C H A P T E R

51

Learning Objectives

$>$ The Atom
$>$ Bohr's Atomic Model
$>$ Electron Energy Levels in Hydrogen Atom
$>$ Orbital (or Azimuthal) Quantum Number
> Orbital Magnetic Quantum Number (m_{l})
$>$ Magnetic Spin Quantum Number (m_{s})
> Pauli's Exclusion Principle
> Energy Bands in Lithium and Their Occupancy
> Valence and Conduction Bands
> Insulators, Conductors and Semiconductors
> Crystal Structure
> Types of Semiconductors
> Mobile Charge Carriers and Immobile Ions
> Electron Conductivity of a Metal
$>$ Combined Drift and Diffusion Currents
$>$ Relation Between D and μ
> Carrier Life Time
> P-N Junction
$>$ Formation of Depletion Layer
$>$ Junction or Barrier Voltage
$>$ Forward Biased P-N Junction
$>$ Reverse Biased P-N Junction

SEMI-

CONDUCTOR PHYSICS

[^0]
51.1. The Atom

According to the model of atom proposed by Bohr in 1913, an atom is composed of a number of electrons moving in circular or elliptical orbits around a relatively heavy nucleus of protons and neutrons as shown in Fig. 51.1. Although, this simple model of an atom has been replaced by later models, yet it affords a convenient method of understanding the working of semi-conductor devices. Electron has a mass of nearly $9.1 \times 10^{-31} \mathrm{~kg}$ and a charge of $1.6 \times 10^{-19} \mathrm{C}$. The diameter of an atom is approximately $10^{-10} \mathrm{~m}$ and that of the nucleus about $10^{-15} \mathrm{~m}$. The number of protons in the atom of an element gives its atomic number while the atomic mass number is determined by the number of protons and neutrons present in the nucleus.

51.2. Bohr's Atomic Model

Fig. 51.1

2. The electrons revolve round their nucleus in circular orbits, the centrifugal force being balanced by the electrostatic pull between the nucleus and electrons;
3. An electron cannot revolve round the nucleus in any arbitrary orbit but in just certain definite discrete orbits. Only those orbits are possible (or permitted) for which the orbital angular momentum (i.e. moment of momentum) of the electron is equal to an integral multiple of $h / 2 \pi$ i.e. orbital angular momentum $=n h / 2 \pi$ where n is an integer and h is Planck's constant. Such orbits are also known as stationary orbits;
4. While revolving in these permitted stationary (or stable) orbits, the electron does not radiate out any electromagnetic energy. In other words, the permissible orbits are non-radiating paths of the electron;
5. The atom radiates out energy only when an electron jumps from one orbit to another. If E_{2} and E_{1} are the energies corresponding to two orbits before and after the jump, the frequency of the emitted photon is given by the relation

$$
E_{2}-E_{1}=h f \quad \text { or } \quad \Delta E=h f
$$

where f is the frequency of the emitted radiations.
Explanation. If I is the moment of inertia of an electron and ω its angular velocity, then as per assumption (3) given above
$\omega I=n h / 2 \pi \quad$ or $\quad\left(m r^{2}\right) \omega=n h / 2 \pi \quad$ or $\left(m r^{2}\right) v / r=n h / 2 \pi$ or $m v r=n \cdot h / 2 \pi$

Alternatively, since the momentum of the revolving electron is $m v$, its moment about the nucleus is $m v r$ (Fig. 51.2).

Hence,
$m v r=n h / 2 \pi$
when $n=1,2,3$ etc. for the first, second and third orbits respectively. It is called the principal quantum number and because it can take whole number values only, it fixes the size of the allowed orbits (also called Bohr's circular orbits).

Let the different permitted orbits have energies of E_{1}, E_{2}, E_{3} etc. as shown in Fig. 51.3 (a). The electron can be raised from $n=1$ orbit to any other higher orbit if it is given proper amount of energy.

Fig. 51.2
Fig. 51.3
When it drops back to $n=1$ orbit after a short interval of time, it gives out the energy difference ΔE in the form of a radiation as shown in Fig. 51.3 (b). The relation between the energy released and frequency of the emitted radiation is

$$
E_{2}-E_{1}=h f \quad \text { or } \quad \Delta E=h f
$$

51.3. Calculations Conceming Bohr's Atomic Model

The above postulates concerning Bohr's atomic model can be utilized to calculate not only the radii of different electron orbits but also the velocity and orbital frequency possessed by different electrons.

Now, the stability of the atom requires that the centrifugal force acting on the revolving electron be balanced by the electrostatic pull exerted by the positively charged nucleus on the electron.

$$
\therefore \quad \frac{m v^{2}}{r}=\frac{Z e \cdot e}{4 \pi \epsilon_{0} r^{2}} \quad \text { or } \quad m v^{2} r=\frac{Z e^{2}}{4 \pi \epsilon_{0}}
$$

Also, according to Bohr's postulates, $m v r=n h / 2 \pi$.
The above two equations may be used to find the radii of different Bohr's circular orbits.
(a) Radii of Orbits. Eliminating v from the above two equations, we get

$$
r=\frac{\epsilon_{0} n^{2} h^{2}}{\pi m Z e^{2}} \quad \text { or } \quad r_{n}=\frac{\epsilon_{0} n^{2} h^{2}}{\pi m Z e^{2}}
$$

It is seen that the radii of the permitted orbits vary as the square of the principal quantum number n. Also, $r_{n}=n^{2} r_{1}$.

For hydrogen atom, $r_{1}=0.53 \times 10^{-10} \mathrm{~m}, r_{2}=2^{2} r_{1}=2.12 \times 10^{-10} \mathrm{~m}$. All values between r_{1} and r_{2} are forbidden.
(b) Velocity of Revolving Electrons. The velocity of a revolving electron as found from the above equations is

$$
v=Z e^{2} / 2 \epsilon_{0} n h=9 \times 10^{9} .2 \pi Z e^{2} / n h .
$$

It shows that velocity is inversely proportional to n i.e. $v \propto 1 / n$. Hence, the electron in the innermost orbit has the highest velocity (nearly $1 / 37$ of the velocity of light).
(c) Orbital Frequency. The orbital rotational frequency* of an electron is

$$
f=\frac{v}{2 \pi r}=\frac{m Z^{2} e^{4}}{4 \epsilon_{0}^{2} n^{3} h^{3}} . \quad \text { It is seen that } f \propto 1 / n^{3}
$$

(d) Electron Energy. The orbital energy of a revolving electron is of two types:
(i) Kinetic energy due to the motion of the electron. Its value is $=(1 / 2) m v^{2}$.

As seen from above, $m v^{2}=\mathrm{Ze}^{2} / 4 \pi \epsilon_{0} r$.
Hence, K.E. $=(1 / 2) m v^{2}=Z e^{2} / 8 \pi \in_{0} r$. -as represented by curve 2 in Fig. 51.4.
Eliminating r from above,

$$
\text { K.E. }=m Z^{2} e^{4} / 8 \epsilon_{0}^{2} n^{2} h^{2} .
$$

(ii) Potential energy-because the electron lies in the electric field of the positive nucleus.

Now, the potential at a point distant r from the nucleus is

$$
V=Q / 4 \pi \epsilon_{0} r=Z e / 4 \pi \epsilon_{0} r
$$

The potential energy of an electron (of charge- e) is

$$
\begin{aligned}
\text { P.E. } & =V \times(-e)=-\frac{Z e^{2}}{4 \pi \epsilon_{0} r} \\
\text { or } \quad & =-\frac{m Z^{2} e^{4}}{4 \epsilon_{0}^{2} n^{2} h^{2}}-\text { curve } 1 \text { in Fig. } 51.4
\end{aligned}
$$

$\therefore \quad$ Orbital energy $=$ K.E. + P.E.

$$
\begin{aligned}
& =\frac{Z e^{2}}{8 \pi \epsilon_{0} r}-\frac{Z e^{2}}{4 \pi \epsilon_{0} r} \\
& =-\frac{Z e^{2}}{8 \pi \epsilon_{0} r} \quad-\text { curve } 3 \text { in Fig. } 51.4
\end{aligned}
$$

Fig. 51.4

Variations of potential energy and total energy are shown in Fig. 51.4.
If r is eliminated from the above equation, the orbital energy** is
$E_{n}=-m Z^{2} e^{4} / 8 \epsilon_{0}{ }^{2} n^{2} h^{2}$
where $n=1,2,3 \ldots \ldots$. etc. for the energy states that it is possible for the electron to have. It will be seen that $E_{n}=E_{1} / n^{2}$.

51.4. Normal, Excited and Ionized Atom

Consider the case of the simplest atom i.e. hydrogen atom. When its only electron is in its innermost orbit $(n=1)$, then the atom is said to be in its normal (or unexcited) state. Generally, it is this condition in which most of the free hydrogen atoms in a gas are found to exist at normal room temperature and pressure. However, if spark is passed through hydrogen gas contained in a vessel, then high-speed electrons produced by the spark collide with hydrogen atoms and may either completely remove the $n=1$ electron from them or raise it to higher permitted orbits having $n=2,3,4$ etc.

When the electron is completely removed from the atom, the atom is said to be ionized. If, however, the electron is forced into an outer or higher n-value orbit, then the atom, is said to be $\bar{*}$ It is the mechanical frequency of $\overline{\text { rotation }} \overline{\text { and }} \overline{\text { should not be confused with the frequency of emitted }}$ radiations.
** The negative sign only indicates that this much energy is required to remove the electron from the atom.
excited (or in an excited state). The atom does not remain in the excited state longer than 10^{-8} second because the electron under the attractive force of the nucleus jumps to the lower permitted orbit. In doing so, the electron loses the energy it had earlier gained during collision. However, the electron may return by several jumps, thereby emitting many different radiations of different frequencies.

51.5. Electron Energy Levels in Hydrogen Atom

As seen from Art. 51.3, orbital energy of an electron revolving in $n_{\text {th }}$ orbit or shell is

$$
E_{n}=-m Z^{2} e^{4} / 8 \epsilon_{0}^{2} n^{2} h^{2}
$$

In the case of hydrogen atom, $Z=1$, hence

$$
\begin{aligned}
E_{n} & =-\frac{m e^{4}}{8 \epsilon_{0}^{2} n^{2} h^{2}}=-\frac{m e^{4}}{8 \epsilon_{0}^{2} h^{2}} \cdot \frac{1}{n^{2}}=-\frac{21.7 \times 10^{-19}}{n^{2}} \text { joules } \\
& =\frac{-21.7 \times 10^{-19}}{1.6 \times 10^{-19}} \cdot \frac{1}{n^{2}}=-\frac{13.6}{n^{2}} \mathrm{eV} \quad\left(\because 1 \mathrm{eV}=1.6 \times 10^{-19} \text { joules }\right)
\end{aligned}
$$

This expression gives the total energy of an electron when it occupies any one of the different orbits (or shells) of the hydrogen atom.

Fig. 51.5
For K-shell, $\quad n=1$,
$E_{1}=-13.6 \mathrm{eV}$
For L-shell, $n=2$,
$E_{2}=-13.6 / 2^{2}=-3.4 \mathrm{eV}$
For M-shell, $n=3$,
$E_{3}=-13.6 / 3^{2}=-1.51 \mathrm{eV}$ etc.
Instead of drawing various electron orbits to the scale of their radii as in Fig. 51.5 (a), it is customary to draw horizontal lines to an energy scale as shown in Fig. 51.5 (b) and such a diagram is called energy level diagram ($E L D$) of an atom. In this array of energies, the higher (i.e. less negative) energies are at the top while the lower (i.e. more negative) energies are at the bottom. The various electron jumps between allowed orbits now become vertical arrows between energy levels. Greater the length of the arrow, greater is the energy ' $h f$ ' of the radiated photon.

Example 51.1. Calculate the value of the kinetic, potential and total energy of an electron revolving in Bohr's first orbit in a hydrogen atom.

Solution. (i)

$$
\begin{aligned}
K . E . & =\frac{m e^{4}}{8 \epsilon_{0}^{2} n^{2} h^{2}}=\frac{9.1 \times 10^{-31} \times\left(1.6 \times 10^{-19}\right)^{4}}{8 \times\left(8.854 \times 10^{-12}\right)^{2} \times 1^{2} \times\left(6.625 \times 10^{-34}\right)^{2}} \\
& =21.7 \times 10^{-19} \text { joules }=\mathbf{1 3 . 6} \mathbf{e V}
\end{aligned}
$$

$$
\begin{equation*}
\text { P.E. }=\frac{m e^{4}}{4 \epsilon_{0}^{2} n^{2} h^{2}}=-43.4 \times 10^{-19} \text { joules }=-27.2 \mathrm{eV} \tag{ii}
\end{equation*}
$$

(iii) Total energy $=$ K.E. + P.E. $=13.6+(-27.2)=-\mathbf{1 3 . 6} \mathbf{e V}$

51.6. Orbital (or Azimuthal) Quantum Number

According to Bohr's postulates (Art. 51.2), there is only one orbit (and hence one energy level) corresponding to each value of the principal quantum number n. However, subsequent experimental evidence revealed that all orbits (except $n=1$ orbit) consist of more than one orbit called sub-orbits. This group of sub-orbits is collectively known as shell. For example, $n=1$ shell or K-shell consists of only one orbit which may also be called its own sub-orbit or sub-shell. The $n=2$ shell or L-shell consists of two sub-shells. Similarly, $n=3$ shell or M-shell consists of three sub-shells. In other words, the number of sub-shells is equal to the n-value of the shell. The $2 n^{2}$ electrons of the shell now get divided between these sub-shells.

In order to distinguish between different sub-shells belonging to a given shell, a new quantum number called orbital (or azimuthal) quantum number l has been introduced. This quantum number can have integral values lying between zero and $(n-1)$ i.e. $0 \leq l \leq(n-1)$. It is helpful in the following ways:
(a) It gives the number of sub-shells which are contained in one shell. The number of sub-shells is equal to the number of values which l can have subject to the restriction $0 \leq l \leq(n-1)$ as shown in Fig. 51.6 (a).

Fig. 51.6
(b) It helps to distinguish between different sub-shells of a shell by its different values for each sub-shell. Consider the following cases :

1. $n=1$ shell. Here, l can have only one value i.e. zero. Hence, K-shell has only one subshell with two quantum numbers of $n=1$ and $l=0$.
2. $n=\mathbf{2}$ shell. Here, $l=0,1$. Hence, this shell has two sub-shells* which are distinguishable from each other by their different quantum numbers of $n=2, l=0$ and $n=2, l=1$. (Fig. 51.6).
3. $n=3$ shell. Here $l=0,1,2$, showing that M-shell has three sub-shells which differ in their l-values. The two quantum numbers for the three sub-shells are :

$$
n=3, l=0 ; n=3, l=1 ; n=3, l=2 .
$$

(c) It helps to determine the shape of different sub-shells of a given shell. Some sub-shells are circular whereas others are elliptical in shape. If a and b are semi-major and semi-minor axes respectively of an ellipse, n and l are its principal quantum number and orbital quantum number respectively, then the relation between them is

$$
\frac{b}{a}=\frac{l+1}{n}
$$

Consider the following cases :

1. K-shell or $\mathbf{n}=\mathbf{1}$ shell

Here, $l=0$, hence $b / a=(0+1) / 1$ or $b / a=1$ or $b=a$. In other words, the first shell (also called sub-shell or K-shell) around the nucleus of an atom is circular in shape as shown in Fig. 51.7 (a).
2. L-shell or $\mathbf{n}=\mathbf{2}$ shell

As stated earlier and shown in Fig. 51.6, it has two more sub-shells.
First sub-shell with $l=0$. Here, $\frac{b}{a}=\frac{0+1}{2}=\frac{1}{2}$ or $b=\frac{a}{2}$. It is elliptical in shape as shown in Fig. 51.7 (b).
Second sub-shell with $l=1$. Here $\frac{b}{a}=\frac{1+1}{2}=1$ or $b=a$.

Fig. 51.7
This sub-shell has circular shape as shown in Fig. 51.7 (b).
3. M-shell or $\mathbf{n}=3$ shell

It has three sub-shells with $l=0,1,2$.
First sub-shell with $l=0$. Here, $b / a=(0+1) / 3=1 / 3$. It is elliptical in shape.
Second sub-shell with $l=1$. Here, $b / a=(1+1) / 3=2 / 3$. It is also elliptical in shape.
Third sub-shell with $l=2$. Here, $b / a=(2+1) / 3=1$ or $b=a$. Obviously, this sub-shell is circular in shape.
Fig. 51.7 shows to shapes of different sub-shells per values of n from 1 to 4 .
(d) It determines the distribution of electrons in various sub-shells of a shell. The maximum

* Different sub-shells have been shown circular for the sake of simplicity although, in practice, most of them are elliptical.
number of electrons which a sub-shell of any n-value can accommodate is $=2(2 l+1)$. Consider the following :

1. K-shell. Here $l=0$, hence it can have $2(2 \times 0+1)=2$ electrons. They are designated as $1 s^{2}$ electrons.
2. L-shell. First sub-shell with $l=0$ can have $2(2 \times 0+1)=2$ electrons which are designated as $2 s^{2}$ electrons.
Second sub-shell with $l=1$ can have a maximum of $2(2 \times 1+1)=6$ electrons which are designated as $2 p^{6}$ electrons.
Total number of electrons in the two sub-shells is $2+6=8$ which tallies with $2 n^{2}=$ $2 \times 2^{2}=8$.
3. M-shell. First sub-shell with $l=0$ has, as explained above, 2 electrons which are designated as $3 s^{2}$ electrons.
Second sub-shell $l=1$ can have 6 electrons written as $3 p^{6}$ electrons.
Third sub-shell with $l=2$ can accommodate a maximum of $2(2 \times 2+1)=10$ electrons which are known as $3 d^{10}$ electrons.
Again, it will be seen that total number of electrons in the three sub-shells of $n=3$ shell is $=2+6+10=18$ which equals $2 n^{2}=2 \times 3^{2}=18$.
4. \mathbf{N}-shell. First sub-shell with $l=0$ can have maximum of two electrons designated as $4 s^{2}$ electrons. Second sub-shell can contain 6 electrons known as $4 p^{6}$ electrons.
Similarly, third sub-shell can have 10 electrons designated as $4 d^{10}$ electrons.
The fourth sub-shell can have a maximum of $2(2 \times 3+1)=14$ electrons whose designation is $4 f^{14}$ electrons.
The total number of electrons is $=2+6+10+14=32$ which is in accordance with the number $2 n^{2}=2 \times 4^{2}=32$.

Incidentally, it should be noted that different l values of $0,1,2,3,4 \ldots \ldots$. etc. are identified as s, p, d, f, g.... etc.
The different sub-shells and maximum number of electrons they can accommodate are tabulated below.

Shell n	$\begin{gathered} \mathrm{K} \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & 2 \end{aligned}$		$\begin{gathered} M \\ 3 \end{gathered}$			$\begin{gathered} \mathrm{N} \\ 4 \end{gathered}$			
$\begin{gathered} l \\ \text { sub-shell } \end{gathered}$	0 s	$\begin{aligned} & \hline 0 \\ & s \end{aligned}$	$\begin{gathered} 1 \\ p \end{gathered}$	0	$\begin{aligned} & 1 \\ & p \end{aligned}$	$\begin{aligned} & 2 \\ & d \end{aligned}$	0	1	2 d	3 f
Maximum No. of electrons $=2(2 l+1)$	2	2	6	2	6	10	2	6	10	14
Total No. of electrons $=2 n^{2}$	2		8	18			32			

(e) The orbital quantum number l also quantizes the orbital angular momentum p_{l} associated with each sub-shell

$$
p_{l}=l . h / 2 \pi \quad \text { where } l=0,1,2,3, \ldots . \text { etc. }{ }^{*}
$$

However, quantum mechanical considerations indicate that $p_{l} \neq l . h / 2 \pi$ as stated above but instead $p_{l}=l^{*} . h / 2 \pi$ where $l^{*}=[l(l+1)]^{1 / 2}$.

[^1]
51.7. Electron Configuration of Atoms

By electron configuration of an atom is meant the distribution of its electrons in its various subshells around the nucleus. Following three rules govern the electron distribution :

1. Maximum number of electrons a shell can have is $=2 n^{2}$.
2. In the nth shell, there are n sub-shells having different values of l such as $0,1,2 \ldots .(n-1)$.
3. Each sub-shell can accommodate a maximum of $2(2 l+1)$ electrons.

Consider the following atoms :
(i) Sodium atom, $\mathbb{Z}=11$. It has 11 electrons. Hence, its electronic configuration is $1 s^{2}$, $2 s^{2}, 2 p^{6}, 3 s^{1}$. Obviously, $N a$ has a single electron in its outermost sub-shell and hence is said to be monovalent. Same property is possessed by other alkali metals like $\mathrm{Li}, \mathrm{K}, \mathrm{Rb}$ and Cs. They have similar chemical properties and are, therefore, included in the same group in the periodic table.
The electron in the inner sub-shells are very tightly bound to the nucleus and cannot be easily removed. In other words, they have high binding energy.
(ii) Copper atom, $\mathbb{Z}=29$. It has 29 electrons. Its electronic configuration is $1 s^{2}, 2 s^{2}, 2 p^{6}$, $3 s^{2}, 3 p^{6}, 3 d^{10}, 4 s^{1}$.

51.8. Orbital Magnetic Quantum Number (ml.)

It determines the spatial orientation of elliptical electron orbits with respect to an applied magnetic field. There are restrictions on the orientations of the electron orbits because of which they are said to be space quantized. Whereas l determines the orbital angular momentum, m_{l} represents the magnitude of the component of angular momentum along the direction of the magnetic field.

Looked from a different angle, m_{l} determines the number of sub-subshells in a given shell.
This quantum number can have any one of the $(2 l+1)$ values ranging from $+l$ to $-l$ including zero i.e. $l,(l-1),(l-2) \ldots \ldots . . .2,1,0,-1,-2, \ldots \ldots \ldots . .-(l-2),-(l-1),-l$.

Each sub-subshell can accommodate a maximum of 2 electrons, so that maximum number of electrons in a shell becomes $2(2 l+1)$ as stated earlier in Art. $51.6(d)$.

51.9. Magnetic Spin Quantum Number (m_{s})

It has been found that an electron spins around its own mechanical axis as it rotates in orbit around the nucleus. When the electron is subjected to a magnetic field, its spin axis orientates itself either parallel to or antiparallel to the direction of the field.

This quantum number arises out of quantization of the electron spin angular momentum. It determines the spin orientation up or down and has correspondingly two values of $+1 / 2$ and $-1 / 2$.

51.10. Pauli's Exclusion Principle

This principle which was enunciated by Pauli in 1925 states that in an atom, no two electrons can have the same set of values for its four quantum number n, l, m_{l} and m_{s}. In other words, no two electrons can be described by an identical set of four quantum numbers. They may have at the most three numbers alike but at least one must be different. Consequently, it restricts the number of electrons an atom can have.

Consider the case of He atom which has two electrons. These electrons occupy K-shell ($n=1$) and are designated as $1 s^{2}$ electrons. Their four quantum numbers are as follows :

	n	l	m_{l}	m_{s}
1st electron:	1	0	0	$+1 / 2$
2nd electron:	1	0	0	$-1 / 2$

As seen, the two electrons have different sets of four quantum numbers $(1,0,0,+1 / 2)$ and (1,0 , $0,-1 / 2$) as required by Pauli's Exclusion Principle.

This principle affords a very rational theoretical justification for the electronic shell structure of the atoms deduced experimently.

Pauli's Exclusion Principle may be used to find the total number of electrons an atom can have in its various shells. Consider the following examples :
$\mathrm{n}=1$, K -shell
$l=0,1 s$ sub-shell, $m_{l}=0 ; m_{s}= \pm 1 / 2$
Total $\frac{2 \text { electrons }}{2 \text { electrons }}$
$\mathrm{n}=2$, L-shell
(i) $l=0,2 s$-shell, $m_{l}=0 ; m_{s}= \pm 1 / 2$
(ii) $l=1,2 p$ sub-shell, $m_{l}=-1,0,+1 ; m_{s}= \pm 1 / 2$

Total | 2 electrons |
| ---: |
| 6 electrons |

$\mathrm{n}=3, \mathrm{M}$-shell
(i) $l=0,3 s$ sub-shell, $m_{l}=0 ; m_{s}= \pm 1 / 2$

2 electrons
(ii) $l=1,3 p$ sub-shell, $m_{l}=-1,0,+1 ; m_{s}= \pm 1 / 2$ 6 electrons
(iii) $l=2,3 d$ sub-shell, $m_{l}=-2,-1,0,+1,+2 ; m_{s}= \pm 1 / 2$

Total $\frac{10 \text { electrons }}{18 \text { electrons }}$
$\mathrm{n}=4, \mathrm{~N}$-shell
(i) $l=0,4 s$ sub-shell, $m_{l}=0, m_{s}= \pm 1 / 2$

2 electrons
(ii) $l=1,4 p$ sub-shell, $m_{l}=-1,0,1 ; m_{s}= \pm 1 / 2$
(iii) $l=2,4 d$ sub-shell, $m_{l}=-2,-1,0,+1,+2, m_{s}= \pm 1 / 2$
(iv) $l=3,4 f$ sub-shell, $m_{l}=-3,-2,-1,0,+1,+2,+3, m_{s}= \pm 1 / 2$

2 electrons
6 electrons
10 electrons
14 electrons
Total
22 electrons

51.11. Energy Bands in Solids

In the case of an isolated single atom, there are single energy levels as shown for a hydrogen atom in Fig. 51.5. But there are significant changes in the energy levels when atoms are brought close together as in solids.

It is found that each of the energy levels of an atom splits into N levels of energy where N is the number of atoms in the crystal. Each original energy level becomes a band of very closely-spaced levels of slightly different energy. The individual energies within the band are so close together that, for many purposes, the energy band may be considered to be a continuous one.

Fig. 51.8 (a) shows the splitting of K, L and M levels as the distance between different atoms is reduced. At first, only valence level or M-level is affected as shown by dotted vertical line marked A, then as separation is reduced, inner shells also become affected as indicated by dotted vertical line B.

Consider the case of Na crystal which consists of an ordered array of many closely-packed sodium atoms usually referred to as crystal lattice. Each $N a$ atom has 11 electrons arranged in different shells and sub-sheels as shown in Fig. 51.9 (a). As seen, the $1 s, 2 s$ and $2 p$ sub-shells are filled but $3 s$ sub-shell is incomplete and could hold one electron more. The electrons in each sub-shell occurs specific energy levels as shown in Fig. 51.9 (b). For a small sodium crystal containing 10^{20} atoms, the band formed by splitting of s-subshell has 2 electronic levels (one with spin up and the others with spin down). Similarly in a p-band there will be 6×10^{20} closely packed levels because there are 6 electrons in a filled p subshell.

In general, in an assembly of N atoms, the number of possible energy states is N. Since only two electrons of opposite spin can occupy the same state (as per Pauli's Exclusion Principle discussed earlier), the maximum number of electrons which these N states can occupy is $2 N$.

Fig. 51.8

51.12. Spacing Between Energy Levels of a Band

It will be quite interesting as well as instructive to calculate the spacing between different energy levels in an energy band. A crystal weighing one milligram contains about 10^{19} atoms. If we assume the valency band to be an s-band, it will contain 2×10^{19} levels. Suppose the width of the energy band is 2 eV . Then, it is obvious that 2×10^{19} levels per milligram are spread over an energy band width of 2 eV . Hence, spacing between different levels $=2 /\left(2 \times 10^{19}\right)=10^{-19} \mathrm{eV}$. It will be appreciated that even though energy levels are discrete, the picture of a band as a continuum of energy levels is a very good approximation. This splitting of the single energy level of an isolated atom into a band of

Fig. 51.9
energy in the case of a solid is responsible for most of the electrical, magnetic and optical properties of that solid. It is worth pointing out here that in gases under normal conditions of temperature and pressure, the atomic spacing is so great that there is no splitting of energy levels and hence no band formation.

51.13. Energy Bands in Lithium and their Occupancy

Consider the case of lithium metal-the simplest atom which forms a solid at ordinary temperature. Its atom has three electrons, two of which have the same energy and the third one has higher value of energy. In an isolated single atom, two electrons move round the electron orbit with $n=1$ whereas the third occupies the orbit with $n=2$ as shown in Fig. 51.10 (a). Now, consider a piece of lithium metal containing 100 atoms. It will be found that the lower level (with $n=1$) forms a band of 200 electrons occupying 100 different energy states. The higher level (with $n=2$) forms a wider band of 100 energy states which could, as before, accommodate 200 electrons. But as there are only 100 electrons available (one from each atom), this energy band remains half-filled [Fig. 51.10 (b)].

(b)

Fig. 51.10

51.14. Valence and Conduction Bands

The outermost electrons of an atom i.e. those in the shell furthermost from the nucleus are called valence electrons and have the highest energy* or least binding energy. It is these electrons which are most affected when a number of atoms are brought very close together as during the formation of a solid. The states of lower-energy electrons orbiting in shells nearer to the nucleus are little, if at all, affected by this atomic proximity.

The band of energy occupied by the valence electrons is called the valence band and is, obviously, the highest occupied band. It may be completely filled or partially filled with electrons but never empty.

The next higher permitted energy band is called the conduction band and may either be empty or partially filled with electrons. In fact, it may be defined as the lowest unfilled energy band.

In conduction band, electrons can move freely and hence are known as conduction electrons. The gap between these two bands is known as the forbidden energy gap.

It may be noted that the covalent force of the crystal lattice have their source in the valence band. If a valence electron happens to absorb enough energy, it jumps across the forbidden energy gap and enters the conduction band (Fig. 51.12). An electron in the conduction band can jump to an adjacent conduction band more readily than it can jump back to the valence band from where it had come earlier. However, if a conduction electron happens to radiate too much energy, it will suddenly reappear in the valence band once again.

When an electron is ejected from the valence band, a covalent bond is broken and a positivelycharged hole is left behind. This hole can travel to an adjacent atom by acquiring an electron from

* In the algebraic sense only. Their binding energy is the least.

that atom which involves breaking an existing covalent bond and then re-establishing a covalent bond by filling up the hole. It is to be noted carefully that holes are filled by electrons which move fromadjacent atoms without passing through the forbidden energy gap.

Fig. 51.13
It is simply another way of saying that conditions in the conduction band have nothing to do with the hole flow. It points to a very important distinction between the hole current and electron currentalthough holes flow with ease, they experience more opposition than electron flow in the conduction band.

To summarize the above, it may be repeated that :

1. conduction electrons are found in and freely flow in the conduction band ;
2. holes exist in and flow in the valence band ;
3. conduction electrons move almost twice as fast as the holes.

Fig. 51.13 (a) shows the energy band diagram of an unexcited silicon atom $(Z=14)$ with its electronic distribution. When silicon crystal is given thermal or light energy from outside [Fig. 51.13 (b)], some electrons gain sufficient energy to jump the gap from the valence band into the conduction band thereby becoming free electrons [Fig. 51.13 (c)]. For every electron which jumps to conduction band, a hole is created in the valence band. In this way, an electron-hole pair is created.

51.15. Insulators, Conductors and Semiconductors

The electrical conduction properties of different elements and compounds can be explained in terms of the electrons having energies in the valence and conduction bands. The electrons lying in the lower energy bands, which are normally filled, play no part in the conduction process.
(i) Insulators. Stated simply, insulators are those materials in which valence electrons are
bound very tightly to their parents atoms, thus requiring very large electric field to remove them from the attraction of their nuclei. In other words, insulators have no free charge carriers available with them under normal conditions.

In terms of energy bands, it means that insulators (a) have a full valence band,

1. have an empty conduction band,
2. have a large energy gap (of several eV) between them and
3. at ordinary temperatures, the probability of electrons from full valence band gaining sufficient energy so as to surmount energy gap and thus become available for conduction in the conduction band, is slight.

Fig. 51.14
This is shown in Fig. 51.14 (a). For conduction to take place, electrons must be given sufficient energy to jump from the valence band to the conduction band. Increase in temperature enables some electrons to go to the conduction band which fact accounts for the negative resistance-temperature coefficient of insulators.
(ii) Conductors. Put in a simple way, conducting materials are those in which plenty of free electrons are available for electric conduction.

In terms of energy bands, it means that electrical conductors are those which have overlapping valence and conduction bands as shown in Fig. 51.14 (b).

In fact, there is no physical distinction between the two bands. Hence, the availablity of a large number of conduction electrons.

Another point worth noting is that in the absence of forbidden energy gap in good conductors, there is no structure to establish holes. The total current in such conductors is simply a flow of electrons. It is exactly for this reason that the existence of holes was not discovered until semi-conductors were studied thoughly.
(iii) Semiconductors. A semiconductor material is one whose electrical properties lie in between those of insulators and good conductors. Examples are : germanium and silicon.

In terms of energy bands, semiconductors can be defined as those materials which have almost an empty conduction band and almost filled valence band with a very narrow energy gap (of the order of 1 eV) separating the two.

At $0^{\circ} \mathrm{K}$, there are no electrons in the conduction band and the valence band is completely filled. However, with increase in temperature, width of the forbidden energy bands is decreased so that
some of the electrons are liberated into the conduction band. In other words, conductivity of semiconductors increases with temperature. Moreover, such departing electrons leave behind positive holes in the valence band (Fig. 51.12). Hence, semiconductor current is the sum of electron and hole currents flowing in opposite directions.

51.16. Crystal Structure

Semiconductors like germanium and silicon, have crystalline structure. That is the atoms are arranged in three-dimensional periodic fashion. The periodic arrangement of atoms in a crystal is called lattice. In a crystal, an atom strays far from a single, fixed position. The thermal vibrations associated with the atom are centred about this position. For a given semiconduc-
 tor (silicon or germanium), there is a unit cell that is representative of the entire lattice. By repeating the unit cell throughout the crystal, we can generate the entire lattice.

There are several different types of crystal lattice depending upon the symmetry and internal structure. One of them is the cubic crystal lattice. There are three basic types of unit cells in a cubic crystal lattice. These are simple cubic (SC), base centred cubic (BCC) and face centred cubic (FCC). Fig. 51.15 (a) shows a SC crystal. In this unit cell, each corner of the cubic lattice is occupied by an atom (indicated by a small sphere) that has six equidistant nearest neighbouring atoms. The dimension " a " is called the lattice constant. Only podium is crystallised into the simple cubic lattice.

Fig. 51.15 (b) shows a BCC unit cell. In this unit cell, each atom has eight nearest neighbouring atoms. Crystals exhibiting the BCC lattices include those of sodium and tungsten. Fig. 51.15 (c) shows a FCC unit cell. This unit cell has one atom at each of the six cubic faces in addition to the eight corner atoms. In an FCC lattice, each atom has 12 nearest neighbouring atoms. A large number of elements exhibit the FCC lattice form. These include aluminium, copper, gold and platinum.

Fig. 51.15
Fig. 51.16 shows the crystal structure of silicon and germanium - the element semiconductors. This type of structure is called diamond crystal structure and it belongs to cubic crystal family. All atoms are identical in a diamond lattice. Note that each atom in diamond lattice is surrounded by four equidistant neighbours that lie at the corners of a tetrahedron.

Fig. 51.16

51.17. Representation of Crystal Planes and Directions

Referring to Fig. 51.15 (b) again, we note that the there are four atoms in the ABCD plane and give atoms in ACEF plane (four atoms from the corners and one from the centre). Moreover, the atomic spacing are different for the two planes. Therefore the crystal properties along different planes are different. The electrical and other device characteristics are dependent on the crystal orientation. A convenient method of defining or representing the various planes in a crystal is to use Miller indices. These indices are obtained using the following steps :

1. Find the intercepts of the plane on the three coordinate axes in terms of lattice constant.
2. Take the reciprocals of these numbers and reduce them to the smallest three integers having the same ratio.
3. Enclose the result in parentheses $(h k 1)$ as the Miller indices for a single plane.

For example, consider the plane ABC having the intercept at a, $2 a$ and $2 a$ along the three rectangular coordinate axes as shown in Fig. 51.17. Taking the reciprocal of these intercepts, we get $1,1 / 2$, $1 / 2$. Multiplying each fraction by the least common multiplier 2, we find that the smallest three integers having the same ratio are 2 , 1 and 1 . Thus the Miller indices from the plane are (211). The plane ABC can also be referred to as (211) plane.

Fig. 51.18 shows the Miller indices of important planes in cubic crystal. It may be noted that for a plane that intercepts the X-axis on the negative side of the origin, the Miller indices are represented by (hk1). Similarly for a plane that intercepts the Y-axis on the negative

Fig. 51.17 side of the origin, the Miller indices are represented by (hk1) and so on.

Sometimes it convenient to represent the Miller indices of the planes of equivalent symmetry by (hk1). For example, in cubic crystal, the planes (100), (010), (001), ($\overline{1} 00$), ($0 \overline{1} 0$) and ($00 \overline{1}$) have the same symmetry. Therefore, these planes can be represented by Miller indices as (100). Note that we have used the curly brackets to represent a set of planes with equivalent symmetry.

The line that originates from the origin and passes through the plane at right angles to it is called crystal direction. The crystal direction is indicated by enclosing the Miller indices in a square brackets

Fig. 51.18
i.e., [hk1]. For example, the direction idicated by [100] is a direction for the X-axis and it is perpendicualr to (100) plane. Similarly [111] direction is perpendicular to (111) plane. It is possible to represent a set of equivalent directions by < hk1 >. Notice the use of carat signs. Thus < 100 > represents a set of directions for [100], [010], [100], [0 $\overline{1} 0]$ and $[00 \overline{1}]$.

51.18. Atomic Binding in Semiconductors

Semiconductors like germanium* and silicon, have crystalline structure. Their atoms are arranged in an ordered array known as crystal lattice. Both these materials are tetravalent i.e. each has four valence electrons in its outermost shell. The neighbouring atoms form covalent bonds by sharing four electrons with each other so as to achieve inert gas structure (i.e. 8 electrons in the outermost orbit). A twodimensional view of the germanium crystal lattice is shown in Fig. 51.19 (b) in which circles represent atom cores consisting of the nuclei and inner 28 electrons. Each pair of lines represents a covalent bond. The dots represent the valence electrons. It is seen that each atom has 8 electrons under its influence.

Fig. 51.19

[^2]A 3-dimensional view of germanium crystal lattice is shown in Fig. 51.19 (a) where each atom is surrounded symmetrically by four other atoms forming a tetrahedral crystal. Each atom shares a valence electron with each of its four neighbours, thereby forming a stable structure.

In the case of pure (i.e. intrinsic) germanium, the covalent bonds have to be broken to provide electrons for conduction. There are many ways of rupturning the covalent bond and thereby setting the electrons free. One way is to increase the crystal temperature above $0^{\circ} \mathrm{K}$.

It may be noted that covalent crystals are characterised by their hardness and brittleness. Their brittleness is due to the fact that in such crystals, adjacent atoms must remain in accurate alignment since the bond is strongly directional and formed along a line joining the atoms. The hardness is due to the great strength of the covalent bond itself.

51.19. Types of Semiconductors

Semiconductors can be classified as shown below :

51.20. Intrinsic Semiconductors

An intrinsic semiconductor is one which is made of the semiconductor material in its extremely pure form.

Common examples of such semiconductors are : pure germanium and silicon which have forbidden energy gaps of 0.72 eV and 1.1 eV respectively. The energy gap is so small that even at ordinary room temperature, there are many electrons which possess sufficient energy to jump across the small energy gap between the valence and the conduction bands. However, it is worth noting that for each electron liberated into the conduction band, a positively charged hole is created in the valence band (Fig. 1.20). When an electric field is applied to an intrinsic semiconductor at a temperature greater than $0^{\circ} \mathrm{K}$, conduction electrons move to the anode and the holes in the valence band move to the cathode. Hence semiconductor current consists of movement of electrons and holes in opposite directions. Electron current is due to movement of electrons in the conduction band whereas hole current is within the valence band as a result of the holes 'jumping' from one atom to another.

As stated above, in pure semiconductors, electric conduction is due to the thermally-generated electron hole pairs. Hence in pure semiconductors kept in the dark, thermally-generated charge carriers are the only means of conduction. The number of such charge carriers per unit volume (i.e. intrinsic carrier density) is given by

$$
n_{i}=N \exp \left(-E_{g} / 2 k T\right)
$$

where N is constant for a given semiconductor, E_{g} is the band gap energy in joules, k is Boltzmann's constant and T is the temperature in ${ }^{\circ} \mathrm{K}$.

Example 51.2. Find the intrinsic carrier concentration in silicon at $300^{\circ} \mathrm{K}$ for which $N=$ $3 \times 10^{25} \mathrm{~m}^{-3}, E_{g}=1.1 \mathrm{eV}, \mu_{e}=0.14 \mathrm{~m}^{2} / V-s$ and $\mu_{h}=0.05 \mathrm{~m}^{2} / V-s$. Also, find the conductivity of silicon.
(Electronics-II, Madras Univ. 1993)
Solution. The intrinsic carrier concentration in pure silicon is given by

$$
n_{i}=N \exp \left(-E_{g} / 2 k T\right)
$$

Now,

$$
N=3 \times 10^{25} \mathrm{~m}^{-3}, E_{g}=1.1 \mathrm{eV}=1.1 \times 1.6 \times 10^{-19}=1.76 \times 10^{-19} \mathrm{~J}
$$

$$
k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, T=300^{\circ} \mathrm{K}
$$

$$
\left.\therefore \quad n_{i}=3 \times 10^{25}\left(-1.76 \times 10^{-19}\right) / 2 \times 1.38 \times 10^{-23} \times 300\right)=2 \times 10^{16} \mathrm{~m}^{-3}
$$

$$
\sigma=n_{i} e\left(\mu_{e}+\mu_{h}\right)=2 \times 10^{16} \times 1.6 \times 10^{-19}(0.14+0.05)=0.61 \times 10^{-3} \mathrm{~S} / \mathrm{m}
$$

51.21. Hole Formation in Semiconductors

The formation of a hole which is a positive charge carrier is explained below :
As shown in Fig. 51.21, suppose the covalent bond is broken at A and the electron has moved through the crystal lattice leaving behind a hole in the covalent bond. An electron at B may jump into the vacant hole at A and later, an electron at C may jump into the hole at B and so on. In this way, by a succession of electron movements, a hole will appear at G and a negative charge would have moved from G to A. It would, however, be more convenient to regard positive charge to have moved from A to G and this conception gives rise to a hole as a positive charge carrier as if it were an electron with a positive charge. It should be clearly understood that these holes are due to the movement of electrons in the valence band and that each electron movement corresponds to a collision. The drift velocity of holes is, obviously, much less than the drift velocity of electrons.

Alternatively, an intrinsic semiconductor may be defined as one in which the number of conduction electrons is equal to the number of holes.

Fig. 51.20
Fig. 51.21
Schematic energy band diagram of an intrinsic semiconductor at room temperature is shown in Fig. 51.20. Only two bands i.e. valence and conduction bands have been shown since lower filled bands are not of any consequence. Here, Fermi level* lies exactly in the middle of the forbidden energy gap.

51.22. Fermi Level in an Intrinsic Semiconductor

It can be proved that in an intrinsic semiconductor, Fermi energy level ${ }^{*} E_{F}$ lies in the middle of the energy gap i.e. midway between the conduction and valence bands.

Let, at any temperature $T^{\circ} \mathrm{K}$

$$
\begin{aligned}
& n_{c}=\text { No. of electrons in the conduction band } \\
& n_{v}=\text { No. of electrons in the valence band }
\end{aligned}
$$

[^3]\[

$$
\begin{aligned}
N & =n_{c}+n_{v} \\
& =\text { No. of electrons in both bands. }
\end{aligned}
$$
\]

Further, let us make the following simplifying assumptions :

1. width of energy bands are small as compared to forbidden energy gap between them;
2. since band widths are small, all levels in a band have the same energy;
3. energies of all levels in valence band are zero as shown in Fig. 51.22;

Fig. 51.22
4. energies of all levels in the conduction band are equal to E_{g}.

In Fig. 51.22, the zero-energy reference level has been arbitrarily taken at the top of valence band.

Now, number of electrons in the conduction band is

$$
n_{c}=N . P\left(E_{g}\right)
$$

where $P\left(E_{g}\right)$ represents the probability of an electron having energy E_{g}. Its value can be found from Fermi-Dirac probability distribution function given by

$$
P(E)=\frac{1}{1+e^{\left(E-E_{g}\right) / k T}}
$$

where $P(E)$ is the probability of finding an electron having any particular value of energy E and E_{F} is Fermi level.

$$
\therefore \quad P\left(E_{g}\right)=\frac{1}{1+e^{\left(E_{g}-E_{F}\right) / k T}} \quad \therefore \quad n_{c}=\frac{N}{1+e^{\left(E_{g}-E_{F}\right) / k T}}
$$

Now, number of electrons in the valence band is $n_{v}=N . P(0)$
The probability $P(0)$ of an electron being found in the valence band with zero energy can again be calculated by putting $E=0$ in the Femi-Dirac probability distribution function.

$$
\begin{aligned}
P(0) & =\frac{1}{1+e^{\left(0-E_{F}\right) / k T}}=\frac{1}{1+e^{-E_{F} / k T}} . \quad \text { Hence, } n_{c}=\frac{N}{1+e^{-E_{F} / k T}} \\
\text { Now } N & =n_{c}+n_{v} \text { or } N=\frac{N}{1+e^{\left(E_{g}-E_{F}\right) / k T}}+\frac{N}{1+e^{-E_{F} / k T}} \\
\therefore \quad 1-\frac{1}{1+e^{-E_{F} / k T}} & =\frac{1}{1+e^{\left(E_{g}-E_{F}\right) / k T}}
\end{aligned}
$$

which on simplification gives $E_{F}=E_{g} / 2$.

Hence, it shows that in an intrinsic semiconductor, the Fermi level lies midway between the conduction and valence bands. That this conclusion is physically possible can be best seen with the help of Fig. 51.23.

Fig. 51.23

51.23. Extrinsic Semiconductors

Those intrinsic semiconductors to which some suitable impurity or doping agent or dopant has been added in extremely small amounts (about 1 part in 10^{8}) are called extrinsic or impurity semiconductors.

The usual doping agents are :

1. pentavalent atoms having five valence electrons (arsenic, antimony, phosphorus) or
2. trivalent atoms having three valence electrons (gallium, indium, aluminium, boron).

Pentavalent doping atom is known as donor atom because it donates or contributes one electron to the conduction band of pure germanium. The trivalent atom, on the other hand, is called acceptor atom because it accepts one electron from the germanium atom.

Depending on the type of doping material used, extrinsic semiconductors can be sub-divided into two classes :
(i) N-type semiconductors and (ii) P-type semiconductors.
(a) N-type ExtrinsicSemiconductor. This type of semiconductor is obtained when a pentavalent material like antimonty (Sb) is added to pure germanium crystal. As shown in Fig. 51.24 (a), each antimony atom forms covalent bonds with the surrounding four germanium atoms with the help of four of its five electrons. The fifth electron is superfluous and is loosely bound to the antimony atom. Hence, it can be easily excited from the valence band to the conduction band by the application of electric field or increase in thermal energy. Thus, practically every antimony atom introduced into the germanium lattice, contributes one conduction electron into the germanium
 lattice without creating a positive hole. Antimony is called donor impurity and makes the pure germanium an N-type (N for negative) extrinsic semi-conductor. As an aid to memory, the student should associate the \mathbf{N} in doNor with \mathbf{N} in the N-type material and N in Negative charge carrier.

It may be noted that by giving away its one valence electron, the donor atom becomes a positivelycharged ion. But it cannot take part in conduction because it is firmly fixed or tied into the crystal lattice. It will be seen that apart from electrons and holes intrinsically available in germanium, the addition of antimony greatly increases the number of conduction electrons. Hence, concentration of electrons in the conduction band is increased and exceeds the concentration of holes in the valence band. Because of this, Fermi level shifts upwards towards the bottom of the conduction band as shown in Fig. 51.24 (b),* because the number of charge carriers has become more in conduction band than in valence band.

In terms of energy levels, the fifth antimony electron has an energy level (called donor level) just below the conduction band. Usually, the donor level is 0.01 eV below conduction band for germanium and 0.054 eV for silicon.

It is seen from the above description that in N-type semiconductors, electrons are the majority carriers while holes constitute the minority carriers. Hence, N-type semiconductor conducts principally by electrons in the nearly empty conduction band and the process is called 'excess' conduction.

Another point worth noting is that even though N-type semiconductor has excess of electrons,

[^4]still it is electrically neutral. It is so because by the addition of donor impurity, number of electrons available for conduction purposes becomes more than the number of holes available intrinsically. But the total charge of the semiconductor does not change because the donor impurity brings in as much negative charge (by way of electrons) as positive charge (by way of protons in its nucleus).

Fig. 51.24
(b) P-type Extrinsic Semiconductor. This type of semiconductor is obtained when traces of a trivalent like boron (B) are added to a pure germanium crystal.

In this case, the three valence electrons of boron atom form covalent bonds with four surrounding germanium atoms but one bond is left incomplete and gives rise to a hole as shown in Fig. 51.25 (a).

Thus, boron which is called an acceptor impurity causes as many positive holes in a germanium crystal as there are boron atoms thereby producing a P-type (P for positive) extrinsic semiconductor. As an aid to memory, the student should associate the \mathbf{P} in acce $\mathbf{P t o r}$ with \mathbf{P} in P-type material and \mathbf{P} with Positive charge carrier.

In this type of semiconductor, conduction is by the movement of holes in the valence band. Accordingly, holes form the majority carriers whereas electrons constitute minority carriers. The process of conduction is called 'deficit' conduction.

Fig. 51.25

Since concentration of holes in the valence band is more than the concentration of electrons in the conduction band, Fermi level shifts nearer to the valence band [Fig. 51.25 (b)]. The acceptor level lies immediately above the Fermi level. Conduction is by means of hole movement at the top of valence band, acceptor level readily accepting electrons from the valence band.

Again, it may be noted that even though P-type semiconductor has excess of holes for conduction purposes, on the whole it is electrically neutral for the same reasons as given above.

5 1.24. Majority and Minority Carriers

In a piece of pure germanium or silicon, no free charge carriers are available at $0^{\circ} \mathrm{K}$. However, as its temperature is raised to room temperature, some of the covalent bonds are broken by heat energy and as a result, electron-hole pairs are produced. These are called thermally-generated charge carriers. They are also known as intrinsicallyavailable charge carriers. Ordinarily, their number is quite small.

An intrinsic of pure germanium can be converted into a P-type semiconductor by the

Fig. 51.26 addition of an acceptor impurity which adds a large number of holes to it. Hence, a P-type material contains following charge carriers :
(a) large number of positive holes-most of them being the added impurity holes with only a very small number of thermally generated ones;
(b) a very small number of thermally-generated electrons (the companions of the thermally generated holes mentioned above).
Obviously, in a P-type material, the number of holes (both added and thermally-generated) is much more than that of electrons. Hence, in such a material, holes constitute majority carriers and electrons form minority carriers as shown in Fig. 51.26 (a).

Similarly, in an N-type material, the number of electrons (both added and thermally-generated) is much larger than the number of thermally-generated holes. Hence, in such a material, electrons are majority carriers whereas holes are minority carriers as shown in Fig. 51.26 (b).

51.25. Mobile Charge Carriers and Immobile Ions

As discussed in Art. 51.23, P-type material is formed by the addition of acceptor impurity atoms like boron to the pure Ge or Si crystals. The number of holes added is equal to the number of boron atoms because each such atom contributes one hole. Now, when a hole moves away from its parent atom, the remaining atom becomes a negative ion. Unlike the mobile and free-moving hole, this ion

Fig. 51.27
Fig. 51.28
cannot take part in conduction because it is fixed in the crystal lattice. In Fig. 51.27 (a), these immobile ions are shown by circled minus signs whereas free and mobile holes are shown by uncircled plus signs. Thermally-generated electrons (which form minority carriers) are shown by uncircled minus signs.

Similarly, addition of penta-valent atoms like antimony to pure Ge or Si crystal produces an N type material. The number of free and mobile electrons which are added equals the number of donor $S b$ atoms. Again, when an electron moves away from its parent atom, it leaves behind a positive ion. This ion, being fixed in crystal structure, cannot take part in conduction. As shown in Fig. 51.27 (b); these immobile ions are represented by circled plus signs whereas free and mobile electrons are represented by uncircled minus signs. The thermally-generated holes (which form minority carriers in this case) are shown by uncircled plus signs. In Fig. 51.28, minority carriers of both types have been neglected. Hence, the figure does not show the small number of free electrons in the P-type material or the small number of holes in the N-type material.

51.26. Electron Conductivity of a Metal

According to free electron model of an atom, the valence electrons are not attached to individual atoms but are free to move about in all directions among the atoms. These electrons are called conduction electrons and are said to form 'free electron cloud' or free electron 'gas' or the Fermi gas. For example in copper there is one such free electron per atom, the
 other 28 electrons remaining bound to the copper nuclei to form positive ion cores.

When no external field is applied to the metal, the free electrons move randomly in all directions as shown in Fig. 51.29 (a). However, when an external electric field is applied to the metal, the free electron motion becomes directed a shown in Fig. 51.29 (b). This directed flow of electrons results in a net charge displacement in a definite direction. This type of motion is known as drift and the phenomenon is referred to as process of conduction by drift charge. The drift velocity (v) of the electrons is dependent upon the electron mobility $\left(\mu_{e}\right)$ and the

Fig. 51.29 applied electric field E. The actual relation is $v=\mu_{e} E$

Let, $\quad e=$ electron charge (coloumb)

$$
v=\text { electron drift velocity }(\mathrm{m} / \mathrm{s})
$$

$$
A=\text { conductor cross-section }\left(\mathrm{m}^{2}\right)
$$

$$
n=\text { number of free electrons per unit volume of the conductor }
$$

$$
\text { i.e. electron density }\left(\text { per } \mathrm{m}^{3}\right)
$$

$l=$ length of the conductor (m)
$E=V / l$ —applied electric field (V/m)
Now, electric current flowing in any conductor is given by the amount of charge which flows in one second across any plane of the conductor (Fig. 51.30). The total number of electrons which cross the plane P of cross-section A in one second $=n \times(\nu \times A)$.

Charge carried by them per second is $=e n v A$. Hence, $I=v e n A$.
Substituting the value of v, we get

$$
\begin{aligned}
& I & =n e A \mu_{e} E=n A e \mu_{e} V / l \\
\therefore & R & =\frac{V}{I}=\frac{l}{A}\left(\frac{1}{n e \mu_{e}}\right)=\rho \frac{l}{A}
\end{aligned}
$$

$\therefore \quad$ resistivity $\rho=1 / n e \mu_{e}$ ohm-m and conductivity $\sigma=n e \mu_{e}$ Siemens/m

Fig. 51.30

Incidentally, it may be noted that conductivity of a semiconductor differs from that of a metal in one important respect i.e. in a semiconductor, charge carriers are both holes as well as electrons whereas in metals, electrons are the only charge carriers (Art. 51.27).

Example 51.3. A copper wire of 2 mm diameter with conductivity of 5.8×10^{7} Siemens $/ \mathrm{m}$ and electron mobility of $0.0032 \mathrm{~m}^{2} / \mathrm{V}$-s is subjected to an electric field of $20 \mathrm{~V} / \mathrm{m}$. Find (a) the charge density of free electrons, (b) the current density, (c) current flowing in the wire, (d) the electron drift velocity.
(U.P.S.C. Engg. Services 2002)

Solution.

$$
\begin{aligned}
d & =2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}, \quad \sigma=5.8 \times 10^{7} \mathrm{~S} / \mathrm{m}, \\
\mu_{e} & =0.0032 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}, \quad E=20 \mathrm{~m} \mathrm{~V} / \mathrm{m} \\
\sigma & =q n \mu
\end{aligned}
$$

(a)

$$
n=\frac{\sigma}{q \mu_{e}}=\frac{5.8 \times 10^{7}}{1.6 \times 10^{-19} \times 0.0032}=1.132 \times 10^{29} / \mathrm{m}^{3}
$$

(b) $J=\sigma \mathrm{E}=\left(5.8 \times 10^{7}\right) \times\left(20 \times 10^{-3}\right)=1.16 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}$
(c) Let $\mathrm{I}=$ current flowing through the wire.

Area of cross-section of a wire,

$$
\begin{aligned}
A & =\frac{\pi d^{2}}{4}=\frac{\pi \times\left(2 \times 10^{-3}\right)^{2}}{4}=3.16 \times 10^{-6} \mathrm{~m}^{2} \\
J & =\frac{I}{A} \text { or } I=J A=\left(1.16 \times 10^{6}\right) \times\left(3.16 \times 10^{-6}\right)=3.67 \mathrm{~A} \\
v & =\mu E=0.0032 \times\left(20 \times 10^{-3}\right)=64 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(d)

51.27. Conductivity of Intrinsic Semiconductors

In their case, current flow is due to the movement of electrons and holes in opposite directions. However, since their charges are of opposite sign, the current due to each is in the same direction. Even though the number of electrons equals the number of holes, hole mobility μ_{h} is practically half of electron mobility μ_{e}.

As shown in Fig. 51.31, the total current flow which is due to the sum of electron flow and hole flow, is given by

$$
\begin{aligned}
I= & I_{e}+I_{h} \\
\mathrm{v}_{e}= & \text { drift velocity of electrons } \\
& (\mathrm{m} / \mathrm{s}) \\
v_{h}= & \text { drift velocity of holes }(\mathrm{m} / \mathrm{s}) \\
n_{i}= & \text { density of free electrons in } \\
& \text { an intrinsic semiconductor } \\
& \left(\text { per } \mathrm{m}^{3}\right)
\end{aligned}
$$

Let

Fig. 51.31

$$
\begin{aligned}
p_{i} & =\text { density of holes in an intrinsic semiconductor }\left(\text { per } \mathrm{m}^{3}\right) \\
e & =\text { electron charge }(\text { coulomb }) \\
A & =\text { cross-section of the semiconductor }\left(\mathrm{m}^{2}\right)
\end{aligned}
$$

Since in an intrinsic semiconductor $n_{i}=p_{i}$

$$
\therefore \quad I=n_{i} e\left(v_{e}+v_{h}\right) A=n_{i} e\left(\mu_{h}+\mu_{e}\right) E A
$$

where

$$
\begin{aligned}
& \mu_{e}=\text { electron mobility }=v_{e} / E \\
& \mu_{h}=\text { hole mobility }=v_{h} / E
\end{aligned}
$$

Since $E=V / l$ where l is the length of the intrinsic semiconductor,

$$
\begin{array}{ll}
\therefore & I \\
\therefore & =n_{i} e\left(\mu_{e}+\mu_{h}\right) A V / l \\
\therefore & \frac{V}{I}
\end{array}=\frac{l}{A} \cdot \frac{1}{n_{i} e\left(\mu_{e}+\mu_{h}\right)}=\rho_{i} \frac{l}{A}
$$

where ρ is the resistivity of the semoconductor. It is given by

$$
\rho_{i}=\frac{1}{n_{i} e\left(\mu_{e}+\mu_{h}\right)} \text { ohm-m }
$$

The electrical conductivity which is the reciprocal of resistivity is given by

$$
\sigma_{i}=n_{i} e\left(\mu_{e}+\mu_{h}\right) \mathrm{S} / \mathrm{m}
$$

Now, current density, $J=I / A \quad \therefore \quad J=n_{i} e\left(\mu_{e}+\mu_{h}\right) E=\sigma_{i} E \quad \therefore \quad \sigma_{i}=J / E$
Obviously, conductivity of semiconductors depends on two factors (i) number of current carriers present per unit volume and (ii) the mobility of the current carriers. It is found that with increase in temperature, n_{i} as well p_{i} increase and correspondingly, the conductivity of intrinsic semiconductors increases i.e. resistivity decreases.

51.28. Conductivity of Extrinsic Semiconductors

The general expression for current density (derived above) in the case of an extrinsic semiconductor when an electric field is employed is

$$
\begin{equation*}
J=\left(n e \mu_{e}+p e \mu_{h}\right) E \tag{i}
\end{equation*}
$$

(a) If it is an N-type semiconductor, then the above expression becomes

$$
J_{n}=e\left(n_{n} \mu_{e}+p_{n} \mu_{h}\right) E
$$

where n_{n} and p_{n} represent the electron and hole densities in the N-type semiconductor after doping.
(b) If it is a P-type semiconductor, then

$$
J_{p}=e\left(n_{p} \mu_{e}+p_{p} \mu_{h}\right) E
$$

where n_{p} and p_{p} represent similar quantities in a P-type semiconductor after doping.
The conductivity is given by $\sigma=J / E$
$\therefore \quad \sigma=n e \mu_{e}+p e \mu_{h}$
or $\quad \sigma_{n}=e\left(n_{n} \mu_{e}+p_{n} \mu_{h}\right) \quad$ - for N-type
and $\quad \sigma_{p}=e\left(n_{p} \mu_{e}+p_{p} \mu_{h}\right) \quad$ - for P-type
(i) In N-type semiconductors, electrons form the majority carriers although holes are also available as minority carriers.

The current density in such a semiconductor is given by Eq. (i) above. However, since electron density in such extrinsic semiconductors is much more than hole density i.e. n_{n} » p_{n}, the above expressions are simplified to

$$
\begin{equation*}
J_{n}=n_{n} e \mu_{e} E \quad \text { and } \quad \sigma_{n}=n_{n} e \mu_{e} \tag{ii}
\end{equation*}
$$

(ii) In P-type semiconductors, conduction is by means of holes in the valence band which form majority carriers in this case although electrons are available as minority carriers.

Since in such extrinsic semiconductors, $n_{p}<p_{p}$, the above expressions become

$$
\begin{equation*}
J_{p}=p_{p} e \mu_{h} E \quad \text { and } \quad \sigma_{p}=p_{p} e \mu_{h} \tag{iii}
\end{equation*}
$$

51.29. Conductivity when Intrinsic Charge Carrier Densities are Neglected

In case density of charge carriers available intrinsically is negligible as compared to the added impurity atoms (whether of donor or a acceptor type), then the formulae for conductivity given by Eq. (ii) and (iii) above will be changed as follows :
(a) For N-type semiconductor

As seen from Eq. (ii) above, the conductivity is given by $\sigma_{n}=n_{n} e \mu_{e}$ where n_{n} is electron density after doping.

In this relation, intrinsic hole density has already been neglected. The remaining electron density is also made up of the following two components :

1. intrinsic hole density due to holes available in a pure semiconductor ;
2. electron density N_{d} contributed by added donor impurity.

However, if we further neglect the intrinsic electron density, then $\sigma_{n}=N_{d} e \mu_{e}$
(b) For \boldsymbol{P}-type semiconductor

As seen from Eq. (iii) above, the conductivity is given by $\sigma_{p}=p_{p} e \mu_{h}$ where p_{p} represents hole density. Again, in this relation, intrinsic electron density has been already neglected. This hole density further consists of the following two components :

1. intrinsic hole density due to holes available in a pure semiconductor ;
2. hole density $\left(N_{a}\right)$ contributed by added acceptor impurity.

However, if we further neglect the intrinsic hole density, then $\sigma_{p}=N_{a} e \mu_{h}$

51.30. Conductivity of Pure and P-type Germanium

As shown in Art. 51.25, the conductivity of pure germanium is given by

$$
\sigma=n_{i} e\left(\mu_{e}+\mu_{h}\right)=p_{i} e\left(\mu_{e}+\mu_{h}\right)
$$

When germanium is doped by a trivalent impurity like indium, it becomes a P-type semiconductor. After doping, its conductivity depends on the number of charge carriers available in it. The law of Mass Action can be used for finding this number. For acceptor impurity, the law may be stated as follows :

$$
n_{p} p_{p}=n_{i} p_{i}=n_{i}^{2}=p_{i}^{2}
$$

where n_{p} and p_{p} represent the 'free' electron and hole densities respectively in the semi-conductor after doping and n_{i} and p_{i}, the electron and hole densities before doping i.e. in an intrinsic semiconductor. Put in another way, it simply means that, at constant temperature, the product of the number of electron carriers and the number of hole carriers is independent of the density of acceptor atoms. In physical terms, it means that the introduction of P-type impurity fills some of the electron levels produced by thermal action.

By calculating n_{p} and p_{p} from above and knowing μ_{e} and μ_{h}, conductivity after doping can be found out as illustrated by the following example.
(a) Pure Germanium

$$
\sigma=n_{i} e\left(\mu_{e}+\mu_{h}\right)=p_{i} e\left(\mu_{e}+\mu_{h}\right)
$$

Let,

$$
n_{i}=p_{i}=2 \times 10^{19} \text { per } \mathrm{m}^{3}, \quad \mu_{e}=0.36 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}
$$

$$
\mu_{h}=0.17 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s} \text { and } e=1.6 \times 10^{-19} \mathrm{C}
$$

$$
\sigma=2 \times 10^{19} \times 1.6 \times 10^{-19}(0.36+0.17)=1.69 \mathrm{~S} / \mathrm{m}
$$

(b) P-type Germanium
here,

$$
\sigma_{p}=e\left(n_{p} \mu_{e}+p_{p} \mu_{h}\right)
$$

Suppose, we add 10^{22} atoms $/ \mathrm{m}^{3}$ of indium and that $n_{i}=2 \times 10^{19}$ charge carriers (either electrons or holes) per m^{3}.

Then,

$$
\begin{array}{lr}
\text { Then, } & n_{p} p_{p}=n_{i}^{2}=\left(2 \times 10^{19}\right)^{2}=4 \times 10^{38} \text { and } p_{p}-n_{p}=10^{20} \\
\therefore & p_{p}-4 \times 10^{38} / p_{p}=10^{20} \quad \text { or } \quad p_{p}{ }^{2}-10^{20} p_{p}-\left(4 \times 10^{38}\right)=0
\end{array}
$$

Solving the above quadratic equation and taking positive value only.

$$
\begin{aligned}
p_{p} & =1.04 \times 10^{20} \quad \text { and } \quad n_{p}=0.04 \times 10^{20} \\
\sigma_{p} & =1.6 \times 10^{-19}\left(0.04 \times 10^{20} \times 0.36+1.04 \times 10^{20} \times 0.17\right)=3.1 \mathrm{~S} / \mathrm{m}^{*}
\end{aligned}
$$

It is seen that conductivity is almost doubled.
Example 51.4. What length of a round copper wire of diameter 1 mm will have a resistance of $1 \mathrm{k} \Omega$ if copper conductivity is $60 \mathrm{MS} / \mathrm{m}$. A cylindrical piece of silicon having a diameter of 1 mm is doped with $10^{20} \mathrm{~m}^{-3}$ atoms of phosphorous which are fully ionized. What length of this silicon would be required to give a resistance of $1 \mathrm{k} \Omega$ if electronic mobility in silicon is $0.1 \mathrm{~m}^{2} / V-s$?
(Electronic Devices \& Circuits, Pune Univ. 1994)
Solution. $\quad R=1 \mathrm{k} \Omega=1000 \Omega, \sigma=60 \times 10^{6} \mathrm{~S} / \mathrm{m}, A=\pi d^{2} / 4=\pi \times\left(1 \times 10^{-3}\right)^{2} / 4 \mathrm{~m}^{2}$

$$
\begin{aligned}
& R=l / \sigma A \\
& l=\sigma A R=60 \times 10^{6} \times\left(\pi \times 10^{-6} / 4\right) \times 1000=47,100 \mathrm{~m}=47.1 \mathrm{~km}
\end{aligned}
$$

For Silicon Wire

$$
\begin{aligned}
\sigma & =n_{i} e \mu_{e}=10^{20} \times 1.6 \times 10^{-19} \times 0.1=1.6 \mathrm{~S} / \mathrm{m} \\
l & =\sigma A R=1.6 \times\left(\pi \times 10^{-6} / 4\right) \times 1000 \\
& =1.26 \times 10^{-3}=1.26 \mathrm{~mm}
\end{aligned}
$$

Example 51.5. Calculate the intrinsic conductivity of silicon at room temperature if $n=1.41$ $\times 10^{16} \mathrm{~m}^{-3}, \mu_{e}=0.145 \mathrm{~m}^{2} / V-s, \mu_{h}=0.05 \mathrm{~m}^{2} / V-s$ and $e=1.6 \times 10^{-19} \mathrm{C}$. What are the individual contributions made by electrons and holes ?
(Electronic Engg., Nagpur Univ. 1991)
Solution. As seen from Art. 1.27, the conductivity of an intrinsic semiconductor is given by

$$
\begin{aligned}
\sigma_{i} & =n_{i} e \mu_{e}+n_{i} e \mu_{h} \\
& =1.41 \times 10^{16} \times 1.6 \times 10^{-19} \times 0.145+1.41 \times 10^{16} \times 1.6 \times 10^{-19} \times 0.05 \\
& =0.325 \times 10^{-3}+0.112 \times 10^{-3} \mathrm{~S} / \mathrm{m}=0.437 \times 10^{-3} \mathrm{~S} / \mathrm{m}
\end{aligned}
$$

Contribution by electrons $=0.325 \times 10^{-3} \mathrm{~S} / \mathrm{m}$
Contribution by holes $\quad=0.112 \times 10^{-3} \mathrm{~S} / \mathrm{m}$
Example 51.6. Calculate the donor concentration in N-type germanium having resistivity of $100 \Omega-m$. Derive the formula you use. Take $e=1.6 \times 10^{-19} \mathrm{C}, \mu_{e}=0.36 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$.
(Electronics ; Nagpur Univ. 1990)

$$
\begin{array}{ll}
\text { Solution. As seen from Art. 1.29, } & \\
\therefore \quad 100=1 / N_{d} \times 1.6 \times 10^{-19} \times 0.36 ; & N_{d}=1 / N_{d} e \mu_{e} \\
\therefore \quad 1.74 \times \mathbf{1 0}^{17} \text { atoms } / \mathrm{m}^{3}
\end{array}
$$

Example 51.7. An N-type silicon has a resistivity of $1500 \Omega-m$ at a certain temperature. Compute the electron-hole concentration given that $n_{i}=1.5 \times 10^{16} \mathrm{~m}^{-3}, \mu_{e}=0.14 \mathrm{~m} / \mathrm{V}-\mathrm{s}, \mu_{h}=$ $0.05 \mathrm{~m}^{2} / V$-s and $e=1.6 \times 10^{-19} \mathrm{C}$.

Solution. Being N-type silicon, it is assumed that $n » p$
$\therefore \quad \sigma=e\left(n \mu_{e}+p \mu_{h}\right)=n_{e} \mu_{e}$
$\therefore \quad \rho=1 / n_{2} \mu_{e} \quad$ or $15=1 / n \times 1.6 \times 10^{-19} \times 0.14$ or $n=3.1 \times 10^{20} \mathrm{~m}^{-3}$
\quad Now, $\quad n p=n_{i}^{2{ }^{2}}$ or $p=n_{i}^{2} / n=\left(1.5 \times 10^{16}\right)^{2} /\left(3.1 \times 10^{20}\right)=2 \times 10^{12} \mathrm{~m}^{-3}$
Example 51.8. A specimen of pure germanium at $300^{\circ} \mathrm{K}$ has a density of charge carriers of $2.5 \times 10^{19} / \mathrm{m}^{3}$. It is doped with donor impurity atoms at the rate of one impurity atom for every 10^{6} atoms of germanium. All impurity atoms may be supposed to be ionized. The density of germanium atom is 4.2×10^{28} atoms $/ \mathrm{m}^{3}$.

Find the resistivity of the doped germanium if electron mobility is $0.36 \mathrm{~m}^{2} / V-s$.
Solution. Density of added impurity atoms is

$$
N_{d}=4.2 \times 10^{28} / 10^{6}=4.2 \times 10^{22} \text { atoms } / \mathrm{m}^{3}
$$

* - It is the new name for the old unit of mho/m.

As seen, it is very large as compared to the intrinsic charge carrier density of $2.5 \times 10^{19} / \mathrm{m}^{3}$ which will, therefore, be neglected. Now, as seen from Art. 1.29.

$$
\begin{aligned}
& \sigma_{n}=N_{d} \text { e } \mu_{e}=4.2 \times 10^{22} \times 1.6 \times 10^{-19} \times 0.36=2.42 \times 10^{3} \mathrm{~S} / \mathrm{m} \\
& \rho_{n}=1 / \sigma_{n}=1 / 2.42 \times 10^{3}=0.413 \times 10^{-3} \Omega-\mathrm{m} .
\end{aligned}
$$

Example 51.9. Compute the relative concentration of silicon atoms and electron-hole pairs at $300^{\circ} \mathrm{K}$. Also, calculate intrinsic resistivity of silicon. Given Avogadro's number $=6.02 \times 10^{23}$ atoms/ g-atom, density $=2.33 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}$, atomic Wt. $=28.1$, intrinsic carrier density $=1.5 \times 10^{16} \mathrm{~m}^{-3}$, $\mu_{e}=0.14 \mathrm{~m}^{2} / V-s, \mu_{h}=0.05 \mathrm{~m}^{2} / V-\mathrm{s}$.

Solution. $\quad n_{A}=$ Avogadro's No. \times density/atomic Wt.

$$
=6.02 \times 10^{23} \times 2.33 \times 10^{16} / 28.1 \cong 5 \times 10^{28} \text { atoms } / \mathrm{m}^{3}
$$

Since intrinsic concentration n_{i} i.e., electron-hole pairs $/ \mathrm{m}^{3}$ is 1.5×10^{16}

$$
\therefore \quad \frac{n_{A}}{n_{i}}=\frac{5 \times 10^{28}}{1.5 \times 10^{16}} \cong 3.3 \times 10^{12}
$$

It means that there are $3.3 \times 10^{12} \mathrm{Si}$ atoms for each electron-hole pair.
Since in a pure semiconductor, $n=p=n_{i}$, intrinsic conductivity is given by

$$
\sigma_{i}=n_{i} e\left(\mu_{e}+\mu_{h}\right)=1.5 \times 10^{16} \times 1.6 \times 10^{-19}(0.14+0.05)=0.456 \times 10^{-3} \mathrm{~S} / \mathrm{m}
$$

Hence, intrinsic resistivity is given by

$$
\rho_{i}=1 / \sigma_{i}=1 / 0.456 \times 10^{-3}=2193 \Omega-\mathrm{m}
$$

Example 51.10. Silicon is doped with acceptor atoms to a density of $10^{22} \mathrm{~m}^{-3}$. If it is assumed that all acceptor centres are ionized, calculate the conductivity of the extrinsic silicon. Given that intrinsic density is $1.4 \times 10^{16} \mathrm{~m}^{-3}, \mu_{e}=0.145 \mathrm{~m}^{-3}$ and $\mu_{h}=0.05 \mathrm{~m}^{-3}$.
(Electronic Devices \& Circuits, Pune Univ. 1992)
Solution. The minority carrier density can be found from the equation given in Art. 1.30, i.e $n p=n_{i}^{2}$.

Now, $\quad p=10^{22} \quad \therefore \quad n \times 10^{22}=\left(1.4 \times 10^{16}\right)^{2} ; \quad n=1.96 \times 10^{10} / \mathrm{m}^{3}$
Now, $\quad \sigma=n e \mu_{e}+p e \mu_{h}$

$$
=1.96 \times 10^{10} \times 0.145 \times 1.6 \times 10^{-19}+10^{22} \times 0.05 \times 1.6 \times 10^{-19}=80 \mathrm{~S} / \mathrm{m}
$$

51.31. Drift

Directed motion of charge carriers in semiconductors occurs through two mechanisms :
(i) charge drift under the influence of applied electric field and
(ii) diffusion of charge from a region of high charge density to one of low charge density.

Consider the drift phenomenon first. When no electric field is applied to the semiconductor which is above $0^{\circ} \mathrm{K}$, the conduction electrons (as well as holes) move within the crystal with random motion and repeatedly collide with each other and the fixed ions. Due to randomness of their motion, the net average velocity of these charge carriers in any given direction is zero. Hence, no current exists in the crystal under this condition of no field.

Now, consider the case when an electric field is applied to the crystal. Under the influence of this field, the charge carriers attain a directed motion which is superimposed on their random thermal motion. This results in a net average velocity called drift velocity in the direction of the applied electric field. Of course, electrons and holes move in opposite directions but because of their opposite charges, both produce current in the same direction. In extrinsic semiconductors, this current is essentially a majority carrier flow.

The drift velocity is proportional to electric field strength E, the constant of proportionality being called mobility μ. The exact relation between the two is $v=\mu E$.

