 0  Þ Fx,B = -57.7 lbf. 

 
Finally, for force balance in the x direction,  
 

Fx,A + Fx,B + Fx,C = 0 Þ Fx,A = -Fx,B - Fx,C = -(-57.7 lbf) – 0 =  +57.7 lbf 
 

b) Would the forces change if the roller and pinned ends were reversed? 
 
In this case summing the forces in the x direction: 
 

Fx,A + Fx,B + Fx,C = 0 Þ 0 + Fx,B + 0 = 0  Þ Fx,B = 0. 
 
For force balance in the y direction,  
 

Fy,A + Fy,B + Fy,C = 0 Þ Fy,A + Fy,B = 100 lbf   
 
Taking moments of force about point C just for variety (not the easiest way, since neither Fy,A 
nor Fy,B are known, we just know that Fy,A + Fy,B = 100 lbf), 

 
SMC = 0 Þ (4 in)(cos(30˚))Fy,A - (8 in)(cos(30˚))Fy,B + (8 in)(sin(30˚))Fx,B = 0 
 
Þ (4 in)(cos(30˚))(100 lbf – Fy,B) - (8 in)(cos(30˚))Fy,B + 0 = 0 
 
Þ Fy,B = +33.3 lbf  Þ Fy,A = +66.7 lbf 

  
which is quite different from case (a). 
 

c) What would happen if the lower end were fixed rather than pinned (upper end having the roller 
again)? 
 
In this case there are 4 unknown quantities (Fx,A, Fy,A, MA and Fx,B) but only 3 equations (SFx = 0, 
SFy = 0, SM = 0) so the system is statically indeterminate.  If one takes away the roller end 
entirely, then obviously Fy,A = 100 lbf, Fx,A = 0 and MA = +(100 lbf)(4 in)(cos(30˚)) = 346.4 in 
lbf. 
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Chapter 5.  Stresses, strains and material properties 
“It is not stress that kills us, it is our reaction to it” 
- Hans Selye, endocrinologist. 
 
Main course in AME curriculum on this topic:  AME 204 (Strength of Materials). 

Stresses and strains 
 
As a follow-on to the discussion of statics we need to consider whether a material subject to a given 
set of forces will break and if not, how much it will bend.  While we will write down many formulas 
in this chapter without deriving them, essentially what these equations do is  
 

1. Break an object up into many infinitesimal cubes of dimension dx x dy x dz 
2. Apply the laws of statics you just learned to these infinitesimal cubes of material that may 

deform 
3. Apply constituitive laws relating the forces (actually stresses, defined below) acting on each cube 

to its deformation and thus displacement from where it was without applied forces 
4. Write a set of equations for all these cubes that is mutually consistent, that is, the stress and 

displacement on the right face of cube A must be equal to those on the left side of adjacent 
cube B 

5. Solve this large set of equations to determine the stresses and displacements everywhere in 
the object 

 
As this discussion implies, the first step in the process is to compute the stress in the material.  There 
are two flavors of stress, the normal stress which is the stress in the direction perpendicular to an 
imaginary plane in the material, and the shear stress which is the stress in the direction parallel to that 
same imaginary plane.  Of course, this imaginary plane could be in any direction, so the magnitude 
of the normal and shear stresses depends strongly on the choice of said imaginary plane.  How 
should one choose said plane and what is the relationship between normal and shear stresses?  We’ll 
discuss that shortly, but first we’ll individually define normal then shear stress. 
 
The normal stress (s) in a material is defined as 
 

s º F/A         Equation 18 
 
where F is the force (either tension or compression) acting perpendicular to an imaginary plane 
surface passing through a piece of material and A is the cross section area.  It is called “normal” not 
in the sense of being “typical” or “standard” but in the sense of being perpendicular or orthogonal 
to the cross-section of the material.  Stress is defined as positive if the material is in tension (i.e. 
the material is being pulled apart) and negative if the material is in compression (i.e. being 
squeezed together).  From the definition it is clear that stress has units of force/area, i.e. the same as 
pressure.  The units are typically N/m2 or lbf/in2.  Sometimes the unit of “kips” (kilopounds per 
square inch = 1000 lbf/in2) is used to report stress.  
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In order to characterize the deformation of a material in response to stress we define another 
property called strain (e) which is the fractional amount of elongation (increase in length) or 
contraction (decrease in length) in a material caused by a stress.  For example, if under a given 
amount of tensile stress, a steel bar stretches from an initial length (L) of 1.00 inch to a final length 
1.01 inch (a change in length, DL, of 0.01 inch) the strain = (1.01 – 1.00)/1.00 = 0.01.  In other 
words,  
 

e º DL/L         Equation 19 
 

For most materials (other than gooey ones, i.e. Silly Putty™, Play-Doh™, …) the maximum strain 
before failure of the material is relatively small (i.e. less that 0.1, meaning that the material deforms 
less than 10% before failing.) 
 
An elastic material has a linear relationship between stress and strain, i.e.  
 

s = eE         Equation 20 
 

where E is called the elastic modulus, i.e. the slope of the plot of s vs. e in the elastic region shown in 
Figure 11.  An equation such as this one is an example of a constituitive relation between the stress and 
deformation mentioned at the beginning of this chapter (the ideal gas law is another example of a 
constituitive relation between the properties of a material). Note that since e is dimensionless, E also 
has units of s, that is, force per unit area. 
 
The strength of a material is generally reported in terms of the maximum stress it can withstand 
without breaking.  For a sufficiently small stress, materials return to their original length or shape 
after the stress is removed.  The smallest stress for which the material does not return to its original 
length or shape after the stress is removed is called the yield stress (syield).  Beyond this stress, generally 
the slope of a plot of s vs. e plot generally (but not always) becomes smaller.  There is often an 
increase in slope as e is increased still further, up to a maximum s called the “ultimate stress”, 
beyond which s actually decreases as e increases, leading finally to fracture (breakage) of the material 
at which point it can no longer hold any stress at all.  A material’s yield stress may be (and 
usually is) different in tension, compression and shear. 
 

  
Figure 11.  Typical stress-strain relationships: left: ductile material; right: comparison of various 
types of materials.  Sources: wikipedia.com, cyberphysics.co.uk. 

Slope = E 
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Note that we can write the above equation s = eE in the form F/A = (DL/L)E or F = (EA/L)(DL), 
which looks just like the force on a linear spring, F = kx, with k = EA/L.  (One might wonder what 
happened to the - sign, that is, isn’t F = -kx?  Stress is defined as positive in tension where as for the 
spring F is defined as positive in compression.)  Consequently, the elastic modulus E and the 
material dimensions A and L determine its “spring constant.”  Figure 11 shows examples of stress 
vs. strain (s vs. e) relationships for different materials.  A ductile material such as steel will yield 
significantly before fracture whereas a brittle material such as a ceramic or concrete will fail without 
significant yielding, that is, the s vs. e curve is nearly linear up to the failure point.  This doesn’t 
mean that ceramics are necessary weak, in fact they may have higher E than ductile materials, but 
they are unforgiving to over-stressing (really, over-straining.) 
 
E and yield or ultimate stress have the same units (Pa or lbf/in2) but there is no particular 
relationship between E and yield or ultimate stress.  Materials can be hard (high E) but break easily 
(low yield or ultimate stress) or vice versa.  Some examples of material properties are shown in 
Table 2.  This table shows materials that are isotropic, i.e. their properties are similar no matter what 
direction stress is applied relative to the material.  Many engineering materials are anisotropic, i.e. they 
are not isotropic.  A typical example of such materials is graphite-epoxy composites composed of 
fibers of graphitic carbon (which have very high yield stress in the plane of the graphite sheets, and 
low yield stress in the direction perpendicular to this plane) that are bonded to an epoxy polymer, 
which has relatively low yield stress in tension but high yield stress in compression and shear.  The 
result is a material that has very high stress for its weight.  The Boeing 787 uses composites for most 
of the structure; this has the advantage of high ratio of yield stress to weight, no possibility of 
corrosion, and relative ease of forming into any desired shape.  (One could also say that a much 
older engineering material, namely wood, is also an anisotropic composite material.) 
 
Of course, in any design one must employ a material with a yield stress greater than the actual stress 
that will occur in the material; the ratio of the yield stress of the material to the actual predicted 
stress in the material is call the factor of safety.  For example, if a material has a yield stress in 
tension of 10,000 lbf/in2 and the system is designed such that the maximum tension is 2,500 lbf/in2, 
the factor of safety for this particular design is (10,000 lbf/in2/2,500 lbf/in2) = 4, at least in tension. 
 
 

Material E (109 Pa) n Yield stress (tension unless 
otherwise noted) (106 Pa) 

Ultimate 
stress (106 Pa) 

Aluminum, 6061-T6 68.9 0.32 276 310 
Steel, 4340-HR  200 0.30 910 1041 
Iron, pure 200 0.29 30 540 
Diamond 700 – 1200 0.10 – 0.29 8680 – 16530 (compressive)  
High-density 
polyethylene 

0.18 – 1.6  2.4 – 31.7 10 – 50 

Alumina, Al2O3 370 0.22 3000 (compressive) 300 
Solder (60% tin, 40% 
lead) 

30 0.4  53 

Silica aerogel 0.001 – 0.01 0.2  0.016 
 

Table 2.  Properties of some common materials (from http://www.matweb.com) 
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Some factoids about materials 
 
How strong are these materials?  How does this compare with the strength of the attractive forces 
between the atoms (Fatoms)?  That is, can we estimate the yield stress of the material s ≈ Fatoms/Aatoms, 
where Aatoms is the cross-section area of the atoms?  How could we estimate Fatoms and Aatoms based 
on macroscopically measurable properties?  Let’s start with the size of one atom.  Let’s consider a 
typical material like aluminum.  Its molecular weight is 27 g/mole, and its density is (by coincidence) 
2.7 g/cm3, and 1 mole = 6.02 x 1023 atoms.  So the volume occupied by each atom is 
 

  

 
Thus each atom occupies a roughly cubic space of (1.66 x 10-23)1/3 = 2.55 x 10-8 cm = 2.55 x 10-10 m, 
or a cross-section area of (2.55 x 10-10 m)2 = 6.51 x 10-20 m2.  What is the attractive force between the 
atoms?  The heat of formation of Al(gas) from Al(s) is 330 kJ/mole (see http://webbook.nist.gov).  
This is the energy needed to separate Al atoms in the solid phase from each other to make a gas.  
On a per-atom basis this is (330,000 J/mole)(mole/6.02 x 1023 atoms) = 5.48 x 10-19 J.  Then, since 
Energy = force x distance, we can roughly estimate the attractive force as energy/distance or 
 
 Fatoms = (5.48 x 10-19 J)/(2.55 x 10-10 m) = 2.15 x 10-9 N. 
 
Then finally, the force per unit area is 
 
 Fatoms = (2.15 x 10-9 N)/(6.51 x 10-20 m2) = 3.30 x 1010 Pa = 33 GPa 
 
Note that this is comparable to the elastic modulus (E), not the yield stress in tension or shear, which is about 1000 
times smaller.  Why is the yield stress so much smaller than the elastic modulus?  For a perfect crystal 
with no defects, the above estimate would be appropriate.  But real materials have defects in their 
crystalline structure.  The yield stress of materials is determined mostly by the microstructural properties 
like the number of defects, the size of the “grains” (individual crystals), and the response of the 
defects to strain.  This is why small amounts of additives (like adding carbon to iron to make steel) 
to a material and the details of how the material is processed (e.g. heat treating, rolling, etc.) affect its 
yield stress so much, but do not significantly affect other properties such as E, n (see below), 
density, etc.  You’ll learn much more about this in MASC 310. 
 
As materials deform under tension, they become longer of course, but they also become narrower.  
The ratio between the change in diameter (d) of a cylindrical sample and change in length (L) is 
called Poisson’s ratio (n), i.e.  
 

        Equation 21 

 
The minus sign is there because under tension DL > 0 (sample lengthening) but Dd < 0 (sample is 
narrowing).  Note that the volume (V) of the cylindrical sample is Lπd2/4 before applying the stress, 
and (L+DL)π(d+Dd)2/4 after applying the stress.  So  
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 or, keeping only leading-order terms, i.e., with only one Dd/d or DL/L and discarding terms like 
(Dd/d)2, (DL)(Dd)/Ld, (DL/L)2 etc.: 
 

  Equation 22. 

 
Function test.  From the above equation, it is apparent that for a material to have no change in volume 
under stress, one would need 1 - 2n = 0 or n = 0.5.  In reality most materials have n ≈ 0.3, which 
means that their volume increases under tensile load (DL/L > 0).  Certainly one would not expect 
n > 0.5, for this would imply the volume decreases under tensile load, and increases under 
compressive load (DL/L < 0) – not very likely! 
 
Example 
 

A ½ inch diameter steel bar increases in length from 10 cm to 10.4 cm under an applied force of 
10,000 lbf. 
 
(a) What is the stress in the bar? 
 

Stress = force/area = 10,000 lbf / (π(0.5 in)2/4) = 50920 lbf/in2. 
 
(b) What is the strain in the bar? 
 

Strain = DL/L = (10.4 cm – 10 cm)/(10 cm) = 0.04 
 
(c) What is the change in diameter of the bar? 
 

Note that the volume of the bar isn’t constant; to answer this question you’ll have to use the 
expression for Poisson’s ratio given above. 

 
n º -(Dd/d)/(DL/L); if n ≈ 0.3 for steel as in Table 2, then  
Dd = -nd(DL/L) = -(0.3)(0.5 inch)((0.4 cm)/(10 cm)) = -0.006 inch 

 
Shear forces 
 
Tension and compression are forces that act in the direction perpendicular to a particular imaginary 
plane cut through a piece of material.  The force that acts parallel to a particular imaginary plane cut 
through the material is called the shear force (V) (why V?  I dunno…).  The shear stress (t) is the shear 
force per unit area, i.e.  
 
 t = V/A.        Equation 23 
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To describe all of the stresses (normal and shear) in a material, we need something more than just a 
vector (which sufficed to describe forces.)   For example, a two-dimensional object in the x-y plane 
has two components of tension or compression (call them sx and sy) and two shear stresses (one 
each in the x and y directions; call them txy-x and txy-y; usually these are just called tyx and txy).  These 
are 4 entities acting in the x-y plane; the composite effect of these 4 stresses cannot be represented 
in terms of a single scalar or vector.  In three dimensions, the situation is even more problematic.  
As shown in Figure 12, a three-dimensional object will have three components of tension or 
compression (one each in the x, y and z directions) and six components of shear (in the x-y plane, in 
the x and y directions; in the y-z plane, in the y and z directions; and in the x-z plane, in the x and z 
directions).  So stress is actually not a single scalar value or even a single vector but a 3 x 3 matrix 
called the Cauchy stress tensor s: 
 

        Equation 24 

 
Keep in mind that for each force shown in Figure 12, there is an equal and oppositely-directed force 
on the opposing side of the imaginary cube.  This looks fairly complicated, and perhaps it is, but one 
saving grace is that, in order for the moments of force about a very small cube of material to sum to 
zero, one must have txy-x = tyx-y, tzx-z = txz-x and tzy-z = tyz-y, in other word the matrix is symmetric.  So 
there are only 6, not 9, independent stresses, or in two dimensions there are only 3 independent 
stresses, namely sx, sy and txy = tyx.  Note the analogy between the number of independent stresses 
(3 in two dimensions, 6 in three dimensions) and the number of degrees of freedom of a free body 
(see Table 1) which determines the number of constraint equations needed to enforce static 
equilibrium; this is not a coincidence at all but a necessary outcome of the number of degrees of 
freedom of an object as discussed in the previous chapter on Statics. Consequently, for two-
dimensional systems, and taking advantage of the fact that txy = tyx, we can write the Cauchy 
stress tensor as 
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Figure 12.  Diagram of normal (s) and shear (t) stresses in an imaginary, infinitesimally 

small cube of material  
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  (for any 2D system)      Equation 25 

 
As previously stated, normal stress is defined as the stress in the direction perpendicular to an 
imaginary plane and shear stress is defined as the stress in the direction parallel to that same 
imaginary plane – but how should that plane be chosen?  For a simple shape like a cylinder it seems 
natural to define a plane parallel to the ends of the cylinder, but what about oddly shaped objects?  
Will the stresses be different depending on how one chooses the coordinate system?  Will an object 
fail or not fail under stress depending on how one chooses the coordinate system?  What is 
important to understand is that the magnitudes of both normal stress and shear stress are 
entirely dependent on the choice of coordinate system.  This is no different than simple forces; 
how much force is in the x-direction and how much is in the y-direction is entirely dependent on the 
choice of coordinate system, however, for a certain choice of coordinates, the shear stress or the 
normal stress may be exactly zero as discussed below. 
 
Principal Stresses 
 
It can be shown that the coordinate system (x, y, z) of Figure 12 can be rotated such that all of the 
off-diagonal terms (i.e. all the shear stresses tij) are zero; these coordinates are called the principal 
directions and the corresponding stresses the principal stresses.  Now we’re down to 3 independent 
stresses in this coordinate system.  Furthermore, in the principal directions two of the three 
coordinates yield the maximum and minimum stress attainable from any rotation of the coordinates.   
Proving this or using these results is beyond the scope of this course but will be discussed in AME 
204.  In this course we will consider only the simpler two-dimensional case (Figure 13). If the 
normal stresses sx and sy and the shear stress txy are known in some coordinate system (x, y) then 
by rotating the coordinate system by an angle qP, the principal stresses (called s1 and s2) are 
obtained; their values are given by 
 

        Equation 26 

 
Stated in terms of the Cauchy stress tensor, the stresses are 
 

  (in the coordinate system of the principal stresses)  Equation 27 

 
where s1 and s2 are given by the formula above. 
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Note that s1 and s2 could be both positive, both negative, or one of each depending on the values 
of sx,, sy and txy.  If both are positive then the larger one is the only one you need to worry about in 
terms of material failure, and failure could occur in tension only.  If both s1 and s2 are negative, 
then the more negative one is the only one you need to worry about in terms of material failure, and 
failure could occur in compression only.  If s1 is positive and s2 is negative, then you need to worry 
about both in terms of material failure, the positive one in tension and the negative one in 
compression. 
 
Also note that there are some good function tests you can perform on the formula for principal 
stresses: 
 

• If txy =0, then s1 = sx and s2 = sy, that is, the normal stresses are the principal stresses since 
there is no shear in this coordinate systems. 

• If sy and txy are both zero, that is, if there is only one normal stress and no shear stress, then 
s1 = sx and s2 =0. 

• If sx ≠ 0, sy = 0 and txy ≠ 0, then the principal stresses are 
 

 
which makes sense because adding the shear increases s1 to a value larger than its value if 

there were no shear (sx), and decreases s2 to a value smaller than its value if there were no 

shear (0). 
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Figure 13.  Diagram of normal (s) and shear (t) stresses in a 2-dimensional system and 
transformation to the principal stresses.  Source: efunda.com 

 



 44 

 
Also, by rotating the coordinate system by a different angle qS, the maximum shear stress (tmax) is 
obtained; its value is given by  
 

  Equation 28 

 
In this coordinate system where we find the maximum shear stress, the normal stresses are the same 
and equal to (sx + sy)/2, i.e., the average of sx and sy in the original coordinate system. Thus, 
written in terms of the Cauchy stress tensor again 
 

     (in the coordinate system of the maximum shear stress)   Equation 29 

 
It is worth noting that for shear stresses txy we do not need to distinguish between positive and 
negative values since txy always appears in the equations in the form txy

2 and tmax always has a ± sign 
in front of it.  This is because (as Figure 13 indicates) only 1 type of shear stress txy

 = tyx is allowed; 
txy

 ≠ tyx would violate static equilibrium because the sum of moments of force would not be zero.  
In contrast, two independent normal stresses sx and sy are allowed and there is no restriction on 
their relative magnitudes or signs. 
 
Note also that if in the above equations the stress in the x direction is non-zero (sx ≠ 0) but the 
stress in the y direction is zero (sy = 0) and the shear in the x-y plane is zero (txy = 0), then the 
principal stresses are s1 = sx, s2 = 0 and tmax = sx/2.  This indicates that just because one is only 
pulling on the material in one direction (say, in tension) that doesn’t mean that there is no shear 
stress in the material; it’s all a matter of my choice of coordinates.  The important conclusion is that 
a material under any type of stress has both normal and shear stresses; to determine the 
conditions for failure, it is not sufficient just to calculate the stresses in one particular 
coordinate system.  One must determine the maximum normal and shear stresses in the material 
based on the above equations for s1, s2 and tmax and choose an appropriate dimensions and 
materials that can withstand such stresses.  There is an analogy of sorts with Alfred Hitchcock 
movies – typically the main character is an ordinary person doing some ordinary task, then 
something happens to him/her that causes him/her to become involved in some terrifying event 
from which he/she cannot become uninvolved.  The message of his movies is typically, “you think 
you’re not involved… but you ARE.”  The same thing applies to stresses:  “you calculate normal 
stress and you think you’re not involved with shear stress… but you ARE.”  Note that according to 
Eq. 22, the only situation where the material has no shear stress at all (tmax = 0) is when sx = sy and 
txy = 0. 
 
Yet another noteworthy aspect of the above equations for the maximum normal stresses (s1 and s2) 
and the maximum shear stress (tmax) is that for pure shear with no normal stress in the original 
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coordinate system (sx = sy = 0 and txy ≠ 0), the principal stresses are s1 = txy and s2 = -txy.  In this 
case, “you think you’re not involved with normal stress … but you ARE” applies and in fact the 
maximum normal stresses in this case are equal in magnitude to the shear stress in the original 
coordinate system. 
 
Table 3 summarizes these special cases and others for maximum normal and shear stresses for 
different ratios of normal and shear stress in the original coordinate system.  In Table 3, “1” unit of 
stress could be 1 N/m2, 1 lbf/in2, 1000 Pa, or any unit of stress – it’s all based on ratios. 
 

 
In original (x,y) 

coordinate system 

In coordinate system of the 
principal stresses (maximum 
and minimum normal stress) 

 
In coordinate system of 
maximum shear stress 

von 
Mises 
stress 

sx sy txy s1 s2 qP tmax qS sVM 
1 0 0 1 0 0 ±0.5 45˚ 1 
1 1 0 1 1 0 0 n/a 1 
1 -1 0 1 -1 0 ±1 45˚ √3 
1 0 ±1 (1+√5)/2 (1-√5)/2 31.7˚ ±√5/2 76.7˚ 2 
0 0 ±1 1 -1 45˚ ±1 0 √3 
1 -1 ±4/3 5/3 -5/3 53.1˚ ±5/3 8.1˚ 5/√3 

 
Table 3.   Principal stresses and maximum shear stress  

for some special cases of ratios of stress in the (x,y) plane. 
 
Finally, we need to consider the combined effects of normal and shear stress on the condition for 
yielding or failure, that is, if (for example) the stress in the material were very close to but below the 
yield stress in both tension and shear, the material might be more likely to fail than if the stress in 
the material were very close to but below the yield stress only in tension and well below the yield 
stress in shear.  There are many models of the effects of these combined stresses on the conditions 
for material failure; certainly we will not try to cover them here.  Probably the most common model 
is based the von Mises stress (sVM) which states that combination of the normal stresses sx and sy plus 
the shear stress txy has the equivalent effect of tension in the amount of sVM as given by (for a 2D 
system) 
 

     Equation 30. 
 
According to this model, failure will occur when sVM exceeds the yield stress in pure tension 
syield,tension. In this case we do not separately consider yield stresses in compression and shear, which is 
handy if we haven’t actually measured the yield stress in compression and shear. Note the function 
test: when sx > 0, sy = 0, and txy = 0 (that is, the only applied stress is tension in the x-direction) 
then sVM = sx = syield,tension which is our usual yield criterion for failure in tension. 
 