Let us find the value of drift current in a semiconductor.
(i) current density due to electron drift is $J_{e}=e \mu_{e} n E$ where μ_{e} is electron mobility, n is electron density and E is the electric field strength.
(ii) current density due to hole drift is $J_{h}=e \mu_{h} p E$ where p is hole density.

Total current density due to electron and hole drift is

$$
\begin{aligned}
J & =J_{e}+J_{h}=e \mu_{e} n E+e \mu_{h} p E=e\left(n \mu_{e}+p \mu_{h}\right) E \\
& =e \mu_{h}(p+b n) E \quad \text { where } b=\mu_{e} / \mu_{h}
\end{aligned}
$$

51.32. Diffusion

It is gradual flow of charge from a region of high density to a region of low density. It is a forcefree process based on non-uniform distribution of charge carriers in a semiconductor crystal. It leads to an electric current without the benefit of an applied field. This flow or diffusion of carriers is proportional to the carrier density gradient, the constant of proportionality being called diffusion constant or diffusion coefficient D which has a unit of $\mathrm{m}^{2} / \mathrm{s}$.

Current density due to hole diffusion is $J_{h}=-e D_{h} d p / d x$. Similarly, current density due to electron diffusion is $J_{e}=e D_{e} d n / d x$.
where $\quad D_{e}, D_{h}=$ electron and hole diffusion constants respectively
$d n / d x=$ density gradient of electrons
$d p / d x=$ density gradient of holes.
It is obvious that diffusion depends on charge in homogeneity or on the presence of a space gradient of charge density. It can occur in regions free of electric field. On the other hand, drift current is a function of both electric field and charge density.

Incidentally, it may be noted that, generally, diffusion leads to redistribution of charges which further results in the development of potential difference between different parts of the semiconductor. The electric field due to this potential difference sets up drift current in opposition to diffusion current. Final equilibrium is achieved when the potential difference developed becomes sufficiently large so as to create a drift current equal and opposite to the diffusion current thus resulting in zero net flow of current.

51.33. Combined Drift and Diffusion Currents

In semiconductors, drift and diffusion processes may be present simultaneously. The expressions for total electron and hole densities become.

$$
J_{e}=e \mu_{e} n E+e D_{e} d n / d x \mathrm{~A} / \mathrm{m}^{2} \quad \text { and } \quad J_{h}=e \mu_{h} p E-e D_{h} d p / d x \mathrm{~A} / \mathrm{m}^{2}
$$

51.34. Relation Between D and μ

Both diffusion constant and mobility are statistical thermodynamic phenomena and are related to each other by the following equation.

$$
\mu_{e}=\frac{e}{k T} D_{e} \text { and } \mu_{h}=\frac{e}{k T} D_{h} \quad \text { or } \quad \frac{D_{e}}{\mu_{e}}=\frac{D_{h}}{\mu_{h}}=\frac{k T}{e}=\frac{T}{11,600}
$$

The relationship is known as Einstein's equation
At $t=23^{\circ} \mathrm{C}, T=300^{\circ} \mathrm{K}$, hence $D / \mu=300 / 11,600=1 / 39$ or $\quad \mu=39 \mathrm{D}$
Example 51.11. Calculate diffusion constants for electrons and holes at $300^{\circ} \mathrm{K}$ in silicon if $\mu_{e}=0.15 \mathrm{~m}^{2} / V$-s and $\mu_{h}=0.05 \mathrm{~m}^{2} / V$-s.

Solution. According to Einstein's equation,

$$
\begin{aligned}
D & =\mu k T / e \quad \text { or } \quad D=\mu / 39 \mathbf{m}^{2} / \mathrm{s} \quad \text { at } 300^{\circ} \mathrm{K} \\
D_{e} & =\mu_{e} / 39=0.15 / 39=3.85 \times \mathbf{1 0}^{-\mathbf{3}} \mathrm{m}^{2} / \mathrm{s} \\
D_{h} & =\mu_{h} / 39=0.05 / 39=\mathbf{6 . 4} \times \mathbf{1 0}^{-5} \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

Example 51.12. Find the diffusion coefficients of holes and electrons for germanium at 300 K . The carrier mobilities in $\mathrm{cm}^{2} /$ volt-sec at 300 K for electrons and holes are respectively 3600 and 1700. Density of carriers is 2.5×10^{13}. Boltzmann constant, $k=1.38 \times 10^{23}$.
(U.P.S.C. Engg. Services, 1996)

Solution. According to the Einstein's equation,

$$
\begin{aligned}
D & =\mu k T / e \quad \text { or } \quad D=\mu / 39 \mathrm{~m}^{2} / \mathrm{s}-\text { at } 300^{\circ} \mathrm{K} \\
D_{e} & =\mu_{e} / 39=3600\left(\mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}\right) / 39=0.36\left(\mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}\right) / 39=9.2 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{s} \\
D_{h} & =\mu_{h} / 39=1700\left(\mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}\right) / 39=0.17\left(\mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}\right) / 39=4.36 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

51.35. Recombination

Apart from drift and diffusion, a third phenomenon which occurs in semiconductors is called recombination that results from the collision of an electron with a hole.

The process is essentially the return of a free conduction electron to the valence band and is accompanied by the emission of energy. Obviously, the recombination rate is directly proportional to the carrier concentration for the simple reason that larger the number of carriers, the more likely is the occurrence of electron-hole recombination. This phenomenon is important in describing minority carrier flow.

As is well-known, in a semiconductor, thermal generation of electron-hole pairs also takes place continuously. Hence, there is net recombination rate given by the difference between the recombination and generation rates.

51.36. Carrier Life Time

It is defined as the time for which, on an average, a charge carrier will exist before recombination with a carrier of opposite charge. Its value varies from nanoseconds $\left(10^{-9}\right)$ to hundreds of microseconds (μs) and depends on temperature and impurity concentration in the semiconductor material.

51.37. Total Carrier Flow

The total carrier flow in a semiconductor is the sum of the three flow phenomena discussed above. Each type of carrier has to be treated separately and the number of electrons or holes leaving the sample being accounted for by drift or diffusion or net recombination. The current in the semiconductor is then the sum of the electron and hole currents.

51.38. P-N Junction

It is possible to manufacture a single piece of a semiconductor material half of which is doped by P-type impurity and the other half by N-type impurity as shown in Fig. 51.32. The plane dividing the two zones is called junction. Theoretically, junction plane is assumed to lie where the density of donors and acceptors is equal. The $P-N$ junction is fundamental to the operation of diodes, transistors and other solid-state devices.

Let us see if anything unusual happens at the junction. It is found that following three phenomena take place :

Fig. 51.32

1. A thin depletion layer or region (also called space-charge region or transition region) is established on both sides of the junction and is so called because it is depleted of free charge carriers. Its thickness is about $10^{-6} \mathrm{~m}$.
2. A barrier potential or junction potential is developed across the junction.
3. The presence of depletion layer gives rise to junction and diffusion capacitances (Art. 51.5).

51.39. Formation of Depletion Layer

Suppose that a junction has just been formed. At that instant, holes are still in the P-region and electrons in the N-region. However, there is greater concentration of holes in P-region than in N-region (where they exist as minority carriers). Similarly, concentration of electrons is greater in N-region than in P-region (where they exist as minority carriers). This concentration differences establishes density gradient across the junction resulting in carrier diffusion. Holes diffuse from
 P to N-region and electrons from N-to P-region and terminate their existence by recombination [Fig. $51.33(a)$]. This recombination of free and mobile electrons and holes produces the narrow region at the junction called depletion layer. It is so named because this region is devoid of (or depleted of) free and mobile charge carriers like electrons and holes-there being present only positive ions which are not free to move.

Fig. 51.33
It might seem from above that eventually all the holes from the P side would diffuse to the N-side and all the electrons from the N-side would diffuse to the P-side but this does not occur due to the formation of ions on the two sides of the junction. The impurity atoms which provide these migratory electrons and holes are left behind in an ionized state bearing a charge which is opposite to that of the departed carrier. Also, these impurity ions, just like germanium atoms, are fixed in their positions in the crystal lattice in the P - and N - regions of the diode. Hence, as shown in Fig. 51.33 (b), they form parallel rows or 'plates' of opposite charges facing each other across the depletion layer. Obviously, row of fixed positive ions in the N-region is produced by the migration of electrons from the N - to P - region. Similarly, the row of fixed negative ions in the P-region is produced by the migration of holes from the P - to N-region.

If a majority carrier (either an electron or a hole) tries to cross into depletion layer, it can meet either of the following two facts :
(i) either it can be trapped or captured by the row of fixed impurity ions of opposite sign which guard its own region. For example, a hole trying to approach the depletion layer may be neutralized by the row of fixed negative ions situated in the P-region itself

at the edge of the depletion layer. So will be the case with the electron trying to approach the depletion layer from N-region [Fig. 51.33 (c)]; or
(ii) it may succeed in entering the depletion layer where it will be repelled by the row of similarlycharged impurity ions guarding the other region. But its life will be cut short by recombination with a majority carrier of opposite sign which has similarly entered the depletion layer from the other half of the diode.
Ultimately, an equilibrium condition is reached when depletion layer has widened to such an extent that no electrons or holes can cross the $P-N$ junction.

51.40. Junction or Barrier Voltage

Even though depletion layer is cleared of charge carriers, it has oppositely-charged fixed rows of ions on its two sides. Because of this charge separation, an electric potential difference V_{B} is established across the junction even when the junction is externally isolated (Fig. 51.34). It is known as junction or barrier potential. It stops further flow of carriers across the junction unless supplied by energy from an external source. At room temperature of $300^{\circ} \mathrm{K}, V_{B}$ is about 0.3 V for Ge and 0.7 V for Si.

The value of barrier voltage is given by $V_{B}=V_{T} \log _{e} N_{a} N_{d} / n_{i}^{2}$ where N_{a}, N_{d}, n_{i}^{2} and V_{T} have the meanings explained in Art. 51.29 and 34. The value of V_{T} at room temperature of $300^{\circ} \mathrm{K}$ is given by

$$
\begin{array}{ll}
& V_{T}=V_{300}=\frac{k T}{e}=\frac{1.38 \times 10^{-23} \times 300}{1.6 \times 10^{-19}}=26 \mathrm{mV} \\
\therefore & V_{B}=26 \log _{e}\left(N_{a} N_{d} / n_{i}^{2}\right) \mathrm{mV}
\end{array}
$$

Barrier voltage depends on doping density, electronic charge and temperature. For a given junction, the first two factors are constant, thus making V_{B} dependent on temperature. With increase in temperature, more minority charge carriers are produced, leading to their increased drift across the junction. As a result, equilibrium occurs at a lower barrier potential. It is found that both for Ge and Si, V_{B} decreases by about $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
$\therefore \quad \Delta V_{B}=-0.002 \Delta t \quad$ where Δt is the rise in temperature in ${ }^{\circ} \mathrm{C}$.
The strong field set up by V_{B} causes drift of carriers through depletion layer. As seen from |Fig. 51.35 (b), under the influence of this field, holes drift from N-to P-region and electrons from P-to - N region. This drift current must be equal and opposite to the diffusion current [Fig. 51.35 (a)] because under condition of equilibrium and with no external supply, net current through the crystal is zero.

(a)

Drift Current
(b)

Fig. 51.34
Fig. 51.35
To summarize the main points of Art. 51.39 and 51.40, we have :

1. As soon as $P-N$ junction is formed, free electrons and holes start diffusing across the junction and recombining.
2. Their recombination leads to the appearance of a depletion layer across the junction which contains no mobile carriers but only immobile ions.
3. These immobile ions set up a barrier potential and hence an electric field which sets up drift current that is equal and opposite to the diffusion current when final equilibrium is reached.

Example 51.13. Calculate the barrier potential at room temperature for $P-N$ junction in silicon which is doped to a carrier density of $10^{21} \mathrm{~m}^{-3}$ on the P-side and $10^{22} \mathrm{~m}^{-3}$ on the N-side. The intrinsic carrier density for silicon is $1.4 \times 10^{16} \mathrm{~m}^{-3}$.
(Electronics-I, Bangalore Univ. 1992)
Solution. Using the relation given in Art 1.40, we have

$$
\begin{aligned}
V_{B} & =26 \log _{e}\left(N_{a} N_{d} / n_{i}^{2}\right) \mathrm{mV} \\
& =26 \log _{e} 10^{21} \times 10^{22} /\left(1.4 \times 10^{16}\right)^{2}=641 \mathrm{mV}=0.641 \mathrm{~V}
\end{aligned}
$$

Example 51.14. Calculate the change in barrier potential of a $P-N$ junction at $300^{\circ} \mathrm{K}$ if doping on the N-side is increased 1000 times while keeping doping on P-side unchanged.

Solution. As seen from Art. 51.40, at $300^{\circ} \mathrm{K}$

$$
\begin{array}{lrl}
\therefore & V_{B} & =26 \log _{e}\left(N_{a} N_{d} / n^{2}\right) \mathrm{mV} \\
\therefore & V_{B 1} & =26 \ln \left(N_{a 1} N_{d 1} / n_{i}^{2}\right) ; \quad V_{B 2}=26 \ln \left(N_{a 2} N_{d 2} / n_{i}^{2}\right) \\
\therefore \quad V_{B 2}-V_{B 1} & =26 \log _{e}\left(N_{a 2} N_{d 2}\right) /\left(N_{a 1} N_{d 1}\right) \\
& =26 \log _{e}\left(N_{d 2} / N_{d 1}\right)=26 \ln 1000=\mathbf{1 7 9} \mathbf{~ m V}
\end{array}
$$

51.41. Energy Band Diagram of a P-N Junction

Now, let us consider the operation of a $P-N$ junction in terms of its energy bands. At the instant of junction formation, energy bands of the trivalent impurity atoms in the P-region are at a slightly higher level than those of the pentavalent impurity atoms in the N-region as shown in Fig. 51.36. It is so because core attraction for valence electrons (+3) in a trivalent atom is less than the core attraction for valence electrons (+5) in a pentavalent atom. Consequently, trivalent valence electrons are in slightly higher orbit and, hence, at a higher energy level. However, there is some over-lap between respective bands of the two regions. Due to this reason, some high-energy electrons near the top of N-region conduction band diffuse into the lower part of the P-region conduction band. Soon after, they recombine with the holes in the valence band as shown in Fig. 51.36 (a). As diffusion continues, depletion layer begins to form. Another side-effect of this electron diffusion is that energy bands in

(a)

(b)

Fig. 51.36
the N-region shift downward due to loss of high-energy electrons. When the top of the conduction band in N-region reaches the same level as the bottom of the conduction band in P-region, further diffusion ceases and equilibrium condition is reached as shown in Fig. 51.36 (b). To an electron which might still try to diffuse across the junction, the path looks like a steep energy hill. It cannot climb this energy hill unless it receives energy from an external source.

51.42. Forward Biased P-N Junction

Suppose, positive battery terminal is connected to P-region of a semiconductor and the negative battery terminal to the N-region as shown in Fig. 51.37 (a). In that case the junction is said to be biased in the forward direction because it permits easy flow of current across the junction. This current flow may be explained in the following two ways :

Fig. 51.37
(i) As soon as battery connection is made, holes are repelled by the positive battery terminal and electrons by the negative battery terminal with the result that both the electrons and the holes are driven towards the junction where they recombine. This en masse movement of electrons to the left and that of holes to the right of the junction constitutes a large current flow through the semiconductor. Obviously, the junction offers low resistance in the forward direction.
A more detailed picture of carrier flow is as under :
As free electrons move to the left, new free electrons are injected by the negative battery terminal into the N-region of the semiconductor. Thus, a flow of electrons is set up in the wire connected to the negative battery terminal. As holes are driven towards the junction, more holes are created in the P-region by the breakage of covalent bonds (Art. 51.21). These newly-created holes are driven towards the junction to keep up a continuous supply. But the electrons so produced are attracted to the left by the positive battery terminal from where they go to the negative terminal and finally to the N -region of the crystal.

Incidentally, it may be noted that though there is movement of both electrons and holes inside the crystal, only free electrons move in the external circuit i.e. in the battery-connecting wires.

Note. There is also present an extremely small amount of current I_{0} due to minority carriers on either side of the junction. But it is negligible as compared to forward current which is due to majority carriers. This current I_{0} depends on temperature but is almost independent of applied voltage.
(ii) Another way to explain current flow in forward direction is to say that forward bias of V volts lowers the barrier potential to $\left(V-V_{B}\right)$ which now allows more current to flow across the junction [Fig. 51.37 (b)].
Incidentally, it may be noted that forward bias reduces the thickness of the depletion layer as shown in Fig. 51.38.

Energy band diagram for forward bias is shown in Fig. 51.39. By comparing this figure with Fig.
51.36 it is seen that energy hill has been reduced. Because of this reduction, conduction electrons in N-region are able to cross over to P-region. After reaching there, each electron falls into a hole (path A) and becomes a valence electron. In this way, it is able to continue its journey towards the left end of the crystal.

Fig. 51.38
Fig. 51.39

51.43. Forward V/I Characteristic

A typical V / I characteristic for a forwardbiased $P-N$ junction is shown in Fig. 51.40. It is seen that forward current rises exponentially with the applied forward voltage. However, at ordinary room temperature, a p.d. of about 0.3 V is required before a reasonable amount of forward current starts flowing in a germanium junction. This voltage is known as threshold voltage ($V_{t h}$) or cut-in voltage or knee voltage V_{K}. It is practically the same as barrier voltage V_{B}. Its value for silicon junction is about 0.7 volt. For $V<V_{t h}$, current flow is negligible. But as applied voltage increases beyond the threshold value, the forward current increases sharply. If forward voltage is increased beyond a certain safe value, it will produce an extremely large current which

Fig. 51.40 may destroy the junction due to overheating. Ge devices can stand junction temperatures around $100^{\circ} \mathrm{C}$ whereas $S i$ units can function upto $175^{\circ} \mathrm{C}$.

Obviously, the forward-biased junction has a low resistance. For point B in Fig. 51.40, the forward resistance for Si is

$$
R_{F}=0.8 \mathrm{~V} / 20 \mathrm{~mA}=40 \Omega
$$

Similarly, for point A on the $G e$ curve, $R_{F}=0.36 \mathrm{~V} / 20 \mathrm{~mA}=18 \Omega$
In practice, this static forward resistance is not used. Instead, the dynamic resistance or incremental resistance or ac resistance of the juncion is used. It is given by the reciprocal of the slope of the forward characteristic.

$$
r_{a c}=\frac{1}{\Delta I_{F} / \Delta V_{F}}=\frac{\Delta V_{F}}{\Delta I_{F}}
$$

Here,

$$
\Delta V_{F}=0.19 \mathrm{~V} \quad \text { and } \quad \Delta I_{F}=37.6 \mathrm{~mA}
$$

$$
\therefore \quad r_{a c}=\frac{0.19}{37.6 \times 10^{-3}} \cong 5 \Omega
$$

51.44. Reverse Biased P-N Junction

When battery connections to the semiconductor are made as shown in Fig. 51.41 (a), the junction is said to reverse-biased. In this case, holes are attracted by the negative battery terminal and electrons by the positive terminal so that both holes and electrons move away from the junction and away from each other. Since there is no electron-hole combination, no current flows and the junction offers high resistance.

Another way of looking at the process is that in this case, the applied voltage increases the barrier potential to $\left(V+V_{B}\right)$, thereby blocking the flow of majority carriers.

Fig. 51.41
Incidentally, it may be noted that under reverse bias condition, width of depletion layer is increased because of increased barrier potential as shown in Fig. 51.42.

Although, in this case, there is practically no current due to majority carriers, yet there is a small

Fig. 51.42 amount of current (a few $\mu \mathrm{A}$ only) due to the flow of minority carriers across the junction. As explained earlier in Art. 51.24, due to thermal energy, there are always generated some holes in the N-type region and some electrons in the P-type region of the semiconductor as shown in Fig. 51.28. The battery drives these minority carriers across the junction thereby producing a small current called reverse current or reverse saturation current I_{0} or I_{S}. Since minority carriers are thermally-generated, I_{0} is extremely temperature dependent. For the same reason, forward current is also temperature dependent but to a much less degree because minority current forms a very small percentage of the majority current. The name saturation has been used because we cannot get minority current more than what is produced by thermal energy. In other words, I_{S} does not increase with increase in reverse bias.
I_{S} is found to increase approximately 7 percent per $0^{\circ} \mathrm{C}$ rise in temperature both for Ge and Si . Since, $(1.07)^{10}=2$, it means that reverse current doubles for every $10^{\circ} \mathrm{C}$ rise in temperature. It is worth noting that reverse saturation current is also referred to as leakage current of the $P-N$ junction diode.

With reverse bias, energy hill becomes too steep for majority carriers to go up the hill and cross over.

51.45. Reverse V/I Characteristic

As said earlier, the reverse saturation current is also referred to as leakage current of the $P-N$ junction. Fig. 51.43 shows V / I characteristics of a reverse-biased $P-N$ junction. It is seen that as reverse voltage is increased from zero, the reverse current quickly rises to its maximum or saturation value. Keeping temperature constant as the reverse voltage is increased, I_{o} is found to increase only slightly. This slight increase is due to the impurities on the surface of the semiconductor which behaves as a resistor and hence obeys Ohm's law. This gives rise to a very small current called surface leakage

Fig. 51.43 current. Unlike the main leakage (or saturation) current, this surface leakage current is independent of temperature but depends on the magnitude of the reverse voltage.

A reverse-biased junction can be represented by a very large resistance. As seen from Fig. 51.43, in the case of Si , for a reverse voltage of about $15 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A}$. Hence, reverse resistance is $R_{R}=15$ $\mathrm{V} / 10 \mu \mathrm{~A}=1.5 \mathrm{M} \Omega$

51.46. Hall Effect

If a specimen (whether of a metal or a semiconductor) carrying a current I is placed in a transverse magnetic field of flux density B, an electric field is developed along a direction perpendicular to both B and I. This phenomenon is known as Hall effect and is used for the following purposes :

1. to determine whether a semiconductor is of N-type or P-type;
2. to find carrier concentration;
3. to measure the conductivity of the material;
4. to find carrier mobility;
5. to detect and measure magnetic fields one million times smaller than that of earth with the help of Hall-effect magnetometers.
As shown in Fig. 51.44 (a), a current I is flowing through the semiconductor in the direction $M N$ under the influence of an external applied electric field E_{L}. Obviously, electrons comprising this current move along $N M$ with a velocity of v_{e}. Consider one such electron shown in the figure. The direction of the force exerted on it by the magnetic field B can be found by using Fleming's left-hand rule and is as shown*. The magnitude of force is $B e v_{e}$.

Under the influence of this force,

Fig. 51.44 electrons will tend to crowd towards the left side of semiconductor. This collection of electrons to one side gives rise to electric potential difference V_{H} (called Hall voltage) and hence to an electric field E_{H}. This field begins to prevent additional electrons from arriving there. Force exerted by this field on the electrons is $e E_{H}$. Equilibrium is established when the two oppositely-directed magnetic and electric forces acting on the electron become equal in magnitude.

* While using the rule, the middle finger must point in the direction of conventional current $\overline{i . e} \overline{-} \overline{-} \overline{-} \overline{-} \overline{-} \bar{\sim}$ and not along the direction of electronic current i.e. along $N M$.
i.e. $\quad B e v_{e}=e E_{H}$
or

$$
\begin{equation*}
B v_{e}=E_{H} \tag{i}
\end{equation*}
$$

Also
$\therefore \quad B \mu_{e} E_{L}^{e}=E_{H}$ or $\mu_{e} B=E_{H} / E_{L}$

$$
v_{e}=\mu_{e} E_{L}
$$

Hence, knowing E_{L} and B and measuring E_{H}, we can find electron mobility.
Now, current density $\quad J=I / A=n e v_{e} A / A=n e v_{e}$
Substituting the value of v_{e} from (i) above, we get

$$
J=n e E_{H} / B \quad \text { or } \quad n=J B / e E_{H}
$$

This equation may be used to find electron density.
Now, Hall coefficient, $\quad R_{H}=1 /$ charge density $=1 /$ ne or $R_{H}=E_{H} / J B$
As shown in Art. 51.26. $\quad \mu_{e}=1 /$ ne $\rho=R_{H} / \rho$
where ρ is the resistivity of the semiconductor.
It may be noted that the above treatment is equally applicable to P-type semiconductors where current flow is made up of hole movement. If holes were to move in the same direction as that of the electrons in Fig. 51.44 (a), then polarity of Hall voltage E_{H} would be reversed as shown in Fig. 51.44 (b). In fact, it was the observation of the polarity of Hall voltage associated with P-type material which led to the concept of a positive hole.

Example 51.15. The Hall-coefficient of a specimen of doped semiconductor is $3.66 \times 10^{-4} \mathrm{~m}^{3}$ C^{-1} and the resistivity of the specimen is $8.93 \times 10^{-3} \Omega-m$. Determine the carrier mobility in $m^{2} v^{-1} s^{-1}$.

Solution. Using equation $\mu_{e}=R_{H} / \rho$

$$
\mu_{e}=\frac{3.66 \times 10^{-4}}{8.93 \times 10^{-3}}=0.041 \mathrm{~m}^{2} \mathrm{v}^{-1} \mathrm{~s}^{-1}
$$

Example 51.16. A sample of N-type semiconductor has a hall coefficient of $160 \mathrm{~cm}^{3} /$ Coulomb. If is resistivity is 0.16Ω-cm, estimate the electron mobility in the sample,

Solution. Using the relation, $\mu_{e}=R_{H} / \rho$, we have

$$
\mu_{e}=\frac{160}{0.16}=1000 \mathrm{~cm}^{2} / \text { Volt-Sec. }
$$

Example 51.17. A current of $50 A$ is passed through a metal strip, which is subjected to a magnetic flux of density $1.2 \mathrm{~Wb} / \mathrm{m}^{2}$. The magnetic field is directed at right angles to the current direction and the thickness of the strip in the direction of magnetic field is 0.5 mm . The Hall voltage is found to be 100 V. Calculate the number of conduction electrons per cubic metre in the metal.

Solution. We know that $n=\frac{J B}{e E_{H}}$
Since $J=I / A=I / d . t$ where d is the distance between the two surfaces between the ends across which the elecric field is measured. The above equation can be rewritten as,

$$
n=\frac{(I / A) B}{e E_{H}}=\frac{(I / d . t) B}{e V_{H} / d}=\frac{B I}{e V_{H} t} \quad\left(\therefore E_{H}=V_{H} / d\right)
$$

Substituting the values of V_{H}, t, B, I and e, we get

$$
n=\frac{1.2 \times 50}{\left(1.6 \times 10^{-19}\right) \times 100 \times\left(0.5 \times 10^{-3}\right)}=7.51 \times 10^{21} / \mathrm{m}^{3}
$$

Example 51.18. An N-type semiconductor has a resistivity of 20×10^{-2} ohm-m. The mobility of electrons through a separate experiment was found to be $100 \times 10^{-4} \mathrm{~m}^{2} v^{-1} \mathrm{~s}^{-1}$. Find the number of electron carriers per m^{3}.

Solution. Using the equation, $\mu_{e}=1 /$ ne ρ, we have

$$
\begin{aligned}
n & =\frac{1}{e \mu_{e} \rho}=\frac{1}{1.6 \times 10^{-19} \times\left(100 \times 10^{-4}\right) \times\left(20 \times 10^{-2}\right)} \\
& =3.1 \times 10^{21} / \mathrm{m}^{3}
\end{aligned}
$$

Example 51.19. The Hall-coefficient of a specimen of doped silicon is found to be 3.66×10^{-4} $m^{3} C$; the resistivity of the specimen is $8.93 \times 10^{-3} \Omega-m$. Find the mobility and density of charge carriers assuming single carrier conduction.
(U.P.S.C. Engg. Services 2002)

Solution. $\quad R_{H}=3.66 \times 10^{-4} \mathrm{~m}^{3} \mathrm{C} ; \rho=8.93 \times 10^{-3} \Omega-\mathrm{m}$.

$$
\begin{aligned}
\mu & =\sigma R_{H}=\frac{1}{\rho} R_{H}=\frac{1}{8.93 \times 10^{-3}} \times 3.66 \times 10^{-4}=0.041 \mathrm{~m}^{2} / \mathrm{V} . \mathrm{s} \\
R_{H} & =\frac{1}{n e} \text { or } n=\frac{1}{R_{H} e}=\frac{1}{\left(3.66 \times 10^{-4}\right) \times\left(1.6 \times 10^{-19}\right)}=1.7 \times 10^{22} / \mathrm{m}^{3}
\end{aligned}
$$

Example 51.20. Resistivity of a sample semiconductor is $9 m \Omega-m$. Its holes have mobility of $0.03 \mathrm{~m}^{2} /$ Vs. Calculate the value of Hall-coefficient of the sample. (U.P.S.C. Engg. Services 2002)

Solution.

$$
\begin{aligned}
\rho & =9 \mathrm{~m} \Omega-\mathrm{m}=9 \times 10^{-3} \Omega-\mathrm{m}, \mu_{p}=0.03 \mathrm{~m}^{2} / \mathrm{V} . \mathrm{s} \\
\sigma & =\frac{1}{\rho}=\frac{1}{9 \times 10^{-3}}=111.1 \mathrm{~S} / \mathrm{m} \\
\mu_{p} & =\sigma R_{H} \\
R_{H} & =\frac{\mu_{p}}{\sigma}=\frac{0.03}{111.1}=2.7 \times 10^{-4} \mathrm{~m}^{3} \mathrm{C}
\end{aligned}
$$

Tutorial Problem No. 51.1

1. Compute the intrinsic conductivity of a specimen of pure silicon at room temperature given that $n_{i}=1.4 \times 10^{6} \mathrm{~m}^{-3}, \mu_{e}=0.145 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}, \mu_{\mu}=0.05 \mathrm{~m}^{2} / \mathrm{V}-s$ and $e=1.6 \times 10^{-19} \mathrm{C}$. Also, calculate the individual contributions from electrons and holes.

$$
\left[0.437 \times 10^{-3} \mathrm{~S} / \mathrm{m} ; 0.325 \times 10^{-3} \mathrm{~S} / \mathrm{m} ; 0.112 \times 10^{-3} \mathrm{~S} / \mathrm{m}\right]
$$

2. Find (i) conductivity and (ii) resistance of a bar of pure silicon of length 1 cm and cross-sectional area $1 \mathrm{~mm}^{2}$ at $300^{\circ} \mathrm{K}$. Given : $n_{i}=1.5 \times 10^{16}$ per m${ }^{3}, \mu_{e}=0.13 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}, \mu_{h}=0.05 \mathrm{~m}^{2} / \mathrm{V}$-s and $e=1.6 \times 10^{-19} \mathrm{C}$.
[(i) $4.32 \times 10^{-4} \mathrm{~S} / \mathrm{m}$ (ii) $23.15 \mathrm{M} \Omega$]
3. A specimen of silicon is doped with acceptor impurity to a density of 10^{22} atoms per m^{3}. Given that $n_{i}=1.4 \times 10^{16}$ per m${ }^{3}, \mu_{e}=0.145 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}, \mu_{h}=0.05 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}, e=1.6 \times 10^{-19} \mathrm{C}$. All impurity atoms may be assumed to be ionized.
[nearly $80 \mathrm{~S} / \mathrm{m}$]
4. Calculate the conductivity of a specimen of pure $S i$ at room temperature of $300^{\circ} \mathrm{K}$ for which $n_{i}=1.5 \times 10^{16} \mathrm{~m}^{-3}, \mu_{e}=0.13 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}, \mu_{h}=0.05 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}, e=1.6 \times 10^{-19} \mathrm{C}$.
The Si specimen is now doped 2 parts per 10^{8} of a donor impurity. If there are $5 \times 10^{28} \mathrm{Si}$ atoms $/ \mathrm{m}^{3}$, calculate its conductivity. By what factor has the conductivity increased?
$\left[4.32 \times 10^{-4} \mathrm{~S} / \mathrm{m} ; \mathbf{2 0 . 8 ~ S} / \mathrm{m} ; \simeq \mathbf{4 8 , 0 0 0}\right]$
5. Mobilities of electrons and holes in a sample of intrinsic germanium at room temperature are $0.36 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$ and $0.17 \mathrm{~m}^{2} / \mathrm{V}$-s respectively. If the electron and hole densities are each equal to 2.5×10^{19} per m^{3}, calculate the conductivity.
[2.12 S/m](Electronic-I, Bangalore Univ.)
6. A p.d. of 10 V is applied longitudinally to a rectangular specimen of intrinsic germanium of length 2.5 cm , width 0.4 cm and thickness 0.15 cm . Calculate at room temperature
(i) electron and hole drift velocities;
(ii) the conductivity of intrinsic Ge if intrinsic carrier density is $=2.5 \times 10^{19} / \mathrm{m}^{3}$;
(iii) the total current.

Given, $\mu_{e}=0.38 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}, \mu_{h}=0.18 \mathrm{~m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}, k=1.38 \times 10^{-23} \mathrm{~J}^{-\mathrm{deg}^{-1}}, e=1.6 \times 10^{-19} \mathrm{C}$
[(i) $152 \mathrm{~m} / \mathrm{s}, 72 \mathrm{~m} / \mathrm{s}$ (ii) $2.24 \mathrm{~S} / \mathrm{m}$ (iii) 5.38 mA$]$
(Applied Electronics \& Circuits, Grad. I.E.T.E. 1987)
5. The resistivity of a dopoed silicon material is 9×10^{-3}. The Hall coefficient is $3.6 \times 10^{-4} \mathrm{Coulomb}^{-1}$. Assuring single carrier conduction, find the mobility and density of charge carriers. $e=1.6 \times 10^{-19}$ Coulomb.
(U.P.S.C. Engg. Services 1994)
6. Consider an intrinsic Ge bar with material time constant of $100 \mu \mathrm{sec}$ across a cross-section of $1 \mathrm{~mm}^{2}$ and length 1 cm . One side of the bar is illuminated with 10^{15} photons $/ \mathrm{sec}$. Assume that each incident photon generate one electron hole pair and these are uniformly distributed throughout the bar. Find the bar resistance under constant excitation at room temperature.
(Electronic Devices and Circuits, Nagpur Univ. Summer, 2004)
7. Find the concentration of holes and electrons in a p-type germanium at 300 K , if the conductivity is 100 per ohm-cm. Also find these values for n-type silicon, if the conductivity is 0.1 per ohm-cms. Given that
for germanium $n_{i}=2.5 \times 10^{13} / \mathrm{cm}^{3}$
$\mathrm{M}_{\mathrm{n}}=3800 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}, \quad \mathrm{M}_{\mathrm{p}}=1800 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$
for silicon, $n_{i}=1.5 \times 10^{10}$ per cm ${ }^{3}$
$M_{n}=1300 \mathrm{~cm}^{2} / V-\mathrm{s}$ and $\mathrm{M}_{\mathrm{p}}=500 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$
(Electronics Engg; Bangalore Univ. 2004)
8. A germanium P-N junction at 300 K has the following parameters; $\mathrm{N}_{D}=5 \times 10^{18} / \mathrm{cm}^{3}$, $\mathrm{N}_{\mathrm{A}}=6 \times 10^{16} / \mathrm{cm}^{3}, n_{i}=1.5 \times 10^{10} / \mathrm{cm}^{3}$; Calculate the minority electron density in the P-region and the minority hole density in the N -region.
(Electronics Engg. Bangalore Univ. 2003)

OBJECTIVE TESTS - 51

1. The total energy of a revolving electron in an atom can
(a) have any value above zero
(b) never be positive
(c) never be negative
(d) not be calculated.
2. An atom is said to be ionised when any one of its orbiting electron
(a) Jumps from one orbit to another
(b) is raised to a higher orbit
(c) comes to the ground state
(d) is completely removed.
3. The maximum number of electrons which the M-shell of an atom can contain is
(a) 32
(b) 8
(c) 18
(d) 50 .
4. Electronic distribution of an Si atom is
(a) $2,10,2$
(b) $2,8,4$
(c) $2,7,5$
(d) 2, $4,8$.
5. Semiconductor materials have \qquad bonds.
(a) ionic
(b) covalent
(c) mutual
(d) metallic.
6. The maximum number of electrons which the valence shell of an atom can have is
(a) 6
(b) 8
(c) 18
(d) 2
7. Silicon has $Z=14$. Its outermost orbit is
(a) partially filled
(b) half filled
(c) completely occupied
(d) empty
8. Major part of the current in an intrinsic semiconductor is due to
(a) conduction-band electrons
(b) valence-band electrons
(c) holes in the valence band
(d) thermally-generated electron.
9. Conduction electrons have more mobility than holes because they
(a) are lighter
(b) experience collisions less frequently
(c) have negative charge
(d) need less energy to move them.
10. Doping materials are called impurities because they
(a) decrease the number of charge carriers
(b) change the chemical properties of semiconductors
(c) make semiconductors less than 100 percent pure
(d) alter the crystal structures of the pure semiconductors.
11. Current flow in a semiconductor depends on the phenomenon of
(a) drift
(b) diffusion
(c) recombination
(d) all of the above.
12. The process of adding impurities to a pure semiconductor is called
(a) mixing
(b) doping
(c) diffusing
(d) refining.
13. The most widely used semiconucting material in electronic devices is
(a) germanium
(b) sillicon
(c) copper
(d) carbon
14. Electon-hole pairs are produced by
(a) recombination
(b) thermal energy
(c) ionization
(d) doping
15. Recombination takes place when
(a) an electron falls into a hole
(b) a positive and a negative ion bond together
(c) a valence electron becomes a conduction
(d) a crystal is formed
16. When a $P-N$ junction is formed, diffusion current causes
(a) mixing of current carriers
(b) forward bias
(c) reverse bias
(d) barrier potential.
17. The leakage current of a $P-N$ diode is caused by
(a) heat energy
(b) chemical energy
(c) barrier potential
(d) majority carriers.
18. Electronic components which are made of a semiconductor material are often called
\qquad devices.
(a) solid-state
(b) silicon
(c) germanium
(d) intrinsic.
19. Any voltage that is connected across a $P-N$ junction is called \qquad voltage.
(a) breakdown
(b) barrier
(c) bias
(d) reverse.
20. The area within a semiconductor diode where no mobile current carriers exist when it is formed is called \qquad region.
(a) depletion
(b) saturation
(c) potential barrier
(d) space charge.
21. The depletion region of a semiconductor diode is due to
(a) reverse biasing
(b) forward biasing
(c) crystal doping
(d) migration of mobile charge carriers.
22. If an intrinsic semiconductor is doped with a very small amount of boron, then in the extinsic semiconductor so formed, the number of electrons and holes will,
(a) decrease
(b) increase and decrease respectively
(c) increase
(d) decrease and increase respectively.
23. Two initially identical samples A and B of pure germanium are doped with donors to concentrations of 1×10^{20} and 3×10^{20} repectively. If the hole concentration in A is 9×10^{12}, then the hole concentration in B at the same temperature will be
(a) $310^{12} \mathrm{~m}^{-3}$
(b) $7 \times 10^{12} \mathrm{~m}^{-3}$
(c) $11 \times 10^{12} \mathrm{~m}^{-3}$
(d) $27 \times 10^{12} \mathrm{~m}^{-3}$
24. Hall effect is observed in a specimen when it (metal or a semiconductor) is carrying current and is placed in a magnetic field. The resultant electric field inside the specimen will be in
(a) a direction normal to both current and magnetic field
(b) the direction of current
(c) a direction antiparallel to the magnetic field
(d) an arbitrary direction depending upon the conductivity of the specimen.

ANSWERS

1. (b)	2. (d)	3. (c)	4. (b)	5. (b)	6. (b)	7. (b)	
8. (a)	9. (d)	10. (d)	11. (d)	12. (b)	13. (b)	14. (b)	
15. (a)	16. (d)	17. (a)	18. (a)	19. (c)	20. (a)	21. (d)	
22. (d)	23. (a)	24. (a)					

GO To FIRST

C H A P T E R

Learning Objectives

> P-N Junction Diode
> Derivation of Junction Resistance
> Junction Breakdown
> Junction Capacitance
> Equivalent Circuit of P-N Junction
> Diode Fabrication
$>$ Grown Junction
> Alloy Junction
> Diffused Junction
> Epitaxial Junction
$>$ Point Contact Junction
$>$ The Ideal Diode
> The Real Diode
$>$ Diode Circuits with D.C and A.C. Voltage Sources
> Diode Clipper and Clamper Circuits
> Clippers
> Some Clipping Circuits
$>$ Clampers
> Summary of Clamping Circuits

P-N JUNCTION DIODE

Chemist, led the research for the molecular diode (In the semiconductor industry, called $p-n$ junctions)

52.1. P-N Junction Diode

(a) Construction

It is a two-terminal device consisting of a $\mathrm{P}-\mathrm{N}$ junction formed either in Ge or Si crystal. Its circuit symbol is shown in Fig. 52.1 (a). The P-and N-type regions are referred to as anode and cathode respectively. In Fig. 52.1 (b), arrowhead indicates the conventional direction of current flow when forward-biased. It is the same direction in which hole flow takes place.

Commercially available diodes usually have some means to indicate which lead is P and which lead is N. Standard notation consists of type numbers preceded by 'IN' such as IN 240 and IN 1250. Here, 240 and 1250 correspond to colour bands. Fig. 52.2 (a) shows typical diodes having a variety of physical structures whereas Fig. 52.2 (b) illustrates terminal identifications. Also refer to the picture of two commercial diodes shown in Fig 52.1(c).

Fig. 52.1

Fig. 52.2
The low-current diodes whose body is about 3 mm long can carry a forward current of about 100 mA , have saturation current of $5 \mu \mathrm{~A}$ at room temperature $\left(25^{\circ} \mathrm{C}\right)$ and can withstand a reverse voltage of 75 V without breaking down. The medium-current diodes can pass a forward current of about 500 mA and can withstand a reverse voltage of 250 V . The high-current diodes or power diodes can pass a forward current of many amperes and can survive several hundred volts of reverse voltage.
(b) Diode Mounting

Low and medium-current diodes are usually mounted by soldering their leads to the connecting
terminals. The heat generated by these diodes (when operating) is small enough to be carried away by air convection and conduction along the connecting leads. However, high-current stud-mounted diodes generate large amounts of heat for which air convection is totally inadequate. For coolong, they need heat sinks made of metals such as copper or aluminium which are good conductors of heat. The sink absorbs heat from the device and then transfers it to the surrounding air by convection and radiation since it has large surface area.
(c) Working

A P-N junction diode is one-way

Fig. 52.3 device offering low resistance when forward-biased [Fig. $52.3(a)$] and behaving almost as an insulator when reverse-biased [Fig. 52.3 (b)]. Hence, such diodes are mostly used as rectifiers i.e. for converting alternating current into direct current.
(d) V/I Characteristic

Fig. 52.4 shows the static voltage-current characteristics for a low-power $\mathrm{P}-\mathrm{N}$ junction diode.

1. Forward Characteristic

When the diode is forward-biased and the applied voltage is increased from zero, hardly any current flows through the device in the beginning. It is so because the external voltage is being opposed by the internal barrier voltage V_{B} whose value is 0.7 V for Si and 0.3 V for Ge . As soon as V_{B} is
 neutralized, current through the diode increases rapidly with increasing applied battery voltage. It is found that as little a voltage as 1.0 V produces a forward current of about 50 mA . A burnout is likely to occur if forward voltage is increased beyond a certain safe limit.

2. Reverse Characteristic

When the diode is reverse-biased, majority carriers are blocked and only a small current (due to minority carriers) flows through the diode. As
 the reverse voltage is increased from zero, the reverse current very quickly reaches its maximum or saturation value I_{0} which is also known as leakage current. It is of the order of nanoamperes (nA) for Si and microamperes $(\mu \mathrm{A})$ for Ge. The value of I_{0} (or I_{s}) is independent of the applied reverse voltage but depends on (a) temperature, (b) degree of doping and (c) physical size of the junction.

As seen from Fig. 52.4, when reverse voltage exceeds a certain value called break-down voltage $V_{B R}$ (or Zener voltage V_{z}), the leakage current suddenly and sharply increases, the curve indicating zero resistance at this point. Any further increase in voltage is likely to produce burnout unless protected by a current-limiting resistor.

When P-N junction diodes are employed primarily because of this breakdown property as voltage regulators, they are called Zener diodes (Art. 54.1).

3. Equation of the Static Characteristic

The volt-ampere characteristics described above are called static characteristics because they describe the d.c. behaviour of the diode. The forward and reverse characteristics have been combined into a single diagram of Fig. 52.4.

Fig. 52.4
These characteristics can be described by the analytical equation called Boltzmann diode equation given below:

$$
I=I_{0}\left(e^{\frac{e V}{k T}}-1\right) \text { ampere }
$$

where

$$
I_{0}=\text { diode reverse saturation current }
$$

$V=$ voltage across junction - positive for forward bias and negative for reverse bias.
$k=$ Boltzmann constant $=1.38 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$
$T=$ crystal temperature in ${ }^{\circ} \mathrm{K}$

$$
\eta=1 \quad \text { - for germanium }
$$

$$
=2 \quad-\text { for silicon }
$$

Hence, the above diode equation becomes

$$
\begin{array}{ll}
I=I_{0}\left(e^{e V / k T}-1\right) . & - \text { for germanium } \\
I=\mathrm{I}_{0}\left(e^{e V / 2 k T}-1\right) & - \text { for silicon }
\end{array}
$$

Now, $e / k=11,600$ and putting $T / 11,600=V_{T}$, the above equation may be written as

$$
I=I_{0}\left(e^{11,600 V / \eta T}-1\right)=I_{0}\left(e^{V / \eta V_{T}}-1\right) \text { ampere }
$$

Now, at room temperature of $(273+20)=293^{\circ} \mathrm{K}, V_{T}=293 / 11,600=0.025 \mathrm{~V}=25 \mathrm{mV}$. Substituting
the value of η, we have

I	$=I_{0}\left(e^{40 V-1}\right)$		- for Ge
	$\cong I_{0} e^{40 V}$		- if $V>1$ volt
I	$=I_{0}\left(e^{20 V-1}\right)$		- for Si
	$\cong I_{0} e^{20 V}$		- if $V>1$ volt

We may also write the above diode equation as under

$$
\begin{aligned}
I & =I_{0}\left(e^{V_{f} / \eta V_{T}-1}\right) & & - \text { forward bias } \\
& =I_{0}\left(e^{V_{R} / \eta V_{T}-1}\right) & & - \text { reverse bias }
\end{aligned}
$$

(e) Diode Parameters

The diode parameters of greatest interest are as under :

1. Bulk resistance $\left(r_{B}\right)$

It is the sum of the resistance values of the P-and N-type semiconductor materials of which the diode is made of.
$\therefore \quad r_{B}=r_{P}+r_{N}$

- Fig. 52.5

Usually, it is very small. It is given by

$$
r_{B}=\left(V_{F}-V_{B}\right) / I_{F}
$$

It is the resistance offered by the diode well above the barrier voltage $i . e$. when current is large. Obviously, this resistance is offered in the forward direction.

2. Junction resistance $\left(\boldsymbol{r}_{j}\right)$

Its value for forward-biased junction depends on the magnitude of forward $d c$ current.

$$
\begin{aligned}
r_{j} & =25 \mathrm{mV} / I_{F}(\mathrm{~mA}) & & - \text { for } \mathrm{Ge} \\
& =50 \mathrm{mV} / I_{F}(\mathrm{~mA}) & & - \text { for } \mathrm{Si}
\end{aligned}
$$

Obviously, it is a variable resistance.
3. Dynamic or ac resistance

$$
r_{a c} \text { or } \quad r_{d}=r_{B}+r_{j}
$$

For large values of forward current, r_{j} is neg-

Fig. 52.5 ligible. Hence, $r_{a c}=r_{B}$. For small values of I_{F}, r_{B} is negligible as compared to r_{j}. Hence $r_{a c}=r_{j}$.
4. Forward voltage drop

It is given by the relation

$$
\text { forward voltage drop }=\frac{\text { power dissipated }}{\text { forward dc current }}
$$

5. Reverse saturation current $\left(I_{0}\right)$. It has already been discussed in Art. 52.42.
6. Reverse breakdown voltage $\left(\mathbf{V}_{\mathbf{B R}}\right)$. It is discussed in Art. 51.3.
7. Reverse dc resistance $R_{R}=\frac{\text { reverse voltage }}{\text { reverse current }}$

(f) Applications

The main applications of semiconductor diodes in modern electronic circuitry are as under :

1. As power or rectifier diodes. They convert ac current into dc current for dc power supplies of electronic circuits.
2. As signal diodes in communication circuits for modulation and demodulation of small signals.
3. As Zener diodes in voltage stabilizing circuits.
4. As varactor diodes-for use in voltage-controlled tuning circuits as may be found in radio and TV receivers. For this purpose, the diode is deliberately made to have a certain range of junction capacitance. The capacitance of the reverse-biased diode is given by $C=K / \sqrt{V_{R}}$

where V_{R} is the reverse voltage.
5. In logic circuits used in computers.

Example 52.1. Using approximate Boltzmann's diode equation, find the change in forward bias for doubling the forward current of a germanium semiconductors at $290^{\circ} \mathrm{K}$.
(Basic Electronics, Osmania Univ. 1993)
Solution. The approximate Boltzmann's diode equation is given by $I=I_{0} \exp (e V / k T)$
$\therefore \quad I_{1}=I_{0} \exp \left(e V_{1} / k T\right)$ and $I_{2}=I_{0} \exp \left(e V_{2} / k T\right)$
$\therefore \quad \frac{I_{2}}{I_{1}}=\exp \left[\frac{e}{k T}\left(V_{2}-V_{1}\right)\right]$
or

$$
\left(V_{2}-V_{1}\right)=\frac{k T}{e} \ln \left(\frac{I_{2}}{I_{1}}\right)=25 \ln \left(\frac{I_{2}}{I_{1}}\right) \mathrm{mV}
$$

Since $\quad I_{2}=2 I_{1}$ or $I_{2} / I_{1}=2$
$\therefore \quad\left(V_{2}-V_{1}\right)=25 \ln 2=25 \times 0.693=17.3 \mathbf{m V}$
Example 52.2. A certain $P-N$ junction diode has a leakage current of $10^{-14} \mathrm{~A}$ at room temperature of $27^{\circ} \mathrm{C}$ and $10^{-9} \mathrm{~A}$ at $125^{\circ} \mathrm{C}$. The diode is forward-biased with a constant-current source of 1 mA at room temperature. If current is assumed to remain constant, calculate the junction barrier voltage at room temperature and at $125^{\circ} \mathrm{C}$.

Solution. As given in Art. 52.1,

$$
I=I_{0} \exp (e V / k T-1) \quad \text { or } \quad\left(I / I_{0}\right)+1=\exp (e V / k T)
$$

Taking logarithm of both sides and solving for V, we get

$$
V=\frac{k T}{e} \ln \left(\frac{I}{I_{0}}+1\right)
$$

Now, at $27^{\circ} \mathrm{C}$ or $(273+27)=300^{\circ} \mathrm{K}$
$\therefore \quad k T / e=1.38 \times 10^{-23} \times 300 / 1.6 \times 10^{-19}=26 \mathrm{mV}$
At $\quad(273+125)=398^{\circ} \mathrm{K}$,

$$
k T / e=1.38 \times 10^{-23} \times 398 \times\left(1.6 \times 10^{-19}\right)=36 \mathrm{mV}
$$

Hence, at $27^{\circ} \mathrm{C}, \quad V_{B}=26 \ln \left(\frac{10^{-3}}{10^{-14}}+1\right)=660 \mathrm{mV}=0.66 \mathrm{~V}$
At $125^{\circ} \mathrm{C}, \quad V_{B}=36 \operatorname{In}\left(\frac{10^{-3}}{10^{-9}}+1\right)=500 \mathrm{mV}=0.5 \mathrm{~V}$

52.2. Derivation of Junction Resistance

Junction resistance is also known as incremental or dynamic resistance and is an important parameter particularly in connection with small-signal operations of the diode.

$$
r_{j}=d V / d I \quad \text { or } \quad g_{j}=d I / d V
$$

Now,

$$
I=I_{0}\left(e^{V / \eta V_{T}}-1\right)=I_{0} e^{V / \eta V_{T}}-I_{0}
$$

$$
\therefore \quad g_{j}=\frac{d I}{d V}=\frac{I_{0} e^{V / \eta V_{T}}}{\eta V_{T}}=\frac{I+I_{0}}{\eta V_{T}}
$$

(a) Reverse bias

When reverse bias is greater than a few tenths of a volt i.e. when $\left|V / \eta V_{T}\right| » \mid$, then g_{j} is extremely small so that r_{j} is very large. That high value is also represented by R_{R}.
(b) Forward bias

Again, for a forward bias greater than a few tenths of a volt, $I » I_{0}$, hence, $g_{j}=I / \eta V_{T}$ and $r_{j}=\eta V_{T} / I$.
Now, at room temperature of $293^{\circ} \mathrm{K}, V_{T}=T / 11,600=293 / 11,600=25 \mathrm{mV}$. Also $\eta=1$ for Ge and 2 for Si .

$$
\begin{array}{llrl}
\therefore \quad & & r_{j} & =25 \mathrm{mV} / I \mathrm{~mA} \\
& & & \text { - for germanium } \\
& & 50 \mathrm{mV} / I \mathrm{~mA} & \\
\text { - for silicon }
\end{array}
$$

Example 52.3. A silicon diode has a forward voltage drop of 1.2 V for a forward dc current of 100 mA . It has a reverse current of $1 \mu \mathrm{~A}$ for a reverse voltage of 10 V . Calculate
(a) bulk and reverse resistance of the diode
(b) ac resistance at forward dc current of (i) 2.5 mA and (ii) 25 mA .

Solution. (a) $\quad r_{B}=\frac{V_{F}-V_{B}}{I_{F}}=\frac{1.2 \mathrm{~V}-0.7 \mathrm{~V}}{100 \mathrm{~mA}}=5 \Omega$

$$
R_{R}=V_{R} / I_{R}=10 \mathrm{~V} / 1 \mu \mathrm{~A}=10 \mathrm{M}
$$

$$
\begin{array}{lll}
\text { (i) } & r_{j}=25 \mathrm{mV} / 2.5 \mathrm{~mA}=10 \Omega & \tag{b}\\
r_{a c}=r_{B}+r_{j}=5+10=\mathbf{1 5 \Omega} \\
\text { (ii) } & r_{j}=25 \mathrm{mV} / 25 \mathrm{~mA}=1 \Omega \quad \therefore & r_{a c}=5+1=\mathbf{6} \Omega
\end{array}
$$

Example 52.4. Using analytical expression for diode current, calculate the dynamic slope resistance of a germanium diode at 290 K when forward biased at current of (i) $10 \mu \mathrm{~A}$ and (ii) 5 mA .
(Electronics-I, Mysore Univ. 1992)
Solution. $\quad I=I_{0}\left(e^{e V / k T}-1\right) \approx I_{0} e^{e V / k T}$

Example 52.5. Find the current through the 20Ω resistor shown in Fig. 52.6 (a). Each silicon diode has a barrier potential of 0.7 V and a dynamic resistance of 2Ω. Use the diode equivalent circuit technique.
(Semiconductor Devices, Gujarat BTE, 1993)
Solution. In Fig. 52.6 (b) each diode has been replaced by its equivalent circuit. It is seen that diodes D_{1} and D_{3} are forward-biased by 5 V battery whereas D_{2} and D_{4} are reversebiased. Hence, the current will flow from point A to B, then to C via 20Ω resistance and then back to the negative terminal of the 5 V battery.

The net voltage in the equivalent circuit is

$$
V_{n e t}=5-0.7-0.7=3.6 \mathrm{~V}
$$

Total resistance seen by this net voltage is

Fig. 52.6

$$
R_{T}=2+20+2=24 \Omega
$$

$$
\text { The circuit current } \quad I=V_{n e t} / R_{T}=3.6 / 24=0.15 \mathrm{~A}
$$

52.3. Junction Breakdown

If the reverse bias applied to a $P-N$ junction is increased, a point is reached when the junction breaks down and reverse current rises sharply to a value limited only by the external resistance

$$
\begin{aligned}
& \therefore \quad d I=\frac{e}{k T} I_{0}\left[e^{e V / k T}\right] d V=\frac{e}{k T} I d V \\
& \therefore \quad r_{d}=\frac{d V}{d I}=\frac{k T}{e I}=\frac{25 \times 10^{-3}}{I}-I \text { in ampere } \\
& \text { (i) Now, } \quad I=10 \mu \mathrm{~A}=10 \times 10^{-6}=10^{-5} \mathrm{~A} \\
& r_{d}=25 \times 10^{-3} / 10^{-5}=\mathbf{2 5 0 0} \Omega \\
& \text { (ii) Now, } \quad I=5 \mathrm{~mA}=5 \times 10^{-3} \mathrm{~A} \\
& \therefore \quad r_{d}=25 \times 10^{-3} / 5 \times 10^{-3}=5 \Omega
\end{aligned}
$$

connected in series with the junction (Fig. 52.7). This critical value of the voltage is known as breakdown voltage $\left(V_{B R}\right)$. It is found that once breakdown has occured, very little further increase in voltage is required to increase the current to relatively high values. The junction itself offers almost zero resistance at this point.

The breakdown voltage depends on the width of the depletion region which, in turn, depends on the doping level.

The following two mechanism are responsible for breakdown under increasing reverse voltage:

1. Zener Breakdown

This form of breakdown occurs in junctions which, being
 heavily doped, have narrow depletion layers. The breakdown voltage sets up a very strong electric field (about $10^{8} \mathrm{~V} / \mathrm{m}$) across this narrow layer. This field is strong enough to break or rupture the covalent bonds thereby generating electron-hole pairs. Even a small further increase in reverse voltage is capable of producing large number of current carriers. That is why the junction has very low resistance in the break-down region.

2. Avalanche Breakdown

This form of breakdown occurs in junctions which being lightly-doped, have wide depletion layers where the electric field is not strong enough to produce Zener breakdown. Instead, the minority carriers (accelerated by this field) collide with the semiconductor atoms in the depletion region. Upon collision with valence electrons, covalent bonds are broken and electron-hole pairs are generated. These newly-generated charge carriers are also

Fig. 52.7 accelerated by the electric field resulting in more collisions and hence further production of charge carriers. This leads to an avalanche (or flood) of charge carriers and, consequently, to a very low reverse resistance. The two breakdown phenomena are shown in Fig. 52.7

52.4. Junction Capacitance

Capacitive effects are exhibited by $P-N$ junctions when they are either forward-biased or reversebiased.
(a) Transition Capacitance $\left(C_{T}\right)$ or Space-charge Capacitance

When a $P-N$ junction is reverse-biased, the depletion region acts like an insulator or as a dielectric material essential for making a capacitor. The P - and N-type regions on either side have low resistance and act as the plates. We, therefore, have all the components necessary for making a parallel-plate capacitor. This junction capacitance is called transition or space charge capacitance ($C_{p n}$ or C_{T}). It may be calculated by the usual formula $C=\in A / d$. Its typical value is 40 pF . Since thickness of depletion (or transition) layer depends on the amount of reverse bias, capacitance C_{T} can be
controlled with the help of applied bias. This property of variable capacitance possessed by a reversebiased $P-N$ junction is used in the construction of a device known as varicap or varactor.

This capacitance is voltage dependent as given by the relation

$$
C_{T}=\frac{K}{\left(V_{K}+V_{R}\right)^{n}}
$$

where

$$
\begin{aligned}
V_{K} & =\text { knee voltage ; } \quad V_{R}=\text { applied reverse voltage } \\
K & =\text { constant depending on semiconductor material } \\
n & =\frac{1}{2}-\text { for alloy junction and }=\frac{1}{3} \text {-for diffused junction }
\end{aligned}
$$

The voltage-variance capacitance of a reverse-biased $P-N$ junction is used in many circuits one of which is automatic frequency control (AFC) in an FM tuner. Other applications include self-balancing bridge circuits, special type of amplifiers known as parametric amplifiers and electronic tuners in TV.

Fig. 52.8
Fig. 52.9
When used in such a role, the diodes are called varactors, varicaps or voltacaps. The symbol of these diodes when used in this role is shown in Fig. 52.8 along with its equivalent circuit.

When used in a resonant circuit, varactor acts as a variable capacitor and allows the resonant frequency to be adjusted by a variable voltage level. In Fig. 52.8, two varactors have been used to provide total variable capacitance in a parallel resonant circuit. Here V_{C} is a variable dc voltage that controls the reverse bias and hence the capacitance of the diodes.
(b) Diffusion or Storage Capacitance $\left(C_{D}\right)$

This capacitive effect is present when the junction is forward-biased. It is called diffusion capacitance to account for the time delay in moving charges across the junction by diffusion process.* Due to this fact, this capacitance cannot be identified in terms of a dielectric and plates. It varies directly with the magnitude of forward current as explained below in more details.

Consider a forward-biased junction which is carrying a forward current I_{F}. Suppose the applied voltage is suddently reversed, then I_{F} ceases suddenly but leaves lot of majority charge carriers in the depletion region. These charge carriers must get out of the region which, to their bad luck, becomes wider under the reverse bias. Hence, it is seen that when a forward-biased $P-N$ junction is suddenly reverse-biased, a reverse current flows which is large initially but gradually decreases to the level of saturation current I_{0}. This effect can be likened to the discharging current of a capacitor and is, therefore, rightly represented by a capacitance called diffusion capacitance C_{D}. Since the number of charge carriers left in depletion layer is proportional to forward current, C_{D} is direcly proportional to I_{F}. Its typical value is $0.02 \mu \mathrm{~F}$ which is 5000 times C_{T}.

The capacitance assumes great significance in the operation of devices which are required to switch rapidly from forward to reverse bias. If C_{D} is large, this switchover cannot be rapid. It will delay both the switch-on and the switch-off. This effect of C_{D} is variously known as recovery time or carrier storage.

* In the case of forward bias, the diode current is almost entirely due to diffusion (drift current being negligible).

If τ is mean lifetime of charge carriers, then a flow of charge Q yields a diode current of

$$
\begin{array}{rlrl}
I & =\frac{Q}{\tau}=I_{0}\left(e^{V / \eta V_{T}}-1\right) \cong I_{0} e^{V / \eta V_{T}}, Q=I \tau=\tau I_{0} e^{V / \eta V_{T}} \\
\therefore \quad & C_{D} & =\frac{d Q}{d V}=\frac{\tau I_{0}}{\eta V_{T}} e^{V / \eta V_{T}} \cong \frac{\tau I}{\eta V_{T}}
\end{array}
$$

52.5. Equivalent Circuit of a $\mathrm{P}-\mathrm{N}$ Junction

We have seen from above that a forward-biased junction offers ac resistance $r_{a c}$ and possesses diffusion capacitance C_{D} (which comes into the picture only when frequency of the applied voltage is very high). Hence, it can be represented by the equivalent circuit of Fig. 52.10 (a). An opposing battery has been connected in series with $r_{a c}$ to account for the junction barrier

Fig. 52.10 potential.

As seen from Fig. 52.10 (b), a reverse-biased junction can be simply represented by a reverse resistance R_{R} connected in parallel with a capacitance C_{T} or $C_{p n}$.

Example 52.6. Calculate the barrier potential for Si junction at (a) $100^{\circ} \mathrm{C}$ and (b) $0^{\circ} \mathrm{C}$ if its value at $25^{\circ} \mathrm{C}$ is 0.7 V .

Solution. As seen from Art. 1.38.

$$
\Delta V=-0.002 . \quad \Delta t=-0.002\left(t_{2}-t_{1}\right)
$$

$$
\begin{equation*}
\Delta t=(100-25)=75^{\circ} \mathrm{C} \tag{a}
\end{equation*}
$$

$$
\therefore \Delta V=-0.002 \times 75=-0.15 \mathrm{~V}
$$

$\therefore \quad V_{B}$ at $100^{\circ} \mathrm{C}=0.7+(-0.15)=\mathbf{0 . 5 5} \mathbf{~ V}$
(b) $\quad \Delta t=(0-25)=-25^{\circ} \mathrm{C} \quad \therefore \Delta \mathrm{V}=-0.002 \times(-25)=0.05 \mathrm{~V}$
$\therefore \quad V_{B}$ at $0^{\circ} \mathrm{C}=0.7+0.05=0.75 \mathrm{~V}$
Example 52.7. A germanium diode draws 40 mA with a forward bias of 0.25 V . The junction is at room temperature of $293^{\circ} \mathrm{K}$. Calculate the reverse saturation current of the diode.

Solution.

$$
\begin{aligned}
& \text { ution. } & I & =I_{0}\left(e^{40 \mathrm{~V}}-1\right) \text { or } 40 \times 10^{-3}=I_{0}\left(e^{40 \times 0.25}-1\right) \\
\therefore & & I_{0} & =40 \times 10^{3} /(22,027-1)=\mathbf{1 . 8 2} \mu \mathrm{A}
\end{aligned}
$$

Example 52.8. Calculate forward current in Ge diode at $20^{\circ} \mathrm{C}$ when forward voltage is 0.3 V . Compare this value with that after a temperature rise of $50^{\circ} \mathrm{C}$. Assume that reverse saturation current doubles for every $10^{\circ} \mathrm{C}$ rise in temperature.
(Electronics-I, Mysore Univ. 1991)
Solution. According to Boltzmann's diode equation

At,

$$
\begin{aligned}
I_{20} & =I_{0}\left(e^{40 V}-1\right)=I_{0}\left(e^{40 \times 0.3}-1\right)=I_{0}\left(e^{12}-1\right)=162,755 I_{0} \\
t & =(20+50)=70^{\circ} \mathrm{C} \text { or } T=70+273=343^{\circ} \mathrm{K} \\
V_{T} & =343 / 11,600=0.0296 \mathrm{~V} \cong 0.03 \mathrm{~V}, \text { hence, } \mathrm{V} / \eta V_{T}=0.3 / 1 \times 0.03=10
\end{aligned}
$$

The value of I_{0} at $70^{\circ} \mathrm{C}$ is $I_{0}{ }^{\prime}=2^{5} \times I_{0}=32 I_{0}$ because it doubles for every $10^{\circ} \mathrm{C}$ rise in temperature. $\therefore \quad I_{70}=I_{0}{ }^{\prime}\left(e^{10}-1\right)=32 I_{0}(22,026-1)=704,800 I_{0}$
It means that $I_{70}=(704,800,162,755) I_{20}=4.3 I_{20}$ i.e. forward current has increased only 4.3 times whereas I_{0} has increased 32 times for the same rise in temperature.

Example 52.9. The capacitance of a varactor varies from 5 to 50 pF. Two such varactor diodes are used in the tuning circuit of Fig. 52.11. If $L=10 \mathrm{mH}$, determine the tuning range of the circuit.

Solution. It should be noted that the two varactor capacitances are connected in series (Fig. 52.11).

$$
\begin{aligned}
C_{T(\text { min })} & =5 / 2=2.5 \mathrm{pF} ; C_{T(\max)}=50 / 2=25 \mathrm{pF} \\
f_{r(\text { max })} & =1 / 2 \pi \sqrt{L C}=1 / 2 \pi \sqrt{10 \times 10^{-3} \times 2.5 \times 10^{-12}} \\
& =1 \mathrm{MHz} \\
f_{r(\text { min })} & =1 / 2 \pi \sqrt{10 \times 10^{-3} \times 25 \times 10^{-12}}=318 \mathrm{KHz}
\end{aligned}
$$

52.6. Diode Fabrication

The $P-N$ junction may be produced by any one of the following methods :

1. grown junction
2. alloy junction
3. diffused junction
4. epitaxial growth

Fig. 52.11

Polycrystalline structures
5. point contact junction.

The first step in the manufacture of any semiconductor device is to obtain the semiconductor material in an extremely pure form. The accepted impurity level is less than one part of impurity in one billion $\left(10^{9}\right)$ parts of the semiconductor material. To begin with, the raw material is subjected to a series of chemical reactions and then to a zone refining process which employs induction heating to reduce the impurity level of the polycrystalline structure. Next, the Czochralski or floating zone technique is used to form single crystals of Ge or Si for fabrication of diodes. These crystals are then cut into wafers as thin as 0.025 mm (nearly one fourth the thickness of this paper).

Now, we will briefly discuss the four basic processes commonly used in the manufacture of semiconductor diodes.

52.7. Grown J unction

Such junctions are produced by employing either the Czochralski or floating zone technique. The apparatus used for Czochralski technique is shown in Fig. 52.12. A single crystal seed of the desired impurity level is immersed in the molten semiconductor material contained in a crucible. Then, it is gradually withdrawn while the shaft holding the seed is slowly turning. When crystal is being pulled out, impurities of P - and N-type are alternately added to produce a $P-N$ junction. This large area crystal is then cut into a large number of smaller-area diodes.

52.8. Alloy J unction

The alloy process produces junction diodes that have high PIV and current ratings but which
have large junction capacitance due to their large junction area.
In this process, a tiny dot (or pellet) of indium (or any other P-type impurity) is placed on the

Fig. 52.12
Fig. 52.13
surface of an N-type silicon wafer and the two are heated well above the melting temperature of indium (about $150^{\circ} \mathrm{C}$) as shown in Fig. 52.13 (a). Consequently, indium melts and dissolves some of the silicon. The temperature is then lowered and silicon refreezes to form a single crystal having a $P-N$ junction as shown in Fig. 52.13 (b).

52.9. Diffused Junction

The diffusion process employs either solid or gaseous diffusion. This process takes more time than alloy process but is relatively cheaper and more accurately controllable. In this process, particles from an area of high concentration drift to surrounding region of lesser concentration.
(i) Solid Diffusion

Fig. 52.14

The solid diffusion process starts with the 'painting' of a P-type impurity (say, indium) on an N type substrate and heating the two until the impurity (say, indium) on an N-type substrate and heating the two until the impurity diffuses a short distance into the substrate to form P-type layer (Fig. 52.14).

(ii) Gaseous Diffusion

In the gaseous diffusion process, an N-type material is heated in a chamber containing a high concentration of an acceptor impurity in vapour form (Fig. 52.15). Some of the acceptor atoms are diffused (or absorbed) into the N-type substrate to form the P-type layer thus creating a $P-N$ junction. By exposing only part of the N-type material during the diffusion process (the remainder being covered by a thin coating of SiO_{2}), the size of the P-region can be controlled. Finally, metal contacts are electroplated on the surface of each region for connecting the leads.

The diffusion technique enables simultaneous fabrication of many hundreds of diodes on one small disc of a semiconductor material. That is why it is the most frequently-used technique not only for the manufacture of semi-conductor diodes but also for the production of transistors and integrated circuits etc.

Fig. 52.15

52.10. Epitaxial Junction

This junction differs from the diffusion junction only in the manner in which the junction is fabricated. Such junctions are grown on top of an N-type wafer in a high temperature chamber. The growth proceeds atom by atom and hence is exactly similar to the crystal lattice of the wafer on which it is grown. Such junctions have the advantage of low resistance.

52.11. Point Contact Junction

It consists of an N-type germanium or silicon wafer about 1.25 mm square by 0.5 mm thick, one face of which is soldered to a metal base by radio-frequency heating as shown in Fig. 52.16 (a). The other face has a phosphor bronze (or tungsten) spring (called a cat's whisker) pressed against it. The $P-N$ junction is formed by passing a large current for a second or two through the wire while the crystal face with wire point is kept positive. The heat so produced drives away some of the electrons from the atoms in the small region around the point of contact thereby leaving holes behind. This

Fig. 52.16
small region of the N-type material is, consequently, converted into P-type material as shown in Fig. $52.16(a)$. The small area of the $P-N$ junction results in very low junction capacitance as mentioned earlier.

52.12. The Ideal Diode

There is no such thing as an ideal diode or perfect diode. The existence of such a diode is visualized simply as an aid in analysing the diode circuits.

An ideal diode may be defined as a two-terminal device which

(a) conducts with zero resistance when forward-biased, and
(b) appears as an infinite re-

Fig. 52.17 sistance when reverse-biased.
In other words, such a device acts as a short-circuit in the forward direction and as an open-circuit in the reverse direction as shown in Fig. 52.17.
Also, in the forward direction, there is no voltage drop (even though current is there) since a short has zero resistance. On the other hand, there is no reverse current because reverse resistance is infinite.

It is helpful to think of an ideal diode as a bistable switch which is closed in the forward direction and open in the reverse direction. Hence, it has two stable states : ON or OFF.

Example 52.10. Calculate the circuit current and power dissipated in the (a) ideal diode (b) 6Ω resistor of the circuit shown in Fig. 52.18 (a).

Solution. The diode is an ideal one and is forward-biased. Hence, it can be replaced by a short (closed switch) as shown in Fig. 52.18 (b). The circuit current, as given by Ohm's law, is

$$
I=12 / 6=2 \mathbf{A}
$$

(a) Since there is no voltage drop across the diode, power consumed by it is zero.

As we know, there is no power when either the voltage or current is zero. In the forward direction, there is current but no voltage drop, hence power dissipated by the ideal diode is zero. In the reverse direction, there is voltage but no current. Hence, power dissipated by the diode is again zero. In fact, an ideal diode never dissipates any power.
(b) power consumed by 6Ω resistor $=2^{2} \times 6=24 \mathrm{~W}$.

Example 52.11. Calculate the current in the circuit of Fig. 52.19 (a).

Fig. 52.18
Fig. 52.19
Solution. As seen from the polarity of the battery terminals, the diode is reverse-biased.
Hence, it acts like an open switch as shown in Fig. 52.18 (b). Obviously, current in such a circuit is zero.

Example 52.12. Find the current, if any flowing in the circuit of Fig. 52.20 (a) which uses two oppositely-connected ideal diodes in parallel.

Solution. The diode D_{1} is reverse-biased and acts as an open switch as shown in Fig. 52.20 (b). So, there is no current through D_{1} and the 8Ω resistor.

Fig. 52.20

However, D_{2} is forwardbiased and acts like a short-current or closed switch. The current drawn is $I=12 /(2+4)=\mathbf{2} \mathbf{A}$.

Example. 52.13. A sinusoidal voltage of peak value 50 V is applied to a diode as shown in Fig. 52.21. Sketch the waveform of voltage V_{O} treating the diode as an ideal one.

Solution. First, consider the positive half-cycle of the input signal. The diode acts as a short in the forward direction and the moment $V_{\text {in }}$ exceeds battery voltage of 10 V , current will start flowing through the circuit. The value of V_{O} will remain steady at 10 V , the balance of 40 V dropping across 5 K resistance. It is seen that value of V_{O} is set by the battery voltage.

Fig. 52.21
Next, consider the negative input half-cycle. Now, the diode acts like an open switch. Consequently, there is no circuit current and thus no voltage drop across 5 K resistor. Hence, V_{0} equals source voltage of peak value 50 V .

It is interesting to note that the above circuit acts as a positive clipper with a clipping level of 10 V i.e. equal to battery voltage. All positive parts of $V_{\text {in }}$ above 10 V have been clipped off [Fig. 52.21 (b)].

Example 52.14. Sketch the waveform of the output voltage V_{O} of the circuit shown in Fig. 52.22 (a)].

Solution. It is obvious that diode D_{1} and its 10 V battery act as positive clipper with positive clipping level at +10 V . Similarly, D_{2} and its 10 V battery act as negative clipper with a clipping level at -10 V .

It is clear that output voltage V_{0} would be clipped during both the positive and negative halfcycles as shown in Fig. 52.22 (b).

(a)

(b)

Fig. 52.22
Incidentally, the above example represents one way of obtaining an approximate square waveform from a sine wave. In fact, clipping takes place at +10 V and -10 V regardless of the shape of the input wave i.e. whether it is triangular or sawtooth etc.

Example 52.15. In Fig 52.23 draw input and output waveforms to scale. Consider diode forward resistance of 50 ohms.
(Nagpur Univ. Winter 2003)

Fig. 52.23

Solution. It is obvious that the diode D and its 10 V voltage drop across the 10 k variable resistor act as positive clipper. Since the value of $\mathrm{R} \gg \mathrm{R}_{\mathrm{f}}$ (i.e. forward resistance of a diode), therefore, the output voltage is clipped at 10 V as shown in Fig 52.24 .

52.13. The Real Diode

A real diode neither conducts in the forward direction with

Fig. 52.24 zero resistance nor it offers infinite resistance in the reverse direction.

(a) Forward Direction

In this case, we have to take two factors into account. One is that forward current does not start flowing until the voltage applied to the diode exceeds its threshold or knee voltage $V_{K}(0.3$ V for Ge and 0.7 V for Si$)$. Hence, a real diode is shown as equivalent to an ideal diode in series with a small oppositely-connected battery of e.m.f. V_{K} as shown in Fig. 52.25 (a).

The second factor to be considered is the forward dynamic or ac resistance $\left(r_{a c}\right)$ offered by the circuit. So far, we considered this resistance to be zero implying that forward characteristic is a straight vertical line [Fig.

Fig. 52.25 $52.25(a)]$. If we take $r_{a c}$ into account, the forward characteristic becomes as shown in Fig. 52.25 (b). Here, the reciprocal of the slope of this characteristic represents $r_{a c}$.
(i) Large Signal Operation

Large signal sources are those whose voltage is much greater than the diode knee voltage V_{K} (nearly equal to barrier potential V_{B}). Under such conditions, forward current would be large, so that r_{j} (Art. 52.1) would be negligible.
$\therefore \quad r_{a c}=r_{j}+r_{B} \cong r_{B}$
(ii) Small Signal Operation

In this case, the signal voltage is much smaller than $V_{K}(0.3 \mathrm{~V}$ for Ge and 0.7 V for Si$)$. Since I_{F} would be small, r_{j} would be very large as compared to r_{B}.
$\therefore \quad r_{a c}=r_{j}+r_{B} \cong r_{j}$
(b) Reverse Direction

An actual or real diode does not have infinite resistance in the reverse direction because it will always have some reverse saturation current prior to breakdown. For example, if with a $V_{R}=50 \mathrm{~V}, I_{R}$ is $10 \mu \mathrm{~A}$, then $R_{R}=5 \times 10^{6} \Omega=5 \mathrm{M}$. Silicon diodes have reverse resistance of many thousands of megohms. Hence, an actual diode in the reverse direction can be thought of as equivalent to a high resistor. This would be true only in the case of signals of low frequencies. For high-frequency signals, we will have to take into account the capacitive effects (Art 52.4).

Example 52.16. Sketch the waveform for the output voltage V_{0} in Fig. 52.26. Take $V_{K}=0.3 \mathrm{~V}$ for germanium diode which has a forward current of 28 mA at 1 V .
$\begin{array}{clll}\text { Solution. } & r_{B} & =(1-0.3) / 28 \mathrm{~mA}=25 \Omega ; r_{j}=25 / 28=0.9 \Omega & \text { - negligible } \\ \therefore & r_{a c} & =r_{j}+r_{B} \cong r_{B}=25 \Omega . & \end{array}$
Hence, the equivalent circuit becomes as shown in Fig. 52.27. Whenever $V_{i n}$ exceeds 0.3 V in the forward direction, diode is shorted and the circuit offers a total resistance $=(25+75)=100 \Omega$.

The peak voltage $=20-0.3=19.7 \mathrm{~V}$. Hence, peak value of forward current is $=19.7 / 100=197 \mathrm{~mA}$. $\therefore \quad$ peak value of output voltage $=197 \times 10^{-3} \times 75=14.77 \mathrm{~V}$
Hence, the peak value of the half-wave rectified voltage is 14.77 V as shown in Fig. 52.27 (b). During the negative half-cycle of the applied voltage, diode acts as an open switch so that $V_{0}=0$. The waveform sketch of V_{0} is shown in Fig. 52.27 (b).

Fig. 52.26
Fig. 52.27

52.14. Diode Circuits with DC and AC Voltage Sources

We will often come across diode and transistor circuits which will contain both dc and ac voltage sources. Such circuits can be easily analysed by using Superposition Theorem (Art 52.15). We will first draw the dc equivalent circuit while neglecting ac-sources and find the required current and voltage values. Next, we will draw the ac equivalent circuit while neglecting the dc sources and again find the voltage and current values. Finally, we will superimpose the two sets of values to get the final result.

While drawing the equivalent circuits, following points must be remembered :

1. Direct current cannot flow 'through' a capacitor. Hence, all capacitors look like an open switch to a dc source.
2. Usually, capacitors used in most circuits are large enough to look like a short to an ac source particularly one of very high frequency. Similarly, dc batteries would also act as short circuits unless they have very high internal resistances.

Example 52.17. The silicon diode shown in Fig. 52.28 has a bulk resistance of 1Ω. The frequency of the 10 mV (peak) signal is so high that the reactance of the coupling, capacitor may be taken as zero. Sketch the approximate waveform of the total voltage ' V ' across the diode.
(Basic Electronics, Punjab Univ.)
Solution. We will apply Superposition theorem to find V. First, voltage drop due to dc source would be found and then it would be added to the drop due to the ac source.

(i) DC Equivalent Circuit

It is seen from Fig. 52.26 that the circuit to the left of point A is 'open' to the dc source of 20 V because of capacitor C. Hence, the equivalent dc circuit is as shown in Fig. 52.29 (a). As seen, diode is forward-biased by the battery. Hence, only 0.7 V dc appear across the diode.

Fig. 52.28

The dc current $I=(20-0.7) / 20 \mathrm{~K} \cong 1 \mathrm{~mA}$.
(ii) AC Equivalent Circuit

Here, the capacitor C and the 20-V battery would be treated as shorts thereby giving us the ac equivalent circuit of Fig. 52.29 (b).

Fig. 52.29
$=10 \times \frac{51}{51+1000}=\mathbf{0 . 4 8} \mathrm{mV}$

Since, it is a silicon diode $r_{j}=50 \mathrm{mV} / 1 \mathrm{mV}=50 \Omega$ $r_{a c}=r_{j}+r_{B}=50+1=51 \Omega$
As shown in Fig. 52.29 (b), so far as the signal source is concerned, 20 K resistor and ac resistance of the diode are connected in parallel at point A. Now, $20 \mathrm{~K} \| 51$ $\Omega=51 \Omega$. Hence, 1 K and 51Ω are put in series across the signal source of peak value 10 mV . The peak value of the ac voltage drop over 51Ω resistance is

The total drop across the diode is the sum of the ac and dc drops. The combined voltage waveform is shown in Fig. $52.29(c)$. It consists of a dc voltage of 0.7 V over which rides an ac voltage of peak value $\pm 0.48 \mathrm{mV}$.

Example 52.18. The Ge diode shown in Fig. 52.30 has a bulk resistance of 2Ω. The two capacitors offer negligible reactance to the a.c. signal. Sketch the waveform of the output voltage.

Solution. As seen from Fig. 52.30 (b), no dc current can pass through 100 K resistor because it is blocked by C_{2}. Hence, no dc voltage appears across $100-\mathrm{K}$ resistor. The battery current passes through 10 K resistor, through diode, through 20 K resistor and finally to ground.

$$
\begin{aligned}
I & =(30-0.3) /(10+20) \times 10^{3}=0.99 \mathrm{~mA} \cong 1 \mathrm{~mA} \\
r_{a c} & =r_{j}+r_{B}=(25 \mathrm{mV} / 1 \mathrm{~mA})+2=27 \Omega
\end{aligned}
$$

(a)

(b)

(c)

Fig. 52.30
AC equivalent circuit is shown in Fig. 52.30 (c) where capacitors and battery have been shorted. As seen, diode resistance of 27Ω is in series with $20 \mathrm{~K} \| 100 \mathrm{~K}$. It means that only a very small part of ac. Source voltage drops across the diode. Hence, almost all a.c.source voltage appears across 100 K resistor. Obviously, V is practically the same as ac source voltage as shown in Fig. 52.30 (d).

52.15. Diode Clipper and Clamper Circuits

These are diode waveshaping circuits i.e. circuits meant to control the shape of the voltage and current waveforms to suit various purposes. Each performs the waveshaping function indicated by its
name. The output of the clipping circuit appears as if a portion of the input signal were clipped off. But clamper circuits simply clams (i.e. lift up or down) the input signal to a different dc level.

52.16. Clippers

A clipping circuit requires a minimum of two components i.e. a diode and a resistor. Often, dc battery is also used to fix the clipping level. The input waveform can be clipped at different levels by simply changing the battery voltage and by interchanging the position of various elements. We will use an ideal diode which acts like a closed switch when forward-biased and as an open switch when reverse-biased.

Such circuit are used in radars and digital computers etc. when it is desired to remove signal voltages above or below a specified voltage level. Another application is in radio receivers for communication circuits where noise pulses that rise well above the signal amplitude are clipped down to the desired level.

Example 52.19. For the simple parallel clipper of Fig. 52.31, find the shape of the output voltage V_{O} across the diode if the input sine wave signal is as shown in Fig. 52.31 (a). What will happen when diode and resistor are inter-changed?

Solution. When positive half-cycle of the signal voltage is applied to the clipper i.e. when A is positive with respect to B, the diode D is reverse-biased. Hence, it acts as an open switch. Consequently, the entire input voltage appears across it.

Fig. 52.31

When Diode and Resistor are Interchanged

In this case, the circuit becomes as shown in Fig. 52.32 (b). Now, the output voltage V_{0} is that which is dropped across R. During the positive half-cycle of the signal voltage, D acts as an open switch. Hence, all applied voltage drops across D and none across R. So, there is no output signal voltage.

During the negative input halfcycle, terminal B is positive and so it is forward-biases B which acts as a short. Hence, there is no voltage drop

During the negative half-cycle of the signal voltage when circuit terminal B becomes positive with respect to A, the diode is forward-biased. Hence, it acts like a closed switch (or short) across which no voltage is dropped. Hence, the waveshape of V_{0} is as shown in Fig. 52.31 (c). It is seen that the negative portion of the signal voltage has been removed. Hence, such a circuit is called a negative clipper. across D. Consequently, all the applied signal voltage drops across R and none across D. As a result, the negative half-cycle of the input signal is allowed to pass through the clipper circuit. Obviously, now the circuit acts as a positive clipper.

Example 52.20. What would be the output waveform displayed by the oscilloscope in Fig. 52.33? The silicon diode has a barrier voltage of 0.7 V .

Fig. 52.33
Solution. Consider the negative input half-cycle first i.e. when point B is positive with respect to point A. The diode starts conducting when applied voltage exceeds 0.7 V . Since D and R_{L} are in parallel, voltage across them cannot exceed 0.7 V . Obviously, negative half-cycle beyond 0.7 V gets clipped. Hence, circuit behaves like a negative clipper.

During the positive input half-cycle when point A is positive, diode becomes reverse-biased and hence, becomes open-circuited. The applied voltage drops across the resistors R and R_{L} connected in series. The peak value of the output voltage is

$$
=15\left(\frac{R_{L}}{R+R_{L}}\right)=15 \times \frac{1}{1.1}=13.64 \mathrm{~V}
$$

Hence, the output voltage as displayed by the oscilloscope would be as shown in Fig. 52.33.
Example. 52.21. With the sine wave signal input of Fig. 52.34 (a), find the shape of the output signal V_{0} in the biased series clipper of Fig. 52.34 (b). What would happen if battery connections are reversed?

Solution. Let us consider the positive half-cycle of the singal i.e. when terminal A of the circuit becomes positive with respect to B. The diode appears as a short since it is forward-biased.

Fig. 52.34
But no current flows till $V_{i n}$ exceeds the opposing battery voltage of 10 V . Hence, only upper part of the positive signal voltage passes through the clipper circuit and appears as V_{0} across R. Its shape is shown in Fig. 52.34 (c). The negative half-cycle of the signal voltage is clipped off.

In fact, in this circuit, the entire input is clipped off except positive peak portions.

Reversed Battery Connections

The battery connections have been reversed in Fig. 52.35. In this case, during the positive halfcycle of the signal, the voltage across R would be the sum of the signal voltage and the battery voltage i.e. signal voltage would be lifted up by 10 V as shown in Fig. 52.35 (c).

During the negative input half-cycle, the lower peak portions of the signals would be clipped off because of the 10 V battery.

Example. 52.22. The triangular voltage of Fig. 52.36 (a) is applied to the biased parallel clipper circuit of Fig 52.36 (b). Find the wave-shape of the output voltage.

Solution. During the positive half-cycle, D_{1} would conduct but D_{2} will act as an opencircuit. However, value of V_{0} cannot exceed 10 V because points C and D are electrically connected across the 10 V battery since D_{1} is shorted. Hence, signal voltage above 10 V

Fig. 52.36 level would be clipped off as shown in Fig. 52.36 (c).

During the negative half-cycle, D_{1} is open but D_{2} conducts. Again, V_{0} cannot exceed 5 V since it is the voltage across points C and D whose value is fixed by the battery connected in that branch. Hence, signal voltage beyond 5 V is clipped off. The wave-shape of V_{0} is as shown in Fig. 52.36 (c).

52.17. Some Clipping Circuits

For the following circuits, a sinusoidal input signal as shown in Fig. 52.37 would be assumed.
(a) Biased Series Clippers

The output voltage has the waveform as shown in Fig. 52.38.

Fig. 52.37

Fig. 52.38

(b) Biased Parallel Clippers

The waveforms of the output voltage are as shown in Fig. 52.39.
Clipping has been changed by changing the battery and diode connections.

52.18. Clampers

To put it simply, clamping is the process of introducing a dc level into an ac signal. Clampers are also sometimes known as dc restorers.

By way of illustration, consider the signal shown in Fig. 52.40 (a). It is a sine wave with equal positive and negative swings of $\pm 5 \mathrm{~V}$ about 0 V . Hence, its average value over one cycle is zero (it has no dc level).

In Fig. $52.40(b)$, the signal waveform has been lifted up so as to just touch the horizontal axis. It is now said to have acquired a dc level of 5 V . This output wave-form is said to be positively clamped at 0 V . Fig. $52.40(c)$ shows an output waveform which is negatively clamped at 0 V .

Fig. 52.39
A circuit capable of accepting the input signal shown in Fig. 52.40 (a) and delivering the output shown in Fig. $52.40(b)$ or (c) is called a clamper. Such a circuit has a minimum requirement of three elements.

Fig. 52.40

1. a diode
2. a capacitor and
3. a resistor.

It will generally need a dc battery also. Following additional points regarding clamper circuits are worth keeping in mind.

1. both R and C affect the waveform.
2. values of R and C should produce a time constant $(\lambda=C R)$ which is large enough to ensure that capacitor remains almost fully charged during the time-period of the signal. In other words, time constant $\lambda » T / 2$ where T is the time-period of the input signal. For good clamping action, the $R C$ time constant should be at least ten times the time-period of the input signal voltage.
3. it is advantageous to first consider the condition under which the diode becomes forward biased.
4. for all clamping circuits, voltage swing of the input and output waveforms is the same.
5. such circuits are often used in TV receivers as dc restorers. The incoming composite video signal is normally processed through capacitively-coupled amplifiers which eliminate the dc component thereby losing the black and white reference levels and the blanking level. These reference levels have to be restored before applying the video signal to the picture tube.
Example 52.23. The input signal of Fig. 52.41 (a) is applied to the clamper circuit shown in Fig. 52.41 (b). Draw the waveform of the output voltage V_{0}. How will it change if R is made 100Ω ?
(Electronic circuits, Bangalore Univ.)
Solution. As seen, time-period of the input signal is $T=1 / 1000$ second $=1 \mathrm{~ms}$

$$
\begin{aligned}
\therefore \quad & 0 \rightarrow t_{1}=t_{1} \rightarrow t_{2}=t_{2} \rightarrow t_{2}=T / 2 \ldots \ldots . .=0.5 \mathrm{~ms} . \\
& \lambda=C_{R}=1 \times 10^{-6} \times 10 \times 10^{3}=10 \mathrm{~ms}
\end{aligned}
$$

As seen, $\lambda » T / 2$. Hence, once charged, the capacitor will have hardly any time to discharge by the time signal polarity reverses.

(a) Positive Input Half-cycle

When positive half-cycle of the input signal voltage is applied to the clamper circuit, its terminal A becomes positive with respect to terminal B. Hence, D acts like a short as shown in Fig. 52.41 (c). A steady positive voltage of 5 V remains applied to A for 0.5 ms . At the same time, R is also shorted out [Fig. $52.41(c)$] because it is in parallel with D. Hence, C will rapidly charge to 5 V . Being across a short, $V_{0}=0$ during positive half-cycle as shown in Fig. $52.41(d)$.

Fig. 52.41

(b) Negative Input Half-cycle

In this case, terminal B becomes positive and so reverse-biases D by 10 V . Hence, D acts like an open switch as shown in Fig. 52.42 (a). Now, R and C get connected in series so that their $\lambda=R C=$ 10 ms . As stated earlier, capacitor will take a time of 5λ $=50 \mathrm{~ms}$ to get fully discharged. But the input signal will allow it just 0.5 ms during which to discharge. Obviously, C would hardly get discharged in this extremely short time interval of 0.5 ms . Hence, it can be assumed to be still fully charged with the

Fig. 52.42 original polarity during this negative half-cycle.

The output voltage V_{0} across the 'open' will be

$$
\begin{array}{ll}
=\text { voltage from } E \rightarrow A \rightarrow B \rightarrow F & \text { - Fig. } 52.40(a) \\
=5+10=15 \mathrm{~V} & \text { - with } E \text { negative }
\end{array}
$$

The waveform of the output voltage is shown in Fig. 52.42 (b). It has same frequency as that of the input signal. However, it has been clamped down in the negative region. It is seen that voltage swing of both input and output circuits is the same i.e. 15 V . It is never the case in clipping circuits.

When $\mathbf{R}=100$
Now, $\lambda=100 \times 1 \times 10^{-6} \mathrm{~ms}=0.1 \mathrm{~ms}$. Hence, the capacitor which is almost instantaneously

Fig. 52.43 charged to +5 V during the positive input half-cycle, will be almost completely discharged during the negative halfcycle because, now, 5λ (full discharge time) equals the half time-period $(0.5 \mathrm{~s})$ of the signal.
Hence, in this case, V_{0} would be momentarily equal to -15 V at the beginning of the negative half-cycle but will fall off to almost 0 V before the signal reverses its polarity (Fig. 52.43). As seen, v_{0} consists of voltage spikes of amplitude 15 V .

Fig. 52.44

52.19. Summary of Clamping Circuits

In the following clamping circuits, it would be assumed that the amount of the time $5 \lambda=5 R C$ » $T / 2$ where T is the time-period of the input signal. For all circuits, we will take the same input signal shown in Fig. 52.44 with a peak value of V. We will also take note of the change in the output waveform when diode connections are reversed.

Fig. 52.46
It is seen from Fig. 52.44 and 52.45 that negative clamping has changed to positive clamping when the diode connections are reversed.

Fig. 52.48

The same thing happens in the case of clamping circuits shown in Fig. 52.47 and 52.48.

1. Find the current supplied, if any, by the battery in the circuit of Fig. 52.49 which uses two oppo-sitely-connected ideal diodes in parallel.
2. What is the current supplied by the battery in Fig. 52.50 if D is an ideal diode.
[3 A]
3. In Fig. 52.51 , signal voltage has a peak value of $\neq 21 \mathrm{mV}$ and its frequency is so high that reactance of the coupling capacitor can be neglected. If bulk resistance of the silicon diode is neglected, what

Fig. 52.52

Fig. 52.53

Fig. 52.54
would be the approximate waveform of the total voltage ' V_{0} ' across the diode. [0.7 V dc on which rides an ac voltage of peak value $=\mathbf{1} \mathbf{m V}$]
4. Sketch the voltage across R_{L} in the clipper circuit of Fig. 52.52.
5. Sketch the voltage across R_{L} in the clipper circuit of Fig. 52.53.
6. What is the waveform of the voltage across R_{L} in Fig. 52.54 ?
7. What is the approximate dc component in the output of a positive diode clamper with a peak input of 20 V ?

OBJECTIVE TESTS - 52

1. For a silicon diode, the value of the forwardbias voltage typically
(a) must be greater than 0.3 V
(b) must be greater than 0.7 V
(c) depends on the width of the depletion region
(d) depends on the concentration of majority carriers.
2. When forward biased, a diode
(a) blocks current
(b) conducts current
(c) has a high resistance
(d) drops a large voltage
3. The term bias means
(a) the ratio of majority carriers to minority carriers
(b) the amount of current across the P-N junction
(c) a dc voltage applied across the $\mathrm{P}-\mathrm{N}$ junction to control its operation
(d) none of the above
4. To forward-bias a P-N junction, diode,
(a) an external voltage is applied that is positive at the anode and negative at the cathode
(b) an external voltage is applied that is negative at the anode and positive at the cathode.
(c) an external voltage is applied that is positive at the P-region and negative at the N -region
(d) a and c above
5. When a P-N junction is forward-biased
(a) the only current is the hole current
(b) the only current is the electron current
(c) the only currentis produced by majority carriers
(d) the current is produced by both holes and electrons.
6. A P-N junction diode's dynamic conductance is directly proportional to
(a) the applied voltage
(b) the temperature
(c) the current
(d) the thermal voltage
(Hint : Conductance is reciprocal of the resistance)
7. The junction capacitance of a linearly graded junction varies with the applied reverse bias, V_{R} as
(a) V_{R}^{-1}
(b) $V_{R}^{-1 / 2}$
(c) $V_{R}^{-1 / 3}$
(d) $V_{R}^{1 / 2}$
(UPSC Engg. Services 2002)
8. The diffusion capacitance of a forward biased $P^{+} N\left(P^{+}\right.$indicates heavily doped P-region $)$ junction diode with a steady current I depends on
(a) width of the depletion region
(b) mean life-time of holes
(c) mean life-time of electrons
(d) junction-area
(UPSC Engg. Services 2002)
9. The width of depletion layer of a P-N junction
(a) decreases with light doping
(b) increases with heavy doping
(c) is independent of applied voltage
(d) is increased under reverse bias.
10. At room temperature of $25^{\circ} \mathrm{C}$, the barrier potential for silicon is 0.7 V . Its value at $125^{\circ} \mathrm{C}$ is
\qquad volt.
(a) 0.5
(b) 0.3
(c) 0.9
(d) 0.7.
11. Junction breakdown occurs
(a) under high temperature condition
(b) with forward bias
(c) under reverse bias
(d) because of manufacturing defect.
12. Avalanche breakdown is primarily dependent on the phenomenon of
(a) collision
(b) doping
(c) ionization
(d) recombination.
13. Reverse current in a silicon junction nearly doubles for every. \qquad ${ }^{\circ} \mathrm{C}$ rise in temperature.
(a) 10
(b) 2
(c) 6
(d) 5.
14. In the forward region of its characteristic, a diode appears as a/an

Fig. 52.55
(a) OFF switch
(b) high resistance
(c) capacitor
(d) ON switch.
15. The approximate value of V_{O} across the diode in Fig. 52.53 is

Fig. 52.56
(a) zero
(b) 10 V
(c) 5 V
(d) dependent onvalue of R .
16. The diode ' D ' is ideal in the network shown in Fig. 52.56. The current 'I' will be.
(a) $̈ \mathrm{~A} 2 \mathrm{n} \mathrm{A}$
(b) zero
(c) 2 mA
(d) 4 mA
17. The voltages at V_{1} and V_{2} of the arrangement shown in Fig. 52.57 will be respectively.

Fig. 52.57
(a) 6 V and 5.4 V
(b) 5.4 V and 6 V
(c) 3 V and 5.4 V
(d) 6 V and 5 V
18. Without a dc source, a clipper acts like a
(a) rectifier
(b) clamper
(c) demodulator
(d) chopper
19. The primary function of a clamper circuit is to
(a) suppress variations in signal voltage
(b) raise positive half-cycle of the signal
(c) lower negative half-cycle of the signal
(d) introduce a dc level into an ac signal
20. For an input $\mathrm{V}_{\mathrm{S}}=5 \sin t$ (assuming ideal diode), the circuit shown in Fig. 52.58 will be behave as a
(a) clipper, sine wave clipped at -2 V
(b) clamper, sine wave clamped at -2 V
(c) clamper, sine wave clamped at zero volt
(d) clipped, sine wave clipped at 2 V

Fig. 52.58
21. A clipping circuit is shown in Fig. 52.59. Its transfer characteristic will be

Fig. 52.59
(a)

(b)

(c)

(d)

ANSWERS

1. (b)
2. (b)
3. (c)
4. (d)
5. (d)
6. (c)
7. (c)
8. (c)
9. (d)
10. (c)
11. (c)
12. (a)
13. (a)
14. (c)
15. (d)
16. (b)
17. (c)
18. (a)
19. (d)
20. (b)
21. (b)
©

ROUGH WORK

CONTENTS

Learning Objectives

> Fundamentals of Light
$>$ Light Emitting Diode (LED)
> Use of LEDs in Facsimile Machines
> Liquid Crystal Displays
> P-N Junction Photodiode
> Dust Sensor
> Photoconductive Cell
$>$ Phototransistor
> Photodarlington
$>$ Photo voltaic or Solar Cell
$>$ Laser Diode
> Optical Disks
$>$ Read-only Optical Disk Equipment
> Printers Using Laser Diodes
> Hologram Scanners
> Laser Range Finder
$>$ Light-activated SCR(LASCR)
> Optical Isolators
> Optical Modulators
$>$ Optical Fibre
Communication Systems
> Optical Fibre Data Links

OPTOELECTRONIC DEVICES

[^5]
53.1. Fundamentals of Light

According to the Quantum Theory, light consists of discrete packets of energy called photons. The energy contained in a photon depends on the frequency of the light and is given by the relation $E=h f$ where h is Plank's constant (6.625×10^{-34} Joule-second). In this equation, energy E is in Joules and frequency f is in hertz (Hz). As seen, photon energy is directly proportional to frequency: higher the frequency, greater the energy. Now, velocity of light is given by $c=f \lambda$ where c is the velocity of the light $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ and λ is the wavelength of light in metres. The wavelength of light determines its colour in the visible range and whether it is ultraviolet or infrared outside the visible range.

$$
\begin{array}{lll}
\text { Now, } & E & =h f=h c / \lambda \text { or } \lambda=h c / E \text { metres } \\
\therefore & \lambda & =\left(6.625 \times 10^{-34}\right) \times\left(3 \times 10^{8}\right) / E=\left(19.875 \times 10^{-26}\right) / E \quad-E \text { in Joules } \\
\text { If } E \text { is in electron-volt }(\mathrm{eV}) \text {, then since } 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\
\therefore & \lambda & =\left(19.875 \times 10^{-26}\right) /\left(E \times 1.6 \times 10^{-19}\right)=\left(12.42 \times 10^{-7}\right) / E \text { metre } \\
\text { or } & \lambda & =1.242 \mu \mathrm{~m}
\end{array}
$$

In a forward-biased $P-N$ junction, electrons and holes both cross the junction. In the process, some electrons and holes recombine with the result that electrons lose energy. The amount of energy lost is equal to the difference in energy between the conduction and valence bands, this being known as the semiconductor energy band gap E_{g}. The value of E_{g} for silicon is 1.1 eV , for GaAs is 1.43 eV and for InAs is 0.36 eV . For example, the wavelength of light emitted by silicon $P-N$ junction is $\lambda=1.242 / E_{g}=1.242 / 1.1=1.13 \mu \mathrm{~m}$.

53.2. Light Emitting Diode (LED)

(a) Theory

As the name indicates, it is a forward-biased $P-N$ junction which emits visible light when energised. As discussed earlier (Art. 53.40), charge carrier recombination takes place when electrons from the N -side cross
 the junction and recombine with the holes on the P-side.

Now, electrons are in the higher conduction band on the N-side whereas holes are in the lower
 valence band on the P-side. During recombination, some of the energy difference is given up in the form of heat and light (i.e. photons). For Si and Ge junctions, greater percentage of this energy is given up in the form of heat so that the amount emitted as light is insignificant. But in the case of other semiconductor materials like gallium arsenide (GaAs), gallium phosphide (GaP) and gal-lium-arsenide-phosphide (GaAsP), a greater percentage of energy released during recombination is given out in the form of light. If the semiconductor material is translucent, light is emitted and the junction becomes a light source i.e. a light-emitting diode (LED) as shown schematically in Fig. 53.1. The colour of the emitted light depends on the type of material used as given on the next page.

1. GaAs - infrared radiation (invisible).
2. GaP - red or green light.
3. GaAsP - red or yellow (amber) light.

LEDs that emit blue light are also available but red is the most common. LEDs emit no light when reverse-biased. In fact, operating LEDs in reverse direction will
 quickly destroy them. Fig. 53.1 shows a picture of LEDs that emits different colours of light.
(b) Construction

Broadly speaking, the LED structures can be divided into two categories:

1. Surface-emitting LEDs : These LEDs emit light in a direction perpendicular to the $P N$ junction plane.
2. Edge-emitting LEDs : These LEDs emit light in a direction parallel to the $P N$ junction plane.
Fig. 53.2 shows the construction of a surface-emitting LED. As seen from this figure, an N-type layer is grown on a substrate and a P-type layer is deposited on it by diffusion. Since carrier recombination takes place in the P-layer, it is kept upper most. The metal anode connections are made at the outer edges of the P-layer so as to allow more central surface area for the light to escape. LEDs are manufactured with domed lenses in

Fig. 53.2 order to lessen the reabsorption problem.

A metal (gold) film is applied to the bottom of the substrate for reflecting as much light as possible to the surface of the device and also to provide cathode connection. LEDs are always encased in order to protect their delicate wires.

Being made of semiconductor material, it is rugged and has a life of more than 10,000 hours.

(c) Working

The forward voltage across an LED is considerably greater than for a silicon $P N$ junction diode. Typically the maximum forward voltage for LED is between 1.2 V and 3.2 V depending on the device. Reverse breakdown voltage for an LED is of the order of 3 V to 10 V . Fig. 53.3 (a) shows a simple circuit to illustrate the working of an LED. The LED emits light in response to a sufficient forward current. The amount of power output translated into light is directly proportional to the forward current as shown in Fig. 53.3 (b). It is evident from this figure that greater the forward current, the greater the light output.

Fig. 53.3

(d) Applications

To chose emitting diodes for a particular application, one or more of the following points have to be considered : wavelength of light emitted, input power required, output power, efficiency, turn-on and turn-off time, mounting arrangement, light intensity and brightness etc.

Since LEDs operate at voltage levels from 1.5 V to 3.3 V , they are highly compatible with solidstate circuitry.

Their uses include the following :

1. LEDs are used in burglar-alarm systems;
2. for solid-state video displays which are rapidly replacing cathode-ray tubes (CRT);
3. in image sensing circuits used for 'picturephone';
4. in the field of optical fibre communication systems where high-radiance GaAs diodes are matched into the silica-fibre optical cable;
5. in data links and remote controllers;
6. in arrays of different types for displaying alphanumeric (letters and numbers) or supplying input power to lasers or for entering information into optical computer memories;
7. for numeric displays in hand-held or pocket calculators.

As shown in Fig. 53.4 (a) a seven-segment display consists of seven rectangular LEDs which can form the digits 0 to 9 . The seven LED segments are labelled ' a ' to ' g '. Each of this segments is

Fig. 53.4

controlled through one of the display LEDs. Seven-segment displays come in two types, common-cathode and common-anode type. In the common-cathode type, all the cathodes of the diodes are tied together as shown in Fig. 53.4 (b). This makes it possible to light any segment by forward-biasing that particular LED. For example, to light number 5 , segments a, f, g, c and d must be forward-biased. Since the cathodes are tied to ground, only 5 volt is to be applied to the anode of these segments to light them.

The common-anode seven-segment display has all its anodes tied together to +5 volt and ground is used to light the individual segments. Fig. 53.4(c) shows a picture of a seven-segment display.

(e) Multicoloured LEDs

LEDs are available which gives out light in either two or three colours. There are also blinking LEDs. A two-colour LED is a three-terminal device as shown in Fig. 3.5. The longest lead is the cathode and the remaining two leads are the anodes. When leads R and C are forward-biased, the LED emits red light and when leads G and C are forward-biased, LED emits green light. The tricolour LED looks similar to the ordinary LED but emits, red, green or yellow light depending on operating conditions. It has two leads and each of these acts as both anode and cathode. When dc current flows through it in one direction, LED emits

Fig. 53.5 red light but when current flows in the opposite direction, LED emits green light. However, with ac current, yellow light is given out.

The blinking LED is a combination of an oscillator and a LED in one package. Since it has an anode and a cathode lead, it looks like an ordinary LED. The blinking frequency is usually 3 Hz when the diode forward bias is 5 V . It conducts about 20 mA of current when ON and 0.9 mA when OFF.

53.3. Use of LEDs in Facsimile Machines

Fig. 53.6 shows a simplified schematic diagram of a facsimile (or
 fax) machine. As seen, the light from the LED array is focussed on the document paper. The light reflected at the paper is focussed on a charge-coupled device (CCD) by a combination of mirror and a lens. This causes the optical information to be converted into electrical information. The electrical information is then sent through the data-processing unit to its destination via telephone line.

Fig. 53.6

53.4. Liquid Crystals Displays

(a) General

A liquid crystal is a material (usually, an organic compound) which flows like a liquid at room temperature but whose molecular structure has some properties normally associated with solids (examples of such compounds are : cholesteryl nonanoate and p-azoxyanisole). As is well-known,

the molecules in ordinary liquids have random orientation but in a liquid crystal they are oriented in a definite crystal pattern. Normally, a thin layer of liquid crystal is transparent to incident light but when an electric field is applied across it, its molecular arrangement is disturbed causing changes in its optical properties. When light falls on an activated layer of a liquid crystal, it is either absorbed or else is scattered by the disoriented molecules.

(b) Construction

As shown in Fig. 53.7 (a), a liquid crystal 'cell' consists of a

Fig. 53.7 thin layer (about $10 \mu \mathrm{~m}$) of a liquid crystal sandwiched between two glass sheets with transparent electrodes deposited on their inside faces. With both glass sheets transparent, the cell is known as transmittive type cell. When one glass is transparent and the other has a reflective coating, the cell is called reflective type. The LCD does not produce any illumination of its own. It, in fact, depends entirely on illumination falling on it from an external source for its visual effect.

(c) Working

The two types of display available are known as (i) field-effect display and (ii) dynamic scattering display. When field-effect display is energized, the energized areas of the LCD absorb the incident light and, hence give localized black display. When dynamic scattering display is energized, the molecules of energized area of the display become turbulent and scatter light in all directions. Consequently, the activated areas take on a frosted glass appearance resulting in a silver display. Of course, the un-energized areas remain translucent.

As shown in Fig. 53.7 (b), a digit on an LCD has a segment appearance. For example, if number 5 is required, the terminals $8,2,3,6$ and 5 would be energized so that only these regions would be activated while the other areas would remain clear.

(d) Advantages

An LCD has the distinct advantage of extremely low power requirement (about $10-15 \mu \mathrm{~W}$ per 7 -segment display as compared to a few mW for a LED). It is due to the fact that it does not itself generate any illumination but depends on external illumination for its visual effect (colour depending on the incident light). They have a life-time of about 50,000 hours.
(e) Uses

1. Field-effect LCDs are normally used in watches and portable instruments where source of energy is a prime consideration.
2. Thousands of tiny LCDs are used to form the picture elements (pixels) of the screen in one type of B \& W pocket TV receiver.
3. Recent desk top LCD monitors.
4. Note book computer display
5. Cellular phone display, to display data on personal digital assistant (PDAs) such as Palm V x etc.

The liquid crystal display (LCDs) commonly used on notebook computers and handheld PDAs are also appearing on desktop. These flat panel displays promise great clarity at increasingly high resolutions and are available in screen sizes upto 15 inches. The LCD monitor offers benefits and drawbacks. The first benefit is size. Because of the need to house the tube itself, cathode-ray tube (CRT) monitors are big and heavy. LCD monitors are only a few inches deep and they are much lighter in weight. However LCD monitors are expensive than CRTs at present. Another problem is the viewing angle. The optimal viewing angle of an LCD is from straight in front and as you move further to the side the screen becomes harder to read, much more so than with a CRT. Moreover screen resolutions generally reach only as high as $1,024 \times 768$, which is insufficient for some applications. Fig. 53.7(c) shows the picture of an LCD used in portable instrument.

53.5. P-N Junction Photodiode

It is a two-terminal junction device which is operated by first reverse-biasing the junction and then illuminating it. A reverse-biased $P-N$ junction has a small amount of reverse saturation current I_{s} (or I_{0}) due to thermally-generated electron-hole pairs. In silicon, I_{s} is the range of nanoamperes. The number of these minority carriers depends on the intensity of light incident on the
 junction. When the diode is in glass package, light can reach the junction and thus change the reverse current.

to the current that flows when no light is incident. By changing the illumination level, reverse current can be changed. In this way, reverse resistance of the diode can be changed by a factor of nearly 20.

A photodiode can turn its current ON and OFF in nanoseconds. Hence, it is one of the fastest photodetectors. It is used where it is required to switch light ON and OFF at a maximum rate. Applications of a photodiode include

The basic biasing arrangement, construction and symbols of a photodiode are shown in Fig. 53.8. As seen, a lens has been used in the cap of the unit to focus maximum light on the reverse-biased junction. The active diameter of these devices is about 2.5 mm but they are mounted in standard TO-5 packages with a window to allow maximum incident light.
The characteristics of Fig. 53.9 show that for a given reverse voltage, I_{λ} (or I_{s}) increases with increase in the level of illumination. The dark current refers

Fig. 53.9

1. detection, both visible and invisible ;
2. demodulation ;
3. switching ;
4. logic circuit that require stability and high speed ;
5. character recognition ;
6. optical communication equipment ;
7. encoders etc.

53.6. Dust Sensor

Fig. 53.10 shows a combination of an LED and a photodiode used as a dust sensor. As seen, the light emitted from the LED gets reflected by the dust particles. The reflected light is collected by the photodiode and is converted into an electrical signal. The dust sensor is employed in cleaners.

The combination of an LED and a photodiode is also used as : (1) a paper sensor in facsimile ma-

Fig. 53.10 chines, (2) as a tape-end sensor in videotape recorders/players, and (3) as a dirt detector for rinsing in washing machines.

53.7. Photoconductive Cell

It is a semiconductor device whose resistance varies inversely with the intensity of light that falls upon it. It is also known as photoresistive cell or photoresistor because it operates on the principle of photoresistivity.
(a) Theory

CdS photo sensitive detectors

The resistivity (and, hence, resistance) of a semiconductor depends on the number of free charge carriers available in it. When the semiconductor is not illuminated, the number of charge carriers is small and, hence, resistivity is high. But when light in the form of photons strikes the semiconductor, each photon delivers energy to it. If the photon energy is greater than the energy band gap of the semiconductor, free mobile charge carriers are liberated and, as a result, resistivity of the semiconductor is decreased.

(b) Construction and Working

Photoconductive cells are generally made of cadmium compounds such as cadmium sulphide (CdS) and cadmium selenide (CdSe). Spectral response of CdS cell is similar to the human eye, hence such cells are often used to simu-
Fig. 53.11
late the human eye. That is why they find
use in light metering circuits in photographic cameras.

The construction of a typical photo conductive cell and its two alternative circuit symbols are shown in Fig. 53.11 (a) and (b) respectively. As seen, a thin layer of photosensitive semiconductor material is deposited in the form of a long strip zig-zagged across a disc-shaped ceramic base with protective sides. For added protection, a glass lens or plastic cover is used. The two ends of the strip are brought out to connecting pins below the base.

The terminal characteristic of a photoconductive cell is shown in Fig. 53.12. It depicts how the resistance of the cell varies with light intensity. Typi-

Fig. 53.12 cally, the dark resistance of the cell is $1 \mathrm{M} \Omega$ or larger. Under illumination, the cell resistance drops to a value between 1 and $100 \mathrm{k} \Omega$ depending on surface illumination.

(c) Applications

A photoconductive cell is an inexpensive and simple detector which is widely used in OFF/ON circuits, light-measurement and light-detecting circuits.

Example 53.1. A relay is controlled by a photoconductive cell which has resistance of $100 \mathrm{k} \Omega$ when illuminated and $1 \mathrm{k} \Omega$ when in the dark. The relay is supplied with 10 mA from a $30-\mathrm{V}$ supply when cell is illuminated and is required to be de-energized when the cell is in the dark. Sketch a suitable circuit and calculate the required series resistance and value of dark current.
(Optoelectronic Devices, Gujarat Univ. 1993)
Solution. The circuit is as shown in Fig. 30.13 where R is a current-limiting resistor.

$$
I=30 /(R+r)
$$

-where r is cell resistance

Fig. 53.13

$$
\therefore \quad R=(30 / I)-r
$$

When illuminated

$$
R=\left(30 / 10 \times 10^{-3}\right)-1 \times 10^{3}=2 \times 10^{3}=2 \mathbf{k} \boldsymbol{\Omega}
$$

Dark current is given by

$$
I_{d}=30 /(2+100) \times 10^{3}=0.3 \times 10^{-3} \mathrm{~A}=0.3 \mathrm{~mA}
$$

53.8. Phototransistor

It is light-sensitive transistor and is similar to an ordinary bipolar junction transistor (BJT) except that it has no connection to the base terminal. Its operation is based on the photodiode that exists at the $C B$ junction. Instead of the base current, the input to the transistor is provided in the form of light as shown in the schematic symbol of Fig. 53.14 (a).

Silicon NPNs are mostly used as photo transistors. The device is usually packed in a TO-type can with a lens on top although it is

sometimes encapsulated in clear plastic. When there is no incident light on the $C B$ junction, there is a small thermally-generated collector-to-emitter leakage current $I_{\text {CEO }}$ which, in this case, is called dark current and is in the $n A$ range.

When light is incident on the $C B$ junction, a base current I_{λ} is produced which is directly proportional to the light intensity. Hence, collector current $I_{C}=\beta I_{\lambda}$

Typical collector characteristic curves of a phototransistor are shown in Fig. 53.14 (b). Each individual curve corresponds to a certain value of light intensity expressed in $\mathrm{mW} / \mathrm{cm}^{2}$.
 As seen, I_{C} increases with light intensity.

The phototransistor has applications similar to those of a photodiode. Their main differences are in the current and response time. The photo-transistor has the advantages of greater sensitivity and current capacity than photodiodes. However, photodiodes are faster of the two, switching in less than a nanosecond.

53.9. Photodarlington

As shown in Fig. 53.15 a photodarlington consists of a phototransistor in a Darlington arrangement with a common transistor. It has a much greater sensitivity to incident radiant energy than a phototransistor because of higher current gain. However, its switching time of $50 \mu \mathrm{~s}$ is much longer than the phototransistor $(2 \mu \mathrm{~s})$ or the photodiode (1 ns). Its circuit symbol is shown in Fig. 53.15.

Applications

Photodarlingtons are used in a variety of applications

Fig. 53.15 some of which are given below.

A light-operated relay is shown in Fig. 53.16 (a). The phototransistor T_{1} drives the bipolar transistor T_{2}. When sufficient light falls on T_{2}, it is driven into saturation so that I_{C} is increased manifold. This collector current while passing through the relay coil energizes the relay.

Fig. 53.16

Fig. 53.16 (b) shows a dark-operated relay circuit i.e. one in which relay is deenergized when light falls on the phototransistor. Here, T_{1} and R form a potential divider across $V_{C C}$. With insufficient light incident on T_{1}, transistor T_{2} is biased ON thereby keeping the relay energized. However, when there is sufficient light, T_{1} turns ON and pulls the base of T_{2} low thereby turning $T_{2} \mathrm{OFF}$ and hence, deenergizing the relay.

Such relays are used in many applications such as (i) automatic door activators, (ii) process counters and (iii) various alarm systems for smoke or intrusion detection.

53.10. Photo voltaic or Solar Cell

Such cells operate on the principle of photovoltaic action i.e. conversion of light energy into electrical energy. This action occurs in all semiconductors which are constructed to absorb energy.
(a) Construction

As shown in Fig. 53.17 (a), a basic solar cell consists of P-type and N-type semiconductor material (usually, silicon or selenium) forming a $P-N$ junction. The bottom surface of the cell (which is always away from light) covered with a continuous conductive contact to which a wire lead is attached. The upper surface has a maximum area exposed to light with a small contact either along the edge or around the perimeter. The surface layer of P-type material is extremely thin $(0.5 \mathrm{~mm})$ so that light can penetrate to the junction.

Fig. 53.17
Although silicon is commonly used for fabricating solar cells, another construction consists of P type selenium covered with a layer of N-type cadmium oxide to form P - N junction as shown in Fig. 53.17 (b). Two alternative circuit symbols are shown in Fig. 53.17 (c). Power solar cells are also fabricated in flat strips to form efficient coverage of available surface area. Incidentally, the maximum efficiency of a solar cell in converting sunlight into electrical energy is nearly 15 per cent at the present.
(b) Theory

When the $P-N$ junction of a solar cell is illuminated, electronhole pairs are generated in much the same way, as in photovoltaic cell. An electric field is established near the $P-N$ junction by the positive and negative ions created due to the production of electron-hole pairs which leads to the development of potential across the junction. Since the number of electron-hole pairs far exceeds the number needed for thermal equilibrium, many of the

electrons are pulled across the junction by the force of the electric field. Those that cross the junction contribute to the current in the cell and through the external load. The terminal voltage of the cell is directly proportional to the intensity of the incident light. The voltage may be as high as 0.6 V depending on the external load. Usually a large number of cells are arranged in an array in order to obtained higher voltages and currents as shown in Fig. 53.18.

Fig. 53.18
Solar cells act like a battery when connected in series or parallel. Fig. 53.19 show two groups of 10 series cells connected in parallel with each other. If each cell provides 0.5 V at 150 mA , the overall value of the solar bank is 5 V at 150 mA . The two parallel solar banks provide 5 V at 300 mA . This solar power source supplies the load and also charges the Ni-Cd battery. The battery provides power in the absence of light. A blocking diode D is used to isolate the solar cells from the Ni-Cd battery otherwise in the absence of light, the battery will discharge through the cells thereby damaging them.

A solar cell operates with fair efficiency, has unlimited life, can be easily mass-produced and has a high power capacity per weight. It is because of these qualities that it has become an important source of power for earth satellites.

Example 53.2. An earth satellite has on board 12-V battery which supplies a continuous current of 0.5 A. Solar cells are used to keep the battery charged. The solar cells are illuminated by the sun for 12 hours in every 24 hours. If during exposure, each cell gives 0.5 V at 50 mA , determine the number of cells required.
(Optoelectronics Devices, Gujarat Univ. 1994)
Solution. The solar cell battery-charging circuit is shown in Fig. 53.20. The cells must be connected in series to provide the necessary voltage and such groups must be connected in parallel to provide the necessary current. The charging voltage has to be greater than the battery voltage of 12 V . Allowing for different drops, let the solar bank voltage be 13.5 V .

Number of series connected solar cells $=13.5 / 0.5=27$

The charge given out by batteries during a 24 hour period $=12 \times$ $0.5=6$ Ah. Hence, solar cells must supply this much charge over the same period. However, solar cells deliver current only when they illuminated i.e. for 12 hours in every 24 hours. Necessary charging current

Fig. 53.20
required from the solar cells $=6 \mathrm{Ah} / 12 \mathrm{~h}=0.5 \mathrm{~A}$.
Total number of groups of solar cells required to be connected in parallel is $=$ output current $/$ cell current $=0.5 / 50 \times 10^{3}=10$
\therefore total number of solar cells required for the earth satellite $=27 \times 10=\mathbf{2 7 0}$

53.11. Laser Diode

Like LEDs, laser diodes are typical $P N$ junction devices used under a forward-bias. The word LASER is an acronym for Light Amplification by Stimulated Emission of Radiation. The use of laser is (becoming increasing common) in medical equipment used in surgery and in consumer products like compact disk (CD) players, laser printers, hologram scanners etc.

(a) Construction

Broadly speaking, the laser diode structure can be divided into two categories :

1. Surface-emitting laser diodes: These laser diodes emit light in a direction perpendicular to the PN junction plane.
2. Edge-emitting laser diodes: These laser diodes emit light in a direction parallel to the $P N$ junction plane.
Fig. 53.21 (a) shows the structure of an edge-emitting laser diode. This type of structure is called Fabry-Perot type laser. As seen from the figure, a $P-N$ junction is formed by two layers of doped gallium arsenide (GaAs). The length of the $P N$ junction bears a precise relationship with the wavelength of the light to be emitted. As seen, there is a highly reflective surface at one end of the junction and a partially reflective surface at the other end. External leads provide the anode and cathode connections.

Fig. 53.21

(b) Theory

When the $P-N$ junction is forward-biased by an external voltage source, electrons move across the junction and usual recombination occurs in the depletion region which results in the production of photons. As forward current is increased, more photons are produced which drift at random in the depletion region. Some of these photons strike the reflective surface perpendicularly. These reflected photons enter the depletion region, strike other atoms and release more photons. All these photons move back and
 forth between the two reflective surfaces. [Fig. 53.21 (b)] The photon activity becomes so intense that at some point, a strong beam of laser light comes out of the partially reflective surface of the diode.
(c) Unique Characteristics of Laser Light

The beam of laser light produced by the diode has the following unique characteristics :

1. It is coherent i.e. there is no path difference between the waves comprising the beam;
2. It is monochromatic i.e. it consists of one wavelength and hence one colour only;
3. It is collimated i.e. emitted light waves travel parallel to each other.

Laser diodes have a threshold level of current above which the laser action occurs but below which the laser diode behaves like a LED emitting incoherent light. The schematic symbol of a laser diode is similar to that of LED. Incidentally, a filter or lens is necessary to view the laser beam.

(d) Applications

Laser diodes are used in variety of applications ranging from medical equipment used in surgery to consumer products like optical disk equipment, laser printers, hologram scanners etc. Laser diodes emitting vis-

Fig. 53.22 ible light are used as pointers. Those emitting visible and infrared light are used to measure range (or distance). The laser diodes are also widely used in parallel processing of information and in parallel interconnections between computers. Some of these applications are discussed in the following articles.

53.12. Optical Disks

The major application field for laser diodes is in optical disk equipment. This equipment is used for reading or recording information and can be broadly divided into two groups :

1. Reading-only and
2. Recording-and-reading type.

The optical disk equipment of either type make use of a laser diode, lenses and photodiodes. During recording, it changes electrical information into optical information and then records the information on the optical disk. During reading (or playback), the head optically reads the recorded information and changes the optical information into electrical information. Fig. 53.22 shows the different types of optical disks used in practice. The commercial systems make use of disks that are $90,120,130$ and 300 mm in diameter. A mini disk, 64 mm in diameter is also used for digital audio.

Fig. 53.23
The optical disks have several advantages over semiconductor memories. Some of these include their larger data storage capacity, shorter access time and smaller size. Therefore they are used in terminal equipment of computers as well as in audio visual equipment.

53.13. Read-only Optical Disks Equipment

Fig. 53.24 shows an optical equipment for reading data from digital audio (compact) disks. Compact disks (CDs) which are 120 mm in diameter are typical digital audio disks. Compact disks usually means digital audio compact disk, but it also includes the read-only memory (CD-ROM) for data memory and interactive compact disk (CD-I) for multimedia use.

Audio information (i.e. sound) is digitally recorded in stereo on the surface of a CD in the form of microscopic "pits" and "flats". As seen from Fig. 53.24, the light emitted from the laser diode passes through the lens and is focussed to a diameter of about $1 \mu \mathrm{~m}$ on the surface of a disk. As the CD rotates, the lens and beam follow the track under control of a servo motor. The laser light which is altered by the pits and flats along the recorded track is reflected back from the track through the lens and optical system to infrared photodiodes. The signal from the photodiodes is then used to reproduce the digitally recorded sound.

A CD-Rom

Fig. 53.24

53.14. Printers Using Laser Diodes

There are two types of optical sources usually used in printers ; (1) laser diodes and (2) LED arrays. The printers using laser diodes are called laser beam printers (or simply laser printers). These are one of the most attractive type of equipment in office automation in today's world. Words and figures can be printed rapidly and clearly more easily by a laser printer than by other types of printers.
(Courtesy optical semiconductor devices by M.Fukuda published by John Weliy \& Sons Inc.)

Fig. 53.25 shows a simplified diagram of a laser printer. As seen the laser diode is driven by modulated signals from the computer. The optical beam after passing through the lens is reflected by the rotating polygon mirror and scanned on the photosensitive drum. The drum is homogeneously charged when it passes through the charging unit consisting of an LED array. The homogeneous electrification is partially erased in accordance with the scanned optical beam. This is because of the fact that the electrical resistance at the light-irradiated part decreases and the electric charge is released. This causes the signals (i.e. data) from the computer to be written on to the drum. At the developing unit, an electrically charged powder (called toner) is electrostatically attached to the written parts. At the transcribing unit, the powder is transferred to the paper. Next, the transferred pattern is fixed by heating and pressing at the fixing unit. The data from the computer is thus printed on the paper.

Fig. 53.25

53.15. Hologram Scanners

The hologram scanner is widely used in various equipment and is ordinarily used in bar-code readers in point-of-sale systems (such as super marked checkout counters). It is also used in laser printers for scanning the laser beam on the drum precisely.

Fig. 53.26 shows a simplified schematic of a hologram scanner. As seen, the optical beam for reading the bar-code is focussed by a lens through the hologram disk and scanned on the bar-code by rotating the hologram disk. Gratings with coaxial circles are formed on the hologram disk. This

Fig. 53.26
causes the incident laser beam to bend at the grating by an amount determined by the grating pitch. The reflected light modulated according to the bar-code is reflected by the mirror and monitored by the photodiode. The monitored optical signal is then translated into an electrical signal.

53.16. Laser Range Finder

The laser diodes along with photodiodes can be used to measure the range (i.e. a distance) of an object. Fig. 53.27 shows a simple schematic of a laser range finder. As seen, the laser diode is modulated with high current pulses. The pulsed high-power beam is emitted in the direction of an object. The beam is reflected from the object. The reflected beam is detected with a photo detector (or photodiode). The range is calculated as the difference between the time the light was emitted from the laser diode and the time it was detected by the photodiode.

Fig. 53.27

Let

$$
D=\text { distance between the laser range finder and the object. }
$$

$\Delta T=$ Time difference between the instance when the light was emitted from the laser diode and the instance when it was detected by the photodiode
Then $\quad D=\frac{1}{2} \times$ speed of light $\times \Delta T$
A 2-dimensional array of laser diodes and photodetectors can be constructed. Such a system is used to obtain 3-D images of an object.

53.17. Light-activated SCR (LASCR)

The operation of a LASCR is essentially similar to that of a conventional SCR except that it is light-triggered (Fig.53.28). Moreover, it has a window and lens which focuses light on the gate junction area. The LASCR operates like a latch. It can be triggered ON by a light input on the gate area but does not turn OFF when light source is removed. It can be turned OFF only by reducing the current through it below its holding current. Depending on its size, a LASCR is capable of handling larger amount of current that can be handled by a photodiode or a photo-transistor.

Fig. 53.28 shows how a LASCR can be

Fig. 53.28 used for energizing a latching relay. The input dc source turns on the electric lamp and the resulting incident light triggers the LASCR into conduction. The anode current energizes the relay and closes the contact. It is seen that the input dc source is electrically isolated from the rest of the circuit.

53.18. Optical Isolators

Optical isolators are designed to electrically isolate one circuit from another while allowing one circuit to control the other. The usual purpose of isolation is to provide protection from high-voltage transients, surge voltages and low-level electrical noise that could possibly result in an erroneous output or damage to the device. Such isolators allow interfacing of circuits with different voltage levels and different grounds etc.

Fig. 53.29

An optical isolator (or coupler) consists of a light source such as LED and a photodetector such as a photo transistor as shown in Fig. 53. 29 (a) and is available in a standard IC package.

When LED is forward-biased, the light produced by it is transferred to the phototransistor which is turned ON thereby producing current through the external load.

Fig. 53.29 (b) shows a Darlington transistor coupler which is used when increased output current capability is needed beyond that provided by the phototransistor output. The LASCR output coupler of Fig. 53.29 (c) can be used in applications where a low-level input voltage is required to latch a high voltage relay for activating some kind of electro-mechanical device.

53.19. Optical Modulators

Light emitting $P N$ junction devices such as LEDs and laser diodes are easily modulated by superimposing signals on to the injected current. This is direct modulation. Laser diodes in high-bit rate and long-span optical communication systems are frequently used under direct modulation.

However direct modulation results in chirping which limits transmission quality because of dispersion in optical fibres. An optical modulator can modulate the light output from laser diodes with little or no chirping. There are two types of optical
 modulators :

1. The semiconductor optical modulators
2. Optical modulators composed of dielectric materials such as lithium nitrate $\left(\mathrm{LiNO}_{3}\right)$

The semiconductor optical modulators are $P N$ junction diodes and can further be subdivided into two types :

1. Devices used under forward bias (as LEDs and laser diodes are used). The optical modulation in these devices is carried out by changing gain or loss within the modulators.
2. Devices used under reverse bias (i.e., as photodiodes are used). Most high-performance semiconductor optical modulators are used under reverse bias. The reverse bias is needed to generate strong electric field. Optical modulation is basically performed by modulating the refractive index or optical absorption coefficient of the modulators. The devices which make use of refractive index phenomenon for modulation are called phase modulation type devices while those that use optical absorption coefficient phenomenon are called intensity modulation type devices.

There are several different types of optical modulators available today. But the waveguide type optical modulator is more common in use. Further there are several different waveguide type optical modulator structures possible. Fig. 53.30 shows a mesa type optical modulator structure.

Fig. 53.30

It may be noted that although we have shown the structure making use of a simple N - and P-layer but in reality each layer (N-type or P-type) is made up of several different semiconductors.

53.20. Optical Fibre Communication Systems

The optical fibre communication systems (such as public communication networks and data links) are the basic infrastructure of the information hungry society. There are several advantages of the optical fibre system over metallic transmission systems as listed below :

1. Data can be transmitted at a very high-frequency over longer distances without much loss.
2. Electromagnetic induction (EMI) noise is never induced during transmission through optical fibre cables.
3. Optical fibre cable is light, flexible and economical.

Fig. 53.31 shows the public optical fibre communication system broadly divided into two groups: (1) Submarine systems, and (2) Land systems. Submarine systems have already been used to connect countries all over the world. The submarine systems help people to talk overseas without any time delay.

Fig. 53.31
In land systems, long-haul systems have been connected between large cities. The land systems also include systems such as subscriber systems and CATV (i.e. community or common antenna television, cable and telecommunication television system, or cable television system).

Fig. 53.32
Fig. 53.32 shows an application of LEDs, laser diodes and photodiodes in a simplified optical fibre communication systems. The LEDs and laser diodes emit light modulated with a signal. The optical signal is then transmitted through the optical fibre and is received with photodiodes on the destination side. In this type of a system LEDs or laser diodes emit the light directly through the optical fibre and therefore is referred to as direct modulation type systems. But in more recent
systems, the optical modulators modulate the light emitted from the laser diodes and then the modulated light is transmitted through the optical fibre [refer to Fig. 53.33].

Fig. 53.33
In long-haul systems, repeaters (which include photodiodes and laser diodes and electronic circuits) are inserted. In the repeater, the weak optical signal being transmitted through the optical fibre is detected by the photodiode. The detected signal is reformed and amplified by the electronic circuits. The amplified signal is converted again into an optical signal by a laser diode and transmitted again through the optical fibre cable. Fig. 53.34 shows a simple schematic of a repeater.

Fig. 53.34
From the modulation point of view, the optical fibre communication systems can be divided into digital systems and analog systems. Most long-haul and large capacity optical fibre communication systems are digital systems. The analog systems are used for transmitting information over a short distance.

53.2 1. Optical Fibre Data Links

The use of optical fibre data links has wide spread in the past few decades. Its application ranges from local area networks (LANs) to the computer, digital audio and mobile fields. Several different types of LEDs and laser diodes emitting light at wavelengths ranging from visible to the infrared are used as optical sources. The transmission data rate is a function of transmission distance and varies from application to application. For computer links where the distance varies from 1 m to 100 m , the data transmission rate varies from 1 M bits/s to 100 M bits/s. For local-area-networks used in factory, office and building automation, the data transmission rate varies from 10 K bits/s to 5 M bits/s. In digital audio field, where the distance is below 1 m the data transmission rate varies from $500 \mathrm{bits} / \mathrm{s}$ to over 10 M bits/s. Similarly in mobile fields (such as ship, aircraft, train and automotive applications) where the distance could vary from 1 m to 100 m , the data transmission rate varies from 1 K bits/s to 1 M bits/s.

1. Optical fibre local area networks. The optical fibre local area networks (LANs) are similar to the public communication systems. Some of their advantages over the systems using metallic cables are: (1) high transmission capacity and bit rate and (2) longer transmission distance. However, the range of LANs is restricted. They are more commonly used within factories, offices, buildings etc. Computers, printers, facsimile machines and other office equipment are connected with each other by optical fibre cables as shown in Fig. 53.35.

The LEDs and laser diodes are used to transmit data through the optical fibre cable and photodiodes are used to receive data. The different types of equipment connected in the

Fig. 53.35

Fig. 53.36 LAN could be one of the following two types : (1) An optical ethernet having a radial-shape network as shown in Fig. 53.36 (a) or (2) a fibre-distributed data interface (FDDI) having a ring-shape network as shown in Fig. 53.36 (b).
2. Digital audio field. Fig. 53.37 shows an example of a data link in digital audio field. As seen, the optical fibre cable is used to connect compact disk (CD) player, laser disk (LD) player, digital audio tape (DAT) and tuner with the amplifier and speaker. The connection between the amplifier and everything except DAT is unidirectional. The audio digital signals from CD, LD player, DAT and tuner are converted into optical signals by LEDs or laser diodes at one end of the fibre optic cable and then transmitted through the cable to the opposite end. At the opposite end, the signals are received by photodiodes and converted into an electrical signal for amplification and finally speaker for reproduction to a sound.
3. Mobile fields. The optical data links are very suitable in mobile fields such as ship, aircraft, train, automotive etc. The

Fig. 53.37 reason is that optical data links are very compact, and light in weight than metallic data links. In addition to this, the optical data links are not subjected to noise induced by electromagnetic induction.

OBJECTIVE TESTS - 53

1. LEDs are commonly fabricated from gallium compounds like gallium arsenide and gallium phosphide because they
(a) are cheap
(b) are easily available
(c) emit more heat
(d) emit more light.
2. A LED is basically a \qquad P-N junction.
(a) forward-biased
(b) reverse-biased
(c) lightly-doped
(d) heavily-doped.
3. As compared to a LED display, the distinct advantage of an LCD display is that it requires
(a) no illumination
(b) extremely low power
(c) no forward-bias
(d) a solid crystal
4. Before illuminating a $\mathrm{P}-\mathrm{N}$ junction photodiode, it has to be
(a) reverse-biased
(b) forward-biased
(c) switched ON
(d) switched OFF.
5. In a photoconductive cell, the resistance of the semiconductor material varies \qquad with the intensity of incident light.
(a) directly
(b) inversely
(c) exponentially
(d) logarithmically.
6. A photoconductive cell is known as . \qquad cell.
(a) phototransistor
(b) photoresistor
(c) photovoltaic
(d) both (a) and (b).
7. A phototransistor excels a photodiode in the matter of
(a) faster switching
(b) greater sensitivity
(c) higher current capacity
(d) both (a) and (b)
(e) both (b) and (c).
8. A photodarlington comprises of
(a) a phototransistor
(b) a transistor
(c) a photodiode
(d) both (a) and (b).
9. A solar cell operates on the principle of
(a) diffusion
(b) recombination
(c) photo voltaic action
(d) carrier flow.
10. Solar cells are used as source of power in earth satellites because they have
(a) very high efficiency
(b) unlimited life
(c) higher power capacity per weight
(d) both (b) and (c)
(e) both (a) and (b).
11. The device possessing the highest sensitivity is a
(a) photo conductive cell
(b) photovoltaic cell
(c) photodiode
(d) phototransistor
12. The unique characteristics of LASER light are that it is
(a) coherent
(b) monochromatic
(c) collimated
(d) all of the above
13. The LASCR operates like a
(a) latch
(b) LED
(c) photodiode
(d) phototransistor.
14. Optical couplers are designed to \qquad one circuit from another.
(a) control
(b) isolate
(c) disconnect
(d) protect.
15. The main purpose of using optical isolators is to provide protection to devices from
(a) high-voltage transients
(b) surge voltages
(c) low-level noise
(d) all of the above.

2110 Electrical Technology

16. A LED emits visible light when its
(a) P-N junction is reverse-biased
(b) depletion region widens
(c) holes and electrons recombine
(d) P-N junction becomes hot.
17. In LED, light is emitted because
(a) recombination of charge carriers takes place
(b) diode gets heated up
(c) light falling on the diode gets amplified
(d) light gets reflected due to lens action.
18. GaAs, LEDs emit radiation in the
(a) ultraviolet region
(b) violet-blue green range of the visible region
(c) visible region
(d) infra-red region
19. Phototransistors respond much like a conventional transistor except that, in their case, light energy is used to \qquad
(a) alter leakage current
(b) change base voltage
(c) switch it ON
(d) alter emitter current.

ANSWERS

1. (d) 2. (a) $3 . b$
2. (a) 14. (b) 15.(d) 16. (c) 17. (a) 18. (d) 19. (c)

CH A P T E R 54

Learning Objectives

> Zener Diode

SPECIAL

> Voltage Regulation
> Zener Diode as Peak Clipper
> Meter Protection
$>$ Zener Diode as a Reference Element
$>$ Tunneling Effect
> Tunnel Diode
> Tunnel Diode Oscillator
> Varactor Diode
$>$ PIN Diode
> Schottky Diode
> Step Recovery Diode
> Kun Diode
$>$ IMPATT Diode

A major application for zener diodes is voltage regulation in dc power supplies. Zener diode maintains a nearly constant dc voltage under the proper operating conditions.

54.1. Zener Diode

It is a reverse-biased heavily-doped silicon (or germanium) $P-N$ junction diode which is operated in the breakdown region where current is limited by both external resistance and power dissipation of the diode. Silicon is perferred to Ge because of its higher temperature and current capability. As seen from Art. 52.3, when a diode breaks down, both Zener and avalanche effects are present although usually one or the other predominates depending on the value of reverse voltage. At reverse voltages less than 6 V , Zener effect predominates whereas above 6 V , avalanche effect is predominant. Strictly speaking, the first one should be called Zener diode and the second one as avalanche diode but the general practice is to call both types as Zener diodes.

Zener breakdown occurs due to breaking of covalent bonds by the strong electric field set up in the depletion region by the reverse voltage. It produces an extremely large number of electrons and holes which constitute the reverse saturation current (now called Zener current, I_{z}) whose value is limited only by the external resistance in the circuit. It is independent of the applied voltage. Avalanche breakdown occurs at higher reverse voltages when thermally-generated electrons acquire sufficient energy to produce more carriers by collision.

(a) V/I Characteristic

A typical characteristic is shown by Fig. 54.1 in the negative quadrant. The forward characteristic is simply that of an ordinary forward-biased junction diode. The important points on the reverse characteristic are :

$$
\left.\begin{array}{rl}
V_{z}= & \text { Zener breakdown voltage } \\
I_{z \min }= & \text { minimum current to sustain } \\
\text { breakdown }
\end{array}\right\}
$$

Since its reverse characteristic is not exactly vertical,

Fig. 54.1 the diode possesses some resistance called Zener dynamic impedance*. However, we will neglect it assuming that the characteristic is truly vertical. In other words, we will assume an ideal Zener diode for which voltage does not change once it goes into breakdown. It means that V_{z} remains constant even when I_{z} increases considerably.

The schematic symbol of a Zener diode and its equivalent circuit are shown in Fig. 54.2 (a). The complete equivalent circuit is shown in Fig. 54.2 (b) and the approximate one in Fig. 54.2 (c) where it looks like a battery of V_{z} volts.

The schematic symbol of Fig. 54.2 (a) is similar to that of a normal diode except that the line representing the cathode is bent at both ends. With a little mental effort, the cathode symbol can be imagined to look like the letter Z for Zener.
(b) Zener Voltages

Zener diodes are available having Zener voltages of 2.4 V to 200 V . This voltage is temperature dependent. Their power dissipation is given by the product $V_{z} I_{z} \ldots$ maximum ratings vary from 150 mW to 50 W .
(c) Zener Biasing

For proper working of a Zener diode in any circuit, it is essential that it must

1. be reverse-biased;
2. have voltage across it greater than V_{z};

* Its value is given by $Z_{z}=\Delta V_{z} / \Delta I_{z}$. It is negiligible as compared to large external resistance connected in the circuit.

3. be in a circuit where current is less than $I_{z \max }$;
(d) Diode Identification

Physically, a Zener diode looks like any other diode and is recognized by its IN number such as IN 750 (10 W power) or IN 4000 (high power). Fig $54.2(d)$ shows a picture of a zener diode with $\mathrm{V}_{\mathrm{z}}=4.7 \mathrm{~V}$.
(e) Uses

Zener diodes find numerous applications in transistor circuitry. Some of their common uses are :

1. as voltage regulators;
2. as a fixed reference voltage in a network for biasing and comparison purposes and for calibrating voltmeters;
3. as peak clippers or voltage limiters;
4. for metre protection against damage from accidental application of excessive voltage;
5. for reshaping a waveform.

Example 54.1. Determine whether the ideal Zener diode of Fig. 54.3 is properly biased. Explain why?

3)

(d)

Fig. 54.2

Solution. Since positive battery terminal is connected to its cathode, the diode is reverse-biased.

Since applied voltage is less than V_{z}, the diode is not properly voltage-biased.
Example 54.2. Find out if the Zener diode of Fig. 54.4 is properly-biased. If so, find diode current assuming it to be an ideal one.

Solution. Polarity-wise, the diode is properly-biased. Since applied voltage is greater than V_{z}, the diode is properly voltage-biased.

Drop across

$$
R=12-10=2 \mathrm{~V} \quad \therefore \quad I=2 / 500=4 \mathrm{~mA}
$$

Since this current is less than the maximum diode current, the diode is properly-biased according to the criteria laid down in Art. 54.1 (c).

Example. 54.3. Determine if the Zener diode of Fig. 54.5 is biased properly. If so, find I_{z} and the power dissipated by the diode.

Solution. Since its anode is connected to the negative battery terminal, the Zener diode is correctly reverse-biased.

Now,

$$
\begin{aligned}
V_{A B} & =V_{Z}=12 \mathrm{~V} \quad \text { Hence, drop } \\
I & =6 / 600=0.01 \mathrm{~A}=10 \mathrm{~mA} \\
I_{1} & =12 / 1800=6.7 \times 10^{-3} \mathrm{~A}=6.7 \mathrm{~mA} \\
I_{z} & =I-I_{1}=10-6.7=3.3 \mathrm{~mA}
\end{aligned}
$$

$$
\text { Hence, drop across } R_{1}=18-12=6 \mathrm{~V}
$$

$$
\therefore \quad I=6 / 600=0.01 \mathrm{~A}=10 \mathrm{~mA}
$$

Since I_{z} is less than $I_{z \max }$, the diode is properly-biased in every respect as per Art 4.1. Power dissipated $=V_{z} I_{z}=12 \times 3.3=39.6 \mathrm{~mW}$.

Example. 54.4. Calculate the value of E_{0} in the given circuit of Fig. 54.6. Given $E_{i n}=6 \mathrm{~V}$ and 20 V .
(Electrical Engg. II, Indore Univ.)
Solution. When $E_{\text {in }}$ is 6 V , the diode acts like an open circuit. It is so because 6 V is not enough to cause Zener break-down which will take place only when $E_{i n}$ exceeds 10 V . Hence, in this case, $E_{0}=0$.

When $E_{\text {in }}=20 \mathrm{~V}$, breakdown occurs but voltage across diode remains constant at 10 V . The balance $(20-10)=10 \mathrm{~V}$ appears across 100Ω resistor. Hence, $E_{0}=$ drop across $R=10 \mathrm{~V}$.

54.2. Voltage Regulation

It is a measure of a circuit's ability to maintain a constant output

Fig. 54.6 voltage even when either input voltage or load current varies. A Zener diode, when working in the breakdown region, can serve as a voltage regulator. In Fig. 54.7, $V_{\text {in }}$ is the input dc voltage whose variations are to be regulated. The Zener diode is reverse-connected across $V_{i n}$. When p.d. across the diode is greater than V_{z}, it conducts and draws relatively large current through the series resistance R.

Fig. 54.7

The load resistance R_{L} across which a constant voltage $V_{\text {out }}$ is required, is connected in parallel with the diode. The total current I passing through R equals the sum of diode current and load current i.e. $I=I_{z}+I_{L}$.

It will be seen that under all conditions $V_{\text {out }}=V_{z}$. Hence, $V_{\text {in }}$ $=I R+V_{\text {out }}=I R+V_{z}$.

Case 1. Suppose R_{L} is kept fixed but supply voltage $V_{\text {in }}$ is increased slightly. It will increase I. This increases in I will be absorbed by the Zener diode without affecting I_{L}. The increase in $V_{\text {in }}$ will be dropped across R thereby keeping $V_{\text {out }}$ constant. Conversely if supply voltage $V_{\text {in }}$ falls, the diode takes a smaller current and voltage drop across R is reduced, thus againt keeping $V_{\text {out }}$ constant. Hence, when $V_{\text {in }}$ changes, I and $I R$ drop change in such a way as to keep $V_{\text {out }}\left(=V_{z}\right)$ constant.

Case 2. In this case, $V_{i n}$ is fixed but I_{z} is changed. When I_{L} increases, diode current I_{z} decreases thereby keeping I and hence $I R$ drop constant. In this way, $V_{\text {out }}$ remains unaffected.

Should I_{L} decrease, I_{z} would increase in order to keep I and hence $I R$ drop constant. Again, $V_{\text {out }}$ would remain unchanged because

$$
V_{\text {out }}=V_{\text {in }}-I R=V_{\text {in }}-\left(I_{z}+I_{L}\right) R
$$

Incidentally, it may be noted that $R=\left(V_{\text {in }}-V_{\text {out }}\right) /\left(I_{z}+I_{L}\right)$
It may also be noted that when diode current reaches its maximum value, I_{L} becomes zero. In that case

$$
R=\frac{V_{\text {in }}-V_{\text {out }}}{I_{\text {Zmax }}}
$$

In Fig. 54.7, only one reference voltage level is available. Fig. 54.8 shows the circuits for establishing two reference levels. Here, two diodes having different Zener voltages have been connected in series.

Example 54.5. Calculate the battery current $I_{,} I_{z}$ and I_{L} in the circuit of Fig. 54.9. How will these values be affected if source voltage increases to 70 V? Neglect Zener resistance.
(Industrial Electronics, Pune Univ.)

$$
\begin{aligned}
& \text { Solution. When } V_{\text {in }}=40 \mathrm{~V} \\
& \text { Now, } \quad V_{A B}=V_{z}=10 \mathrm{~V} \\
& \therefore \quad I=30 / 3 \mathrm{~K}=\mathbf{1 0} \mathbf{m A}
\end{aligned}
$$

\therefore drop across 3 K series (or line) resistor is $=40-10=30 \mathrm{~V}$

$$
I_{L}=V_{z} / R_{L}=V_{A B} / R_{L}=10 / 2 \mathrm{~K}=5 \mathrm{~mA}
$$

Fig. 54.8

Fig. 54.9
\therefore
Now,

$$
I_{z}=I-I_{L}=10-5=5 \mathbf{m A}
$$

$P_{\max }=V_{z} \cdot I_{z(\max)}$ or $0.5=10 \times I_{z(\max)}$
or

$$
I_{z(\max)}=0.5 / 10=0.05 \mathrm{~A}=50 \mathrm{~mA}
$$

Obviously, diode current of 5 mA is very much within the current range of the diode.
(b) When,

$$
\begin{array}{rlrl}
V_{\dot{i n}} & =70 \mathrm{~V} \\
R & =70-10=60 \mathrm{~V} \quad \therefore & & I=60 / 3 \mathrm{~K}=\mathbf{2 0} \mathbf{m A} \\
I_{L} & =\mathbf{5} \mathbf{m A} \text { (as before) } ; & & I_{z}=I-I_{L}=20-5=\mathbf{1 5} \mathbf{m A}
\end{array}
$$

Example 54.6. Using the ideal Zener approximations, find current through the diode of Fig. 54.10 when load resistance R_{L} is (i) $30 K$ (ii) $5 K$ (iii) $3 K$. (Electronics, Madurai Kamraj Univ.)