Summarizing the possible failure criteria (in any given problem, I will tell you which ones to check; 
we won’t discuss which is the best in any given situation): 
 

• Tension: sx > syield,tension or sy > syield,tension 

σVM = σ x
2 +σ y

2 −σ xσ y + 3τ xy
2 =σ yield ,tension
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• Compression: sx < syield,compression or sy < syield,compression (recall compressive stress is negative) 
• Shear: |txy| > tyield,shear 
• Von Mises: sVM > syield,tension 

 
In the remainder of this chapter we will apply these concepts of stress, strain, etc. to several specific 
engineering stuctures, namely pressure vessels, beams and columns. 
  

Example 
 

A horizontal steel bolt ½ inch in diameter in an anchor shackle 
Clevis has a 10,000 lbf anchor hung on it. The bolt is tightened 
until the tension is 10,000 lbf. 
 
(a) What is the maximum normal stress in the bolt?  
 

Normal stress along length of bolt = sx = Force/Area  
= (10,000 lbf)/(π(0.5 in)2/4) = 50,930 lbf/in2 

 
Normal stress perpendicular to the length of bolt = sy = 0  
 
Shear stress = txy = (Shear force)/Area = (5,000 lbf)/(π(0.5 in)2/4) = 25,465 lbf/in2 
 
Using Equation (22) for principal stresses we find that s1 and s2 are 
 

  

 

 
So the maximum normal stress is +61,477 lbf/in2 (+ sign indicating tension) and the 
maximum compressive stress is -10,548 lbf/in2, - sign indicating compression).  Also note 
that the transformation from the coordinate system x, y to the principal directions requires 
an angle of rotation given by 
 

 

 
(b) What is the maximum shear stress in the bolt? 
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(c) What is von Mises stress in the bolt? 

 

 

Pressure vessels  

 
In a cylindrical vessel containing an internal pressure Pin with a pressure outside Pout, there are 2 
stresses to be considered:  the hoop stress trying to pull the cylinder apart radially, and the longitudinal 
stress or axial stress trying to pull it apart axially.  Referring to Figure 14, note that the total force 
trying to pull the cylinder apart radially is (Pin-Pout)A, where the area A = 2rL, where r is the cylinder 
radius and L its length.  The total wall cross section area resisting this force is  2tL, where t is the 
wall thickness (not to be confused with t the shear stress used above; wall thickness has units of 
length, shear stress has units of pressure).  Thus,  
 

Hoop stress (sh) = (total force)/(area of wall resisting force)  

= ((Pin-Pout)* 2rL) / (2tL) =  (Pin-Pout)r/t  Equation 31 

Similarly for the longitudinal stress, the total force trying to pull the cylinder apart axially is (Pin-
Pout)A = (Pin-Pout)(πr2) and the total wall cross section area resisting this force is  2π * r * t, thus  
 

Longitudinal stress (sl) = (total force)/(area of wall resisting force)  
= (Pin-Pout)(πr2)/(2πrt) =  (Pin-Pout)r/2t     Equation 32 

 
or stated in terms of the Cauchy stress tensor, defining the x-direction to be along the axis of the 
cylinder: 
 

σVM = 50,930( )2 + 02 − 50,930( ) 0( )+ 3 25,465( )2 = 67,374 lbf / in2

 
Figure 14.  Diagram of pressure vessel showing hoop stress (sh, left) and longitudinal stress 
(sl, right).  Figures from http://www.efunda.com/. 
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Note that the hoop stress is twice the longitudinal stress.  This is why an overcooked hot dog usually 
cracks along the longitudinal direction first (i.e., its skin fails from hoop stress, generated by internal 
steam pressure).   Also note that if the pressure inside the vessel is higher than that outside the 
vessel (Pin > Pout), both hoop and longitudinal stress are positive, i.e., in tension.  Of course, if the 
pressure outside is higher (Pin < Pout, e.g., a vacuum chamber or submarine) then both hoop and 
longitudinal stress will be negative, i.e., in compression. 
 
Also note that for a sphere, any cross-section of the material experiences longitudinal stress (Figure 
14, right) and no cross section experiences hoop stress (Figure 14, left).  Thus, the maximum stress 
in a spherical vessel is half of that a cylindrical vessel with the same pressure, radius and wall 
thickness, i.e. (Pin-Pout)r/2t (sphere) vs. (Pin-Pout)r/t (cylinder).  For a given material, the wall 
thickness t required to hold a given pressure difference (Pin-Pout) is thus half as much for the sphere 
as the cylinder.  Of course the volume of a sphere of diameter 2r is less (by 33.3%) than a cylinder 
with equal diameter 2r and length 2r, but the weight of the pressure vessel is 50% less, so a spherical 
vessel is preferred in applications where weight is critical, e.g., in spacecraft. 
 
So for the pressure vessel we have hoop stress (call it sx, where x is the radial direction) = (Pin-
Pout)r/t and longitudinal stress (call it sy, where y is the axial direction) = (Pin-Pout)r/2t.  In this 
coordinate system there is no shear stress.  Thus the principal stresses are 
 

 

So for this case the principal stresses s1 and s2 are just the calculated stresses in the x and y 
directions; as discussed earlier will happen any time txy = 0.  On the other hand, the maximum shear 
stress for the pressure vessel is 
 

 Equation 33 

 

Thus, unless the yield stress in shear was less than ¼ the yield stress in tension or compression, the 
material would fail in tension or compression before it failed in shear. 
 

Example (to be continued below…) 
 

An iron pipe 1 foot in diameter and 50 feet long has a wall thickness of 1/2 inch.  The material 
properties are: elastic modulus (E) = 30 x 106 lbf/in2, yield stress (syield) = 30 x 103 lbf/in2 in 
tension, yield stress = -30 x 104 lbf/in2 in compression and yield stress = 10 x 103 lbf/in2 in 
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shear.  If the ends of the iron pipe are sealed and the pipe is used as a cylindrical pressure vessel, 
with the high pressure inside: 

 

(a) At what pressure difference (in units of lbf/in2) will the iron yield if the high pressure is 
inside the pipe and yield occurs in tension? 
 

Maximum normal stress = hoop stress (sh) =  +(Pin-Pout)r/t (tension) 
Pressure difference (Pin-Pout) at yield = syieldt/r = (+30 x 103 lbf/in2)(0.5 in)/(6 in)  
= +2,500 lbf/in2 

 

(b) For what yield stress in shear (in units of lbf/in2) will the iron yield in shear rather than in 
tension for this pressure? 
 

 
Since the actual yield stress in shear is 10,000 lbf/in2, the pipe will not yield in shear at this 
pressure difference and thus it will yield in tension instead as calculated in part (a). 

 

Bending of beams  
 
One of the most common problems in structural mechanics is to compute the stresses in a beam 
subject to a load, perpendicular to the axis of the beam, distributed over the length of the beam.  
The load is typically reported as a force per unit length along the beam (w), with units N/m or 
(more likely) lbf/ft.  As shown in Figure 15 (left), this load causes a shear force in the beam (V) = 
wL, where L is the distance from the end of the beam.  Or, if w is not constant, we can say that dV 

= w dx and .  Then the moment of force about one end of the beam is given by 
(defining counterclockwise moments of force are positive, which is standard in structural mechanics)  
 
dM = -Vdx, thus 
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Figure 15.  Left:  Force balance on a differential element of beam of length dx, showing 
the applied load per unit length w, shear force V and bending moment M.  From 
http://www.efunda.com/.  Right: Schematic of compressive and tensile stresses in a 
beam caused by the bending moment. From 
http://strengthandstiffness.com/6_beams/page_6b.htm 
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      Equation 34 

 
Knowing w(x) for the beam and the boundary conditions at the ends of the beam, one can 
determine the moment of force M at any location along the beam.  For example, with a constant 
load w per unit length and which is pinned at one end (able to withstand a force in both x and y 
directions, but unable to cause a moment of force) and has a roller at the other end (so able with 
withstand a force in the y direction only, so there are 3 unknown forces and 3 degrees of freedom, 
i.e. a statically determinate system) we have  

 

d2M/dx2 = -w = constant  
 

with the boundary conditions  
 

M = 0 at x = 0 and x = L 
 

for which the solution is 
 

dM/dx = -wx + c1;  
M = -wx2/2 + c1x + c2;  
M = 0 at x = 0 Þ c2 = 0; 
M = 0 at x = L Þ -wL2/2 + c1(L) + 0 = 0 Þ c1 = wL/2 
 
Þ M(x) = (wx/2)(L – x)  (uniformly loaded beam)   Equation 35a 

 

Note that the maximum of M is at x = L/2 with a value of wL2/8 (see Figure 16). 
 
The above relation applies to a uniform loading w (units force/length) along the whole beam, with 
pinned ends.  For a point force P (units force, not force/length) at the midpoint (x = L/2) between the 
two ends of the beam, the above equations can be integrated to obtain 
 

Þ M(x) = Px/2 (for x ≤ L/2); M(x) = P(L-x)/2 (for x ≥ L/2)   Equation 31b 
 (beam with point load in the middle, pinned ends) 

 
Note that for this case maximum of M is at x = L/2 with a value of PL/4 (see Figure 16).  How 
does this compare with uniform loading?  Note that for uniform loading, Mmax = wL2/8 = 
(wL)(L/8) where (wL) is the total force exerted by the loading on the beam, which is ½ as much as 
the moment P(L/4) when the same total force is concentrated at the midpoint of the beam rather 
than distributed along its length.  As we will show shortly show, the stress in the material is 
proportional to the bending moment.  As a consequence, for a given maximum allowable stress, a 
uniformly-loaded beam can handle twice as much total weight as a point-loaded beam, everything 
else about the beam being equal.  Function test:  note that far from the point load (i.e. away from x/L 
= 0.5, near x/L = 0 or x/L = 1), the bending moment is the same for uniform or point load.  This 
makes sense because for the same total load P = wL, far from the location of the point load one 
would expect the resulting bending moments to be the same for the two types of loading. 
 

dM
dx

= −V ; dV
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= w⇒ d 2M
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Who cares about these moments?  Well, what we do care about is the stress in the beam.  The beam 
must resist this moment by the stresses in the material.  In order to do that, the beam has to be (for 
downward loading, i.e. weight on the beam) in tension on the bottom and compression on top.  In 
other words 
 

Forces (loads) on beam Þ Shear forces in beam Þ Bending moments in beam Þ Stresses 
in beam material 

 
It’s important to understand that the bending moments cause far more stress in the beam 
than the stresses caused by the direct application of the force w(x).  It’s beyond the scope of 
this course to derive the relationship between bending moment M(x) and stresses (you’ll learn about 
this in AME 204), but for a slender beam (one for which its length L is much larger than its height in 
the y direction, that is, L >> b for a rectangular beam or L >> d for a beam of circular cross-
section) by far the largest stress in the beam is the normal stress in the x direction (sx) resulting from 
this bending moment and this stress given by 

 
Figure 16.  Distribution of bending moments along a beam for uniform or point loading 

       

Figure 17.  Definition of area moment of inertia (I) about axis (dotted line) A-A’ 
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        Equation 36 

where y is the vertical distance from the “neutral axis” of the beam (where sx = 0) (the “neutral 
axis” is half-way through the beam for a symmetrical cross-section), M(x) is the moment just 
computed, and I is the area moment of inertia of the beam cross-section (units are length4).  ( The 
moment of inertia about an axis A-A’ is defined in Figure 17.  In comparison to sx(x,y) given by this 
equation, the normal stress in the y direction (sy) and the shear stress txy in the (x,y) coordinate 
system are much smaller and so can be neglected.  (Of course we still have to find the maximum 
shear stress tmax obtained by rotating the coordinate system, as discussed below.) 
 
Note that for a given total cross-section area (thus total weight of beam) one can have large I (thus 
lower stress s) by having more material at larger distances from the axis A-A’.  This is the reason for 
using I-shaped beam sections.  Formulas for I for common shapes include: 
 

• Circular cross-section of diameter d:  I = πd4/64 
• Thin-wall hollow tube of diameter d and wall thickness t:  I = πd3t/8 
• Rectangular cross-section I = ab3/12 (a = width of beam; b = height of beam) 
• I beam of width a, height b, thickness of central section tw and thickness of top and bottom 

sections th:  I =  

 
Note that the I-beam formula satisfies the function tests:  when tw = a or th = b/2, the I-beam is 
just a “filled” rectangle with I = ab3/12, and if tw = 0 and th = 0, the beam has no material thus I = 
0. 
 
The above equation for the stress in the beam  can be used to calculated the 
normal stress in the x-direction sx(x,y) at any location along the length of the beam (in the x 
direction) and any vertical position in the beam (in the y direction), but we are almost exclusively 
interested in the maximum value of sx, which will occur at x = L/2 (if the beam is subject to a 
uniform load w or a point-load P at the middle of the beam, i.e. for the only 2 cases we are 
considering) and at the maximum value of y (i.e. at y = ±d/2 for a circular cross-section or y = ± 
b/2 for a rectangular or I-beam of height b.)  So let’s use 

 
for the simple 

case of a uniformly-loaded or point-loaded rectangular cross-section beam (Figure 18) of 
height b and thickness a and determine the maximum normal stress in the beam.  For this case, the 
moment of inertia I = ab3/12, thus smax (at the center of the beam (x = L/2), at the top or bottom, 
where y = +b/2 at the top of the beam and –b/2 at the bottom of the beam) is given by  
 

    Equation 37 
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where the – sign refers to the compression at the top of the beam and the + sign refers to the 
tension at the bottom of the beam (recall that the sign convention for stresses is that compression is 
negative and tension is positive.)  Does this result make sense? 
 

• Smoke test: The units (for uniform load) are wL2/ab2 = (Force/Length)(Length)2/(Length3) 
= Force/Length2, which is stress – OK. 

• Function test #1: a longer (larger L) or more heavily loaded (larger w or P) beam should have 
more stress - OK 

• Function test #2: a thicker (larger a) or taller (larger b) should have less stress – OK 
 
Note that shown in Table 3, for a situation in which there is normal stress sx in only one direction 
(sy = 0) and no shear stress in that x-y coordinate system (txy = 0), there is still a shear stress tmax = 
sx/2.  So the beam would fail in shear if the yield stress in shear were less than half of the smaller of 
the yield stress in tension or compression. 
 
Also note that for a given total load (in units of force) = wL (uniform load) or P (point load) and 
beam length L, the stress is proportional to 1/ab2, whereas the weight is proportional to volume = 
abL.  Thus to minimize the stress for a given weight of beam, one wants to minimize the ratio 
(abL/ab2) = L/b, meaning that (since L is already fixed) we want to maximize b (and thus minimize 
a) – in other words, a tall skinny beam cross-section (large b, small a) works better than a short fat 
one (small b, large a).  That’s another reason for using the I-beam shape.  Another way of thinking 
of this is that since smax is proportional to 1/ab2, one gets more benefit from increasing b than 
increasing a.  Increasing a results in a proportional decrease in stress and a proportional increase in 
weight, so the stress-to-weight ratio doesn’t change.  However, increasing b resulting in a more-
than-proportional (1/b2) decrease in stress, thus the stress-to-weight ratio increases.  
 

 
Figure 18.  Schematic of example beam-loading problem 

 
By examination of Figure 18, one might notice that there is a compressive stress acting on the beam 
in the y direction by virtue of the loading.  In Figure 18, this “direct” compressive stress would be 
Force/Area = wL/aL = w/a.  Is this a lot or a little?  By comparison the compressive or tensile 
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stress in the x direction caused by the bending moment is 0.75wL2/ab2.  The ratio of the bending-
induced to direct compression is then (0.75wL2/ab2)/(w/a) = 0.75(L/b)2.  Since we have already 
assumed L >> b (a long, slender beam), the bending-induced compression far exceeds the “direct” 
compression.  Similarly, for the shear force V caused by the “direct” loading, from dV/dx = -w, 
thus V = -wx = -wL/2 at the center of the beam.  This results in a shear stress = force/area = -
(wL/2)/ab.  The ratio of the shear stress caused by the bending moment = sx/2 = (0.75wL2/ab2) = 
0.375wL2/ab2 to that caused by the “direct” loading is then 0.75(L/b).  So again, since L >> b, the 
stress caused by the bending moment is much more than that due to direct loading, which explains 
why we can usually ignore the direct loading when determining the point at which a beam will fail. 
 
Another property of some interest is the maximum deflection D (i.e. the sag in the middle of the 
beam) due to the applied load.  Its value is given by 
 

    Equation 38 

 
Note that for the same total applied load (wL = P), the maximum deflection is (1/48)/(5/384) = 1.6 
times larger for the point load than the uniform load. 
 
Another common stress analysis problem is a circular disk (e.g., the end caps of a cylindrical 
pressure vessel) of radius r and thickness t with pressure difference Pin - Pout.  The maximum stress 
(including the transformation to principal stresses) is given by 
 

       Equation 39 

 
where c = 1.24 if the edges of the disk are free to pivot (e.g. like a drum head, which is not very 
realistic) or c = 0.696 if the edges are rigidly clamped and unable to pivot (which would be the case 
if the disk were welded or bolted on to the end of the cylindrical part of the pressure vessel.)  Since 
this normal stress exists and has the same magnitude in both the x and y directions within the plane 
of the end cap (sx = sy) according to Eq. 25, tmax = 0, i.e. there is no shear stress in the end caps. 
 
Example 
 
(a) If the iron pipe from the pressure vessel example above has no pressure inside but instead is 

used as a beam with one pinned end and one roller end instead, what is the maximum point load 
(P, units of force, not to be confused with pressure P) that could be applied at the middle of the 
beam before the iron yields? 
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(Note: the material is weaker in tension, so the failure will occur when sy = +30 x 103 lbf/in2 
in tension at the bottom of the beam (y = -d/2) rather than sy = -30 x 104 lbf/in2 in 
compression at the top of the beam (y = +d/2)).   
 
However… we need to check for failure due to shear stress also.  At the top or bottom of 
the beam, for a given value of the normal stress in the x direction (along the length of the 
beam) of sx, assuming no normal stress in the y direction (sy = 0) and no shear stress (txy = 
0), there is a shear stress given as (Eq. 33): 

 

 
 

 
As discussed below Equation 26 and shown in Table 3, in this particular case the maximum 
shear stress is half as much as the normal stress sx.  Thus 
 

 

So the beam yields at a lower point load P in shear than in tension (7,536 lbf vs. 11,304 lbf.)

 

 
(b) What is the maximum deflection of the beam? 
 

 

 
Notice that the 50 foot long beam deflects/bends a maximum (i.e. at the failure load) of 5 
inches, i.e. only 5 / (50 x 12) = 0.0083 = 0.83%. 

 
(c) Assuming that shear stress is not an issue (as it was shown to be at the end of part (a)), how 

much compressive force (pre-stressing) should be applied to the pipe to maximize the point 
load that could be applied?  What would this maximum point load be? 

 
At the maximum load condition there is sx = -30 x 103 lbf/in2 (compression) at the top of 
the beam and sx = +30 x 103 lbf/in2 (tension) at the bottom of the beam.  This is sort of a 
waste, since the top of the beam could take a lot more compressive stress before it failed.  So 
by pre-compressing the beam, one could even things out.  So to have both the top and 
bottom of the beam at their maximum stress, we would have a stress of -30 x 104 = PC – S 
at the top of the beam (- sign indicating compression, PC is the pre-compression, S is the 
stress due to the applied load – on top, + on the bottom) and +30 x 103 = PC + S at the 
bottom of the beam.  So combining this two equations, we have  
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-30 x 104 = PC – S 
30 x 103 = PC + S 
Þ -27 x 104 = 2 PC   Þ  PC = -13.5 x 104; S = 16.5 x 104 

 
We already showed that without pre-compressing, a point load of 11,300 lbf produces a 
stress of ±30 x 103 lbf/in2 in the beam.  With pre-compressing, we can withstand ±16.5 x 
104 of stress in the beam due to the loading, that is, 5.5 times more stress.  Since the 
relationship between the applied load P and the stress is linear, we can conclude that P = 5.5 
(11,300) = 62,200 lbf. 

 
(d) If the pipe has welded disk end caps of the same material and thickness as the pipe, at what 

pressure P (again this is pressure P, not to be confused with point load P) would the end cap 
fail? 

 

 

 
where again the tensile (not compressive) stress is chosen because is it the smaller value. 

 

Buckling of columns  
 
Another way in which a structural element under compression can fail is by buckling.  This is not 
strictly a failure of the material, but effectively eliminates the load-carrying capability of the structure.  
The compressive force (F) at which buckling occurs in a column of length L is given by 
 
 Fbuckling = nπ2EI/L2        Equation 40 

 
where E is the elastic modulus discussed above, I is the moment of inertia of the cross-section of 
the column in the plane perpendicular to the direction of the applied force (which is parallel 
to the long direction of the column) and n is a constant that depends on the way in which the 
column ends are or are not held: 

• Both ends pinned, i.e., free to pivot:  n = 1 
• Both ends clamped, i.e., unable to pivot:  n = 4 
• One end pinned, one end clamped:  n = 2 

 
It should be noted that this buckling formula is valid only for a “slender” column (where the length 
L is much greater than the width of the column cross section) and it assumes that the column cross-
section does not change (in other words, it would not account for the crumpling of an aluminum 
beverage can, where the buckling occurs due to a change in the cross-section of the can. 
 
When computing I for a rectangular cross-section of a buckling column, which is the “a” dimension 
and which is the “b” dimension?  Since the column can buckle either way, you have to use the lesser 
I, i.e. where a is the smaller dimension, which says that to avoid buckling, you don’t want tall skinny 
beam cross-sections, you want round or square ones.  Note that this conflicts with the desired cross-
section to minimize stress due to bending moments, i.e. it was just mentioned above that for best 
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stress to weight ratio, you want tall skinny I-beams.  Thus the optimal I-beam cross-section will be a 
compromise between the two shapes. 
 
Example 
 
What is the buckling load of a polyethylene plastic drinking straw (E ≈ 109 Pa), ¼” in diameter and 
1/32” wall thickness, 6” long, with both ends free to pivot? 
 

Fbuckling = nπ2EI/L2;  
n = 1;  
E ≈ 109 Pa;  
I = πd3t/8 = π(0.25)3(1/32)/8 = 1.92 x 10-4 in4 = 7.99 x 10-11 m4  
L = 6 in = 0.152 m 
Fbuckling = 1π2(109 Pa)( 7.99 x 10-11 m4)/( 0.152 m)2 = 34 N = 7.7 lbf. 

 
In practice the buckling load would be less because this analysis assumes the load is exactly along the 
axis of the column, whereas in reality there would be some sideways (shear) load.  Additionally, the 
analysis assumes that the cross-section of the column does not change, whereas in practice the 
drinking straw would fold (sort of like buckling in the x-direction), thus violating the constant-cross-
section assumption. 
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Chapter 6.  Fluid mechanics 
 
“The goal in life is to be solid, whereas the way that life works is totally fluid, so you can never actually achieve that 
goal.”- Damien Hirst (British artist). 
 
Main course in AME curriculum on this topic:  AME 309 (Dynamics of Fluids). 
 
What distinguishes a fluid from a solid is that a solid deforms only a finite amount due to an applied 
shear stress (unless it breaks), whereas the fluid continues to deform as long as the shear stress is 
applied.  This makes fluid mechanics a lot more complicated (at least to me) than solid mechanics. 
 
Note that in scientific circles, the term “fluid” can mean either a gas or a liquid whereas colloquially 
“fluid” is generally interpreted as meaning a liquid. We will use the term “fluid” to apply to either a 
gas or liquid and state specifically “gas” or “liquid” for concepts or equations that apply only to one 
of the two. 
 
Fluid mechanics is basically SF = d(mv/dt) (Newton’s 2nd Law, the sum of the forces is equal to the 
rate of change of momentum) applied to a fluid. Generally this is done on a per unit volume (V) 
basis, so Newton’s 2nd Law becomes S(F/V) = d(rv/dt), where r = m/V is the fluid density. 
 
By far the two most common assumptions made about fluid density is that the fluid is either 
 

(1) incompressible, meaning that r is constant; this is a good assumption for most liquids 
because their density does not change much over a large range of pressures. 

(2) an ideal gas, that is, a substance for which PV = nÂT.  This formula based on the number 
of moles n isn’t very useful for engineering purposes compared to a mass-based formula 
because (a) it’s far easier to measure to measure mass than moles and (b) moles aren’t 
conserved during chemical reactions whereas mass is. The alternative version of the ideal 
gas law which is much more commonly used in engineering is obtained by computing 
the mass (m) from m = nM, where M is the molecular mass, then applying the 
definition of density r º m/V and combining to obtain 
 

P = rRT   (ideal gas ONLY)       Equation 41 
 
where R º Â/M is the mass-based gas constant (which is different for every gas 

depending on its value of M whereas Â is the same for every gas).  

Fluid statics 
 
Hydrostatic pressure 
 
Let’s look first at fluid statics, i.e. when SF = 0.  If a fluid is not moving at all, as in a glass of water, 
then the fluid is static, that is, zero velocity everywhere, and has only a hydrostatic pressure.  Imagine a 
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column of fluid of height z, cross-section area A and density rf (units M/L3, i.e. mass of fluid per 
unit volume.)  Table 4 gives the density of several common liquids and gases.  The weight of the 
water is the mass x g = density x volume x g = rfzAg.  This weight is distributed over an area A, so 
the force per unit area (the hydrostatic pressure) is rfzAg/A = rfgz.  This is added to whatever 
pressure P(0) exists at z = 0.  So the hydrostatic pressure P(z) is  
 

P(z) = P(0) -  rfgz          Equation 42 
 
where z is defined as positive upward, i.e. decreasing depth.  This result assumes that the fluid 
density rf is constant.  This is reasonable for water and practically all liquids, even at pressures of 
thousands of atm.  It’s also ok for gases if z is not too large, i.e., such that rfgz << Po. 
 

Fluid Density 
(r, kg/m3) 

Dynamic viscosity 
(µ, kg/m s) 

Kinematic viscosity 
(n = µ/r, m2/s) 

Water 997.1  8.94 x 10-4  8.97 x 10-7  
Air 1.18  1.77 x 10-5  1.50 x 10-5  
Motor oil  917 0.260 2.84 x 10-4  
Mercury 13500 1.53 x 10-3  1.13 x 10-7  

Table 4.  Properties of some common fluids at ambient temperature and pressure. 

 
Buoyancy 
 
According to Archimedes’ principle, an object of volume V placed in a liquid of density r will exert 
a buoyant force equal the weight of the fluid displaced = rfgV.  The net force on the object is the 
difference between this Archimedean (buoyant) force and the weight of the object = rogV, where ro 
is the average density of the object (just total mass/total volume).  Thus the net force F acting on the 
object is  
 

 F = (rf - ro)gV         Equation 43, 

 
where the sign convention is such that the force is positive (directed upward) when the object 
density is less than the fluid density (i.e., the object floats upward).  Function test: if the density of the 
object and the fluid are the same, the object is “neutrally buoyant,” and there is no net force on the 
object (F = 0). 
 
Example 
 

a) The deepest part of the ocean is a spot called “Challenger Deep” in the Marianas Trench in 
the western Pacific Ocean.  The depth is 35,838 feet.  The density of seawater is 1026 kg/m3.  
What is the hydrostatic pressure (in atmospheres) at this depth?  Remember, at sea level, the 
pressure is 1 atm and increases as the depth increases. 

 
Ocean depth: z = -35838 ft = -10923 m; seawater density rf = 1026 kg/m3  
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b) The density of air at sea level is 1.18 kg/m3.  If the air density were constant (not, as in 

reality, a function of elevation), at what elevation would the pressure be zero? 
 

  thus  

 
c) Until 2012, the only vessel ever to carry people to Challenger Deep was the bathyscaphe 

Trieste (pictured below) in 1960. It used gasoline (rf = 739 kg/m3) for flotation since no air 
tank could be made light enough to sustain an 1100 atm pressure difference and still provide 
positive buoyancy (since the gasoline is essentially incompressible it could be contained in a 
thin-walled tank that did not need to sustain a pressure difference between the gasoline and 
the surrounding seawater; note that the gasoline is used only for buoyancy, not as fuel.)  The 
Trieste used 22,500 gallons of gasoline for flotation.  How much buoyant force could this 
much gasoline produce? 
 

 
In this case the surrounding fluid is seawater and the “object” is the gasoline itself, thus 
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Equations of fluid motion 
 
Bernoulli’s equation 
 
One of the most common problems in fluid flows is to determine the relationship between velocity, 
pressure and elevation of a flowing fluid in a pipe or other duct.  To do this, we enforce conservation of 
energy on the fluid, i.e. the energy contained by the fluid at one point in the flow is the same as any 
other, but the energy may be transformed from one form to another.  Moreover, it is more 
convenient to work with power (rate of change of energy) rather than energy itself.  If the flow is 
steady so that no energy is accumulating or dissipating within the pipe then the power (sum of all 
forms) must be constant.  This course in general is not intended to provide derivations of formulas 
you will study in much greater detail in later courses, but it is worthwhile to do so for Bernoulli’s 
equation just as an example of the value and power of units, and the concept of conservation (e.g., 
of energy) applied to a fixed volume called a control volume (the other common method of analysis is 
to apply conservation of energy to fixed mass called a control mass; we will discuss both in detail in the 
next chapter).   
 
There are 3 types of power that must be considered, and their sum conserved.  In words, the 
conservation of energy can be stated as: 
 

    (Power needed to push fluid into the tube inlet - power extracted at the tube outlet)  
+ (kinetic power of the fluid flowing into tube - kinetic power of the fluid flowing out of tube) 
+ (power associated with change of gravitational potential energy of fluid)  
    = 0 

 
Let’s compute the individual terms then add them up. 
 
1.  Power needed to push fluid into the tube inlet or power extracted at the tube outlet: 

  (Equation 44) 

where  is the mass flow rate (units kg/sec), discussed in more detail in the next sub-section.  
(Here we’re dropping the subscript “f” in rf because we’re only dealing with one material, namely 
the fluid, and not an object flowing or sinking in the fluid as well.) 

 
2.  Kinetic power of the fluid: 

 

     (Equation 45) 

 
3.  Power associated with gravitational potential energy of fluid 

 

      (Equation 46) 
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Combine:  sum of the powers at inlet (call it station 1) = sum of powers at outlet (call it station 2).  
Assume mass flow rates are equal at inlet and outlet (if they’re not, the flow can’t be steady because 
mass will be accumulating or being lost from the pipe) 
 

 

 

     (Equation 47) 

 
This is Bernoulli’s equation, which is merely a statement of conservation of energy flow with four 
critical assumptions: 

1. Incompressible (r = constant) 
2. Inviscid (no viscosity), otherwise additional work (and thus additional pressure drop P1 – 

P2) would be required to push the fluid between locations 1 and 2 
3. Steady flow between locations 1 and 2, otherwise some unsteady terms (d/dt) would exist 
4. Uniform velocity, pressure and elevation across the inlet and outlet, otherwise there 

would not be a single value of v1, P1 or z1, etc. 
 
Function test: it was shown that for a static fluid (v1 = v2 = 0), P(z) = P(0) - rgz, or P(z) + rgz = P(0), 
which is the same as Bernoulli’s equation for z2 = 0. 
 
Recall that the term rv2/2 is called the dynamic pressure, i.e., the increase in pressure that would occur 
if the fluid were decelerated (at constant z) from velocity v to a velocity of zero.   
 
If there are more than one inlets or outlets, we still have to conserve energy, thus the sum of the 
Bernoulli terms must be the same at the inlet and outlet.  For example, if there are two inlets (say 1a 
and 1b) and two outlets (say 2a and 2b) then 
 

 

 
Note that Bernoulli’s equation assumes that the density (r) is constant.  At first glance this might 
suggest that it cannot be used for air or other gases, which are compressible.  Actually, Bernoulli’s 
equation can be used for gases if the Mach number (ratio of velocity to sound speed) is significantly 
less than 1.  This applies to most of our common flow situations, e.g., for all practical purposes the 
air flowing over a car can be considered to have constant density, as discussed later. 
 
The assumptions of constant density, steady flow, and constant properties at the inlet and outlet are 
reasonable in many circumstances.  In my mind, the most significant limitation of Bernoulli’s 
equation is that friction losses (viscosity) are not considered.  Can we just add another term to 
Bernoulli’s equation to account for viscosity?  No, because viscosity is dissipative and causes a loss 
in the total power (sum of the three terms).  Where does the power go?  Into thermal energy of the 
fluid (i.e. it gets warmer.)  Moreover, the amount of power lost is path dependent, i.e. a longer or 
narrower tube will have more loss, whereas the above three terms don’t depend on the length or 
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diameter of the tube.  Of course, viscosity can be incorporated into fluid flow analysis, but it’s much 
more difficult and can’t be done with a simple equation like Bernoulli’s that depends only on the 
initial and final states (1 and 2 in our notation) and not at all on the path between states 1 and 2. 
 
Conservation of mass 
 
How does one determine the velocity v?  For steady flow in a pipe, channel or duct, the mass flow 
rate  (in kg/s) has to be the same everywhere in the flow system.  This mass flow rate is the 
product of the fluid density (r), velocity (v) and the cross-section area (A) of the pipe or duct 
through which the fluid flows, i.e., 
 

       Equation 48. 

 
In the case of Bernoulli’s equation, we have already assumed that the density is constant, so for this 
case (i.e., liquids, as well as gases at low Mach number) we can simplify this to  
 

 

 
note that vA has units of (length/time)(length)2 = length3/time = volume/time, i.e. the volumetric flow 
rate, usually given the symbol Q.  Thus for an incompressible fluid Q1 = Q2.  If there are more than 
1 inlets or outlets then the sum of the mass flows at the inlets must equal those at the outlets, i.e. 
 

 
 
or for incompressible flow (r = constant) 
 

 
 
We can combine conservation of mass (Equation 42) with conservation of energy (Bernoulli, 
Equation 41), to determine the state of the fluid at an outlet (location “2”) given its properties at an 
inlet (location “1”) as shown in the example below. 
 
Example 
 

Water flows steadily from a faucet at elevation z = 0 with supply pressure (P1) of 30 lbf/in2 
= 207,000 Pa (above atmospheric), area 5 cm2, to the roof of a house with z = 5 m and 
through a nozzle with area 1 cm2, into ambient air with a pressure (P2) of 0 lbf/in2 above 
atmospheric.  What is the velocity of the water leaving the nozzle?  Assume that viscous 
effects are negligible. 
 
Neither v1 nor v2 are known, but P1, P2, z1 and z2 are all known, so we have 2 equations 
(Bernoulli and mass conservation) for the two unknowns.   
 
First apply mass conservation: v1 = v2A2/A1 = v2(1 cm2)/(5 cm2) = 0.2 v2. 

€ 

˙ m 

m = ρ1v1A1 = ρ2v2A2

v1A1 = v2A2

ρ1av1aA1a + ρ1bv1bA1b = ρ2av2aA2a + ρ2bv2bA2b

v1aA1a + v1bA1b = v2aA2a + v2bA2b  or Q1a +Q1b =Q2a +Q2b
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Then use Bernoulli and solve for v2: 
 

 

 
Note also that velocity at the supply faucet v1 = 0.2 v2 = (0.2)(18.1 m/s) = 3.63 m/s. 

 

Viscous effects 
 
Definition of viscosity 
 
Bernoulli’s equation pertains only when there is no viscosity (i.e. the flow is inviscid).  Fluids resist 
motion, or more specifically resist a velocity gradient, through viscosity (µ), defined by the relation 
(called Newton’s Law of Viscosity) 
 

        Equation 49 

 
where txz is the shear stress in the x-z plane, vx is the component of velocity in the x direction, and 
∂vx/∂y is the x-velocity gradient in the y direction.   
 
Side note: in the above equation, we have used partial derivative of vx with respect to y (∂vx/∂y) not 
the total derivative of vx with respect to y (dvx/dy).  A partial derivative (which is denoted by a curly 
“∂” compared to the straight “d” of a total derivative) is a derivative of a function of two or more 
variables, treating all but one of the variables as constants.  For example if f(x, y, z) = x2y3 – z4, then 
∂f/∂x = 2xy3, ∂f/∂y = 3x2y2 and ∂f/∂z = -4z3.  In this case we it means that the shear stress in the x-
z plane due to viscous effects depends only on how vx changes in the y direction, not how vx 
changes in the x or z direction. 
 
This type of viscosity (µ) is called the dynamic viscosity.  Since txz has units of force/area = 
(ML/T2)/L2, vx has units of L/T and y has units of L, the viscosity µ has units of M/LT, for 
example kg/m s.  This unit has no particular name, but 1 g/cm s = 0.1 kg/m s = 1 Poise.  The unit 
centipoise = 0.01 Poise = 0.001 kg/m s is frequently used because the dynamic viscosity of water at 
ambient temperature is almost exactly 1 centipoise.   
 
Another type of viscosity is the kinematic viscosity, which is just the dynamic viscosity divided by 
density: 

1
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ρ v2
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         Equation 50 

 
which has units of (M/LT)/(M/L3) = L2/T, e.g. m2/s.  (Note that the symbols “v” (Roman letter 
‘vee’) for velocity and “n” (Greek letter ‘nu’) for kinematic viscosity are similar, be careful!) Again, 
this unit has no particular name but 1 cm2/s = 10-4 m2/s = 1 Stoke, and again 1 centistoke = 0.01 
Stoke, which is very nearly the kinematic viscosity of water at ambient temperature.  The units of 
kinematic viscosity, L2/T, are the same as that of diffusion coefficients, e.g. the property that 
describes how fast a drop of ink will spread out in a beaker of water, thus my favorite interpretation 
of n is that is it the momentum diffusivity.  This describes how quickly or slowly the momentum of the 
fluid is exchanged with the solid object passing through the fluid (or fluid passing through the solid 
object, as in the case of flow in a pipe.) 
 
No-slip boundary condition 
 
At the boundary between a fluid and a solid object, the velocity of the fluid and the solid must be 
the same.  This is called the no-slip condition.  This means that any time a solid is moving through a 
fluid (e.g. an airplane flying through the air) or a fluid is moving through a solid (e.g. flow through a 
pipe) there will be a velocity gradient (i.e. ∂u/∂y in the above equation) because there is a difference 
between the fluid velocity far from the boundary and the fluid velocity at the boundary, and this 
velocity difference occurs over some finite distance.  This velocity gradient is the source of the 
viscous drag – the velocity gradient creates a shear stress on the fluid (see definition of viscosity 
above) that resists the motion of the fluid.  It should be noted, however, that while the action of viscosity always 
causes drag, not all drag is due to viscosity. 
 
Reynolds number 
 
How important is viscosity in a given flow?  That depends on the dimensionless quantity called the 
Reynolds number (Re): 

       (Equation 51) 

where l is some characteristic length scale of the flow which has to be specified.  In the case of a 
wing, l is usually chosen to be the length of the wing in the streamwise direction (which is called the 
chord of the wing.)  For flow in a pipe, l would be the pipe inside diameter (d); in this case the 
Reynolds number would be written as Red to indicate that the length scale to use is the diameter d.  
For flow around a cylinder or sphere, l would be the outer diameter (d) of the cylinder or sphere.  
Also, the fluid velocity v changes as the fluid approaches the object, so v is chosen to be the value 
far away from the object (usually called the “free-stream velocity.”)  For flow inside pipes, v is the average 
velocity of the fluid, i.e. the volume flow rate (gallons per minute, m3/sec) divided by the cross-
section area of the tube. 
 
The standard catechism of fluid mechanics states that “Reynolds number is the ratio of inertial 
forces to viscous forces” but this is nonsense.  First of all there is no such thing as “inertial forces” 
in mechanics.  Second, rvL is not a unit of force, nor is µ.  Here’s my interpretation of Re.  Re-write 
Re as 

€ 

ν =
µ
ρ

Re ≡ ρvλ
µ

=
vλ
ν
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The first interpretation notes that rv2/2 is the dynamic pressure noted above in the context of 
Bernoulli’s equation and the velocity gradient ∂v/∂y is proportional to v/l, thus the shear stress t ~ 
µv/l.  The second interpretation (which is my personal favorite) notes that the time scale for any 
type of diffusion process is l2/D where D is the diffusion coefficient for that process (the 
momentum diffusivity n in this case), and the time scale for the fluid to move a distance l is simply 
l/v.  So the second interpretation states that the Reynolds number is the ratio of the time for the 
momentum (or lack of momentum, as in a stationary wall with a fluid moving past it) to diffuse 
across a distance l to the time for the fluid to move a distance l. 
 
Why is Reynolds number useful?  Besides determining how important viscosity is in a given flow, it 
allows one to employ scaling.  For example, suppose you want to determine the drag coefficient CD 
(another dimensionless number, to be discussed shortly) on a car whose length (L) is 5 meters 
traveling at 30 m/sec (about 67 mi/hr) and you don’t have a wind tunnel large enough to put a real 
car it in, but you have a water channel that is big enough for a 1/5 scale (L = 1 meter) model of a 
car.  The kinematic viscosity of air at ambient temperature and pressure is about 1.5 x 10-5 m2/s and 
that of water is about 1.0 x 10-6 m2/s.  Then by choosing the velocity of water in the water channel 
to get the same Reynolds number, you can obtain a valid measurement of CD: 
 

  

 
So a 5 meter long model in air moving at 30 m/s will have the same behavior as a 1 meter long 
model in water moving at 10 m/s.  There are other advantages to using water, e.g., the use of 
fluorescent dye molecules added to the water that make it easier to visualize the flow using a sheet of 
laser light. 
 
Navier-Stokes equations 
 
As previously stated, fluid mechanics is just Newton’s 2nd Law, S(F/V) = d(rv/dt), applied to a fluid 
(where rv is (mass/volume) x velocity, i.e. the momentum of the fluid per unit volume).  Note that 
the sum of forces SF, momentum rv and velocity v are all vectors, hence the boldface notation.  
The set of equations that describe SF = d(rv)/dt applied to a fluid, including viscosity effects, is 
called the Navier-Stokes equations, shown here in 2 dimensions, for an incompressible fluid (r = 
constant) that follows Newton’s law of viscosity (txz = µ∂v/∂y as described above): 
 

Re = ρvλ
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ρv2

µv / λ
~ Dynamic pressure

Shear stress due to viscosity
  or  Re = vλ

ν
=
λ 2 /ν
λ / v

~ Viscous diffusion time scale
Flow time scale

Re = vλ
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vairLair
νair
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vwaterLwater
νwater

⇒
30 m / s( ) 5 m( )

1.5×10−5  m2 / s
=

vwater( ) 1 m( )
1.0×10−6  m2 / s

⇒ vwater =10 m / s
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  (Equation 52)  

 
Here vx and vy are the components of fluid velocity vector v in the x and y directions, respectively.  
Of course, at every point (x, y) in the flow, the velocity components vx and vy may be different.  The 
left-hand side of the first two equations is basically the d(rv)/dt = r(dv/dt) + v(dm/dt) terms, i.e. 
the rate of change of momentum of the fluid.  In particular, the r(∂vx/∂t) terms are just r(dv/dt) = 
mass/volume x acceleration and the rv(∂vx/∂x) terms are just v(dm/dt), i.e. the increase or decrease 
in momentum within an infinitesimal volume due to an increase or decrease of mv within the 
volume.  The right-hand side of the first two equations is the forces acting on the fluid due to 
pressure, gravity, and viscosity.  The third equation is required to conserve the mass of fluid, i.e. it 
basically says that for a fluid of constant density, the rate of volume flow into an infinitesimal 
volume must equal rate of volume flow out of that volume. 
 
The Navier-Stokes equations are very difficult to solve for all but the simplest situations.  Certainly 
we will not try to do it in this course.  For the purposes of this course, the key points to note about 
the Navier-Stokes equations are: 
 

1. The first two equations are just expressions of conservation of momentum, SF = d(rv)/dt, 
applied to a fluid 

2. The third equation is just conservation of mass applied to a fluid 
3. The units of every term in the first two equations is force/volume 
4. There are two momentum equations because momentum is a vector and thus there are x and 

y components; for a three-dimensional system another equation for the z component of 
momentum would be required 

5. There is only one mass conservation equation (the 3rd equation) because mass is a scalar. 
6. The terms on the right hand side of the first two equations are just the forces SF broken 

down into their components in the x and y directions 
7. The terms on the left hand side of the first two equations are just the rate of change of 

momentum d(rv)/dt broken down into their components in the x and y directions. 
8. There are three equations for the three unknowns vx, vy and pressure P.  (Unlike velocity, P 

is a scalar so it doesn’t have x and y components.) 
9. The equations are linear except for the vx(∂vx/∂x), vy(∂vx/∂y), vx(∂vy/∂x) and vy(∂vy/∂y) 

terms.  This nonlinearity is very significant because  
a. It makes fluid mechanics difficult – the nonlinear terms are responsible for very 

complicated phenomena such as flow instabilities, turbulence and shock waves.   
b. It makes fluid flow fundamentally different than linear systems.  For example, if I have 

one solution to the Navier-Stokes equation, call it v1(x,y), P1(x,y) and a second solution 
v2(x,y), P2(x,y), it is generally NOT the case that v1(x,y) + v2(x,y), P1(x,y) + P2(x,y) is also a 
solution.  As an example of a linear system, consider traveling waves on a string.  A 
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rightward-traveling wave and a leftward-traveling wave can pass through each other 
without any change in the waves after the passage.  However, a rightward-traveling flow 
structure (say, a spinning vortex) and a leftward-traveling flow structure will interact with 
each other in such a way that each will be permanently changed by the interaction. 

 
Laminar and turbulent flow 
 
When Re is low, which means that viscous effects are relatively important, the flow will be steady 
and smooth, which is called “laminar flow.”  At higher Re, viscosity is not strong enough to 
suppress the instabilities (due to the nonlinear terms in the Navier-Stokes equations) and the flow 
becomes turbulent.  While you have an intuitive feel of what turbulence is, a precise definition of what 
is or is not turbulent is not a simple matter and we will not attempt to define it rigorously here. 
 
The Reynolds number at the transition from laminar to turbulent flow depends on the type of flow, 
for example: 

• Flow in circular pipes:  Red = vd/n ≈ 2,200 (v = average velocity of flow in the pipe; d = 
inside diameter of pipe) (see Figure 19). 

• Flow along a flat plate: ReL = vL/n ≈ 500,000 (v = velocity of flow far from the plate; L = 
distance from the “leading edge” of the plate.) 
 

 

 
Figure 19.  Images of a tracer dye in laminar and turbulent pipe flow.  Flow from left to right.  

(From M. VanDyke, “An Album of Fluid Motion,” Parabolic Press, 1982.) 
 
Since value of Re at the transition from laminar to turbulent flow can be vary widely depending on 
the type of flow, the actual value of Re is not meaningful in comparing different flows.  That is, one 
cannot say if 10,000 is a large or small value of Re until one also specifies the type of flow; it is a 
relatively high value (well into the turbulent regime) for pipe flow, but a low value (well within the 
laminar regime) for flow along a flat plate. 
 

Lift, drag and fluid resistance 
 
Lift and drag coefficients 
 
Any object moving through a fluid will experience a force (FD) in the direction opposing the motion.  
This force is called drag.  Recall the definition of drag coefficient (page 14): 

Red < 2200 
(laminar) Dye ® 

Red > 2200 
(turbulent) Dye ® 
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where CD is the drag coefficient, r is the fluid density, v the fluid velocity far from the object and A 
is the cross-section area of the object in the direction perpendicular to the direction of flow.  For 
example, for a sphere this cross-section area would be pr2, where r is the radius of the sphere, and 
for a cylinder in cross-flow (flow perpendicular to the axis of the cylinder), the area would be 2rL, 
where L is the length of the cylinder. 