Solution. (i)

$$
R_{L}=30 \mathrm{~K}
$$

$\therefore \quad I=30 / 3 \mathrm{~K}=10 \mathrm{~mA} ; I_{L}=V_{A B} / R_{L}=30 / 30 \mathrm{~K}=1 \mathrm{~mA}$
$\therefore \quad I_{z}=I-I_{L}=10-1=9 \mathrm{~mA}$
(ii) When

$$
R_{L}=5 \mathrm{~K}
$$

$$
I=10 \mathrm{~mA} \text { - as before } ; I_{L}=30 / 5 K=6 \mathrm{~mA} \quad I_{z}=10-6=4 \mathrm{~mA}
$$

(iii) When

$$
R_{L}=3 \mathbf{K}
$$

$$
I=10 \mathrm{~mA} \text { - as before } ; I_{L}=30 / 3 \mathrm{~K}=10 \mathrm{~mA} \quad I_{z}=I-I_{L}=10-10=0
$$

In this case, it is obvious that the diode is just on the verge of coming out of breakdown region. If R_{L} is reduced further, the diode will come out of breakdown region and would no longer act as a voltage regulator.

Fig. 54.10

Fig. 54.11

Example 54.7. A $24-V, 600-m W$ Zener diode is to be used for providing a $24-V$ stabilized supply to a variable load (Fig. 54.11). If input voltage is 32 V , calculate the (i) series resistance R required (ii) diode current when $R_{L}=1200 \Omega$.
(Applied Electronics, Punjab Univ. 1991)
Solution. (i) $\quad V_{z} I_{z}(\max)=600 \mathrm{~mW} ; \quad I_{z(\max)}=600 / 24=25 \mathrm{~mA}$
\therefore

$$
R=\frac{V_{\text {in }}-V_{\text {out }}}{I_{z(\max)}}=\frac{32-24}{25 \times 10^{-3}}=320 \Omega
$$

(ii) When

$$
R_{L}=1200 \Omega, \quad I_{L}=V_{z} / R_{L}=24 / 1200=20 \mathrm{~mA} ; I_{z}=25-20=5 \mathrm{~mA}
$$

54.3. Zener Diode as Peak Clipper

Use of Zener diodes in wave-shaping circuits is illustrated in Fig. 54.12. The two similar diodes D_{1} and D_{2} have been joined back-to-back across the input sine wave voltage of peak value $\pm 25 \mathrm{~V}$. Both have $V_{z}=20 \mathrm{~V}$. As seen, the output is a semi-square wave with a peak value of $\pm 20 \mathrm{~V}$.

Fig. 54.12

Fig. 54.13

It is well-known that a Zener diode acts like a 'short' (or very low resistance) in the forward direction and an 'open' in the reverse direction till it goes into breakdown at V_{z}. During positive input half-cycle, D_{1} is shorted (being forward-biased) but D_{2} acts like an open upto 20 V . Thereafter, it goes into breakdown and holds the output voltage constant till input voltage falls below 20 V in the later part of the half-cycle. At that point, D_{2} comes out of the breakdown and again acts like an open across which the entire input voltage is dropped.

During the negative input half-cycle, roles of D_{1} and D_{2} are reversed. As a result, the output wave is clipped on both peaks as shown in Fig. 54.12.

If we increase the peak value of the input signal voltage and use Zener diodes of lesser V_{z} value, we can get an almost square output voltage wave from a sinusoidal input wave as shown in Fig. 54.13.

54.4. Meter Protection

Zener diodes are frequently used in volt-ohm-milliammeters (VOM) for protecting meter movement against burn-out from accidental overloads. If VOM is set to its 2.5 V range and the test leads are accidentally connected to a 25 V circuit, an unprotected meter will be burned out or at least get severely damaged.

This hazard can be avoided by connecting a Zener diode in parallel with the meter as shown in Fig. 54.14 (a). In the event of an accidental overload, most of the current will pass through the diode. Two Zener diodes connected as shown in Fig. 54.14 (b) can provide overload protection regardless of the applied polarity.

54.5. Zener Diode as a Reference Element

In many electronic circuits, it is desirable to maintain a constant voltage between two points and use it as a reference voltage for comparing other voltages against it. The difference between the two voltages is amplified and then used for performing some control function. This type of arrangement is used for power supply voltage regulator circuits, measurement circuits and servomechanism circuits. The constant-voltage characteristic in its breakdown region makes a Zener diode desirable for this application. Fig. 54.15 shows a circuit in which Zener diode is used as a reference element. The reference voltage equals the Zener breakdown voltage. The value of R is so chosen that the diode operates well within its breakdown region. The difference ($E_{i n}-E_{r e f}$) gives the control output.

54.6. Tunneling Effect

In a normally-doped $\mathrm{P}-\mathrm{N}$ junction, the depletion layer is relatively wide and a potential barrier exists across the junction. The charge carriers on either side of the junction cannot cross over unless they possess sufficient energy to overcome this barrier $(0.3 \mathrm{~V}$ for Ge and 0.7 V for Si). As is well-known, width of the depletion region depends directly on the doping density of the semiconductor. If a P-N junction is doped very heavily (1000 times or more)*, its depletion layer

Fig. 54.15

Fig. 54.17

Fig. 54.16
becomes extremely thin (about 0.00001 mm). It is found that under such conditions, many carriers can 'punch through' the junction with the speed of light even when they do not possess enough energy to overcome the potential barrier. Consequently, large forward current is produced even when the applied bias is much less than 0.3 V .

This conduction mechanism in which charge carriers (possessing very little energy) bore through a barrier directly instead of climbing over it is called tunneling.

Explanation

Energy band diagrams (EBD) of N-type and P type semiconductor materials can be used to explain this tunneling phenomenon. Fig. 54.16 shows the energy band diagram of the two types of silicon separately. As explained earlier (Art. 51.21), in the N-type semiconductor, there is increased concentration of electrons in the conduction band. It would be further increased under heavy doping. Similarly, in a P type material, there is increased concentration of holes in the valence band for similar reasons.
(a) No Forward Bias

When the N-type and P-type materials are joined, the EBD under no-bias conditiion becomes as shown in Fig. 54.17 (a). The junction barrier produces only a rough alignment of the two materials and their respective valence and conduction bands. As seen, the depletion region between the two is extremely narrow due to very heavy doping on both sides of the junction. The potential hill is also increased as shown.

* Much more than even for a Zener diode.
(b) Small Forward Bias

When a very small forward voltage ($\cong 0.1 \mathrm{~V})$ is applied, the EBDs become as shown in Fig. 54.17 (b). Due to the downward movement of the N-region, the P-region valence band becomes exactly aligned with the N-region conduction band. At this stage, electrons tunnel through the thin depletion layer with the velocity of light thereby giving rise to a large current called peak current I_{p}.
(c) Large Forward Bias

When the forward bias is increased further, the two bands get out of alignment as shown in Fig. 54.17 (c). Hence, tunneling of electrons stops thereby decreasing the current. Since current decreases with increase in applied voltage (i.e. $d V / d I$ is negative), the junction is said to possess negative resistance at this stage. This resistance increases throughout the negative region.

However, it is found that when applied forward voltage is increased still further, the current starts increasing once again as in a normal junction diode.

54.7. Tunnel Diode

This diode was first introduced by Dr. Leo Easki in 1958.
(a) Construction

It is a high-conductivity two-terminal $P-N$ junction diode having doping density about 1000 times higher as compared to an ordinary junction diode. This heavy doping produces following three unusual effects :

1. Firstly, it reduces the width of the depletion layer to an extremely small value (about 0.00001 mm).
2. Secondly, it reduces the reverse breakdown voltage to a

Discrete commercial Si tunnel diode very small value (approaching zero) with the result that the diode appears to be broken down for any reverse voltage.

Fig. 54.18
3. Thirdly, it produces a negative resistance section on the V / I characteristic of the diode.

It is called a tunnel diode because due to its extremely thin depletion layer, electrons are able to tunnel through the potential barrier at relatively low forward bias voltage (less than 0.05 V). Such diodes are usually fabricated from germanium, gallium-arsenide (GaAs) and gallium antimonide (GaSb).

The commonly-used schematic symbols for the diode are shown in Fig. 54.18. It should be handled with caution because being a low-power device, it can be easily damaged by heat and static electricity.

(b) V/I Characteristic

It is shown in Fig. 54.19. As seen, forward bias produces immediate conduction i.e. as soon as forward bias is applied, significant current is produced. The current quickly rises to its peak value I_{p} when the applied forward voltage reaches a value $V_{p}($ point $A)$. When forward voltage is increased further, diode current starts decreasing till it achieves its minimum value called valley current I_{v} corresponding to valley voltage V_{v} (point B). For voltages greater than V_{v}, current starts increasing again as in any ordinary junction diode.

Fig. 54.19

As seen from Fig. 54.19, between the peak point A and valley point B, current decreases with increase in the applied voltage. In other words, tunnel diode possesses negative resistance ($-R_{N}$) in this region. In fact, this constitutes the most useful property of the diode. Instead of absorbing power, a negative resistance produces power. By offsetting losses in L and C components of a tank circuit, such a negative resistance permits oscillations. Hence, a tunnel diode is used as a very high frequency oscillator.

Another point worth noting is that this resistance increases as we go from point A to B because as voltage is increased, current keeps decreasing which means that diode negative resistance keeps increasing.
(c) Tunneling Theory

At zero forward bias, the energy levels of conduction electrons in N-region of the junction are slightly out of alignment with the energy levels of holes in the P-region. As the forward voltage is slightly increased, electron levels start getting aligned with the hole levels on the other side of junction thus permitting some electrons to cross over. This kind of junction crossing is called tunneling.

As voltage is increased to peak voltage $\left(V_{P}\right)$, all conduction band electrons in the N-region are able to cross over to the valence band in the P-region because the two bands are exactly aligned. Hence, maximum current (called peak current I_{P}) flows in the circuit.

After V_{P}, as the applied voltage is increased, current starts decreasing because the two bands start gradually getting out of alignment. It reaches minimum value (called valley current) when the two are totally out of alignment at a forward bias of V_{V} (valley voltage).

For voltages greater than V_{V}, current starts increasing again exactly as it does in the case of an ordinary P-N junction diode.

Tunneling is much faster than normal crossing which enables a tunnel diode to switch ON and OFF much faster than an ordinary diode. That is why a tunnel diode is extensively used in special applications requiring very fast switching speeds like high-speed computer memories and high frequency oscillators etc.
(d) Diode Parameters
(i) Negative Resistance $\left(-\boldsymbol{R}_{N}\right)$. It is the resistance offered by the diode within the negativeresistance section of its characteristic (shown shaded in Fig. 54.19). It equals the reciprocal of the slope of the characteristic in this region.

It may also be found from the following relation $R_{N}=-d V / d I$.
Its value depends on the semiconductor material used (varying from -10Ω to -200Ω).
(ii) I_{P} / I_{V} Ratio

It is almost as important a factor (particularly for computer applications) as the negative resistance of the diode.

Silicon diodes have a low I_{P} / I_{V} ratio of $3: 1$ and their negative resistance can be approximated from $R_{N}=-200 / I_{P}$. Such diodes are used mainly for switches operating in high ambient temperatures.

Germanium diodes have an I_{P} / I_{V} ratio of 6:1 and negative resistance formula $R_{N}=-120 / I_{P}$. GaAs diodes (used exclusively in oscillators) have an I_{P} / I_{V} ratio of about $10: 1$ and a negative resistance nearly equal to that of silicon diodes.

The minimum I_{P} / I_{V} ratio for GaSb diode is about $12: 1$ and has the lowest resistance of all given by $R_{N}=-60 / I_{P}$. Hence, such diodes have the lowest noise.
(e) Equivalent Circuit

The equivalent circuit of a tunnel diode is shown in Fig. 54.20. The capacitance C is the junction diffusion capacitance (1 to 10 pF) and $\left(-R_{N}\right)$ is the negative resistance. The inductor L_{S} is due mainly to the terminal leads $(0.1$ to 4 nH$)$. The resistance R_{S} is due to the leads, ohmic contact and semiconductor materials ($1-5 \Omega$). These factors limit the frequency at which the diode may be used. They are also important in determining the switching-speed limit.
(f) Biasing the Diode

The tunnel diode has to be biased from some dc source for fixing its Q-point on its characteristic when used as an amplifier or as anoscillator and modulator.

Fig. 54.20

Fig. 54.21

The diode is usually biased in the negative region [Fig. 54.21 (a)]. In mixer and relaxation oscillator applications, it is biased in the positive-resistance region nearest zero [Fig. 54.21 (b)].

(g) Applications

Tunnel diode is commonly used for the following purposes :

1. as an ultrahigh-speed switch-due to tunneling mechanism which essentially takes place at the speed of light. It has a switching time of the order of nanoseconds or even picoseconds;
2. as logic memory storage device - due to triple-valued feature of its curve for current.
3. as microwave oscillator at a frequency of about 10 GHz - due to its extremely small capacitance and inductance and negative resistance.
4. in relaxation oscillator circuits - due to its negative resistance. In this respect, it is very similar to the unijunction transistor.
(h) Advantages and Disadvantages

The advantages of a tunnel diode are :

1. low noise,
2. ease of operation,
3. high speed,
4. low power,
5. Insensitivity to nuclear radiations

The disadvantages are :

1. the voltage range over which it can be operated properly is 1 V or less;
2. being a two-terminal device, it provides no isolation between the input and output circuits.

54.8. Tunnel Diode Oscillator

The basic job of an oscillator is to convert dc power into ac power. Ordinarily, we do not expect an ac signal from a circuit which has no input ac source. But the circuit shown in Fig. 54.22 does exactly that as explained below.

The value of R is so selected as to bias the diode D in the negative-resistance region $A-B$. The working or quiescent point Q is almost at the centre of the curve $A-B$. When S

(a)

(b)

Fig. 54.22 is closed, the current immediately rises to a value determined by R and the diode resistance which are in series. The applied voltage V divides across D and R according to the ratio of their resistances.

However, as V_{T} exceeds V_{P}, diode is driven into the negative area and its resistance starts to increase (Art 4.7). Hence, V_{T} increases further till it becomes equal to valley voltage V_{V} (point B). At this point, further increase in V_{T} drives the diode into the positive- resistance region $B C$ [Fig. 54.22

(b)]. The resulting increase in current now increases V_{R} but correspondingly decreases V_{T}, thereby bringing the diode back into the negative-resistance region. This decrease in V_{T} increases the circuit current till point A is reached when V_{T} equals V_{P}.

It describes one cycle of operation. In this way, the circuit will continue to oscillate back and forth through the negative-resistance region i.e. between points A and B on its characteristic. Its output across R is like a sine wave.

Fig. 54.23 shows a practical circuit drawn in two slightly different ways. Here, R_{2} sets the proper bias level for the diode whereas R_{1} (in parallel with

Fig. 54.23 the $L C$ tank circuit) sets
 proper current level for it. The capacitor C_{C} is the coupling capacitor. As the switch S is closed, the diode is set into oscillations whose frequency equals the resonant frequency of the tank.

54.9. Varactor Diode

The varactor diode is a semiconductor, voltage-dependent variable capacitor alternatively known as varicap or voltacap or voltage-variable capacitor $(V V C)$ diode. Basically, it is just a reverse-biased junction diode whose mode of operation depends on its transition capacitance $\left(C_{T}\right)$. As explained earlier in Art. 52.4, reverse-biased junctions behave like capacitors whose capacitance is $\propto 1 / V_{R}^{n}$ where n varies from $1 / 3$ to $1 / 2$. As reverse voltage V_{R} is increased, depletion layer widens thereby decreasing the junction capacitance. Hence, we can change diode capacitance by simply changing V_{R}. Silicon diodes which are optimised for this variable capacitance effect are called varactors.

The picture, schematic symbol and a simple equivalent circuit for a varactor are shown in Fig. 54.24.

Varactors may be of two types as shown in Fig. 54.25. The doping profile of the abrupt-junction diode is shown in Fig. 54.25 (a) and that of the hyperabrupt-junction diode in Fig. 54.25 (b). The abrupt-junction diode has uniform doping and a capacitive tuning ratio $(T R)$ of $4: 1$. For example, if its maximum transition capacitance is 100 pF and minimum 25 pF , then its $T R$ is 4:1 which is not enough to tune a broadcast receiver over its entire frequency range of 550 to 1050 kHz .

The hyperabrupt-junction diode has highest impurity concentration near the junction. It results in narrower depletion layer and larger capacitance. Also, changes in V_{R} produce larger capacitance changes. Such a diode has a tuning range of $10: 1$ enough to tune a broadcast receiver through its frequency range of nearly $3: 1$.

Fig. 54.25

Applications

Since the junction capacitance of a varactor is in the pF range, it is suitable for use in highfrequency circuits. Its main applications are as

1. automatic frequency control device,
2. adjustable band-pass filter,
3. FM modulator,
4. Parametric amplifier.

54.10. PIN Diode

(a) Construction

It is composed of three sections. These are the usual P and N-regions but sandwiched between them is an intrinsic layer or I-layer of pure silicon (Fig. 54.26). Being intrinsic (or undoped) layer, it offers relatively high resistance. This high-resistance region gives it two advantages as compared to an ordinary $P-N$ diode. The advantages are :

1. decrease in capacitance $C_{p n}$ because capacitance is inversely proportional to the seperation of P-and N-regions. It allows the diode a faster response time. Hence, PIN diodes are used at high frequencies (more than 300 MHz);
2. possibility of greater electric field between the P-and N-junctions. It enhances the electron-hole pair generation thereby enabling PIN diode to process even

Pin diode very weak input signals.
(b) Diode Resistance

1. When forward-biased, it offers a variable resitance $r_{a c} \cong$ $50 / I$ where I is the dc current in mA (Art. 52.2). For large dc currents, it would look like a short.
2. When reverse-biased, it looks like an 'open'

Fig. 54.27 i.e. it offers infinite resistance in the reverse direction.
(c) Operation
(i) High Frequency Switching. Its use in electronic high frequency switching is illustrated in Fig. 54.27.

Fig. 54.28

When the diode is reverse-biased, it looks like an 'open' as shown in Fig. 54.27 (b). The $500-\mathrm{MHz}$ input signal voltage divides across the series-connected 100Ω resistance and the diode in proportion to their resistances. Since the diode has infinite resistance (being open), the entire input signal appears across it. Hence, the whole input signal passes out via coupling capacitor C_{2} without any attenuation (or loss). When the diode is forward-biased by the +25 V dc source, $I=25 / 1 K=25 \mathrm{~mA}$. Hence, diode resistance $r_{a c}=50 / 25=2 \Omega$ as shown by its equivalent circuit in Fig. 54.28. Now, almost all the input signal voltage drops across 100Ω resistance and practically none

across the 2Ω resistance. Hence, there is hardly any signal output.

In practice instead of mechanically switching the diode-biasing supply from -25 V to +25 V , a transistor is used to do this switching operation. In this way, we can turn a very high frequency signal (MHz range) OFF and ON with the speed of a transistor switching circuit.
(ii) Use as AM Modulator. The way in which the $500-\mathrm{MHz}$ signal is

Fig. 54.29 modulated at 1 kHz rate is illustrated in Fig. 54.29.

A 1 kHz signal is fed into a $P N P$ transistor where it varies its dc output current at the same rate. This varying dc current is applied as biasing current to the PIN diode as shown in Fig. 54.29. It varies the diode ac resistance as seen by the 500 MHz signal. Hence, the signal is modulated at 1 kHz rate as shown.
(d) Applications
(i) as a switching diode for signal frequencies upto GHz range;
(ii) as an AM modulator of very high frequency signals.

54.11. Schottky Diode

It is also called Schottky barrier diode or hot-carrier diode. It is mainly used as a rectifier at signal frequencies exceeding 300 MHz . It has more uniform junction region and is more rugged than PIN diode - its main rival.

(a) Construction

It is a metal-semiconductor junction diode with no depletion layer. It uses a metal (like gold, silver, platinum, tungsten etc.) on the side of the junction and usually an N type doped silicon semiconductor on the other side. The diode and its schematic symbol are shown in Fig. 54.30.

(b) Operation

When the diode is unbiased, electrons on the N-side have lower energy levels than electrons in the metal. Hence, they cannot surmount the junction barrier (called Schottky barrier) for going over to the metal.

When the diode is forward-biased, conduction electrons on N-side gain enough energy to cross the junction and enter the metal. Since these electrons plunge into the metal with very large energy, they are commonly called 'hot-carriers'. That is why this diode is often referred to as hot-carrier diode.

(c) Applications

This diode possesses two unique features as compared to an ordinary $P-N$ junction diode :

1. it is a unipolar device because it has electrons as majority carriers on both sides of the junction. An ordianry $P-N$ junction diode is a bipolar device because it has both electrons and holes as majority carriers;
2. since no holes are available in metal, there is no depletion layer or stored charges to worry about. Hence, Schottky diode can switch OFF faster than a bipolar diode.

Because of these qualities, Schottky diode can easily rectify signals of frequencies exceeding 300 MHz . As shown in Fig. 54.31, it can produce an almost perfect half-wave rectified output.

The present maximum current rating of the device is about 100 A . It is commonly used in switching power supplies that operate at frequencies of 20 GHz . Another big advantage of this diode is its low noise figure which is extremely important in communication receivers and radar units etc.

It is also used in clipping and clamping circuits, computer gating, mixing and detecting networks used is communication systems.

Fig. 54.30
Fig. 54.31

54.12. Step Recovery Diode

It is another type of VVC diode having a graded doping profile where doping density decreases near the junction as shown in Fig. 54.32. This results in the production of strong electric fields on both sides of the junction.
(a) Theory

At low frequencies, an ordinary diode acts as a rectifier. It conducts in the forward direction but not in the reverse direction i.e. it recovers immediately from ON state to the OFF state. However, it is found that when driven forward-to-reverse by a high-frequency signal (above a few MHz), the diode does not recover immediately. Even during the negative half-cycle of the input signal when the diode is reverse-biased, it keeps conducting for a while after which the reverse current ceases abruptly in one step. This reverse conduction is due to the fact that charges stored in the depletion layer during the period of forward bias take time to drain away from the junction.

Fig. 54.32
Fig. 54.33
Fig. 54.33 (a) shows a step-recovery diode being driven by a $20-\mathrm{MHz}$ signal source. As seen from Fig. 54.33 (b), it conducts in the forward direction like any diode. During the reverse half-cycle, we get reverse current due to the draining of the stored charge after which current suddenly drops to zero. It looks as though diode has suddenly snapped open during the early part of the reverse cycle. That is why it is sometimes called a snap diode.

The step or sudden recovery from reverse current ON to reverse current OFF gives the diode its name.

(b) Applications

Its main use is in high-frequency harmonic generator circuits as a frequency multiplier as explained below.

It is found that whenever a waveform has sudden step or transition, it contains all the harmonics of the input signal (i.e. multiples of its fundamental frequency). For example, the output waveform of Fig. 54.33 (b) contains waves of frequencies 40 $\mathrm{MHz}, 60 \mathrm{MHz}, 80 \mathrm{MHz}$ and so on.

Fig. 54.34 shows how the out-

Fig. 54.34 put of a step recovery diode can be used to drive a tuning circuit which can be made to tune out all harmonics except one i.e. fifth in this case (100 MHz). With an input signal of 20 MHz , the step recovery diode generates harmonics of different multiple frequencies listed above. However, the resonant $L-C$ circuit is tuned to 5th harmonic of $f=100 \mathrm{MHz}$. Hence, all except this harmonic are filtered out of the circuit. The signal appearing across R is almost a pure sine wave with $f=100 \mathrm{MHz}$ as shown separately in Fig. 54.34 (b).

Step-recovery diodes are also used in pulse and digital circuits for generating very fast pulses with rise time of less than 1 nanosecond.

54.13. Gunn Diode

It is a negative-resistance microwave device for oscillator applications.

As shown in Fig. 54.35, it consists of a thin slice of N-type gallium arsenide sandwiched between two metal conductors. The central section is N -gallium arsenide whereas the two outer sections are epitaxially grown from GaAs with increased doping and higher conductivity. As an oscillator, its frequencies

Fig. 54.35(b) range from 5 GHz and 100 mW output upto 35 GHz and 1 mW output. Efficiencies of 3 to 5 per cent are possible at present. Fig. $54.35(b)$ shows the picture of a Gunn diode.

54.14. IMPATT Diode

IMPATT stands for impact avalanche and transit time diode. As the name indicates, it is a microwave diode that utilizes the delay time required for attaining an avalanche condition plus transit time to produce a negative-resistance characteristic. It is used as a microwave oscillator within a frequency range of $10-100 \mathrm{GHz}$.

Tutorial Problems 54.1

1. Is the ideal Zener diode shown in Fig. 54.36 properly biased ? If not, explain why ?
2. Check up if the diode in Fig. 54.37 is biased properly for normal operation. What is the current taken by the diode?
[Yes: 4 mA]
3. Check up if Zener diode of Fig. 54.38 is reverse-biased as well as properly voltage-biased. Calculate diode current and power dissipation.
[$6 \mathrm{~mA}, 96 \mathrm{~mW}$]
4. Using ideal Zener diode approximations, find the minimum and maximum currents through the diode in Fig. 54.39.
[$4 \mathrm{~mA}, 8 \mathrm{~mA}$]

5. A 9 V stabilized voltage supply is required to run a car stereo system from car's 12 V battery. A Zener diode with $V_{z}=9 \mathrm{~V}$ and $P_{\max }=0.25 \mathrm{~W}$ is used as a voltage regulator as shown in Fig. 54.40.

Fig. 54.39
Find the value of the series resistor R.
6. A load of 1 kW is connected across a 10 V Zener regulator as shown in Fig. 54. 41. The zener current can vary between 5 mA to 55 mA while maintaining the voltage constant. Find the minimum and maximum voltage level at input.
(Electronic Devices and Circuits, Nagpur Univ.
Summer, 2004)
7. A $24 \mathrm{~V}, 600 \mathrm{~mW}$ zener diode is used for providing a 24 V stabilized supply to a variable load. If the input voltage is 32 V , calculate

Fig. 54.40

Fig. 54.41
(i) the value of series resistance required.
(ii) diode current when the load is 1200Ω
(Electronics Engg., Bangalore Univ. 2003)

OBJECTIVE TESTS - 54

1. Silicon is preferred for manufacturing Zener diodes because it
(a) is relatively cheap
(b) needs lower doping level
(c) has higher temperature and current capacity
(d) has lower break-down voltage.
2. When used in a circuit, a Zener diode is always
(a) forward-biased
(b) connected in series
(c) troubled by overheating
(d) reverse-biased.
3. The main reason why electrons can tunnel through a $P-N$ junction is that
(a) they have high energy
(b) barrier potential is very low
(c) depletion layer is extremely thin
(d) impurity level is low.
4. The I_{P} / I_{V} ratio of a tunnel diode is of primary importance in
(a) determining tunneling speed of electrons
(b) the design of an oscillator
(c) amplifier designing
(d) computer applications.
5. Mark the INCORRECT statement. A varactor diode
(a) has variable capacitance
(b) utilizes transition capacitance of a junction
(c) has always a uniform doping profile
(d) is often used as an automatic frequency control device.
6. The microwave device used as an oscillator within the frequency range $10-1000 \mathrm{GHz}$ is
\qquad diode.
(a) Schottky
(b) IMPATT
(c) Gunn
(d) Step Recovery.
7. A PIN diode is frequently used as a
(a) peak clipper
(b) voltage regulator
(c) harmonic generator
(d) switching diode for frequencies upto GHz range.
8. Mark the WRONG statement. A Schottky diode
(a) has no depletion layer
(b) has metal-semiconductor junction
(c) has fast recovery time
(d) is a bipolar device
(e) is also called hot-carrier diode
(f) can easily rectify high-frequency signals.
9. A special purpose diode which uses metals like gold, silver or platinum on one side of the junction, n-type doped silicon on another side and has almost no charge storage in the junction, is a
(a) Schotty diode
(b) tunnel diode
(c) varactor diode
(d) zener diode
10. A step-recovery diode
(a) has an extremely short recovery time
(b) conducts equally well in both directions
(c) is mainly used a harmonic generator
(d) is an ideal rectifier of high-frequency signals.
11. A semiconductor device that resembles a voltage variable capacitor is called diode.
(a) tunnel
(b) PIN
(c) Schottky
(d) varactor
12. A diode that has no depletion layers and operates with hot carriers is called diode.
(a) Schottky
(b) Gunn
(c) step recovery
(d) PIN
13. In switching devices, gold doping is used to
(a) improve bonding
(b) reduce storage time
(c) increase the mobility of the carrier
(d) protect the terminals against corrosion
14. When the reverse bias voltage of a varactor diode increases, its
(a) capacitance decreases
(b) lealkage current decreases
(c) negative resistance increases
(d) depletion zone decreases.
15. Which of the following are negativeresistance microwave diodes oscillator applications?
(a) Gunn
(b) IMPATT
(c) step recovery
(d) both (a) and (b)
(e) both (b) and (c).
16. A negative-resistance microwave diode having a thin slice of a semiconductor material sandwiched between two metal conductors is called \qquad . diode.
(a) Schottky
(b) PIN
(c) Gunn
(d) varactor.
17. Zener diodes are used primarily as
(a) rectifiers
(b) voltage regulators
(c) oscillators
(d) amplifiers.
18. The diode which is often used for voltage regulation in electronic circuits is called diode
(a) zener
(b) varactor
(c) silicon
(d) germanium.
19. Avalanche photodiodes are preferred over PIN diodes in optical communication systems because of
(a) speed of operation
(b) higher sensitivity
(c) larger bandwidth
(d) larger power handling capacity
20. The current through the Zener diode in Fig. 54. 42.
(a) 33 mA
(b) 3.3 mA
(c) 2 mA
(d) 0 mA
(GATE ; 2004)

Fig. 54.42

ANSWERS

1. (c) 2. (d) 3. (c) 4. (d) 5. (c) 6. (b) 7. (d) 8. (d) 9. (a) 10. (c)
2. (d) 12. (a) 13. (b) 14. (a) 15. (d) 16. (b) 17. (b) 18. (a) 19. (a) 20. (c)

C H A P T E R

Leaming Objectives

> Unregulated Power Supply
> Regulated Power Supply
\geqslant Rectifiers
> Single-phase Half-wave Rectifier
> Six-phase Half-wave Rectifier
$>$ Filters
> Shunt Capacitor Filter
$>$ Effect of increasing Filter Capacitance
> Series Inductor Filter
> The Choke Input of L-C Filter
$>$ The R-C Filter
> The C-L-C or Pi Filter
> BleederResistor
$>$ Voltage Dividers
> Complete Power Supply
> Voltage Multipliers
> Half-wave Voltage Doubler
> Full-wave Voltage Doubler
$>$ Voltage Tripler and Quadrupler Circ uits
> Troubleshooting Supplies
> Controlled Rectification
$>$ Output Voltage and Current Valuesin Controlled Rectifiers
> Average Values for FW Controlled Rectifier
$>$ Silicon Controlled Rectifier
$>180^{\circ}$ Phase Control of SCR
$>$ SCR Controlled Load Circuit
> UJTControlled Load Circuit
$>$ Chopper
$>$ Inverters
$>$ Single Phase Inverter
> Push-pull Inverter

DC POWER

 SUPPLIES
55.1. Introduction

Most of the electronic devices and circuits require a dc source for their operation. Dry cells and batteries are one form of dc source. They have the advantage of being portable and ripple-free. However, their voltages are low, they need frequent replacement and are expensive as compared to conventional dc power supplies. Since the most convenient and economical source of power is the domestic ac supply, it is advantageous to convert this alternating voltage (usually, 220 V rms) to dc voltage (usually smaller in value). This process of converting ac voltage into dc voltage is called rectification and is accomplished with the help of a
(i) rectifier
(ii) filter and
(iii) voltage regulator circuit.

These elements put together constitute dc power supply.

55.2. Unregulated Power Supply

An unregulated power supply is one whose dc terminal voltage is affected significantly by the amount of load. As the load draws more current, the dc terminal voltage becomes less.

55.3. Regulated Power Supply

It is that dc power supply whose terminal voltage remains almost constant regardless of the amount of current drawn from it. An unregulated supply can be converted into a regulated power supply by adding a voltage regulating circuit to it (Art 56.5).

Fig. 55.1
A typical dc power supply consists of five stages as shown in Fig. 55.1.

1. Transformer. Its job is either to step up or (mostly) step down the ac supply voltage to suit the requirement of the solid-state electronic devices and circuits fed by the dc power supply. It also provides isolation from the supply line-an important safety consideration.
2. Rectifier. It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage.
3. Filter. The function of this circuit element is to remove the fluctuations or pulsations (called ripples) present in the output voltage supplied by the rectifier. Of course, no filter can, in practice, gives an output voltage as ripple-free as that of a dc battery but it approaches it so closely that the power supply performs as well.

4. Voltage Regulator. Its main function is to keep the terminal voltage of the dc supply constant even when
(i) ac input voltage to the transformer varies (deviations from 220 V are common); or
(ii) the load varies.

Usually, Zener diodes and transistors are used for voltage regulation purposes. Again, it is impossible to get 100% constant voltage but minor variations are acceptable for most of the jobs.
5. Voltage Divider. Its function is to provide different dc-voltages needed by different electronic circuits. It consists of a number of resistors connected in series across the output terminals of the voltage regulator. Obviously, it eliminates the necessity of providing separate dc power supplies to different electronic circuits working on different dc levels.

Comments. Strictly speaking, all that is really required for conversion from ac to dc is a transformer and a rectifier (in fact, even the transformer could be eliminated if no voltage transformation is required). The filter, voltage regulator and voltage divider are mere refinements of a dc power supply though they are essential for most applications except for battery charging and running small dc motors etc.

55.4. Rectifiers

We will consider the following circuits :

1. single-phase half-wave rectifier,
2. full-wave bridge circuit,
3. three-phase full-wave rectifier,
4. three-phase bridge circuit,
5. single-phase full-wave rectifier,
6. three-phase half-wave rectifier,
7. six-phase half-wave rectifier,
8. voltage multiplier circuits.

Many semiconductor devices or systems (like car stereo systems) require a negative dc source or both a negative and a positive dc source. For the sake of simplicity, we will analyse only the positive dc power supplies. However, a positive dc supply can be converted into a negative one by simply reversing the two leads in the same way as we reverse the polarity of a dry cell.

Quite a number of integrated circuits (ICs) require both positive and negative source with common ground. In that case, the polarised components in the negative portion of the supply will have to be reversed. For example, its rectifier, filter capacitor and voltage/current regulation devices will have to be reversed as compared to the positive supply.

55.5. Single-phase Half-Wave Rectifier

The basic circuit of a half-wave rectifier with a resistive load (but no filter circuit) is shown in Fig. 55.2 (a). The alternating secondary voltage is applied to a diode connected in series with a load resistor R_{L}. Let the equation of the alternating secondary voltage be $V_{s}=V_{s m} w t$.

(a) Working

During the positive half-cycle of the input ac voltage, the diode D is forward-biased (ON) and conducts. While conducting, the diode acts as a short-circuit so that circuit current flows and hence, positive half-cycle of the input ac voltage is dropped across R_{L}. It constitutes the output voltage V_{L} as shown in Fig. 55.2 (b). Waveform of the load voltage is also shown in Fig. 55.2 (b). It consists of halfwave rectified sinusoids of peak value $V_{L M}$.

Fig. 55.2
During the negative input half-cycle, the diode is reverse-biased (OFF) and so, does not conduct i.e. there is no current flow. Hence, there is no voltage drop across R_{L}. In other words $i_{L}=0$ and
$V_{L}=0$. Obviously, the negative input half-cycle is suppressed i.e. it is not utilized for delivering power to the load. As seen, the output is not a steady dc but only a pulsating dc wave having a ripple frequency equal to that of the input voltage frequency. This wave can be observed by an oscilloscope connected across R_{L}. When measured by a dc meter, it will show some average positive value both for voltage and current. Since only one half-cycle of the input wave is used, it is called a half-wave rectifier. It should be noted that forward voltage drop across the diode has been neglected in the above discussion. We have, in fact, assumed an ideal diode (having zero forward resistance and infinite reverse resistance).
(b) Average and RMS Values

$$
\text { Let } \begin{aligned}
V_{s m} & =\text { maximum value of transformer secondary voltage } \\
V_{s} & =\text { rms value of secondary voltage } \\
V_{L M} & =\text { maximum value of load voltage } \\
& =V_{s m} \text { - diode drop - secondary resistance drop } \\
V_{L} & =\text { rms value of load voltage } \\
I_{L} & =\text { rms value of load current } \\
V_{L(d c)} & =\text { average value of load voltage } \\
I_{L(d c)} & =\text { average value of load current } \\
I_{L M} & =\text { maximum value of load current } \\
R_{L} & =\text { load resistance } \\
R_{S} & =\text { transformer secondary resistance } \\
r_{d} & =\text { diode forward resistance } \\
R_{0} & =R_{S}+r_{d} \\
I_{L M} & =\frac{V_{s m}-V_{B}}{\left(R_{S}+r_{d}\right)+R_{L}}=\frac{V_{s m}-V_{B}}{R_{0}+R_{L}}, \\
V_{L(d c)} & =\frac{V_{L M}}{\pi}=0.318 V_{L M}, I_{L(d c)}=\frac{I_{L M}}{\pi}=0.318 I_{L M} \cdot R_{L} \\
I_{L} & =I_{L} M_{n} / 2=0.5 I_{L M}=0.5 V_{L M} / R_{L}
\end{aligned}
$$

(c) Efficiency

The efficiency of rectification is given by the ratio of the output dc power to the total amount of input power supplied to the circuit. It is also called the conversion efficiency.

$$
\begin{aligned}
\eta & =\frac{P_{d c}}{P_{i n}}=\frac{\text { power in the load }}{\text { input power }} \\
\text { Now, } & \begin{aligned}
P_{d c} & =I_{L(d c)}^{2} R_{L}=\left(\frac{I_{L M}}{\pi}\right)^{2} \quad R_{L}=\frac{I_{L M}^{2}}{\pi^{2}} \cdot R_{L} \\
P_{i n} & =I_{L}^{2}\left(R_{L}+R_{0}\right)=\left(\frac{I_{L M}}{2}\right)^{2}\left(R_{L}+R_{0}\right)=\frac{I_{L M}^{2}}{4}\left(R_{L}+R_{0}\right) \\
\therefore \quad \eta & =\frac{P_{d c}}{P_{i n}}=\left(\frac{4}{\pi^{2}}\right) \frac{R_{L}}{\left(R_{L}+R_{0}\right)}=\frac{0.406}{1+R_{0} / R_{L}}=\frac{409.6 \%}{\left(1+R_{0} / R_{L}\right)}
\end{aligned} .
\end{aligned}
$$

If R_{0} is neglected $h=40.6 \%$. Obviously, it is the maximum possible effficiency of a half-wave rectifier.

(d) Frequency Components of H.W. Rectified Voltage and Current

As shown in Fig. 55.3, the load current I_{L} consist of a dc component $I_{L(\mathrm{dc)}}$ and an ac component $I_{L(\mathrm{ac})}$. The Fourier series of the half-wave rectified current flowing through the load is found to be

$$
i_{L}=I_{L M}\left(\frac{1}{\pi}+\frac{1}{2} \sin \omega t-\frac{2}{3 \pi} \cos 2 \omega t-\frac{2}{15 \pi} \cos 4 \omega t+\ldots\right)
$$

As seen, the half-wave rectified current consists of a large number of ac components (which constitute the ripple) in addition to the dc component. The first term is $I_{L M} / \pi$ which represents the dc component $I_{L(d c)}$. The second term $\left(I_{L M} / 2\right) \sin \omega t$ has peak value of $\left(I_{L M} / 2\right)$. It is called the fundamental or first harmonic component and its rms value is $I_{L 1}=I_{L M} / 2 \sqrt{ } 2$.

Fig. 55.3

The third term represents the second harmonic component whose frequency is double that of the supply frequency. The rms value is $I_{L 2}=$ peak value $/ \sqrt{ } 2=2 I_{L M} / 3 \pi \sqrt{ } 2=I_{L M} /$ 3π.

The fourth term represents the third harmonic component whose frequency is four times the supply frequency. Its rms value is $2 I_{L M} / 15 \pi \times \sqrt{ } 2=\sqrt{ } 2 . I_{L M} / 15 \pi$.

The rms values of other components can be similarly calculated. However, they are found to be of continuously diminishing value.

As discussed above, the rectified output (or load) current consists of
(i) dc component, $I_{L(d c)}=I_{L M} / \pi$ and
(ii) ac components of rms values $I_{L 1}, I_{L 2}$ and $I_{L 3}$ etc. Their combined rms value is given by

$$
I_{L(a c)}=\sqrt{I_{L 1}^{2}+I_{L 2}^{2}+I_{L 3}^{2}+\ldots \ldots .}
$$

The rms (or effective) value of the total load current is given by

$$
I_{L}=\sqrt{I_{L(d c)}{ }^{2}+I_{L(a c)^{2}}}=\sqrt{I_{L(d c)}{ }^{2}+\left({I_{L 1}}^{2}+{I_{L 2}}^{2}+{I_{L 3}}^{2}+\ldots \ldots .\right.}
$$

Similarly, the Fourier series of the load voltage is given by

$$
V_{L}=V_{L M}\left(\frac{1}{\pi}+\frac{1}{2} \sin \omega t-\frac{2}{3 \pi} \cos 2 \omega t-\frac{2}{15 \pi} \cos 4 \omega t \ldots \ldots\right)
$$

It also consists of
(i) a dc component, $\quad V_{L(d c)}=V_{L M} / \pi$
(ii) ac components of rms values $V L_{1}, V L_{2}$ and $V_{L 3}$ etc. which are given by

$$
V_{L 1}=V_{L M} / \sqrt{ } 2, V_{L 2}=\sqrt{ } 2 \cdot V_{L M} / 3 \pi ; V_{L 3}=\sqrt{ } 2 V_{L M} / 15 \pi \text { etc. }
$$

Again,

$$
V_{L(a c)}=\sqrt{V_{L 1}^{2}+V_{L 2}^{2}+V_{L 3}^{2}+\ldots \ldots}
$$

The rms value of the entire load voltage is given by

$$
V=\sqrt{V_{L(d c)}^{2}+V_{L(a c)}^{2}}=\sqrt{V_{L(d c)}^{2}+V_{L 1}^{2}+V_{L 2}^{2}+V_{L 3}^{2}+\ldots \ldots .}
$$

(e) Ripple Factor

When defined in terms of voltage, it is given by

$$
\gamma=\frac{\text { rms value of ac components }}{\text { dc value of load voltage }}=\frac{V_{L(a c)}}{V_{L(d c)}}=\frac{V_{r(m s)}}{V_{L(m s)}}
$$

In terms of current, we have $\gamma=I_{L(a c)} / I_{L(d c)}$
As seen from above, $\quad I_{L(a c)}=\sqrt{I_{L}^{2}-I_{L(d c)}^{2}}$

$$
\gamma=\frac{I_{L(a c)}}{I_{L(a c)}}=\frac{\sqrt{I_{L}^{2}-I_{L(d c)}^{2}}}{I_{L(d c)}}=\sqrt{\left(\frac{I_{L}}{I_{d c}}\right)^{2}-1}
$$

Now,

$$
I_{L} / I_{L(d c)}=\text { form factor } K_{f}(\operatorname{Art} 12.18) \quad \therefore \quad \gamma=\sqrt{K_{f}^{2}-1}
$$

In the case of a half-wave rectifies with resistive load but no filter $K_{f}=\pi / 2=1.57$

$$
\therefore \quad \gamma=\sqrt{1.57^{2}-1}=1.21
$$

Alternatively, the value of γ could be found as under :
If we neglect fourth and higher harmonics in the load current, then as seen from above

$$
\begin{aligned}
I_{L(a c)} & =\sqrt{I_{L 1}^{2}+I_{L 2}^{2}+I_{L 3}^{3}+\ldots \ldots} \\
& =\sqrt{\left(I_{L M} / 2 \sqrt{2}\right)^{2}+\left(\sqrt{2} I_{L M} / 3 \pi\right)^{2}+\left(\sqrt{2} \cdot I_{L M} / 15 \pi\right)^{2}+\ldots}=0.385 I_{L M} \\
\therefore \quad \gamma & =\frac{I_{L(a c)}}{I_{L(d c)}}=\frac{0.385 I_{L M}}{I_{L M} / \pi}=\frac{0.385 I_{L M}}{0.318 I_{L M}}=1.21
\end{aligned}
$$

(f) Peak Inverse Voltage (PIV)

It is the maximum voltage that occurs across the rectifying diode in the reverse direction. As seen from Fig. 55.2, the diode is reverse-biased during the negative half-cycle and the maximum voltage applied across it equals the maximum secondary voltage i.e. $V_{s m}$.
(g) Transformer Utilization Factor (TUF)

While designing any power supply, it is necessary to determine the rating of the transformer. It can be done provided $T U F$ is known. The value of $T U F$ depends on the amount of power to be delivered to the load and the type of rectifier circuit to be used.

$$
\begin{aligned}
T U F & =\frac{\text { dc power delivered to the load }}{\text { ac rating of transformer secondary }} \\
& =\frac{P_{d c}}{P_{\text {ac.rated }}}=\frac{P_{d c}}{P_{\text {in.rated }}}
\end{aligned}
$$

At first sight it might appear as if the above ratio is the same as the conversion efficiency. Actually, it is not so because the rating of the transformer secondary is different from the actual power delivered by the secondary.

$$
\begin{array}{rlrl}
P_{d c} & =V_{L(\mathrm{dc})} \cdot I_{L(\mathrm{dc})}=\frac{V_{L M}}{\pi} \cdot \frac{V_{L M}}{R_{L}}=\frac{V_{L M}^{2}}{\pi R_{L}} \\
& =\frac{V_{s m}^{2}}{\pi R_{L}} & \quad \text {-if drop over } R_{0} \text { is neglected }
\end{array}
$$

Now, the rated voltage of transformer secondary is $V_{s m} / \sqrt{2}$ but the actual current flowing through the secondary is $I_{L}=I_{L M} / 2$ (and not $\left.I_{L M} / \sqrt{ } 2\right)$ since it is a half-wave rectified current.

$$
\begin{aligned}
P_{\text {ac.rated }} & =\frac{V_{s m}}{\sqrt{2}} \cdot \frac{I_{L M}}{2}=\frac{V_{s m}}{\sqrt{2}} \cdot \frac{V_{L M}}{2 R_{L}}=\frac{V_{s m}^{2}}{2 \sqrt{2} R_{L}} \\
T U F & =\frac{V_{s m}^{2} / \pi R_{L}}{V_{s m}^{2} / 2 \sqrt{2} R_{L}}=\frac{2 \sqrt{2}}{\pi}=0.287
\end{aligned}
$$

However, due to saturation effects produced by the flow of direct current through the tranformer secondary, the value of $T U F$ is further reduced to 0.2 .

Obviously, dc power delivered to the load=ac transformer rating $\times T U F$
If, we have a $1-\mathrm{kVA}$ transformer, then the power which it would be able to deliver to a resistive load in a half-wave rectifier without over-heating would be $=0.2 \times 1000=200 \mathrm{~W}$.

Example 55.1. In the half-wave rectifier circuit of Fig. 55.4, determine
(i) maximum and rms values of load voltage,
(ii) peak and rms values of load current,
(iii) power absorbed by the load,
(iv) PIV of the diode,
(v) rms value of ripple voltage.

Neglect resistance of transformer secondary and that of the diode.

Solution. Here, $K=N_{2} / N_{1}=1 / 10$. Peak primary voltage is

$$
V_{p m}=220 \sqrt{2}=310 \mathrm{~V}
$$

Hence,

$$
\begin{aligned}
V_{s m} & =K V_{p m} \\
& =310 / 10=\mathbf{3 1} \mathbf{V}
\end{aligned}
$$

$$
\begin{equation*}
V_{L M}=V_{s m}=31 \mathrm{~V} \tag{i}
\end{equation*}
$$

$$
V_{L}=V_{L M} / 2=31 / 2=\mathbf{1 5 . 5} \mathrm{V}
$$

$$
\begin{equation*}
I_{L M}=V_{L M} / R_{L}=31 / 100=0.31 \mathrm{~A} \tag{ii}
\end{equation*}
$$

Fig. 55.4

$$
I_{L}=I_{L M} / 2=0.31 / 2=0.155 \mathrm{~A}
$$

$$
\begin{equation*}
P_{L}=V_{L} I_{L}=15.5 \times 0.155=2.4 \mathrm{~W} \tag{iiii}
\end{equation*}
$$

$$
P_{I V}=2 V_{s m}=2 \times 31=\mathbf{6 2} \mathbf{V}
$$

$$
\begin{equation*}
V_{L(a c)}=\sqrt{V_{L}^{2}-V_{L(d c)}^{2}} \tag{v}
\end{equation*}
$$

Now, $\quad V_{L}=V_{L M} / 2$ and $V_{L(\mathrm{dc})}=V_{L M} / \pi$

$$
\therefore \quad V_{L(a c)}=\sqrt{\left(V_{L M} / 2\right)^{2}-\left(V_{L M} / \pi\right)^{2}}=0.385 V_{L M}
$$

$$
\therefore \quad V_{r(r m s)}=V_{L(a c)}=0.385 \times 31=\mathbf{1 1 . 9} \mathbf{V}
$$

It represents the rms value of the ripple voltage.

55.6. Equivalent Circuit of a HW Rectifier

Such a circuit is shown in Fig. 55.5. Here, the diode has been replaced by its equivalent circuit (Art. 55.13). The transformer secondary of Fig. 55.2 has been replaced by an ac sinusodial generator having a peak value of $V_{s m}$. Resistance R_{S} represents transformer secondary resistance. Obvisouly.

$$
\begin{aligned}
I_{L M} & =\frac{V_{s m}-V_{B}}{\left(R_{S}+r_{d}\right)+R_{L}}=\frac{V_{s m}-V_{B}}{R_{0}+R_{L}} \\
V_{L M} & =I_{L M} \cdot R_{L} \\
V_{L(d c)} & =V_{L M} / \pi, I_{L(d c)}=I_{L M} / \pi \\
V_{L} & =V_{L M} / 2 \text { and } I_{L}=I_{L M} / 2 \\
\eta & =\left(\frac{4}{\pi^{2}}\right) \frac{R_{L}}{\left(R_{S}+r_{d}\right)+R_{L}} \\
& =\left(\frac{4}{\pi^{2}}\right) \frac{R_{L}}{R_{0}+R_{L}}=\frac{40.6 \%}{1+R_{0} / R_{L}}
\end{aligned}
$$

Fig. 55.5
(ii) Voltage regulation is given by

$$
V_{R}=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100
$$

(iii) Under no-load condition i.e. when no output current flows, the voltage has maximum value. When rectifier is fully loaded i.e. when output current flows, there is drop over R_{0}. Hence, output voltage is decreased by this much amount.

$$
V_{F L}=V_{N L} \frac{R_{L}}{R_{0}+R_{L}}
$$

Substituting this value in the above equation, we get $V_{R}=R_{0} / R_{L}$
Example 55.2. A half-wave rectifier using silicon diode has a secondary emf of 14.14 V (rms) with a resistance of 0.2Ω. The diode has a forward resistance of 0.05Ω and a threshold voltage of 0.7 V. If load resistance is 10Ω, determine
(i) dc load current (ii) dc load voltage (iii) voltage regulation and (iv) efficiency.
(Applied Electronics-I, Punjab University, 1992)
Solution.

$$
V_{s m}=\sqrt{2} \times 14.14=20 \mathrm{~V}, R_{0}=0.2+0.05=0.25 \Omega
$$

$$
\begin{equation*}
I_{L M}=\frac{V_{s m}-V_{B}}{R_{0}+R_{L}}=\frac{20-0.7}{10.25}=1.88 \mathrm{~A} ; I_{L(d c)}=\frac{I_{L M}}{\pi}=\frac{1.88}{\pi}=0.6 \mathrm{~A} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
V_{L(d c)}=I_{L(d c)} \cdot R_{L}=0.6 \times 10=6 \mathbf{V} \tag{ii}
\end{equation*}
$$

$$
V_{R}=R_{0} / R_{L}=0.25 / 10=0.025 \quad \text { or } \quad 2.5 \%
$$

$$
\begin{equation*}
\eta=\frac{40.6}{1+0.25 / 10}=39.6 \% \tag{iv}
\end{equation*}
$$

55.7. Single-phase Full-wave Rectifier

In this case, both half-cycles of the input are utilized with the help of two diodes working alternately. For full-wave rectification, use of a transformer is essential (though it is optional for half-wave rectification).

The full-wave rectifier circuit using two diodes and a centre-tapped transformer shown in 55.6 (a). The centre-tap is usually taken as the ground or zero voltage reference point.

Fig. 55.6
Fig. 55.7 shows two different ways of drawing the circuit. In Fig. 55.7 (a), R_{L} becomes connected to point G via the earth whereas in Fig. 55.7 (b). It is connected directly to G.

(a)

(b)

Fig. 55.7

(a) Working

When input ac supply is switched on, the ends M and N of the transformer secondary become +ve and - ve alternately. During the positive half-cycle of the ac input, terminal M is $+\mathrm{ve}, G$ is at zero potential and N is at -ve potential. Hence, being forward-biased, diode D_{1} conducts (but not D_{2} which is reverse-biased) and current flows along $M D_{1} C A B G$. As a result, positive half-cycle of the voltage appears across R_{L}.

During the negative half-cycle, when terminal N becomes +ve , then D_{2} conducts (but not D_{1}) and current flows along $N D_{2} C A B G$. So, we find that current keeps on flowing through R_{L} in the same direction (i.e. from A to B) in both half-cycles of ac input. It means that both half-cycles of the input ac supply are utilized as shown in Fig. 55.6 (b). Also, the frequency of the rectified output voltage is twice the supply frequency. Of course, this rectified output consists of a dc component and many ac components of diminishing amplitudes.

(b) Average and RMS Values

As proved earlier in and now shown in Fig. 5.8

Similarly,

$$
\begin{aligned}
V_{L} & =V_{L M} / \sqrt{ } 2=0.707 V_{L M} ; V_{L(d c)}=2 V_{L M} / \pi=0.636 \mathrm{~V} \\
V_{L(a c)} & =\mathrm{rms} \text { value of ac components in the output voltage } \\
& =\sqrt{V_{L}^{2}-V_{L(d c)}^{2}} \\
I_{L M} & =\frac{V_{L M}}{R_{L}} ; \quad I_{L}=\frac{I_{L M}}{\sqrt{2}}=0.707 I_{L M} \\
I_{L(d c)} & =\frac{2 I_{L M}}{\pi}=0.636 I_{L M} ; I_{L(a c)}=\sqrt{I_{L}^{2}-I_{L(d c)}^{2}}
\end{aligned}
$$

Incidentally, $I_{L(a c)}$ is the same thing as $I_{r(r m s)}$.

(a)

(b)

Fig. 55.8
(c) Efficiency

$$
\begin{aligned}
P_{i n} & =I_{L}^{2}\left(R_{0}+R_{L}\right)=\left(\frac{I_{L M}}{\sqrt{2}}\right)^{2}\left(R_{0}+R_{L}\right)=\frac{1}{2} I_{L M}^{2}\left(R_{0}+R_{L}\right) \\
P_{d c} & =I_{L(d c)}^{2}\left(R_{0}+R_{L}\right)=\left(\frac{2 I_{L M}}{\pi}\right)^{2}\left(R_{0}+R_{L}\right)=\frac{4 I_{L M}^{2}}{\pi^{2}}\left(R_{0}+R_{L}\right) \\
\therefore \quad \eta & =\frac{P_{d c}}{P_{i n}}=\left(\frac{8}{\pi^{2}}\right)\left(\frac{R_{L}}{R_{0}+R_{L}}\right)=\frac{0.812}{\left(1+R_{0} / R_{L}\right)}=\frac{81.2 \%}{\left(1+R_{0} / R_{L}\right)}
\end{aligned}
$$

It is twice the value for the half-wave rectifier for the simple reason that a full-wave rectifier utilizes both half-cycles of the input ac supply.
(d) Frequency Components

As in the case of a HW rectifier, the output of a full-wave rectifier also consists of (i) a dc
component and (ii) a number of ac components which form the ripple. The Fourier series for rectifier output voltage is

As seen, $\quad V_{L(\mathrm{dc})}=\frac{2 V_{L M}}{\pi} ; V_{L 1}=\frac{4 V_{L M}}{\sqrt{2} 3 \pi}, V_{L 2}=\frac{4 V_{L M}}{\sqrt{2.15 \pi}}$ etc.

$$
V_{L(\mathrm{ac})}=\sqrt{V_{L 1^{2}}+V_{L 2^{2}}}=\sqrt{\left(\frac{4 V_{L M}}{\sqrt{2} .3 \pi}\right)^{2}+\left(\frac{4 V_{I M}}{\sqrt{2} .15 \pi}\right)^{2}}=0.305 V_{L M}
$$

Similalry, $\quad I_{L(a c)}=I_{r(r m s)}=\sqrt{I_{L 1}^{2}+I_{L 2}^{2}}=0.305 I_{L M}$
(e) Ripple Factor

$$
\gamma=\frac{V_{L(a c)}}{V_{L(d c)}}=\frac{V_{r(r m s)}}{V_{L(r m s)}}=\frac{0.305 V_{L M}}{0.636 V_{L M}}=0.482
$$

It is much less as compared to 1.21 for half-wave rectifier.
(f) PIV

Its value is $=2 V_{s m}$
(g) TUF

Its value is found by considering the primary and secondary windings of the transformer separately. Its value is 0.693 (as compared to 0.287 for a half-wave rectifier). In such a rectifier, there is no problem due to dc saturation of flux in the core because the dc currents in the two halves of the secondary flow in opposite directions.

Example 55.3. With reference to the full-wave rectifier of Fig. 55.9, determine
(i) peak, dc component, rms and ac component of load voltage,
(ii) peak, dc component, rms and ac component of load current,
(iii) ripple factor,
(iv) peak and average diode currents,
(v) total power supplied to the load.

Neglect diode and secondary winding resistances.

Solution. Here,

$$
\begin{align*}
K & =1 / 2 \\
V_{p m} & =220=312 \mathrm{~V} . \text { Hence, } \\
V_{M N} & =312 / 2=156 \mathrm{~V} \text { so that } \\
V_{M G} & =V_{G N}=156 / 2=78 \mathrm{~V} \\
V_{s m} & =V_{L M}=\mathbf{7 8} \mathbf{V} \tag{i}\\
V_{L(d c)} & =0.636 V_{L M}=0.636 \times 78 \\
& =\mathbf{4 9 . 6} \mathbf{V} \\
V_{L} & =0.707 V_{L M}=0.707 \times 78 \\
& =\mathbf{5 5} \mathbf{V} \\
V_{L(a c)} & =\sqrt{55^{2}-49.6^{2}}=\mathbf{2 3 . 8} \mathbf{V}
\end{align*}
$$

It also represents $V_{r(r m s)}$.
(ii)

$$
\begin{aligned}
I_{L M} & =V_{L M} / R_{L}=78 / 100=0.78 \mathrm{~A} \\
I_{L(d c)} & =0.636 \times 0.78=0.496 \mathbf{A} \\
I_{L} & =0.707 \times 0.78=0.55 \mathbf{A} \\
I_{L(a c)} & =\sqrt{0.55^{2}-49.6^{2}}=\mathbf{0 . 2 3 8} \mathbf{A}
\end{aligned}
$$

Fig. 55.9

It also represents $I_{r(r m s)}$.
(iii)

$$
\gamma=\frac{I_{L(a c)}}{I_{L(d c)}}=\frac{I_{r(\max)}}{I_{L(\max)}}=\frac{0.238}{0.496}=\mathbf{0 . 4 8}
$$

(iv) peak diode current $=$ peak load current $=\mathbf{0 . 7 8} \mathrm{A}$

For finding the average current of a diode, it must be remembered that each diode carries current for one half-cycle only.

$$
I_{D(\mathrm{av})}=I_{D(\max)} / \pi=0.318 \times 0.78=0.25 \mathrm{~A}
$$

(v)

$$
P L=V_{L} I_{L}=55 \times 0.55=30.25 \mathrm{~W}
$$

Example 55.4. A 1- ϕ, full-wave rectifier supplies power to a $1 k W$ load. The ac voltage applied to the diode is 300-0-300 V (rms). If diode resistance is 25 W and that of the transformer secondary negligible, determine"
(i) average load current,
(ii) average value of load voltage,
(iii) rms value of ripple,
(iv) efficiency.
(Applied Electronics, Bombay Univ.)
Solution. It may be noted that rms value of ac voltage across each secondary half is 300 V .

$$
\begin{align*}
V_{s m} & =300=424 \mathrm{~V}, I_{L M}=V_{s m} /\left(r_{d}+R_{L}\right)=424 / 1025=0.414 \mathrm{~A} \tag{i}\\
I_{L(d c)} & =I_{L M} / \pi=2 \times 0.414 / \pi=0.263 \mathrm{~A} \\
V_{L(d c)} & =I_{L(d c)} \cdot R_{L}=0.263 \times 1000=\mathbf{2 6 3} \mathbf{~ V} \tag{ii}
\end{align*}
$$

$$
\begin{equation*}
\gamma=\frac{V_{L(a c)}}{V_{L(d c)}}=\frac{V_{r(r m s)}}{V_{L(d c)}} \tag{iii}
\end{equation*}
$$

$$
\therefore \quad V_{r(r m s)}=\gamma \cdot V_{L(d c)}=0.482 \times 263=\mathbf{1 2 6 . 8} \mathbf{V}
$$

(iv)

$$
\eta=\frac{81.2 \%}{1+r_{d} / R_{L}}=\frac{81.2 \%}{1+25 / 1000}=79.2 \%
$$

Example 55.5. A full-wave rectifier is built up by using the same components as in Ex. 55.2. Determine :
(i) dc load current,
(ii) dc load voltage,
(iii) voltage regulation,
(iv) circuit efficiency and
(v) diode PIV and current rating.

Solution.
(i)

$$
I_{L(d c)}=0.636 \times 1.88=1.2 \mathrm{~A}
$$

(ii)

$$
V_{L(d c)}=I_{L(d c)} \cdot R_{L}=1.2 \times 10=\mathbf{1 2} \mathbf{~ V}
$$

(iii)

$$
V R=0.25 / 10=0.025 \text { or } \mathbf{2 . 5 \%}
$$

(iv)

$$
\eta=\frac{81.2 \%}{1+R_{0} / R_{L}}=\frac{81.2 \%}{1+0.25 / 10}=79.2 \%
$$

(v)

$$
P I V=2 V_{s m}=2 \times 20=40 \mathrm{~V}
$$

With a safety factor of 1.5, PIV $=40 \times 1.5=60 \mathrm{~V}$. A dc current rating of about 2 A would be satisfactory.

Example 55.6. Silicon diodes are used in a two-diode full-wave rectifier circuit to supply a load with 12 volts D.C. Assuming ideal diodes and that the load resistance is 12 ohms, compute (i) the transformer secondary voltage, (ii) the load ripple voltage, (iii) the efficiency of the rectifier. Derive equations used.
(Electronics-I, Bangalore Univ.)
Solution.
(i) $V_{L(\mathrm{dc})}=2 V_{s m} / \pi ; \quad V_{s m}=\pi \times 12 / 2=\mathbf{1 8 . 8} \mathbf{V}$.

It is the maximum value of the voltage across one half of the secondary.
(ii) RMS value of ripple voltage $=\gamma V_{L(d c)}=0.482 \times 12=\mathbf{5 . 7 8} \mathrm{V}$
(iii) Since diodes are ideal ones, their forward resistance is negligible. Hence,

Fig. 55.10

$$
\eta=\frac{81.2 \%}{\left(1+r_{d} / R_{L}\right)}=-\frac{81.2 \%}{1+0 / 12}=81.2 \%
$$

55.8. Full-Wave Bridge Rectifier

It is the most frequently-used circuit for electronic dc power supplies. It requires four diodes but the transformer used is not centre-tapped and has a maximum voltage of V_{sm}. The full-wave bridgerectifier is available in three distinct physics forms.

1. four discrete diodes,
2. one device inside a four-terminal case,
3. as part of an array of diodes in an IC.

The circuit using four discrete diodes is shown in Fig. 55.10 (a) and 55.10 (c) shows some pictures of the bridge rectifier available as one device in a four terminal case.
(a) Working

During the positive input half-cycle, terminal M of the secondary is positive and N is negative as shown separately in Fig. 55.11 (a). Diodes D_{1} and D_{3} become forward-biased (ON) whereas D_{2} and D_{4} are reverse-biased (OFF). Hence, current flows along $M E A B C F N$ producing a drop across R_{L}.

During the negative input half-cycle, secondary terminal N becomes positive and M negative. Now, D_{2} and D_{4} are forward-biased. Circuit current flows along NFABCEM as shown in Fig. 55.11 (b). Hence, we find that current keeps flowing through load resistance R_{L} in the same direction $A B$ during both half-cycles of the ac input supply. Consequently, point A of the bridge rectifier always

(a)

(b)

Fig. 55.11
acts as an anode and point C as cathode. The output voltage across R_{L} is as shown in Fig. 55.10 (b). Its frequency is twice that of the supply frequency.
(b) Average and RMS Values

These are the same as for the centre-tapped full-wave rectifier discussed in Art 55.7.
(c) Efficiency

$$
\% \eta=\frac{81.2}{1+2 r_{d} / R_{L}}
$$

(d) Ripple Factor

It is the same as for a full-wave rectifier i.e. $\gamma=0.482$
(e) PIV

The PIV rating of each of the four diodes is equal to $V_{S M}$ - the entire voltage across the secondary.

When Secondary and Diode Resistances are considered
(i) $I_{L M}=\frac{V_{s m}-2 V_{B}}{\left(R_{S}+2 r_{d}\right)+R_{L}}=\frac{V_{s m}-2 V_{B}}{R_{0}+R_{L}}$
(ii) $V_{L M}=I_{L M} \cdot R_{L}$
(iii) $\quad \eta=\left(\frac{8}{\pi^{2}}\right)\left(\frac{R_{L}}{\left(R_{S}+2 r_{d}+R_{L}\right.}\right)=\left(\frac{8}{\pi^{2}}\right) \frac{R_{L}}{R_{0}+R_{L}}$
(iv) $V_{R}=\frac{R_{S}+2 r_{d}}{R_{L}}=\frac{R_{0}}{R_{L}}$

(f) Advantages

After the advent of low-cost, highly-reliable and small-sized silicon diodes, bridge circuit has become much more popular than the centre-tapped transformer $F W$ rectifier. The main reason for this is that for a bridge rectifier, a much smaller transformer is required for the same output because it utilizes the transformer secondary continuously unlike the 2-diode FW rectifier which uses the two halves of the secondary alternately.

So, the advantages of the bridge rectifier are :

1. no centre-tap is required on the transformer;
2. much smaller transformers are required;
3. it is suitable for high-voltage applications ;
4. it has less PIV rating per diode.

The obvious disadvantage is the need for twice as many diodes as for the centre-tapped transformer version. But ready availability of low-cost silicon diodes has made it more economical despite its requirement of four diodes.

55.9. Three-phase Half-wave Rectifier

Rectification of a 3-phase supply with the help of diodes is shown in Fig. 55.12 along with a smoothing circuit. The three diodes are connected to the three phases of star-connected secondary of a 3-phase transformer. Neutral point N of the secondary is the negative terminal for the rectified output and is earthed as shown.

Fig. 55.12
Fig. 55.13
The shape of the output is shown in Fig. 55.13. The horizontal line $A B$ represents the potential of the negative d.c. terminal output and the sine waves 1,2 and 3 each represent the anode potentials of the three diodes.

During one-third of the cycle i.e., during time t_{1}, only diode D_{1} will conduct. It will cease conducting at t_{2} and then D_{2} will conduct current upto t_{2} after which D_{2} will take over and will supply anode current till t_{3}. When one diode conducts, the other two remain inactive because then their anodes are more -ve than their cathodes. This process repeats itself during each ensuing cycle, with the conducting period of each diode being as indicated. The output is given by the vertical distance 'ab' between the upper envelope and the line $A B$. Obviously, the output fluctuates between the maximum and minimum values thrice in each cycle. The variations of output lie between $V_{s m}$ and $0.5 V_{s m}$ (neglecting voltage drop in diodes) and has a mean value of $V_{d c}=0.83 V_{s m}$ or $1.17 V_{S}$ where V_{S} is the r.m.s. value of the secondary phase voltage. Its maximum conversion $\eta=96.5 \%$ and $\gamma=0.17$. But it should be noted that the magnitude of these fluctuations or pulsations is lesser than for a 1-phase, fullwave rectified output since the current never touches zero. It is further smoothened up by a $C-L-C$ filter circuit as shown in Fig. 55.12.

It is seen that direct current of each diode appears in the secondary phase winding and so causes transformer saturation resulting in large primary current. It can be avoided by using zig-zag secondary.

55.10. Full-wave Rectification of 3 -phase Currents

As shown in Fig. 55.14, a three-phase full-wave rectifier requires a transformer with six secondary windings connected to give two separate three-phase supplies 180° out of phase with each other. The centre taps are connected by an interphase transformer which enables the two recti-

Fig. 55.14 fier units to operate independently of each
other. Obviously, each diode conducts for one-third cycle. However, the addition of two outputs cancels the lowest frequency component of the ripple.

The output voltage has a mean value of $0.83 V_{s m}$ (less the diode voltage drop) and a ripple having a fundamental frequency six times the supply frequency.

Three-phase full-wave rectifier circuit is preferred for high powers because
(i) each secondary carries current for one-third of a cycle;
(ii) each primary carries current for two-thirds of a cycle;
(iii) Cu loss in the tranformer windings is comparatively lower.

55.11. Six-phase Half-wave Rectifier

Such a rectifier can be operated from a 3-phase supply using a transformer with three centre-tapped secondary windings with all the centre taps connected together as shown in Fig. 55.15. Obviously, each diode conducts for one-sixth of a cycle. The output voltage has a mean value of $0.955 V_{s m}$ (less the voltage drop in the diode). Ripple has a very small value and a fundamental frequency six times the supply frequency.

55.12. Three-phase Bridge Circuit

Fig. 55.15

This circuit is very frequently used because apart from being simple, it does not require centretap transformer. Only that diode supplies the load whose phase voltage is more positive than the others. For example, when D_{1} is forward-biased, D_{2} and D_{3} are reverse-biased. The current returns to the supply via D_{5} and D_{6}.

Fig. 55.16

In this circuit, $I_{d c}$ is 0.955 times the peak current through each diode and only one-third of it flows through each diode (rather than onesixth as in Fig. 5.15). Similarly, $V_{d c}$ is twice of that in 3- ϕ, half-wave rectifier or $2 \times 1.17=2.34$ times the r.m.s. a.c. voltage across each secondary leg. Accordingly, r.m.s. voltage across each secondary leg need be only $1 / 2.34=0.428$ times the desired d.c. output voltage.

Example 55.7. The r.m.s. value of transformer secondary voltage per leg $\left(V_{S}\right)$ in a full-wave, $D /$ Y, 6-f rectifier is 150 V . If average value of load current is 2 A , find (i) $V_{d c}$ (ii) peak and average current through each diode and (iii) average power delivered to the load i.e. $P_{d c}$.

Solution. (i)

$$
V_{d c}=2.34 \times V_{S}=2.34 \times 150=351 \mathrm{~V}
$$

(ii) peak current/diode

$$
=(1 / 0.955) \times I_{d c}=1.05 \times 2=2.1 \mathrm{~A}
$$

average d.c. current/diode $=2 / 3=0.667 \mathrm{~A}$
(In D / Y half-wave rectifier, its value is $1 / 6$ th rather than $1 / 3 \mathrm{rd}$)
(iii)

$$
P_{d c}=V_{d c} I_{d c}=351 \times 2=702 \mathrm{~W}
$$

55. 13. Calculations with Resistive Load

Let us suppose that no filter is connected across the rectifier (Fig. 55.12) but only a load of
resistance R. Further, we will neglect transformer resistance and leakage and internal diode drops. In that case,

$$
\begin{aligned}
V_{d c} & =0.827 V_{s m} ; I_{d c}=0.827 V_{s m} / R \\
P_{d c} & =V_{d c} I_{d c}=\left(0.827 V_{s m}\right)^{2} / R ; \quad P_{a c}=P_{i n}=0.706 V_{s m}^{2} / R \\
\therefore \quad \text { rectifier } \eta & =\frac{P_{d c}}{P_{a c}}=\frac{\left(0.827 V_{s m}\right)^{2} / R}{0.706 V_{s m}^{2} / R}=0.965=96.5 \% \\
\gamma & =\sqrt{(1.014)^{2}-1}=0.17 \text { or } 17 \% .
\end{aligned}
$$

Conclusions

Here, average d.c. current is 0.827 times the peak current as compared to 0.318 times for 1- ϕ, half-wave circuit and 0.636 times for 1- ϕ, full-wave circuit. Moreover, $V_{d c}$ is also correspondingly high, it is 51.17 times the r.m.s. voltage of each secondary leg ($\because 1.414 \times 0.827=1.17$). Conversely, r.m.s. voltage $\left(V_{S}\right)$ across each leg of the secondary need only be $1 / 1.17=0.855$ times the average desired d.c. output voltage across the load.

55.14. Filters

The main function of a filter circuit (Fig. 55.17) is to minimize the ripple content in the rectifier output.

As seen, output of various rectifier circuits is pulsating. It has a dc value and some ac components called ripples. This type of output is not useful for driving sophisticated electronic circuits/ devices. In fact, these circuits require a very steady dc output that approaches the smoothness of a battery's output.

Fig. 55.17
A circuit that converts a pulsating output from a rectifier into a very steady dc level is known as filter because it filters out or smoothens out the pulsations in the output.

We will consider the following popular filter circuits :

1. Series capacitor filter,
2. series inductor filter,
3. L - C filter (or L-type),
4. $R-C$ filter,

55.15. Shunt Capacitor Filter

In this circuit, a suitable single capacitor C is connected across the rectifier and in parallel with the load R_{L} to achieve filtering action. This type of filter is known as capacitor input filter.

This filter circuit depends for its operation on the property of a capacitor to charge up (i.e. store energy) during conducting half-cycle and to discharge (i.e. deliver energy) during the non-conducting half-cycle. In simple words, a capacitor opposes any change in voltage. When connected across a pulsating d.c. voltage, it tends to smoothen out or filter out the voltage pulsations (or ripples). The filtering action of the simple capacitor filter when used in a half-wave rectifier can be understood with the help of Fig. 55.18.

(a) Circuit Analysis

When positive half-cycle of the ac input is applied, the diode is forward-biased and hence is turned ON. This allows C to quickly charge up to peak value of input voltage $V_{i p}$ [point b in Fig. $\left.55.18(b)\right]$ because charging time constant is almost zero. It is so because there is no resistance in the charging path except diode forward resistance which is negligible. Hence, capacitor follows the charging voltage as shown. After being fully charged, the capacitor holds the charge till input ac supply to the rectifier goes negative. During the negative half-cycle, the capacitor attempts to discharge. However, it cannot discharge through diode which, being now reversebiased, is OFF. Hence, it discharges through R_{L} from point b to c in Fig. 55.18 ($c)$ and its voltage decreases somewhat. The discharging time constant $\left(=C R_{L}\right)$ is usually 100 times more than the charging time. Hence, C does not have sufficient time to discharge appreciably. It is seen that even during negative half-cycle of the input supply, the capacitor maintains a sufficiently large voltage across R_{L}.

During the next positive half-cycle, when rectifier voltage exceeds the capacitor voltage represented by point c in Fig. 55.18 (c), C is again charged quickly to $V_{i p}$ as represented by point d. Once more, input voltage goes negative, opening the diode and forcing

Fig. 55.18 C to discharge through R_{L} during the interval $d e$. In
this way, R_{L} sees a nearly constant dc voltage across it at

Fig. 55.19 all times.
The filtering action of this simple capacitor filter on a full-wave rectifier is shown in Fig. 55.19. It is seen that as compared to a HW rectifier.
(i) dc load voltage increases slightly towards $V_{i p}$,
(ii) ripple voltage has been reduced by half.

The decreased ripple is because of shorter discharge time before the capacitor is reenergised by another pulse of current.
(b) Load Current

The load current has the same wave-shape as v_{L} because load is purely resistive. It is shown in Fig. 55.18 (d). During periods $a^{\prime} b^{\prime}$ and $c^{\prime} d^{\prime}$ etc., current is supplied by the diode and during periods $b^{\prime} c^{\prime}$ and $d^{\prime} e^{\prime}$ etc. by the capacitor.