An object moving through a fluid may also experience a force in the direction perpendicular to the 
direction of fluid motion.  This force is called lift and is defined in a way similar to drag: 

        (Equation 53) 

where CL is the lift coefficient.  While all objects moving through a fluid experience drag, only some 
will experience lift.  The main goal of aircraft wing design is to maximize the lift to drag ratio, i.e. 
CL/CD.  A glider may have a lift to drag ratio of 50, whereas commercial passenger aircraft wings are 
in the range 15 – 20 (which is about the same as an albatross). 

 
Flow around spheres and cylinders 
 
In the case of laminar flow at very low Red, and only in this case, the drag coefficient CD on a 
sphere is equal to 24/Red (for laminar flow around spheres at low Re only – got it???).  
Combining this result with the definition of drag coefficient and definition of Re, we obtain 
 
 Fdrag = 3πµvd  (laminar flow around spheres)   (Equation 54) 
 
If the sphere is moving due to gravity alone, the buoyant force (Fbuoyant) is given by Fbuoyant = 
(rfluid - rsphere)gV = (rfluid-rsphere)g(4π/3)r3 = (rfluid-rsphere)g(π/6)d3.  Note that the buoyant force does 
not depend on v, but the drag force does.  Thus a dropped sphere will initially accelerate until its 
velocity is just that required for the drag force to equal the buoyant force, at which point there is no 
acceleration, and the velocity has reached a constant value called the terminal velocity.  For the case of 
the sphere, equating Fdrag and Fbuoyant we obtain: 
 
 vterminal = gd2(rfluid - rsphere)/18µ  (laminar flow around spheres) (Equation 55) 
 
where the + sign is consistent with the fact that if rfluid > rsphere, the sphere moves upward (positive 
v). 
 
The above terminal velocity is only valid for laminar flow.  For turbulent flow, there is no simple 
analytical relationship between Red and CD, so one must resort to experiments or detailed (and 
difficult) computer simulations of the Navier-Stokes equations.  Figure 21 shows a comparison of 
the actual CD vs. Red with that predicted by the low-Red laminar-flow model.  It can be seen that the 
relation for laminar flow is reasonable up to about Red ≈ 3 but at higher Red, the flow is NOT 
laminar and thus the laminar flow result CD = 24/Red does not apply.  As one would expect, CD is 
higher with turbulent flow.  Note also that at Red ≈ 3 x 105 there is a sudden decrease in CD.   
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To provide a physical explanation of the drag coefficient plot, note that, apart from the small dip 
near Red ≈ 3 x 105, at high Re, CD is close to 1 and doesn’t change much with Red.  This is because at 
low Red, the fluid flows smoothly around the sphere (Figure 20, top panel) whereas at high Red, the 
high momentum (relative to viscous effects) of fluid causes the flow behind the sphere to separate 
(Figure 20, second panel) which can lead to a (rather beautiful, in some cases) trail of vortices of 
alternating direction of rotation (Figure 20, third panel)) and at sufficiently high Red there is a region 
behind the sphere with v ≈ 0 (Figure 20, bottom panel).  Thus, most of the dynamic pressure 
(=½rv2) of the flow is lost, thus according to Bernoulli’s equation (which does not strictly apply 
because the flow is neither steady nor inviscid, but is still useful for estimation purposes) the 
pressure on the downstream side of the sphere is higher than that on the upstream side by ½rv2.  
Hence, the net force on the sphere due to this separation-induced drag is FD = ½rv2A, and thus the 
drag coefficient = FD/(½rv2A) = (½rv2A)/(½rv2A) = 1.  Thus, for any blunt object at high Re, CD 

  
Red = 1.54 (attached flow) Red = 26 (separated flow with recirculation zones) 

 
Red = 100 (vortex shedding flow) 

 
Red = 2000 (turbulent flow, large separation region) 

Figure 20.   Flow (from left to right) around cylinders in cross-flow at different Reynolds 
numbers Red.  From M. Van Dyke, “Gallery of Fluid Motion,” Parabolic Press, 1982. 
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is usually close to 1 (another example of “that’s easy to understand, why didn’t somebody just state 
that?”)  At low Red (less than about 10 for the sphere), the drag is predominantly viscous (not due to 
the pressure drag caused by flow separation) and thus CD is higher. 
 
Please note: both axes in Figure 21 are plotted on a logarithmic scale in order to span many decades 
of Red and CD.  The “distance” between numbers A and B on a logarithmic scale is calculated based 
on log10(A) – log10(B) = log10(A/B), whereas the “distance” between A and B on a linear scale is 
calculated based simply on A – B.  So the tick marks between (for example) 1 and 10 are 2, 3, …9 
but they are not evenly spaced because the “distance” (in logarithmic space) between 1 and 2 is 2/1 
= 2 and the “logarithmic distance” is log10(2/1) = log10(2) = 0.301 (or 30.1% of the distance between 
1 and 10) whereas the “logarithmic distance” between 8 and 9 is much less, i.e., log10(9/8) = 
log10(1.125) = 0.051 (or 5.1% of the distance between 1 and 10).  Another point to note is that a 
straight line on a plot with logarithmic scales on both axes does not represent a linear relation such 
as y = mx + b, but rather it indicates a power-law relation, i.e. y =mxb.  For laminar flow around 
spheres, the relationship is CD = 24/Red, that is m = 24 and b = -1, thus the slope of the plot for 
this special case is -1. 

 
Figure 21.  Drag coefficients as a function of Reynolds number based on diameter (Red) for 

cylinders in cross-flow and spheres. 

 
A similar CD vs. Red plot for cylinders in cross-flow (i.e. with the flow in the direction perpendicular 
to the axis of the cylinder) is also shown in Figure 21, but for cylinders there is no simple analytical 
relationship analogous to the CD = 24/Red result for laminar flow over spheres.  Note again the 
sudden decrease in CD at almost the same Red as for spheres.  Note that a 3 cm golf ball hit at 70 
m/s in air has a Reynolds number of (70 m/s)(0.03 m)/(1.5 x 10-5 m2/s) = 1.4 x 105.  Dimpling the 
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golf ball decreases the transition Red somewhat, and thus enables a lower CD (actually the dimpling 
also increases the lift due to the backspin on the ball, but that’s beyond our scope.) 
 
Example 
 

(a) Howard and Samantha go skydiving.  Howard weighs 175 lbf with all his gear, and has a 
cross-sectional area when free falling of 8 ft2.  If Howard’s terminal velocity is 150 miles per 
hour, what is his drag coefficient? 

Drag force   

 

(b) Samantha has an unusual skydiving style.  She free-falls lying perfectly straight horizontally, 
and her shape can be treated as roughly that of a cylinder 5 ft long and 2 ft in diameter.  She 
weighs 125 lbf with all her gear.  Assuming that her drag coefficient can be modeled as that 
of a circular cylinder, what is her terminal velocity?  To do this problem you will have to 

1) Guess a terminal velocity 
2) Compute her Reynolds number 
3) Look up her drag coefficient in Figure 21. 
4) Compute her drag force 
5) Does her drag force equal her weight?  If not, adjust your guess of terminal velocity 

and go back to step 2. 
 

1) “Guess” v = 113 mph = 50.51 m/s 

2) Reynolds #  

3) From Figure 21, CD ≈ 0.4 

4) Compute drag force:  

 

5) Does her drag force equal her weight? 
 

Yes, 125 lbf = 125 lbf so mission accomplished. 
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Flow through pipes 
 
For flow through pipes, drag coefficient CD is not used because what we’re really interested in is not 
the drag force but rather the pressure drop (DP), and thus a slightly different quantity called the 
friction factor (f) is used to quantify the effect of viscosity on the flow in the pipe: 
 

         (Equation 56), 

 
where v is the average velocity of the fluid flowing thought the pipe, r the fluid density, L is the 
length of the pipe and d its diameter.  Why do we care about DP?  Primarily because we would like 
to know the power required to pump the fluid through the pipe.  How do we determine the power? 
 

 

where Q is the volume flow rate (units of volume/time, e.g. gallons per minute or m3/s) is the 
velocity multiplied by the cross-section area of the pipe, i.e. for a circular pipe Q = vπd2/4. 
 
For laminar flow only in pipes, f = 64/Red where Red = rvd/µ is the Reynolds number based on 
pipe diameter d, not pipe length L, thus 
 
 DP = (64/Red)(rv2/2)(L/d) = (64µ/rvd)(rv2/2)(L/d) = 32µvL/d2  (Equation 57). 
 
Usually it’s more convenient to deal with the volume flow rate (Q) rather than velocity (v).  Thus 
using Q = vπd2/4 we can write one last relation: 
 
 DP = (128/π)µQL/d4   (laminar flow only!)    (Equation 58). 
 
Note the significance of this result:  if you double the flow rate Q or the length of the pipe L, the 
pressure drop doubles (makes sense) whereas for a given flow rate Q and length L, if you double the 
diameter of the tube, the pressure drop decreases by a factor of 16!  So use a bit bigger pipe in your 
plumbing design! 
 
The results leading to the last 2 equations assumed f = 64/Red and thus are valid only for laminar 
flow through pipes.  For turbulent flow, the friction factor depends not only on Red but also the 
roughness of the pipe wall, which is characterized by a roughness factor = e/d, where e is a measure of 
the roughness (i.e. height of the bumps on the wall) and d is (as always) the pipe diameter. The 
roughness e does not significantly affect the friction factor f for laminar flow.  The combined effects 
of roughness and Red are presented in terms of the Moody Chart (Figure 22).  Note that laminar flow 
prevails up to Red = 2,200 (this value is essentially independent of the pipe roughness factor), then 
for higher Red, CD increases suddenly but in a way that depends on the pipe roughness – as one 
would expect, rougher pipes have higher CD.  It’s remarkable (to me, anyway) that at high Red a tiny 
amount of roughness has a huge effect on f.  For example, at Red = 108, f increases by a factor of 3 
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d
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as one changes from a perfectly smooth pipe (e/d = 0) to e/d = 0.001.  In other words, a roughness 
of one part in 1000 increases the pressure drop by a factor of 3.  Size does matter! 
 
Another remarkable fact about the Moody Chart is that at sufficiently high Red, the friction factor f 
does not depend on Red at all (i.e., for a given roughness factor e/d, the plot of f vs. Red becomes 
horizontal).  Since the pressure drop DP does not depend explicitly on viscosity µ, only implicitly 
through Red = rvd/µ, this means that at sufficiently high Red, the pressure drop does not depend on 
viscosity at all, only the roughness factor!  This indicates that, for example, in large oil pipelines an 
additive that would decrease the oil viscosity would have no effect on the pressure drop (thus 
pumping costs) – only making the pipe smoother would help. 
 
Alternatively, if you don’t like using the Moody Chart, the following empirical formula for turbulent 
flow can be used (for laminar flow, use f = 64/Red as mentioned above): 
 

  (turbulent flow)  (Equation 59) 

 
but note that this formula has f on both sides of the equation, and you can’t simplify it any further, 
so for a given Red and e/d, you have to guess a value of f and see if the right and left hand sides of 
the equations are equal, and adjust your guess of f until the two sides are equal (this is called a 
transcendental equation, one that cannot be solved in closed form). 
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Figure 22.  “Moody Chart” showing the effect of Red (that is, Reynolds number based on pipe 
diameter not length) and surface roughness e/d on the friction factor (f). 
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Example:  A 50 foot long garden hose has an inside diameter of 5/8” and a roughness (e) of 1/32”.  
Water flows through the pipe at a velocity of 3 ft/s. 
 
a) What is the flow rate in gallons per minute? 
 

Flow rate = velocity x cross-sectional area  
= 3 ft/sec x (π/4) (0.625 inch)2 x (ft / 12 inch)2 x (7.48 gallon / ft3) x (60 sec / min) 
= 2.87 gallon / min 

 
b) What is the pressure drop in lbf/in2? 
 

Red = vd/n  
= [(3 ft/sec)(m/3.281 ft)] [(0.625 inch)(ft/12 inch)(m/3.281 ft)] / 1.0 x 10-6 m2/sec 
= 14,515 > 2200 Þ turbulent 
e/d = (1/32)/(5/8) = (1/32)/(20/32) = 1/20 = 0.05 

Use  and “guess” f = 0.0731: 

;  

 
the equation is satisfied, so f = 0.0731.  Then  
 

 
 

c) What is the pumping power required in Watts? 
 

 

 

Do you think I did these calculations by hand?  No way!  I used an Excel sheet (double click to 
open).  The cells shaded in blue are the things you change, and the other cells are calculated values, 
except for the “Friction factor (guess)” cell, which you have to adjust until the left-hand side (LHS) 
and the right-hand side (RHS) of the equation for the friction factor are equal, and thus the “fraction 
error” goes to zero.  (You can also use Excel’s “goal seek” feature to do this adjustment 
automatically.)  Actually, nowadays many people will use the Wolfram Alpha website 
(http://www.wolframalpha.com) where you can just enter the equations and Wolfram Alpha will 
solve them automatically.  In fact, Wolfram Alpha actually has a built-in calculator for the friction 
factor (Equation 54) (http://www.wolframalpha.com/input/?i=darcy+friction+factor)! 
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Compressible flow  
 

All of the above discussion of fluid mechanics relates to cases with constant density (r), which is 
certainly reasonable for liquids (e.g. water) under most conditions and even air if the velocity (v) is 
“small enough”.  How small is small enough?  We have to compare v to something else that also has 
units of velocity.  That “something else” turns out to be the speed of sound (c).  The ratio of these is 
the Mach number (M), i.e. 
 

 M = v/c         Equation 60. 
For an ideal gas, the sound speed c is given by the formula 
 

 c = (gRT)1/2 

 

where  
 

• g is the specific heat ratio of the gas (≈1.4 for air at ambient temperature, but may be as low as 
1 for gas molecule with many atoms, and as high as 5/3 for a monatomic gas like helium)  

• R is the gas constant for the specific gas of interest = Â/M, where Â is the universal gas 

constant = 8.314 J/mole K and M is the molecular mass of the gas (in kg/mole, = 0.02897 
kg/mole for air, thus R = 287 J/kgK for air.) 

• T is the gas temperature (absolute temperature (i.e. K not ˚C) of course!) 
 

How does Mach number affect density (r), temperature (T) and/or pressure (P)?  That depends on 
the process the gas experiences as it accelerates or decelerates.  A detailed discussion of compressible 
gas dynamics is way beyond the scope of this course, but I’ll give you the results for the simplest 
case of one-dimensional steady flow of an ideal gas in a duct of changing area A with constant 
specific heats (CP and CV, discussed in the next chapter) between locations 1 and 2 assuming no heat 
transfer, no friction and no shock waves (we call this special case “isentropic flow,” meaning no 
change in the entropy of the gas) as well as no potential energy (elevation) change: 
 

Pipe dia
(in) Pipe len (ft)

Roughness
(in)

Viscosity
(m^2/s)

rho
(kg/m^3)

0.625 50 0.03125 1.00E-06 1000
Pipe dia
(m) Pipe len (m) epsilon
0.01587423 15.23925632 0.05

Velocity
(ft/s) Velocity (m/s) Re

3 0.914355379 14515
Friction
factor
(guess) LHS RHS

fraction
error

0.07309956 3.698645 3.698296 9.4274E-05
Delta P
(N/m^2)

Pressure drop
(lbf/in^2)

29335.00 4.26
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    Equation 61 

 

These equations are plotted in Figure 23 below. 
 

 

Figure 23.  Plot of pressure, density, temperature and area as a function of Mach 
number for one-dimensional, isentropic flow of an idea gas with g= 1.4.  The “t” 
subscript indicates the pressure, density or temperature when M = 0 (called the 
stagnation pressure, density or temperature). 

 
While a lot of simplifying assumptions were made (note all the underlined words above), this 
“isentropic flow” is still useful as the simplest model of flow in nozzles of jet and rocket engines, as 
well as intakes in jet engines.  Note that as Mach number increases (for example, during expansion 
in a nozzle), pressure, density and temperature all decrease.  However, to obtain transition from 
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subsonic (M < 1) to supersonic (M > 1) flow, the area must pass through a minimum, i.e. a throat, 
which occurs at M = 1.  Thus, rocket nozzles must have an hourglass shape in order to accelerate 
the exhaust to high Mach numbers and therefore produce the maximum possible thrust.  Often the 
areas are referenced to the minimum area at the throat (A*) where M = 1, that is set M1 = 1 and A1 
= A* in the above equation for A2/A1 and call A2 just simply A, in which case equation reduces to 
 

     Equation 62 

 
One important but often overlooked point about the above equation:  the Mach number M is the 
local (at station 1 or 2) flow velocity U divided by the local sound speed (which depends on the local 
temperature.)  So you can’t divide the local velocity by the sound speed at ambient temperature to 
get the Mach number!  That is, M1 = v1/(gRT1)1/2 and M2 = v2/(gRT2)1/2 but you can’t say M2 = 
v2/(gRT1)1/2 ! 
 
How to scrutinize this result?  The units are clearly ok since g and M are dimensionless.  Also, if A1 
= A2 then M1 = M2, that is, nothing changes.  But here’s a great function test: in the limit of small M 
(small compressibility effects), the results should reduce to Bernoulli’s equation.  The second 
relation involves pressure (P) and velocity (v), so looks a lot like Bernoulli.  Recall the binomial 
expansion theorem which says that for m << 1, (1 + m)n ≈ 1 + mn, thus 
 

 

 
This is not quite Bernoulli’s equation, which requires r = r1 = r2 = constant.  But from the first 
part of Equation 62, in the limit of small M1 and M2, r1 = r2.  Notice that the exponent on the 
density terms, 1/(g-1), is smaller than that on the pressure terms, g/(g-1), and thus density can be 
assumed constant even when pressure is not.  A formal derivation requires carrying out higher order 
terms (i.e. M4 terms) in the binomial expansion so I’ll skip that… 
 
Example 
 
The (now decommissioned) SR-71 “Blackbird” aircraft (pictured below) flew at Mach 3 at an 
altitude of 80,000 feet.  Assuming isentropic flow, what is the temperature and pressure on the 
leading edges of the wings where the flow (in the frame of reference of the aircraft) has decelerated 
from M1 = 3 to M2 = 0? 
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From http://www.digitaldutch.com/atmoscalc/calculator.htm:  at an altitude of 80,000 ft, the 
standard atmospheric conditions are P1 = 0.0273 atm (that is, 0.0273 sea-level atmospheres!) and T1 
= -52˚C = 221 K. 
 

 
 

 
So the dynamic pressure loading on the wings (1 atm, or 14.7 lbf/in2) and the temperature (654˚F) 
are really high, and things get worse in a hurry as M1 increases - notice the M2 terms appear 
everywhere, and there is an additional g/(g-1) ≈ 3.5 exponent on the pressure equation – so dynamic 
pressure increases like M7 in high-speed flight! 
 
If you’re dying to know more about compressible flow, check out 
http://ronney.usc.edu/AME436/Lecture12. 
 
Example 
 
Can the air flow over a car be considered an incompressible flow (r ≈ constant)?  In decelerating the 
air flow from say 75 mph to 0 mph, how much does the density change assuming isentropic flow? 
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In other words, the density changes by less than 0.5% in decelerating from 75 mph to 0 mph, so for 
all but the most stringent accuracy requirements, the density change can be neglected.  In other 
words, for most practical purposes the air flow over a vehicle at 75 mph can be treated as 
incompressible, i.e. in the same way as if the flow were water at the same Reynolds number.  At higher 
Mach numbers this would not necessarily be the case, but we usually don’t drive fast enough for that 
to matter! 
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Chapter 7.  Thermal and Energy Systems  
 
“Passion is energy. Feel the power that comes from focusing on what excites you.” – Oprah Winfrey 
 
Main courses in AME curriculum on this topic:  AME 310 (Thermodynamics); AME 331 
(Heat Transfer). 

Conservation of energy – First Law of Thermodynamics 
 
Describing a thermodynamic system  
 
In order to characterize thermodynamic systems, we need to describe the behavior of the material as 
its temperature, pressure, volume, etc. changes, hence, the following terminology has been 
developed: 
 
• Property – a quantitative description of a piece of matter (e.g. pressure, temperature, density, 

volume, mass, internal energy, enthalpy, entropy, as well as the composition) 
• State – a list of the properties of a piece of matter (e.g., liquid water at 25˚C and 1 atm) 
• Process – a sequence of states (e.g., heat transfer to water at a constant pressure of 1 atm, with 

temperature increasing from 25˚C to 35˚C) 
• Cycle – a sequence of processes that returns to the original state (e.g., compress liquid water at 

25˚C from 1 atm to 100 atm, transfer heat at constant pressure until the temperature is 400˚C, 
expand the water (actually steam) until the pressure is back to 1 atm, then transfer heat from the 
water (actually steam) until the temperature is 25˚C again) 

 
Statement of the First Law 
 
The cornerstone of thermodynamics is the First Law of Thermodynamics, which simply states that 
energy is conserved, i.e., the energy contained in an isolated system (one that does not exchange 
energy with its surroundings) cannot change.  Of course, energy can be converted from one form to 
another, which is the whole point of energy engineering – converting energy from a less-useful form 
to a more-useful form with the least wasted (notice I didn’t say lost) energy possible. 
 
Equations for conservation of energy for a control mass 
 
How do we quantify the above statement?   Generally we perform our energy accounting in one of 
two ways, either by considering a control mass, i.e. a fixed mass of material (but generally changing 
volume, for example the gas in a piston/cylinder) or a control volume, i.e. a fixed volume in space 
that may have mass inflows and outflows, for example a jet engine.  
 
Let’s start with the control mass approach since it’s a bit simpler.  For the control mass, the First 
Law of Thermodynamics can be stated as follows for an infinitesimal change in state: 
 

dE = dQ - dW        Equation 63 

where 
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dE = change in energy contained by the mass - a property of the mass (in Joules, BTUs, etc.) 
dQ = heat transfer to the mass (in Joules, BTUs, etc.) 
dW = work transfer to or from the mass (in Joules, BTUs, etc.) 
 

For change from an initial state 1 to a final state 2, the 1st law can then be written as 
 
E2 – E1 = Q1®2 – W1®2        Equation 64 

 
i.e., during the process of going form state 1 to state 2, the change in energy contained by the mass 
(E2 – E1) is equal to the heat transferred to the mass during the process of going form state 1 to state 
2 (Q1®2) minus the work transferred out of the mass during the process of going form state 1 to 
state 2 (W1®2).  The minus sign in front of W1®2 is a result of the fact that heat transfer is defined as 
positive if it is from the surroundings to the system whereas work transfer is defined as positive if 
from the system to the surroundings.  This is probably a consequence of the fact that the earliest 
common application of thermodynamics was to devices such as steam engines in which heat was 
transferred in and work was transferred out.  (It is certainly acceptable to define heat transfer as 
negative if it is out of the system and/or work as positive if it is into the system, but then the signs 
on Q1®2 and/or W1®2 would have to change.)  A process in which no heat transfer occurs is called 
an adiabatic process, but there is no common term for a system in which no work transfer occurs. 
 
There’s nothing profound about the above equation, it’s just “energy accounting.”  It merely states 
that the change in the energy E contained by a substance is equal to the energy transfer to the 
substance (via heat transfer Q) minus the energy transfer from the substance (via work transfer W).  
In other words, “what goes in – what goes out = what accumulates.” 
 
In the above equation, 1 is the initial state or condition of the system (temperature, pressure, volume, 
etc.) and 2 is the final state.  1 ® 2 is the process or series of states leading from the initial state 1 to 
the final state 2. 
 
What is the difference between heat and work?  Why do we need to consider them separately?  This 
is a very profound issue. 
 

1. Heat transfer is disorganized energy transfer on the microscopic (molecular or atomic) 
scale and has entropy transfer associated with it.  (What is entropy?  We’ll talk about this in 
the context of the 2nd Law of Thermodynamics, but basically it’s a measure of the level of 
disorganization of the system.)  

2. Work transfer is organized energy transfer which may be at either the microscopic scale or 
macroscopic scale and has no entropy transfer associated with it. 

 
Furthermore, the total energy of the substance (E) consists of  
 

• Macroscopic kinetic energy (KE = ½mv2) (m = mass, v = velocity) 
• Macroscopic potential energy (PE = mgz) (g = acceleration of gravity, z = elevation) 
• Microscopic internal energy (U) (which consists of both kinetic (thermal) and potential 

(chemical bonding) energy, but we lump them together since we can’t see it them separately, 
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only their effect at macroscopic scales.)  Generally this is written not as U but as mu, where 
m = mass and u = internal energy per unit mass (units Joules/kg, BTU/lbm, etc.). 

 

 
Figure 24.  Energy family tree. 

Thus, the total energy contained by a piece of material is given by 
 

E = KE + PE + U = ½mv2 + mgz + mu 
 
See the “energy family tree” (Figure 24).  Consequently, with the aforementioned forms of energy 
only (internal, kinetic, potential) along with the two types of energy transfers (heat and work) the 
First Law for a control mass (recall a control mass is a fixed mass of material that may change size or 
shape or volume but no mass crosses its boundary) can be written as 

 

  or 

 

   Equation 65 

 
where the subscript “1” indicates some initial state and “2” a final state after some process has 
occurred. 
 
There are several ways to transfer heat to/from a system, that is, by conduction, convection and/or 
radiation as will be discussed later.  Another way is to have a chemical reaction, for example 
combustion, occur within the mass.  Strictly speaking, this is not heat transfer, it is a change in the 
potential energy part of internal energy of the mass (usually changed into the kinetic part of the 
internal energy, i.e., the substance gets hotter).  But chemical energy release due to combustion is 
often modeled as heat transfer from an external source.  How much?  That depends on 2 things:  the 
mass of fuel being burned (mf) and the heating value of the fuel, denoted as QR: 
 

Q1®2 (due to combustion) = mfQR       Equation 66 
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The units of QR are Joules/kg, but be careful – this is per kg of fuel, not per kg of fuel+air mixture!  
Some typical values of QR (in J/kg) are given in Table 5.  The most fuel that can be added without 
wasting fuel is when there is just enough oxygen (from the air) to burn all of the carbons to make 
CO2 and all the hydrogens to make H2O.  This is called the stoichiometric mixture, and the ratio of 
(fuel mass)/(fuel mass + air mass) at stoichiometric is about 0.064 for typical hydrocarbons – which 
means the mixture is mostly air.  If there is a higher mass ratio of fuel, then fuel is added that can’t 
be burned because there is not enough oxygen, which is a waste of fuel and generates pollutants 
such as CO (carbon monoxide) (poisonous) and unburned hydrocarbons that helps create ozone 
(O3) (bad stuff!) in the atmosphere.  Values of the stoichiometric ratio of (fuel mass)/(fuel mass + 
air mass) are also given in Table 5. 
 

Fuel Heating value, QR 
(J/kg) 

(fuel mass)/(fuel mass + air mass) 
at stoichiometric 

Gasoline 44 x 106 0.0642 
Methane 50 x 106 0.0550 
Methanol 20 x 106 0.104 
Ethanol 27 x 106 0.0915 
Coal 34 x 106 0.0802 
Paper 17 x 106 0.122 
Fruit Loops™ 16 x 106 Probably about the same as paper 
Hydrogen 120 x 106 0.0283 
Pu238 decay 2,000 x 106 n/a 
U235 fission 82,000,000 x 106 n/a 

Table 5.  Heating values and stoichiometric fuel mass ratios of some common fuels 

 
By comparison, the energy content of the lithium-ion batteries used in your cell phone and laptop 
computer (that is, by discharging the battery to extract its electrical energy, not burning the battery!) 
is about 0.8 x 106 J/kg – more than 50 times less than hydrocarbon fuels.  This is why most of 
us don’t drive a battery-powered car, and none of us fly in battery-powered aircraft!  Also, starches 
and sugars all contain about 110 cal/ounce (just look at the nutritional information on the side of 
the box of cereal or any other dry food), which can be converted to 16 x 106 J/kg (recall that 1 diet 
calorie = 1000 thermodynamic calorie).  Note also that nuclear energy sources such as uranium-235 
fission have millions of times more energy per unit mass than fuels, which explains their value for 
bombs, submarine propulsion, etc. 
 
Equations for conservation of energy for a control volume 
 
For a control volume (recall a control volume is a fixed volume in space whose size and shape do 
not change but there may be mass flow in and out of the volume) it’s generally more convenient to 
write the First Law as a rate equation: 
 

 Equation 67 
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E = energy contained by the control volume 

 = mass flows into / out of control mass (kg/s) 
= rates of heat transfer in and work transfer out (Watts)  

hin, hout = enthalpy of material at inlet/outlet per unit mass (Joules/kg) = u + P/r, where u = 
internal energy per unit mass as above, P = pressure and r = density.   

 
Note that the above equation could have been written down simply by taking the time derivative of 
the Control Mass form of the First Law.  The only thing one couldn’t figure out by inspection is the 
substitution of the enthalpy h for internal energy u.  Note also that since h = u + P/r, thus the 
difference between h and u is just P/r.  This is due to something called the “flow work” required to 
push the material into the control volume and the work obtained when extracting it from the exit of 
the control volume.  This flow work term doesn’t apply to the control mass since (by definition) 
there is no mass entering or leaving the control mass! 
 
Note also that for the Control Volume form, instead of using the subscripts “1” and “2” to denote 
the states before and after the process as was done with the Control Mass form of the First Law, in 
the Control Volume form the subscripts “in” and “out” are used.  This is because for the control 
volume one must distinguish between a mass flow inlet (which causes mass and energy to be added 
to the control volume) from a mass flow outlet (which causes mass and energy to leave the control 
volume).  The difference is only a sign (+ or -), but that sign is very important!  On the other hand, 
for the Control Mass form of the first law, the subscripts “1” and “2” are interchangeable, that is, 1 
could be at the beginning of the process and 2 and the end or vice versa, and the conservation of 
energy is still enforced.  When the Second Law of Thermodynamics is considered, however, there is 
a very definite requirement as to which state, 1 or 2, happened first.  Only for a very special type of 
process, called a reversible process, could either 1 or 2 be the initial state.  The same applies to the inlet 
vs. outlet; when the Second Law of Thermodynamics is considered, unless the process is reversible, 
there is a definite restriction on which end can be the inlet and which end is the outlet. 
 
For many materials over not too large a temperature range, CP can be assumed to be constant, i.e. 
 

h2 – h1 ≈ CP(T2 – T1)         Equation 68, 
 
where CP is the specific heat or heat capacity at constant pressure of the material (units J/kg˚C or J/kgK) 
and T is the temperature.  Also, the internal energy per unit mass (u) can be represented in a similar 
way:  
 

u2 – u1 ≈ Cv(T2 – T1)         Equation 69, 
 
where Cv is the specific heat or heat capacity at constant volume of the material (units again J/kg˚C or 
K/kgK) and again one must be able to assume that Cv is constant over this temperature range.  The 
ratio of CP to Cv is called the specific heat ratio (g) that we’ve already used in Chapter 6 without actually 
knowing what it is: 
 

g º CP/Cv          Equation 70. 
 

€ 

˙ m in , ˙ m out

€ 
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For liquids and solids, g is very nearly 1 so this distinction between CP and Cv is of no practical 
importance.  But it is hugely important for gases; even though for gases 1 ≤ g ≤ 5/3, many of the 
formulas (e.g., at the end of Chapter 6) involve a factor of (g - 1).  Important point: the terms 
“specific heat” or “heat capacity” at “constant pressure” or “constant volume” are terribly 
misleading for two reasons: 
 

1. Substances do not contain heat, they contain internal energy and enthalpy; heat is a mode of 
energy transfer between a substance and its surroundings, not a property of a material 

 
2. CP and Cv can be and often are used even in processes for which pressure or volume is not 

constant  
 
Despite these atrocities of terminology, we are forced to use these terms because they are engrained 
in the vernacular of science and engineering.  “Specific enthalpy” and “Specific internal energy” 
would be much better terms for Cp and Cv, respectively (in which case we would probably call them 
Ch and Cu instead.) 
 
A very useful and important special case of the control volume form of the First Law is the Steady 
State, Steady Flow (SSSF) case, where all properties (E, hin, hout uin, uout, zin, zout) and all fluxes 
( ) are constant (not changing over time) and moreover  (otherwise the 
mass contained within the control volume would change over time).  In this case the First Law for 
the Control Volume is written as 
 

   Equation 71 

 
Processes 
 
As previously mentioned, a “process” is a sequence of states.  Normally in simple thermodynamic 
analyses, one assumes that one of the properties of the substance (temperature, pressure, volume, 
entropy, internal energy, etc.) is constant during a given process.  It is beyond our scope to identify 
which property is most nearly constant during a given type of process except to mention a few 
specific cases.  For heat addition due to combustion in a piston-type engine, the process is nearly 
constant volume.  For steady-flow heat addition due to combustion in a gas turbine, or heat transfer 
to water/steam in a boiler, the process is nearly constant pressure.  Compression of a substance is 
usually idealized as being “reversible,” meaning that the process can be reversed (i.e. the substance 
can be expanded) until the substance returns to its original state and the same amount of work 
transferred into the system can be transferred out during expansion.  This is similar to an ideal 
spring.  Moreover, compression processes are usually idealized as being adiabatic (without heat 
transfer).  It can be shown that a reversible and adiabatic process results in no change in the entropy 
(discussed later) of the substance.  Furthermore, it can be shown that isentropic compression or 
expansion of an ideal gas with constant specific heat ratio (g) follows the relation 
 

 (ideal gas, constant g, reversible adiabatic process)   Equation 72 
P = pressure, V = volume 
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This relationship (PVg = constant) is called the isentropic compression law (but note the restrictions on 

when it applies: (1) ideal gas, (2) constant specific heat ratio g, (3) reversible and (4) 
adiabatic process! 3 out of 4 is NO GO!) 
 
Examples of energy analysis using the 1st Law 
 
Example #1 – gas compression 
 
For isentropic compression of 480 cm3 (= 480 x 10-6 m3) of air in a cylinder of car engine initially at 
300K and 1 atm (= 101325 Pa) by a volume ratio of 8, neglecting kinetic and potential energy in the 
gas, 
 

a) What is the pressure and temperature of the air after compression? 
b) What is the work required? 
c) If there are 8 cylinders and the engine rotates at 3000 RPM, what power is required to do 

this compression? 
 
a)  For an ideal gas with constant g undergoing an isentropic process,  

 
 where P = pressure, V = volume 

Thus  or  = (1 atm)(8)1.4 = 18.4 atm. 

Since this is an ideal gas we can also say P1V1 = mRT1 and P2V2 = mRT2; combining these 

relations with  we obtain  

V1 = 480 cm3, V2 = 480/8 = 60 cm3, T1 = 300K Þ T2 = 300K (480/60)0.4 = 689.2 K 

Note that the pressure after compression (P2) seems to fail the function test – how can the 
pressure ratio be more than the volume ratio, that is, how can the post-compression pressure 
be more than 8 atm?  It’s because we put work into the gas, as evidenced by the temperature 
rise.  If the temperature were constant during the compression, then from the ideal gas law 
PV = mRT with m, R and T all constant, we would have P2/P1 = V1/V2 = 8 (or less, if there 
were leaks in the cylinder, which is the whole reason for doing a compression test – to check 
for leaks.)  This confused me as a fledgling auto mechanic in high school; even then I was 
doing function tests, and I couldn’t understand why when I did a compression test on my 
engine, the pressure ratio was higher than the volume ratio.  I was thinking the process was 
isothermal, not isentropic (I didn’t know about isentropic processes in high school…) 
 

b)  Treat the mass of gas in the cylinder as a control mass  
 

E2 – E1 = Q1-2 – W1-2  
 
In an isentropic (reversible, adiabatic) process there is no heat transfer (which is what adiabatic 
means), only work transfer, so Q1-2 = 0.  Also, KE = PE = 0, so  
 

E = U + KE + PE = U, thus 
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W1-2 = E1 – E2 = U1 – U2 = m(u1 – u2) = mCv(T1  - T2). 

From the ideal gas law, m = P1V1/RT1; for air R = = 287 J/kg˚C = 287 J/kgK (see Chapter 
6, the section on Compressible Flow), thus 

 

For air at 300K, Cv ≈ 720 Jkg˚C = 720 J/kgK (see, for example, 
https://www.engineeringtoolbox.com/air-specific-heat-capacity-d_705.html) thus 

 

 (Function test: work is negative because it’s work going into the gas) 

c)  All modern automotive engines are 4-stroke engines and have only one compression stroke 
for every 2 revolutions of the engine, so there are only 1500 compression strokes per minute per 
cylinder, thus 

  

(Performance test:  this sounds like a lot of power, but keep in mind (a) this is an 8-cylinder 
engine with a displacement of (480 – 60) cm3/cyl x 8 cyl = 3360 cm3 = 3.36 liter; (b) the engine 
rotation rate is fairly high, 3000 rev/min, whereas your typical highway cruise is closer to 
2000 rev/min and (c) this assumes the air is coming in at 1 atm, which means wide open 
throttle, i.e. “pedal to the metal.”  At this condition the engine would produce well over 100 
net horsepower.) 
 
Wouldn’t it be better not to compress the air, and get 42 more horsepower?  No way!  If you 
don’t compress, you don’t get any power at all.  You don’t have an engine any more, just a 
complicated heater.  As it turns out, and you’ll learn about this if you take AME 436, that 
you get more work out of expanding the hot gas than the work input required to compress 
the cold gas by the same volume ratio.  This is the only reason that internal combustion 
engines work.  In fact, the higher the volume compression ratio, the more work you get out 
for a given amount of heat input and thus the higher efficiency you get.  This is discussed 
further below.  

 
Example #2 – potential energy 
 
The Upper Fall of Yosemite Falls in Yosemite National Park is a sheer plunge of 440 meters.  
Assuming no air drag (yeah, right), no heat transfer to/from the air or rocks (yeah, right) and no 
work extracted from the falling water (hey, this is a National Park, no hydroelectric plants allowed!) 
 

a) What is the velocity of the water just before it hits the rocks at the bottom of the upper falls?  
Assume that the water is nearly at rest at the top of the falls. 

m = P1V1
RT1

=
101325 N /m2( ) 480×10−6m2( )

287J / kgK( ) 300K( )
= 5.65×10−4kg

W1→2 =mCV T1 −T2( ) = 5.65×10−4kg( ) 720 J
kgK

⎛

⎝
⎜

⎞

⎠
⎟ 300K −689.2K( ) = −158.3J

Power = work
time

=
−158.3J

compression
1500 compression

cylinder min
min
60s

 8 cylinder( ) = −3.14×104 J
s

          = −3.14×104 J
s

 
1 W
J / s

1 horsepower
746 W

= −42.4 horsepower
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Draw a control volume where in = top of falls and out = bottom of falls, just above the 
rocks.  Then from the steady state, steady flow form of the First Law, with no heat transfer, no 
work transfer, and (until after the water hits the rocks) no change in enthalpy: 

 

 

 
Note that this is just the result of a free-fall of 440 m (a good function test). 
 

b) After churning around in the rocks (with no further change in elevation) until the velocity is 
very small compared to that just before hitting the rocks, how much warmer is the water?  
 
Draw a control volume where in = bottom of falls, just above the rocks and out = water 
downstream after churning around in the rocks until the velocity is very small. 

 

 

 
Example #3 – kinetic energy 
 
A jet engine on an aircraft flying at 500 mi/hr has an inlet air mass flow of 10 kg/s, an inlet air 
temperature of 250K, a fuel mass flow of 0.3 kg/s, and an exhaust temperature of 900K.  All flows 
are steady.  What is the velocity of the jet exhaust?  Assume CP = 1400 J/kg˚C for fuel, air and 
exhaust.  The heating value of jet fuel is the same as gasoline.  Neglect elevation change, and neglect 
any work extracted from the engine (e.g. to drive an electrical generator.) 
 
In this case we have two inlets, one for fuel (vin,fuel = 0) and one for air (vin,air = 500 mi/hr), but only 
one outlet (for the jet exhaust) (vout = ???).  The heat input is the mass flow rate of fuel multiplied by 
the heating value of the fuel.  Thus we can apply the control-volume form of the first law as follows: 
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By using the Second Law of Thermodynamics (which we haven’t covered yet) one can determine 
the exhaust temperature without having to specify it as we have done here.  Note that the exhaust 
velocity is much higher than the flight velocity, which is required if we want any net thrust!  In 
practical jet engines, however, only a portion of the fuel is burned and most of the air ingested into 
the engine goes through a giant fan without being burned.  The power needed to drive this fan 
comes from taking work out of the combusted stream through several stages of turbines.  This type 
of engine is called a turbofan and is much more efficient that the turbojet we just analyzed.  The reason 
that the turbofan is more efficient than the turbojet (where all of the air is compressed, mixed with 
fuel, burned and expanded) is discussed in great detail in AME 436. 
 

Second Law of thermodynamics 
 
The First Law of Thermodynamics told us that energy is conserved, i.e., the energy contained in an 
isolated system (one that does not exchange energy with its surroundings) cannot change.  But this 
isn’t the whole story, because it does not place any restrictions on the direction of a process.  For 
example, one can readily fill a (constant-volume) combustion chamber with a mixture of methane 
and air at 300K, ignite the mixture with a spark, and observe a flame burn the mixture to form 
carbon dioxide, water and nitrogen at 2000K.  Clearly this does not violate the First Law.  But when 
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was the last time you saw carbon dioxide, water and nitrogen at 2000K in a chamber spontaneously 
cool off to form methane and air at 300K?  Clearly this does not violate the First Law either, since 
energy is conserved in either the forward or reverse direction, but you have never seen the reverse 
process and you never will.   
 
So clearly we need a Second Law of Thermodynamics that places restrictions on the direction of 
processes.  The Second Law invokes a property of substances called entropy, which is the measure of 
the “disorganization” or “randomness” of a substance.  The hotter or less dense a substance is, the 
less information we have about where the individual molecules are, and thus the higher its entropy 
will be.  The Second Law can be stated simply as 
 

The entropy of an isolated system always increases or remains the same 
 
meaning that the entropy never decreases.  The methane – air mixture at 300K has a lower entropy 
than the carbon dioxide, water and nitrogen mixture at 2000K, so only the usual combustion process 
is physically possible, never the reverse.  (Of course I could take that carbon dioxide, water and 
nitrogen at 2000K, cool it off to 300K, break the molecules apart, rearrange them to form methane 
and air, but to do this I would need to increase the entropy of the surroundings by more than the 
entropy change of combustion, so there would be a net increase in the entropy of the universe.) 
 
A detailed discussion of entropy and the Second Law of Thermodynamics is beyond the scope of 
this course, so only two important consequences of the Second Law will be mentioned here.  The first 
such consequence is that  
 

It is impossible to create a device that has no effect other than the transfer of heat 
from a lower temperature to a higher temperature. 

 
If this were not true, then it would be possible for an object initially at uniform temperature to 
spontaneously become hotter on one side and colder on the other – which is obviously a more 
organized (lower entropy) state than the original, uniform-temperature object.  This statement is 
sometimes stated as “heat is always transferred from hot to cold, never the reverse” – which is only 
a requirement if there is no other effect.  Obviously a refrigerator transfers heat from a lower 
temperature (your food and drink) to a higher temperature (the air in your kitchen) but it has other 
effects too – namely there is a work input to the process.  The second consequence of the Second 
Law that will concern us is the limitations on the efficiency of heat engines and refrigerators, 
discussed below. 
 

Engines cycles and efficiency 
 
The First Law said that “you can’t win,” meaning that one cannot, for example, transfer 1 Joule of 
energy into a device in the form of heat transfer and get more than 1 Joule of work transfer out of 
said device (despite the fact that every day the news media reports that someone somewhere in the 
world has done exactly that.)  The Second Law is an even more insidious and depressing because it 
says in effect that “you can’t break even,” meaning that for 1 Joule of energy transfer into a device in 
the form of heat transfer, one cannot even get as much as 1 Joule of work transfer out of said 
device.   
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Figure 25.  Some consequences of the First and Second Laws of thermodynamics as applied 
to heat engines and heat pumps. 

 1 Watt of heat 
transfer 

1 Watt of heat 
transfer 

TH 

TL 

0 Watts of heat 
or work transfer 

Possible if TH > TL  

 1 Watt of heat 
transfer 

0 Watts of heat transfer 

 

 

More or less 
than 1 Watt of 

work 

Impossible according to 1st Law  

 1 Watt of heat 
transfer 

0 Watts of heat 
transfer 

 

 

Exactly 1 Watt of 
work 

Impossible according to 2nd Law  

 0 Watts of 
heat transfer 

1 Watt of heat 
transfer 

 

 

Exactly 1 Watt of 
work 

Possible according to 1st and 2nd 
Laws (work-wasting device, e.g. 
electric toaster)  

 1 Watt of heat 
transfer 

1- η  Watts of heat 
transfer 

TH 

TL 

η  Watts of work 

Possible if η  is sufficiently small, 
i.e. η  ≤ 1 – TL/TH 

 COP+1 Watts of 
heat transfer 

COP Watts of heat 
transfer 

TH 

TL 

1 Watt of work 

Possible if COP is sufficiently 
small, i.e. COP ≤ TL/(TH – TL) 



 93 

How much work output can one obtain if not 100% of the heat transfer input?  To determine this, 
first we’ll state that “it can be shown” that the infinitesimal entropy change dS resulting from any 
heat transfer process is given by 
 

          Equation 73 

 
where dQ is the infinitesimal amount of heat transfer (units of Joules, not to be confused with 
volume flow rate Q in units of m3/s discussed in the previous chapter) and T is the temperature 
(must be absolute temperature, K not ˚C!) at which the heat transfer occurs.  The inequality is 
extremely important; the = sign applies to theoretically best possible process (called a reversible process) 
and the > sign applies for any real process (called an irreversible process).  If the temperature T is 
constant during the process then the above equation becomes 
 

          Equation 74 

 
It is important to note that there is no entropy transfer associated with work transfer, so there 
are no dW/T terms to consider when evaluating entropy changes.  It is equally important to 
note that changes in the macroscopic (organized) kinetic energy and/or potential energy of the 
substance causes no entropy change, thus no D(mv2/2)/T or D(mgz)/T terms need to be considered 
when evaluating entropy changes. 
 
Now applying this to a device in which QH units of heat are transferred into the device at a constant 
high temperature TH and QL units of heat are transferred out of the device at a lower temperature 
TL, the net entropy change in the universe surrounding the device must be positive, i.e., 
 

Total entropy production in the universe 
= DSH + DSL = -QH/TH + QL/TL ≥ 0  Þ TL/TH ≤ QL/QH 

 
where the negative sign in front of QH appears because QH is out of the universe and the positive 
sign in front of QL appears because QL is into the universe.  Thus, for the best possible 
device, -QH/TH + QL/TL = 0 or 
 

TL/TH = QL/QH  
 
The efficiency (h) of the engine is the ratio of work output (W) to heat input (QH) (see page 16), and 
by the first law W = QH - QL, thus 
 

h  º W/QH = (QH - QL)/QH = 1 - QL/QH (for any engine) 
 
and for the best possible engine with zero net entropy production in the universe and thus TL/TH = 
QL/QH  
 
 

dS ≥ dQ
T

ΔS ≥ Q
T
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 (for the best possible engine)      Equation 75 

 
This best possible device is a theoretical abstraction called a Carnot cycle engine.  Then for any possible 
engine (Carnot or otherwise, we must have TL/TH ≤ QL/QH and thus 

 

  (for any real engine)       Equation 76. 