(c) Diode Current

Diode current flows during short intervals of time like $a b$ and $c d$ etc. in Fig. 55.18 (c) which is reproduced in Fig. 55.20. During these intervals, diode
output voltage is greater than the capacitor voltage which is also the load voltage. Hence, diode current is a surging current i.e. it takes the form of short-duration pulses as shown in Fig. 55.20. A small resistor is always connected in series with the diode to limit this surge current. It is known as surge limiting resistor.

The sole function of the diode is to recharge C and the sole function of C is to supply load current by discharge.

55.16. Effect of Increasing Filter Capacitance

Fig. 55.20

A capacitor has the basic property of opposing changes in voltage. Hence, a bigger capacitor would tend to reduce the ripple magnitude. It has been found that increasing the capacitor size.

1. increases $V_{d c}$ towards the limiting value $V_{i p}$;
2. reduces the magnitude of ripple voltage ;
3. reduces the time of flow of current pulse through the diode ;
4. increases the peak current in the diode.

55.17. Calculations of Shunt Capacitor Filter

Consider the rectifier and filter circuit of Fig. 55.21 where a capacitor has been connected across R_{L}. The output voltage waveforms of a half-wave rectifier with a shunt capacitor filter are shown in Fig. 55.22 (a) whereas Fig. 55.22 (b) shows those for a full-wave rectifier. The ripple voltage which occurs under light load conditions can be ap-

Fig. 55.21 proximated by a triangular wave which has a peak-to-peak value of $V_{r(p-p)}$ and a time period of T_{r}^{*} centred around the dc level.

Fig. 55.22
In fact, $V_{r(p-p)}$ is the amount by which capacitor voltage falls during discharge period T_{r}. This discharge is actually exponential** but can be approximated by a straight line discharge if we assume

[^6]the discharge rate to remain constant at the de level $I_{d c}$. In that case, charge lost $d Q$ in time T_{r} is $I_{d c} T_{r}$.
$$
\therefore \quad V_{r(p-p)}=\frac{d Q}{C}=\frac{I_{d c} T_{r}}{C}=\frac{V_{d c}}{f_{r} C R_{L}} \quad\left(\because I_{d c}=\frac{V_{d c}}{R_{L}}\right)
$$

The triangular ripple has an rms value given by $V_{r(r m s)}=V_{r(p-p)} / 2 \sqrt{3}$

$$
\therefore \quad V_{r(r m s)}=\frac{V_{r(p-p)}}{2 \sqrt{3}}=\frac{V_{d c}}{2 \sqrt{3} f_{r} C R_{L}} \therefore \quad \gamma=\frac{V_{r(r m s)}}{V_{d c}}=\frac{1}{2 \sqrt{3} f_{r} C R_{L}}
$$

Now, f_{r} is the frequency of the ripple voltage. For a half-wave rectifier, f_{r} equals the rectifier line input frequency whereas it is double the line input frequency for a full-wave rectifier. If f is the line frequency, then

$$
\begin{array}{rlr}
\gamma & \cong \frac{1}{2 \sqrt{3} f C R_{L}} & \text { - for HW rectifier } \\
& \cong \frac{1}{4 \sqrt{3} f C R_{L}} & \text { - for FW rectifier }
\end{array}
$$

It can be further proved that

$$
\begin{array}{rlr}
\gamma & =\frac{1}{2 \sqrt{3} f C R_{L}}=\frac{I_{d c}}{4 \sqrt{3} f C}\left(\frac{1}{V_{i p}}-\frac{1}{V_{d c}}\right) \quad \text { - half-wave rectifier } \\
& =\frac{1}{4 \sqrt{3} f C R_{L}}=\frac{I_{d c}}{4 \sqrt{3} f C V_{i p}} \quad \text {-for full-wave rectifier }
\end{array}
$$

It is seen from above that ripple increases with increase in load (i.e. output) current.
Incidentally, $\quad V_{d c}=V_{i p}-\frac{V_{r(p-p)}}{2}$
where $\quad V_{i p}=$ peak rectifier output voltage.
Substituting the value of $V_{r(p-p)}=V_{d c} / f_{r} C R_{L}$, we get

$$
\begin{aligned}
V_{d c} & =V_{i p}-\frac{V_{d c}}{2 f_{r} C R_{L}} \text { or } V_{d c}=-\frac{V_{i p}}{1+\frac{1}{2 f_{r} C R_{L}}} \\
\therefore \quad V_{d c} & =V_{i p}=\left(\frac{2 f C R_{L}}{1+2 f C R_{L}}\right)=\frac{V_{i p}-I_{d c} / 4 f C}{1+I_{d c} / 4 f C V_{i p}} \text {-half-wave rectifier } \\
& =V_{i p}\left(\frac{4 f C R_{L}}{1+4 f C R_{L}}\right)=\frac{V_{i p}}{1+I_{d c} / 4 f C V_{i p}} \quad \text { full-wave rectifier }
\end{aligned}
$$

Example 55.8. A half-wave rectifier has a peak output voltage of 12.2 V at 50 Hz and feeds a resistive load of 100Ω. Determine (i) the value of the shunt capacitor to give 1 percent ripple factor and (ii) the resulting dc voltage across the load resistor.

Solution. (i)

$$
\begin{aligned}
\gamma & =1 / 2 \sqrt{3} f C R L \quad \text { or } \quad 0.01=1 / 2 \sqrt{3} \quad \therefore \quad C=5770 \mu \mathrm{~F} \\
V_{d c} & =\frac{V_{i p}}{1+1 / 2 f C R_{L}}=\frac{12.2}{1+1 / 2 \times 5770 \times 10^{-6} \times 100}=12 \mathrm{~V}
\end{aligned}
$$

Example 55.9. Find the ripple factor and dc output voltage for the filtered bridge rectifier shown in Fig. 55.23. Each silicon diode has a threshold voltage of 0.7 V .

Solution. Peak primary voltage $=230 \times \sqrt{3}$

$$
=325 \mathrm{~V}
$$

$$
\begin{aligned}
\text { Peak secondary voltage } & =325 \times 1 / 10 \\
& =32.5 \mathrm{~V}
\end{aligned}
$$

Peak full-wave rectified voltage at the filter input

$$
\begin{aligned}
V_{i p} & =32.5-2 \times 0.7=31.1 \mathrm{~V} \\
\gamma & =\frac{1}{4 \sqrt{3 f C R_{L}}} \\
& =\frac{1}{4 \sqrt{3} \times 50 \times 5 \times 10^{-6} \times 20 \times 10^{3}} \\
& =0.028 \text { or } 2.8 \% \\
V_{d c} & =\frac{V_{i p}}{1+\frac{1}{4 f C R_{L}}}=\frac{31.1}{1+\frac{1}{4 \times 50 \times 5 \times 10^{-6} \times 20 \times 10^{3}}}=29.6 \mathrm{~V}
\end{aligned}
$$

Example 55.10. Derive an expression for the ripple in the output of a full-wave rectifier circuit, with a simple capacitor element as the filter.

The load current from the above circuit operating from $200-\mathrm{V}, 50-\mathrm{Hz}$ supply is 12 mA . Calculate minimum value of filter capacitor which is required to keep the ripple voltage below 2%.
(App. Electronics and Circuits ; Grad. I.E.T.E.)
Solution. As seen from Art. $5.17 \quad \gamma=I_{d c} / 4 \sqrt{3} f C V_{i p}$

$$
\therefore \quad C=I_{d c} / 4 \sqrt{3} f \gamma V_{i p}=12 \times 10^{-3} / 4 \sqrt{3} \times 50 \times 0.02 \times 200=6 \mu \mathrm{~F}
$$

55.18. Series Inductor Filter

The filter consists of a choke in series with the load resistor R_{L} as shown in Fig. 52.24. The operation of such a filter depends on the fundamental property of an inductor to oppose any sudden changes in the current flowing through it. Since this inductor presents high impedance to the ac components in the filter output, it reduces their amplitude with respect to the dc component thereby producing only a small ripple as shown in Fig. 55.24 (b).

The Fourier series for the rectifier output voltage is

$$
v_{i}=V_{i p}\left(\frac{2}{\pi}-\frac{4}{3 \pi} \cos 2 \omega t-\frac{4}{15 \pi} \cos 4 \omega t-\ldots .\right)
$$

For finding the ripple factor, we will calculate the dc as well as ac drop over R_{L}. If we neglect choke resistance (R_{C}), then the entire dc component of filter output is available across R_{L} and its value is $V_{d c}=2 V_{i p} / \pi *$.

(a)

(b)

Fig. 55.24
 R_{L} would be

$$
=\frac{2 V_{i p}}{\pi} \cdot \frac{R_{L}}{R_{L}+R_{C}}
$$

We will consider only the second harmonic voltage $\left(4 V_{i p} / 3 \pi\right) \cos 2 \omega t$ of frequency 2ω and neglect higher harmonic voltages. This ac voltage partly drops over X_{L} and partly over R_{L}. Since choke and R_{L} are connected in series, the maximum value of drop over R_{L} is

$$
=\frac{4 V_{i p}}{3 \pi} \cdot \frac{R_{L}}{\sqrt{{R_{L}^{2}}^{2}+X_{L}^{2}}}
$$

The rms value of this ac voltage drop across R_{L} is

$$
\begin{array}{ll}
\qquad \begin{aligned}
V_{c c} & =\frac{4 V_{i p}}{\sqrt{2.3 \pi}} \frac{R_{L}}{\sqrt{R_{L}^{2}+X_{L}^{2}}} \\
\therefore \quad \gamma & =\frac{V_{a c}}{V_{d c}}=\frac{4 V_{i p}}{\sqrt{2.3 \pi}} \frac{R_{L}}{\sqrt{R_{L}^{2}+X_{L}^{2}}} \times \frac{\pi}{2 V_{i p}} \\
& =\frac{\sqrt{2} R_{L}}{3 \sqrt{\left(R_{L}^{2}+X_{L}^{2}\right)}}=\frac{\sqrt{2}}{3 \sqrt{\left.1+X_{L}^{2}+R_{L}^{2}\right)}} \\
\text { Since } \quad X_{L} & =2 \omega L, \text { hence } \\
\gamma & =\frac{\sqrt{2}}{3\left(1+4 \omega^{2} L^{2} / R_{L}^{2}\right)^{1 / 2}} \\
\text { If } \quad 4 \omega^{2} L^{2} / R_{L}^{2}>1, & \text { then } \gamma
\end{aligned} & =\frac{\sqrt{2} R_{L}}{3 \times 2 \omega L}=\frac{R_{L}}{\sqrt{2.3 \omega L}}
\end{array}
$$

$$
=\frac{\sqrt{2} R_{L}}{3 \sqrt{\left(R_{L}^{2}+X_{L}^{2}\right)}}=\frac{\sqrt{2}}{3 \sqrt{\left.1+X_{L}^{2}+R_{L}^{2}\right)^{1 / 2}}}
$$

It is seen that ripple decreases as R_{L} decreases or load current increases (just the opposite of what happens in the case of shunt capacitor filter).

55.19. The Choke Input or L-C Filter

It is a combination of two filters considered in Art. 55.15 and 55.18 and provides a lower ripple than is possible with either L or C alone. As is known, in an inductor filter, ripple increases with R_{L} but decreases in a capacitor filter. The combination of L and C (i.e. L-section) filter makes the ripple independent of R_{L}. Fig. 55.25 (a) shows the filter and (b) the voltage variations.

(a)

(b)

Fig. 55.25

Ripple Factor

If choke resistance R_{C} is neglected, then dc voltage available across $R_{L}=2 V_{i p} / \pi$. The ac drop over R_{L} is the same as across C. Since $X_{C}<R_{L}$, the parallel combination of R_{L} and X_{C} has impedance $\cong X_{C}$. The second harmonic voltage ($4 V_{i p} / 3 \pi$) $\cos 2 \omega \mathrm{t}$ can be assumed to drop over the $L-C$ series combination because R_{L} is effectively not there.

Maximum value of ac drop over C is

$$
\begin{aligned}
& =\frac{4 V_{i p}}{3 \pi} \cdot \frac{X_{C}}{\left(X_{L}+X_{C}\right)} \\
R M S \text { value } & =\frac{4 V_{i p}}{\sqrt{2} \cdot 3 \pi} \cdot \frac{X_{C}}{\left(X_{L}+X_{C}\right)} \\
\therefore \quad \gamma & =\frac{V_{a c}}{V_{d c}} \frac{4 V_{i p}}{\sqrt{2} \cdot 3 \pi} \cdot \frac{X_{C}}{X_{L}+X_{C}} \times \frac{\pi}{2 V_{i p}}=\frac{\sqrt{2} X_{C}}{3 X_{L}}-\text { if } X_{C}<X_{L} \\
& =\frac{\sqrt{2}}{3(2 \omega C)(2 \omega L)}=\frac{\sqrt{2}}{12 \omega^{2} L C}=\frac{1.19}{L C}-\text { if } C \text { is in } \mu \mathrm{F} \text { and } L \text { in henrys }
\end{aligned}
$$

Now, $I_{d c}=2 V_{i p} / \pi R L$; maximum value of second harmonic current $I_{2 h}=4 V_{i p} / 3 \pi \times 2 \omega L$. The critical (or minimum) value of choke inductance essential for proper working of the filter is reached when $I_{d c}=I_{2 h}$ or $2 V_{i p} / \pi R_{L}=4 V_{i p} / 3 \pi .2 \omega_{L}$ or $L=R_{L} / 3 \omega_{L}$. For $f=50 \mathrm{~Hz}, L=R_{L} / 940$.

Example 55.11. A single-phase full-wave rectifier uses 300-0-300 V, 50-Hz transformer. For a load current of 60 mA , design an L-filter using 10 H coil and a suitable capacitor to ensure a ripple factor of not more than 1%.
(Electronics-II, Bangalore Univ.)
Solution.

$$
\begin{aligned}
\gamma & =1.19 / L \\
0.01 & =1.19 / L C ; \quad \therefore \quad L_{C}=119 \\
10 \times C & =119 \\
C & =11.9 \mu \mathrm{~F} \cong 12 \mu \mathrm{~F} .
\end{aligned}
$$

Hence,

55.20. The R-C Filter

Such a filter is shown in Fig. 55.26. Suppose that it is connected to a fullwave rectifier having a filtered output voltage of $V_{i p}$. The dc component voltage which drops over R_{L} is

$$
\begin{equation*}
=\frac{2 V_{i p}}{\pi} \cdot \frac{R_{L}}{R+R_{L}} \tag{i}
\end{equation*}
$$

Again, we would consider only the second harmonic voltage ($4 V_{i p} / 3 \pi$) $\cos 2 \omega \mathrm{t}$. As before, it will be assumed that $X_{C}<R_{L}$ so that $R_{L} \| X_{C} \cong X_{C}$. In

Fig. 55.26 that case, ac voltage would be assumed to drop across $R-C$ combination.

$$
V_{a c}=\frac{1}{\sqrt{2}} \cdot \frac{4 V_{i p}}{3 \pi} \cdot \frac{X_{C}}{\sqrt{R^{2}+X_{C}^{2}}}=\frac{4 V_{i p}}{\sqrt{2} \cdot 3 \pi} \cdot \frac{1}{\sqrt{1+R^{2} / X_{C}^{2}}}
$$

Same is the drop across R_{L}.

$$
\begin{aligned}
\therefore \quad \gamma & =\frac{V_{a c}}{V_{d c}}=\frac{4 V_{i p}}{\sqrt{2} \cdot 3 \pi} \cdot \frac{1}{\sqrt{1+R^{2} / X_{C}^{2}}} \times \frac{\pi\left(R+R_{L}\right)}{2 V_{i p} \cdot R_{L}} \\
& =\frac{\sqrt{2}}{3} \cdot \frac{1+R / R_{L}}{\sqrt{1+R^{2} / X_{C}^{2}}}=\frac{\left(1+R / R_{L}\right)}{3 \sqrt{2} \omega C R} \quad-\text { if } R^{2} / X_{C}^{2} » 1
\end{aligned}
$$

55.21. The C-L-C or Pi Filter

As shown in Fig. 55.27, it consists of one inductor and two capacitors connected across its each end. The three components are arranged in the shape of the Greek letter π. It is also called capacitor input π-filter. The input capacitor C_{1} is selected to offer very low reactance to the ripple frequency. Hence, major part of filtering is done by C_{1}. Most of the remaining ripple is removed by the combined action of L and C_{2}.

The charging and discharging action of C_{1} is exactly the same as described in Art. 55.15. The output voltage waveform is also like that shown in Fig. 55.25 (b).

This circuit gives much better filtering than $L C$ filter circuit. However, C_{1} is still directly connected across the supply and would need high pulses of current if load current is large. Since these high peak current pulses are likely to damage the rectifier diode, this filter is used with low-current equipment.

Though this filter-gives somewhat higher output voltage, its voltage regulation is inferior to that of the $L C$ filter.

Fig. 55.27

The ripple factor of this filter is given by

$$
\gamma=\sqrt{2} \frac{X_{C 1} X_{C 2}}{R_{L} X_{L}}=\frac{\sqrt{2}}{8 \omega^{3} C_{1} C_{2} L R_{L}}=\frac{5700}{L C_{1} C_{2} R_{L}} \quad-\text { when } f=50 \mathrm{~Hz}
$$

Here, C_{1}, C_{2} are in $\mu \mathrm{F}, L$ in henrys and R_{L} in ohms.

55.22. Bleeder Resistor

Very often, a resistor (called bleeder resistor) is placed across the filter output (Fig. 55.28) because it provides the following advantages :

1. It improves voltage regulation of the supply.

By acting as a pre-load on the supply, it causes an initial voltage drop. When the real load is connected, there is

Fig. 55.28 only a small amount of additional drop. In this way, difference between no-load and fullload voltage is reduced thereby improving the regulation.
2. It provides safety to the technicians handling the equipment.

When power supply is switched off, it provides a path for the filter capacitor to discharge through. That is why it is called bleeder resistor. Without it, the capacitor will retain its charge for quite sometime even when the power supply is switched off. This high voltage can be dangerous for people working with the equipment.
3. By maintaining a minimum current through the choke, it improves its filtering action. Value of R_{B} should be such as to conduct 10 per cent of the total load current.

55.23. Voltage Dividers

Often more than one dc voltage is needed for the operation of electronic circuits. A single power supply can provide as many voltages as are needed by using a voltage divider. As shown in Fig. 55.29 a voltage divider is a single tapped resistor connected across the output terminals of the supply. The tapped resistor may consist of two or three resistors connected in series across the supply. In fact, bleeder resistor may also be used as a voltage divider.

55.24. Complete Power Supply

Fig. 55.30 shows a complete solid-state power supply. From left to right, it consists of a transformer with a current-limiting resistor R_{1}, rectifier diodes for full-wave rectification, a π-type filter, a transistor series voltage regulator and a voltage divider.

Fig. 55.30
As seen, unregulated ac voltage is fed from the transformer through a full-wave rectifier. It is then filtered by the $C L C$ filter and finally regulated by a transistor regulator. The regulated dc supply becomes available across voltage divider resistance R_{B}. The output is practically ripple-free.

55.25. Voltage Multipliers

A voltage multiplier is a circuit which produces a greater dc output voltage than ac input voltage to the rectifiers. Multipliers are required in many circuit applications where it is necessary to have high voltages with low currents as for electron accelerating purposes in a cathode-ray tube (CRT).

We will consider the following circuit :

1. half-wave voltage doubler,
2. full-wave voltage doubler,
3. voltage tripler,
4. voltage quadrupler.

55.26. Half-wave Voltage Doubler

It is also known as cascade voltage doubler. The circuit is shown in Fig. 55.31.

(a)

(b)

Fig. 55.31

Circuit Analysis

During the positive half-cycle of the input voltage, D_{1} conducts (not D_{2}) and charges C_{1} to peak value of secondary voltage $\left(V_{m}\right)$ with the polarity as shown in Fig. 55.31 (a). During the negative half-cycle, D_{2} conducts (not D_{1}) and charges C_{2}. The voltage across C_{2} is the sum of peak supply

voltage and the voltage across C_{1} (Fig. 55.31). It can be proved by applying $K V L$ to the outer loop. Starting from the bottom of the transformer secondary in Fig. 55.32 and going clockwise, we get

$$
\begin{aligned}
-V_{m}-V_{m}+V_{\mathrm{C} 2} & =0 \\
\text { or } \quad V_{\mathrm{C} 2} & =2 V_{m}=2 \times \text { peak input voltage }
\end{aligned}
$$

During the next positive half-cycle, D_{2} is open and C_{2} will discharge through the load if it is connected. If no load is connected across C_{2}, then both capacitors stay charged i.e. C_{1} to V_{m} and C_{2} to $2 V_{m}$. If there is a load connected across C_{2}, it will discharge a little bit and, as a result of it, voltage across it will drop slightly. But it will get recharged in the next halfcycle.

The output waveform shown in Fig. 55.31 (b) is that of a

Fig. 55.32 half-wave rectifier filtered by a shunt capacitor. PIV across each diode is $2 V_{m}$. Ripple frequency is equal to the supply frequency.

This circuit has very poor regulation and its ripple content is also high. This circuit has a common connection between the line and load (which a full-wave doubler does not have).

55.27. Full-wave Voltage Doubler

This circuit is shown in Fig. 55.33 (a). During the positive half-cycle of the input voltage, D_{1} conducts (but not D_{2}) and charges capacitor C_{1} to the peak voltage V_{m} with the polarity as shown.

During the negative half-cycle, D_{2} conducts (but not D_{1}) charging C_{2} to V_{m}. As far as the load is concerned, voltages across C_{1} and C_{2} are in series-aiding. If there is no load connected across the output, then load voltage $V_{L}=2 V_{m}$ as shown in Fig. 55.33 (a). For example, if $220-\mathrm{V}, 50-\mathrm{Hz}$ is the supply, then $V_{d c}=2 V_{m}=2 \times \sqrt{2}=620 \mathrm{~V}$. Of course, if a load is connected across the output terminals, then V_{L} would be less than $2 V_{m}$.

The waveform of the output voltage is shown in Fig. 55.33 (b).

Fig. 55.33
The PIV rating of each diode is $2 V_{m}$. Ripple frequency is twice the supply frequency. As seen, there is no common connection between the supply line and the load.

It is worth noting that where the expense of a line transformer is justified, it is preferable to use the superior conventional full-wave rectifier (Art. 55.7).

55.28. Voltage Tripler and Quadrupler Circuits

(a) General

The half-wave voltage doubler circuit (Fig. 55.31) can be extended to obtain any multiple of the peak input voltage $\left(V_{m}\right)$ i.e. $3 V_{m}, 4 V_{m}, 5 V_{m}$ etc. Theoretically speaking, there is no upper limit to the
amount of voltage multiplication that can be obtained. Though voltage triplers and quadruplers are commonly used, practical considerations limit additional multiplications. The main handicap is that total amount of capacitance becomes unduly large to maintain the desired dc output voltage for any thing except extremely light loads.

(b) Circuit

The circuit for different multipliers is shown in Fig. 55.34. It should be obvious from the repetitive pattern of the circuit connections how additional diodes and capacitors may be connected to the doubler circuit for obtaining higher multiplications of the peak output

Fig. 55.34 voltage V_{m}.
(c) Analysis

During the first positive half-cycle, C_{1} charges to V_{m} as diode D_{1} conducts. During negative halfcycle, C_{2} is charged through D_{2} to $2 V_{m}$ i.e. to the sum of voltage across C_{1} and peak input voltage V_{m} (Art 55.26).

During the second positive half-cycle, D_{3} conduct and voltage across $C_{2} *$ charges C_{3} to same voltage $2 V_{m}$. During the negative half-cycle, diodes D_{2} and D_{4} conduct allowing C_{3} to charge C_{4} to the same peak voltage $2 V_{m}$.

If is seen from Fig. 55.34 that voltage across C_{2} is $2 V_{m}$, across C_{1} and C_{3} is $3 V_{m}$ and across C_{2} and C_{4} is $4 V_{m}$.

If additional diodes and capacitors are used, each capacitor would be charged to a peak voltage of $2 V_{m}$.

The PIV rating of each diode is $2 V_{m}$ and ripple frequency is twice the line frequency. Generally, these circuits are used where both the supply voltage and load are maintained constant.

55.29. Troubleshooting Power Supplies

There are usually two types of problems with power supplies i.e. either no dc output or low dc output.

The situation of no dc output can occur due to any one of the following reasons :

1. when there is no output from the rectifiers,
2. when there is no ac input to power supply,
3. when filter choke is open,
4. when the first input capacitor shorts.

A low dc output can occur in the following situations :

1. decreased input ac voltage,
2. open input capacitor of the filter circuit,
3. partial short across the load.

55.30. Controlled Rectification

It is that rectification in which the output of a rectifier circuit can be varied by controlling the point in the ac cycle at which the circuit is turned ON. A thyristor or $S C R$ can be used for the purpose

* $\bar{C}_{1} \overline{\text { cannot charge }} \overline{C_{3}} \overline{\text { because }} \overline{\text { it }}$ is shorted by D_{1}.
because under proper firing conditions, it can control the conduction angle of the rectifier circuit.

Fig. 55.35
In an ordinary diode rectifier circuit, current flows through the diode whenever instantaneous value of the ac supply voltage is greater than the voltage across the load at that instant.

For a resistive load shown in Fig. 55.35, load current flows at all times during the positive halfcycles of the supply.

In a controlled rectifier, on the other hand, load current flows only when a control signal is applied to turn on the rectifier at a specific point [like A in Fig. $55.36(b)]$ in the ac cycle. Point A corresponds to the angle θ_{1} so that conduction is delayed by this much period.

Once the HW rectifier is turned ON, it remains in conduction for the rest of the positive halfcycle i.e. upto 180°. Obviously, the firing point A is determined by the angle of delay in a plying the firing signal by the control circuit. As θ_{1} increases, conduction occurs later in the cycle thereby decreasing the load current further.

The curve for voltage drop across rectifier diode is shown in Fig. 55.36 (c). During the positive half-cycle when the rectifier is fired into conduction, it acts like a short and voltage across it drops to zero (neglecting forward voltage of the diode). During negative half-cycle when diode is reversebiased (and hence open) the full supply voltage appears across it as shown.

The curve for load voltage is shown in Fig. 55.36 (d). Since current obeys Ohm's law, it follows the load voltage.
Average Value of Load Voltage
Let the equation of the supply voltage be $V_{i}=V_{m} \sin \theta$

For a half-wave rectifier, average value is found by taking average over the whole cycle (2π) even though conduction takes

Fig. 55.36
place only from $\theta_{1}-\pi$ in the entire cycle.

$$
\begin{aligned}
& \therefore \quad V_{L}=\frac{1}{2 \pi} \int_{\theta_{1}}^{\pi} V_{i} d \theta \\
& =\frac{1}{2 \pi} \int_{\theta_{1}}^{\pi} V_{m} \sin \theta d \theta \\
& =\frac{V_{m}}{2 \pi} \int_{\theta_{1}}^{\pi} \sin \theta d \theta \\
& =\frac{V_{m}}{2 \pi}|-\cos \theta|_{\theta_{1}}^{\pi} \\
& =\frac{V_{m}}{2 \pi}\left|(-\cos \pi)-\left(-\cos \theta_{1}\right)\right| \\
& =\frac{V_{m}}{2 \pi}\left(1+\cos \theta_{1}\right) \\
& \therefore \quad V_{d c}=V_{L}=\frac{V_{m}}{2 \pi}\left(1+\cos \theta_{1}\right)
\end{aligned}
$$

For a resistive load,

$$
I_{d c}=I_{L}=\frac{V_{m}}{2 \pi R_{L}}\left(1+\cos \theta_{1}\right)
$$

Note: If

$$
\begin{aligned}
\theta_{1} & =0, \text { then } V_{d c} \\
& =\frac{V_{m}}{\pi} \text { and } I_{d c}=\frac{V_{m}}{\pi R L}
\end{aligned}
$$

These are the same values as for an uncontrolled or ordinary HW rectifier (Art 55.6).

55.31. Output Waveforms for Different Firing Angles

In all waveforms given in Fig. 55.37 it has been assumed that the ac supply voltage is sinusoidal given by the equation $V_{i}=V_{m} \sin \theta$. Also, a resistive load has been assumed.

Following points must always be kept in mind while drawing these diagrams. When the diode is forward-biased, it conducts and behaves like a short. Hence, drop across it is almost zero. Instead, whole of the applied voltage drops across load resistance. When during the negative input half-cycle, diode is reverse-biased, it does not conduct and behaves like an 'open'. Hence, all the applied voltage appears across the rectifier diode and none across R_{L}. In other words, diode anode voltage and load voltage are mutually exclusive i.e. when one is there, the other is not.

It is seen from Fig. 55.38 that as delay angle θ_{1} is increased, the output keeps decreasing till for $\theta_{1}=180^{\circ}$, the output is zero.

55.32. Output Voltage and Current Values in Controlled Rectifiers

We will use the equation derived in Art 55.30 for a half-wave rectifier i.e.

$$
\begin{aligned}
V_{d c} & =\frac{V_{m}}{2 \pi}\left(1+\cos \theta_{1}\right) \\
I_{d c} & =\frac{V_{m}}{2 \pi R_{L}}\left(1+\cos \theta_{1}\right)=\frac{V_{d c}}{R_{L}}
\end{aligned}
$$

Fig. 55.38
(a) when $\theta_{1}=0$

$$
\begin{aligned}
\cos \theta_{1} & =\cos 0^{\circ}=1 \\
V_{d c} & =\frac{V_{m}}{2 \pi}(1+1)=\frac{V_{m}}{\pi}=0.318 V_{m} \\
I_{d c} & =\frac{V_{d c}}{R_{L}}=\frac{V_{m}}{\pi R_{L}}=0.318 \frac{V_{m}}{R_{L}}
\end{aligned}
$$

(b) when $\theta_{1}=30^{\circ}$

$$
\begin{aligned}
\cos \theta_{1} & =\cos 30^{\circ}=0.866 \\
\therefore \quad V_{d c} & =\frac{V_{m}}{2 \pi}(1+0.866)=0.297 V_{m} \quad ; \quad I_{d c}=\frac{V_{d c}}{R_{L}}=0.297 \frac{V_{m}}{R_{L}}
\end{aligned}
$$

(c) when $\theta_{1}=45^{\circ}$

$$
\begin{aligned}
\cos \theta_{1} & =\cos 45^{\circ}=0.707 \\
\therefore \quad V_{d c} & =\frac{V_{m}}{2 \pi}(1+0.707)=0.27 V_{m} ; I_{d c}=\frac{V_{d c}}{R_{L}}=0.27 \frac{V_{m}}{R_{L}}
\end{aligned}
$$

(d) when $\theta_{1}=60^{\circ}$
$\cos \theta_{1}=\cos 60^{\circ}=0.5$

$$
\therefore \quad V_{d c}=\frac{V_{m}}{2 \pi}(1+0.5)=0.239 V_{m} ; I_{d c}=\frac{V_{d c}}{R_{L}}=0.239 \frac{V_{m}}{R_{L}}
$$

(e) when $\theta_{1}=90^{\circ}$

$$
\begin{aligned}
\cos \theta_{1} & =\cos 90^{\circ}=0 \\
V_{d c} & =\frac{V_{m}}{2 \pi}(1+0)=\frac{V_{m}}{2 \pi}=0.159 V_{m} \\
I_{d c} & =\frac{V_{d c}}{R_{L}}=\frac{V_{m}}{2 \pi R_{L}}=0.159 \frac{V_{m}}{R_{L}}
\end{aligned}
$$

(f) when $\theta_{1}=120^{\circ}$

$$
\cos \theta_{1}=\cos 120^{\circ}=-0.5
$$

$$
\therefore \quad V_{d c}=\frac{V_{m}}{2 \pi}(1-10.5)=0.08 V_{m} ; I_{d c}=\frac{V_{d c}}{R_{L}}=0.08 \frac{V_{m}}{R_{L}}
$$

(g) when $\theta_{1}=135^{\circ}$

$$
\begin{aligned}
\cos \theta_{1} & =\cos 135^{\circ}=-0.707 \\
V_{d c} & =\frac{V_{m}}{2 \pi}(1-0.797)=0.0466 V_{m} ; I_{d c}=0.0466 \frac{V_{m}}{R_{L}}
\end{aligned}
$$

Example 55.12. A 100- Ω load is connected to a peak supply of 300 V through a controlled halfwave diode rectifier. The load power is to be varied from 25 W to 80 W . What is the angular firing control required? Neglect forward drop of the diode. (Basic Electronics, Pune Univ. 1990)

Solution.

$$
P=V_{d c} \cdot I_{d c}
$$

Now,

$$
V_{d c}=\frac{V_{m}}{2 \pi}(1+\cos \theta) . \quad I_{d c}=\frac{V_{m}}{2 \pi R_{L}}(1+\cos \theta)
$$

\therefore

$$
\begin{aligned}
P & =\left(\frac{V_{m}}{2 \pi}\right)^{2} \cdot \frac{1}{R_{L}}(1+\cos \theta)^{2}=\left(\frac{300}{2 \pi}\right)^{2} \cdot \frac{1}{100}(1+\cos \theta)^{2} \\
& =22.5(1+\cos \theta)^{2}
\end{aligned}
$$

(i) when $\mathrm{P}=80 \mathrm{~W}$
\therefore

$$
80=22.5(1+\cos \theta)^{2} \quad \text { or } \quad(1+\cos \theta)=1.8856
$$

$$
\therefore \quad \cos \theta=0.8856 \text { or } \theta=27.7^{\circ}
$$

(ii) when $\mathrm{P}=25 \mathrm{~W}$

$$
\therefore \quad 25=22.5(1+\cos \theta)^{2} \quad \therefore \quad \cos \theta=0.1111 \quad \text { or } \theta=83 . \mathbf{6}^{\circ}
$$

Example 55.13. In a controlled half-wave rectifier, peak supply voltage is 200 V and the value of load resistor is $1 \mathrm{k} \Omega$. Calculate the power delivered to the load circuit for firing angles of (i) 0° (ii) 45° (iii) 90° and (iv) 135°.
(Solid State Devices and Ckts, BHU)
Solution. (i) $\quad V_{d c}=0.318 \times 200=63.6 \mathrm{~V} ; \quad I_{d c}=63.6 / 1000=63.6 \mathrm{mV}$

$$
P=V_{d c} \cdot I_{d c}=63.6 \times 63.6 \quad=4045 \mathrm{~mW}=4.045 \mathrm{~W}
$$

(ii)

$$
\begin{aligned}
V_{d c} & =0.27 \times 200=54 \mathrm{~V} ; & I_{d c} & =54 / 1000=54 \mathrm{~mA} \\
P & =54 \times 54=2916 \mathrm{~mW} & & =2.916 \mathrm{~W}
\end{aligned}
$$

(iii) $\quad V_{d c}=0.159 \times 200=31.8 \mathrm{~V} ; \quad I_{d c}=31.8 \mathrm{~mA}$

$$
P=31.8 \times 31.8=1011 \mathrm{~mW} \quad=1.011 \mathrm{~W}
$$

(iv)

$$
\begin{aligned}
V_{d c} & =0.0466 \times 200=9.3 \mathrm{~V} ; & I_{d c} & =9.3 \mathrm{~mA} \\
P & =9.3 \times 9.3=86.5 \mathrm{~mW} & & =\mathbf{0 . 0 8 6 5} \mathbf{W}
\end{aligned}
$$

55.33. Average Values for FW Controlled Rectifier

In this case, the average values would be doubled because there are two half sinusoids to be averaged as shown in Fig. 55.39 for $\theta_{1}=60^{\circ}$.

$$
\begin{aligned}
& \qquad V_{d c}=2 \times \frac{V_{m}}{2 \pi}\left(1+\cos \theta_{1}\right)=\frac{V_{m}}{\pi}\left(1 \cos \theta_{1}\right) \\
& {\left[I_{d c}=\frac{V_{d c}}{R_{L}}=\frac{V_{m}}{\pi R_{L}}\left(1+\cos \theta_{1}\right)\right]} \\
& \text { In the present case, } \theta_{1}=60^{\circ}, \cos \theta_{1}=0.5 \\
& \therefore \quad V_{d c}=\frac{V_{m}}{\pi}(1+0.5)=0.477 V_{m} \\
& \text { 55.34. Silicon Controlled Rectifier }(S C R)
\end{aligned}
$$

It is a trijunction PNPN device having three external connections : anode (A), cathode (C) and gate (G) as shown in Fig. 55.40.

Fig. 55.40
When A is made positive with respect to C, the junctions marked 1 and 3 are forward-biased but the centremost junction marked 2 is reverse-biased. Hence, the $S C R$ does not conduct.

SCR and diode tester However, if a sufficiently positive voltage pulse is applied to this junction via the gate G, the $S C R$ starts conducting like an ordinary diode. Gate has no control over $S C R$ once it has been triggered into conduction. Conduction can only be terminated by removing positive voltage from its anode.

As shown in Fig. 55.40 (b), SCR needs a control circuit which triggers it into conduction by a gate pulse. Two popular ways of turning ON an $S C R$ are:

1. Amplitude firing-in which gate current flows for the whole period of conduction.
2. UJT oscillator firing-in this method, gate current is supplied only momentarily. This method allows control over the power delivered to $S C R^{\prime}$ s load from zero watt to fully ON.

Some of the simple ways of controlling the conduction of an $S C R$ are discussed below.

55.35. Pulse Control of $S C R$

The simplest $S C R$ control circuit of this type is shown in Fig. 55.41. If $S C R$ were an ordinary rectifier, it would produce half-wave rectified ac voltage across R_{L}. However, $S C R$ will not conduct even during positive half-cycle of the input ac voltage unless G is given positive voltage to forwardbias its centremost junction. By applying a trigger pulse at any time during the positive input halfcycle, it can be fired into conduction.

The resultant load waveform across R_{L} will consist of a portion of the positive half-cycle commencing at the instant at which the $S C R$ is triggered [Fig. 55.41 (c)].

(a)

(b)

(c)

Fig. 55.41

55.36. 90° Phase Control of SCR

Fig. 55.42 shows a circuit which can trigger (or switch on) $S C R$ any where from the commencement of the ac cycle to the peak of its positive half-cycle i.e. between 0° and 90°. As shown, gate current is derived from the ac supply (often it is from rectifier output as in Fig. 5.44) via R. If R is set at low value, the $S C R$ will trigger almost at the commencement of the positive half-cycle of the ac input. On the other hand, if R is set at high resistance, the $S C R$ may not switch ON until the peak positive half-cycle when sufficiently large gate current would become available.

Fig. 55.42
If I_{G} is not large enough even at peak positive half-cycle, then $S C R$ will not trigger at all because I_{G} has the greatest value at the peak input and then falls off as the voltage falls. The purpose of diode D is to protect the $S C R$ gate from negative voltage during the negative input half-cycle. This method is also known as the amplitude firing of an $S C R$.

55.37. 180° Phase Control of SCR

The circuit shown in Fig. 55.43 can trigger the $S C R$ from 0° to 180° of the input waveform.

Fig. 55.43
The circuit is identical to that of Fig. 55.42 except for the addition of the diode D_{2} and capacitor C.

We will start the analysis with the negative half-cycle. During the negative half-cycle of the input, C is charged immediately (with the polarity as shown) to the peak of the input voltage because D_{2} is forward-biased. When peak of the negative half-cycle passes over, D_{2} becomes reverse-biased because its anode (connected to C) becomes more negative than its cathode (connected to the supply). Hence, C starts to discharge through R. Depending on the time constant $(=C R), C$ may almost be completely discharged at the commencement of the oncoming positive half-cycle or may retain partial charge until almost 180° of positive half-cycle has passed. So long as C remains negativelycharged, D_{1} is reverse-biased and the gate cannot become positive to trigger the $S C R$ into conduction. Hence, R and/or C can be adjusted to trigger the $S C R$ anywhere from 0° to 180° of the input ac cycle.

55.38. SCR Controlled Load Circuit

We will now consider a circuit where an am-plitude-fired $S C R$ is used to control the power in a full-wave rectifier circuit.

In Fig. 55.44, R_{L} is the load resistance which may be a lamp load, heater or a small dc motor whose power we wish to control. The full-wave bridge rectifier furnishes the rectified output shown in Fig 55.45 (a). Obviously, control over both half-cycles of the ac input is possible.

The rectifier output voltage is dropped across the potentiometer $A A$. When potentiometer is set at point 1 , drop across R_{3} is not enough to provide sufficient gate current to switch ON the $S C R$. Hence, there is no load current and, consequently, no drop across the load. When potentiometer is set at point 2 and then 3, the $S C R$ gets fired yielding load voltage waveforms shown in Fig. 55.45 (b) and (c). Hence, changing the moving contact on the potentiometer changes the conduction angle and hence the amount of power delivered to the load.

55.39. UJT Controlled Load Circuit

This circuit employs a $U J T$ oscillator to control the firing of the $S C R$ as shown in Fig. 55.46. The full-wave rectified output voltage VAF is available across two parallel paths $A F$ and $B F$. When $S C R$ is not conducting (i.e. it acts as an open), then whole output voltage drops across it and none across R_{L}. When it conducts (i.e. acts as a short), whole of $V A F$ drops across R_{L} and none across it.

Fig. 55.44

Fig. 55.45

Now, consider the other parallel circuit $B F$.

Fig. 55.46 R_{D} is the voltage dropping resistor so that a suitable voltage $V v$ is applied to the $U J T$ oscillator circuit for the UJT to work without damage. The full-wave rectified voltage is clipped at a convenient level by Zener diode D for proper operation of $U J T$. Varying R_{1} varies the time it takes for C to charge to the $U J T$ s firing voltage. Charging of C always starts when V_{U} is at 0 V dc or at 0° of $V_{A F}$.
If R_{1} is very small, C charges very quickly (\because time constant $C R_{1}$ is very short) and reaches the
$U J T$ firing voltage soon after $V_{A F}$ starts to go positive. Hence, $U J T$ fires early on every cycle of $V_{A F}$. When UJT fires, it becomes almost a short between its emitter (E) and B_{1}. Thus, it discharges C very quickly through R_{3} which is in parallel with the $S C R$'s gate. This triggers the $S C R$ early in the cycle of $V_{A F}$ and the $S C R$ latches itself ON until $V_{A F}$ falls to zero. When $V_{A F}$ goes to zero, the $S C R$ is shut OFF. The cycle repeats itself with the $S C R$ being turned ON early in the cycle thereby delivering nearly full-power to the load.

When R_{1} is increased, V_{C} rises slowly and reaches the $U J T$ firing voltage later during each cycle of VAF. Therefore, $S C R$ is turned ON much later thereby considerably cutting down the power delivered to the load as shown in Fig. 55.47. Obviously, the $S C R$ is being fired during the last few degrees of the cycle.

55.40 Chopper

(a) Definition

To put it simply, a chopper is a dc-to-dc converter. It converts a given constant dc voltage into a variable average dc voltage across a load by placing a highspeed static switch between the dc source and the load. This high-speed static switch is called a chopper because it chops off the dc supply into ON and OFF periods of flow.

(b) Basic Circuit

A basic chopper circuit is shown in Fig. 55.48. When switch S is closed, the dc supply voltage $V_{d c}$ is applied across the load and when it is open, the load is disconnected from the supply. By varying the ratio of the switch-closed time ($T_{O N}$) to the switch-open time

Fig. 55.47

Fig. 55.48 ($T_{\text {OFF }}$) at a fixed frequency, the value of the average output dc voltage can be controlled.

The switch S in Fig. 55.48 could be either a transistor or an $S C R$ depending on the amount of

Fig. 55.49 power involved. An $S C R$ is used in high-power applications whereas transistors are used when power involved is low. A dc chopper circuit using an $S C R$ is shown in Fig. 55.49. The $S C R$ acts like a static switch and has two states of ON and OFF. The duration of V_{L} ON and OFF states can be varied with the help of triggering and commutating circuits (not shown) respectively. By changing the values of ON and OFF periods, average dc load voltage can be changed.
(c) Working

When $S C R$ is triggerred into conduction with the help of control circuitry, full dc voltage $V_{d c}$ is applied across
the load for a period of $T_{O N}$. When the $S C R$ is switched OFF by the control circuitry, there is no voltage across the load. The output load voltage is in the form of a square wave as shown in Fig. 55.50. The waveshapes of the load current and chopper current for an inductive load are as shown. The freewheeling diode D provides path for the stored inductive energy to flow.

(d) Calculations

If $T_{O N}$ is the ON time and $T_{O F F}$ is the OFF time of the chopper, the duty cycle of the chopper is given by

Fig. 55.50

$$
\text { duty cycle }=\frac{T_{O N}}{T}=\frac{T_{O N}}{T_{O N}+T_{O F F}}
$$

The load voltage V_{L} is given by

$$
V_{L}=V_{d c}\left(\frac{T_{O N}}{T}\right)=V_{d c} \times \text { duty cycle }=f V_{d c} T_{O N}
$$

where $f(=1 / \mathrm{T})$ is the switching frequency of the chopper.
It is seen from the above that V_{L} depends on the duty cycle since $V_{d c}$ is constant. Hence, following different methods of controlling V_{L} are available.

1. keeping $T_{\text {OFF }}$ constant, varying $T_{O N}$;
2. keeping $T_{O N}$ constant, varying $T_{O F F}$;
3. varying the ratio $T_{O N} / T_{O F F}$;
4. any combination of the above.

Example 55.14. A dc chopper has ON time of $30 \mu \mathrm{~s}$ and OFF time of $10 \mu \mathrm{~s}$. Calculate (i) chopper duty cycle, (ii) chopping frequency.

Solution. (i) duty cycle $=T_{\text {ON }} / T=30 /(30+10)=0.75$
(ii) chopping frequency, $\quad f=1 / T=1 /(30+10) \times 10-6$

$$
=25,000 \mathrm{~Hz}=\mathbf{2 5} \mathbf{k H z}
$$

Example 55.15. A chopper supplied by a 200 V dc has ON time of 30 ms and OFF time of 10 $m s$. Determine the value of the average dc output voltage.
(Industrial Electronics, Mysore Univ. 1993)

$$
\text { Solution. } \quad \begin{aligned}
T_{O N} & =30 \times 10-3 \mathrm{~s}, \quad T_{O F F}=10 \times 10^{-3} \mathrm{~s}, \\
T & =40 \times 10-3 \mathrm{~s}
\end{aligned}
$$

Duty cycle of the chopper $=30 \times 10^{-3} / 40 \times 10^{-3}=0.75$

$$
V_{L}=V_{d c} \times \text { duty cycle }=200 \times 0.75=\mathbf{1 5 0} \mathbf{V}
$$

55.41. Inverters

An inverter is a device that changes dc power into ac power (just the opposite of converters). The inversion process can be achieved with the help of transistors, $S C R \mathrm{~s}$ and tunnel diodes etc. For low and medium outputs, transistorised inverters are suitable but for high power outputs, $S C R$ inverters are essential. For very low voltage and high current requirements, tunnel diode invertors are used.

For inverter applications, transistors have definite advantages
 over $S C R$ s regarding the switching speed, simplicity of control circuitry, high efficiency and greater reliability. It is mainly due to this fact the $S C R$ inverters require
complicated circuitry for triggerring and commutation.

The basic working principle of an inverter may be explained with the help of circuit shown in Fig. 55.51. It is called voltage-driven inverter because a dc voltage source is connected through semiconductor switches directly to the primary of a transformer.

In Fig. 55.51, S_{1} and S_{2} are switching devices (transistors of $S C R \mathrm{~s}$) which open and close alternately at regular intervals of time. The two switching devices are generally driven by an astable

Fig. 55.51 multi-vibrator operating at the desired frequency. When S_{1} is closed, the entire dc source voltage V is applied across points A and B of the transformer primary. S_{1} remains closed for a certain period of

Fig. 55.52 time after which it is cut off and S_{2} closes. It also remains closed for the same period of time during which the source voltage V is impressed across points B and C of the primary. S_{2} then opens out and S_{1} closes. In this way, an alternating voltage is applied across the primary which induces an ac voltage in the secondary. Since dc supply voltage is connected directly across the primary, the output waveform of the secondary voltage is a square wave (Fig. 55.52) irrespective of the type of load and load power factor. However, the waveforms of both the primary and secondary currents depend on the type of load whether resistive, inductive or capacitive.

55.42. Single-phase Inverter

Fig. 55.53 (a) shows a single-phase inverter with a load resistor using 4 SCRs working in pairs. The triggerring and commutating circuitry of the $S C R \mathrm{~s}$ has not been shown in the figure. The two thyristors $S C R_{1}$ and SCR_{4} are triggerred simultaneously so that load current passes through R_{L} from left to right. Exactly when these two $S C R$ s are switched off by the commutating circuitry, thyristors SCR_{2} and SCR_{3} are triggerred into conduction

(a)

(b)

Fig. 55.53

thereby sending current through R_{L} from right to left. Hence, an ac voltage is developed across the load whose waveform is as shown in Fig. 55.53 (b).

55.43. Push pull Inverter

Fig. 55.54 shows an inverter which
employs two $S C R$ s and one transformer. These two $S C R \mathrm{~s}$ are triggerred into conduction alternately for the same period of time. As a result, current through the primary becomes alternating which induces an ac voltage across the secondary and hence the load. As explained earlier in Art 55.42, the secondary ac voltage has a square waveform. The capacitor C is connected across the anodes of the two $S C R \mathrm{~s}$ and provides commutation i.e. switching off of the $S C R \mathrm{~s}$. The capacitor charges to double the supply voltage as a result of transformer action between

Fig. 55.54 the two halves of the primary winding. This large voltage is sufficient to reverse-bias the $S C R$ s and drive the holding current below its rated value.

Tutorial Problems No. 55.1

1. A $1-\phi$ half-wave rectifier using a $10: 1$ transformer supplies power to a 9Ω load. If the primary input voltage has an r.m.s. value of 200 V and forward diode resistance is 0.2Ω and transformer secondary resistance is 0.8 W , determine
(i) $I_{L}(d c)$,
(ii) r.m.s. ripple voltage and
(iii) efficiency
[(i) 0.9 A(ii) 9.8 V(iii) 36.54\%]
2. A single-phase full-wave rectifier using a power transformer has secondary voltage of 100-0-100V (r.m.s.). It supplies a load of 1 K . Neglecting transformer losses and forward voltage drop of the diode, determine :
(a) dc output voltage,
(b) dc output current,
(c) ripple voltage and $P I V$ rating of the diodes.
[(a) 90 V (b) $90 \mathrm{~mA}(c) 43.4 \mathrm{~V}$ (rms.) ; 282 V]
3. A single-phase half-wave rectifier supplies power to a 1 K load. The rectifier voltage is 200 V (r.m.s.). Neglecting diode resistance, calculate (i) dc load voltage, (ii) dc load current and (iii) r.m.s. ripple voltage.
[(i) $90 \mathrm{~V}($ ii $) 90 \mathrm{~mA}($ iii $) \mathbf{1 . 0 9} \mathrm{V}$]
4. A single-phase half-wave diode rectifier supplies power to a $2-\mathrm{k} \Omega$ resistive load. The input ac supply voltage has a peak value of 300 V . Neglecting forward drop of the diode, calculate
(a) $V_{d c}$,
(b) $I_{d c}$,
(c) power delivered to the load,
(d) ripple voltage (rms value)
[(a) $\mathbf{9 5 . 4} \mathrm{V}(b) 47.7 \mathrm{~mA}(c) 4550 \mathrm{~mW}$ (d) $\mathbf{1 1 5 . 4} \mathbf{~ V]}$
5. A full-wave diode rectifier supplies a load of $10 \mathrm{k} \Omega$. The ac voltage applied to the diode is $300-0-300$ V rms. It diode resistance is neglected, calculate: $(a) V_{d c},(b) I_{d c},(c) I_{r m s},(d)$ form factor, (e) ripple voltage. $\quad[(a) 270 \mathrm{~V}(b) 27 \mathrm{~mA}(c) 30 \mathrm{~mA}$ (d) 1.11 (e) 130.1 V$]$
6. A dc and an ac voltmeter are used to measure the output voltage of a filter circuit. The readings of the two voltmeters are 50 V and 5 V respectively. Calculate the ripple factor of the filter.
[10\%]
7. In a controlled full-wave rectifier, peak supply voltage is 200 V and load resistance 1 kW . Calculate the power delivered to the load for firing angles of $(a) 60^{\circ}$ and $(b) 120^{\circ} . \quad[(a) 9.1 \mathbf{W}(b) \mathbf{1 . 0 1} \mathbf{~ W}]$

OBJECTIVE TESTS - 55

1. The ripple factor of a power supply is a measure of
(a) its filter efficiency
(b) its voltage regulation
(c) diode rating
(d) purity of power output.
2. The basic reason why a FW rectifier has twice the efficiency of a HW rectifier is that
(a) it makes use of a transformer
(b) its ripple factor is much less
(c) it utilizes both half-cycle of the input
(d) its output frequency is double the line frequency.
3. The output of a half-wave rectifier is suitable only for
(a) running car radios
(b) running ac motors
(c) charging batteries
(d) running tape-recorders.
4. The ripple factor of a bridge rectifier is
(a) 0.406
(b) 0.812
(c) 1.21
(d) 1.11
5. The ripple factor of a power suply is given by (symobls have the usual meaning).
(a) $\frac{P_{d c}}{P_{a c}}$
(b) $\sqrt{\left(\frac{I_{r m s}}{I_{d c}}\right)^{2}-1}$
(c) $\sqrt{\left(\frac{I_{d c}}{I_{r m s}}\right)^{2}-1}$
(d) $\frac{I_{d c}}{I_{r m s}}$
6. The PIV of a half-wave rectifier circuit with a shunt capacitor filter is
(a) $2 V_{s}$
(b) $V_{s m}$
(c) $V_{s w}^{s / 2}$
(d) $3 V_{s m}^{s m}$.
7. The primary function of a rectifier filter is to
(a) minimise ac input variations
(b) suppress odd harmonics in the rectifier output
(c) stabilise dc level of the output voltage
(d) remove ripples from the rectified output
8. In a rectifier, larger the value of shunt capacitor filter
(a) larger the $p-p$ value of ripple voltage
(b) larger the peak current in the recti- fying diode
(c) longer the time that current pulse flows through the diode
(d) smaller the dc voltage across the load.
9. In a LC filter, the ripple factor,
(a) increases with the load current
(b) increases with the load resistance
(c) remains constant with the load current
(d) has the lowest value.
10. The main reason why a bleeder resistor is used in a dc power supply is that it
(a) keeps the supply ON
(b) improves voltage regulation
(c) improves filtering action
(d) both (b) and (c).
11. Which stage of a dc power supply uses a Zener as the main component?
(a) rectifier
(b) voltage divider
(c) regulator
(d) filter.
12. Which rectifier requires four diodes?
(a) half-wave voltage doubler
(b) full-wave voltage doubler
(c) full-wave bridge circuit
(d) voltage quadrupler.
13. For a half-wave controlled rectifier, the average value of output dc voltage is given by
(a) $V_{d c}=\frac{V_{m}}{2 \pi}\left(1-\cos \theta_{1}\right)$
(b) $V_{d c}=\frac{2 V_{m}}{\pi}\left(1+\cos \theta_{1}\right)$
(c) $V_{d c}=\frac{V_{m}}{\pi}\left(\cos \theta_{1}-1\right)$
(d) $V_{d c}=\frac{V_{m}}{2 \pi}\left(\cos \theta_{1}+1\right)$.
14. If, by mistake, ac source in a bridge rectifier is connected across the dc termi- nals, it will burn out and hence short .
(a) one
(b) two
(c) three
(d) four.
15. The circuit in Fig. 55.55 shows a full-wave rectifier. The input voltage is (rms) singlephase ac. The peak reverse voltage across the diodes D1 and D2 .

Fig. 55.55
(a) $100 \sqrt{2} \mathrm{~V}$
(b) 100 V
(c) $50 \sqrt{2} \mathrm{~V}$
(d) 50 V
(GATE ; 2004)
16. The circuit in Fig. 55.56 shows a 3-phase half-wave rectifier. The source is a symmetrical, 3-phase four-wire system. The line-to-line voltage of the source is 100 V . The supply frequency is 400 Hz . The ripple frequency at the output is

Fig. 55.56
(a) 400 Hz
(b) 800 Hz
(b) 1200 Hz
(d) 2400 Hz
(GATE ; 2004)

ANSWERS

1. (a)
2. (c)
3. (b)
4. (c)
5. (b) 6. (a)
6. (d)
7. (b)
8. (c)
9. (d) 11. (c)
10. (b)
11. (c) 14. (d)
12. (a) 16. (c)

CONTENTS

C H A P T E R

Learning Objectives

> General
> Voltage Regulation
> Zener Diode Shunt Regulator
> Transistor Series Voltage Regulator
> Controlled Transistor Series Regulator

REGULATED POWER SUPPLY

> Transistor Shunt Voltage Regulator
> Transistor Current Regulator
> Variable Feedback Regulator
> Basic OP-AMP Series Regulator
> Basic OP-AMP Shunt Regulator
> Switching Regulators
> Step-down Switching Regulator
> Step-up Switching Regulator
> Inverting Switching Regulator
> IC Voltage Regulators
> Fixed Positive Linear Voltage Regulators
> Fixed Negative Linear Voltage Regulators
> Adjustable Positive Output Linear Voltage Regulators
> Adjustable Negative Output Linear Voltage Regulators
> Use of External Pass Transistor with Linear Voltage Regulators
> Use of Linear Voltage Regulator as a Current Regulator
> Switching Voltage IC Regulators

Voltage regulator provides a constant dc output voltage that is essentially independent of the input voltage, output load current and temperature.

56.1. General

The various power-supply circuits considered in Chapter 5 suffer from the drawback that their dc output voltage changes with changes in load or input voltage. Such a dc power supply is called unregulated power supply. Regulated power supply can be obtained by using a voltage regulator circuit. A regulator is an electronic control circuit which is capable of providing a nearly constant dc output voltage even when there are variations in load or input voltage. A source of regulated dc power is essential for all communication, instrumentation, computers or any other electronic system.

We will consider both linear regulators and switching regulators which are also available in integrated circuit form. In linear regulators, the transistor operates somewhere between saturation and cut-off. It is always ON and dissipates power. Hence, its efficiency (output power/input power) is 50 per cent or less. In switching regulators, the transistor operates like a switch i.e. it is either saturated or cut-off. Hence, its power efficiency is 90 per cent or more.

The linear regulators are of two basic type i.e. series regulators and shunt regulators. Likewise switching regulators can be of three basic types (i) step-down type, (ii) step-up type and (iii) inverting type.

56.2. Voltage Regulation

As stated above, in an unregulated power supply, output voltage changes whenever input supply voltage or load resistance changes. It is never constant. The change in voltage from no-load to fullload condition is called voltage regulation. The aim of a voltage regulator circuit is to reduce these variations to zero or, at least, to the minimum possible value.

The percentage regulation or, simply, regulation of a power supply is given by

$$
\% \text { regulation }=\frac{V_{\max }-V_{\min }}{V_{\max }} \times 100
$$

where $V_{\max }=$ maximum dc output voltage and $V_{\min }=$ minimum dc output voltage.

When we say that 10 V regulated dc power supply has a regulation of 0.005 per cent, it means that dc output voltage will vary within an envelope 0.005 per cent of 10 V .

$$
\text { Now, } \quad \begin{aligned}
0.005 \% \text { of } 10 \mathrm{~V} & =\frac{V_{m x}-V_{n i n}}{V_{m x}} \times 100 \\
& =0.0005 \mathrm{~V}=0.5 \mathrm{mV}
\end{aligned}
$$

Fig. 56.1

Hence, output voltage will vary by $\pm 0.25 \mathrm{mV}$. So, we see that instead of expressing voltage regulation by unwieldly expression 0.005 per cent, we can express it by a simple figure of $\pm 0.25 \mathrm{mV}$.

$$
\begin{aligned}
& \text { In general, } \% \text { regn. }=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100 \\
& \text { where, } V_{N L} \\
&=\text { no-load or open-circuit terminal voltage of the supply (Fig. 56.1). } \\
& V_{F L}=\text { full-load terminal voltage of the supply }
\end{aligned}
$$

In an ideal or perfectly regulated dc power supply, the percentage voltage regulation is zero. This voltage regulation is also called load regulation.

56.3. Zener Diode Shunt Regulator

A simple shunt voltage regulating system using a zener diode is shown in Fig. 56.2. The
input voltage $V_{i n}$, in fact, is the unregulated output of a rectifier. This simple regulator restricts output voltage variations within reasonable limits around V_{z} in the face of changing load current or changing input voltage. Obviously, the Zener diode will regulate so long as it is kept in reverse conduction.

Example 56.1. The Zener diode of Fig. 56.2 has the following ratings :

Fig. 56.2

$$
\begin{aligned}
& V_{z}=6.8 \mathrm{~V} \quad \text { at } \quad I_{z}=50 \mathrm{~mA} \\
& r_{z}=2 \Omega \quad \text { at } \quad I_{z}=50 \mathrm{~mA} \\
& I_{z(\text { min })}=5 \mathrm{~mA} \\
& I_{z(\max)}=150 \mathrm{~mA}
\end{aligned}
$$

What would be the load voltage when load current I_{L} varies from 10 mA to 120 mA ? Also, calculate voltage regulation of the regulator.
(Power Electronics-I, Punjab Univ. 1992)
Solution. We will call $V_{z}=6.8 \mathrm{~V}$ and $I_{z}=50 \mathrm{~mA}$ as reference values and calculate changes in voltage with respect to these values.
(i) $\mathrm{I}_{\mathrm{L}}=\mathbf{1 2 0} \mathbf{~ m A}$

Obviously,
Deviation from 50 mA
Drops across diode

$$
\begin{aligned}
I_{z} & =150-120=30 \mathrm{~mA} \\
& =30-50=-20 \mathrm{~mA} \\
& =I_{z} \cdot r_{z}=-20 \times 2=-40 \mathrm{mV} \\
V_{L} & =V_{z}+I_{Z} \cdot r_{z}=6.8+\left(-40 \times 10^{-3}\right)=6.76 \mathrm{~V}
\end{aligned}
$$

(ii) $\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}$

$$
\text { Now, } \quad I_{z}=150-10=140 \mathrm{~mA}
$$

Deviation from reference value $=140-50=90 \mathrm{~mA}$
Diode drop

$$
\begin{aligned}
& =I_{z} r_{z}=90 \times 10^{-3} \times 2=0.18 \mathrm{~V} \\
V_{L} & =V_{z}+I_{z} r_{z}=6.8+0.18=6.98 \mathrm{~V} \\
\% \text { regn. } & =\frac{6.98-6.76}{6.98} \times 100=3.15 \%
\end{aligned}
$$

For many applications, a change in load voltage of 3.15% is acceptable but, in some, it may be intolerable. This regulation can be reduced to 1% or less with the help of circuits discussed below.

56.4. Transistor Series Voltage Regulator

The circuit is shown in Fig. 56.3. It is also called emitter-follower regulator because the voltage at the emitter follows the base voltage. In this set-up, the transistor behaves like a variable resistor whose resistance is determined by the base current. It is called pass transistor because total current to be regulated passes through it.

Keeping in mind the polarities of different voltages, they are related by the equation derived from $K V L$

Fig. 56.3

$$
V_{L}+V_{B E}-V_{z}=0
$$

$$
\therefore \quad \begin{gathered}
V_{B E} \\
\text { (fixed) }
\end{gathered}=V_{z}-V_{L}
$$

When current demand is increased by decreasing R_{L}, V_{L} tends to decrease. As seen from the above equation, it will increase $V_{B E}$ because V_{z} is fixed. This will increase forward bias of the transistor thereby increasing its level of conduction. This, is turn, will lead to decrease in the collectoremitter resistance of the transistor which will slightly increase the input current in order to compensate for decrease in R_{L} so that $V_{L}=\left(I_{L} R_{R}\right)$ will remain at a constant value. Incidentally, R is used for limiting current passing through the Zener diode.

56.5. Controlled Transistor Series Regulator

The circuit employing a second transistor T_{2} as a sensing element is shown in Fig. 56.4. It has the additional feature of control with the help of potentiometer $R_{1}-R_{2}$. In the discussion to follow, it will be assumed that I is much greater than $I_{B 2}$. Now, there is a drop of V_{L} on $\left(R_{1}+R_{2}\right)$ and a drop of $\left(V_{z}\right.$ $\left.+V_{B E 2}\right)$ across R_{2}.

$$
\frac{V_{L}}{V_{z}+V_{B E 2}}=\frac{R_{1}+R_{2}}{R_{2}} \quad \text { or } \quad V_{L}=\frac{R_{1}+R_{2}}{R_{2}}\left(V_{z}+V_{B E 2}\right)
$$

Now, $\left(R_{1}+R_{2}\right)$ and $\left(V_{z}+V_{B E 2}\right)$ both have constant values so that $V_{L} \propto 1 / R_{2}$. If the potentiometer is adjusted so that R_{2} decreases, then V_{L} increases and vice versa.

Suppose R_{L} is decreased. Then, I_{L} increases but V_{L} decreases. Decreases in V_{L} decreases $I_{B 2}$ and $I_{C 2}$. Assuming I_{3} to be relatively constant (or decreasing only slightly), $I_{B 1}$ is increased thereby decreasing the terminal (collec-tor-emitter) resistance of T_{1}. This leads to decrease in $V_{C E 1}$ thereby offsetting the decrease in V_{L} which is, therefore, returned to its original value.

In sequential logic, we have

$$
V_{L} \downarrow \quad I_{B 2} \downarrow \quad I_{C 2} \downarrow \quad I_{B 1} \uparrow \quad V_{C E 1} \downarrow \quad V_{2} \uparrow
$$

56.6. Transistor Shunt Voltage Regulator

It employs the transistor in shunt configuration as shown in Fig. 56.5.

Since path $A B$ is in parallel across V_{L}, we have from Kirchhoff's Voltage Law

$$
\begin{array}{ll}
& V_{L}-V_{z}-V_{B E}=0 \\
\text { or } & V_{B E}=V_{L}-V_{z}(\text { fixed })
\end{array}
$$

Since V_{z} is fixed, any decrease or increase in V_{L} will have a corresponding effect on $V_{B E}$. Suppose, V_{L} decreases, then as seen from the above relation, $V_{B E}$ also decreases. As a result, I_{B} decreases, hence,

Fig. 56.5
$I_{C}\left(=\beta I_{B}\right)$ decreases, thereby decreasing I and hence $V_{R}(=I R)$. Consequently, V_{L} increases because at all times

$$
\begin{array}{lccclll}
& V_{\text {in }}=V_{R}+V_{L} & \text { or } & V_{L}=V_{\text {in }}-V_{R} & \\
\text { In sequential logic, } & V_{z} \downarrow & V_{B E} \downarrow & I_{B} \downarrow & I_{C} \downarrow & I_{R} \downarrow & V_{R} \downarrow
\end{array} V_{L} \uparrow
$$

Same line of logic applies in case V_{L} tries to increase.

Example 56.2. In the NPN emitter-follower regulator circuit of Fig. 56.6, calculate (i) V_{L}, (ii) $V_{C E}$, (iii) I_{E} and (iv) power dissipated. Take $V_{B E}=0.7 \mathrm{~V}$.

Solution.

(i) $\begin{aligned} V_{L} & =V_{\text {out }}=V_{Z}-V_{B E} \\ & =9-0.7=8.3 \mathbf{V}\end{aligned}$
(ii) $V_{C E}=V_{\text {in }}-V_{\text {out }}=12-8.3=3.7 \mathrm{~V}$
(iii) $\quad I_{E}=I_{L}=V_{L} / R_{L}$

$$
=8.3 / 100=\mathbf{8 3} \mathbf{~ m A}
$$

(iv) Power dissipated $=V_{C E} I_{E}$

$$
=3.7 \mathrm{~V} \times 83 \mathrm{~mA}=310 \mathrm{~mW}
$$

Example 56.3. Compute the output voltage $V_{\text {out }}$ for the op-amp series regulator shown in Fig. 56.7.
(Industrial Electronics, Bombay Univ. 1992)
Solution. We are given that $V_{\text {REF }}$

$$
\begin{aligned}
& =6 \mathrm{~V} \text { and } R_{2}=R_{3}=1 \mathrm{~K} \\
V_{\text {out }} & =V_{R E F}\left(1+R_{z} / R_{3}\right) \\
& =6(1+10 / 10) \\
& =6 \times 2=\mathbf{1 2} \mathbf{V}
\end{aligned}
$$

56.7. Transistor Current Regulator

The main function of a current regulator is to maintain a fixed current through the load despite variations in the terminal voltage. Such a circuit employing a Zener diode and a $P N P$ transistor is shown in Fig. 56.8. Suppose, due to drop in V_{L},

Fig. 56.7 current $I_{L}\left(=I_{C}\right)$ is decreased. This will decrease $I_{E}\left(\cong I_{C}\right.$). Hence, drop across R_{E} i.e. $V_{R E}$ will decrease. As per Kirchoff's Voltage Law

$$
-V_{R E}-V_{B E}+V_{z}=0, \quad \text { or } \quad V_{B E}=V_{z}-V_{R E}
$$

Transistor current regulator

Fig. 56.8

Hence, a decrease in $V_{R E}$ will increase $V_{B E}$ and, hence, the conductivity of the transistor thereby keeping I_{L} at a fixed level.

A similar logic applies when there is increase in V_{L}.

56.8. Variable Feedback Regulator

The regulators considered so far provide a non-adjustable output voltage. This would be fine if only single value of regulated voltage is required. Fig. 56.9 shows a feedback regulator which pro-

Fig. 56.9 vides different values of regulated dc voltage. In Fig. 56.9, T_{1} is the pass transistor and T_{2} is the feedback transistor whose job is to provide and sample output (i.e. load) voltage. It offsets any change in the output voltage. Since potentiometer R_{3} is connected in parallel with Zener diode D, it has Zener voltage V_{z} applied across it. Voltage across the wiper varies from 0 to V_{z}. Capacitor C ensures that voltage across D and R_{3} does not change suddenly.

Voltage at the base of T_{2} is 0.7 V more positive than the voltage at its emitter. Its emitter voltage and hence the base voltage can be changed with the help of R_{3}. Since base of T_{2} is tied to the output, it is responsible for providing output or load voltage. The voltage $V_{C E 1}$ across the pass transistor is given by the difference of input voltage and output voltage. The current through T_{1} is equal to the load current. R_{2} prevents saturation of transistors whereas R_{1} limits the current flowing through D.

The working of feedback transistor can be explained as follows:
Since base voltage of T_{2} is directly related to $V_{\text {out }}$ it will change if $V_{\text {out }}$ changes. The base and collector of T_{2} are 180° out of phase with each other. If base voltage increases due to increase in $V_{\text {out }}$ collector voltage would decrease. Now, collector of T_{2} controls base of T_{1}. As the base voltage of T_{1} decreases, its collector-emitter resistance increases which lowers the load current. This, in turn, lowers the output voltage thereby offsetting the attempted increases in $V_{\text {out }}$. The opposite of these steps provides the action of an attempted decrease in output voltage.

Example 56.4. In the variable feedback regulator circuit of Fig. 56.8, $V_{i n}=25 \mathrm{~V}, V_{z}=15 \mathrm{~V}$ and $R_{L}=1 \mathrm{~K}$. If the wiper of R_{3} is adjusted half-way and assuming silicon transistor, compute (i) $V_{\text {out }}$ (ii) I_{L} (iii) $I_{E I}$ (iv) P_{I}.

Solution. (i) $\quad V_{\text {out }}=$ voltage at wiper $+V_{B E 2}=(15 / 2)+0.7=8.2 \mathrm{~V}$
(ii) $I_{L}=V_{\text {out }} / R_{L}=8.2 \mathrm{~V} / 1 \mathrm{~K}=8.2 \mathrm{~mA}$
(iii) $\quad I_{E 1}=I_{L}=8.2 \mathrm{~mA}$
(iv) $\quad V_{C E 1}=V_{\text {in }}-V_{\text {out }}$

$$
=25-8.2=16.8 \mathrm{~V}
$$

$\therefore \quad P_{1}=16.8 \mathrm{~V} \times 8.2 \mathrm{~mA}$

$$
=140 \mathrm{~mW}
$$

56.9. Basic Op-amp Series Regulator

Its circuit is shown in Fig. 56.10 and its operation is as follows :

The potentiometer $R_{2}-R_{3}$ senses any change in out-

Fig. 56.10
put voltage $V_{\text {out }}$. When $V_{\text {out }}$ attempts to decrease because of decrease in $V_{\text {in }}$ or because of the increase in I_{L}, a proportional voltage decrease is applied to the inverting output of the op-amp by the potentiometer. Since, the other op-amp input is held by the Zener voltage at a fixed reference voltage $V_{R E F}$, a small difference voltage (called error voltage) is developed across the two inputs of the op-amp. This difference voltage is amplified and op-amp's outout voltage increases. This increase in voltage is applied to the base of T_{1} causing the emitter voltage $\left(=V_{\text {out }}\right)$ to increase till the voltage to the inverting input again equals the reference (Zener) voltage. This action offsets attempted decrease in the output voltage thus keeping it almost constant. The opposite action occurs if the output voltage tries to increase.

Calculations

It will be seen that the op-amp of Fig. 56.10 is actually connected as a non-inverting amplifier where $V_{R E F}$ is the input at the noninverting terminal and the R_{2} / R_{3} voltage divider forms the negative feed-back network. The closed-loop voltage gain is given by $A=1+\left(R_{2} / R_{3}\right)$. Neglecting baseemitter voltage of T_{1}, we get

$$
V_{\text {out }}=V_{\text {REF }}\left(1+R_{2} / R_{3}\right)
$$

It is seen that $V_{\text {out }}$ depends on Zener voltage and potential divider resistors R_{2} and R_{3} but is independent of input voltage $V_{i n}$.

56.10. Basic Op-amp Shunt Regulator

Such a shunt type linear regulator is shown in Fig. 56.11. Here, the control element is a series resistor R_{1} and a transistor T_{1} in parallel with the load. In such a regulator, regulation is achieved by controlling the current through T_{1}. Working

When output voltage tries to decrease due to change in either the input voltage or load current or temperature, the attempted decrease is sensed by R_{3} and R_{4} and applied to the noninverting input of the op-amp. The resulting

Fig. 56.11 difference in voltage reduces the op-amp's output, driving T_{1} less thus reducing its collector current (shunt current), and increasing its collector-to-emitter resistance. Since collector-to-emitter resistance acts as a voltage divider with R_{1}, this action offsets the attempted decrease in output voltage and hence, maintains it at a constant value. The opposite action occurs when output voltage tries to increase. The shunt regulator is less efficient than the series type but offers inherent short-circuit protection.

56.11. Switching Regulators

In the linear regulators considered so far, the control element i.e. the transistor conducts all the time, the amount of conduction varying with changes in output voltage or current. Due to continuous power loss, the efficiency of such a regulator is reduced to 50 per cent or less.

A switching regulator is different because its control element operates like a switch i.e. either it is saturated (closed) or cut-off (open). Hence, there is no unnecessary wastage of power which results in higher efficiency of 90% or more.

Switching regulators are of three basic types : (i) step-down regulator, (ii) step-up regulator and (iii) inverting regulator.

56.12. Step-down Switching Regulator

In this regulator (Fig. 56.12), $V_{\text {out }}$ is always less than $V_{\text {in }}$. An unregulated positive dc voltage is applied to the collector of the NPN transistor. A series of pulses from an oscillator is sent to the base of transistor T which gets saturated (closed) on each of the positive pulses. It is so because an NPN transistor needs a positive voltage pulse on its base in order to turn ON. A saturated transistor acts as a closed switch, hence it allows $V_{\text {in }}$ to send current through L and charge C to the value of output voltage during the on-time $\left(T_{\mathrm{ON}}\right)$ of the pulse. The diode D_{1} is reverse-biased at this point and hence, does not conduct.

Switching regulator in hybrid film technology

Fig. 56.12

Eventually when positive pulse turns to zero, T is cut-off and acts like an open switch during the off period (T_{OFF}) of the pulse. The collapsing magnetic field of the coil produces self-induced voltage and keeps the current flowing by returning energy to the circuit.

The value of output voltage depends on input voltage and pulse width i.e. on-time of the transistor. When on-time is increased relative to off-time, C charges more thus increasing $V_{\text {out }}$. When $T_{\text {ON }}$ is decreased, C discharges more thus decreasing $V_{\text {out }}$. By adjusting the duty cycle ($\left.T_{\mathrm{ON}} / T\right)$ of the transistor, $V_{\text {out }}$ can be varied.

$$
\therefore \quad V_{\text {out }}=V_{\text {in }}\left(T_{\mathrm{ON}} / T\right)
$$

where T is the period of the ON-OFF cycle of the transistor and is related to frequency by $T=1 / f$. Also, $T=T_{\mathrm{ON}}+T_{\mathrm{OFF}}$ and the ratio $\left(T_{\mathrm{ON}} / T\right)$ is called the duty cycle.