 
Thus, any real engine must have an efficiency no higher than a Carnot engine.  Note also that 
“engine” does not necessarily mean something with pistons and cylinders; it refers to any device 
that generates work transfer (shaft work, electrical work, etc.) using heat transfer as the energy 
source (i.e. a heat engine in the vernacular of thermodynamics).  Another equivalent way of defining a 
heat engine is a device that converts disorganized energy transfer into organized energy transfer.  
(Of course, according to the above equation, the heat engine can only convert a portion of the 
disorganized energy transfer into organized energy transfer, not all of it.) 
 
Figure 25 shows some consequences of the First and Second Laws as applied to heat engines and 
heat pumps (the black box; what’s inside is irrelevant). 
 
No practical engine operates on a cycle similar to that of the Carnot cycle in which heat is added at 
constant temperature TH (sounds weird, adding heat at constant temperature, but it can be done in 
theory if the temperature difference between the two objects is infinitesimally small…) and rejecting 
heat at another constant temperature TL.  Some other idealized thermodynamic cycles that more 
nearly approximate real cycles include 
 

• Otto Cycle, which is a model for spark-ignition reciprocating-piston engines like those in most 
automobiles.  The cycle assumes an ideal gas with the following processes: 

o Isentropic compression (see page 78) by a volume ratio of r  
r = (initial volume before compression)/(final volume after compression) 

o Heat addition at the minimum volume with no change in volume during the heat 
addition, and  

o Isentropic expansion by a volume ratio of 1/r to get back to the initial volume 
The ideal, theoretical efficiency of this cycle is given by  
 

 (ideal Otto cycle)      Equation 77 
 

which satisfies the function tests  
o h = 0 when r = 1 (no compression, no net work done; you have a heater, not an 

engine, in this case) 
o h ® 1 as r ® ∞ (efficiency can never exceed 1) 

• Brayton Cycle, which is a model for gas turbine engines.  The cycle assumes an ideal gas with 
the following processes: 

o Isentropic compression by a pressure ratio of r (note pressure ratio, not volume 
ratio here); in this case 

η = 1−
TL
TH

η <1−
TL
TH

η =1− 1
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r = (final pressure after compression)/(initial pressure before compression) 
o Heat addition at constant pressure, and  
o Isentropic expansion by a pressure ratio of 1/r to get back to the initial pressure 

The ideal, theoretical efficiency of this cycle is given by  
 

 (ideal Brayton cycle)     Equation 78 
 

which satisfies the same function tests as the Otto cycle. 
• Rankine Cycle, which is a model for steam turbine engines.  The cycle assumes 

o Isentropic compression of liquid (water or whatever fluid) by a pressure ratio of r 
o Heat addition at constant pressure until the fluid is in the vapor (gas) state 
o Isentropic expansion of the steam by a pressure ratio of 1/r to get back to the initial 

pressure 
 
There is no simple expression for the efficiency of the Rankine cycle because it does not assume a 
fluid with a simple equation of state like an ideal gas.  Note that there is no difference between the 
Brayton and Rankine cycles except for the type of fluid used; both assume isentropic compression, 
constant-pressure heat addition and isentropic expansion back to the starting pressure. 
 
The principle of increasing entropy can also be applied to pure heat transfer.  For a device with no 
work input or output (W = 0), in order to satisfy energy conservation, QH = QL.  Since the 2nd law 
requires -QH/TH + QL/TL ≥ 0, with QH = QL, 
 

-1/TH + 1/TL ≥ 0 or TH ≥ TL  (heat transfer with no work transfer) 
 
which ensures heat transfer can only occur from a higher temperature to a lower temperature.  Note 
that this not say that heat transfer can never occur from a lower temperature to a higher 
temperature, but that it cannot occur when there is no work transfer (e.g., as in a refrigerator) or 
other energy flow. 
 
Following along this same line, one can also consider the case opposite of heat engines, namely 
refrigerators that obviously do enable heat transfer from low temperature to high temperature.  If 
there is work transfer W into the device, then QH = QL + W and in this case heat can flow from a 
lower temperature to a higher temperature if QL is sufficiently small.  In other words, the work 
transfer W (which causes no entropy production or loss) decreases the ratio of QL/QH so that it can 
be less than TL/TH so that +QH/TH - QL/TL ≥ 0 can be satisfied as required to have entropy 
production ≥ 0.  (Note that the signs on QH and QL are reversed compared to the heat engine 
analysis, since QL units of heat are being transferred out of the universe at TL and QH units of heat 
are being transferred into the universe at TH.) 
 
What is the best possible performance of a refrigerator?  In this case the concept of “efficiency” 
doesn’t apply since work is an input rather than an output, but one can define a different figure-of-
merit called the coefficient of performance (COP) = QL/W.  For the best possible (Carnot cycle in 
reverse) refrigerator, the COP would be 
 

€ 

η =1− 1
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and thus for any “real” refrigerator 
 

 (refrigerator)       Equation 79. 

 
Note that, as a function test, as TH approaches TL, the COP approaches infinity, since no work input 
(W = 0) is required to transfer heat across from low temperature to high temperature when there is 
zero temperature difference.  In other words, a refrigerator doesn’t need any power when the 
desired temperature of the food inside is the same as the outside temperature. 
 
Note also that a heat pump used to heat homes is the same device as a refrigerator or air conditioner 
in that heat is transferred from a lower temperature to a higher temperature at the expense of some 
work input.  The only difference is that in a refrigerator, QL is the desired heat transfer (from an 
object, to make it colder than ambient temperature) and QH is waste (heat transfer to the 
surroundings at higher than ambient temperature, which is why your cats love to sleep behind your 
refrigerator), whereas with a heat pump QH is the desired heat transfer (to your living room) and QL 
is waste (heat transfer from the cold outside environment).  Because of this, the definition of COP 
for a heat pump is different from that of a refrigerator.  For the best possible (Carnot cycle in 
reverse) heat pump, the COP would be 
 

 

and thus for any “real” heat pump 
 

 (heat pump)       Equation 80. 

 
The advantage of a heat pump compared to simple electrical heating is that several units of heat 
transfer (QH) can be obtained for one unit of work transfer (W), whereas with simple electrical 
heating, only one unit of heat transfer is obtained per unit of work transfer.  Of course, as the 
difference between TH and TL increases, COP decreases and thus the advantage of the heat pump 
decreases.  Moreover, heat pumps, being functionally equivalent to air conditioners or refrigerators, 
are far more complicated than simple electrical heaters.  For this reason heat pumps are not in 
widespread use, even in locations where air conditioners are installed and you could use the same 
device run forwards and backwards for both heating and cooling.  (Keep in mind that heat pumps 
need electrical power whereas heating can also be done with natural gas which costs about ¼ as 
much for the same energy.) 
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Heat transfer 
 
The First Law of thermodynamics places restrictions on how energy can be converted from one 
form to another, and the Second Law places restrictions on the direction which processes may 
occur, but neither one says anything about how fast such processes occur.  Here we’ll just look at the 
rates of heat transfer, which is only one piece of the puzzle.  We’ve already talked about rate 
processes in terms of fluid mechanics, and you know something about dynamics (F = ma applied to 
a solid body.)  If there are chemical reactions, we would need to compute their rates also, but that’s 
beyond the scope of this course. 
 
Heat transfer may occur by one or more of three forms: conduction, convection or radiation, which we’ll 
discuss separately below. 
 
Conduction 
 
Conduction heat transfer occurs in an immobile material (i.e., not a moving fluid) due to the vibrations 
of the molecules within the material.  The more rapidly vibrating (warmer) portion of the material 
induces faster vibrations in the initially cooler part of the material and thus enabling randomly 
directed kinetic energy to pass through the material.  The rate of said heat transfer is described by 
Fourier’s Law: 

         Equation 81 

where  is the rate of heat transfer (in Watts or some other unit of power), k is the thermal conductivity 
of the material, A is the cross-section area of the material exposed to heat transfer (i.e. the area in the 
direction perpendicular to the direction of the temperature gradient), DT is the temperature 
difference across the material (which would be positive if temperature increases as x increases and 
negative if temperature decreases as x increases) and Dx is the thickness of the material.  DT can be 
specified in either absolute (K or R) or relative (˚C or ˚F) units since the addition factor (273 from 
˚C to K, or 460 from ˚F to R) will cancel out in the TH - TL term.  Since  is in units of watts, A is 
meters2, DT is degrees C or K and Dx is meters, the units of k must be W/m˚C or equivalently 
W/mK.  Note that the minus sign ensures that heat transfer is positive when DT is negative – in 
other words, heat must flow from high temperature to low temperature as required by the Second 
Law of Thermodynamics.  Some typical thermal conductivities are given in Table 6.  Note that all of 
these values are approximate because k depends on the temperature and composition of the 
material.  In particular, pure metals have much higher conductivities than alloys (mixtures of metals) 
because in the case of metals the mobile electrons can transport thermal energy much faster than 
vibration within the solid structure itself can. 

!Q = −kAΔT
Δx
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Material Thermal conductivity (W/m˚C) 

Air 0.026 
Glass wool insulation 0.04 
Plastics 0.2 – 0.4 
Water 0.6 
Glass 1 
Silicon dioxide ceramic 2 
Steel 20 - 40 
Aluminum 200 
Copper 400 
Diamond 2000 

Table 6.  Thermal conductivities of some common materials at room temperature 

 
Example.  The walls of a house are filled with glass wool insulation.  The wall is 4 inches thick.  The 
temperature on the inside wall is 70˚F and outside it’s a nippy 0˚F.  The wall is 10 feet high and 20 
feet wide.   
 

a) What is the rate of heat transfer through this wall? 
 

 

 
Note that we have defined x = 0 as the inner (warmer) wall and x = 4 inches as the outer 
(colder) wall, so Dx = +4 inches and DT = 0˚F - 70˚F = -70˚F.  The resulting heat transfer is 
in the +x direction, i.e. from the inner wall to the outer wall. 

 
b) If electrical heating is used at a cost of 10 cents per kilowatt-hour, what is the cost to heat 

this house for 1 day (just on the basis of heat loss through this one wall)? 
 

 

 
which doesn’t seem like much.  But the real cost of heating is due to heat loss through windows, 
which are much thinner and made of materials with much higher k than glass wool insulation. 

 
Convection  
 
Convection is heat transfer due to fluid flow across a surface.  It is in general much faster than 
conduction (immobile material, no fluid flow) because in the case of convection, there is a 
continuous supply of hot fluid to deliver thermal energy to the cold surface, or of cold fluid to 
remove thermal energy from the hot surface.  The rate of heat transfer by convection is given by 
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      Equation 82 

 
where h is the convective heat transfer coefficient (units Watts/m2˚C or Watts/m2K), A is the area of the 
surface exposed to convective heat transfer, Tsurface is the surface temperature and Tfluid is the fluid 
temperature far away from the surface.  In general it is very difficult to compute h because it depends on 
both fluid flow and conductive heat transfer (from the surface to the fluid adjacent to the surface) 
and thus involves Fourier’s Law coupled to the Navier-Stokes equations.  For the purposes of this 
course I’ll just give you a value of h when needed.  Some typical values are 10 W/m2˚C for buoyant 
convection in air (when there is no forced flow, just the rising or falling of air due to a temperature 
difference between a surface and the surrounding air), 100 – 1,000 W/m2˚C for turbulent flow of 
water over a surface, and up to 10,000 W/m2˚C for heat transfer to/from boiling water. 
 
Example.  Due to a tornado the insulation blew off the wall of the house in the previous example, so 
now there is a 70˚F wall exposed directly to 0˚F air.  What is the rate of heat transfer now assuming 
buoyant convection only (i.e. the tornado has passed and the wind is calm) with h = 10 W/m2˚C? 
 

  
which is 25 times more than the insulated wall!  Note that the heat transfer is in the direction from 
the (warmer) surface to the (cooler) surrounding fluid. 
 
Radiation 
 
Radiation heat transfer is heat transfer due to electromagnetic radiation between objects.  Radiation 
what makes a fire feel warm even when you’re 10 feet away, i.e. too far for conduction or 
convection to be significant.  The rate of heat transfer between two surfaces at temperatures TH and 
TL is given by 
 

       Equation 83 

 
where s is the Stefan-Boltzmann constant = 5.67 x 10-8 Watts/m2K4, e is the emissivity of the surface (a 
dimensionless number between 0 and 1; closer to 1 for opaque, non-reflecting surfaces and closer to 
0 for highly polished, reflecting surfaces).  Note that temperatures must be specified in an absolute scale (i.e. 
Kelvins, not Celsius) since there is a ( )4 term and thus the 273 or 460 conversion factor does not 
simply subtract out as it did with in the case of conduction or convection.  In other words, for 
conduction and convection, 
 

(TH+273) – (TL+273) = TH – TL 
 
so that either ˚C or K are acceptable, whereas for radiation 
 

(TH+273)4 – (TL+273)4 ≠ TH
4 – TL
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so only K is acceptable. 
 
Example.  For the unfortunate house above with a bare wall exposed to ambient air, what is the rate 
of heat transfer by radiation?  The wall emissivity (e) is 0.5. 
 

   

 

 
which is less than convection in this case.  But note that since conduction and convection increase 
linearly with temperature, radiation increases with temperature to the fourth power, thus at sufficiently high 
temperature, heat transfer by radiation will always exceed that due to conduction and convection.  Also note that the 
heat transfer is in the direction from the (warmer) surface to the (cooler) surroundings. 
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Chapter 8.  Written and oral communication 
 
“The single biggest problem in communication is the illusion that it has taken place.” – George Bernard Shaw. 
 
The Golden Rule of written technical communication can be stated as follows: 
 

If I didn’t already know this subject and were reading this paper (or listening to this 
presentation) for the first time, would I understand it? 

 
Written papers or reports 
 
1.  The usual organization of a paper or report is 

A.  Heading:  title, authors, affiliations 
B.  Abstract:  explains what was done and what the main conclusions are.  Must be short (a 
few hundred words at most, depending on the journal requirements), no matter how 
long and how complicated the paper is. 
C.  Introduction: 

i.  Explain what your problem is and why it is important. 
ii.  State what is known about the subject. 
iii.  Complain about what is lacking in the current state of knowledge 
iv.  Explain what you will do that is better (may be in a separate Objectives section). 

D.  Method:  experimental apparatus, numerical model, whatever  
E.  Results:  what you found and how it compares with previous works 
F.  Conclusions:  what you learned  
G. Future work (optional) 
H. Acknowledgements (optional) – organizations that funded the work and/or people who 

helped but wasn’t included on the author list (e.g. people who gave advice but didn’t 
participate in the work itself, technical support, computer programmers.) 

Almost all novice writers (and many experienced writers) fail in two ways when organizing a paper.  
First, they fail to state clearly their objectives (what they are trying to learn) and their message or 
conclusions (what they found).  Any piece of information that does not help to support the 
message doesn’t belong in the paper (unless it helps to show what isn’t certain about the 
conclusions.)  For each paragraph, each picture, etc., ask yourself 2 questions:  

1.  What is the message I am trying to get across? and  
2.  Does this picture or text do that? 

In particular, students like to report on everything they did that went wrong before they got to the 
final results, just to show that they worked hard even if they didn’t accomplish much.  This may be 
ok for a lab report in a class, but for a technical paper, nobody wants to know that the first 7 
voltmeters you tried didn’t work because someone spilled coffee on them.  (Worst line ever:  “We 
didn’t finish the project, but we have all the parts …”  Which means you have some parts that 
might be useful; you never know if you have all of them until after the project is done.) 
 
2.  Every symbol in the text 

A.  is defined in a Nomenclature section (preferred) or defined at its first appearance in the 
text (often you have to do it this way because of space limitations, but it’s annoying to  
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have to scan through a long document to find out what a is.)  Hopefully you know by 
now how important it is to define your symbols. 

 
3.  Every equation that is set apart from the text 

A.  has a number 
B.  has all of its symbols defined if not already or defined in a Nomenclature section (if used) 

 
4.  Every word 

A.  is spell-checked 
B.  is defined the first time it is used if it is a “buzz word” or acronym.  Example:  “Many 

engineers use an excessive number of Three Letter Acronyms (TLAs).” 
 
5.  Every figure 

A.  is assigned a number – “Figure 1,” “Figure 2,” etc. 
B.  is referred to in the text – no “orphan” figures! 
C.  is referred to as “Figure x” if it appears at the beginning of a sentence, otherwise it is 

called “Fig. x” 
D. has a sensible scale on each axis (i.e. 0, 1, 2, 3; not -0.37, 0.15, 0.67) 
E. When showing multiple plots of similar results, use the same scales.  For example, if 

showing the burning velocities of methane-air and propane-air mixtures as a function of 
fuel concentration on separate plots, use the same scale for burning velocity on each 
unless they have drastically different ranges. 

F.  Uses a logarithmic scale if a large numerical range of data (more than one decade) is 
covered (otherwise all the data having low numerical values are squashed together) 

G.  has the units defined on each axis 
H.  has a caption (in addition to its figure number) 
I.  has all relevant conditions (pressure, temperature, whatever is important) stated on the 

plot or in the caption 
J.  has all plot symbols (squares, circles, filled or open, ...) and curves (solid, dotted, dashed,..) 

defined either in a legend box within the figure (preferred method) or in the caption 
K.  Does not have a lot of “white space” 
L.  if it is a picture, it has a scale on the picture or has a statement in the caption such as 

“field of view is xxx cm by yyy cm” or has some object of easily identifiable scale (a 
person, coin, etc.) in the picture 

M.  must be readable - caution on pictures!!! 
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Figure 26a.  Terrible figure. 

 
Figure 26a shows a terrible figure with many common mistakes.  What’s wrong? 

• The scales on each axis are terrible – weird numbers, not 1, 2, 3, … 
• Units are not defined on the vertical axis (Seconds?  Nanoseconds?  Millenia?) 
• The plot symbols are defined using meaningless notation (“Condition 17” means 

nothing to the reader.) 
• There is a tremendous amount of “white space” 
• Most of the data squashed together because a linear scale was used - the scale has to be 

large enough to cover the large values of rise time in “Test –117”, which goes up to 300, 
but most of the data is in the 10 – 50 range 

• There are tick marks inside, outside, all over the place (I prefer tick marks on the inside 
only).  Also, the major and minor tick marks are the same length so it’s hard to 
distinguish between them. 

• The plot symbols are too small to see 
• The numbers are too small to read 
• All of the grid lines make it hard to read the data and legend.  (I don’t like grids at all, 

they clutter the figure – if someone really wants to pick points off your graph, they can 
draw their own grid lines or ask you to email the data file to you.) 

• There are ugly looking jagged lines connecting the data points (rather than a smoothed 
curve) 
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• Three data sets have lines connecting them, whereas the fourth does not (is there 
something different about the fourth data set that makes it ineligible for connecting 
lines?) 

• The axes and tick marks are too thin 
 
A big part of the problem is that most people just let their plotting program make bad plots using all the default 
settings, and somehow try to rationalize that still a good plot. Figure 26b shows a reasonable figure 
presenting exactly the same data as Figure 26a. 

 
Figure 26b.  Reasonable figure presenting same data as in Figure 26a. 

 
6.  Every reference cited in the text 

A.  appears in the reference section 
B.  is a plain number (i.e. 11, 12, 13; not 11, 11a, 11b) or follow the Harvard system (e.g. 

Smith and Jones, 1953) depending on the instructions to authors 
C.  if a number, may be superscript or in [brackets] or (parenthesis) depending on the 

instructions to authors 
 
7.  Every reference in the reference section 

A.  is called out in the text; it is not acceptable to simply have a list of references at the end 
of a document without referring them in the text so that the reader knows what 
information was used from that reference 

B.  has the journal name or book title (journal titles may or may not be abbreviated 
depending on the instructions to authors) 

C.  has the page number (may be just the first page of the article or inclusive pages 
depending on the instructions to authors) 

D.  has the journal issue number (if a journal article) 
E.  has the publisher (if a book) 
F.  has the year of publication 
G.  may or may not have the title of the article depending on the instructions to authors 
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Bottom line:  ask yourself, if I were reading this paper for the first time, and I were not 
already aware of the results, would I understand this paper??? 
 
 
Oral presentations 
 
Most of the rules listed above for written presentations apply to oral presentations.  In particular: 
 

1.  Organization  
A.  Title page  title, authors, affiliations, acknowledgements (optional) 
(no abstract) 
B.  Introduction: 

i.  Explain what your problem is and why it is important. 
ii.  State what is known about the subject. 
iii.  Complain about what is lacking in the current state of knowledge 
iv.  Explain what you will do that is better (may be in a separate Objectives section). 

C.  Method:  experimental apparatus, numerical model, whatever  
D.  Results:  what you found and how it compares with previous works 
E.  Conclusions:  what you learned  
F. Future work (optional) 

 
2.  Every symbol, buzz word, acronym, etc. must be defined the first time it is used (no 
Nomenclature section) 
 
3.  Every equation is numbered 
 
4.  All of the rules for figures and pictures still apply 
 
5.  References may be mentioned, especially if there are key works that your work builds 
upon or refutes, but are not numbered 

 
There are also special rules for presentations: 
 

6.  Use a laptop-based powerpoint presentation.  This makes it much easier to combine/split 
previous presentations, add color, animations, sound effects, etc.  But the most valuable 
aspect is probably that it allows you make last-minute changes.  Also it is useful because then 
you can email the presentation to interested people, or post it on your website. 
 
7.  Do not use 5-point font!  Reduce the amount of material presented and use big fonts!  
Make sure everything is legible.  A good rule of thumb is that if the slide is printed on standard 8.5” x 
11” paper, you should be able to put the page on the floor and read everything on the page while standing up 
and looking down at the page. 
 
8.  Use color.  The human eye is much more sensitive to variations in color than shades of 
gray.  Key words can be given emphasis using colors.  Plots in journals usually have to be in 
black only, but in a presentation you can use colors to make it easier for the audience to 
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distinguish between different data sets (as in Figure 26b above) that it is to distinguish 
between data sets by looking at the different symbols. 
 
9.  Include movies.  Why limit yourself to static presentations when you have the power of a 
computer?  A picture is worth a thousand words, and a movie is worth a thousand pictures. 
 
10.  Address the audience.  Say things like, "this plot shows you the effect of x on y…"  
rather than "this plot shows the effect of x on y…" 
 
11.  Keep reminding the audience of your nomenclature.  That is, if you show an equation 
 

E = mc2 

 
don't say "this equation shows that eee equals emm cee squared," (the audience can already 
see that).  Instead say, "this equation shows that the energy of a substance is equal to its 
mass times the speed of light squared" (the audience has forgotten your definitions of E, m 
and c that you gave 12 slides back). 
 

Bottom line:  ask yourself, if I were in the audience listening to this presentation for the first 
time, would I understand it??? 



Appendix A.  Design projects 
Generic information about the design projects 
 
How to run a meeting (PDR’s philosophy…) 
 

Your design projects will require group meetings. Every meeting must have three items, all in 
writing: 
 

• An agenda.  What is it that needs to be discussed at the meeting?  If it isn't written down, 
some items will be forgotten or will get dropped as the meeting runs over its time limit, so a 
written agenda is usually needed.  Sometimes everyone knows the agenda items (as in a 
weekly meeting, for example), or the list of things to be discussed is very short, so a written 
agenda isn't needed 

• Minutes.  What was said and what was decided at the meeting?  There definitely needs to be a 
permanent record of this, because you WON'T remember a week later what was said or 
what was decided.  (More likely, you will remember but your recollection will be different 
from everyone else's.) 