The regulating action of the circuit is as follows :
When $V_{\text {out }}$ tries to decrease, on-time of the transistor is increased causing an additional charge on the capacitor C to offset the attempted decrease. When $V_{\text {out }}$ tries to increase, T_{ON} of the transistor is decreased causing C to discharge enough to offset the attempted increase.

56.13. Step-up Switching Regulator

The circuit is shown in Fig. 56.13. When transistor T turns ON on the arrival of the positive pulse at its base, voltage across L increases quickly to $V_{\text {in }}-V_{C E(s a t)}$ and magnetic field of L expands quickly. During on-time of the transistor, V_{L} keeps decreasing from its initial maximum value. The longer transistor is ON , the smaller V_{L} becomes.

When transistor turns OFF, magnetic field of L collapses and its polarity reverses so that

Fig. 56.13
its voltage adds to the input voltage thus producing an output voltage greater than the input voltage. During off-time of the transistor, D_{2} is forward-biased and allows C to charge. The variations in $V_{\text {out }}$ due to charging and discharging action are sufficiently smoothed by filtering action of L and C.

It may be noted that shorter the on-time of the transistor, greater the inductor voltage and hence greater the output voltage (because greater V_{L} adds to $V_{i n}$). On the other hand, the longer the on-time, the smaller the inductor voltage and hence, lesser the output voltage (because smaller V_{L} adds to $V_{i n}$).

The regulating action can be understood as follows :
When $V_{\text {out }}$ tries to decrease (because of either increasing load or decreasing $V_{\text {in }}$), transistor on time decreases thereby offsetting attempted decrease in $V_{\text {out }}$. When $V_{\text {out }}$ tries to increase, on-time increases and attempted increase in $V_{\text {out }}$ is offset.

As seen, the output voltage is inversely related to the duty cycle.

$$
\therefore \quad V_{\text {out }}=V_{\text {in }}\left(T / T_{\mathrm{ON}}\right)
$$

56.14. Inverting Switching Regulator

The basic diagram of such a regulator is shown in Fig. 56.14. This regulator provides an output voltage that is opposite in polarity to the input voltage.

When transistor T turns ON by the positive pulse, the inductor voltage V_{L} jumps to $V_{i n}-V_{C E(s a t)}$ and the magnetic field of the inductor expands rapidly. When

Fig. 56.14
transistor is ON , the diode D_{2} is reverse-biased and V_{L} decreases from its initial maximum value. When transistor turns OFF, the magnetic field collapses and inductor's polarity reverses. This forward-biases D_{2}, charges C and produces a negative output voltage. This repetitive ON-OFF action of the transistor produces a repetitive charging and discharging that is smoothed by $L C$ filter action. As in the case of a step-up regulator, lesser the time for which transistor is ON, greater the output voltage and vice versa.

56.15. IC Voltage Regulators

Due to low-cost fabrication technique, many commercial integrated-circuit (IC) regulators are available since the past two decades. These include fairly simple, fixed-voltage types of high-quality precision regulators. These $I C$ regulators have much improved performance as compared to those made from discrete components. They have a number of unique build-in features such as current limiting, self-protection against overtemperature, remote control operation over a wide range of input voltages and foldback current limiting.

Now we will study the following types of IC voltage regulators: (1) fixed positive linear voltage regulators, (2) fixed negative linear voltage regulators, (3) adjustable positive linear voltage regulators, and (4) adjustable negative linear voltage regulators.

56.16. Fixed Positive Linear Voltage Regulators

There are many IC regulators available in the market that produces a fixed positive output voltage. But 7800 series of $I C$ regulators is representative of three terminal devices that are available

with several fixed positive output voltages making them useful in a wide range of applications. Fig. 56.15 (a) shows a standard configuration of a fixed positive voltage $I C$ regulator of 7800 series. Notice that it has three terminals labelled as input, output and ground. The last two digits (marked xx) in the part number designate the output voltage. For example, $I C 7805$ is a +5 V regulator. Similarly $I C$ 7812 is a +12 V regulator and $I C 7815$ is a +15 V regulator. The capacitor C_{1} (typically $0.33 \mu \mathrm{~F}$) is required only if the power supply filter is located more than 3 inches from the $I C$ regulator. The capacitor C_{2} (typically $0.01 \mu \mathrm{~F}$) acts basically as a line filter to improve transient response.

Fig. 56.15
Fig. 56.15 (b) shows the part number and the output voltage of 7800 series $I C$ voltage regulators. As seen from this figure, the 7800 series has $I C$ regulators that can produce output voltages ranging from +5.0 to +24.0 volt. It may be carefully noted that although these regulators are designed primarily to produce fixed output voltage but they can be used with external components to obtain adjustable output voltage and current.

Fig. 56.16 shows the circuit indicating the use of 78XX as an adjustable voltage regulator. The output voltage is given by the equation,

$$
V_{\text {out }}=V_{\text {fixed }}+\left(\frac{V_{\text {fixed }}}{R_{1}}+I_{Q}\right) R_{2}
$$

For example, for a 7805 IC regulator, $V_{\text {fixed }}=5 \mathrm{~V}$. Let $R_{1}=R_{2}=1 \mathrm{k} \Omega$ and $I_{Q}=5$ mA , then its output voltage is,

$$
\begin{aligned}
V_{\text {out }} & =5+\left(\frac{5}{1 \mathrm{k} \Omega}+5 \mathrm{~mA}\right) \times 1 \mathrm{k} \Omega \\
& =15 \mathrm{~V}
\end{aligned}
$$

Fig. 56.16

Thus output voltage of IC 7805 regulator can be adjusted anywhere between 5 V to 15 V .

This example indicates that the output of $I C$ 7805 regulator is adjusted to 15 V using external resistances R_{1} and R_{2}.

The standard 7800 series can produce output current in excess of 1 A when used with adequate

heat sink. It is available in aluminium can package TO-3 (indicated by K in the part number) and plastic package TO-220 (indicated by T in the part number), The 78L00 series can provide up to 100 mA and is available in TO-92 and metal TO-39 low profile packages. The 78M00 series can provide upto 0.5 A and is available in plastic TO-202 package. Fig. 6.17 shows the typical metal and plastic packages for the $I C$ voltage regulators.

Fig. 56.17
It may be noted that the input voltage for the $I C$ regulator must be at least 2 V above the output voltage. This is required in order to maintain regulation. The input voltage should not be more than 35 or 40 volts depending upon the part number. The circuit inside all the $I C$ regulators have internal thermal overload protection and short-circuit current-limiting features. Thermal overload in a $I C$ regulator occurs whenever the internal power dissipation becomes excessive and the temperature of the device exceeds a certain value.

In India, Bharat Electronic Limited, Bangalore manufactures the $I C$ voltage regulators with output voltages of 5 and 12 V . These are available in the market with part numbers BEL 7805 and BEL 7812 respectively.

Fig 56.18 shows a picture of a transformer bridge

Fig. 56.18 rectifier and voltage regulator in a dc power supply.

56.17. Fixed Negative Linear Voltage Regulators

The 7900 series is typical of three-terminal $I C$ regulators that provide a fixed negative output voltage. This series is a negative-voltage counterpart of the 7800 series and shares most of the same features, characteristics and package types. Fig. 56.19 (a) indicates the standard configuration and Fig. 56.19 (b), the part numbers with corresponding output voltages that are available in 7900 series.

(a)

Part Number	Output Voltage
7905	-5.0 V
$7905 \cdot 2$	-5.2 V
7906	-6.0 V
7908	-8.0 V
7912	-12.0 V
7915	-15.0 V
7918	-18.0 V
7924	-24.0 V

(b)

Fig. 56.19
The capacitor C_{1} (typically $0.22 \mu \mathrm{~F}$) is required only if the power supply filter is located more than 3 inches away from the IC regulator. The capacitor C_{2} (typically $1 \mu \mathrm{~F}$) is required for stability of the output voltage. Both capacitors C_{1} and C_{2} must be solid tantalum capacitors.

Fig. 56.20 shows the use of 79XX to produce an adjustable output voltage. The capacitor C_{3} (typically $25 \mu \mathrm{~F}$) improves the transient response of the output voltage. The output voltage is given by the equation,

$$
V_{\text {out }}=V_{\text {fixed }}\left(\frac{R_{1}+R_{2}}{R_{2}}\right)
$$

The recommended value of R_{2}, for 7905 is 300Ω, for 7915 , its value is 750Ω and for 7915 is $1 \mathrm{k} \Omega$.

In India, BEL manufactures $I C$ regu-

Fig. 56.20 lators with output voltage of -5 V and -12
V. These are available in the market with part numbers BEL 7905 and BEL 7915 respectively.

56.18. Adjustable Positive Output Linear Voltage Regulators

We have already seen in Art. 56.16 that by adding external resistors, we can adjust the output voltage of 7800 series IC regulators higher than their fixed (or set) voltages. Fot example, the output voltage of 7805 can be adjusted higher than 5 V . But the performance and reliability of 7800 series to produce voltage higher than its fixed value is not considered to be good.

The LM 317 and LM 723 are IC regulators whose output voltage can be adjusted over a wide range. The output voltage of LM 317 can be adjusted from 1.2 V to 37 V , it can supply output current of 100 mA and is available in TO-92 package i.e., it is also a 3 terminal IC regulator. On the other hand, the output voltage of LM 723 can be adjusted from 2 V to 37 V , it can supply output current of 150 mA without external transistor. But with the addition of external transistor, the output current capability can be increased in excess of 10 A . The LM 723 is available in dual-in-line package and in a metal can package.

Fig. 56.21 (a) shows the LM 317 connected to the external resistors R_{1} and R_{2} to produce an adjustable output voltage.

Fig. 56.21
In operation, the LM 317 develops a constant 1.25 V reference voltage $\left(V_{R E F}\right)$ between the output and adjustment terminal. This constant reference voltage produces a constant current, ($I_{\text {REF }}$) through R_{1}, regardless of the value of R_{2} Fig. $56.20(b)$. Notice that the value of current through R_{2} is the sum of $I_{\text {REF }}$ and $I_{A D J}$, where $I_{A D J}$ is a very small current at the adjustment terminal. The value of $I_{A D J}$ is typically around $100 \mu \mathrm{~A}$. It can be shown that the output voltage.

$$
V_{\text {out }}=V_{\text {REF }}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)+I_{A D J} \cdot R_{2}
$$

It is evident from the above equation that the output voltage is a function of R_{1} and R_{2}. Usually the value of R_{1} is recommended to be around 220Ω. Once the value of R_{1} is set, the output voltage is adjusted by varying R_{2}.

Example 56.5. Calculate the minimum and maximum output voltages for the IC voltage regulator shown in Fig. 56.22. Assume $I_{A D J}=100 \mu A, V_{i n}=$ +35 V .

Solution. The equation for output voltage of the IC voltage regulator is given by,

$$
V_{\text {out }}=V_{R E F}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{A D J} \cdot R_{2}
$$

When R_{2} is set at its minimum value (i.e. 0Ω), the output voltage,

Fig. 56.22

$$
\begin{aligned}
V_{\text {out }(\text { min })} & =1.25\left(1+\frac{0}{220}\right)+\left(100 \times 10^{-6}\right) \times 0 \\
& =1.25 \mathbf{~ V}
\end{aligned}
$$

When R_{2} is set at its maximum values (i.e. $5 \mathrm{k} \Omega$), the output voltage,

$$
\begin{aligned}
V_{\text {out }(\max)} & =1.25\left(1+\frac{5000}{220}\right)+\left(100 \times 10^{-6}\right) \times 5000 \\
& =29.66+0.5=30.16 \mathrm{~V}
\end{aligned}
$$

56.19. Adjustable Negative Output Linear Voltage Regulators

A good example of this type of regulators is LM 337. The regulator is a negative output counterpart of LM 317. The LM 337 (like LM 317) requires two external resistors for adjustment of output
voltage as shown in Fig. 56.23. The output voltage can be adjusted anywhere from -1.2 V to -37 V depending upon the external resistor values.

The LM 723 can also be used as an adjustable negative output voltage regulator. The output voltage of this IC regulator can be adjusted anywhere from -2.0 V to -37 V depending upon the external resistor values.

56.20. Use of External Pass Transistor with Linear Voltage Regulators

Fig. 56.23

We have already mentioned in the last two articles that a linear voltage regulator (7800 and 7900 series) is capable of delivering only a certain amount of output current to a load. For example, the 7800 series regulators can handle a maximum output current of at least 1.3 A and typical 2.5 A . If the load current exceeds the maximum allowable value, there will be a thermal overload and the regulator will shut down. A thermal overload condition means that there is excessive power dissipation inside the regulator.

If an application requires a larger value of load current than the maximum current that the regulator can deliver, we will have to use an external pass

Fig. 56.24 transistor as shown in Fig. 56.24. The value of $R_{\text {ext }}$ (cur-rent-sensing resistor) determines the value of current at which the external pass transister $\left(T_{\text {ext }}\right)$ begins to conduct because it sets the base-to-emitter voltage of the transistor.

As long as the current is less than the value set by $R_{\text {ext }}$, the transistor $T_{\text {ext }}$ is off and the regulator operates normally. This is because the voltage drop across $R_{\text {ext }}$ is less than 0.7 V (i.e. the base to emitter voltage required to turn $T_{\text {ext }}$ on. The value of $R_{\text {ext }}$ is determined by the equation $R_{\text {ext }}=0.7 \mathrm{~V} / I_{\text {max }}$ where $I_{\text {max }}$ is the maximum value of current that the voltage regulator is to handle internally.

When the current is sufficient to produce at least a 0.7 V drop across $R_{e x t}$, the transistor $T_{\text {ext }}$ turns on and conducts any current in excess of $I_{\max }$. The transistor $T_{\text {ext }}$ will conduct current depending on the load requirement. For example, if the total load current is 5 A and $I_{\max }$ was selected to be 1 A , then the external pass Transistor $\left(T_{\text {exi }}\right)$ will conduct 4 A of current through it.

It may be noted that the external pass transistor is a power transistor with heat sink that must be capable of handling a maximum power given by the equation,

$$
P_{e x t}=I_{e x t}\left(V_{\text {in }}-V_{\text {out }}\right)
$$

One major drawback of the circuit shown in Fig. 56.24 is that the external pass transistor is not protected from excessive current, such as would result from a shorted output. This drawback can be overcome by using an additional current limiting circuit as shown in Fig. 56.25.

The operation of this circuit may be explained as follows. The current sensing resistor, $R_{\text {lim }}$ sets the base-to-emitter voltage of $T_{\text {lim }}$. The base-to-emitter voltage of $T_{\text {ext }}$ is now determined by $\left(V_{R_{\text {ext }}}-V_{R_{\text {lim }}}\right)$ because they have opposite polarities. So for normal operation, the drop across $R_{\text {ext }}$ must be sufficient to overcome the opposing drop across $R_{\text {lim }}$.

Fig. 56.25
If the current through $T_{\text {ext }}$ exceeds a certain maximum value, $\left(I_{\text {ext }(\max)}\right)$ because of a shorted output or a faulty load, the voltage across $R_{\text {lim }}$ reaches 0.7 V and turns $T_{\text {lim }}$ on. As a result, $T_{\text {lim }}$ now conducts current away from $T_{\text {ext }}$ and through the regulator. This forces a thermal overload to occur and shut down the regulator. Remember, the IC voltage regulator circuitry is internally protected from thermal overload as part of its design. This way the external pass transistor is protected from excessive current.

56.2 1. Use of Linear Voltage Regulators as a Current Regulator

The 3-terminal linear voltage regulator can be used as a current source when an application requires that a constant current be supplied to a variable load. The basic circuit is shown in Fig. 56.26. Here R_{1} is the current-setting resistor. The regulator provides a fixed output voltage, $V_{\text {out }}$ between the ground terminal and the output terminal. However, it may be noted that the ground pin of the regulator is not connected to the circuit ground. The constant current supplied to the load, is given by the equation,

$$
I_{L}=\frac{V_{\text {out }}}{R_{L}}+I_{Q}
$$

Usually the current, I_{Q} is very small as compared to the output current and hence can be neglected, therefore

$$
I_{L} \approx \frac{V_{\text {Out }}}{R_{L}}
$$

For example, if we use 7805 regulator to provide a constant current of 1 A to a variable load, then

$$
R_{1}=\frac{5}{1}=5 \Omega
$$

Please note that input voltage must be at least 2 V greater than the output voltage. Thus for 5 V regulator, $V_{\text {in }}$ must be greater than 7 V .

56.22. Switching Voltage IC Regulators

There are several switching voltage $I C$ regulators available in the market. The choice depends upon the desired application and the cost. However, we will illustrate it with the IC 78S40. This device is a universal device that can be used with external components to provide step-up, step down and inverting operation.

Fig. 56.27 shows the internal circuitry of the IC 78 C 40 . The circuitry can be compared to the basic switching regulators discussed in Art. 56.12, 56.13, and 56.14. As seen from this diagram, the

oscillator and comparator functions are directly comparable. The logic gate and flip-flop in the 78 S 40 were not included in the basic circuit of Fig. 56.12, but they provide additional regulation. Transistor T_{1} and T_{2} perform the same function as T in the basic circuit. The 1.25 V reference block in the 78 S 40 has the same purpose as that of the zener diode in the basic circuit and diode D_{1} in the 78 S 40 corresponds to D_{1} in the basic circuit.

Fig. 56.27
The circuitry of 78S40 has also an uncommitted or unused OP-AMP. We require external circuitry to operate this device as a regulator.

Fig. 56.28

Fig. 56.28 shows the external connections of the IC 78 S40 for a step-down switching regulator configuration. Note that in this configuration the circuit produces an output voltage which is less than input voltage.

Fig. 56.28 shows the IC 78 S 40 connected to the external components for a step-up switching regulator configuration. In this case the output voltage is greater than the input voltage. An inverting configuration is also possible but is not shown here.

In both the circuits of Fig. 56.27 and Fig. 56.28, the capacitor C_{T} (called timing capacitor) controls the pulse width and frequency of the oscillator and thus establishes the on-time of transistor T_{1}. The voltage across the resistor $R_{C S}$ (called current-sensing resistor) is used internally by the oscillator to vary the duty cycle based on the desired peak current. The voltage divider made up of R_{1} and R_{2} reduces the output voltage to a value equal to the reference voltage. If the output voltage ($V_{\text {out }}$) exceeds its set value, the output of the comparator switches to the low state, disabling the gate to turn T_{2} off until the output decreases. This regulating action is in addition to that produced by the duty cycle variation of the oscillator.

Fig. 56.29

Tutorial Problems No. 56.1

1. The Zener diode of Fig. 56.30 has the following ratings :

$$
\begin{aligned}
V_{z} & =15 \mathrm{~V} & \text { at } & I_{z} & =17 \mathrm{~mA} \\
r_{z} & =14 \Omega & \text { at } & I_{z} & =17 \mathrm{~mA} \\
I_{z(\min)} & =0.25 \mathrm{~mA} & & I_{z(\max)} & =66 \mathrm{~mA}
\end{aligned}
$$

What would be the load voltage when load current I_{L} varies from 1 mA to 60 mA . Also calculate the voltage regulation of the regulator.
(14.846 V, $15.672 \mathrm{~V}, \mathbf{5 . 2 7 \%}$)

2. Determine the output voltage, $V_{\text {out }}$ for the op-amp series regulator shown in Fig. 56.31.
3. Calculate the minimum and maximum output voltages for the $I C$ voltage regulator shown in Fig. 53.32.

Assume $I_{A D J}=50 \mu \mathrm{~A}, V_{\text {in }}=+35 \mathrm{~V}, V_{\text {REF }}=1.2 \mathrm{~V}$
(1.25 V, 12.71 V)

Fig. 56.32

Fig. 56.33
4. Fig. 56.33 shows the circuit of a current regulator. What value of R_{1} is necessary to provide a constant current of 1 A .

OBJECTIVE TESTS - 56

1. The main job of a voltage regulator is to provide a nearly-output voltage.
(a) sinusoidal
(b) constant
(c) smooth
(d) fluctuating.
2. A $10-\mathrm{V}$ dc regulator power supply has a regulation of 0.005 per cent. Its output voltage will vary within an envelope of \qquad millivolt.
(a) ± 2.5
(b) ± 0.5
(c) ± 5
(d) ± 0.05
3. An ideal voltage regulator has a voltage regulation of
(a) 1
(b) 100
(c) 50
(d) 0 .
4. In a Zener diode shunt voltage regulator, the diode regulates so long as it is kept in \qquad condition.
(a) forward
(b) reverse
(c) loaded
(d) unloaded
5. The power efficiency of a switching voltage regulator is much higher than that of a linear regulator because it operates.
(a) in saturation
(b) in cut-off
(c) like a switch
(d) on high duty cycle.
6. A transistor series voltage regulator is called emit-ter-follower regulator because the emitter of the pass transistor follows the \qquad voltage.
(a) output
(b) input
(c) base
(d) collector
7. In an op-amp series voltage regulator, output voltage depends on
(a) Zener voltage
(b) voltage divider resistors
(c) output voltage
(d) both (a) and (b)
8. In a feedback series regulator circuit, the output voltage is regulated by controlling the
(a) magnitude of input voltage
(b) gain of the feedback transistor
(c) reference voltage
(d) voltage drop across the series pass transistor
9. An op-amp shunt regulator differs from the series regulator in the sense that its control element is connected in
(a) series with line resistor
(b) parallel with line resistor
(c) parallel with load resistor
(d) parallel with input voltage.
10. A switching voltage regulator can be of the following type :
(a) step-down
(b) step-up
(c) inverting
(d) all of the above
11. In an inverting type switching regulator, output voltage is \qquad input voltage.
(a) lesser than
(b) greater than
(c) equal to
(d) opposite to.
12. The output voltage of a step-down type switching voltage regulator depends on
(a) input voltage
(b) duty cycle
(c) transistor on-time (d) all of the above.
13. As compared to voltage regulators made up of discrete components, IC regulators have the inherent advantage/s of
(a) self protection against over-temperature
(b) remote control
(c) current limiting
(d) all of the above
14. A 12 V monolithic regulator is adjusted to obtain a higher output voltage as shown in Fig. 56.34. The V_{0} will be

Fig. 56.34
(a) 12 V
(b) 17 V
(c) 24 V
(d) 29 V
15. A three terminal monolithic IC regulator can be used as
(a) an adjustable output voltage regulator alone
(b) an adjustable output voltage regulator and a current regulator
(c) a current regulator and a power switch
(d) a current regulator alone

ANSWERS

$\begin{array}{lllllllllll}\text { 1. }(b) & \text { 2. }(a) & \text { 3. }(d) & \text { 4. }(b) & \text { 5. }(c) & \text { 6. }(c) & \text { 7. }(d) & \text { 8. }(d) & \text { 9. (a) } & \text { 10. (d) 11. }(d) & \text { 12. }(d)\end{array}$
13. (d) 14. (d) 15. (d).
\bigcirc

ROUGH WORK

CH A P TE R

Learning Objectives

> Bipolar Junction Transistor
> Transistor Biasing
> Transistor Currents
> Transistor Circuit Configuratrons
> CB Configuration
> CE Configuration
$>$ Relation between α and β
> CC Configuration
$>$ Relation between Transistor Currents
> Leakage Currents in a Transistor
> Thermal Runaway
$>$ Transistor Static Characterstics
$>$ Common Base Test Circuit
> Common Base Static Characteristics
$>$ Common Emitter Static Characteristics
$>$ Common Collector Static Characteristic
> Different Ways of Drawing Transistor Circuits
> The Beta Rule
$>$ Importance of $V_{C E}$
$>$ Cut-off and Saturation Points
> BJT Operating Regions
> Active Region DC Model of BUT
$>$ BJT Switches
> Normal DC Voltage Transistor Indications
$>$ Transistor Fault Location
> Increase/Decrease Notation

BIPOLAR JUNCTION TRANSISTOR

\qquad
(1) Bipolar junction transistor is used in two broad areas-as a linear amplifier to boost or amplify an electrical signal and as an electronic switch

57.1. BipolarJ unction Transistor

The transistor was invented by a team of three scientists at Bell Laboratories, USA in 1947. Although the first transistor was not a bipolar junction device, yet it was the beginning of a technological revolution that is still continuing in the twenty first century. All of the complex electronic devices and systems developed or in use today, are an outgrowth of early developments in semiconductor transistors.

There are two basic types of transistors : (1) the bipolar junction transistor (BJT) which we will study in this chapter and the field-effect transistor (FET) which is covered in chapter 13. The bipolar junction transistor is used in two broad areas of electronics : (1) as a linear amplifier to boost an electrical signal and (2) as an electronic switch.

Basically, the bipolar junction transistor consists of two back-toback $P-N$ junctions manufactured in a single piece of a semiconductor crystal. These two junctions give rise to three regions called emitter, base and collector. As shown in Fig. 57.1 (a) junction transistor is simply a sandwich of one type of semiconductor material between two layers of the other type. Fig. 57.1 (a) shows a layer of N-type material sandwiched between two layers of P-type material. It is described as a $P N P$ transistor. Fig. $57.1(b)$ shown an $N P N$ - transistor consisting of a layer of P-type material sandwiched between two layers of N-type material.

The emitter, base and collector are provided with terminals which
 are labelled as E, B and C. The two junctions are : emitter-base (E / B) junction and collector-base (C / B) junction.

The symbols employed for $P N P$ and NPN transistors are also shown in Fig. 57.1. The arrowhead is always at the emit- Emitter ter (not at the collector) and in each case, its direction indicates the conventional direction of current flow. For a PNP transistor, arrowhead points from emitter to base meaning that emitter is positive with respect to base (and also with respect to collector)* For NPN transistor, it points from base to emitter meaning that base (and collector as well)* is positive with respect to the emitter.

1. Emitter

It is more heavily doped than any of the other regions because its main function is to supply majority charge carries (either electrons or holes) to the base. 2. Base

It forms the middle section of the transistor. It is very thin $\left(10^{-6} \mathrm{~m}\right)$ as compared to either the emitter or collector and is very lightly-doped.

3. Collector

Its main function (as indicated by

Fig. 57.1 its name) is to collect majority charge carriers coming from the emitter and passing through the base.

[^7]

In most transistors, collector region is made physically larger than the emitter region because it has to dissipate much greater power. Because of this difference, there is no possibility of inverting the transistor i.e. making its collector the emitter and its emitter the collector. Fig 57.1 (c), shows the picture of C1815 (front and the back view) transistor.

57.2. Transistor Biasing

For proper working of a transistor, it is essential to apply voltages of correct polarity across its two junctions. It is worthwhile to remember that for normal operation;

1. emitter-base junction is always forwardbiased and
2. collector-base junction is always re-verse-biased.

This type of biasing is known as $F R$ biasing.

In Fig. 57.2, two batteries respectively provide the dc emitter supply voltage $V_{E E}$ and collector supply voltage $V_{C C}$ for properly biasing the two junctions of the transistor. In Fig. 57.2 (a), Positive terminal of $V_{E E}$ is connected to \mathbf{P}-type emitter in order to repel or Push holes into the base.

The negative terminal of $V_{C C}$ is connected to the collector so that it may attract or pull holes through the base. Similar considerations apply to the NPN transistor of Fig. 57.2 (b). It must be remembered that a transistor will never conduct any current if its emitter-base junction is not for-ward-biased.* Also refer to the picture shown in Fig. 57.2 (c).

57.3. Important Biasing Rule

For a PNP transistor, both collector and base are negative with respect to the emmitter (the letter N of Negative being the same as the middle letter of $P N P$). Of course, collector is more negative than base [Fig. 57.3 (a)]. Similarly, for $N P N$ transistor, both collector and base are positive with respect to the emitter (the letter \mathbf{P} of Positive being the same as the middle letter of NPN). Again, collector is more positive than the base as shown in Fig. 57.3 (b).

(a)

Fig. 57.3
Fig. 57.4
$\bar{*} \overline{\text { There would be no current }} \overline{\text { due to majority charge carriers. However, there would be an extremely small }}$ current due to minority charge carriers which is called leakage current of the transistor (Art. 57.12).

It may be noted that different potentials have been designated by double subscripts. The first subscript always represents the point or terminal which is more positive (or less negative) than the point or terminal represented by the second subscript. For example, in Fig. 57.3 (a), the potential difference between emitter and base is written as $V_{E B}\left(\right.$ and not $\left.V_{B E}\right)$ because emitter is positive with respect to base. Now, between the base and collector themselves, collector is more negative than base. Hence, their potential difference is written as $V_{B C}$ and not as $V_{C B}$. Same is the case with voltages marked in Fig. 57.4.

57.4. Transistor Currents

The three primary currents which flow in a properly-biased transistor are I_{E}, I_{B} and I_{C}. In Fig. 57.5 (a) are shown the directions of flow as well as relative magnitudes of these currents for a PNP transistor connected in the common-base mode. It is seen that again,

$$
I_{E}=I_{B}+I_{C}
$$

It means that a small part (about $1-2 \%$) of emitter current goes to supply base current and the remaining major part ($98-99 \%$) goes to supply collector current.

Moreover, I_{E} flows into the transistor whereas both I_{B} and I_{C} flow out of it.
Fig. $57.5(b)$ shows the flow of currents in the same transistor when connected in the com-mon-emitter mode. It is seen that again, $\quad I_{E}=I_{B}+I_{C}$

By normal convention, currents flowing into a transistor are taken as positive whereas those flowing out of it are taken as negative. Hence, I_{E} is positive whereas both I_{B} and I_{C} are negative. Applying Kirchhoff's Current Law, we have
$I_{E}+\left(-I_{B}\right)+\left(-I_{C}\right)=0 \quad$ or $\quad I_{E}-I_{B}-I_{C}=0 \quad$ or $\quad I_{E}=I_{B}+I_{C}$

Fig. 57.5
This statement is true regardless of transistor type or transistor configuration.

Note. For the time being, we have not taken into account the leakage currents which exist in a transistor (Art. 57.12).

57.5. Summing Up

The four basic guideposts about all transistor circuits are :

1. conventional current flows along the arrow whereas electrons flow against it;
2. E / B junction is always forward-biased;
3. C / B junction is always reverse-biased;
4. $\mathrm{I}_{\mathrm{E}}=I_{B}+I_{C}$.

57.6. Transistor Circuit Configurations

Basically, there are three types of circuit connections (called configurations) for operating a transistor.

1. common-base $(C B)$, 2. common-emitter $(C E)$, 3. common-collector $(C C)$.

The term 'common' is used to denote the electrode that is common to the input and output circuits. Because the common electrode is generally grounded, these modes of operation are frequently referred to as grounded-base, grounded-emitter and grounded-collector configurations as shown in Fig. 57.6 for a $P N P$ - transistor.

Since a transistor is a 3-terminal (and not a 4-terminal) device, one of its terminals has to be common to the input and output circuits.

57.7. CB Configuration

In this configuration, emitter current I_{E} is the input current and collector current I_{C} is the output current. The input signal is applied between the emitter and base whereas output is taken out from the collector and base as shown in Fig. 57.6 (a).

The ratio of the collector current to the emitter current is called dc alpha $\left(\alpha_{\mathrm{dc}}\right)$ of a transistor.

$$
\therefore \quad \alpha_{d c}^{*}=\frac{-I_{C}}{I_{E}}
$$

The negative sign is due to the fact that current I_{E} flows into the transistor whereas I_{C} flows out of it. Hence, I_{E} is taken as positive and I_{C} as negative.

$$
\therefore
$$

$$
I_{C}=-\alpha_{\mathrm{dc}} \cdot I_{E}
$$

If we write adc simply as $\alpha^{* *}$, then $\alpha=I_{E} / I_{C}$
It is also called forward current transfer ratio $\left(-h_{F B}\right)$. In $h_{F B}$, subscript F stands for forward and B for common-base. The subscript d.c. on a signifies that this ratio is defined from dc values of I_{C} and I_{E}.

Fig. 57.6
The α of a tranistor is a measure of the quality of a transistor ; higher the value of α, better the transistor in the sense that collector current more closely equals the emitter current. Its value ranges

* More accurately, $\alpha_{d c}=\frac{I_{C}-I_{C B O}}{I_{E}}$
...Art.57.12
** Negative sign has been omitted, since we are here concerned with only magnitudes of the currents involved.

from 0.95 to 0.999 . Obviously, it applies only to $C B$ configuration of a transistor. As seen from above and Fig. 57.7.

$$
I_{C}=\alpha I_{E} . \quad \text { Now, } \quad I_{B}=I_{E}-\alpha I_{E}=(1-\alpha) I_{E}
$$

Fig. 57.7
Incidentally, there is also an a.c. α for a transistor. It refers to the ratio of change in collector current to the change in emitter current.

$$
\therefore \quad \alpha_{a c}=\frac{-\Delta I_{C}}{\Delta I_{E}}
$$

It is also, known as short-circuit gain of a transistor and is written as $-h_{f b}$. It may be noted that upper case subscript ' $F B$ ' indicates dc value whereas lower case subscript ' $f b$ ' indicates ac value. For all practical purposes, $\alpha_{d c}=\alpha_{a c}=\alpha$.

Example 57.1. Following current readings are obtained in a transistor connected in CB configuration: $I_{E}=2 \mathrm{~mA}$ and $I_{B}=20 \mathrm{~mA}$. Compute the values of α and I_{C}.
(Electronics-II, Punjab Univ. 1992)
Solution. $I_{C}=I_{E}-I_{B}=2 \times 10^{-3}-20 \times 10^{-6}=1.98 \mathrm{~mA}$

$$
\alpha=I_{C} / I_{E}^{D}=1.98 / 2=0.99
$$

57.8. CEConfiguration

Here, input signal is applied between the base and emitter and output signal is taken out from the collector and emitter circuit. As seen from Fig. $57.6(b), I_{B}$ is the input current and I_{C} is the output current.

The ratio of the d.c. collector current to dc base current is called dc beta ($\beta_{d c}$) or just β of the transistor.
$\therefore \quad \beta=-I_{C} /-I_{B}=I_{C} / I_{B}$ or $I_{C}=\beta I_{B} \quad$ - Fig. 57.8 (a)

It is also called common-emitter d.c. forward transfer ratio and is written as $h_{F E}$. It is possible for β to have as high a value as 500 .

While analysing ac operation of a transistor, we use ac β which is given by $\beta_{\mathrm{ac}}=\Delta I_{C} / \Delta I_{B}$.

(a)

(b)

Fig. 57.8
It is also written as $h_{f e}$.
The flow of various currents in a $C E$ configuration both for $P N P$ and $N P N$ transistor is shown in Fig. 57.8. As seen

$$
I_{E}=I_{B}+I_{C}=I_{B}+\beta I_{B}=(1+\beta) I_{B}
$$

57.9. Relation Between α and β

$$
\beta=\frac{I_{C}}{I_{B}} \quad \text { and } \quad \alpha=\frac{I_{C}}{I_{E}} \quad \therefore \quad \frac{\beta}{\alpha}=\frac{I_{E}}{I_{B}}
$$

Now, $\quad I_{B}=I_{E}-I_{C} \quad \therefore \quad \beta=\frac{I_{C}}{I_{E}-I_{C}}=\frac{I_{C} / I_{E}}{I_{E} / I_{E}-I_{C} / I_{E}} \quad$ or $\quad \beta=\frac{\alpha}{1-\alpha}$
Cross-multiplying the above equation and simplifying it, we get
$\beta(1-\mathrm{a})=\alpha$ or $\beta=\alpha(1+\beta) \quad$ or $\quad \alpha=\beta /(1+\beta)$
It is seen from the about 2 equations that $1-\alpha=1 /(1+\beta)$

57.10. CC Configuration

In this case, input signal is applied between base and collector and output signal is taken out from emitter-collector circuit [Fig. 57.6 (c)]. Conventionally speaking, here I_{B} is the input current and I_{E} is the output current as shown in Fig. 57.9. The current gain of the circuit is
$\frac{I_{E}}{I_{B}}=\frac{I_{E}}{I_{C}} \cdot \frac{I_{C}}{I_{B}}=\frac{\beta}{\alpha}=\frac{\beta}{\beta /(1+\beta)}=(1+\beta)$

Fig. 57.9

The flow paths of various currents in a $C C$ configuration are shown in Fig. 57.9. It is seen that $I_{E}=I_{B}+I_{C}=I_{B}+\beta I_{B}=(1+\beta) I_{B}$
\therefore output current $=(1+\beta) \times$ input current.

57.11. Relations Between Transistor Currents

While deriving various equations, following definitions should be kept in mind.

$$
\alpha=\frac{I_{C}}{I_{E}}, \quad \beta=\frac{I_{C}}{I_{B}}, \quad \alpha=\frac{\beta}{(1+\beta)} \quad \text { and } \beta=\frac{\alpha}{(1-\alpha)}
$$

(i) $I_{C}=\beta I_{B}=\alpha I_{E}=\frac{\beta}{1+\beta} I_{E}$
(ii) $I_{B}=\frac{I_{C}}{\beta}=\frac{I_{E}}{1+\beta}=(1-\alpha) I_{E}$
(iii) $I_{E}=\frac{I_{C}}{\alpha}=\frac{1+\beta}{\beta} I_{C}=(1+\beta) I_{B}=\frac{I_{B}}{(1-\alpha)}$
(iv) The three transistor d.c. currents always bear the following ratio*
$I_{E}: I_{B}: I_{C} \quad:: \quad 1:(1-\alpha): \alpha$
Incidentally, it may be noted that for ac currents, small letters i_{e}, i_{b} and i_{c} are used.

(i) $(1-\alpha) I_{E}$ which becomes base current I_{B} in the external circuit and
(ii) αI_{E} which becomes collector current I_{C} in the external circuit.

* It reminds us of the power distribution relationship in an induction motor.

As mentioned earlier (Art. 57.2), though C / B junction is reverse-biased for majority charge carriers (i.e. holes in this case), it is forward-biased so far as thermally-generated minority charge carriers (i.e. electrons in this case) are concerned. This current flows even when emitter is disconnected from its dc supply as shown in Fig. 57.10 (a) where switch, S_{1} is open. It flows in the same direction* as the collector current of majority carriers. It is called leakage current $I_{C B O}$. The subscripts $C B O$ stand for 'Collector to Base with emitter Open.' Very often, it is simply written as $I_{C O}$.

Fig. 57.11
It should be noted that
(i) $I_{C B O}$ is exactly like the reverse saturation current I_{S} or I_{0} of a reverse-biased diode discussed in Art. 57.1.
(ii) $I_{C B O}$ is extremely temperature-dependent because it is made up of thermally-generated minority carriers. As mentioned earlier, $I_{C B O}$ doubles for every $10^{\circ} \mathrm{C}$ rise in temperature for Ge and $6^{\circ} \mathrm{C}$ for Si .

If we take into account the leakage current, the current distribution in a $C B$ transistor circuit becomes as shown in Fig. 57.11 both for PNP and NPN type transistors.

It is seen that total collector current is actually the sum of two components :
(i) current produced by normal transistor action i.e. component controlled by emitter current. Its value is a I_{E} and is due to majority carriers.
(ii) temperature-dependent leakage current $I_{C O}$ due to minority carriers.

$$
\therefore \quad I_{C}=\alpha I_{E}+I_{C O} \quad \ldots(i) \quad \therefore \quad \alpha=\frac{I_{C}-I_{C O}}{I_{E}}
$$

Since $I_{C O}$ « I_{C},
hence $\alpha \cong I_{C} / I_{E}$
(iii) Substituting the value of $I_{E}=\left(I_{C}+I_{B}\right)$ in Eq. (i) above, we get

$$
\begin{aligned}
& I_{C}=\left(I_{C}+I_{B}\right)+I_{C O} & \text { or } \quad I_{C}(1-\alpha)=\alpha I_{B}+I_{C O} \\
\therefore & I_{C}=\frac{\alpha I_{B}}{1-\alpha}+\frac{I_{C O}}{1-\alpha} &
\end{aligned}
$$

(iv) Eliminating I_{C} from Eq. (i) above, we get

$$
\left(I_{E}-I_{B}\right)=\alpha I_{E}+I_{C O} \quad \text { or } \quad I_{B}=(1-\alpha) I_{E}-I_{C O}
$$

(b) CE Circuit

In Fig. 57.12 (a) is shown a common-emitter circuit of an NPN transistor whose base lead is

* Actually, electrons (which form minority charge carriers in collector) flow from negative terminal of collector battery, to collector, then to base through C / B junction and finally, to positive terminal of $V_{C C}$. However, conventional current flows in the opposite direction as shown by dotted lien in Fig. 57.10 (a)

open. It is found that despite $I_{B}=0$, there is a leakage current from collector to emitter. It is called $I_{C E O}$, the subscripts $C E O$ standing for 'Collector to Emitter with base Open'.

Taking this leakage current into account, the current distribution through a $C E$ circuit becomes as shown in Fig. 57.12 (c).

$$
\begin{align*}
I_{C} & =\beta I_{B}+I_{C E O}=\beta I_{B}+(1+\beta) I_{C O}=\beta I_{B}+I_{C O} /(1-\alpha) \\
\therefore \quad I_{C} & =\frac{\alpha I_{B}}{1-\alpha}+\frac{I_{C O}}{1-\alpha} \tag{i}
\end{align*}
$$

Fig. 57.12
Now, $\quad \beta I_{B}=\alpha I_{E}$. Substituting this value above, we get,

$$
I_{C}=\alpha I_{E}+I_{C E O} \quad \text { Also, } I_{B}=I_{E}-I_{C}
$$

Substituting the value of I_{C} from above, we have
(ii) $I_{B}=I_{E}-\alpha I_{E}-I_{C E O}=(1-\alpha) I_{E}-I_{\text {CEO }}$

57.13. Thermal Runa way

As seen from Art. 57.12, for a $C E$ circuit

$$
I_{C}=\beta I_{B}+(1+\beta) I_{C O}
$$

The leakage current is extremely temperature-dependent. It almost doubles for every $6^{\circ} \mathrm{C}$ rise in temperature in Ge and for every $10^{\circ} \mathrm{C}$ rise in Si. Any increase in $I_{C O}$ is magnified $(1+\beta)$ times $i . e$. 300 to 500 times. Even a slight increase in $I_{C O}$ will affect I_{C} considerably. As I_{C} increases, collector power dissipation increases which raises the operating temperature that leads to further increase in I_{C}. If this succession of increases is allowed to continue, soon I_{C} will increase beyond safe operating value thereby damaging the transistor itself-a condition known as thermal runaway. Hence, some form of stabilization is necessary to prevent this thermal runaway.

Example 57.2. The reverse saturation current of an NPN transistor in common-base circuit is $12.5 \mu A$. For an emitter current of $2 m A$, collector current is 1.97 mA . Determine the current gain and base current.
(Electronics-1, Gwalior Univ. 1988)
Solution. Given : $I_{\text {CBO }}=12.5 \mu \mathrm{~A} ; \quad I_{E}=2 \mathrm{~mA}, \quad I_{C}=1.97 \mathrm{~mA} ; \alpha=?, I_{B}=$?

$$
\begin{aligned}
& I_{C}=\alpha I_{E}+I_{C B O} \quad \therefore \quad \alpha=\frac{I_{C}-I_{C B O}}{I_{E}}=\frac{1.97-12.5 \times 10^{-3}}{2}=0.978 \\
& \quad I_{B}=I_{E}-I_{C}=2-1.97=0.03 \mathrm{~mA} .
\end{aligned}
$$

Example. 57.3. Derive an expression for forward current gain and leakage current of com-mon-emitter configuration in terms of current gain and leakage current of common-base configuration. If $a=0.98, I_{C B O}=5 \mathrm{~mA}$, calculate b and ICEO.
(Electronics-I, Mysore Univ. 1990)
Solution. $\quad \beta=\alpha /(1-\alpha) \quad=0.98 /(1-0.98)=49$

$$
I_{C E O}=(1+\beta) I_{C O}=(1+49) \times 5=250 \mu \mathrm{~A}=0.25 \mathrm{~mA} .
$$

Example 57.4. For a transistor, $I_{B}=100 \mu \mathrm{~A}, \alpha_{d c}=0.98$ and $I_{C O}=5 \mu \mathrm{~A}$. Find the values of I_{C} and I_{E}.

Solution. As seen from Art. 57.12, $I_{C}=\frac{\alpha I_{B}}{1-\alpha}+\frac{I_{C O}}{1-\alpha}=\frac{0.98 \times 100}{1-0.98}+\frac{5}{1-0.98}=5.15 \mathrm{~mA}$

$$
I_{E}=I_{C}+I_{B}=5.15+100 \times 10^{-3}=\mathbf{5 . 2 5} \mathrm{mA} .
$$

Example 57.5. A transistor operating in $C B$ configuration has $I_{C}=2.98 \mathrm{~mA}, I_{E}=3.00 \mathrm{~mA}$ and $I_{C O}=0.01 \mathrm{~mA}$. What current will flow in the collector circuit of this transistor when connected in CE configuration with a base current of $30 \mu \mathrm{~A}$. (Electronics-II, M.S. Univ. Vadodra 1990)

Solution. For $C E$ configuration, $I_{C}=\beta I_{B}+(1+\beta) I_{C O}$
Let us find the value of β from data given for $C B$ configuration. For such a circuit $I_{C}=\alpha I_{E}+$ $I_{C O}$ or $2.98=\alpha \times 3+0.01 ; \alpha=0.99 ; \beta=\alpha /(1-\alpha)=0.99 /(1-0.09)=99$.
\therefore For $C E$ circuit, $\mathrm{I}_{\mathrm{C}}=99 \times 0.03+(1+99) \times 0.01=3.97 \mathrm{~mA}$.
Example 57.6. For a certain transistor, $I_{C}=5.505 \mathrm{~mA}, I B=50 \mathrm{~mA}, I_{C O}=5 \mathrm{~mA}$. Determine (i) values of α, β and $I_{E}(i i)$ the new level of I_{B} required to make $I_{C}=10 \mathrm{~mA}$.

Solution. (i) $I_{C}=\beta I_{B}+(1+\beta) I_{C O}$ or $5.505 \times 10^{3}=\beta \times 50+(1+\beta) \times 5 \therefore \beta=100$

$$
\begin{aligned}
& \text { Now, } I_{E}=I_{C}+I_{B}=5.505+50 \times 10^{-3}=5.555 \mathrm{~mA} . \\
& \text { Also, } I_{C}=\alpha I_{E}+I_{C O} ; 5.505=\alpha \times 5.555+5 \times 10^{-3} \quad \therefore \quad \alpha=5.500 / 5.555=0.99 \\
& \begin{array}{ll}
\text { (ii) As seen from Art. } 7.12, & I_{C}=\beta I_{\mathrm{B}}+(1+\beta) I_{C O} \\
\therefore \quad 10=100 I_{B}+101 \times 5 \times 10^{-3} ; & I_{B}=0.09495 \mathrm{~mA}=94.95 \mu \mathrm{~A} .
\end{array}
\end{aligned}
$$

Example. 57.7. Discuss the operation of a PNP transistor.
The reverse saturation current in a PNP germanium transistor type OC 71 is $8 \mu A$. If the transistor common base current gain is 0.979 , calculate the collector and emitter current for $40 \mu \mathrm{~A}$ base current. What is the collector current when base current is zero?
(Electronics-1, Gwalior Univ. 1986)
Solution. Given : $I_{C O}=8 \mu \mathrm{~A}=0.008 \mu \mathrm{~A}, \alpha=0.979 ; I_{B}=40 \mu \mathrm{~A}=0.04 \mathrm{~mA}$
In a $C E$ circuit: $I_{C}=\beta I_{B}+I_{C E O}=\beta I_{B}+I_{C} /(1-\alpha)$.
Now, $\quad \beta=\alpha /(1-\alpha)=0.979 /(1-0.979)=46.6$
$\therefore \quad I_{C}=46.6 \times 0.04+(1+46.6) \times 0.008=\mathbf{1 . 9} \mathrm{mA} ; I_{E}=I_{C}+I_{B}=1.9+0.04=1.94 \mathrm{~mA}$

57.14. Transistor Static Characteristics

There are the curves which represents relationship between different d.c. currents and voltages of a transistor. These are helpful in studying the operation of a transistor when connected in a circuit. The three important characteristics of a transistor are :

1. Input characteristic, 2. Output characteristic, 3. Constant-current transfer characteristic.

Fig. 57.13

57.15 Common Base Test Circuit

The static characteristics of an NPN transistor connected in common-base configuration can be determined by the use of test circuit shown in Fig. 57.13. Milliammeters are included in series with the emitter and collector circuits to measure I_{E} and I_{C}. Similarly, voltmeters are connected across E and B to measure voltage $V_{B E}$ and across C and B to measure $V_{C B}$. The two potentiometer resistors R_{1} and R_{2} supply variable voltages from the collector and emitter dc supplies respectively.

57.16. Common Base Static Characteristics

(a) Input Characteristic

It shows how I_{E} varies with $V_{B E}$ when voltage $V_{C B}$ is held constant. The method of determining this characteristic is as follows:

First, voltage $V_{C B}$ is adjusted to a suitable value with the help of R_{l} (Fig. 57.13). Next, voltage $V_{B E}$ is increased in a number of discrete steps and corresponding values of I_{E} are noted from the milliammeter connected for the purpose. When plotted, we get the input characteristic shown in Fig.

Fig. 57.14 57.14, one for Ge and the other for Si. Both curves are exactly similar to the forward characteristic of a $P-N$ diode which, in essence, is what the emitter-base junction is.

This characteristic may be used to find the input resistance of the transistor. Its value is given by the reciprocal of its slope.

$$
R_{i n}=\Delta V_{B E} / \Delta I_{E} \quad-V_{C B} \text { constant. }
$$

Since the characteristic is initially nonlinear, $R_{i n}$ will vary with the point of measurement. Its value over linear part of the characteristic is about 50Ω but for low values of $V_{B E}$, it is considerably greater. This change in $R_{i n}$ with change in $V_{B E}$ gives rise to distortion of signals handled by the transistor.

This characteristic is hardly affected by changes either in $V_{C B}$ or temperature.
(b) Output Characteristic

It shows the way I_{C} varies with $V_{C B}$ when I_{E} is held constant. The method of obtaining this characteristic is as follows:

First, movable contact, on R_{2} (Fig. 57.13) is changed to get a suitable value of $V_{B E}$ and hence that of I_{E}. While keeping I_{E} constant at this value, $V_{C B}$ is increased from zero in a number of steps and the corresponding collector current I_{C} that flows is noted.

Next, $V_{C B}$ is reduced back to zero, I_{E} is increased to a value a little higher than before and the whole procedure is repeated. In this way, whole family of curves is obtained, a typical family being shown in Fig. 57.15.

1. The reciprocal of the near horizontal part of the characteristic gives the output resistance $R_{\text {out }}$ of the transistor which it would offer to an input signal. Since the characteristic is linear over most of its length (meaning that I_{C} is virtually independent of $V_{C B}$). $R_{\text {out }}$ is very high, a typical value being $500 \mathrm{k} \Omega$.

$$
R_{\text {out }}=\frac{1}{\Delta I_{C} / \Delta V_{C B}}=\frac{\Delta V_{C B}}{\Delta I_{C}}
$$

2. It is seen that I_{C} flows even when $V_{C B}=0$. For example, it has a value $=1.8 \mathrm{~mA}$ corresponding to $V_{C B}=0$ for $I_{E}=2 \mathrm{~mA}$ as shown in Fig. 57.15. It is due to the fact that electrons are being injected into the base under the action of forward-biased E / B junction and are being collected by the collector due to the action of the internal junction voltage at the C / B junction (Art. 57.2). For reducing I_{C} to zero, it is essential to neutralize this potential barrier by applying a small forward bias ac-ross C / B junction.
3. Another important feature of the characteristic is that a small amount of collector current flows even when emitter current $I_{E}=0$. As we know (Art. 57.12), it is collector leakage current $I_{C B O}$.
4. This characteristic may be used to find $\alpha_{a c}$ of the transistor as shown in Fig. 57.15.

$$
\begin{aligned}
\alpha_{a c} & =\frac{\Delta I_{C}}{\Delta I_{E}}=\frac{D E}{B C} \\
& =\frac{6.2-4.3}{2}=0.95
\end{aligned}
$$

5. Another point worth noting is that although I_{C} is practically independent of $V_{C B}$ over the working range of

Fig. 57.15 the transistor, yet if $V_{C B}$ is permitted to increase beyond a certain value, I_{C} eventually increases rapidly due to avalanche breakdown as shown in Fig. 57.15.
(c) Current Transfer Characteristic

It shows how I_{C} varies with changes in I_{E} when $V_{C B}$ is held constant. For drawing this characteristic, first $V_{C B}$ is set to a convenient value and then I_{E} is increased in steps and corresponding values of I_{C} noted. A typical transfer characteristic is shown in Fig. 57.16 (a). Fig. 57.16 (b) shows a more detailed view of the portion near the origin.

As seen, $\alpha_{a c}$ may be found

(a)

Fig. 57.16

$$
\alpha_{a c}=\Delta I_{C} / \Delta I_{E}
$$

Usually, $\alpha_{a c}$ is found from output characteristic than from this characteristic.
It may be noted in the end that $C B$ connection is rarely employed for audio-frequency circuits because (i) its current gain is less than unity and (ii) its input and output resistances are so different.

57.17. Common Emitter Test Circuit

The static characteristics of an $N P N$ transistor connected in CE configuration may be determined by the use of circuit diagram shown in Fig. 57.17. A milliammeter (or a microammeter in the case of a low-power transistor) is connected in series with the base to measure I_{B}. Similarly, a milliammeter is included in the collector circuit to measure I_{C}. A voltmeter with a typical range of $0-1 \mathrm{~V}$ is connected across base and emitter terminals for measuring $V_{B E}$.

Fig. 57.17
Potentiometer R_{2} connected across dc supply $V_{B B}$ is used to vary I_{B} and $V_{B E}$. A second voltmeter with a typical range of $0-20 \mathrm{~V}$ is connected across collector-emitter terminals to measure the output collector-emitter voltage $V_{C E}$.

57.18. Common Emitter Static Characteristics

(a) Input Characteristic

It shows how I_{B} varies with changes in $V_{B E}$ when $V_{C E}$ is held constant at a particular value.
To begin with, voltage $V_{C E}$ is maintained constant at a convenient value and then $V_{B E}$ is increased in steps. Corresponding values of I_{B} are noted at each step. The procedure is then repeated for a different but constant value of $V_{C E}$. A typical input characteristic is shown in Fig. 57.18. Like $C B$ connection, the overall shape resembles the forward characteristic of a $P-N$ diode. The reciprocal of the slope gives the input resistance $R_{i n}$ of the transistor.

$$
R_{i n}=\frac{1}{\Delta I_{B} / \Delta V_{B E}}=\frac{\Delta V_{B E}}{\Delta I_{B}}
$$

Due to initial non-linearity of the curve, $R_{i n}$ varies considerably from a value of $4 \mathrm{k} \Omega$ near the origin to a value of 600Ω over the more linear part of the curve.
(b) Output or Collector Characteristic

It indicates the way in which I_{C} varies with changes in $V_{C E}$ when I_{B} is held constant.

For obtaining this characteristic, first I_{B} is set to a convenient value and maintained constant and then $V_{C E}$ is increased from zero in steps, I_{C} being noted at each step. Next, $V_{C E}$ is reduced to zero and I_{B} increased to another convenient value and the whole procedure repeated. In this way, a family of curves (Fig. 57.19) is obtained.

Fig. 57.18

It is seen that as $V_{C E}$ increases from zero, I_{C} rapidly increases to a near saturation level for a fixed value of I_{B}. As shown, a small amount of collector current flows even when $I_{B}=0$. It is called $I_{C E O}$ (Art. 57.12). Since main collector current is zero, the transistor is said to be cut-off.

It may be noted that if $V_{C E}$ is allowed to increase too far, C / B junction completely breaks down and due to this avalanche breakdown, I_{C} increases rapidly and may cause damage to the transistor.

When $V_{C E}$ has very low value (ideally zero), the transistor is said to be saturated and it operates in the saturation region of the characteristic. Here, change in I_{B} does not produce a corresponding change in I_{C}.

This characteristic can be used to find $\beta_{a c}$ at a specific value of I_{B} and $V_{C E}$. It is given by $\beta_{a c}$ $=\Delta I_{C} / \Delta I_{B}$.

2200 Electrical Technology

Fig. 57.19

We may select any two points A and B on the $I_{B}=60 \mu \mathrm{~A}$ and $40 \mu \mathrm{~A}$ lines respectively and measure corresponding values of I_{C} from the diagram for finding ΔI_{C}. Since ΔI_{B} $=(60-40)=20 \mu \mathrm{~A}, \beta_{a c}$ can be easily found.

The value of output resistance $R_{\text {out }}\left(=\Delta V_{C E} / \Delta I_{C}\right)$ over the near horizontal part of the characteristic varies from $10 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$.
(c) Current Transfer Characteristic

It indicates how I_{C} varies with changes in I_{B} when $V_{C E}$ is held constant at a given value.

Such a typical characteristic is shown in Fig. 57.20 (a). Its slope gives

$$
\beta_{a c}=\Delta I_{C} / \Delta I_{B}
$$

From Fig. 57.20 (b), it is seen that a small collector current flows even when $I_{B}=0$. It is the com-mon-emitter leakage current $I_{C E O}$ $=(1+\beta) I_{C O}$. Like $I_{C O}$, it is also due to the flow of minority carriers across the reverse-biased C / B junction.

57.19. Common Collector Static Characteristics

Fig. 57.20
As shown in Fig. 57.21, in this case, collector terminal is common carrier to both the input ($C B$) and output ($C E$) carriers circuits.

The output characteristic is I_{E} versus $V_{C E}$ for several fixed values of I_{B}. Since $I_{C} \cong I_{E}$, this characteristic is practically idential to that of the $C E$ circuit and is shown in Fig. 57.22 (a).

Fig. 57.21

Similarly, its current gain characteristic I_{C} versus I_{B} for different values of $V_{C E}$ is similar to that of a $C E$ circuit because $I_{C} \cong I_{E}$.

The $C C$ input characteristic is a plot of $V_{C B}$ versus I_{B} for different values of $V_{C E}$ and is shown in figure 57.22 (b). It is quite different from those for $C B$ or $C E$ circuit. This difference is due to the fact that input voltage $V_{C B}$ is largely determined by the value of $C E$ voltage. Consider the input characteristic for $I_{B}=100 \mu \mathrm{~A}$ and $V_{C E}=2 \mathrm{~V}$.
$V_{C B}=V_{C E}-V_{B E}=2-0.7=1.3 \mathrm{~V}$ — for Si material
Moreover, as $V_{C B}$ is increased, $V_{B E}$ is reduced thereby reducing I_{B}.
Now, consider the values $V_{C E}=4 \mathrm{~V}$ and $I_{B}=100 \mu \mathrm{~A}$

$$
V_{C B}=4-0.7=3.3 \mathrm{~V}
$$

Again, as $V_{C B}$ increases, I_{B} is decreased.

(a)

(b)

Fig. 57.22

57.20. Different Ways of Drawing Transistor Circuits

In Fig. $57.23(a)$ is shown a $C B$ transistor circuit which derives its voltage and current requirements from two independent power sources i.e. two different batteries. Correct battery connections can be done by remembering the transistor polarity rule (Art. 57.2) that in an NPN transistor, both collector and base have to be Posi-

Fig. 57.23 tive with respect to the emitter. Of course, collector is a little bit more positive than base which means that between themselves, collector is at a slightly higher positive potential with the respect to the base. Conversely, base is at a little lower potential with respect to the collector.

Putting it in a slightly different way, we can say that collector is positive w.r.t. base and conversely, base is negative w.r.t. collector. That is why, potential difference between collector and base in written as $V_{C B}$ (and not $V_{B C}$) because terminal at higher potential is mentioned first. Same reasoning applies to $V_{B E}$. Fig. 57.23 (b) shows another and more popular way of indicating power supply voltage. Only one terminal of the battery is shown, the other terminal is understood to be grounded so as to provide a complete path for the current.

For example, negative terminal of $V_{C C}$ and positive terminal of $V_{E E}$ are supposed to be grounded (as is the base) even though not shown as such in the diagram.

Fig. 57.24 (a) shows an $N P N$ transistor connected in $C E$ configuration with volt-

Fig. 57.24
ages and currents drawn from two independent power sources. As seen, battery con-nections and voltage markings are as per the rule given in Art. 57.2. Fig. 57.24 (b) shows the more popular way of indicating power supply voltages.

As seen, both collector and base are positive with respect to the common electrode i.e. emitter. Hence, a single battery can be used to get proper voltages across the two as shown in Fig. 57.25.

Fig. 57.25

(a)

(b)

Fig. 57.26
Fig. 57.26 (a) shows the $C C$ configuration of an NPN transistor and Fig. 57.26 (b) shows the same circuit drawn differently.

57.21. Common Base Formulas

Let us find the values of different voltages and currents for the circuit in Fig. 57.23 (b). Consider the circuit $M E B M$. Applying Kirchhoff's voltage law and starting from point B (or ground) upwards, we get
(a) $-V_{B E}-I_{E} R_{E}+V_{E E}^{*}=0$ or

$$
I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}}
$$

where $\quad V_{B E}=0.3 \mathrm{~V}$ (for Ge) and 0.7 V (for Si)
Since, generally, $V_{E E}$ » $V_{B E}$, we can simplify the above to $I_{E} \cong V_{E E} / R_{E}=10 \mathrm{~V} / 20 \mathrm{~K}=0.5 \mathrm{~mA}$ (Fig. 57.23).

Taking $V_{B E}$ into account and assuming silicon transistor

$$
I_{E}=(10-0.7) \mathrm{V} / 20 \mathrm{~K}=0.465 \mathrm{~mA}
$$

(b) $I_{C}=\alpha I_{E} \cong \mathrm{I}_{\mathrm{E}}=0.5 \mathrm{~mA}$ neglecting leakage current.
(c) From circuit $N C B N$, we get

$$
V_{C B}=V_{C C}-I_{C} \cong V_{C C}-I_{E} R_{L}=25-0.5 \times 10=20 \mathrm{~V} \quad\left(\therefore I_{C} \cong I_{E}\right)
$$

Example 57.8. In the circuit of Fig. 57.27 (a), what value of R_{L} causes $V_{C B}=5 \mathrm{~V}$?
Solution. $I_{E} \cong V_{E E} / R_{E}=10 \mathrm{~V} / 10 \mathrm{~K}=1 \mathrm{~mA}$

$$
I_{C}=\alpha I_{E} \cong I_{E}=1 \mathrm{~mA}
$$

Now, $\quad V_{C C}=I_{C R L}+V_{C B}$
$\therefore \quad R_{L}=\frac{V_{C C}-V_{C B}}{I_{C}} \quad=\frac{20-5}{1 \mathrm{~mA}}=15 \mathrm{~K}$
Example. 57.9. For the circuit shown in Fig. 57.27 (b), find the value of R_{E} which causes $\frac{V_{B C}}{*}=10 \frac{\mathrm{~V} .}{\text { It }} \frac{\mathrm{is} \text { taken }}{}$

It is taken positive because we are going from the negative to the positive terminal of the emitter battery.

Fig. 57.27

57.22. Common Emitter Formulas

Consider the $C E$ circuit of Fig. 57.28. Taking the emitter-base circuit, we have

$$
\begin{aligned}
I_{B} & =\frac{V_{B B}-V_{B E}}{R_{B}} \cong \frac{V_{B B}}{R_{B}} \\
I_{C} & =\beta I_{B} \quad \text { - neglecting leakage current } I_{C E O} \\
V_{C E} & =V_{C C}-I_{C} R_{L}
\end{aligned}
$$

Example 57.10. For the circuit of Fig. 57.28, find (i) $I_{B}\left(\right.$ ii) $I_{C}\left(\right.$ iii) I_{E} and (iv) $V_{C E}$ Neglect $V_{B E}$.

Sol. (i) $\quad I_{B} \cong \frac{V_{B B}}{R_{B}}=\frac{10}{1 M}=10 \mu \mathrm{~A}$
(ii) $I_{C}=\beta I_{B}=100 \times 10 \mu \mathrm{~A}=1 \mathrm{~mA}$
(iii) $I_{E}=I_{B}+I_{C}=1 \mathrm{~mA}+10 \mu \mathrm{~A}=1.01 \mathrm{~mA}$
(iv) $V_{C E}=V_{C C}-I_{C R C}=15-1 \times 10=5 \mathbf{V}$

Example 57.11. Find the exact value of emitter current I_{E} in the

Fig. 57.28 two-supply emitter bias circuit of Fig. 57.29.
(Electronics-1, Bangalore Univ. 1989)
Solution. Let us apply Kirchhoff 's voltage law to the loop containing R_{B}, R_{E} and $V_{E E}$. Starting from emitter and going clock-wise, we get

$$
\begin{array}{clrr}
& -I_{E} R_{E}+V_{E E}-I_{B} R_{B}-V_{B E}=0 \\
& & \tag{i}\\
\text { or } & I_{E} R_{E}+I_{B} R_{B}=V_{E E}-V_{B E} & & \ldots(i) \\
\text { Now } & \beta=I_{C} / I_{B} \cong I_{E} / I_{B} & \therefore & I_{B} \cong I_{E} / \beta
\end{array}
$$

Substituting this value in Eq. (i) above, we get

$$
\begin{aligned}
I_{E} R_{E}+\frac{I_{E} R_{B}}{\beta} & =V_{E E}-V_{B E} \\
I_{E} & =\frac{V_{E E}-V_{B E}}{R_{E}+R_{B} / \beta}
\end{aligned}
$$

Since, in most cases, $\left(R_{B} / \beta\right) \ll R_{E}$
$\therefore \quad I_{E}=\left(V_{E E}-V_{B E}\right) / R_{E} \cong V_{E E} / R_{E}$

Fig. 57.29

Also, $I_{B}=I_{E} /(1+\beta) \cong I_{E} / \beta$
Example. 57.12. In the circuit of Fig. 57.30, find (i) I_{E}, (ii) I_{B}, (iii) I_{C} and (iv) $V_{C E}$. Neglect $V_{B E}$ and take $\beta=100$.

Sol. (i) $I_{E}=\frac{V_{E E}}{R_{E}+R_{B} / \beta}=\frac{30}{30+20 / 100} \cong 1 \mathrm{~mA}$
(ii) $I_{B} \cong I_{E} / \beta=1 / 100$
$=0.01 \mathrm{~mA}$
(iii) $I_{C}=I_{E}-I_{B}=1-0.01$
$=0.99 \mathrm{~mA}$
(iv) $V_{C E}=V_{C C}-I_{C} R_{L}=30-10 \times 0.99=\mathbf{2 0 . 1} \mathrm{V}$.

Fig. 57.30
Fig. 57.31

57.23. Common Collector Formulas

The $C C$ circuit with its proper d.c. biasing voltage sources is shown in Fig. 57.31 (a). The two circuits given in Fig. 57.31 represent the same thing.

Fig. 57.32

Another way of drawing the same circuit is shown in Fig. 57.32 (a) where only one battery has been used. It should be noted that load resistor is not in the collector lead but in the emitter lead as shown.

Fig. 57.32 (b) makes the circuit connection quite clear. Input is between base and collector terminals whereas output is between emitter and collector terminals.

It is seen that

$$
I_{E}=\frac{V_{C C}-V_{B E}}{R_{E}+R_{B} / \beta} ; \quad V_{C C}=V_{C E}+I_{E} R_{E} ; \quad I_{E}=\frac{V_{C C}-V_{B E}}{R_{E}+\beta R_{E}} ; I_{C}=\beta I_{B}
$$

Example 57.13. In the CC circuit of Fig. 57.33, find (a) I_{B}, (b) I_{E}, (c) $V_{C E},(d) V_{E}$ and (e) V_{B}.

Take $\beta=49$ and $V_{B E}=0.7 \mathrm{~V}$.

Solution

$$
\text { (a) } \begin{aligned}
I_{B} & =\frac{V_{C C}-V_{B E}}{R_{B}+(1+\beta) R_{E}} \\
& =\frac{9.0-0.7}{100+50 \times 2}=41.5 \mu \mathrm{~A}
\end{aligned}
$$

(b) $I_{E}=(1+\beta) I_{B}=50 \times 41.5=2.075 \mathrm{~mA}$
(c) $V_{C E}=V_{C C}-I_{E} R_{E}=9-2.075 \times 2=5.85 \mathrm{~V}$
(d) $V_{E}=I_{E} R_{E} \quad=2.075 \times 2=4.15 \mathrm{~V}$
(e) $V_{B}=V_{B E}+I_{E} R_{E}=0.7+4.15=4.85 \mathrm{~V}$

Fig. 57.33

57.24. The Beta Rule

According to this rule, resistance from one part of a transistor circuit can be referred to another of its parts (as we do with the primary and secondary winding impedances of a transformer). For example, resistance R_{L} in the collector circuit can be referred to the base circuit and vice versa. Similarly, R_{E} can be referred to the base circuit and, reciprocally, R_{B} can be referred to the emitter circuit. Since current through R_{L} is $I_{C}\left(=\beta I_{B}\right)$, hence β-factor comes into the picture. Similarly, current through R_{E} is I_{E} which is $(1+\beta)$ times I_{B}, hence $(1+\beta)$ or approximately β-factor comes into the picture again, Use of this ' β-rule' makes transistor circuit calculations quite quick and easy. It makes the calculation of I_{B} quite simple.

The ' β-rule' may be stated as under :

1. When referring R_{L} or R_{C} to the base circuit, multiply it by β. When referring R_{B} to the collector circuit, divide it by β.
2. When referring R_{E} to base circuit, multiply it by $(1+\beta)$ or just β (as a close approximation).
3. Similarly, when referring R_{B} to emitter circuit, divide it by $(1+\beta)$ or β.

Before you apply this rule to any circuit, you must remember one very important point otherwise you are likely to get wrong answers. The point is that only those resistances are transferred which lie in the path of the current being calculated. Not otherwise. The utility of this rule will be demonstrated by solving the following problems.

Example 57.14. Calculate the value of $V_{C E}$ in the collector stabilisation circuit of Fig. 57.34.
Solution. We will use β-rule to find I_{C} in the following two ways.
(i) First Method

Here, we will transfer R_{L} to the base circuit.

$$
\begin{gathered}
I_{B}=\frac{V_{C C}}{R_{B}+\beta R_{L}}=\frac{20}{1000+100(10)}=10 \mathrm{~mA} \\
I_{C}=\beta I_{B}=100 \times 10=1000 \mathrm{~mA}=1 \mathrm{~A} \\
V_{C E} \cong V_{C C}-I_{C} R_{L}=20-1 \times 10=\mathbf{1 0} \mathrm{V}
\end{gathered}
$$

(ii) Second Method

Now, we will refer R_{B} to collector circuit.

$$
\begin{aligned}
& I_{C} \cong \frac{V_{C C}}{R_{L}+R_{B} / \beta}=\frac{20}{10+1000 / 100)}=1 \mathrm{~mA} \\
& V_{C E}=V_{C C}-I_{C} R_{L}=10 \mathrm{~V}
\end{aligned}
$$

Fig. 57.34

It was a simple circuit because $R_{E}=0$ and R_{B} was connected to
$V_{C C}$ through R_{L} and not directly (in which case, R_{L} would not lie in the path of I_{B}). Now, we will consider the case when R_{E} is present and R_{L} does not lie in the path of I_{B}.

Example 57.15. Calculate the three transistor currents in the circuit of Fig. 57.35.

Solution. (i) First Method

Fig. 57.35

Since R_{E} lies in the path of I_{B}

$$
\begin{aligned}
\therefore \quad I_{B} & =\frac{V_{C C}}{R_{L}+\beta R_{E}} \\
& =\frac{10}{100+200(0.5)}=\mathbf{0 . 0 5} \mathbf{~ m A} \\
I_{C} & =\beta I_{B}=200 \times 0.05=\mathbf{1 0} \mathbf{m A}, I_{E}=I_{B}+I_{C}=\mathbf{1 0 . 0 5} \mathbf{~ m A}
\end{aligned}
$$

(ii) Second Method

Now, we will transfer R_{B} to emitter circuit and find I_{E} directly.
$I_{E}=\frac{V_{C C}}{R_{E}+R_{B} / \beta}=\frac{10}{0.5+100 / 200}=10 \mathrm{~mA} \quad$ - as before
$I_{B}=I_{C} / \beta \cong 10 / 200=0.05 \mathrm{~mA}$

Example 57.16. Calculate I_{E} in the circuit of Fig. 57.36.
(Electronic \& Commu., Ranchi Univ. 1990)
Solution. If we neglect $V_{B E}$, then as seen from the circuit of Fig. 57.36.

$$
I_{E}=\frac{V_{E E}}{R_{E}+R_{B} / \beta}=\frac{10}{10+10 / 100}=0.99 \mathrm{~mA}
$$

57.25. Importance of $V_{C E}$

The voltage $V_{C E}$ is very important in checking whether the transistor is
(a) defective,
(b) working in cut-off,
(c) in saturation or well into saturation (Example 57.17 and 57.18)

When $V_{C E}=V_{C C}$, the transistor is in cut-off i.e. it is turned OFF. When $V_{C E}=0$, the transistor is in saturation i.e. it is turned fully ON. When $V_{C E}$ is less than zero i.e. negative, the transistor is said to be well

Fig. 57.36 into saturation. In practice, both these conditions are avoided. For am-
$\frac{1}{2} \mathrm{ON}$. In this way, variaplifier operation, $V_{C E}=\frac{1}{2} V_{C C}$ i.e. transistor is operated at approximately $\frac{1}{2} \mathrm{ON}$. In this way, varia-
tions in I_{B} in either direction will control I_{C} in both directions. In other

Fig. 57.37 words, when I_{B} increases or decreases, I_{C} also increases or decreases. However, if I_{B} is OFF, I_{C} is also OFF. On the other hand, if collector has been turned fully ON, maximum I_{C} flows. Hence, no further increase in I_{B} can be reflected in I_{C}.

Example 57.17. For the CE circuit of Fig. 57.37, find the value of $V_{C E}$ Take $\beta=100$ and neglect $V_{B E}$ Is the transistor working in cut-off or saturation?

$$
\begin{array}{ll}
\text { Solution. } & I_{B}=10 / 100 \\
& =0.1 \mathrm{~A} \\
I_{C}=\beta I_{B} & =100 \times 0.1=10 \mathrm{~A} \\
& V_{C E}=V_{C C}-I_{C} R_{L}=10-10 \times 1=0
\end{array}
$$

Obviously, the transistor is operating just at saturation and not well into saturation.
Example 57.18. Find out whether the transistor of Fig. 57.38 is working in saturation or well into saturation. Neglect $V_{B E}$.
(Basic Electronics, Bombay Univ.)
Solution. $\quad I_{B}=10 / 10=1 \mathrm{~A}$

$$
I_{C}=100 \times 1=100 \mathrm{~A}
$$

Obviously, I_{C} cannot be that large because its maximum value is given by $V_{C C} / R_{L}=10 / 1=10 \mathrm{~A}$. However, let us assume that I_{C} takes this value temporarily. Then,

$$
\begin{aligned}
V_{C E} & =V_{C C}-I_{C} R_{L} \\
& =10-100 \times 1=-90 \mathrm{~V}
\end{aligned}
$$

It means that the transistor is working well into saturation.

57.26. Cut-Off And Saturation Points

Consider the circuit of Fig. 57.39 (a). As seen from Art 57.22,

$$
V_{C E}=V_{C C}-I_{C} R_{L}
$$

Since, $I_{B} \quad=0, \quad \therefore \quad I_{C}=0$.
Hence, $V_{C E}=V_{C C}$

Fig. 57.38

Under these conditions, the transistor is said to be cut-off for the

Fig. 57.39
condition,
(i) whole of $V_{C C}$ drops across R_{L}.
(ii) collector current has maximum possible value called I_{C} (sat).

Normal operation of a transistor lies between the above two extreme conditions of cut-off and saturation.

Example. 57.19. In a simple amplifier circuit (Fig. 57.40) with base resistance, $R_{B}=50 \mathrm{~K}$, $R_{E}=2 K, R_{C}=3 K, V_{C C}=10 \mathrm{~V}, h_{F E}=100$, determine whether or not the silicon transistor is in the saturation and find I_{B} and I_{C}. Explain the saturation region in common-emitter characteristics. (Electronics, MS. Univ. Baroda,)
Solution. Whether the transistor is in saturation or not will depend on the value of $V_{C E}$.

$$
\begin{gathered}
\qquad \begin{array}{c}
I_{E}=\frac{V_{B B}-V_{B E}}{R_{E}+R_{B} / \beta} \cong \frac{V_{B B}}{R_{E}+R_{B} / \beta} \\
=\frac{5}{2+50 / 100}=2 \mathrm{~mA} \\
I_{C} \cong I_{E}=2 \mathrm{~mA} ; I_{B}=I_{C} / \beta=2 / 100 \\
=0.02 \mathrm{~mA}
\end{array} \\
\text { Now, } V_{C C}=I_{C} R_{C}+V_{C E}+I_{E} R_{E} \\
\text { or } \quad V_{C E}=10-(2 \times 3)(2 \times 2)=0
\end{gathered}
$$

Obviously, the transistor has entered

Fig. 57.40 saturation. reason that it does not conduct any current. This value of $V_{C E}$ is written as $V_{C E \text { (cut-off) }}$. Incidentally, a transistor when cut-off acts like an open switch.

If, in Fig. $57.39(b)$, values of R_{B} and R_{L} are such that $V_{C E}$ comes out to be zero, then transistor is said to be saturated. Putting $V_{C E}=0$ in the above equation, we get
$0=V_{C C}-I_{C} R_{L}$ or $\quad I_{C}=V_{C C} / R_{L}$

It should be noted that a transistor, when saturated, acts as a closed switch of negligible resistance.

It is obvious that under saturation
tion.

57.27. BJT Operating Regions

A BJT has two junctions i.e. base-emitter and base-collector junctions either of which could be forward-biased or reverse-biased. With two junctions, there are four possible combinations of bias condition.
(i) both junctions reverse-biased,
(ii) both junctions forward-biased,
(iii) $B E$ junction forward-biased, $B C$ junction reverse-biased.
(iv) $B E$ junction reverse-biased, $B C$ junction forward-biased.

Since condition (iv) is generally not used, we will tabulate the remaining three conditions below.

Table No. 57.1: Transistor Operation Regions

BE Jn	BC Jn	Region
RB^{*}	RB	cut-off
$\mathrm{FB}^{* *}$	FB	saturation
FB	RB	active

* Reverse-biased, ** Forward-biased
(a) Cut-off

This condition corresponds to reverse-bias for both base-emitter and basecollector junctions. In fact, both diodes act like open circuits under these conditions as shown in Fig. 57.41, which is true for an ideal transistor. The revese leakage current (Art 57.12) has been neglected. As seen, the three transistor terminals are uncoupled from each other. In cut-off, $V_{C E}=V_{C C}$.

Fig. 57.42
(b) Saturation

This condition corresponds to forward-bias for both base-emitter and base-collector junctions. The transistor becomes saturated i.e. there is perfect short-circuit for both

Fig. 57.41 base-emitter and base-collector diodes. The ideal case is shown in Fig. 57.42, where the three transistor terminals have been connected together thereby acquiring equal potentials. In this case, $V_{C E}=0$.
(c) Active Region

This condition corresponds to forward-bias for base-emitter junction and reverse bias for base-collector junction. In this, $V_{C E}>0$.

57.28. Active Region DC Model of a BJT

Such a model is used for predicting transistor operation in the active region. This condition is shown in Fig. 57.43 both for a $P N P$ and an NPN transistor. A base-emitter junction voltage of 0.7 V has been assumed for silicon transistor. The $B E$ junction is represented by a constant voltage source since it is forward-biased. As seen, in an NPN transistor, base is 0.7 V higher than the emitter terminal. However, in a PNP transistor, base is 0.7 V lower than the emitter terminal.

To account for the effect of base con-

Fig. 57.43 trol, a current source of βI_{B} is placed between collector and base terminals. It is called a dependent or controlled source because it is a function of a variable in another circuit. It may be noted that $I_{E}=\left(I_{B}+I_{C}\right)$ in both cases.

57.29. BJT Switches

Very often, bipolar junction transistors are used as electronic switches. With the help of such a switch, a given load can be turned ON or OFF by a small control signal. This control signal might be the one appearing at the output of a digital logic or a microprocessor. The power level of the control signal is usually very small and, hence, it is incapable of switching the load directly. However, such a control signal is certainly capable of providing enough base drive to switch a transistor ON or OFF and, hence, the transistor is made to switch the load.

When using BJT as a switch, usually two levels of control signal are employed. With one level, the transistor operates in the cut-off region (open) whereas with the other level, it operates in the saturation region and acts as a shortcircuit. Fig. $57.44(b)$ shows the condition when control signal $v_{i}=0$. In this case, the $B E$ junction is reverse-biased and the transistor is open and, hence acts as an open switch. However, as shown in Fig. 57.44 (c) if v_{i} equals a positive voltage of sufficient magnitude to produce saturation i.e. if $v_{i}=v_{i}$ the transistor acts as a closed switch.

Fig. 57.44

Fig. 57.45 shows a form of series switching circuit utilizing an $N P N$ transistor with a negative dc supply and a control signal voltage having levels of zero and $-v_{i}$.

Example 57.20. The circuit of Fig. 57.46 is designed to produce nearly constant current through the variable collector load resistance. An ideal 6 V source is used to establish the current. Determine (a) value of I_{C} and $V_{E},(b)$ range of R_{C} over which the circuit will function properly. Assume silicon transistor and $a b$ large enough to justify the assumptions used.

Fig. 57.45
(Applied Electronics-II, Punjab Univ. 1993)
Solution. (a) $I_{C} \cong I_{E}=(6-0.7) / 530=10 \mathrm{~mA}$

$$
V_{E}=6-530 \times(10 \times 10)=5.3 \mathrm{~V} .
$$

This voltage will remain constant so long as transistor operation is confined to active region.
(b) When $\mathbf{R}_{\mathrm{C}}=0$

$$
V_{C E}=12-5.3=6.7 \mathrm{~V}
$$

It is certainly well within the active region. As R_{C} increases, its drop increases and hence, $V_{C E}$ decreases. There will be some value of R_{C} at which active region operation ceases.

Now, $\quad V_{C E}=12-5.3-I_{C} R_{C}=6.7-I_{C} R_{C}$
Value of $R_{C(\max)}$ can be found by puting $V_{C E}=0$

Fig. 57.46
$\therefore \quad 0=6.7-I_{C} R_{C(\max)}$
or $R_{C(\max)}=6.7 / I_{C}=6.7 / 0.01=670 \Omega$
Hence, circuit will function as a constant current source so long as R_{C} is in the range $0<R_{C}<$ 670Ω. When R_{C} exceeds 670Ω, the $B J T$ becomes saturated.

57.30. Normal DC Voltage Transistor Indic ations

For a transistor to operate as an amplifier, it is desirable that $V_{C E}=\frac{1}{2} V_{C C}$. However, in actual practice, wide tolerances are allowed. Generally, $V_{C E}$ varies between 25% to 75% of $V_{C C}$. Any transistor amplifier with $V_{C E}=V_{C C}$ is either open or is operating in cut-off. When operating with $V_{C E}$ near cut-off, the amplifier causes lot of distortion. Same is the case when $V_{C E}$ is nearly zero. Hence, any transistor amplifier with $V_{C E}$ more than $75 \% V_{C C}$ or less than 25% $V_{C C}$ should be suspected of having a problem and further investigated.

In the circuit shown in Fig. 57.47 (a),

Fig. 57.47
$V_{C E}$ should be in the range $25-75 \%$ of $V_{C C}$. In the circuit of Fig. 57.47 (b), $V_{C E}$ may be normal but either R_{L} or R_{E} could be shorted. Hence, V_{C} and V_{E} should be measured seperately. Moreover, $V_{C E}$ could be found by subtracting V_{E} from V_{C}.

For the circuit of Fig. 57.47 (b), the normal voltmeter readings are

$$
V_{C E}=\frac{1}{2} V_{C C} ; \quad V_{E}=\frac{1}{4} V_{C C} ; \quad V_{E}=\frac{3}{4} V_{C C}
$$

If instead of R_{L}, there is a low-resistance coil in the circuit, then

$$
V_{C E}=\frac{1}{2} V_{C C} ; \quad V_{E}=\frac{1}{2} V_{C C} ; \quad V_{C}=V_{C C}
$$

57.31. Tra nsistor Fault Location

Voltage measurements are employed in the vast majority of trouble situations because current measurements are comparatively difficult to make. Magnitude of $V_{C E}$ is of great diagnostic value in finding and locating faults in a transistor circuit. Following possibilities are considered :
(a) $V_{C E}=0$

Possibilities are that the transistor is

1. shorted out, 2. operating in saturation, 3. disconnected from $V_{C C}$
(b) $V_{C E}=\frac{1}{2} V_{C C}$

It shows that the circuit is operating normally and is well-designed.
(c) $V_{C E}=V_{C C}$

Possibilities are that the transistor is

1. open-circuited,
2. operating in out-off
3. having all resistors in series with $V_{C E}$ shorted.

Example 57.21. Compute the value of $V_{C E}$ for the CE circuit shown in Fig. 57.48.

Solution. Since the collector is disconnected from the supply due to 'open' in the

Fig. 57.48

Fig. 57.49
circuit, $V_{C E}=0$. It represents fault condition No. (a) 3 in Art. 57.31.
Example. 57.22. What is the value of $V_{C E}$ in the CE circuit of Fig. 57.49.
Solution. Since R_{B} is shorted out, I_{B}, would increase and probably burn out the E / B junction. But this burn out is not indicated in the question. Hence, with high base current, the transistor is operating in saturation so that $V_{C E}=0$.

Example 57.23. What is the value of $V_{C E}$ in the circuit of Fig. 57.50.
Solution. Since R_{L} is the only resistor in series with the transistor and is shorted out, it means that there is no voltage drop anywhere. Hence, $V_{C E}=V_{C C}$. It represents fault No. (c) 3 stated in Art. 7.31 above.

Example 57.24. Find the possible value of $V_{C E}$, V_{C} and V_{E} for the circuit shown in Fig. 57.51.

Solution. In the circuit of Fig. 57.51, there is neither a short nor an open and the voltage polarities are correct for an NPN transistor. It looks like a well-designed circuit operating normally. Hence, according to Art. 57.30.

$$
\begin{aligned}
& V_{C E}=\frac{1}{2} V_{C C}=\mathbf{1 0} \mathbf{V} ; V_{E}=\frac{1}{4} V_{C C}=\mathbf{5} \mathbf{V} \\
& V_{C}=\frac{3}{4} V_{C C}=\mathbf{1 5} \mathbf{V}
\end{aligned}
$$

Fig. 57.50

Example 57.25. Find the values of V_{C}, V_{E} and $V_{C E}$ in the circuit of Fig. 57.52.
Solution. Since $I_{B}=0$, transistor is cut off.
Hence, $V_{E}=\mathbf{0}$
Also $\quad V_{C}=-20 \mathrm{~V}$
and $\quad V_{C E}=-20 \mathrm{~V}$
Example 57.26. What would be the values of V_{C}, V_{E} and $V_{C E}$ for the circuit shown in Fig. 57.53.

Solution. Since emitter is open, no current flows in any part of the circuit. The transistor is essentially cut off. Without IR drops, all points above the emitter are at 30 V .

$$
\begin{array}{ll}
\therefore \quad & V_{E}=\mathbf{3 0} \mathbf{V} \\
& V_{C}=\mathbf{3 0} \mathbf{V} \text { and } \\
& V_{C E}=\mathbf{0} \mathbf{V}
\end{array}
$$

Fig. 57.52

57.32. Solving Universal

Stabilization Circuit

Such a circuit is shown in Fig. 57.54 in which \boldsymbol{R}_{E} appears to be in parallel with R_{2}. But according to the β-rule (Art 57.24), R_{2} is actually in parallel with βR_{E}. In a well-designed circuit, the resistance βR_{E} is much larger than R_{2}. Hence, their combined resistance $=R_{2} \| \beta R_{E} \cong R_{2}$. On this assumption as well as another that I_{B} is practically zero, we can find voltage drop across R_{2} by the Proportional Voltage Formula. Since $V_{C C}$ is applied across $R_{1}-R_{2}$ potential divider circuit, drop $\operatorname{across} R_{2}$.

$$
=V_{C C} \cdot R_{2} /\left(R_{1}+R_{2}\right)
$$

If we neglect $V_{B E}$, then this drop equals V_{E}.

$$
\begin{array}{ll}
\therefore & V_{E} \cong V_{C C} \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{E} \cong \frac{V_{E}}{R_{E}}
\end{array}
$$

and
Having found I_{E}, other currents and voltage drops can be easily found.

$$
\begin{aligned}
& V_{E E}=V_{C C}-I_{C} R_{L}-I_{E} R_{E} \\
& \text { Since, } I_{E} \\
& \cong I_{C} \\
& \therefore V_{C E}
\end{aligned}=V_{C C}-I_{E} R_{L}-I_{E} R_{E}=
$$

$$
V_{C C}-I_{E}\left(R_{L}^{C E}+R_{E}\right)
$$

Fig. 57.54

Fig. 57.55

Example 57.27. Find $V_{C E}$ and V_{E} for the circuit shown in Fig. 57.55. Neglect $V_{B E}$.
Solution. As explained above

$$
\begin{aligned}
& V_{E}=V_{2}=V_{C C} \frac{R_{E}}{R_{1}+R_{2}}=15 \times \frac{5}{15}=5 \mathrm{~V} \\
& I_{E}=V_{E} / R_{E}=5 \mathrm{~V} / 10 \mathrm{~K}=0.5 \mathrm{~mA} \\
& I_{C} \cong I_{E}=0.5 \mathrm{~mA}, V_{C E}=V_{C C}-I_{E}\left(R_{L}+R_{E}\right)=15-0.5 \times 15=7.5 \mathrm{~V}
\end{aligned}
$$

57.33. Notation forVoltages and Currents

In order to avoid confusion while dealing with dc and ac voltages and currents, following notation will be employed :

1. For d.c. or non-time-varying quantities

We will use capital letters with capital subscripts such as
$I_{E}, I_{B}, I_{C} \quad-\quad$ for $d c$ currents
$V_{E}, V_{B}, V_{C} \quad$ - for $d c$ voltages to ground
$V_{B E}, V_{C B}, V_{C E} \quad-\quad$ for $d c$ potential differences
$V_{E E}, V_{C C}, \mathrm{~V}_{\mathrm{BB}} \quad$ - for $d c$ source or supply voltages
2. For ac quantities

We will use the following symbols :
$i_{e}, i_{b}, i_{c} \quad-\quad$ for instantaneous values of ac currents
$I_{e}, I_{b}, I_{c} \quad-\quad$ for r.m.s values of a.c. currents
$v_{e}, v_{b}, v_{c} \quad-\quad$ for instantaneous values of a.c. voltages to ground $v_{b e}, v_{e b}, v_{c e} \quad-\quad$ for a.c. voltage differences
3. Total ac and dc voltages and currents

In this case, we will use a hybrid notation. For example, i_{E} will be used to represent the total emitter current, i.e. sum of dc and ac currents in the emitter.

Fig. 57.56 illustrates the notation discussed above.

57.34. Increase/Decrease Notation

This notation is very helpful in analysing transistor operation when ac signal is applied to it. It is simply this:
\uparrow means increases and \downarrow means decrease.

Fig. 57.56

As an illustration, consider the transistor circuit of Fig. 57.57. If $V_{B B}$ were increased (\uparrow), I_{B} would increase (\uparrow). This would increase $I_{C}(\uparrow)$ because it equals βI_{B}. The drop $I_{C} R_{L}$ would increase (\downarrow) and, hence, $V_{C E}$ will decrease (\downarrow) because $V_{C E}=\mathrm{V}_{\mathrm{C}^{-}}$ $I_{C} R_{L}$.

Using increase/decrease notation, the above sequence of changes can be written as

$$
V_{B B} \uparrow, I_{B} \uparrow, I_{C} \uparrow, I_{C} R_{L} \uparrow V_{C E} \downarrow
$$

At one look, we can straight away say that as input voltage is increased, output voltage is decreased.

57.35. Applying AC to a DC Biased Transistor

Fig. 57.57

Suppose we want to apply an ac signal to the input emitter-base circuit of a properly-biased transistor shown in Fig. 57.58. If we apply the a.c. source directly across the $E B J$ as shown in Fig. 57.58 (a), it will upset the d.c. bias. It should be kept in mind that most ac signal sources are nearly a short to dc. Hence, nearly whole of I_{B} would pass through a.c. source rather than the base thereby spoiling the transistor bias.

In order to connect the ac source and at the same time not upset the d.c. bias, the ac source is connected via a coupling capacitor C as shown in Fig. 57.58 (b). This capacitor acts as an 'open' for dc but almost a short for ac source provided it is of sufficiently large capacitance.

Fig. 57.58

57.36. Transistor AC/DC Analysis

In Fig. 57.59 is shown a $C E$ amplifier circuit having an ac signal voltage $v_{b e}{ }^{*}$ applied across its E / B junction. This voltage will be added to the dc voltage $V_{B E}$ as if the two were connected in series. The resultant voltage is shown in Fig. $57.59(b)$ which shows ac voltage riding the d.c. level. The variations in the resultant output voltage $V_{C E}$ [Fig. 57.59 (b)] can be expressed in terms of the increase/decrease notation. It will be assumed that $V_{B E}$ is such as to bias $V_{C E}$ at $V_{C C}$ when no a.c. signal is applied.
(i) First Quarter Cycle

In the first quarter-cycle of the input signal, both $V_{B E}$ and $V_{B E}$ increase thereby giving rise to the following sequence of changes :

$$
V_{\mathrm{BE}} \quad \uparrow, i_{B} \quad \uparrow, \quad i_{C} \quad \uparrow, \quad i_{C} R_{L} \uparrow V_{C E} \downarrow
$$

Hence, output voltage decreases as shown in Fig. 57.59 (c)
(ii) Second Quarter Cycle

Here, $V_{b c}$ as well as $V_{B E}$ decrease. Hence,
$-— —--\underline{V_{B E} \downarrow,}-\underline{i_{B} \downarrow},-\underline{i_{C} \downarrow,} \underline{i_{C} \mathrm{R}_{\mathrm{L}} \downarrow,} \underline{V_{C E} \downarrow}$

* Normally, we will use the notation v_{i} or cin or c_{i} while discussing amplifiers.

Fig. 57.59
Again, $V_{\text {CE }}$ does the opposite of $V_{B E}$.

Same changes will happen in third quarter cycle as happened in the first quarter-cycle and so on. It is seen from Fig. 57.60 (c) that output ac voltage is 180° out of phase with the input voltage.

Example 57.28. Calculate the value of $V_{C E}$ in the circuit of Fig. 57.60 (a) if a.c. signal voltage is sinusoidal with a peak value of 0.01 V. Take voltage gain A_{v} of the circuit as 100 and $\beta=100$. Depict the waveform of the output voltage separately.

Solution. $\quad I_{B}=\frac{V_{C C}}{R_{B}}=\frac{20}{200}=0.1 \mathrm{~A}$

$$
I_{C}=\beta I_{B}=100 \times 0.1=10 \mathrm{~A}
$$

Fig. 57.61

Fig. 57.60

Obviously, the transistor has been biased at saturation as shown in Fig. 57.61 (b).
The addition of $v_{C E}$ and $v_{C E}$, is shown graphically in Fig. 57.61 (b). During the positive halfcycle of the signal, the transistor comes out of saturation and lets pass the half-cycle. However, during the negative half-cycle of input signal, transistor is further driven into saturation. Since it is already biased at $V_{C C}$'s most negative limit (0 volt), it cannot further go negative. Hence, the negative half-cycle of the signal is lost in saturation.

Tutorial Problems No. 57.1

1. A $C B$-connected transistor has $\alpha=0.96$ and $I_{E}=2 \mathrm{~mA}$. Find its I_{C} and I_{B}. $\quad[1.92 \mathbf{m A}, 80 \mu \mathrm{~A}]$
2. A $C B$-connected transistor has $I_{B}=20 \mu \mathrm{~A}$ and $I_{E}=2 \mathrm{~mA}$. Compute the value of α and I_{C}.
[0.99, 1.98 mA$]$
3. A $C E$-connected transistor has $\alpha=100$ and $I_{B}=50 \mu \mathrm{~A}$. Compute the values of α, I_{C} and I_{E}.
4. The following quantities are measured in a $C E$ transistor : $I_{C}=5 \mathrm{~mA} ; I_{B}=100 \mu \mathrm{~A}$. Determine β and I_{E}.
[0.98; 50; 51 mA]
5. A transistor has $\alpha=0.98, I_{C B O}=5 \mu \mathrm{~A}$ and $I_{B}=100 \mu \mathrm{~A}$. Find the values of I_{C} and I_{E}.
[5.15 mA ; $\mathbf{5 . 2 5} \mathbf{~ m A}$]
6. Following measurements are made in a transistor ; $I_{C}=5.202 \mathrm{~mA}, I_{B}=50 \mathrm{~mA}, I_{C B O}=2 \mathrm{~mA}$. Compute the values of α, β and I_{E}.
$[0.99 ; 100 ; 5.252 \mathrm{~mA}]$
7. Following measurements were made in a certain transistor :
$I_{C}=5.202 \mathrm{~mA} ; I_{B}=50 \mathrm{~mA} ; I_{C B O}=2 \mathrm{~mA}$.
Determine $(i) \alpha, \beta$ and $I_{E}(i i)$ new value of I_{B} required to make $I_{C}=10 \mathrm{~mA}$.
[(i) 0.99 ; $100 ; 5.252 \mathrm{~mA}$ (ii) 97.98 A$]$
8. For the $C B$ circuit of Fig. 57.62, find the value of $V_{C B}$. Neglect junction voltage $V_{B E}$. [5 V]
9. In the $C B$ circuit of Fig. 57.63, what value of R_{E} causes $V_{B C}=10 \mathrm{~V}$? Neglect $V_{E B}$. \quad [5 K]
10. For the $C E$ circuit of Fig. 57.64, calculate the values of I_{B}, I_{C}, I_{E} and $V_{C E}$. Take $\beta=50$ and neglect $V_{B E}$.
[$100 \mu \mathrm{~A}, 5 \mathrm{~mA}, 5.1 \mathrm{~mA}, 7.5 \mathrm{~V}$]
11. In the circuit of Fig. 57.65, calculate I_{B}, I_{C}, I_{E} and $V_{C E}$. Take transistor $\beta=50$ and neglect $V_{B E}$.
[100 $\mu \mathrm{A}, 5 \mathrm{~mA}, 5.1 \mathrm{~mA}, 5 \mathrm{~V}]$

Fig. 57.62
Fig. 57.63
12. In the $C C$ circuit of Fig. 57.66, compute the values of I_{E}, I_{B}, I_{C} and $V_{C E}$. Neglect $V_{B E}$.
[$0.25 \mathrm{~mA}, 2.48 \mu \mathrm{~A}, 0.248 \mathrm{~mA}, 5 \mathrm{~V}$]
13. In the $C C$ circuit of Fig. 57.67, find IE, I_{B}, I_{C} and $V_{C E}$. Neglect $V_{B E}$.
[$0.25 \mathrm{~mA}, 2.48 \mu \mathrm{~A}, 0.248 \mathrm{~mA}, 5 \mathrm{~V}]$
14. In the circuit of Fig. 57.68, find the drop across R_{L}. The transistor $\beta=100$.

Fig. 57.66

Fig. 57.67

Fig. 57.68

Fig. 57.69
15. Find the value of $V_{C E}$ for the universal stabilization circuit of Fig. 57.69.
16. (i) The reverse saturation current for the Ge transistor in Fig. 57.70 is $2 \mu \mathrm{~A}$ at room temperature $\left(25^{\circ} \mathrm{C}\right)$ and increases by a factor of 2 for each temperature increase of $10^{\circ} \mathrm{C}$. Bias voltage $\mathrm{V}_{\mathrm{BB}}=5 \mathrm{~V}$. Find the maximum allowable value for R_{B} if the transistor is to remain cutoff at a temperature of $75^{\circ} \mathrm{C}$.

Fig. 57.70
(ii) If $\mathrm{V}_{\mathrm{BB}}=1.0 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{B}}=50 \mathrm{k}$-ohm, how high may the temperature increase before the transistor comes out of cut-off (Electronic Devices and Circuits Nagpur University Summer, 2004)
17. Calculate the exact value of emitter current and $V_{C E}$ in the circuit shown in Fig. 57.71 Assume transistor to be silicon and $\beta=100$.
(Electronic Devices of Circuits, Nagpur University Summer, 2004)

Fig. 57.71

OBJECTIVE TESTS - 57

1. The emitter of a transistor is generally doped the heaviest because it
(a) has to dissipate maximum power
(b) has to supply the charge carriers
(c) is the first region of the transistor
(d) must possess low resistance.
2. For current working of an NPN bipolar junction transistor, the different electrodes should have the following polarities with respect to emitter.
(a) collector +ve , base -ve
(b) collector -ve , base +ve
(c) collector -ve , base -ve
(d) collector +ve , base +ve
3. Select the CORRECT alternative.

In a bipolar transistor
(a) emitter region is of low/high resistivity matterial which is lightly/ heavily-doped.
(b) collector region is of lower/higher conductivity than emitter region
(c) base region is of high/low resistivity material which is only lightly/ heavily doped.
4. In a properly-biased $N P N$ transistor, most of the electrons from the emitter
(a) recombine with holes in the base
(b) recombine in the emitter itself
(c) pass through the base to the collector
(d) are stopped by the junction barrier.
5. The following relationships between α and β are correct EXCEPT
(a) $\beta=\frac{\alpha}{1-\alpha}$
(b) $\alpha=\frac{\beta}{1-\beta}$
(c) $\alpha=\frac{\beta}{1+\beta}$
(d) $1-\alpha=\frac{1}{1+\beta}$
6. The value of total collector current in a $C B$ circuit is
(a) $I_{\mathrm{C}}=\alpha I_{E}$
(b) $I_{\mathrm{C}}=\alpha I_{E}+I_{C O}$
(c) $I_{\mathrm{C}}=\alpha I_{E}-I_{C O}$
(d) $I_{\mathrm{C}}=\alpha I_{E}$.
7. In a junction transistor, the collector cut off current $\mathrm{I}_{\mathrm{CBO}}$ reduces considerably by doping the
(a) emitter with high level of impurity
(b) emitter with low level of impurity
(c) collector with high level of impurity
(d) collector with low level of impurity
8. In a transistor amplifier, the reverse saturation current I_{CO}
(a) doubles for every $10^{\circ} \mathrm{C}$ rise in temperature
(b) doubles for every $1^{\circ} \mathrm{C}$ rise in temperature
(c) increases linearly with the temperature
(d) doubles for every $5^{\circ} \mathrm{C}$ rise in temperature
9. In the case of a bipolar transistor, α is
(a) positive and >1
(b) positive and <1
(c) negative and >1
(d) negative and <1.
10. The $E B J$ of a given transistor is forward- biased and its $C B J$ reverse-biased. If the base current is increased, then its
(a) I_{C} will decrease
(b) $V_{C E}$ will increase
(c) I_{C} will increase
(d) $V_{C C}$ will increase.
11. The collector characteristics of a $C E$ - connected transistor may be used to find its
(a) input resistance
(b) base current
(c) output resistance
(d) voltage gain.
12. Which of the following approximations is often used in electronic circuits ?
(a) $I_{C} \cong I_{E}$
(b) $I_{B} \cong I_{C}$
(c) $I_{B} \cong I_{E}$
(d) $I_{E} \cong I_{B}+I_{C}$
13. When a transistor is fully switched ON , it is said to be
(a) shorted
(b) saturated
(c) open
(d) cut-off
14. If a change in base current does not change the collector current, the transistor amplifier is said to be
(a) saturated
(b) cut-off
(c) critical
(d) complemented.
15. When an $N P N$ transistor is saturated, its $V_{C E}$
(a) is zero and I_{C} is zero
(b) is low and I_{C} is high
(c) equals $V_{C C}$ and I_{C} is zero
(d) equals $V_{C C}$ and I_{C} is high.
16. When an $N P N$ transistor is cut-off, its $V_{C C}$
(a) equals $V_{C C}$ and I_{C} is high
(b) equals $V_{C C}$ and I_{C} is zero
(c) is low and I_{C} is high
(d) is high and I_{C} is low.
17. If, in a bipolar junction transistor, $I_{B}=100 \mu \mathrm{~A}$ and $I_{C}=10 \mathrm{~mA}$, in what range does the value of its beta lie ?
(a) 0.1 to 1.0
(b) 1.01 to 10
(c) 10.1 to 100
(d) 100.1 to 1000 .
18. In a $B J T$, largest current flow occurs
(a) in the emitter
(b) in the collector
(c) in the base
(d) through $C B$ junction.
19. In a properly-connected $B J T$, an increase in base current causes increase in
(a) I_{C} only
(b) I_{E} only
(c) both I_{C} and I_{E}
(d) leakage current.
20. When a $B J T$ operates in cut-off
(a) $V_{C E}=0$
(b) $V_{C E}=V_{c c}$
(c) $V_{C E}$ has negative value
(d) I_{C} is maximum.
21. When a $B J T$ is in saturation
(a) $I_{C}=0$
(b) I_{B} controls I_{C}
(c) $V_{C E}=0$
(d) $V_{C E}$ has positive value.
22. The best approximation for V_{C} in the circuit shown in Fig. 54.72 will be (assume β to be high)
(a) 4 V
(b) 6.8 V
(c) 8.7 V
(d) 10.7 V

Fig. 57.72
23. Assume $=0.7 \mathrm{~V}$ and $\beta=50$ for the transistor in the circuit shown in Fig. 57.73. For $=2 \mathrm{~V}$, the value of R_{B} is

Fig. 57.73
(a) 200Ω
(b) 242Ω
(c) 283Ω
(d) 300Ω
24. In the circuit shown in Fig. 57.74, if $R_{L}=R_{C}=$ $\mathrm{K} \Omega$, then the value of V_{0} will be

Fig. 57.74
(a) 4.55 V
(b) 2.5 V
(c) 1 V
(d) zero
25. A transistor is operated as a non-saturated switch to eliminate
(a) storage time
(b) turn-off time
(c) turn-on time
(d) delay time
26. Early-effect in BJT refers to
(a) avalanche break down
(b) thermal break down
(c) base narrowing
(d) zener break-down
(UPSC Engg. Services 2002)
(Hint. Early effect also called base-width modulation) is the variation of effective base width by the collector voltage)
27. A bipolar junction transistor (BJT) is used as power control switch by biasing it in the cut-off region (OFF state) or in the saturation region (ON state). In the ON state, for the BJT.
(a) both the base-emitter junction and basecollector junctions are reverse biased
(b) the base-emitter is reverse biased, and the base-collector junction is forward biased
(c) the base-emitter junction is forward biased, and the base-collector junction is reverse biased
(d) both the base-emitter and base-collector junctions are forward biased.

ANSWERS

1. (a)	2. (d)	3. (a) low, heavily (b) lower (c) high, lightly					. (c)	5. (b)	6. (b)	7. (d)
8. (a)	9. (d)	10. (c)	11. (c)	12. (a)	13. (b)	14. (a)	15. (b)	16. (b)	17. (b)	18. (a)
19. (c)	20. (b)	21. (c)	22. (d)	23. (d)	24. (b)	25. (a)	26. (c)	27. (d)		

C H A P T E R

Learning Objectives

> DC Load Line
$>$ Q-Point and Maximum Undistorted Output
$>$ Need for Biasing a Transistor
$>$ Factor Affecting Bias Variations
$>$ Stability Factor
> Beta Sensitivity
$>$ Stability Factor for CB and CE Circuits
$>$ Different Methods for Transistor Biasing
> Base Bias
> Base Bias with Emitter Feedback
> Base Bias with Collector Feedback
> Base Bias with Collector and Emitter Feedbacks
$>$ Emitter Bias with two Supplies
$>$ Voltage Divider Bias
$>$ Load Line and Output Characteristics
> AC Load Line

LOAD LINES AND DC BIAS CIRCUITS

[^8]
58.1. D.C. Load Line

For drawing the dc load line of a transistor, one need to know only its cut-off and saturation points. It is a straight line jointing these two points. For the $C E$ circuit of Fig. 58.28, the load line is drawn in Fig. 58.1. A is the cut-off point and B is the saturation point.
The voltage equation of the collector-emitter is

$$
V_{C C}=I_{C} R_{L}+V_{C E} \quad \therefore \quad I_{C}=\frac{V_{C C}}{R_{L}}-\frac{V_{C E}}{R_{L}}
$$

Consider the following two particular cases :
(i) when $I_{C}=0, \quad V_{C E}=V_{C C}$ —cut-off point A
(ii) when $V_{C E}=0, \quad I_{C}=V_{C C} / R_{L}$

$$
\text { - saturation point } B
$$

Fig. 58.1

Obviously, load line can be drawn if only $V_{C C}$ and R_{L} are known. Incidentally slope of the load line $A B=-1 / R_{L}$

Note. The above given equation can be written as

$$
I_{C}=\frac{V_{C E}}{R_{L}}+\frac{V_{C C}}{R_{L}}
$$

It is a linear equation similar to $y=-m x+c$
The graph of this equation is a straight line whose slope is $m=-1 / R_{L}$

Active Region

All operating points (like C, D, E etc. in Fig. 58.1) lying between cut-off and saturation points form the active region of the transistor. In this region, E / B junction is forward-biased and C / B junction is reverse-biased-conditions necessary for the proper operation of a transistor.

Quiescent Point

It is a point on the dc load line, which represents the values of I_{C} and $V_{C E}$ that exist in a transistor circuit when no input signal is applied.

It is also known as the dc operating point or working point. The best position for this point is midway between cut-off and satura-

Fig. 58.2
tion points where $V_{C E}=\frac{1}{2} V_{C C}$ (like point D in Fig. 58.1).

Example 58.1. For the circuit shown in Fig. 58.2 (a), draw the dc load line and locate its quiescent or dc working point.

Solution. The cut-off point is easily found because it lies along X-axis where $V_{C E}=V_{C C}=20 \mathrm{~V}$ i.e. point A in Fig. 58.2 (b). At saturation point B, saturation value of collector current is $I_{C(s a t)}=V_{C C} / R_{L}=20 \mathrm{~V} / 5 \mathrm{~K}=4 \mathrm{~mA}$.

The line $A B$ represents the load line for the given circuit. We will now find the actual operating point.

$$
\begin{aligned}
& I_{E}=V_{E E} / R_{E}=30 \mathrm{~V} / 15 \mathrm{~K}=2 \mathrm{~mA} \\
& I_{C}=\alpha I_{E} \cong I_{E}=2 \mathrm{~mA} ; \quad \therefore \quad V_{C B}=V_{C C}-I_{C} R_{L}=20-2 \times 5=10 \mathrm{~V} \text { neglecting } V_{B E}
\end{aligned}
$$

Hence, Q-point is located at $(\mathbf{1 0} \mathbf{V} ; \mathbf{2} \mathbf{~ m A})$ as shown in Fig. 58.2 (b)
Example 58.2. In the CB circuit of Fig. 8.3 (a), find
(a) dc operating point and dc load line
(b) maximum peak-to-peak unclipped signal
(c) the approximate value of ac source voltage that will cause clipping.
(Electronics and Telecom Engg. Jadavpur Univ.)
Solution.

(a) $I_{C(s a t)}=\frac{V_{C C}}{R_{L}}=2 \mathrm{~mA}$
— point B
$V_{C B}$ at cut-off $\quad=V_{C C}=\underset{\sim}{20 \mathrm{~V}}$ point A
Hence, $A B$ is the dc load line and is shown in Fig. 58.3 (b).

$$
\begin{aligned}
\text { Now, } I_{E}=10 / 20 & =0.5 \mathrm{~mA} \\
I_{C} \cong I_{E} & =0.5 \mathrm{~mA} \\
V_{C B} & =V_{C C}-I_{C} R_{L} \\
& =20-0.5 \times 10 \\
& =15 \mathrm{~V}
\end{aligned}
$$

The Q-point is located at $(\mathbf{1 5} \mathbf{V}, \mathbf{0 . 5} \mathbf{~ m A})$
(b) It is obvious from Fig. 58.3 (b) that maximum positive swing can be from 15 V to 20 V i.e. 5 V only. Of course, on the negative swing, the output swing can go from 15 V down to zero volt. The limiting factor being cut-off on positive half-cycle, hence maximum unclipped peak-to-peak voltage that we can get from this circuit is $2 \times 5=10 \mathrm{~V}$.
(c) The approximate voltage gain of the above circuit is

$$
A_{v}=\frac{V_{0}}{V_{S}}=\frac{R_{L}}{R_{S}}=\frac{10 \mathrm{~K}}{1 \mathrm{~K}}=10
$$

It means that signal voltage will be amplified 10 times. Hence, maximum value of source voltage for obtaining unclipped or undistorted output is

$$
V_{s}=\frac{V_{0}}{10}=\frac{10 V_{p-p}}{10}=1 \mathbf{V}_{p-p}
$$

Example 58.3. For the CE circuit shown in Fig. 58.4 (a), draw the dc load line and mark the dc working point on it. Assume $b=100$ and neglect V.
(Applied Electronics, Punjab Univ.)
Solution. Cut-off point A is located where, $I_{C}=0$ and $V_{C E}=V_{C C}=30 \mathrm{~V}$. Saturation point B is given where $V_{C E}=0$ and

$$
I_{C(s a t)}=30 \mathrm{~V} / 5 \mathrm{~K}=6 \mathrm{~mA} .
$$

Line $A B$ represents the load line in Fig. 58.4

Fig. 58.4 (b).

Let us find the dc working point from the given values of resistances and supply voltage.

$$
\begin{gathered}
I_{B}=30 \mathrm{~V} / 1.5 \mathrm{M}=20 \mu \mathrm{~A} ; \quad I_{C}=\beta I_{B}=100 \times 20=2000 \mu \mathrm{~A}=2 \mathrm{~mA} ; \\
V_{C}=V_{C C}-I_{C} R_{L}=30-2 \times 5=20 \mathrm{~V}
\end{gathered}
$$

Hence, Q-point is ($\mathbf{2 0} \mathbf{V} ; \mathbf{2} \mathbf{~ m A}$) as shown in Fig. 58.4.

58.2. Q-Point and Maximum Undistorted Output

Position of the Q-point on the dc load line determines the maximum signal that we can get from the circuit before clipping occurs. Consider the cases shown in Fig. 58.5.

In Fig. 58.5 (a), when Q is located near cut-off point, signal first starts to clip at A. It is called cut-off clipping because the positive swing of the signal drives the transistor to cut-off. In fact, as seen from Fig. 58.5 (a), maximum positive swing is $=I_{C Q} R_{a c}$.

(a)

(b)

(c)

Fig. 58.5
If the Q-point Q_{2} is located near saturation point, then clipping first starts at point B as shown in Fig. $58.5(b)$. It is caused by saturation. The maximum negative swing $=V_{C E Q}$.

In Fig. 58.5 (c), the Q-point Q_{3} is located at the centre of the load line. In this condition, we get the maximum possible output signal. The point Q_{3} gives the optimum Q-point. The maximum undistorted signal $=2 \mathrm{~V}_{C E Q}$.

In general, consider the case shown in Fig. 58.6. Since $A<B$, maximum possible peak-to-peak output signal $=2 \mathrm{~A}$.

If the operating point were so located that $A>B$, then maximum possible peak-to-peak output signal $=2 B$.

When operating point is located at the centre of the load line, then maximum undistorted peak-to-peak signal is $=2 \mathrm{~A}$ $=2 B=V_{C C}=2 \mathrm{VC}_{E Q}$.

Under optimum working conditions corresponding to Fig. 58.5 (c), $I_{C Q}$ is half the saturation value given by $V_{c d} / R_{L}$ (Art. 8.1).

$$
\therefore \quad I_{C Q}=\frac{1}{2} \cdot \frac{V_{C C}}{R_{L}}=\frac{V_{C C}}{2 R}
$$

Fig. 58.6

Example 58.4. Determine the value of R_{B} required to adjust the circuit of Fig. 58.7 to optimum operating point. Take $\beta=50$ and $V_{B E}=0.7 \mathrm{~V}$.

Solution. As seen from above

$$
I_{C Q}=\frac{V_{C C}}{2 R_{L}}=\frac{20}{2 \times 10}=1 \mathrm{~mA}
$$

The corresponding base current is

$$
I_{B Q}=\frac{I_{C Q}}{\beta}=\frac{1}{50}=2 \mu A
$$

$$
\begin{gathered}
\text { Now, } V_{C C}=I_{B} R_{B}+V_{B E} \\
\therefore \quad \\
R_{B}=\frac{V_{C C}-V_{B E}}{I_{B}}=\frac{20-0.7}{20 \times 10^{-6}}=965 \mathrm{~K}
\end{gathered}
$$

58.3. Need For Biasing a Transistor

For normal operation of a transistor amplifier circuit, it is essential that there should be a
(a) forward bias on the emitter-base junction and
(b) reverse bias on the collector-base junction.

In addition, amount of bias required is important for establishing the Q-point which is dictated by the mode of operation desired.
If the transistor is not biased correctly, it would

Fig. 58.7

1. work inefficiently and
2. produce distortion in the output signal.

It is desirable that once selected, the Q-point should remain stable i.e. should not shift its position due to temperature rise etc. Unfortunately, this does not happen in practice unless special efforts are made for the purpose.

58.4. Factors Affecting Bias Variations

In practice, it is found that even after careful selection, Q-point tends to shift its position. This bias instability is the direct result of thermal instability which itself is produced by cumulative increase in I_{C} that may, if unchecked, lead to thermal runaway (Art. 58.13).
The collector current for C_{E} circuit is given by

$$
I_{C}=\beta I_{B}+I_{C E O}=\beta I_{B}+(1+\beta) I_{C O}
$$

This equation has three variables: β, I_{B} and $I_{C O}$ all of which are found to increase with temperature. In particular, increase in $I_{C O}$ produces significant increase in collector current I_{C}. This leads to increased power dissipation with further increase in temperature and hence I_{C}. Being a cumulative process, it can lead to thermal runaway which will destroy the transistor itself !

However, if by some circuit modification, I_{C} is made to decrease with temperature automatically, then decrease in the term βI_{B} can be made to neutralize the increase in the term $(1+\beta) I_{C O}$, thereby keeping I_{C} constant. This will achieve thermal stability resulting in bias stability.

58.5. Stability Factor

The degree of success achieved in stabilizing I_{C} in the face of variations in $I_{C O}$ is expressed in terms of current stability factor S. It is defined as the rate of change of I_{C} with respect to $I_{C O}$ when both β and $I_{B}\left(V_{B E}\right)$ are held constant.

$$
\therefore \quad S=\frac{d I_{C}}{d I_{C O}} \quad-\beta \text { and } I_{B} \text { constant }
$$

Larger the value of S, greater the thermal instability and vice versa (in view of the above, this factor should, more appropriately, be called instability factor !).

The stability factor may be alternatively expressed by using the well-known equation $I_{C}=I \beta+$ $(I+\beta) I_{C O}$ which, on differentiation with respect to I_{C}, yields.

$$
I=\beta \frac{d I_{B}}{d I_{C}}+(1+\beta) \frac{d I_{C O}}{d I_{C}}=\beta \frac{d I_{B}}{d I_{C}}+(1+\beta) \frac{1}{S} \quad \therefore \quad S=\frac{(1+\beta)}{1-\beta\left(d I_{B} / d I_{C}\right)}
$$

The stability factor of any circuit can be found by using the general formula

$$
S=\frac{1+R_{B} / R_{E}}{1+(1-\alpha)\left(R_{B} / R_{E}\right)}
$$

where

$$
\begin{aligned}
R_{B} & =\text { total series parallel resistance in the base } \\
R_{E} & =\text { total series dc resistance in the emitter } \\
\alpha & =\mathrm{dc} \text { alpha of the transistor }
\end{aligned}
$$

58.6. Beta Sensitivity

By β-sensitivity of a circuit is meant the influence that the β-value has on its dc operating point. Variations in β-value are caused by variations in the circuit operating conditions or by the substitution of one transistor with another. Beta sensitivity K_{b} is given by

$$
\frac{d I_{C}}{I_{C}}=K_{\beta} \frac{d I_{B}}{\beta} \quad \therefore \quad K_{\beta}=\frac{\beta}{I_{C}} \cdot \frac{d I_{C}}{d I_{B}}
$$

Obviously, K_{β} is dimensionless ratio and can have values ranging from zero to unity.

58.7. Stability Factor for CB and CE Circuits

(i) CB Circuit

Here, collector current is given by

$$
I_{C}=\alpha I_{E}+I_{C O} \quad \therefore \quad \frac{d I_{C}}{d I_{C O}}=0+1 \quad \text { or } \quad S=1
$$

(ii) CE Circuit

$$
\begin{array}{ll}
& I_{C}=\beta I_{B}+(1+\beta) I_{C O} \quad \therefore \frac{d I_{C}}{d I_{C O}}=(1+\beta) \quad \quad \text {-treating } I_{B} \text { as a constant } \\
\therefore \quad & S=(1+\beta) . \\
\text { If } \quad \beta= & 100, \text { then } S=101 \text { which means that } I_{C} \text { changes } 101 \text { times as much as } I_{C O} .
\end{array}
$$

58.8. Different Methods for Transistor Biasing

Some of the methods used for providing bias for a transistor are :

1. base bias or fixed current bias (Fig. 58.9)

It is not a very satisfactory method because bias voltages and currents do not remain constant during transistor operation.
2. base bias with emitter feedback (Fig. 58.10)

This circuit achieves good stability of dc operating point against changes in β with the help of emitter resistor which causes degeneration to take place.
3. base bias with collector feedback (Fig. 58.11)

It is also known as collector-to-base bias or collector feedback bias. It provides better bias stability.
4. base bias with collector and emitter feedbacks

It is a combination of (2) and (3) above.
5. emitter bias with two supplies (Fig. 58.13)

This circuit uses both a positive and a negative supply voltage. Here, base is at approximately 0 volt i.e. $V_{B} \cong 0$.
6. voltage divider bias (Fig. 58.15)

It is most widely used in linear discrete circuits because it provides good bias stability. It is also called universal bias circuit or base bias with one supply.
Each of the above circuits will now be discussed separately.

58.9. Base Bias

It has already been discussed in Art. 58.20 and is shown in Fig. 58.25. For such a circuit, $S=(1+\beta) \cong \beta$ and $K_{\beta}=1$.

58.10. Base Bias with Emitter Feedback

This circuit is obtained by simply adding an emitter resistor to the base bias circuit as shown in Fig. 58.8.

1. At saturation, $V_{C E}$ is essentially zero, hence $V_{C C}$ is distributed over R_{L} and R_{E}.

$$
\therefore \quad I_{C(s a t)}=\frac{V_{C C}}{R_{E}+R_{L}}
$$

2. I_{C} can be found as follows :

Consider the supply, base, emitter and ground route. Applying Kirchhoff 's Voltage Law, we have

$$
\begin{array}{ll}
& -I_{B} R_{B}-V_{B E}-I_{E} R_{E}+V_{C C}=0 \\
\text { or } & V_{C C}=I_{B} R_{B}+V_{B E}+I_{E} R_{E} \\
\text { Now } & I_{B}=I_{C} / \beta \text { and } I_{E} \cong I_{C}
\end{array}
$$

Fig. 58.8

Substituting these values in the above equation, we have

$$
\begin{array}{ll}
& V_{C C} \cong \frac{I_{C} R_{B}}{\beta}+V_{B E}+I_{C} R_{E} \\
\therefore & I_{C} \cong \frac{V_{C C}-V_{B E}}{R_{E}+R_{B} / \beta} \cong \frac{V_{C C}}{R_{E}+R_{B} / \beta}
\end{array}
$$

(we could have applied the β-rule given in Art. 57.24)
3. collector-to-ground voltage $V_{C}=V_{C C}-I_{C} R_{L}$
4. emitter-to-ground voltage $\quad V_{E}=I_{E} R_{E} \cong I_{C} R_{E}$
5.

$$
S=\frac{1+R_{B} / R_{E}}{1+R_{B} /(1+\beta) R_{E}}=\frac{1+R_{B} / R_{E}}{1+R_{B} / \beta R_{E}}
$$

6. The β-sensitivity of this circuit is $K_{\beta}=\frac{1}{1+\beta R_{E} / R_{B}}$

Example 58.5. For the circuit shown in Fig. 58.9, find (i) I_{C} (sat), (ii) I_{C}, (iii) V_{C}, (iv) V_{E}, (v) $V_{C E}$ and (vi) K_{β}.

Solution. (i) $\quad I_{C(s a t)}=\frac{V_{C C}}{R_{E}+R_{L}}=\frac{30}{1+2}=\mathbf{1 0} \mathrm{mA}$
(ii) actual $I_{C} \cong \frac{V_{C C}}{R_{E}+R_{B} / \beta}=\frac{30}{1+300 / 100}=7.5 \mathrm{~mA}$
(iii) $V_{C}=V_{C C} \times I_{C} R_{L}=30-2 \times 7.5=\mathbf{1 5} \mathbf{V}$
(iv) $\quad V_{E} \cong I_{E} R_{E} \cong I_{C} R_{E}=7.5 \times 1=7.5 \mathrm{~V}$
(v) $\quad V_{C E}=V_{C}-V_{E}=15-7.5=7.5 \mathrm{~V}$

Fig. 58.9
(vi) $\quad K_{\beta}=\frac{1}{1+100 \times 1 / 300}=0.75$

Example 58.6. The base-biased transistor circuit of Fig. 58.10 is subjected to increase in junction temperature from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. If β increases from 100 to 150 with rising temperature, calculate the percentage change in Q-point values ($I_{C}, V_{C E}$) over the temperature range. Assume that $V_{B E}$ remains constant at 0.7 V .

Solution. At $25^{\circ} \mathrm{C}$

$$
I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{12-0.7}{100 \times 10^{3}}=0.113 \mathrm{~mA}
$$

Fig. 58.10

$$
\begin{aligned}
& I_{C}=\beta I_{B}=100 \times 0.113=11.3 \mathrm{~mA} \\
& V_{C E}=I_{C} R_{C}=12-(11.3 \times 10-3 \times 500)=6.35 \mathrm{~V} \\
& V_{C E}=V_{C C}-I_{C} R_{C}=12 \times(11.3 \times 10 \times 3 \times 500)=6.35 \mathrm{~V}
\end{aligned}
$$

At 25°

$$
\begin{aligned}
& I_{B}=0.113 \mathrm{~mA} \\
& I_{C}=\beta I_{B}=150 \times 0.113=16.95 \mathrm{~mA} \\
& V_{C E}=12-\left(16.95 \times 10^{-3} \times 500\right)=3.52 \mathrm{~V} \\
& \% \Delta I_{C}=\frac{16.95-11.3}{11.3} \times 100=\mathbf{5 0} \text { (increase) } \\
& \% \Delta V_{C E}=\frac{3.52-6.35}{6.35} \times 100=-\mathbf{4 4 . 5 7} \text { (decrease) }
\end{aligned}
$$

It is seen that Q-point is very much dependent on temperature and makes the base-bias arrangement very unstable.

58.11. Base Bias with Collector Feedback

This circuit (Fig. 58.11) is like the base bias circuit except that base resistor is returned to collector rather than to the $V_{C C}$ supply. It derives its name from the fact that since voltage for R_{B} is derived from collector, there exists a negative feed back effect which tends to stabilise I_{C} against changes in β. To understand this action, suppose that somehow β increases. It will increase I_{C} as well as $I_{C} R_{L}$ but decrease V_{C} which is applied across R_{B}. Consequently, I_{B} will be decreased which will partially compensate for the original increase in β.
(i) $I_{C(s a t)}=V_{C C} / R_{L} \quad$-since $V_{C E}=0$
(ii) $V_{C}=V_{C C}-\left(I_{B}+I_{C}\right) R_{L} \cong V_{C C}-I_{C} R_{L}$

Also, $\quad V_{C}=I_{B} R_{B}+V_{B E}$
Equating the two expressions for V_{C}, we have

Fig. 58.11
$I_{B} R_{B}+V_{B E} \cong V_{C C} \times I_{C} R_{L}$
Since $I_{B}=I_{C} / \beta$, we get
$\frac{I_{C}}{\beta} \cdot R_{B}+V_{B E} \cong V_{C C}-I_{C} R_{L}$

$$
\therefore \quad I_{C}=\frac{V_{C C}-V_{B E}}{R_{L}+R_{B} / \beta} \cong \frac{V_{C C}}{R_{L}+R_{B} / \beta}
$$

This is also the approximate value of I_{E} (again, we could take the help of β-rule). The β sensitivity factor is given by

$$
\begin{aligned}
& K_{\beta}=\frac{1}{\beta R_{L} / R_{B}}=1-\frac{I_{C}}{I_{C(s a t)}} \\
& S=\frac{1+R_{B} / R_{L}}{1+R_{B} /(1+\beta) R_{L}} \cong \frac{V_{C C}}{R_{L}+R_{B} / \beta}
\end{aligned}
$$

Example 58.7. In Fig. 58.11, $V_{C C}=12 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}, R_{L}=1 \mathrm{~K}, R_{B}=100 \mathrm{~K}, \beta=100$. Find (i) I_{C}, (ii) $V_{C E}$, (iii) I_{B}, (iv) K_{β} and (v) S.

Solution.
(i) $I_{C} \cong I_{E}=\frac{12-0.7}{1+100 / 100}=5.6 \mathrm{~mA}$
(ii)
$V_{C E} \cong 12-(5.65 \times 1)=6.35 \mathrm{~V}$
(iii) $I_{B}=I_{C} / \beta=5.65 / 100=\mathbf{5 6 . 5} \mu \mathrm{A}$
(iv) $\quad K_{B}=\frac{1}{1+100 \times 1 / 100}=0.5$
(v) $S=\frac{1+100 / 1}{1+100 \times 1 / 101}=\mathbf{5 0 . 5}$

58.12. Base Bias with Collector and Emitter Feedbacks

In the circuit of Fig. 58.12, both collector and emitter feedbacks have been used in an attempt to reduce circuit sensitivity to changes in β. If β increases, emitter voltage increases but collector voltage decreases. It means that voltage across R_{B} is reduced causing I_{B} to decrease thereby partially off-setting the increase in β.

Under saturation conditions, $V_{C C}$ is distributed over R_{L} and R_{E}. Assuming I_{B} to be negligible as compared to I_{C}, we get, $I_{C(s a t)}=V_{C C}{ }^{\prime}$ $\left(R_{E}+R_{L}\right)$.

$$
\text { Actual value of } I_{C} \text { is }=\frac{V_{C C}-V_{B E}}{R_{E}+R_{L}+R_{B} / \beta}
$$

$$
\text { —going via } R_{B} \text { because } V_{C E} \text { is unknown. }
$$

$$
\begin{aligned}
& V_{C}=V_{C C}-\left(I_{C}+I_{B}\right) ; \quad R_{L} \cong V_{C C}-I_{C} R_{L} \\
& V_{E}=I_{E} R_{E} \cong I_{C} R_{E} ; \quad \bar{V}_{C E}=V_{C}-V_{E} \\
& V_{C E} \cong V_{C C}-I_{C}\left(R_{L}+R_{E}\right) \\
& \quad S=\frac{1+R_{B} /\left(R_{E}+R_{L}\right)}{1+R_{B} / \beta\left(R_{E}+R_{L}\right)}
\end{aligned}
$$

Fig. 58.12

It can be proved that $K_{\beta}=\frac{1}{1+\beta\left(R_{E}+R_{L}\right) / R_{B}}=1-\frac{I_{C}}{I_{C(\text { sat })}}$
Obviously, K_{β} will be degraded with increase in R_{B}.
Example 58.8. For the circuit shown in Fig. 58.13, find (a) $I_{C(\text { sat })}$ (b) $V_{C E}$ and (c) K_{β}. Neglect $V_{B E}$ and take $\beta=100$.

Solution. (a) $I_{C(s a t)}=15 /(10+10)=0.75 \mathrm{~mA}$
(b) $\quad I_{C}=\frac{V_{C C}}{R_{E}+R_{L}+R_{B} / \beta}=\frac{15}{10+10+500 / 100}=0.6 \mathrm{~mA}$
$V_{C E}=15-0.6(10+10)=\mathbf{3} \mathbf{V}$
(c) $\quad K_{\beta}=\frac{1}{1+100(10+10) / 50}=0.2$
or $\quad K_{\beta}=1-I_{C} / I_{C(s a t)}=1-0.6 / 0.75=0.2$
Obviously, K_{β} will be degraded with increase in R_{B}.

Fig. 58.13

58.13. Emitter Bias with Two Supplies

This circuit gives a reasonably stable Q-point and is widely used whenever two supplies (positive and negative) are available. Its popularity is due to the fact that I_{C} is essentially independent of β.

It can be shown that $V_{B} \cong 0$ and $V_{E}=-V_{B E}$
Starting from ground and going clockwise round the base-emitter cir-

Fig. 58.14 cuit, we get according to $K V L$.
or

$$
\begin{align*}
& -I_{B} R_{B}-V_{B E}-I_{E} R_{E}+V_{E E}=0 \\
& I_{B} R_{B}+I_{E} R_{E}=V_{E E}-V_{B E} \tag{i}
\end{align*}
$$

Now, $I_{B}=I_{C} / \beta \cong I_{E} / \beta$. Substituting this in (i) above we have

$$
\frac{I_{E} R_{B}}{\beta}+I_{E} R_{E}=V_{E E}-V_{B E} \quad \text { or } \quad I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}+R_{B} / \beta}
$$

If $\quad V_{E E} » V_{B E}$ and $R_{E}>R_{B} / \beta, I_{E}=V_{E E} / R_{B}$.
If V_{E} is the emitter to ground voltage, then

$$
-I_{B} R_{B}-V_{B E}-V_{E}=0
$$

or $\quad V_{E}=-\left(I_{B} R_{B}^{B}+V_{B E}^{B}\right)=-\left(V_{B E}^{B E}+I_{C} R_{B} / \beta\right) \cong-V_{B E}$
For this circuit, $S=\frac{1+R_{B} / R_{E}}{1+R_{B} / \beta R_{E}} \quad$ and $\quad K_{B}=\frac{1}{1+\beta R_{E} / R_{B}}$
Example 58.9. For the circuit of Fig. 58.15, find (i) I_{E}, (ii) I_{C}, (iii) V_{C}, (iv) V_{E}, (v) $V_{C E}$, (vi) stability factor and (vii) K_{β} for a β of 50 . Take $V_{B E}=0.7 \mathrm{~V}$.
(Electronics-II, Bangalore Univ. 1995)
Solution. (i) $I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}+R_{B} / \beta}=\frac{10-0.7}{20+10 / 50}=0.46 \mathrm{~mA}$
(ii) $I_{C} \cong I_{E}=0.46 \mathrm{~mA}$
(iii) $V_{C}=V_{C C}-I_{C} R_{L}=20-0.46 \times 10=\mathbf{1 5 . 4} \mathrm{V}$
(iv) $V_{E}=-\left(V_{B E}+I_{C} R_{B} / \beta\right)$

$$
=(0.7+0.46 \times 10 / 50)=-0.8 \mathrm{~V}
$$

(v) $V_{C E}=V_{C}-V_{E}=15.4-(-0.8)=16.2 \mathrm{~V}$
(vi) $S=\frac{1+R_{B} / R_{E}}{1+R_{B} / \beta R_{B}}=\frac{1+10 / 20}{1+10 / 50 \times 20}=1.485$
(vii) $K_{\beta}=\frac{1}{1+R_{E} / R_{\beta}}=\frac{1}{1+50 \times 20 / 10} \cong 0.01$

Fig. 58.15

58.14. Voltage Divider Bias

The arrangement is commonly used for transistors incorporated in integrated circuits (ICs).

The name 'voltage divider' is derived from the fact that resistors R_{1} and R_{2} form a potential divider across $V_{C C}$ (Fig. 58.16)*. The voltage drop V_{2} across R_{2} forward-biases the emitter whereas $V_{C C}$ supply reverse-biases the collector.

As per voltage divider theorem.

$$
\begin{array}{ll}
& V_{2}=V_{C C} \cdot R_{2} /\left(R_{1}+R_{2}\right) \\
\text { As seen, } & V_{E}=V_{2}-V_{B E} \\
\therefore \quad & I_{E}=\frac{V_{E}}{R_{E}}=\frac{V_{2}-V_{B E}}{R_{E}} \cong \frac{V_{2}}{R_{E}}
\end{array}
$$

Fig. 58.16

Also, $\quad V_{C}=V_{C C}-I_{C} R_{L}$

[^9]\[

$$
\begin{aligned}
& V_{C E}=V_{C}-V_{E}=V_{C C}-I_{C} R_{L}-I_{E} R_{E} \\
& \cong V_{C C}-I_{C}\left(R_{L}+R_{E}\right) \quad \therefore \quad I_{C} \cong I_{E}
\end{aligned}
$$
\]

As before, $\quad I_{C(\text { sat })} \cong \frac{V_{C C}}{R_{L}+R_{E}}$
It is seen from above calculations that value of β was never used anywhere. The base voltage is set by $V_{C C}$ and R_{1} and R_{2}. The $d c$ bias circuit is independent of transistor β. That is why it is such a very popular bias circuit.

$$
\begin{aligned}
K_{\beta} & =\frac{1}{1+\beta R_{E} /\left(R_{1} \| R_{2}\right)} \\
S & =\frac{1+\left(R_{1} \| R_{2}\right) / R_{e}}{1+\left(R_{1} \| R_{2}\right) /(1+\beta) R_{E}} \\
& \cong \frac{1+\left(R_{1} \| R_{2}\right) / R_{E}}{1+\left(R_{1} \| R_{2}\right) / \beta R_{E}}
\end{aligned}
$$

Using Thevenin's Theorem

More accurate results can be obtained by Thevenizing the voltage divider circuit as shown in Fig. 58.17. The first step is to open the base lead at point A and remove the transistor along with R_{L} and R_{E} thereby leaving the voltage divider circuit behind as in Fig. 58.17 (a) and (b).

Fig. 58.17

$$
V_{t h}=V_{2}=V_{C C} \cdot \frac{R_{2}}{R_{1}+R_{2}} \quad \text { and } \quad R_{t h}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{\left(R_{1}+R_{2}\right)}
$$

The original circuit is reduced to that shown in Fig. 58.17 (c) where $V_{t h}=V_{B B} ; . R_{t h}=R_{B}{ }^{\prime}$.
Now, applying $K V L$ to the base-emitter loop, we get

$$
V_{B B}-I_{B}, R_{B}{ }^{\prime}-V_{B E}-I_{E} R_{E}=0
$$

Substituting the value of $I_{E}=(1+\beta) I_{B}$ in (i) above, we get
$I_{B}=\frac{V_{B B}{ }^{\prime}-V_{B E}}{R_{B}{ }^{\prime}+(1+\beta) R_{E}}$
However, if we substitute the value of $I_{B}=I_{E} /(1+\beta)$, we get

$$
\begin{gathered}
I_{E}=\frac{V_{B B}^{\prime}-V_{B E}}{R_{E}+R_{B}^{\prime} /(1+\beta)} \\
V_{C E}=V_{C C}-I_{C} R_{L}-I_{E} R_{E} \cong V_{C C}-I_{C}\left(R_{L}+R_{E}\right)
\end{gathered}
$$

The above results could also be obtained directly by ap-

Fig. 58.18 plying β-rule (Art. 58.12)

Using β-rule

As per β-rule (Art. 58.12) when R_{E} is transferred to the base circuit, it becomes $(1+\beta) R_{E}$ and is in parallel with R_{2} as shown in Fig. 8.18. Now, $V_{C C}$ drops over R_{1} and $R_{2} \|(1+\beta) R_{E}$

$$
\begin{aligned}
& \therefore V_{B}=V_{C C} \frac{R_{2} \|(1+\beta) R_{E}}{R_{1}+R_{2} \|(1+\beta) R_{E}} \\
& V_{E}=V_{B}-V_{B E} ; I_{E}=V_{E} / R_{E} \quad \text { and so on. }
\end{aligned}
$$

Example. 58.10. For the circuit of Fig. 58.19, find (a) $I_{C}($ sat $)$, (b) I_{C}, (c) $V_{C E}$, (d) K_{β}. Neglect $V_{B E}$ and take $\beta=50$. (Electronics, Gorakhpur Univ.)

Solution.

(a) $I_{C(\text { sat })}=\frac{V_{C C}}{R_{L}+R_{E}}=\frac{20}{2+6}=2.5 \mathrm{~mA}$
(b) $I_{C} \cong I_{E} \cong V_{2} / R_{E}=6 / 6=1 \mathrm{~mA}$
(c) $V_{C E}=V_{C C}-I_{C}\left(R_{L}+R_{E}\right)=20-1(2+6)=\mathbf{1 2} \mathbf{V}$
(d) $R_{1} \| R_{2}=84 / 20=4.2 \mathrm{~K}$

Fig. 58.19

$$
K_{\beta}=\frac{1}{1+50 \times 6 / 4.2}=0.0138
$$

Example 58.11. For the circuit shown in Fig. 58.20

Fig. 58.20 (a), draw the dc load line and mark the Q-point of the circuit. Assume germanium material with $V_{B B}=0.3 \mathrm{~V}$ and $\beta=50$.
(Electronics-I, M.S. Univ. 1991)
Solution. $V_{C C(\text { cut-off })}=V_{C C}=20 \mathrm{~V}$

$$
I_{C(s a t)}=\frac{V_{C C}}{R_{L}+R_{E}}=\frac{20}{4+6}=2 \mathrm{~mA}
$$

(a) Approximate Method

$$
\begin{aligned}
& V_{2}=V_{C C} \frac{R_{2}}{R_{1}+R_{2}}=20 \times \frac{25}{125}=4 \mathrm{~V} \\
& I_{E}=\frac{V_{2}-V_{B E}}{R_{E}}=\frac{4-0.3}{6}=0.62 \mathrm{~mA}
\end{aligned}
$$

$\therefore \quad V_{C E}=V_{C C}-I_{C}\left(R_{L}+R_{E}\right)=20-0.62 \times 10=13.8 \mathbf{V}$
This Q-point ($\mathbf{1 3 . 8} \mathbf{V}, \mathbf{0 . 6 2} \mathbf{~ m A}$) is shown in Fig. 58.21 (a).
As seen from Fig. 58.20 (b)

$$
\begin{aligned}
V_{B B} & =20 \times 25 / 125 \\
& =4 \mathrm{~V} \\
I_{B} & =\frac{V_{B B}^{\prime}-V_{B E}}{R_{B^{\prime}}+(1+\beta) R_{E}} \\
& =\frac{4-0.3}{20+51 \times 6} \\
& =11.3 \mu \mathrm{~A} \\
I_{C} & =\beta I_{B}=50 \times 11.3 \\
& =0.565 \mathrm{~mA} \\
I_{E} & =\left(1+\beta I_{B}\right. \\
& =576 \mu \mathrm{~A} \\
& =0.576 \mathrm{~mA}
\end{aligned}
$$

(a)

(b)

Fig. 58.21
$\therefore \quad V_{C E}=V_{C C}-I_{C} R_{C}-I_{E} R_{E}=20-0.565 \times 4-0.576 \times 6=\mathbf{1 4 . 3} \mathrm{V}$
The new and more accurate Q-point $(\mathbf{1 4 . 3} \mathbf{V}, \mathbf{0 . 5 6 5} \mathbf{~ m A})$ is shown in Fig. 58.21 (b).

58.15. Load Line and Output Characteristics

In order to study the effect of bias conditions on the performance of a $C E$ circuit, it is necessary to superimpose the dc load line on the transistor output $\left(V_{C E} / I_{C}\right)$ characteristics. Consider a silicon $N P N$ transistor which is connected in CE configuration (Fig. 58.22) and whose output characteristics are given in Fig. 58.23. Let its $\beta=100$.

First, let us find the cut-off and saturation points for drawing the dc load line and then mark in the Q-point.

$$
\begin{align*}
& I_{C(s a t)}=10 / 2=5 \mathrm{~mA} \\
& V_{C E(\text { cut-off) }}=V_{C C}=10 \mathrm{~V}
\end{align*}
$$

—point A in Fig. 58.23
The load line is drawn in Fig. 58.23 below.

Fig. 58.22
Actual

$$
\begin{aligned}
& I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{10-0.7}{470}=20 \mu \mathrm{~A} \\
& I_{C}=\beta I_{B}=100 \times 20=2000 \mu \mathrm{~A}=2 \mathrm{~mA} \\
& V_{C E}=V_{C C} \times I_{C} R_{L}=10-2 \times 2=6 \mathrm{~V}
\end{aligned}
$$

This locates the Q-point in Fig. 58.23.
Suposse an ac input signal voltage injects a sinusoidal base current of peak value $10 \mu \mathrm{~A}$ into the circuit of Fig. 58.22. Obviously, it will swing the operating or Q-point up and down along the load line.

When positive half-cycle of I_{B} is applied, the Q-point shifts to point C which lies on the $(20+10)=30 \mathrm{~mA}$ line .

Similarly, during negative half-cycle of input base current, Q-point shifts to point D which lies on the $(20-10)=10 \mu \mathrm{~A}$ line.

By measurement, at point $C, I_{C}=2.9 \mathrm{~mA}$. Hence, $V_{C E}=10-2 \times 2.9=4.2 \mathrm{~V}$
Similarly, at point D, I_{C} measures $1.1 \mu \mathrm{~A}$.Hence, $V_{C E}=10-2 \times 1.1=7.8 \mathrm{~V}$
It is seen that $V_{C E}$ decreases from 6 V to 4.2 V i.e. by a peak value of $(6-4.2)=1.8 \mathrm{~V}$ when base current goes positive. On the other hand, $V_{C E}$ increases from 6 V to 7.8 V i.e. by a peak value of $(7.8-6)=1.8 \mathrm{~V}$ when input base current signal goes negative. Since changes in $V_{C E}$ represent changes in output voltage, it means that when input signal is applied, I_{B} varies according to the signal
amplitude and causes I_{C} to vary, thereby producing voltage variations.
Incidentally, it may be noted that variations in voltage drop across R_{L} are exactly the same as in $V_{C E}$.

Steady drop across R_{L} when no signal is applied $=2 \times 2=4 \mathrm{~V}$. When base signal goes positive, drop across $R_{L}=2 \times 2.9=5.8 \mathrm{~V}$. When base signal goes negative, $I_{C}=1.1 \mathrm{~mA}$ and drop across $R_{L}=2 \times 1.1=2.2 \mathrm{~V}$.

Hence, voltage variation is $=5.8-4=1.8 \mathrm{~V}$ during positive input half-cycle and $4-2.2=1.8 \mathrm{~V}$ $\begin{array}{llll}\text { during negative input half-cycle. Obviously, rms voltage variation } & 1.8 \sqrt{2} & 1.27 \mathrm{~V}\end{array}$

Now, proper dissipated in RL by ac component of output voltage is $P_{a c}=1.27^{2} / 2=0.81 \mathrm{~mW}$ and $P_{d c}=I_{C}^{2} R=2^{2} \times 2=8 \mathrm{~mW}$
Total power dissipated in $R_{L}=8.81 \mathrm{~mW}$.

58.16. AC Load Line

It is the line along which Q-point shifts up and down when changes in output voltage and current of an amplifier are caused by an ac signal.

This line is steeper than the dc line but the two intersect at the Q-point determined by biasing dc voltage and currents.

AC load line takes into account the ac load resistance whereas $d c$ load line considers only the dc load resistance.
(i) DC Load Line

The cut-off point for this line is where $V_{C E}=V_{C C}$. It is also written as $V_{C E(c u t-o f f)}$.
Saturation point is given by
$I_{C}=V_{C C} / R_{L}$. It is also written as $I_{C(s a t)}$.
It is represented by straight line $A Q B$ in Fig. 58.24.
(ii) AC Load Line

The cut-off point is given by $V_{C E(\text { out-off })}=V_{C E Q}+I_{C Q}$ $R_{a c}$ where Rac is the ac load resistance*.

Saturation point is given by

$$
I_{C(s a t)}=I_{C Q}+V_{C E Q} / R_{a c} .
$$

It is represented by straight line $C Q D$ in Fig. 58.24.

The slope of the ac load line is given by $y=\times$ $1 / R_{a c}$.

It is seen from Fig. 58.24 that maximum possible positive signal swing is $=I_{C Q} R_{a c}$. Similarly, maximum possible negative signal swing is $V_{C E Q}$. In other words, peak-signal handling capacity is

Fig. 58.24 limited to $I_{C Q}$ Rac or $V_{C E Q}$ whichever is smaller.

Example 58.12. Draw the dc and ac load lines for the CE circuit shown in Fig. 58.25 (a). What is the maximum peak-to-peak signal that can be obtained?
(Applied Electronics, Kerala Univ. 1991)
Solution. DC Load Line [Fig. 58.25 (b)]
$V_{C E(\text { cut-off })}=V_{C C}=20 \mathrm{~V}\left(\right.$ point A) and $I_{C(\text { sat })}=V_{C C}\left(R_{1}+R_{E}\right)=20 / 5=4 \mathrm{~mA}$ (point B). Hence, $A_{Q B}$ represents dc load line for the given circuit.

Approximate bias conditions can be quickly found by assuming that I_{B} is too small to affect the base bias in Fig. 58.25 (a).
$\mathrm{V}_{2}=20 \times 4 /(4+16)=4 \mathrm{~V}$
If we neglect $V_{B E}, \mathrm{~V}_{2}=V_{E} ; I_{E}$,

$$
I_{E}=\frac{V_{E}}{R_{E}}=\frac{V_{2}}{R_{E}}=\frac{4}{2}
$$

$$
=2 \mathrm{~mA}
$$

Also, $I_{C} \cong I_{E}=2 \mathrm{~mA}$.
Hence, $I_{C Q}=2 \mathrm{~mA}$
The corresponding value of $V_{C E Q}$ can be found by drawing dotted line in Fig. 58.25 (b) or may be calculated as

Fig. 58.25

AC Load Line

Cut-off pont,

$$
V_{C E(\text { cut-off })}=V_{C E Q}+I_{C Q} R_{a c}
$$

Now, for the given circuit, ac load resistance is $R_{a c}=R_{C}=3 \mathrm{~K}$
Cut-off point $=10+2 \times 3=16 \mathrm{~V}$ [Fig. $58.25(b)]$.
Saturation point, $I_{c(s a t)}=I_{C Q}+\frac{V_{C E Q}}{R_{a c}}=2+\frac{10}{3}=5.13 \mathrm{~mA}$
Hence, line joining 16-V point and 5.13 mA point gives ac load line as shown in Fig. 58.25 (b). As expected, this line passes through the Q-point.

Now, $I_{C Q} \cdot R_{a c}=2 \times 3=6 \mathrm{~V}$ and $V_{C E Q}=10 \mathrm{~V}$. Taking the smaller quantity, maximum peak output signal $=6 \mathrm{~V}$. Hence, peak-to-peak value $=2 \times 6=12 \mathrm{~V}$.
Example 58.13. Find the dc and ac load lines for CE circuit shown in Fig. 58.26 (a).

Solution. The given circuit is identical to that shown in Fig. 58.25 (a) except for the addition of 6-K resistor. This makes $R_{A C}$ $=3 \mathrm{~K} \| 6 \mathrm{~K}=2 \mathrm{~K}$ because collector feeds these two resistors in parallel. The dc loadline would remain unaffected. Change would occur only in the ac load line.

AC Load Line

$V_{C E \text { cut-off })}=V_{C E O}+I_{C Q} R_{a c}=$ $10+2 \times 2=14 \mathrm{~V}$

$$
I_{C(s a t)}=I_{C O}+V_{C E O} / R_{a c}=2+10 / 2=7 \mathrm{~mA}
$$

Example 58.14. Draw the dc and ac load lines for the CB circuit shown in Fig. 58.27 (a). Which swing starts clipping first?