• Action items.  Who will do what as a result of the meeting?  When is it needed?  What will 
people do that is different than what they would have done without the meeting?  Think 
about that last question – if no one is going to do anything differently as a result of the meeting, what was 
the purpose of the meeting? 

 

If you don't have all three of these items, then you have to ask yourself, why did you meet?  What 
were you trying to accomplish by meeting?  Was it a meeting or just a party, seminar, etc.? 
 
Many groups choose to start an online page using their favorite social media platform just for their 
project; this is acceptable and in fact encouraged; clear, swift and accurate communication is of 
importance even in small projects like this one and it large, real-world engineering projects it is 
absolutely essential. 
 
Suggestions for the written report 
 
The report should include  
 
1. Cover page 

 
• Name of your project.  I do succumb to enjoying project titles with a twist, e.g. “Stressed 

Out” for the 3D printed bridge project.  It breaks up the monotony of grading all those 
reports! 

• Your group number 
• Group members 
• Catchy picture 
• Grading table (project-specific table given for each project) 

2. Table of contents  
3. Body of the report including  

a) Statement of objective(s) 
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b) Drawings of preliminary design concepts (hardware and/or software) and critiques of 
these designs 

c) Test data for preliminary designs 
d) Explanation of why you chose your final design 
e) Construction of your device 
f) Results of the “official” test 
g) What you would do differently if you built another device 

4. Optional appendices(s) including (these may be incorporated into the body of the report rather 
than an appendix if you feel it improves the organization and readability of the report.) 

a) Meetings: agenda, minutes, action items 
b) Email exchanges 
c) Pictures of your test apparatus, construction and the final device 
d) Anything else you think is appropriate 

 
General comments about the reports: 
• Printouts look a lot nicer than handwritten notes.  I really can't do any writing by hand any 

more; my handwriting is illegible even to myself and even worse, my thought processes have 
become so jumpy I can't write anything, even one paragraph, from start to finish. 

• Pictures are also nice.  I think a picture is worth way more than 1000 words, because who wants 
to read 1000 words?  (For PowerPoint presentations, I have a corollary - a video is worth a 
thousand pictures.)  But, a collage of pictures at the end of the report isn’t very useful.  Include 
the pictures in the body of the report, and every picture needs a caption so the reader knows 
what the picture shows and what the reader is supposed to learn from looking at it. 

• Pictures are nice but illegible hand drawings are not. If you’re going to use hand drawings: 
o Make them legible 
o Don’t draw on lined paper that has writing on the back 
o Use a proper scan, not a camera phone image 

• Make sure throughout that whatever meetings, background research, testing, etc. you do, you are 
focused on the specific objectives of the project.  For example, in the bridge project, just stating 
that such-and-such an idea is a good one because it should make the bridge strong is not very 
useful.  Remember that the objective in that case was a high stress to weight ratio, not just low 
stress, so everything you do should revolve around that fact.  

• Just showing sketches of ideas isn't terribly useful unless you then explain which ideas you 
embraced, which you rejected and why.  (In a more formal setting you would document all the 
team members opinions and ideas, since this may lead to patents later on.)  Also, just showing a 
bunch of stuff downloaded from the internet to pad the report isn't useful.  Think of a report as 
if you were making a movie - you have a story to tell, you want to tell it in the most compelling 
way possible, and anything that doesn't help tell the story should be left on the cutting room 
floor. 

• MOST IMPORTANT POINT.  What convinces me more than anything else that (independent 
of the outcome of the contest) you are serious about the project is the TESTING part.  Think 
about it - if you don't test anything, it says you're just going to accept whatever the first attempt 
at the design/build/test cycle gives you.  And if you don't document the testing, did you really 
do any testing?  (A variation of the proverbial question, "if a tree fell in the forest and no one 
heard it, did the tree make a sound?")  So presenting test results is HIGHLY ENCOURAGED.  
Test results can be from either physical testing (e.g., of sample 3D printed beams) or modeling 
(e.g. SolidWorks stress analysis of your bridge). Testing for the King of the Hill project might 
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include the time required for your vehicle to reach the top under different configurations 
(weight, wheel placement, battery type, gear ratio, etc.) 

• Reference your statements.  For example, if you say, “our research has shown that PLA 
(polyacetic acid, the standard 3D printing material) is stronger in tension than compression,” 
state what test you did or what the source is from which you obtained that information.  (Note: 
a comment by Joe12345 on blogger.com doesn’t qualify as a legitimate source.) 

• Make backup copies of your data.  All storage devices (even those in the cloud) have anxiety and 
deadline sensors and are pre-programmed to crash when your anxiety level is highest or the 
deadline is nearest.  Store your data in multiple locations so that there are no “single-point 
failures” regarding data security. 
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King of the Hill 
 
Objective 
 

The goal of this contest is to design and construct a vehicle that can climb a “hill” under its 
own power, stop at the top of the hill and defend its position against an opposing vehicle coming up 
from the other side of the hill.  The contest will be held in the E-quad during class time on October 
10, 2019. 

The “hill” will be represented by two 5 foot long x 1 foot wide ramps separated by a 1 foot x 
1 foot mesa at the top.  The hill altitude is 33 inches from base to summit.  This is a very steep hill, 
but the ramps are covered with a non-slip material like you might find in a bathtub.  Experience 
has shown that the most important thing is to get your vehicle to the top.  Many vehicles fail 
because they don’t have enough torque (i.e. the wheels or tracks don’t move) or traction (i.e. the 
wheels or tracks spin but the vehicle doesn’t move) to climb the steep ramp.  Offensive or defensive 
tactics for use on top of the ramp are of secondary importance.  I strongly recommend you don’t 
buy a radio-controlled racecar and cannibalize it, almost all of them are designed for speed, not hill-
climbing ability.  However, experience also shows that “possession is 9/10 of the law” and usually 
the vehicle that reaches the top of the ramp first wins because it’s difficult for a moving vehicle to 
displace a stationary one.  So, you’ll have to decide on some optimal combination of speed, torque, 
traction, etc. 

Some YouTube™ videos of previous competitions are available; search “USC AME 101 
King of the Hill”. 

A suggested source of motors, gearboxes, battery boxes, tracks, etc. is 
http://www.pololu.com, particularly the products made by Tamiya, for example these gearboxes: 
http://www.pololu.com/product/61 or http://www.pololu.com/product/74 (Tamiya’s website is 
beyond atrocious, so I link to a 3rd party supplier instead.)  A complete chassis + gearbox kit is also 
available: https://www.pololu.com/product/1551.  Tilt switches to shut your vehicle off when it 
reaches the top of the hill can be obtained from many sources.  Keep in mind that there are tilt 
sensors (like your iPhone has) which can carry almost no current, you need a tilt switch.  Check the 
specifications of your switch to make sure it can carry the current your motor draws.  (How much 
current does your motor draw? Read the motor specifications!)  A fairly complete kit (motor, 
gearbox, switch, treads, chassis) is the “Tamiya 70108 Tracked Vehicle Chassis Kit” 
(https://www.tamiyausa.com/shop/educational-construction/tracked-vehicle-chassis-kit/).  Fry’s 
Electronics often stocks the Tamiya kit and tilt switches. 

Some suggestions for those intending to use an Adruino or similar micro-controller: 
1. Powering the Arduino 

a) A new AA battery supplies about 1.6 Volts when nothing is connected to it (that is, 
no current draw) but is not a perfect 1.6 Volt source. It has an internal resistance of 
typically 0.25 ohms.  That means if you’re drawing 0.5 amps of current, there will be 
a voltage drop of (0.5 A)(0.25 W) = 0.125V, so the battery voltage will drop to 1.6V 
– 0.125V = 1.475V. 

b) The typical motors used in Tamiya kits draw about 0.2 amps with nothing connected 
to the motor to slow it down, about 2 amps (2A) at stall conditions (so much load 
that the motor can’t spin at all) and about 0.5A at the typical operating condition 
climbing a ramp.  Consequently, two AA batteries provide about 2 x 1.475V = 2.95V 
at KOTH conditions. 
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c) The Arduino board will cease to function with a supply voltage below about 3V, so it 
may operate with two AA batteries under no load (3.2V) but stop when the load of 
the motor is applied (2.95V). 

d) The solution to the problem mentioned in (c) is to use a “boost converter” that 
converts the battery voltage to a constant 5 volts. Here is one example: 
https://www.amazon.com/Pololu-Step-Up-Step-Down-Voltage-
Regulator/dp/B01M4KIS7K/ref=sr_1_4?keywords=5V+Boost+Converter&qid=1
567205825&s=industrial&sr=1-4 (below, left).  Connect the +In and -In terminals 
to your battery and the +Out and -Out of this boost converter only to the Arduino, 
not to your motor(s). 

  
 

2. The Arduino output pins can supply at most about 20 milliamps (0.02 A) of current. 
They cannot drive your 0.5A motors directly. You need to use a relay, a device that 
switches a large current (to drive the motors) using a smaller current (from the Arduino).  
Here’s an example of a relay board designed to be compatible with an Arduino: 
https://www.amazon.com/SMAKN®-Active-Channel-Arduino-
Raspberry/dp/B00VH8926C (above, middle). 

3. You’ll also need a tilt sensor.  A popular one for the Arduino is this unit: 
https://www.amazon.com/MPU-6050-MPU6050-Accelerometer-Gyroscope-
Converter/dp/B008BOPN40 (above, right). The linked page has instructions for how to 
connect it to the Arduino. 

4. If you think this is too much development/learning/programming effort for the KoTH 
project, I don’t blame you.  However … just because you’re majoring in Mechanical or 
Aerospace Engineering, don’t think you can get away without knowing some basic 
electronics and programming skills.  You will be using programmable controllers during 
your career. Believe me.  

 
Time will be scheduled in BHE 310 for groups to use the laboratory facilities and tools for 

making and testing their vehicles.  Also, the “hill” may be inspected and test runs performed at that 
time.  The lab gets VERY crowded on the last work day!  I strongly recommend that you do at least 
some of your building and testing during the earlier work days.  The rules for using the BHE 310 lab 
are as follows: 

 
• You can only work in the BHE 310 lab after you’ve completed the training given during the 

3nd and 4th weeks of classes (if you didn’t get the training during one of the scheduled times, 
you’re out of luck and can’t work in the lab.) 

• You can work in the BHE 310 lab during scheduled work hours, and in principle other times 
when it doesn’t conflict with other classes, but in Fall semesters the BHE lab is heavily 
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booked with classes most days.  The ramps are available for test runs any time the BHE 
building is open.  The scheduled days are as follows (1 - 4 pm only each day):  

o Friday, Sept. 27 
o Tuesday, Oct. 1 and Friday, Oct. 4. 
o Tuesday, Oct. 8. 

• Closed-toed shoes, long pants and safety goggles must be worn in BHE 310 at all 
times. 

• Basic hand tools are available (screwdrivers, pliers, wire cutters, etc.) but put the tools back 
where you found them when you’re done! 

• Wire, solder, tape, glue etc. are available in BHE 310.  Some bins of materials (wood, 
aluminum, plexiglass, etc.) will be available but there is no guarantee that any particular 
material you need in any particular size you need is in those bins.  DO NOT use any 
materials in anyplace other than a bin labeled as “scrap”! 

• You can only use the machine tools (hand drill, band saw, belt sander, soldering, etc.) that 
you have been trained to use.  If you need to use any machines you haven’t been trained 
on, Rod or one of his assistants must train you before you use it. 

 
Alternatively, you can work on your projects in the Viterbi Student Fabrication Laboratory (“Fab 
Lab”) in RRB 114 (see http://viterbiundergrad.usc.edu/fab-lab/).  The Fab Lab is open to all 
Viterbi undergraduates more or less during regular 9 am – 5 pm working hours when the 
manager, Dan Cordova (ernestco at usc dot edu) is available; contact him in advance to be sure 
the Lab is open at any particular time you want to go there.  You'll need to ring the doorbell 
outside of RRB 114; it is kept locked because students must have their student ID scanned to 
enter and to control loss of tools and equipment.  As with BHE 310, training is required before 
working on any of the equipment; Dan or one of his assistants will train you as their schedules 
permit.  Long pants and closed-toed shoes are required and long hair/beards must be drawn 
back if working on the machine tools.  The Fab Lab is much smaller than BHE 310 but has a 
similar set of tools and equipment, plus several 3D printers including a Stratasys Fortus model 
450, a 5-axis CNC mill and a laser cutter. 

 
Design rules 

1. The vehicle must be completely autonomous.  No remote power, control wires or wireless 
remote-control links are allowed. 

2. The vehicle's exterior dimensions at the start of each run must not extend beyond the sides 
of an imaginary cube 1 foot on a side.  A device, such as a ram, may extend beyond this limit 
once activated, but cannot be activated before the start of the run. 

3. The vehicle's total mass must not exceed 1 kg. 
4. The vehicle can start either on the ramp or at the base, on flat ground, your choice.  The 

back of your vehicle must be even with the bottom of the ramp (which means that the front 
of your car cannot be more than 1 foot up the ramp). 

5. The vehicle must be started by one single activation device (e.g., a switch or mechanical 
release) on the vehicle.  Team members may not activate any device before the start of the 
contest and the vehicles may not have their “motors” running before the start.  A team 
member will place the vehicle on the ramp and a “contest official,” not a team member, 
will start the vehicle, so you must have a simple way to activate the vehicle. 

6. The vehicle can be powered by the following energy sources only, either individually or 
combined (but still only one single activation device is allowed for all energy storage devices 
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combined, and this activation device can only be used at the start of the contest).  Note that 
these energy sources can be used for propulsion, offensive purposes or defensive purposes. 

• Batteries – limited to 2 AA batteries.  Experience has shown that all AA batteries come 
equipped with anxiety sensors and will run out just before or during the contest. Use fresh batteries 
at the start of the contest and bring extras. 

• Mousetraps having a maximum spring size of 5 mm outside diameter x 5 cm long 
(use as many as you want).  This basically corresponds to a standard mouse trap; the 
specifications preclude the use of rat traps. 

• Solar panels (new for 2020).  Solar panels may be used to augment the battery 
power, but there’s no guarantee it will be sunny on contest day! There are no 
restrictions on the number or size of panels other than those required by rules 2 and 
3 above. 

7. While it shouldn’t be necessary to say so in view of rule 6, just for completeness here it is.  
The vehicle may not use fuels, explosives, compressed gases, “general purpose heat sources” or any 
dangerous/hazardous materials.  Also, if batteries are used, they may not be used for a “thermal 
protection device” (i.e. a device that attempts to set the opposing vehicle on fire.)  If in 
doubt, ask PDR what is/is not acceptable. 

8. Prior to the start of the competition, vehicles will be measured and weighed to ensure 
compliance with size and mass limits.  If the vehicle is modified in any way during the course 
of the competition, it will be reweighed and remeasured. 

9. The vehicle must run within the 1-foot-wide track.  The vehicle may not run on top of the 
guide rails, but parts of the vehicle may hang over the guardrail. 

 
The contest  
 

1. Vehicles will compete in a 5- or 6-round “Swiss system tournament” similar to that typically 
used in chess contests (see for example 
http://en.wikipedia.org/wiki/Swiss_system_tournament) so that every team will participate 
in the same number of rounds.  Modifications to the vehicle are permitted between (but 
obviously not during) runs. 

2. Contest schedule and current standings can be viewed in real time at 
http://www.challonge.com/koth2019.  

3. The contest will be held on Thursday October 10 at 8:30 AM (i.e., during class time) in the 
E-quad.  Since many of you have classes during the time block (8:00 am – 9:30 am or 9:30 
am – 11:00 am) when you don’t have AME 101, your group may have to staff the contest in 
shifts. 

4. Teams may inspect the ramps before the contest and ask for modifications if they believe the 
ramps are not level, have undesirable obstacles, etc. 

5. The order of the 1-on-1 contests will be selected at random and published in advance.  If 
you are not ready at the time of your event, your team will be disqualified for that specific 1-
on-1 contest.  Rigid adherence to schedule is necessary to conduct all 54 or so 
contests during the available time.  After the previous contest is completed, you will 
have 1.5 minutes to ready your vehicle for the event. 

6. To ensure fairness, the vehicles will be started by an “impartial” judge, not a team member. 
7. Vehicles will be given 30 seconds to climb to the top of the hill and compete for possession 

of the hill.  They will start at the bottom of the ramp, on the sloped part, rather than on the 
flat ground at the base of the ramp.  It is possible that a vehicle may not make it all the way 
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to the top or may travel across the top to the other side.  At the end of the 30 second 
period, the vehicle whose farthest point is closest (in 3 dimensions) to the center of 
the top mesa will be declared the winner of that particular contest.  Any parts such as 
telescoping probes, anchors, oil slicks or projectiles count as part of the vehicle.  I will make 
exceptions if in my judgment a part unintentionally breaks off, that won’t count as part of 
the vehicle. 

8. If at the end of the contest one vehicle is off the ramp and another is on the ramp, then the 
vehicle on the ramp wins, even if the other vehicle is closer to the top mesa. 

9. If at the end of the contest the judges cannot declare a clear winner (because the difference 
in distances is very small), the contest will be repeated. 

10. It is entirely acceptable (in fact it’s really the whole point of the contest) to incorporate 
means to remove the opposing vehicle from the top of the hill, as well as defensive measures 
to prevent your vehicle from being removed from the top of the hill and/or being damaged 
by the opposing vehicle. 

11. Project reports will be due on Monday, October 28, at 4:00 pm in OHE 430N. 
 
Organization and grading 
 You will work in teams of 4 or 5 people, assigned at random, nominally with 2 or 3 people 
from each section of the class.  Each team must keep a report of their work.  The report will be the 
primary means of grading the projects (2/3).  Your level of success in the competition also counts 
(1/3) according to the formula: 
 

Competition score = 50 * (N-P)/(N-1) +50 
 

where P is your place at the end of the Swiss tournament and N is the total number of teams 
competing.  So even the last place team (N = P) gets 50% on the competition score.  Also, the 
report/documentation score counts more than the competition score; in other words more weight is 
given to the process than the result, which is just the opposite of how life really works where you’re 
judged 100% on the result and 0% on the process. 
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Arduino Cars 
 
Objective 
 

The goal of this contest is to build and program an Arduino vehicle that can autonomously 
follow a line, avoid obstacles, and similar tasks.  You will work in groups of 5, assigned at random, 
to develop these capabilities.  The contest will be held virtually; you will submit a video of your 
group’s vehicle’s performance no later than October 5, 2020. 
 
Design rules 
 

1. The vehicle required is the “Freenove 4WD Car Kit” available on Amazon: 
 
https://www.amazon.com/gp/product/B07YBQ73CH 
 
It is not technically an Arduino, but it is Arduino-compatible. This kit has 4 independently 
controllable motors (1 per wheel), a line-follow sensor and an ultrasonic proximity sensor 
(for obstacle avoidance.) 

 
2. The vehicle must be completely autonomous.  No remote power, control wires or wireless 

IR or RF remote-control links are allowed.  Because of this, you can get the cheaper version 
without the RF remote unless you want the RF remote capability for some other project 
(note that I removed the IR and RF remote features in the above picture.) 
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3. The vehicle can be powered only by the two 18650 batteries specified for the car kit which 
are not included. Amazon sells them, but because they are used in vaping devices you may 
not be able to buy them as a stand-alone product.  You can, however, buy them as part of a 
flashlight kit; just search “18650 flashlight” and get a kit with at least 4 batteries (2 to use and 
2 to charge at any one time) and a charger; cost is around $20.  An adult (over 21) can buy 
them in person at smoke shops.  Also, if you have a spare Tesla lying around, there are 7,104 
of these batteries inside a Model S with the 85 kWh battery pack. 

4. Since the groups will not be able to interact in person, each student should buy their own kit. 
With your group you will share construction tips and software routines for various tasks, 
compare their effectiveness, and pick the best one for your final competition. 

5. This kit cannot be shipped to some countries. If this is the case, you can buy a kit that is 
similar hardware-wise which is available in your country.  There may be an issue that the 
software is different and not compatible with the “standard” kit. If so, you'll still be able to 
build and test your car and contribute to your group in terms of ideas for the competition, 
but not actually contribute software to it. 

 
Later we’ll send out the “courses” you'll need to follow and the rules for assigning point values for 
time and accuracy in following the course.  There will be 3 separate courses: 
 

1. A simple follow-the-line type of course just to show that you have built the car successfully 
and it can perform one of the built-in tasks 

2. A “dance routine” involving multiple turns and pivots 
3. An “obstacle course” where you drive over small obstacles like 1” thick books and avoid 

other obstacles like soda cans 
4. (Optional, small bonus point value) Any “silly pet tricks” type of routine you’d like to 

demonstrate 
 

The contest  
 

1. You will submit a video of your vehicle’s performance no later than Monday, October 5, 
2020.  Only one video per group can be submitted; the group can choose any member’s 
vehicle for the final video.  (Having 5 people per group enables voting, if needed, that would 
be problematic with a 4-person group.) 

2. Project reports will be due on Monday, October 12, 2020. 
 
Organization and grading 
 
 You will work in teams of 5 people, assigned at random. Each team will keep a report of their 
work.  The report will count for half of the project grade and your level of success in the 
competition acounts half according to a formula to be announced later. 
 
The grading rubric for the project reports will be as follows: 
 
(20 points) Organization/presentation 

• Structure of report 
• Writing style 
• Clarity of figures 
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• Captions on figures 
(30 points) Documenting the development process 

• Focused on objectives 
• Logic flow of development process 
• Documenting meetings 
• Justification of statements 

(30 points) Testing your vehicles and control programs 
(20 points) Lessons learned - what would you do differently if you had to do it all over again? 
 
Add this table to your cover page: 
 

Organization                  /20 
Documentation                  /30 
Testing                  /30 
Lessons learned                  /20 
Total                  /100 

 
The grading is not like an exam where you start at 0 and add points or start at 100 and remove 
points.  The project reports start at 75 as an “average” report and points are added or subtract from 
there. So, getting a score of 75 doesn’t mean you lost 25 points, it means the report was average in 
our assessment. 
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3D-Printed Bridge 

     
 

The goal of this project is to design, construct and test (to failure) a 3D-printed bridge made from 
Polylactic Acid (PLA). The contest specifications are chosen to simulate those of a “real” bridge as 
closely as practical.  Your score on the performance part of the project is based entirely on how 
much weight your bridge holds before failure.  The testing will be conducted in the E-quad during 
on December 10, 2019. 
 

Rules: 
1. The only construction material allowed is PLA.  No other materials are allowed.  You 

may print your bridge in multiple interlocking parts, but you may NOT use any glue to 
bind them together. 

2. Your bridge must weigh no more than 50 grams (I suppose I should say “grams force”). 
There is no bonus for having a bridge lighter than 50 grams but if your bridge is overweight, 
the “official” weight your bridge held will be reduced according to the formula: 

 

  Weight (official) = Weight (actual) x (50 g / Bridge weight)2 
 

 In other words, you will be penalized not just linearly, but in proportion to the square of 

             
Figure 27.  Diagram of bridge testing apparatus 
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how much you’re overweight.   
3. The bridge must be able to span a gap of 10 inches between two steel pipes, each 1 inch in 

diameter (see Figure 27).  The bridge cannot have any structure below the plane of the top 
of the pipes.  Loads will be applied by suspending a bucket below the center of the bridge 
from a 2 inch x 2 inch steel plate fitted with a ¼” diameter eyebolt and slowly filling the 
bucket with sand until the bridge fails.  The application plane for this steel plate must be no 
more than 4 mm above “ground level” (defined as the plane passing through the tops of the 
two support pipes); in other words, your support underneath the plate must be no thicker 
than 4 mm as measured from the bottom of your bridge. 

4. The minimum printed feature size is 2 mm in the x, y and z directions. 
5. If you are using a truss bridge, the bridge must have an open area (simulating a roadbed for 

trains) 2 inches wide and 2 inches tall. A block 2” x 2” x 12”, oriented with the bottom 
plane parallel to the ground, will be pushed through your bridge to confirm this.  This block 
must pass through at an elevation no higher than 4 mm above the bottom surface of your 
bridge. 

6. No part of the bridge may be more than 4” above the lowest part. 
7. You’ll need a hole in the center of the roadbed 5/16” in diameter to allow the eyebolt to 

pass through and connect to the loading plate. 
8. You should print one or more test bridges (which may be scaled down from the final 

version) and test them to failure in order to test your design and any manufacturing 
limitations before your final bridge is printed.  The 3D4E club (a 3D printing club on 
campus) has graciously offered to print one bridge per group.  These prints will be done on 
November 11 - 13; a sign-up sheet will be distributed.  You will need to bring a USB drive 
with an .stl file of your design.  These test prints can be no longer than 11.4 inches (which is 
just about the size you’d want for the final bridge, anyway.)  These will be tested in the BHE 
310 lab or the Fab Lab (RRB 114).  You can also use any other printer you want for your 
test bridges, but you should use the print settings listed below. 

9. In order to make the construction of the final bridges as uniform as possible, we will use an 
outside company, MAKEiT in Alhambra, CA (http://makeit-3d.com) for the final printing.  
Your final design will be due by November 25, 2019 so that they have time to print 19 full-
size bridges before contest day. You are encouraged to visit MAKEiT but not in 78 separate 
visits!  Email the final design to ame101f19 at gmail.com. 

10. The procedures recommended by MAKEiT in order for your final bridges (that they will 
print) to have nearly the same properties as your test bridges (that you will print in the 3D4E 
lab or elsewhere) are as follows: 
a. Download Ultimaker’s Cura: https://ultimaker.com/software/ultimaker-cura. It’s free 

and should have presets for almost every printer on the market.  
b. Test bridge prints should be made with these print settings held constant 

o Layer height: 0.25 mm 
o Infill density %: 100 
o Perimeter wall thickness: 1.2 mm 
o Top/bottom surface thickness: 1.2 mm 

11. You are not responsible for failing to meet these specifications if your .stl file meets all of 
the above requirements but fails to print to accurately (e.g., if the interior is slightly narrower 
than 2 inches). For the purposes of computing bridge weight in your .stl file, assume a PLA 
density of 1.25 g/cm3 and thus a maximum volume of (50 g)/(1.25 g/cm3) = 40 cm3. 
Alternatively, you can print slightly more than 40 cm3 of material and if your bridge is 
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overweight, you can remove some material. (Note that the 2 mm minimum feature size is a 
restriction requested by MAKEiT for the printing process, not a contest restriction.) 

• Just before the test, you will be asked for a specific prediction about your bridge’s failure 
load, point of failure, and deformation at failure.  We don’t expect that the agreement will be 
very good and having a poor agreement won’t hurt your report score, but if the agreement 
isn’t good you should list some possible reasons for the discrepancy (i.e., what happens in 
reality that isn’t modeled by SolidWorks FEA?) 

12. You will receive a high-speed video of your bridge failure so you can compare the 
deformation before failure and the failure location to your FEA predictions. 

 
You will work in teams of 4 people, assigned at random.  Each team will keep a report of their work. 
Keep in mind that “real” engineered systems always start with a statement of specifications, followed 
by brainstorming, then analysis, construction, testing and finally evaluation of the performance of 
the final product.  So your report should reflect “real” engineering practice.   
 
The report will be the primary means of grading the projects (2/3).  Your level of success in the 
competition also counts (1/3).  The performance score (out of 100 possible) will be computed as 
follows: 
 

Performance score = 50(1 + W/M) 
 
where M = maximum weight held by any bridge and W = weight held by your bridge, so your 
group’s score will be between 50 and 100.  So more weight (no pun intended) is given to the process 
(i.e., your report) than the result, which is just the opposite of how life really works.  The report 
should include: 
 

•  Drawings of preliminary design concepts and critiques of these designs - In the report you 
need to explain your design in terms of minimizing the stress for the given maximum weight.  
So talk about what you did that decreased stress more than anything else you could have done. 

• Results of Finite Element Analysis (FEA) (stress computations) using SolidWorks. Put the 
summary results here; if you have a lot of results, summarize them here and put the details in 
an appendix. 

• Testing of the preliminary bridges. 
• Design changes made based preliminary testing. 
• Manufacturing (3D printing) issues. 
• Results of the “official” test. 
• “Post-mortem” of your bridge (why it failed).  Did the bridge fail at the location where the 

predicted stress was highest according to the SolidWorks FEA analysis? If not, any idea why 
not? 

• What you would do differently if you built another bridge. 
• Appendices 

o Meetings – agenda, minutes, action items. 
o Copies of e-mail exchanges. 
o Details of FEA stress computations 

• Whatever else you think is appropriate – pictures of your test apparatus and the final 
bridge are very nice to have.  Some people show pictures of “real” bridges or other people’s 



 121 

bridges, which isn’t very insightful.  Also, I prefer to have the pictures in the body of the 
report where they are referred to in the text, not at the end where I have to keep referring 
back and forth. 

• Project reports will be due on Wednesday, December 18, 2019 at 4:00 pm in OHE 430N. 
 
Please no binders for these reports, just pages of plain paper stapled together; 20+ 3-ring 
binders take up too much space! 
 
Suggestions for the design/construction 
 

• From various references you can find that the yield stress (syield) of PLA in tension is around 
45 MPa and the elastic modulus (E) is around 3000 MPa, and the density 1.25 g/cm3. You 
can use values from the references, but you’ll get a better grade if you do some testing of 
printed PLA in a manner similar to how you tested spaghetti in HW #3, Problem 3. 

• Make sure your bridge is a little longer than 10 inches so that when the load is applied and it 
starts to bend, it won’t slip between the supports! 

• Do NOT build anything on the bottom to constrain the bridge on the support pipes; as the 
bridge bends that will add increased tension on the lower support beams (real bridges are 
built to flex this way, too.) 

• You should test your virtual bridge using the SolidWorks FEA and estimate its failure load.  
In particular, if the program shows that some elements are under more stress than others, 
you should strengthen that element, for example by increasing the thickness of that element.  
Conversely, elements with little stress should be weakened or eliminated completely.  Show 
how you use the results to minimize your stress to weight ratio.  Just running the 
FEA program without using the results isn’t very insightful.  What is really cool and 
will get you a really good grade on the report is if you actually use SolidWorks to 
predict the load at which the bridge will fail and compare the actual failure load to 
the predicted one. 

• Inevitably a bridge with a superstructure (i.e., a truss bridge) will be stronger than a flat 
bridge of the same weight.  This is a natural consequence of the fact that you’ll get more 
moment of inertia (I) for the same amount of material with a tall structure than a flat one 
(think about the discussion of I-beams). 

• Don’t forget to consider buckling of elements (e.g., by determining the maximum 
deformation) as well as stress failures 

• In presenting the Solidworks FEA results, the scales on the plots are too small to read and 
the tick marks are at weird intervals - don’t just accept the defaults, make a good plot out of 
a bad one. 
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Appendix B.  Problem-solving methodology 
 

1. Make a clean start (clean sheet of paper) 
2. Draw a picture 
3. State givens, state unknowns (in real life, in most cases you won’t have enough givens to 

determine the unknowns so you’ll have to turn some of the unknowns into givens by making 
“plausible” assumptions.)  You need to have as many equations as unknowns.  If you 
can state what the equations and the unknowns are, you’re 90% of the way to the 
solution. 

4. Think, then write (I don’t necessarily agree with this…)  But it is essential that you STATE 
YOUR ASSUMPTIONS AND WRITE DOWN THE EQUATIONS THAT YOU USE 
BEFORE YOU PLUG NUMBERS INTO SAID EQUATIONS.  Why is this so 
important?  To make sure that your equations are valid for the problem assumptions.  For 
example, Bernoulli’s equation is valid only for steady, incompressible (constant-density) flow 
but on the panic of an exam you’ll try to apply it to a gas at high Mach number.  Another 
example is Hooke’s law, which applies only to an elastic material, not Play-Doh. 

5. Be coordinated – show your coordinate system on you picture and follow through with this 
coordinate system in your equations 

6. Neatness counts 
7. Units 
8. Significant figures 
9. Box your answer 
10. Interpret the result – is it reasonable? 
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Appendix C.  Excel tutorial 
 
Excel is a fairly powerful tool for data analysis and computation.  It is primarily oriented toward 
financial calculations but it works reasonably well for engineering and scientific calculations as well.  
It is certainly not as capable as programs like Matlab, Mathematica, TKSolver, etc. but most people 
have free access to Excel.  And you can imbed an Excel spreadsheet in a Word or Powerpoint 
document such that all you need to do to open the spreadsheet is to click on the figure.  Plus, a lot 
of people (PDR included) have created spreadsheets in Excel for solving various types of problems 
that can be downloaded from the internet.   Some of my spreadsheets are available on-line at 
 
http://ronney.usc.edu/excel-spreadsheets/ 
 
This short tutorial is aimed to give you a few pointers at how to use Excel for engineering problems.  
Of course, there’s no substitute for actually playing with the program – reading about how to use 
software is about as useful as reading about how to ride a bicycle. 
 
Cells, rows and columns 
Spreadsheets are organized into cells arranged in rows and columns of information.  In Excel the 
columns are A, B, C, … and the rows are 1, 2, 3, ….  So the address of the cell in 4th column, 5th row 
would be D5.  
 
Formulas 
Each cell may contain raw data (i.e. just a plain number) or a formula, or text.  The formula cells 
generally refer to other cells, for example if cell A1 had a number in it, and B1 had another number, 
and you wanted to know the sum of those 2 values, you could enter =A1+B1 into another cell (not 
A1 or B1) for example C1:  (If you’re viewing the Word version of this document (not the online 
web version, not the pdf version), you can double click the table to open the Excel spreadsheet) 
 

 
 
You can look at the formula entered into a cell by clicking on that cell and looking at the “formula 
bar” at the top of the screen.   There’s a zillion different functions you can use in Excel, e.g. addition 
(+), multiplication (*), subtraction (-), division(/), exponentiation (^), ln( ), exp( ), sin( ), etc.  Pick 
“function” from the “insert” menu to see the available functions.  Some functions like SUM, 
AVERAGE, STDEV, etc. refer to an array of cells rather than an individual cell, in which case the 
formula is of the form =SUM(A1:B10).  (Note that the array of cells can be a vertical column, a 
horizontal row, or a block more than one cell wide in both the horizontal and vertical directions). 
 
Also, sometimes you want to create a formula in one cell then copy/paste the same formula into 
other cells, e.g. E = mc2.  If your cell contains a constant, when you copy/paste, you’ll get the 
constant in all the cells into which you paste.  If your cell contains a formula, when you copy/paste, 
you’ll get that formula in the other cells, but the cells to which the formula refers will be adjusted 
accordingly.  For example, if cell C1 contains the formula =A1+B1, if you copy/paste this formula 
into cell E7 (2 columns to the right and 6 rows down), the formula in cell E7 will read =C7+D7 (each 
cell reference is changed by 2 columns to the right and 6 rows down).  This is extremely convenient 

1st number 2nd number Sum
7 5 12
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for calculating E = mc2 for a large set of masses (m), but really you only want to enter c (speed of 
light) in one cell, and have all formulas refer to the value of c in that cell which would be (in the 
example below) cell A2.  In that case you can use an “absolute reference” to that cell which is of the 
form $A$2 rather than just A2.  Without the dollar signs formulas use “relative references” and thus 
change when you copy/paste them.  (If on the other hand you cut and paste rather than copy and 
paste, meaning you’re moving a cell or cells from one location to another rather than creating new 
formulas in new cells, then the referencing doesn’t change, that is, A2 stays A2.) 
 

 
 
There are also array formulas that are especially useful for solving a set of simultaneous linear 
equations.  They are rather cryptic to create, almost like a secret handshake, so I’ll just give you a 
“template” you can use: 
 

 
This solves the set of equations 
1 X1 + 2 X2 + 3 X3 + 4 X4 = 10  
8 X1 + 7 X2 + 6 X3 + 5 X4 = 26  
1 X1 - 1 X2 + 1 X3 + -1 X4 = 0  
4 X1 + 5 X2 + 2 X3 + 1 X4 = 12  
 
which has the solution X1 = X2 = X3 = X4 = 1. 
 
Another useful function is “Goal Seek” from the “Tools” menu, for which you can ask Excel to 
modify the value in one cell until another cell has a specific value.  For example, you could input the 
formula for the left-hand side of an equation in one cell, input the formula for the right-hand side of 
the equation into another cell, then set another cell to compute the difference between the right and 
left-hand sides, and use Goal Seek to find the solution.  Let’s suppose you want to find x such that 
150 sin(x) ex = 12 ln(x) + 7x2 (x in radians for the sin(x) term).  There’s no way to solve this 
analytically, so you have to do tedious trial and error to find the solution, so set up the spreadsheet: 
 

 
In this case use Tools / Goal Seek / Set cell: D2 / To value: 0 / By changing cell: A2 
Of course, your initial guess of x has to be good enough that Excel can converge on the solution.  
There are also other selections under the Tools menu such as “Solver” that has more options (like 
changing multiple cells to find the solution, or find the maximum or minimum rather than a specific 
value, optionally subject to constraints such as certain cells have to be greater than zero) but in my 
experience Solver is less reliable for simple problems – use Goal Seek if it will do what you need. 

c (m/s)
3.00E+08

m (kg) 1 10 100 1000
E (Joules) 3.00E+08 3.00E+09 3.00E+10 3.00E+11

1.01E+00 2 3 4 10
1 2 3 4 10
1 -1 1 -1 0
4 5 2 0.00E+00 12

-1.003E-14 1.64102564 1.8974359 0.25641026

x 150*sin(x)*exp(x) 12*ln(x) + 7x^2 LHS-RHS
1.88396438 32.44579276 32.44579189 -0.000875599
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A very powerful “dirty trick” within Excel is the “iterate” feature.  Select Preferences / Calculation 
and check “Manual.”  Also select “Iteration” and set “Maximum iterations” = 1.  With this, Excel 
(a) does not update the calculations automatically, but only when you type Cmd  = (on the Mac, or 
something similar on the PC) and (b) Excel doesn’t complain when cells refer to each other (circular 
references, like if you had the formula “=A1” in cell B1, and “=A1” in cell B1.  This might not seem 
like anything useful, but in most scientific calculations, one has a large set of simultaneous, non-
linear equations and the only way to solve them is iteratively.  Each time you type Cmd =, the 
calculation advances by one iteration towards the solution. A trivial example of this is to put the 
formula “=A1+1” in cell A1: 
 

 
Every time you hit Cmd =, the value of this cell will increase by 1. 
 
Also, for time-dependent problems, you can use the iteration feature and each iteration will 
increment the solution by one time step.  I have written a fairly elaborate sheet for use in heat 
conduction problems: 
 
http://ronney.usc.edu/spreadsheets/Unsteady_2D_conduction.xls 
 
You can also plot data sets by highlighting the cells and selecting “Chart” from the “Insert” menu 
and you’ll get a bunch of options of what to plot and how to plot it.  Excel doesn’t make very good 
quality plots suitable for publication in journals, but they’re adequate for homework, internal reports, 
etc.  If you click on the chart you created and select the “Add Trendline” option from the Chart 
menu, you can add a least-squares fit to the data in the form of a line, polynomial, power law, etc. 
 
One of my favorite examples of a fairly complete spreadsheet package including plotting is the one I 
wrote for analyzing internal combustion engine cycles including the effects of compression and 
expansion, heat losses, the rate of combustion, the exhaust gases trapped in the cylinder after the 
end of the exhaust stroke, etc.: 
 
http://ronney.usc.edu/spreadsheets/AirCycles4Recips.xls 
 
  

1
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Appendix D.  Statistics 
 
“There are three kinds of lies: lies, damn lies, and statistics…” 
- Origin unknown, popularized by Mark Twain. 

Mean and standard deviation 
 
When confronted with multiple measurements y1, y2, y3, … of the same experiment (e.g. students’ 
scores on an exam), one typically reports at least two properties of the ensemble of scores, namely the 
mean value and the standard deviation: 
 
Average or mean value = (sum of values of all samples) / number of samples 

      (Equation 84) 

Standard deviation = square root of sum of squares of difference between each sample and the 
mean value, also called root-mean-square deviation, often denoted by the Greek letter lower case s: 
  

 (Equation 85) 

 
Warning:  in some cases a factor of n, not (n-1), is used in the denominator of the definition of 
standard deviation.  I actually prefer n, since it passes the function test better: 

o With n in the denominator, then when n = 1, y1 = , and s = 0 (that is, no sample deviates 
at all from the mean value.) 

o With n - 1 in the denominator, then when n = 1, again y1 = , but now s = 0/0 and thus 
standard deviation is undefined 

But the definition using n – 1 connects better with other forms of statistical analysis that we won’t 
discuss here, so it is by far the more common definition. 
 
Example:   
 

On one of Prof. Ronney’s exams, the students’ scores were 50, 33, 67 and 90.  What is the 
mean and standard deviation of this data set? 
 

Mean =   (a bit lower than the average I prefer) 

Standard deviation =  

 
Note also that (standard deviation)/mean is 31.12/60 = 0.519, which is a large spread.  More 
typically this number for my exams is 0.3 or so.  In a recent class of mine, the grade 
distribution was as follows: 

    

€ 

y ≡ y1 + y2 + y3 + ... + yn

n
=

1
n

yi
i=1

n

∑

σ ≡
(y1 − y )

2 + (y2 − y )
2 + (y3 − y )

2 +...+ (yn − y )
2

n−1
=

1
n−1

yi − y( )2
i=1

n

∑

€ 

y 

€ 

y 

50+33+ 67+ 90
4

= 60

(50− 60)2 + (33− 60)2 + (67− 60)2 + (90− 60)2

4−1
= 31.12



 127 

 
Grade # of standard deviations above/below mean 
A+ > 1.17 s above mean (1.90, 1.81) 
A 0.84 to 1.17 above mean 
A- 0.60 to 0.67 above mean 
B+ 0.60 above mean to 0.10 below mean 
B 0.32 to 0.29 below mean 
B- 0.85 to 0.68 below mean 
C+ 1.20 to 1.07 below mean 
C 1.67 to 1.63 below mean 
C- > 1.67 below mean (2.04) 

 

Stability of statistics 
 
If I want to know the mean or standard deviation of a property, how many samples do we need?  
For example, if I flip a coin only once, can I decide if the coin is “fair” or not, that is, does it come 
up heads 50% of the time?  Obviously not.  So obviously I need more than 1 sample.  Is 2 enough, 1 
time to come up heads, and another tails?  Obviously not, since the coin might wind up heads or 
tails 2 times in a row.  Below are the plots of two realizations of the coin-flipping experiment, done 
electronically using Excel.  If you have the Word version of this file, you can double-click the plot to 
see the spreadsheet itself (assuming you have Excel on your computer.)  Note that the first time 
time the first coin toss wound up tails, so the plot started with 0% heads and the second time the 
first coin was heads, so the plot started with 100% heads.  Eventually the data smooths out to about 
50% heads, but the approach is slow.  For a truly random process, one can show that the uncertainty 
decreases as 1/√n, where n is the number of samples.  So to have half as much uncertainty as 10 
samples, you need 40 samples! 

 
Figure 28.  Results of two coin-toss experiments. 

 
Side note:  if a “fair” coin lands heads 100 times in a row, what are the chances of it landing heads 
on the 101st flip?  50% of course, since each flip of a fair coin is independent of the previous one. 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

1 10 100 1000

Fr
ac

ti
o

n
 h

ea
d

s

Number of samples

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

1 10 100 1000

Fr
ac

ti
o

n
 h

ea
d

s

Number of samples



 128 

Least-squares fit to a set of data 
 
Suppose you have some experimental data in the form of (x1, y1), (xx, y2), (x3, y3), … (xn, yn) and you 
think that the data should fit a linear relationship, i.e. y = mx + b, but in plotting the data you see 
that the data points do not quite fit a straight line.  How do you decide what is the “best fit” of the 
experimental data to a single value of the slope m and y-intercept b?  In practice this is usually done 
by finding the minimum of the sum of the squares of the deviation of each of the data points  (x1, 
y1), (xx, y2), (x3, y3), … (xn, yn) from the points on the straight line (x1, mx1+b), (x2, mx2+b), (x3, 
mx3+b), … ((xn, mxn+b).  In other words, the goal is to find the values of m and b that minimize the 
sum  
 

S = (y1-(mx1+b))2 + (y2-(mx2+b))2 + (y3-(mx3+b))2 + … + (yn-(mxn+b))2. 
 
So we take the partial derivative of S with respect to m and b and set each equal to zero to find the 
minimum.  Note:  this is the ONLY place in the lecture notes where substantial use of 
calculus is made, so if you have trouble with this concept, don’t worry, you won’t use it 
again in this course.  A partial derivative (which is denoted by a curly “∂” compared to the straight 
“d” of a total derivative) is a derivative of a function of two or more variables, treating all but one of 
the variables as constants.  For example if S(x, y, z) = x2y3 – z4, then ∂S/∂x = 2xy3, ∂S/∂y = 3x2y2 
and ∂S/∂z = -4z3.  So taking the partial derivatives of S with respect to m and b separately and 
setting both equal to zero we have: 
 

 

(Equation 86) 

 

          (Equation 87) 

These are two simultaneous linear equations for the unknowns m and b.  Note that all the sums are 
known since you know all the xi and yi.  These equations can be written in a simpler form: 
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     (Equation 88) 

 
These two linear equations can be solved in the usual way to find m and b: 

    (Equation 89) 

Example 
 
What is the best linear fit to the relationship between the height (x) of the group of students shown 
below and their final exam scores (y)?  Assuming this trend was valid outside the range of these 
students, how tall or short would a student have to be to obtain a test score of 100?  At what height 
would the student’s test score be zero?  What test score would an amoeba (height ≈ 0) obtain? 
 

Student name Height (x) (inches) Test score (y) (out of 100) 
Juanita Hernandez 68 80 

Julie Jones 70 77 
Ashish Kumar 74 56 

Fei Wong 78 47 
Sitting Bear 63 91 

 
A = 68+70+74+78+63 = 353 
B = 80 + 77 + 56 + 47 + 91 = 351 
C = 682 + 702 + 742 + 782 + 632 = 25053 
D = 68*80 + 70*77 + 74*56 + 78*47 + 63*91 = 24373 

 
From which we can calculate m = -3.107, b = 289.5, i.e.  
 

Test score = -3.107*Height +289.5 
 
For a score of 100, 100 = -3.107*Height + 289.5 or Height = 61.01 inches = 5 feet 1.01 inches 
For a score of zero, 0 = -3.107*Height + 289.5 or Height = 93.20 inches = 7 feet 9.2 inches 
For a height of 0, score = 289.5 
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Figure 29.  Least-squares fit to data on test score vs. height for a hypothetical class 

 
How does one determine how well or poorly the least-square fit actually fits the data?  That is, how 
closely are the data points to the best-fit line?  The standard measure is the so-called R2-value defined 
as one minus the sum of the squares of the deviations from the fit just determined (i.e. the sum of 
(yi-(mxi+b))2 divided by the sum of the squares of the difference between yi and the average value  
(=70.2 for this case), i.e., 
 

       (Equation 90) 

 
For a perfect fit yi = mxi + b for all i, so the sum in the numerator is zero, thus R2 = 1 is a perfect fit.  
The example shown above is pretty good,  
 

 

and even fairly crummy fits (i.e. as seen visually on a plot, with many of the data points far removed 
from the line) can have R2 > 0.9.  So R2 has to be pretty close to 1 before it’s really a good-looking 
fit. 
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