Solution. The dc load line passes through cut-off point of 30 V and saturation point of $V_{c c} / R_{L}$ $=1 \mathrm{~mA}$.

$$
\text { Now, } I_{E} \cong 20 / 40=0.5 \mathrm{~mA} ; I_{C} \cong I_{E}=0.5 \mathrm{~mA} ; I_{C Q}=0.5 \mathrm{~mA}
$$

$$
V_{C B}=V_{C C}-I_{C} R_{C}=30-0.5 \times 30=15 \mathrm{~V} ; V_{C B Q}=15 \mathrm{~V}
$$

Fig. 58.27
Hence, $d c$ operating point or Q-point is ($15 \mathrm{~V}, 0.5 \mathrm{~mA}$) as shown in Fig. 58.27 (b).
The cut-off point for ac load line is $=V_{C B Q}+I_{C Q} R_{A C}$
Since collector sees an ac load of two 30 K resistors in parallel, hence $R_{a c}=30 \mathrm{~K} \| 30 \mathrm{~K}$ $=15 \mathrm{~K}$.
$\therefore \quad V_{C B Q}+I_{C Q} R_{a c}=15+0.5 \times 15=22.5 \mathrm{~V}$
Saturation current for ac line is $=I_{C Q}+V_{C B Q} / R_{a c}=0.5+15 / 15=1.5 \mathrm{~mA}$
The line joining these two points (and also passing through Q) gives the ac load line as shown in Fig. 58.27 (b).

Note. Knowing ac cut-off point and Q-point, we can draw the ac load line. Hence, we need not find the value of saturation current for this purpose.

As seen, positive swing starts clipping first because $I_{C Q} R_{a c}$ is less than $V_{C B Q}$. Obviously, maximum peak-to-peak signal that can be obtained from this circuit $=2 \times 7.5=15 \mathrm{~V}$.

Example. 58.15. For the circuit shown in Fig. 58.27 (a), find the approximate value of source voltage us that will cause clipping. The voltage source has an internal resistance of 1 K .

Solution. As found out in Ex. 58.14, the maximum swing of the unclipped output $=2 \times 7.5=$ 15 V.

$$
\begin{array}{ll}
\text { Now, } & A_{v}=\frac{V_{\text {out }}}{V_{s}}=\frac{R_{a c}}{R_{S}}=\frac{15}{1}=15 \\
\therefore & V_{S}=\frac{V_{\text {out }}}{A_{v}}=\frac{15 V_{p-p}}{15}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}
\end{array}
$$

Tutorial Problems No. 58.1

1. For the CB circuit shown in Fig. 58.28, find the approximate location of Q-point.
2. For the circuit of Fig. 58.29, find
(a) dc operating-point,
(b) maximum peak-to-peak unclipped signal.
[(15 V, $\left.\mathbf{0 . 5} \mathbf{~ m A}) ; 10 \mathbf{V}_{p-p}\right]$
3. What is the maximum peak-to-peak signal that can be obtained from the circuit of Fig. 58.30 ?
4. Find the value of maximum peak-to-peak output of signal that can be obtained from the circuit of Fig. 58.31.
$\left[10 \mathrm{~V}_{p-p}\right.$]

OBJECTIVE TESTS - 58

1. The dc load line of a transistor circuit
(a) has a negative slope
(b) is a curved line
(c) gives graphic relation between I_{C} and I_{B}
(d) does not contain the Q-point.
2. The positive swing of the output signal in a transistor circuit starts clipping first when Q point of the circuit moves
(a) to the centre of the load line
(b) two-third way up the load line
(c) towards the saturation point
(d) towards the cut-off point.
3. To avoid thermal run away in the design of analog circuit, the operating point of the $B J T$ should be such that it satisfies the condition
(a) $V_{C E}=1 / 2 V_{C C}$
(b) $V_{C E}<1 / 2 V_{C C}$
(c) $V_{C E}>1 / 2 V_{C C}$
(d) $V_{C E}<0.78 V_{C C}$
4. In the case of a $B J T$ amplifier, bias stability is achieved by
(a) keeping the base current constant
(b) changing the base current in order to keep the I_{C} and $V_{C B}$ constant
(c) keeping the temperature constant
(d) keeping the temperature and the base current constant
5. For a transistor amplifier with self-biasing network, the following components are used :
$R_{1}=4 \mathrm{k} \Omega, R_{2}=4 \mathrm{k} \Omega$ and $R_{E}=1 \mathrm{k} \Omega$
the approximate value of the stability factor ' S ' will be
(a) 4
(b) 3
(c) 2
(d) 1.5
6. A transistor circuit employing base bias with collector feedback has greater stability than the one without feedback because
(a) I_{C} decrease in magnitude
(b) $V_{B E}$ is decreased
(c) of negative feedback effect
(d) I_{C} becomes independent of β.
7. The universal bias stabilization circuit is most popular because
(a) I_{C} does not depend on transistor characteristics
(b) its β-sensitivity is high
(c) voltage divider is heavily loaded by transistor base
(d) I_{C} equals I_{E}.
8. Improper biasing of a transistor circuit leads to
(a) excessive heat production at collector terminal
(b) distortion in output signal
(c) faulty location of load line
(d) heavy loading of emitter terminal.
9. The negative output swing in a transistor circuit starts clipping first when Q-point
(a) has optimum value
(b) is near saturation point
(c) is near cut-off point
(d) is in the active region of the load line.
10. When a $B J T$ is employed as an amplifier, it operates
(a) in cut-off
(b) in saturation
(c) well into saturation
(d) over the active region.
11. Which of the following method used for biasing a $B J T$ in integrated circuits is considered independent of transistor beta?
(a) fixed biasing
(b) voltage divider bias
(c) collector feedback bias
(d) base bias with collector feedback.
12. The voltage V_{0} of the circuit shown in Fig. 58.32 is,

Fig. 58.32
(a) 5.1 V
(b) 3.1 V
(c) 2.5 V
(d) zero
13. The collector voltage V_{C} of the circuit shown in Fig. 58.33, is approximately
(a) 2 V
(b) 4.6 V
(c) 9.6
(d) 8.6 V

Fig. 58.33

ANSWERS

1. (a)
2. (d)
3. (c)
4. (a)
5. (b)
6. (b)
7. (a)
8. (b)
9. (b)
10. (d)
11. (b)
12. (d)
13. (a)

C H A P T E R

59

Leaming Objectives
$>$ General
$>$ DC Equivalent Circuit
$>A C$ Equivalent Circuit
$>$ Equivalent Circuit of a CB Amplifier
> Effect of Source Resistance R_{s} on Volta ge Gain
> Equivalent Circuit of a CEAmplifier
$>$ Equivalent Circuit of a CC Amplifier
> Small-signal Low-frequency Model or Representation
> T-Model
$>$ FormulasforT-Equivalent of a CC Circuit
$>$ Whatare h-parameters?
> Input Impedance of a Two Port Network
> Voltage Gain ofa Two Port Network
> The h-parameters of an Ideal CB Transistor
> The h-parameters of an ideal CE Transistor
> Approximate Hybrid Equiva lent Circuits
$>$ Transistor Amplifier Formulae Using h-parameters
> Typical Values of Tra nsistor h-parameters
> Approximate Hybrid Formulas
$>$ Common Emitter h- parameter Analysis
> Common Collector h-pa rameterAnalysis
$>$ Conversion of h-parameters

TRANSISTOR EQUIVALENT CIRCUITS AND MODELS

[^10] circuit

59.1. General

We will begin by idealizing a transistor with the help of simple approximations that will retain its essential features while discarding its less important qualities. These approximations will help us to analyse transistor circuits easily and rapidly.

We will discuss only the small signal equivalent circuits in this chapter. Small signal operation is that in which the ac input signal voltages and currents are in the order of ± 10 per cent of Q-point voltages and currents.

There are two prominent schools of thought today regarding the equivalent circuit to be substituted for the transistor. The two approaches make use of
(a) four h-parameters of the transistor and the values of circuit components,
(b) the beta (β) of the transistor and the values of the circuit components.

Since long, industrial and educational institutions have heavily relied on the hybrid parameters because they produce more accurate results in the analysis of amplifier circuits. In fact, hybrid-parameter equivalent circuit continues to be popular even to-day. But their use is beset with the following difficulties :

1. The values of h-parameters are not so readily or easily available.
2. Their values vary considerably with individual transistors even of the same type number.
3. Their values are limited to a particular set of operating conditions for reasonably accurate results.
The second method which employs transistor beta and resistance values is gaining more popularity of late. It has the following advantages :
4. The required values are easily available;
5. The procedure followed is simple and easy to understand;
6. The results obtained are quite accurate for the study of amplifier circuit characteristics.

To begin with, we will consider the second method first.

59.2. DC Equivalent Circuit

(a) CB Circuit

In an ideal transistor, $\alpha=1$ which means that $I_{C}=I_{E}$.

The emitter diode acts like any forward-biased ideal diode. However, due to transistor action, collector diode acts as a current source. In other words, for the purpose of drawing dc equivalent circuit, we can view an ideal transistor as nothing more than a recti-

Fig. 59.1
fier diode in emitter and a current source in collector. In the dc equivalent circuit of Fig. 59.1 (b), current arrow always points in the direction of conventional current.

As per the polarities of transistor terminals (Art. 59.3) shown in Fig. 59.1 (a), emitter current flow from E to B and collector current from B to C.

The dc equivalent circuit shown in Fig. 59.2 for an $N P N$ transistor is exactly similar except that direction of current flow is opposite.

Fig. 59.2

(b) CE Circuit

Fig. 59.3 shows the dc equivalent circuit of an $N P N$ transistor when connected in the $C E$ configuration. Direction of current flow can be easily found by remembering the transistor polarity rule given in Art 59.3. In an ideal $C E$ transistor, we disregard leakage current and take a.c beta equal to dc beta.

Fig. 59.3

59.3. AC Equiva lent Circ uit

(a) CB Circuit

In the case of small input ac signals, the emitter diode does not rectify, instead it offers resistance called ac resistance. As usual, collector diode acts as a current source.

Fig. 59.4

Fig. 59.4 shows the ac equivalent circuit of a transistor connected in the $C B$ configuration.* Here, ac resistance offered by the emitter diode is $r_{a c}=$ junction resistance $\left(r_{\mathrm{j}}\right)+$ base-spreading resistance $\left(r_{\mathrm{B}}\right)^{* *}$

$$
\begin{aligned}
& =r_{\mathrm{j}} \quad r_{\mathrm{B}} \text { is negligible } \\
& =\frac{25 \mathrm{mV}}{I_{E}}
\end{aligned}
$$

- where I_{E} is dc emitter current in mA It is written as $r_{e}{ }^{\prime}$ signifying junction resistance of the emitter i.e. a.c resistance looking into the emitter.

$$
r_{e}^{\prime} \quad \frac{25 \mathrm{mV}}{I_{E}}
$$

Hence, the a.c equivalent circuit of a $C B$ circuit becomes as shown in Fig. 59.5. Since changes in collector current are almost equal to changes in emitter current, $\Delta i_{c}=\Delta i_{e}$.

(b) CE Circuit

Fig. 59.6 (a) shows the equivalent circuit when an NPN transistor has been connected in the $C E$ configuration.

Fig. 59.5

The a.c resistance looking into the base is

$$
r_{a c} \frac{25 \mathrm{mV}}{I_{B}}-\text { d.c current is } I_{B} \text { not } I_{E}
$$

[^11]\[

$$
\begin{aligned}
& \frac{25 \mathrm{mV}}{I_{C} /}, \frac{25 \mathrm{mV}}{I_{C}} \\
& , \frac{25 \mathrm{mV}}{I_{E}}, r_{e}^{\prime}
\end{aligned}
$$
\]

Strictly speaking,

$$
r_{a c}=(1+\beta) r^{\prime} \cong \beta r_{e}^{\prime}-\operatorname{Art} 7.24
$$

The a.c collector current is β times the base current i.e., $i_{c}=\beta i_{b}$.

(a)

Fig. 59.6

59.4. Equivalent Circuit of a CB Amplifier

In Fig. 59.7 (a) is shown the circuit of a common-base amplifier. As seen, emitter is forwardbiased by $-V_{E E}$ and collector is reverse-biased by $+V_{C C}$. The a.c signal source voltage v_{s} drives the

Fig. 59.7
emitter. It produces small fluctuations in transistor voltage and currents in the output circuit. It will be seen that ac output voltage is amplified because it is more than V_{s}.
(a) DC Equivalent Circuit

For drawing dc equivalent circuit, following procedure should be adopted :
(i) short all ac sources i.e. reduce them to zero,
(ii) open all capacitors because they block dc.

If we do this, then as seen from Fig. 59.7 (a), neither emitter current can pass through C_{1} nor collector current can pass through C_{2}. These currents are confined to their respective resistances R_{E} and R_{C} (earlier we had been designating it as resistance R_{L}).

Here, $I_{C} \cong I_{E}$ and $V_{C B}=V_{C C}-I_{C} R_{L}$
Hence, the dc equivalent circuit becomes as shown in Fig. 59.7 (b).
(b) AC Equivalent Circuit

For drawing ac equivalent circuit, following procedure is adopted :
(i) all dc sources are shorted i.e. they are treated as ac ground,
(ii) all coupling capacitors like C_{1} and C_{2} in Fig. 59.7 (a) are shorted and
(iii) emitter diode is replaced by its a.c resistance $r_{a c}=r_{e}$

$$
r_{e}^{\prime} \frac{25 \mathrm{mV}}{I_{E}}
$$

where I_{E} is dc emitter current in mA .
As seen by the input a.c signal, it has to feed R_{E} and $r_{e}{ }^{\prime}$ in parallel [Fig. 59.8 (a)]. As looked
from point A in Fig. 59.7 (a), R_{E} is grounded through $V_{E E}$ which has been shorted and $r_{e}{ }^{\prime}$ is grounded via the base.

Similarly, collector has to feed R_{C} and R_{L} which are connected in parallel across it i.e at point B in Fig. 59.7 (a). The ac signal in collector sees an output load resistance of $r_{L}=R_{C} \| R_{L}$.

Fig. 59.8
Hence, ac equivalent circuit is as shown in Fig. 59.8 (b). Here, collector diode itself has been shown as a current source.

Following two points are worth noting :
(i) changes in collector signal current are very nearly equal to changes in emitter signal current. Hence, $\Delta i_{c} \cong \Delta i_{e}$,
(ii) directions of ac currents shown in the circuit diagram are those which correspond to positive half-cycle of the a.c input voltage. That is why i_{c} is shown flowing upwards in Fig. 59.8 (b).
(c) Principal Operating Characteristics

1. Input Resistance

As seen from Fig. 59.8 (a), the input resistance of the circuit (or stage) is given by

$$
r_{i n} \quad R_{E} \| r_{e}^{\prime} \quad \frac{r_{e}^{\prime} R_{E}}{R_{E} r_{e}^{\prime}}
$$

In practice, R_{E} is always much greater than r_{e}^{\prime} so that parallel combination $R_{E} \| r_{e}^{\prime} \cong r_{e}^{\prime}$
$\therefore r_{i n} \cong=r_{e}^{\prime}$ input resistance of the emitter diode
2. AC Load Resistance

The collector load as seen by output ac signal consists of a parallel combination of R_{L} and R_{C}. This has already been designated as r_{L}.

$$
\therefore \quad r_{L}=R_{L} \| R_{C}
$$

It should be carefully noted that it is the output resistance as seen by collector and not the ac output resistance when looking into the collector.

Note. In case, R_{L} has not been connected, then $r_{L}=R_{C}$ (Ex. 59.1)
3. Current Gain

It is given by the ratio $A_{i} \frac{i_{c}}{i_{e}}$
4. Voltage Gain

It is given by the ratio

$$
A_{v} \quad \frac{V_{\text {out }}}{V_{\text {in }}}
$$

Now, $V_{\text {in }}{ }^{*}=i_{e} r_{\text {in }}=(1+\beta) i_{\mathrm{b}} \cdot r_{\text {in }}$

$$
V_{\text {out }} \quad=i_{c} r_{L}=\beta \mathrm{i}_{\mathrm{b}} r_{L}
$$

[^12]$$
\therefore \quad A_{v} \quad \frac{i_{b} r_{L}}{(1 \quad) i_{b} r_{i n}}
$$

Taking the ratio $\beta /(1+\beta)$ as unity, $A_{V} \frac{r_{L}}{r_{i n}} \frac{r_{L}}{r_{e}^{\prime}}$

5. Power Gain

$$
A_{p}=\quad A_{\mathrm{v}} \cdot A_{i}
$$

When expressed in decibels, it is written as $G_{p}=10 \log _{10} A_{p} d B$.
When expressed in terms of $r_{\text {in }}$ and r_{L}, the a.c equivalent circuit becomes as shown in Fig. 59.9.
Example 59.1. For the single-stage CB amplifier shown in Fig. 59.10 (a), find $r_{i n}, r_{L}, A_{i}, A_{v}$ and A_{p}.
What would be the rms value of the signal voltage across the load if v_{s} has an rms value of 1.5 mV ? Assume silicon material and transistor $\alpha=0.98$.
(Electronics-II, Madras Univ.)

Fig. 59.10
Solution. For finding, let us first find I_{E}.

$$
\begin{array}{rlll}
I_{E} & \frac{V_{E E} \quad V_{B E}}{R_{E}} \quad \frac{10}{5 \mathrm{~K}} & 1.86 \mathrm{~mA} \\
r_{e} & \frac{25 \mathrm{mV}}{I_{E} \mathrm{~mA}} \quad \frac{25}{1.86} & 14 &
\end{array}
$$

(i) $r_{\text {in }}=r_{e}^{\prime}\left\|R_{E}=14 \Omega\right\| 5 \mathrm{~K} \cong 14 \Omega$
(ii) $r_{L}=R_{C}=4 \mathrm{~K}$

The ac equivalent circuit becomes as shown in Fig. 59.10 (b).
(iii) $A_{i}=\alpha=0.98$
$\begin{array}{llllll}\text { (iv) } & A_{v} & \frac{r_{L}}{r_{i n}} & \frac{r_{L}}{r_{e}^{\prime}} & \frac{4 K}{14} & 286 \\ G=10 & l_{\text {log }} & 280 \stackrel{ }{r_{e}} \mathbf{2 4 . 5} \mathrm{~dB}\end{array}$
(v) $A_{\mathrm{p}}=A_{i} A_{\mathrm{v}}=0.98 \times 286=280$

$$
G_{\mathrm{p}}=10 \log _{10}^{r_{i n}} 280 \stackrel{r_{e}}{=} 24.5 \mathrm{~dB}
$$

Output ac voltage $=A_{v} \times$ input voltage

$$
\therefore \quad V_{\text {out }} \quad=A_{\mathrm{v}} \times V_{\text {in }}=286 \times 1.5=429 \mathrm{mV}=0.429 \mathrm{~V}
$$

Example 59.2. For the CB amplifier circuit shown in Fig. 59.11 (a), find
(i) stage $r_{\text {in }}$
(ii) r_{L}
(iii) a.c output voltage $V_{\text {out }}$
(iv) voltage gain A_{v}.

Take $V_{B E}=0.7 \mathrm{~V}$.
Solution. $I_{E}=(20-0.7) / 30 \mathrm{~K}=0.64 \mathrm{~mA} ; r_{e}^{\prime}=25 / 0.64=39 \Omega$
(i) stage $r_{\text {in }}=r_{e}{ }^{\prime}\left\|R_{E}{ }^{\prime}=39 \Omega\right\| 30 \mathrm{~K} \cong 39 \Omega$
(ii) $\quad r_{L}=R_{L}\left\|R_{C}=30 \mathrm{~K}\right\| 15 \mathrm{~K}=10 \mathrm{~K}$

The amplifier circuit alongwith its ac equivalent circuit is shown in Fig. 59.11.
(iii) We will first find the value of $n_{\text {out }}$ as a drop across $r_{L}=R_{C} \| R_{L}$. For that purpose, we will employ rms values.

Fig. 59.11

$$
i_{c}=i_{e}=0.04 \mathrm{~mA} ; V_{\text {out }}=i_{c} r_{L}=0.04 \times 10 \mathrm{~K}=0.4 \mathrm{~V}
$$

(iv)

$$
A_{v} \quad \frac{r_{L}}{r_{i n}} \quad \frac{r_{L}}{r_{e}^{\prime}} \quad \frac{r_{L}}{r_{e}^{\prime}} \quad \frac{10 \mathrm{~K}}{39}
$$

The rms value of ac output voltage may be found with the help of A_{v}.
Now, $A_{v} \frac{V_{\text {out }}}{V_{\text {in }}} \quad V_{\text {out }} \quad A_{v} \cdot V_{\text {in }} \quad 250 \quad 1.6$

59.5. Effect of Source Resista nce R_{s} on Voltage Gain

The voltage gain for the $C B$ amplifier circuit has so far been calculated on the assumption that the resistance R_{S} of the ac signal source is negligible. The voltage gain will decrease as R_{S} increases because more and more of V_{S} will drop on R_{S} rather than on $r_{i n}$ and so will not appear in the output.

The basic circuit is shown in Fig. 59.12 where R_{S} is the internal resistance of the ac signal source.

The ac equivalent circuit is shown in Fig. $59.13(a)$. Here, R_{S} is in series with $\left(r_{e}{ }^{\prime} \| R_{\mathrm{E}}\right)$. The input ac signal voltage v_{S} drops on these two series resistors. Obviously, $V_{\text {in }}$ is the drop across $r_{\mathrm{e}}{ }^{\prime} \| R_{E}$ and is less than V_{S}. Using Proportional Volt-

Fig. 59.12 age Formula,

* Strictly speaking, it is not i_{e} but i_{s}. a small part of the ac source current goes through $R_{E}=30 \mathrm{~K}$ and the balance (major part) goes through parallel resistance $r_{e}{ }^{\prime}$. However, if we neglect current through 30 K , then $i_{e}=i_{s}$

$$
V_{\text {in }} \quad V_{s} \frac{r_{e}^{\prime} \| R_{E}}{R_{s} r_{e}^{\prime} \| R_{E}}
$$

In practice, $R_{E} \gg r_{e}{ }^{\prime}$, so that $r_{e}{ }^{\prime} \| R_{E} \cong r_{e}{ }^{\prime}$

Fig. 59.13

$$
\therefore \quad V_{\text {in }} V_{s} \frac{r_{e}^{\prime}}{R_{s} r_{e}^{\prime}} \frac{V_{s}}{1 \frac{R_{s}}{r_{e}^{\prime}}}
$$

As R_{S} increases in comparison to $r_{e}{ }^{\prime}$, the ratio $R_{S} / r_{e}{ }^{\prime}$ increases thereby making $v_{i n}$ increasingly less than V_{s}.

Moreover, as seen from the source, input resistance is

$$
R_{S}+r_{e}^{\prime} / / R_{E} \cong R_{S}+R_{e}^{\prime} \quad \therefore \quad \frac{V_{\text {out }}}{V_{s}} \frac{r_{L}}{\left(R_{S} r_{e}^{\prime}\right)} \quad \frac{r_{L}}{R_{S}} \quad \text { - if } R_{S} \gg r_{e}^{\prime}
$$

Making R_{S} much larger than $r_{e}{ }^{\prime}$ is called swamping out the emitter diode. This makes voltage gain independent of $r_{e}{ }^{\prime}$ and hence the particular transistor is used. The above gain is different from the voltage gain considered from emitter to collector which is

$$
\frac{V_{\text {out }}}{V_{\text {in }}} \frac{r_{L}}{r_{\text {in }}} \frac{r_{L}}{r_{e}^{\prime}}
$$

Example. 59.3. In the CB amplifier circuit of Fig. 59.14, find
(a) voltage gain from source to output
(c) approximate value of $V_{\text {in }}$
(b) voltage gain from emitter to output
(Electronics-I, Patna Univ.)

Solution. (a) The voltage gain from source to output is given by

$$
\begin{align*}
\frac{V_{\text {out }}}{V_{S}} & \frac{r_{L}}{\left(R_{S} \quad r_{e}^{\prime}\right)} \\
r_{L} & =R_{C}\left\|R_{L}=10 \mathrm{~K}\right\| 2 \mathrm{M} \\
& \cong 10 \mathrm{~K} ; I_{E}=25 / 25 \mathrm{~K}=1 \mathrm{~mA} \\
r_{e}^{\prime} & =25 / 1=25 \Omega \\
\frac{V_{\text {out }}}{V_{s}} & \left.\frac{10 \mathrm{~K}}{(1 \mathrm{~K}} 26\right) \quad 10 \tag{i}
\end{align*}
$$

(b) The voltage gain from emitter to output is

Fig. 59.14

$$
\frac{V_{\text {out }}}{V_{s}} \frac{r_{L}}{r_{\text {in }}}
$$

Now, $r_{\text {in }}=R_{E} / / r_{\mathrm{e}}{ }^{\prime}=25 \mathrm{~K} \| 25 \Omega \cong 25 \Omega \quad \therefore \frac{V_{\text {out }}}{V_{S}} \frac{10 K}{25} 400$
(c) The value of $V_{\text {in }}$ may be found by the following two ways:
(i) As seen from Eq. (ii) above, $V_{\text {in }}=\frac{V_{\text {out }}}{400}$, Now, from Eq. (i) above, we have

Fig. 59.15

$$
V_{\text {out }}=10 V_{s}=10 \times 2=20 \mathrm{mV} \quad \therefore \quad V_{\text {in }} \quad \frac{20}{400} 10^{3} \quad \mathbf{5 0 \mu V}
$$

(ii) As seen from the ac equivalent circuit of the amplifier (Fig. 59.15), V_{s} is dropped proportionally on the two series resistances R_{S} and $r_{e}{ }^{\prime}$ (strictly speaking $r_{e}{ }^{\prime} \| R_{E}$). The drop across $r_{i n}$ is called $V_{i n}$.

$$
\therefore \quad V_{i n} \quad V_{s} \frac{r_{e}^{\prime}}{R_{s} r_{e}^{\prime}} \quad 2 \mathrm{~m} V \frac{25}{1000 \quad 25} \quad \mathbf{5 0 \mu \mathbf { V }}
$$

59.6. Equivalent Circuit of a CEAmplifier

Consider the simple $C E$ amplifier circuit of Fig. 59.16 (a) in which base bias has been employed.

Fig. 59.16

(a) DC Equivalent Circuit

Fog drawing the dc equivalent circuit, same procedure is adopted as given in Art. 59.2. It is shown in Fig. 59.16 (b).

As seen, $I_{B} \frac{V_{C C} V_{B E}}{R_{B}} \quad \frac{V_{C C}}{R_{B}} ; I_{C}=\beta . I_{B} ; I_{E} \cong I_{C} \cong \beta I_{B}$
(b) AC Equivalent Circuit

Let us now analyse the ac equivalent circuit given in Fig. 59.17.
As proved in Art. 59.3, the ac resistance as seen by the input signal when looking into the base is $=\beta r_{e}{ }^{\prime}$. It may be called $r_{\text {in(base })}$ to distinguish it from $r_{i n}$ which is resistance of the $C E$ stage as shown in Fig. 59.17 (a).

Fig. 59.17
It may be noted that in the absence of ac voltage source resistance R_{S}, whole of V_{s} acts across R_{B} as well as $\beta r_{e}{ }^{\prime}$ because the two are connected in parallel across it.

Another point worth noting is that major part of source current is passes through $\beta r_{e}{ }^{\prime}$ and an extremely small part ($=v_{\mathrm{S}} / R_{B}$) passes through R_{S}. Since R_{B} is usually very large, current passing through it can be easily neglected. Hence, as shown in Fig. 59.17 (b), $i_{b}=i_{s}$.
(c) Principal Operating Characteristics

1. Input Resistance

As seen from Fig. 59.17, input resistance of the stage is

$$
\begin{array}{rlr}
r_{\text {in }} & =R_{B} / / \beta r_{e}{ }^{\prime} \cong \beta r_{e}{ }^{\prime} & R_{B} \gg \beta r_{e}{ }^{\prime} \\
& =\text { input resistance of the base } & \\
r_{\text {in(stage })} & =r_{\text {in(base })} &
\end{array}
$$

2. AC Load Resistance. $r_{L}=R_{C} \| R_{L}$
3. Current Gain. $A_{i} \frac{i_{c}}{i_{b}}$
4. Voltage gain. The voltage gain of the stage or circuit is $A_{v} \frac{v_{\text {out }}}{v_{\text {in }}}$

$$
\begin{array}{lllllllll}
\text { Now, } & v_{\text {in }} & i_{b} & r_{e}^{\prime} & \text { and } & v_{\text {out }} & i_{c} \cdot r_{L} & i_{b} r_{L} & \\
\therefore & A_{v} & \frac{i_{b} r_{L}}{i_{b} r_{e}^{\prime}} & \frac{r_{L}}{r_{e}^{\prime}} & & & & - \text { if } R_{B} \gg \beta r_{s}^{\prime}
\end{array}
$$

5. Power Gain. $A_{p}=A_{i} . A_{v}$ and $G_{p}=10 \log _{10} A_{\mathrm{v}} d B$

Example. 59.4. If in the CE circuit of Fig. 59.16 (a), $V_{C C}=20 \mathrm{~V}, R_{C}=10 \mathrm{~K}, R_{B}=1 \mathrm{M}, R_{L}=1$
$M, v_{s}=2 m V$ and $\beta=50$, find
(i) i_{b} and i_{c}
(ii) $r_{i n}$
(iii) r_{L}
(iv) A_{n}
(v) A_{p} and G_{p}.
(Basic Electronics, Bombay Univ. 1991)
Solution. $I_{B}=20 / 1 \mathrm{M}=20 \mu \mathrm{~A}$;
$I_{C}=\beta I_{B}=50 \times 20 \mathrm{~mA}=1 \mathrm{~mA}$
$r_{e}^{\prime}=25 \mathrm{mV} / 1 \mathrm{~mA}=25 \Omega ; \quad r_{\text {in(base) }}=\beta r_{e}{ }^{\prime}=50 \times 20=1250 \Omega$
(i) As seen from Fig. 59.17 (a), ac base current is given by

$$
i_{b} \frac{v_{s}}{r_{\text {in(base })}} \quad \frac{2 \mathrm{mV}}{1250} \quad 1.6 \mu \mathrm{~A} ; i_{c}=\beta i_{b}=50 \times 1.6=80 \mu \mathrm{~A}
$$

(ii) stage $r_{\text {in }}=R_{B} / / \beta r_{e}{ }^{\prime}=1 \mathrm{M} \| 1250 \Omega \cong \mathbf{1 2 5 0} \Omega$
(iii) $\quad r_{L}=R_{L}\left\|R_{C}=1 \mathrm{M}\right\| 10 \mathrm{~K} \cong \mathbf{1 0} \mathrm{~K}$
(iv) $\quad A_{v} \quad \frac{r_{v}}{r^{\prime}} \quad \frac{r_{L}}{r^{\prime}} \quad \frac{10 \mathrm{~K}}{25} \quad 400$
(v) $A_{p}={ }^{r_{e_{i}}} \cdot A_{v}^{r_{e}}=50 \times 400=20,000 ; G_{p}=10 \log _{10} 20,000=43 \mathrm{~dB}$

Example 59.5. In the CE amplifier circuit of Fig. 59.18 employing emitter feedback, find :
(i) $r_{\text {in }}$ (ii) r_{L} (iii) A_{v} (iv) A_{p} and (v) G_{p}

Take transistor $\beta=100$. How will these values change if emitter bypass capacitor is removed ?
(Electronics-II, Madras Univ.)
Solution. It should be carefully noted that emitter bypass capacitor C provides ac ground to the signal i.e. it shorts out R_{E} to ground so far as ac signal is concerned. However, it plays its normal role so far as dc quantities are concerned.

Hence, the ac equivalent circuit of the amplifier becomes as shown in Fig. 59.19.

$$
\text { Now, } \begin{aligned}
& I_{B} \frac{V_{C C}}{R_{B} \quad R_{E}} \quad \frac{30}{2 \mathrm{M} 10010 \mathrm{~K}} \\
&=10 \mu \mathrm{~A} ; I_{C}=\beta I_{B} \\
&=100 \times 10 \mathrm{~mA}=1 \mathrm{~mA} \\
& I_{E} \cong I_{C}=1 \mathrm{~mA}, r_{e}{ }^{\prime}=25 / 1=\mathbf{2 5} \Omega ; \\
& \beta r_{e}^{\prime}=100 \times 25=\mathbf{2 5 0 0} \Omega
\end{aligned}
$$

Fig. 59.18

(i) As seen from Fig. 59.19
$r_{i n}=R_{B} \| \mathrm{b} r_{\mathrm{e}}{ }^{\prime}$

$$
=2 \mathrm{M} \| 2500 \Omega \cong \mathbf{2 5 0 0 \Omega}
$$

(ii) $r_{L}=R_{C}\left\|R_{L}=10 \mathrm{~K}\right\| 20 \mathrm{~K}$ $=6.67 \mathrm{~K}$
(iii) $A_{V} \frac{V_{\text {out }}}{V_{\text {in }}} \frac{r_{L}}{r_{e}^{\prime}}$

Fig. 59.19
(iv) $\quad A_{p}=A_{i} \cdot A_{v}=100 \times 267=26,700 ; G_{p}=10 \log _{10} 26,700=44.3 \mathrm{~dB}$

When Emitter Bypass Capacitor is Removed

When bypass capacitor is removed, ac ground is removed. Now, the ac signal will have to pass through R_{E} also. According to β-rule of Art. 57.24, the total emitter resistance referred to base will become $(1+\beta)\left(r_{e}^{\prime}+R_{E}\right) \cong \beta$ $\left(r_{e}{ }^{\prime}+R_{E}\right)$ because $r_{e}{ }^{\prime}$ is in series with R_{E} as shown in Fig. 59.20 (a).

Now, the ac equivalent circuit becomes as shown in Fig. 59.20 (b).

Stage $\quad r_{i n}=R_{B} \| \beta$
$\left(r_{e}^{\prime}+R_{E}\right) \cong R_{B} \| \beta R_{E}$
It is so because R_{E} is much greater than $r_{e}{ }^{\prime}$.

(i) $r_{e}{ }^{\prime}=25 \Omega$
— as before
$\begin{array}{rlr}\therefore \quad \beta\left(r_{e}^{\prime}+R_{E}\right) & \cong \beta R_{E}=100 \times 10 \mathrm{~K}=1 \mathrm{M} & \\ r_{i n} & =R_{B}\left\|\beta R_{E}=2 \mathrm{M}\right\| 1 \mathrm{M} & \\ & =\frac{2}{3} \mathrm{M}=\mathbf{6 6 6 . 7} \mathbf{K} & \text { - much greater than before }\end{array}$
(ii)
(iii)

$$
\begin{aligned}
r_{L} & =6.67 \mathrm{~K} \\
V_{i n} & =i_{b} \beta\left(r_{e}^{\prime}+R_{E}\right)
\end{aligned}
$$

—it remains unchanged
$V_{\text {out }}=i_{c} \cdot r_{L}=\beta i_{b} r_{L}$

$$
\therefore \quad A_{v} \frac{V_{\text {out }}}{V_{\text {in }}} \frac{i_{b} r_{L}}{i_{b} \cdot\left(r_{e}^{\prime} R_{E}\right)} \quad \frac{r_{L}}{\left(r_{e}^{\prime} R_{E}\right)} \quad \frac{r_{L}}{R_{E}}
$$

$$
\frac{6.67 \mathrm{~K}}{10 \mathrm{~K}} \quad 0.667
$$

-reduced drastically
(iv) $\quad A_{p}=A_{i} A_{v}=100 \times 0.667=66.7$
— reduced considerably
It is seen that by removing bypass capacitor, excessive degeneration has occurred in the amplifier circuit.

Example 59.6. For the circuit shown in Fig. 59.21, compute (i) $r_{\text {in (base) }}$ (ii) $V_{\text {out }}$ (iii) A_{v} (iv) $r_{\text {in }}$. Neglect $V_{B E}$ and take $\beta=200$.

Solution. It may be noted that voltage divider bias has been used in the circuit.

$$
\begin{aligned}
& V_{2} \frac{15}{1545} 307.5 \mathrm{~V} \\
& V_{\mathrm{E}}=\mathrm{V}_{2}-\mathrm{V}_{\mathrm{BE}} \cong \mathrm{~V}_{2}=7.5 \mathrm{~V} \\
& I_{\mathrm{E}}=7.5 / 7.5 \mathrm{~K}=1 \mathrm{~mA} \\
& r_{e}=25 \mathrm{mV} / 1 \mathrm{~mA}=25 \Omega
\end{aligned}
$$

The ac equivalent circuit is shown in Fig. 59.22. Since dc souce is shorted, 45 K , resistor is ac grounded. On the input side, three resistance

Fig. 59.21 become paralleled across v_{s} i.e. (i) 15 K (ii) 45 K and (iii) $\beta r_{e}{ }^{\prime}$ or $r_{\text {in(base) }}$.

Capacitor C_{2} ac grounds the emitter resistance R_{E}, so does C_{2} to 5 K and $V_{C C}$ to 10 K .

$$
\text { (i) } r_{\text {in(base). }}=\beta r_{e}^{\prime}=200 \times 25=5 \mathrm{~K} \quad \text { (ii) } i_{b}=5 \mathrm{mV} / 5 \mathrm{~K}=1 \mu \mathrm{~A}
$$

(Obviously, i_{b} is not the current which leaves the source but that part of the source current is which enters the base). Now, collector load resistance is $i_{c}=\beta i_{b}=200 \times 1=200 \mu \mathrm{~A}=0.2 \mathrm{~A}$

$$
r_{L}=10 \mathrm{~K} \| 5 \mathrm{~K}=10 / 3 \mathrm{~K}=3.33 \mathrm{~K}, V_{\text {out }}=i_{c} r_{L}=0.2 \times 3.33=0.667 \mathrm{~V}
$$

(iii) $A_{v} \frac{V_{\text {out }}}{V_{\text {in }}} \frac{0.667 \mathrm{~V}}{5 \mathrm{~m} \mathrm{~V}}$

133

$$
A_{v} \frac{r_{L}}{r_{e}^{\prime}} \quad \frac{3.33 \mathrm{~K}}{25} 133
$$

(iv) $r_{\text {in }}$ means the input ac resistance as seen from the source i.e. from point A in Fig. 59.22. It is different

Fig. 59.22 to the equivalent resistance of three resistances connected in parallel. $r_{i n}=15 \mathrm{~K}\|45 \mathrm{~K}\| 5 \mathrm{~K}=3.54 \mathrm{~K}$.

Example 59.7. For the CE amplifier circuit of Fig. 59.23, find out (i) $r_{i n}$ (ii) r_{L} (iii) A_{v} (iv) A_{p} and (v) $V_{\text {out }}$ Take transistor $\beta=50$ and $R_{S}=0$. (Applied Electronics-II, Punjab Univ. 1992) Solution.

$$
I_{E} \quad \frac{V_{E E}}{R_{E}} \quad \frac{20}{40} \quad 0.5 \mathrm{~mA}
$$

$$
r_{e}^{\prime}=25 / 0.5=50 \Omega
$$

$$
\begin{aligned}
& r_{e}=2, O=50 \times 50=2500 \Omega \\
& \beta_{e}{ }_{e}^{\prime}=50 \times V
\end{aligned}
$$

(i) $r_{i n}=10 \mathrm{~K} \| 2500 \Omega=\mathbf{2 0 0 0} \Omega$
(ii) $r_{L}=20 \mathrm{~K} \| 20 \mathrm{~K}=10 \mathrm{~K}$
(iii) $A_{v} \frac{r_{L}}{r_{e}^{\prime}} \quad \frac{10 K}{50} \quad \mathbf{2 0 0}$

Fig. 59.23
(iv) $A_{p}=A_{v} \cdot A_{i}$

$$
=200 \times 50=10,000
$$

$$
G_{p}=10 \log 1010000=40 \mathrm{~dB}
$$

(v) $V_{\text {out }}=A_{v} \times V_{\text {in }}=20 \times 2=40 \mathrm{mV}$ (r.m.s.)

Since R_{S} is zero, whole of v_{s} appears across the diode base.
Example.59.8. For the single-stage CE amplifier circuit of Fig. 59.24, find approximate value of (i) $r_{\text {in }}\left(\right.$ ii) r_{L} (iii) A_{v} (iv) A_{p} and G_{p}. Take transistor $\beta=100$. Use $_{e}{ }^{\prime}=50 \mathrm{mV} / \mathrm{I}_{E}$. (Electronics-II, Gujarat Univ. 1991)

Solution. $\quad V_{2} \quad 20 \frac{5}{545} 2 \mathrm{~V}$;

$$
\begin{aligned}
& I_{E} \quad \frac{V_{2}}{R_{E}} \quad \frac{2}{1} \quad 2 \mathrm{~mA} \\
& r_{e}^{\prime}=50 / 2=25 \Omega ; \\
& \beta r_{e}^{\prime}=25 \times 100=2.5 \mathrm{~K}
\end{aligned}
$$

Fig. 59.24
(i) $r_{\text {in }}=R_{1}\left\|R_{2}\right\| \beta r_{e}{ }^{\prime}=45\|5\| 2.5=1.6 \mathrm{~K}$
(ii) $r_{L}=5 \mathrm{~K} \| 5 \mathrm{~K}=2.5 \mathrm{~K}$
(iii) $A_{v} \frac{r_{L}}{r_{e}} \frac{2.5 \mathrm{~K}}{25} 100$
(iv) $A_{P}=A_{v} \cdot A_{i}=100 \times 100=\mathbf{1 0 , 0 0 0}$
(v) $G_{p}=10 \log _{10} 10,000=40 \mathrm{~dB}$

Note. R_{E} did not come into picture because it was ac grounded by the bypass capacitor C_{3}.
Example 59.9. Find the approximate values of the quantities of Ex. 59.8 in case bypass capacitor C_{3} in Fig. 59.24 is removed.
Solution. (i) In this case,

$$
\begin{aligned}
r_{i n} & =R_{1}\left\|R_{2}\right\| \beta\left(r_{e}{ }^{\prime}+R_{E}\right)=45 \mathrm{~K}\|5 \mathrm{~K}\| 100(25+1 \mathrm{~K}) \\
& \cong 45 \mathrm{~K}\|5 \mathrm{~K}\| 100 \mathrm{~K}=5 \mathrm{~K}
\end{aligned}
$$

(ii) $r_{L}=2.5 \mathrm{~K}$ - as before
(iii) $A_{v} \frac{r_{L}}{\left(r_{e}^{\prime} \quad R_{E}\right)} \quad \frac{r_{L}}{r_{E}} \quad \frac{2.5 \mathrm{~K}}{1 \mathrm{~K}} \quad 2.5$
(Please note the reduction)
(iv) $A_{p}=100 \times 2.5=\mathbf{2 5 0}$
(v) $G_{p}=10 \log _{10} 250=24 \mathrm{~dB}$

59.7. Effect of Source Resistance R_{5}

Greater the internal resistance of the ac signal source, greater the internal voltage drop and hence lesser the value of $V_{\text {in }}$ because

$$
V_{i n}=V_{s} \quad-\text { drop across } R_{S} .
$$

Consider the CE circuit shown in Fig. 59.25 whose ac equivalent circuit is shown in Fig. 59.26.

As seen from Fig. 59.26, on the input side, R_{S} is in series with $R_{B} \| \beta r_{E}{ }^{\prime}$. Hence, V_{S} is divided between them in the direct ratio of their resistances. If R_{S} is much less than $R_{B} \| \beta r_{e}{ }^{\prime}$, then

Fig. 59.25

$$
V_{i n} \cong V_{s}
$$

The voltage gain from base to output is still given by $\frac{V_{\text {out }}}{V_{\text {in }}} \frac{r_{L}}{r_{e}^{\prime}}$
If, in any question, V_{s} is given, we will first find out how much of it appears across the base as $v_{i n}$. Then, for determining $V_{\text {out }}$, we will simply multipy this $V_{i n}$ by the voltage gain.

Solution. This circuit is similar to that shown if Fig. 59.23 except for the addition of R_{S}.
As found in Ex. 9.8, $r_{e}{ }^{\prime}=50 \Omega$,

$$
\begin{aligned}
& \beta r_{e}{ }^{\prime}=2500 \Omega . \\
\therefore \quad & R_{B}\left\|\beta r_{e}^{\prime}=10 \mathrm{~K}\right\| 22500 \Omega=2000 \Omega
\end{aligned}
$$

(a) When $\mathrm{R}_{\mathrm{S}}=100 \Omega$

In this case, 2 mV are dropped across a series combination of 100Ω and 2000Ω. Drop over 100Ω is

Example 59.10. In the CE amplifier circuit of Fig. 59.27, find the rms signal output voltage when R_{S} is (a) 100Ω and (b) 3 K. Take $b=50$.

Fig. 59.27 negligible as compared to that on 2000Ω. Hence, it can be presumed that $V_{s}=V_{i n}=2 \mathrm{mV}$. We have already found that $A_{v}=200$.

$$
\therefore \quad V_{\text {out }}=A_{v} \times V_{\text {in }}=200 \times 2=400 \mathrm{mV}(\mathrm{rms})
$$

(b) When $\mathrm{R}_{\mathrm{S}}=3 \mathrm{~K}$

In this case, drop across $R_{B} \| \beta r_{e}^{\prime}=2 \mathrm{~K}$ is $V_{\text {in }} \quad V_{\text {in }} \frac{R_{B} \| r_{e}^{\prime}}{R_{S}\left(R_{B} \| r_{e}^{\prime}\right)} 2 \frac{2}{32^{2}}$
$\quad \therefore \quad V=200 \times 0.8=\mathbf{1 6 0} \mathbf{m V}$

$$
\therefore \quad V_{\text {out }}=200 \times 0.8=\mathbf{1 6 0} \mathbf{~ m V}
$$

Obviously, as R_{S} is increased, $V_{\text {out }}$ is decreased.

59.8. Equivalent Circuit of a CC Amplifier

We will consider the two-supply emitter-bias circuit shown in Fig. 59.28 (a) in which the collector is placed at ac (not dc) ground. The ac input signal is coupled into the base and output signal is taken out of the emitter. This circuit is also called emitter follower circuit because the
emitter signal follows the signal at the base both in magnitude and phase.

(a) DC Equivalent Circuit

It is drawn in the usual way by opening all the capacitors and shorting all ac sources. It is shown in Fig. 59.28 (b).

$$
I_{E} \frac{V_{E E} \quad V_{B E}}{R_{E} \quad R_{B} /} \frac{V_{B E}}{R_{E}}
$$

(b) AC Equivalent Circuit

It is obtained by shorting all ac sources and capacitors and is shown in Fig. 59.29.
(c) Principal Operating Characteristics

1. Input Resistance

The input resistance of the $C C$ stage is given by the parallel combination of R_{S} and $r_{\text {in(base) }}$. Now, $r_{\text {in(base) }}$ is the input resistance looking into the base. It is found to be equal to $(1+\beta)$ $\left(r_{e}{ }^{\prime}+r_{L}\right) \cong \beta r_{L}$ i.e. β times the ac load seen by the emitter.

$$
\begin{aligned}
& \therefore r_{\text {in }} \text { or } r_{\text {in(stage) }}=\mathrm{R}_{\mathrm{B}} \| r_{\text {in (base }} \\
& \quad=R_{B} \| \beta\left(r_{e}^{\prime}+r_{L}\right) \cong \beta \beta_{e}\left(r_{e}^{\prime}+r_{L}\right) \\
& \\
& \\
& \\
& \cong \beta r_{L} \quad \text {-when } R_{B} \text { is very large } \\
& \\
& \quad=\beta R_{E} \quad \text { - if } R_{L}=0
\end{aligned}
$$

Fig. 59.28
2. AC Load Resistance : $r_{L_{-}}=R_{E} \| R_{L}$

It is the ac output resistance as seen by the emitter (and not the one when looking into the emitter).
3. Current Gain.

$$
A_{i} \frac{i_{e}}{i_{b}}(1)
$$

4. Voltage Gain.

$$
\begin{aligned}
& V_{\text {in }}=i_{b} \cdot r_{i n}=i_{b} \cdot \beta\left(r_{e}^{\prime}+r_{L}\right): \\
& V_{\text {out }}=i . e \cdot r_{L}=\beta i_{b} \cdot r_{L}
\end{aligned}
$$

$$
A_{v} \frac{V_{\text {out }}}{V_{\text {in }}} \frac{i_{b} r_{L}}{i_{b} \cdot\left(r_{e}^{\prime}\right.} \frac{\left.r_{L}\right)}{\left.r_{L}\right)} \quad \frac{r_{L}}{r_{e}^{\prime}} 1
$$

Fig. 59.29

It means that output signal from emitter has the same magnitude as the input signal at the base.
5. Power Gain

$$
\begin{aligned}
& A_{p}=A_{v} \cdot A_{i}=1 \times(1+\beta)=(1+\beta) \cong \beta \\
& G_{p}=10 \log _{10} A_{p} \mathrm{~dB}
\end{aligned}
$$

It would be noted from above that main usefulness of the emitter follower is to step up the impedance level i.e. it transforms load impedance to a much higher value. It does not increase the signal voltage. Hence, primary application of emitter follower or $C C$ stage is as an impedance matching device. It offers a higher impedance at the input terminals i.e. $r_{i n}$ and a low output impedance $\left(r_{L}\right)$ - something opposite of typical basic transistor amplifier.

Another point worth keeping in mind is that the above formulas are not exact because we have used ideal transistor approximations. However, these formulas do help in rapidly grasping the essential features of an emitter follower. Moreover, they are adequate for preliminary analysis and design.

Example. 59.11. For the emitter follower shown in Fig. 59.30, find
(i) $r_{i n}$ or $r_{\text {rin(stage) }}$
(ii) r_{L}
(iii) A_{v}
(iv) A_{p}. Take transistor $\beta=50$.
(Electronics, Delhi Univ.)
Solution. $I_{E}=20 / 20=1 \mathrm{~mA}$

$$
\begin{aligned}
r_{e}^{\prime} & =25 / 1=25 \Omega \\
r_{L} & =R_{E}\left\|R_{L}=20\right\| 5=4 \mathrm{~K} \\
r_{\text {in(base })} & =\beta\left(r_{e}^{\prime}+r_{L}\right) \cong \beta r_{L}=50 \times 4=200 \mathrm{~K}
\end{aligned}
$$

$\therefore \quad\left(r_{e}{ }^{\prime}\right.$ of 25Ω has been neglected as compared to r_{L} of 4 K)

Fig. 59.30
(ii) $r_{L}=20 \mathrm{~K} \| 5 \mathrm{~K}=4 \mathrm{~K}$
(iii) $A_{v} \cong 1$ since $r_{e}{ }^{\prime}$ is negligible as compared to r_{L}. If it is not, then A_{v} could be even less than 1.
(iv) $A_{p}=A_{i} \cdot A_{v} \beta \times 1=\beta=50 ; G_{p}=10 \log _{10} 50=\mathbf{1 7} \mathbf{d B}$

Example 59.12. For the beta-stabilized emitter follower circuit of Fig. 59.31, find
(i) $r_{\text {in(base) }}$
(ii) $r_{\text {in }}$ or $r_{\text {in(stage) }}$
(iii) r_{L} and
(iv) A_{v}. Take transistor $\beta=100$.
(Electronics Technology, Mysore Univ.)
Solution. $V_{2} \quad V_{C C} \frac{R_{2}}{R_{1} \quad R_{2}} \quad 20 \quad \frac{10}{40} \quad 5 \mathrm{~V}$

$$
\begin{aligned}
& I_{E} \quad \frac{V_{2}}{R_{E}} \frac{5}{5} \quad 1 \mathrm{~mA} \\
& r_{e}^{\prime}=25 / 1=25 \Omega \\
& r_{L}=5 \| 5=2.5 \mathrm{~K} \\
& \text { (i) } r_{\text {in(base) }}=\beta\left(r_{e}^{\prime}+r_{L}\right) \\
& =100(25+2500)=\mathbf{2 5 0} \mathbf{K} \\
& \text { (ii) } \begin{aligned}
& r_{\text {in(base) }}=R_{1}\left\|R_{2}\right\| \\
& r_{\text {in(base) }}=30 \mathrm{~K}\|10 \mathrm{~K}\| 250 \mathrm{~K} \cong 8 \mathrm{~K}
\end{aligned} \\
& \text { (iii) } r_{L}=5 \mathrm{~K} \| 5 \mathrm{~K}=\mathbf{2 . 5} \mathbf{K} \\
& \text { (iv) } A_{p}=A_{i} \cdot A_{v} \cong 1 \times \beta=100 ; G_{p}=100 \log _{10} 100=\mathbf{2 0 d B}
\end{aligned}
$$

Fig. 59.31

Example 59.13. For the CE circuit of Fig. 59.32, find

$$
\text { (i) } r_{\text {in }} \text { or } r_{\text {in(stage) }}(i i) A_{v} \text { (iii) } A_{p} \text {. Take transis- }
$$ tor $\beta=200$

Solution. $I_{E}=20 / 20=1 \mathrm{~mA} r_{e}{ }^{\prime}=25 / 1=25 \Omega$

$$
r_{L}=20 \mathrm{~K} \| 50 \Omega=50 \Omega
$$

$$
r_{\text {in (base) }}=\beta\left(r_{e}^{\prime}+r_{L}\right)=200(25+50)=15 \mathrm{~K} \text {; }
$$

(i) $r_{\text {in }}$ or $r_{\text {in(stage })}=R_{B} \| r_{\text {in(base })}$

$$
=100 \mathrm{~K} \| 15 \mathrm{~K}=13 \mathrm{~K}
$$

(ii) Since $r_{e}{ }^{\prime}$ is not negligible as compared to r_{L}, we will use the expression

$$
A_{v} \frac{r_{L}}{r_{e}^{\prime} r_{L}} \quad \frac{50}{25 \quad 50} \quad 0.667
$$

Fig. 59.32

> (i) $r_{\text {in(stage) }}$ or $r_{\text {in }}=R_{B} \| r_{\text {in(base) }}$
> $=400 \mathrm{~K}| | 200 \mathrm{~K}$
> $=133.3 \mathrm{~K}$
(iii) $A_{p}=A_{v} \cdot A_{i}=0.667 \times 200=\mathbf{1 3 3 . 3}$

59.9. Small-signal Low-frequency Model or Representation

Although many transistor representations or models have been suggested and widely used, the equivalent T-model is the easiest to understand because, in this representation, component parts retain their identity in all configurations leading to rapid appreciation of a given network.

59.10. T-Model

Such models are not in common use today because they do not take into account any gain between input and output.
(a) CB Circuit

In Fig. 59.33 is shown the low-frequency T-equivalent circuit of a transistor connected in $C B$ configuration. It utilizes T - or r-parameters. All these parameters are ac parameters and are measured under open-circuit conditions. Here, r_{e} represents the ac resistance of the forward-biased emitter-base junction. Its value is

$$
\begin{aligned}
r_{e} \frac{25 \mathrm{mV}}{I_{E}} & - \text { for } \mathrm{Ge} \\
\frac{50 \mathrm{mV}}{I_{E}} & - \text { for } \mathrm{Si}
\end{aligned}
$$

This resistance is fairly small and depends on I_{E}. Also, r_{e} represents the ac resistance of the reverse-biased C / B junction. It is of the order of a few $\mathrm{M} \Omega$. Finally, r_{b} represents the resistance of the base region which is common to both junctions. Its value depends on the degree of doping. Usually, r_{b} is larger than r_{e} but much smaller than r_{c}.

Fig. 59.33
Fig. 59.34
However, circuit shown in Fig. 59.34 (a) is not complete because it does not illustrate the forward current transfer ratio. Since current in the output of a transistor depends on the current at the input, a dependent current-generator in parallel with r_{c} must be included as shown in Fig. 59.34 (b). As it is the usual practice, all currents are shown flowing inwards even though some of them may actually be flowing in the opposite direction.

The current generator may be replaced by a voltage generator with the help of Thevenin's theorem as shown in Fig. 59.35 (a). In that case, the T-equivalent circuit becomes as shown in Fig. 59.35 (b). The generator has a voltage of $\alpha i_{e} r_{c}=r_{i n} i_{e}$

(a)

Fig. 59.35 where $r_{i n}=\alpha r_{e}$.
(b)

Typical values of different parameters are :
$r_{e}=25$ to $50 \Omega ; \quad r_{b}=100$ to $1000 \Omega ; r_{c}=1 \mathrm{M} \Omega$

(b) CE Circuit

The T-equivalent circuit for such a configuration is shown in Fig. 59.36. Whereas circuit shown in Fig. 59.36 contains a parallel current-generator that shown in Fig. 59.37 contains a series-voltage generator.

(c) CC Circuit

The T-equivalent circuit for such a configuration is shown in Fig. 59.38.

59.11. Formulas for T-Equivalent of a CB Circuit

In Fig. 59.39 is shown a small-signal low-frequency T-equivalent circuit for $C B$ configuration. The ac input signal source has a resistance of R_{S} and voltage of V_{s}.

Of course, dc biasing circuit has been omitted and only ac equivalent shown. The approximate expressions for input and output resistance and voltage and current gains as derived by applying $K V L$ to the input and output loops are given below without derivation :

Fig. 59.39

1. $r_{\text {in }} r_{e} r_{b}(1 \quad) \quad r_{e} \frac{r_{b}}{(1)} \quad r_{e} \quad r_{b} \frac{r_{c}(1-) R_{L}}{r_{c} r_{L}}$
2. $\begin{array}{rlllll}r_{o} & r_{c} & \frac{r_{b} r_{c}}{r_{e}} r_{b} R_{S}\end{array}$
3. $A_{i}=\alpha$
4. $A_{v} \frac{v_{\text {out }}}{v_{\text {in }}} \frac{R_{L}}{r_{e}} r_{b}(1 \quad)$

$$
\left.A_{v} \frac{V_{\text {out }}}{V_{\text {in }}} \frac{R_{L}}{\left(r_{e}\right.} \quad R_{s}\right) r_{b}(1 \quad) \quad \frac{R_{L}}{\left(r_{e} \quad R_{s)}\right.}
$$

5. $A_{P}=A_{i} \cdot A_{v}$

$$
\begin{gathered}
\frac{{ }^{2} R_{L}}{\left(r_{e}\right.} r_{b}(1) \\
\left.\frac{{ }^{2} R_{L}}{\left(r_{e}\right.} R_{s}\right) r_{b}(1) \\
G_{p}=10 \log _{10} A_{p}
\end{gathered}
$$

— no source resistance

- with source resistance

59.12. Formulas for T-Equivalent of a CECirc uit

The low-frequency small-signal T-equivalent circuit for such a configuration is shown in Fig. 59.40.

The approximate expressions for various resistances and gains as found by applying $K V L$ to the input and output loops are given below :

1. $r_{\text {in }} \quad r_{b} \frac{r_{e}}{((1)}$

Fig. 59.40

$$
=r_{b}+(1+\beta) r_{e}
$$

2. $r_{o} \quad r_{e}(1 \quad) \frac{r_{e} r_{e}}{r_{b} r_{e} R_{S}}$
3. $A_{v} \frac{V_{\text {out }}}{V_{\text {in }}} \frac{{ }^{r_{b}} R_{L}^{r_{e}} R_{S}}{r_{e} \quad r_{b}(1 \quad)}$
4. $A_{i}=\beta \overline{(1 \quad)}$
$A_{v s} \frac{V_{\text {out }}}{V_{s}} \quad \frac{R_{L}}{r_{e} \quad\left(r_{b} \quad R_{s}\right)(1 \quad)}$
5. $A_{p}=A_{v} \cdot A_{i} \quad \frac{{ }^{2} R_{L}}{\left(\begin{array}{lll}1 &)\left[\left(\begin{array}{ll}r_{e} & r_{b}(1)\end{array}\right)\right.\end{array}\right]}$

59.13. Formulas for T-Equivalent of a CC Circuit

The low-frequency T-equivalent circuit for such a configuration is shown in Fig. 59.41.
The approximate expressions for various resistances and gains are given below :

1. $r_{\text {in }} \frac{R_{L}}{1}(1 \quad) R_{L}$
2. $r_{v}=r_{e}+(1-\alpha)\left(r_{b}+R_{S}\right)$

$$
r_{e} \frac{\left(r_{b} \quad R_{S}\right)}{(1 \quad)}
$$

3. $A_{i} \frac{1}{(1 \quad)}(1 \quad)$

Fig. 59.41
4. $A_{n}=1$
5. $A_{p} \frac{1}{(1 \quad)}\left(1 \quad G_{p}=10 \mathrm{~A}_{\mathrm{p}} \mathrm{dB}\right.$

Example 59.14. A junction transistor has $r_{e}=50 \Omega, r_{b}=1 \mathrm{~K}, r_{c}=1 \mathrm{M}$ and $\alpha=0.98$. It is used in common-base circuit with a load resistance of 10 K . Calculate the current, voltage and power gains and the input resistance.
(Applied Electronics, Punjab Univ. 1993)
Solution. (i) $A_{i}=\alpha=0.98$
(ii) $A_{v} \frac{R_{L}}{r_{e} r_{b}(1 \quad)} \frac{0.9810,000}{501000(1-0.98)} \quad 140 \quad$ (iii) $A_{p}=\mathrm{A}_{v} . A_{i}=140 \times 0.98=137$
(iv) $r_{i n}=r_{e}+r_{b}(1-\alpha)=50+1000(1-0.98)=70 \Omega$

Example 59.15. A P-N-P junction transistor is used as a voltage amplifier in the groundedbase circuit with a load resistance being 300 K and the internal resistance of the original source being 200Ω.

Derive an expression for the voltage gain of the amplifier and calculate its magnitude if the transistor T-network parameters are : $\quad r_{e}=18 \Omega, r_{b}=700 \Omega, r_{c}=1 \mathrm{M}$ and $r_{m}=976 \mathrm{~K}$.
(Applied Electronics and Circuits, Grad. I.E.T.E.)

Solution. Here, $r_{m}=\alpha\left(r_{c}+r_{b}\right) \cong \alpha r_{c} \quad \therefore \alpha=r_{m} / r_{c}=976 \mathrm{~K} / 1000 \mathrm{~K}=0.976$

$$
\left.A_{v} \quad \frac{V_{2}}{V_{1}} \frac{R_{L}}{r_{c} r(1}\right) \quad \frac{0.976 \quad 300 \quad 10^{3}}{18 \quad 700(1-0.976)} \quad \mathbf{8 , 4 1 0}
$$

$$
A_{v g} \frac{V_{2}}{V g} \quad \frac{R_{L}}{R_{G}} r_{c} \quad r_{b}(1 \quad) \quad \frac{0.976 \quad 300 \quad 10^{3}}{} \quad 1247
$$

Example 59.16. Calculate the input and output resistance, overall current, voltage and power gains for a CE connected transistor having following r-parameters :
$r_{b}=30 \Omega, r_{e}=400 \Omega, r_{c}=0.75 \mathrm{M}, \alpha=0.95, R_{L}=10 \mathrm{~K}$ and $R_{S}=400 \Omega$
Also, calculate the power gain in decibels.
(Electronics Technology, Bangalore Univ. 1999)
Solution. (i) $r_{i n} \quad r_{b} \quad \frac{r_{e}}{(1-)} 30 \frac{400}{(1-0.95)} \quad \mathbf{8 0 3 0} \Omega$
(ii) $r_{o} \quad r_{e}(1 \quad) \frac{r_{c} r_{e}}{r_{b} r_{c} R_{S}}$

$$
750,000(1-0.95) \frac{0.95750,000400}{\left(\begin{array}{lll}
30400400
\end{array}\right)} 380,870 \quad \mathbf{0 . 3 8} \mathbf{M}
$$

(iii) $A_{i} \quad \overline{1} \quad \frac{0.95}{(10.95)} 19$
(iv) $A \quad \frac{R_{L}}{r_{e} \quad\left(r_{b} \quad R_{s}\right)(1 \quad)} \quad \frac{0.95 \times 10 \times 10^{3}}{400+(30+400) \times 0.05}=\mathbf{2 2 . 5}$
(v) $A_{p}=\mathrm{A}_{\mathrm{v}}, A_{i}=22.5 \times 19=427.5$

Power gain in decibels, $G_{p}=10 \log _{10} 427.5=26.3 \mathrm{~dB}$

59.14. What are h-parameters?

These are four constants which describe the behaviour of a two-port linear network. A linear network is one in which resistance, inductances and capacitances remain fixed when voltage across them is changed.

Consider an unknown linear network contained in a black box as shown in Fig. 59.42. As a matter of convention, currents flowing into the box are taken positive whereas those flowing out of it are considered negative.

Similarly, voltages are positive from the upper to

Fig. 59.42 the lower terminals and negative the other way around. The electrical behaviour of such a circuit can be described with the help of four hybrid parameters or constants designated as $h_{11}, h_{12}, h_{21}, h_{22}$. In this type of double-number subscripts, it is implied that the first variable is always divided by the other. The subscript 1 refers to quantities on the input side and 2 to the quantities on the output side. The letter ' h ' has come from the word hybrid which means mixture of distinctly different items. These constants are hybrid because they have different units.

Out of the four h-parameters, two are found by short-circuiting the output terminals 2-2 and the other two by open-circuiting the input terminals $1-1$ of the circuit.
(a) Finding \boldsymbol{h}_{11} and \boldsymbol{h}_{21} from Short-Circuit Test

As shown in Fig. 59.43, the output terminals have been shorted so that $v_{2}=0$, because no voltage can exist on a short. The linear circuit within the box is driven by an input voltage v_{1}. It
produces an input current i_{1} whose magnitude depends on the type of circuit within the box.

$$
\begin{array}{lll}
h_{11} \frac{\mathrm{~V}_{1}}{i_{2}} & \text { - output shorted } \\
h_{21} & \frac{i_{2}}{i_{1}} & \text { - output shorted }
\end{array}
$$

Fig. 59.43

These two constants are known as forward parameters.
The constant h_{11} represents input impedance with output shorted and has the unit of ohm. The constant h_{21} represents current gain of the circuit with output shorted and has no unit since it is the ratio of two similar quantities.

The voltages and currents of such a two-port network are related by the following sets of equations or V / I relations.

$$
\begin{align*}
& V_{1}=h_{11} i_{1}+h_{12} V_{2} \tag{i}\\
& i_{2}=h_{21} i_{1}+h_{22} V_{2} \tag{ii}
\end{align*}
$$

Here, the h_{s} are constants for a given circuit but change if the circuit is changed. Knowlege of parameters enables us to find the voltages and currents with the help of the above two equations.
(b) Finding h_{12} and h_{22} from Open-circuit Test

As shown in Fig. 59.44, the input terminals are open so that $i_{1}=0$ but there does appear a voltage v_{1} across them. The output terminals are driven by an ac voltage ν_{2} which sets up current i_{2}.

$$
\begin{array}{lll}
h_{12} & \frac{V_{1}}{V_{2}} & \text { - input open } \\
h_{22} & \frac{i_{2}}{V_{2}} & \text { - input open }
\end{array}
$$

Fig. 59.44

As seen, h_{12} represents voltage gain (not forward gain which is v_{2} / v_{1}). Hence, it has no units. The constant h_{22} represents admittance (which is reverse of resistance) and has the unit of mho or Siemens, S. It is actually the admittance looking into the output terminals with input terminals open. Generally, these two constants are also referred to as reverse parameters.

Summary of h-parameters
$h_{11}=$ input impedance
$h_{21}=$ forward current gain
$h_{12}=$ reverse voltage gain
with output shorted
with input open
$h_{22}=$ output admittance

59.15. Input Impedance of a Two Port Network

Consider the two-port linear network shown in Fig. 59.45 which has a load resistance r_{L} across its output terminals. The voltage source V_{1} on the input side drives the circuit and sets up current i_{1}. As seen, $Z_{i n}=$ V_{1} / i_{1}. Substituting the value of V_{1} from Eq. (i) of Art. 59.14, we get

Fig. 59.45

$$
\begin{array}{rll}
Z_{\text {in }} & \frac{V_{1}}{i_{1}} & \frac{h_{11} i_{1} h_{12} v_{2}}{i_{1}} \\
& h_{11} & \frac{h_{12} V_{2}}{i_{1}} \tag{i}
\end{array}
$$

As seen from Fig. 59.45 above $i_{2}=-v_{2} / R_{L}{ }^{*}$
Substituting this value of l_{2} in Eq. (ii) of Art 59.14, we have

$$
\frac{-v_{2}}{R_{L}} \quad h_{22} i_{1} \quad h_{22} v_{2} \quad \text { or } \quad \frac{v_{2}}{i_{1}} \quad \frac{h_{21}}{h_{22} 1 / R_{L}}
$$

Substituting this value in Eq. (i) above, we have

$$
Z_{\text {in }} \quad h_{11} \frac{h_{12} \cdot h_{21}}{h_{22} 1 / R_{L}}
$$

59.16. Voltage Gain of a Two Port Network

The voltage gain of such a circuit (Fig. 59.45) is $A_{v}=v_{2} / v_{1}$. Now $v_{1}=i_{1} . Z_{\text {in }}$. Hence, $A_{v}=v_{2} / i_{1} \cdot Z_{\text {in }}$.

Substituting the value of v_{2} / i_{1} as found earlier in Art. 59.15, we get

$$
A_{v} \frac{h_{21}}{Z_{i n}\left(h_{22} 1 / R_{L}\right)}
$$

Example. 59.17. Find the h-parameters of the circuit shown in Fig. 59.46 (a).
Solution. First of all, let us find the forward parameters $h u$ and h_{21}. For that purpose, a short is put across the output terminals as shown in Fig. 59.46 (b).

(a)

Fig. 59.46
(i) The input impedance of the network as viewed from input terminals is $h_{11}=2+4 \| 4=4 \Omega$
(ii) As seen from Fig. 9.46 (b), input current i_{1} divides into two equal parts at point A . The output current $i_{2}=-i_{1} / 2$ (negative sign has been taken because actually it is flowing out of the box).

$$
\therefore \quad h_{21} \frac{i_{2}}{i_{1}} \quad \frac{-i_{1} / 2}{i_{1}} \quad \frac{1}{2}-0.5
$$

Fig. 59.47
(iii) Now, for finding reverse parameters, we will
keep input terminals open and apply v_{2} across output terminals as shown in Fig. 59.47. It will produce a current i_{2} which will produce equal drops across the two 4Ω resistors. The voltage which appears across input terminals as v_{1} is the drop across the vertical 4Ω resistor connected at point A. Hence, $v_{1}=v_{2} / 2$.

$$
\therefore \quad h_{12} \frac{v_{1}}{v_{2}} \quad \frac{v_{2} / 2}{v_{2}} 0.5
$$

[^13]The input impedance of the network when viewed from output terminals with input terminals open is $=4+4=8 \Omega$.

$$
\therefore \quad h_{22}=1 / 8=\mathbf{0 . 1 2 5} \text { Siemens (i.e. mho) }
$$

Hence, for the network shown in Fig. 59.46 (a), the h-parameters are as under :

$$
h_{11}=4 \Omega \quad h_{21}=-0.5 \quad h_{12}=0.5 \text { and } \quad h_{22}=0.125 \mathrm{~S}
$$

59.17. The h-parameter Notation for Tra nsistors

While using h-parameters for transistor circuits, their numerical subscripts are replaced by the first letters for defining them.

$$
\left.\begin{array}{l}
h_{11}=h_{i}=\text { input impedance } \\
h_{21}=h_{f}=\text { forward current gain }
\end{array}\right] \quad \text { output shorted }
$$

A second subscript is added to the above parameters to indicate the particular configuration.
For example, for $C E$ connection, the four parameters are written as :
$h_{i e} \quad h_{f e} \quad h_{r e}$ and $h_{o e}$

Similarly, for $C B$ connection, these are written as $h_{i b}, h_{f b}, h_{r b}, h_{o p}$ and for $C C$ connection as $h_{i c}$, $h_{f c}, h_{r c}$ and $h_{o c}$.

59.18. The h-parameters of an Ideal Transistor

As stated earlier, every linear circuit has a set of parameters associated with it, which fully describe its behaviour. When small ac signals are involved, a transistor behaves like a linear device because its output ac signal varies directly as the input signal. Hence, for small ac signals, each transistor has its own characteristic set of h-parameters or constants.

The h-parameters depend on a number of factors such as

1. transistor type
2. configuration
3. operating point
4. temperature
5. frequency

These h-parameters can be found experimentally or graphically. The parameters h_{i} and h_{r} are determined from input characteristics of the $C E$ transistor whereas h_{f} and h_{0} are found from output characteristics.

59.19. The h-parameters of an Ideal CB Transistor

In Fig. 59.48 (a), a $C B$-connected transistor has been shown connected in a black box. Fig., 59.48 (b) gives its equivalent circuit. It should be noted that no external biassing resistors or any signal source has been shown connected to the transistor.

(i) Forward Parameters

The two forward h-parameters can be found from the circuit of Fig. 59.49 (a) where a short has been put across the output. The input impedance is simply r_{e}.

$$
\therefore \quad h_{i b}=r_{e}
$$

The output current equals the input current i.e. Since it flows out of the box, it is taken as negative. The forward current gain is

(It also called the ac α of the $C B$ circuit.)

$$
h_{f b} \frac{-i_{e}}{i_{e}} 1
$$

(ii) Reverse Parameters

The two reverse parameters can be found from the circuit diagram of Fig. 59.49 (b). When input terminals are open, there can be no ac emitter current. It means that ac current source (inside the box)
has a value of zero and so appears as an 'open'. Because of this open, no voltage can appear across input terminals, however, large v_{2} may be. Hence, $v_{1}=0$.

$$
\therefore \quad h_{r b} \frac{v_{1}}{v_{2}} \frac{0}{v_{2}} 0
$$

Similarly, the impedance, looking into the output terminals is infinite. Consequently, its admittance $(=1 / \infty)$ is zero.

$$
\therefore \quad h_{o b}=0
$$

Summary

The four h-parameters of an ideal transistor connected in $C B$ configuration are

$$
h_{i b}=r_{e} ; \quad h_{f b}=-1, \quad h_{r b}=0 ; \quad h_{o b}=0
$$

Fig. 59.49

Fig. 59.50

The equivalent hybrid circuit is shown in Fig. 59.50.
Note. In an actual transistor, $h_{r b}$ and $h_{o b}$ are not zero but have some finite value though extremely small (ranging from 10^{-}to 10^{-6}).

In reality, output impedance is not infinity but very high so that $h_{o b}$ is extremely small. Similarly, there is some amount of feedback between the output and the input circuits (even when open) though it is very small. Hence, $h_{r b}$ is very small.

59.20. The h-parameters of an ideal CE Tra nsistor

Fig. 59.51
Fig. 59.51 (a) shows a $C E$-connected ideal transistor contained in a black box whereas 59.51 (b) shows its ac equivalent circuit in terms of its β and resistance values.
(a) Forward Parameters

The two forward h-parameters can be found from the circuit of Fig. 59.52 (a) where output has been shorted. Obviously, the input impedance is simply βr_{e}.
$\therefore \quad h_{i e}=\beta r_{e}$
The forward current gain is given by

$$
h_{f e} \frac{i_{2}}{i_{1}} \frac{i_{b}}{i_{b}}
$$

(It is also called the ac beta of the $C E$ circuit)

(b) Reverse Parameters

These can be found by reference to the circuit of Fig. 59.52 (b) where input terminals are open but output terminals are driven by an are volt-

Fig. 59.52 age source v_{2}. With input terminals open, there can be no base current so that $i_{b}=0$. If $i_{b}=0$, then collector current source has zero value and looks like an open. Hence, there can be no v_{l} due to this open.

$$
\therefore \quad h_{r e} \frac{v_{1}}{v_{2}} \frac{0}{v_{2}} 0
$$

Again, the impedance looking into the output terminals is infinite so that conductance is zero.

$$
\therefore \quad h_{o e}=0
$$

Hence, the four h-parameters of an ideal transistor connected in $C E$ configuration are :

Fig. 59.53

$$
h_{i e}=\beta r_{e} ; \quad h_{f e}=\beta, \quad h r_{e}=0 ; h_{o e}=0 .
$$

The hybrid equivalent circuit of such a transistor is shown in Fig. 59.53.
Note. In practice, $h_{r e}$ and $h_{o e}$ are not exactly zero but quite small for the same reasons as given in the Note to Art 59.19.

59.21. Approximate Hybrid Equivalent Circuits

So far, we did not take into account the following two factors which exist in an actual transistor (as opposed to an ideal one).
(i) because of the transistor's non-unilateral behaviour, there is a 'feedback' of the output voltage into the input voltage. This feedback is represented by a voltage-controlled generator $h_{r} v_{2}$ as shown in Fig. 59.54 and 59.55.
By definition, an ideal amplifier is one which responds only to signals applied to its input terminals. It should not do the reverse i.e. reproduce at the input any portion of the ac signal applied at the output. Such an ideal one-way device is called a unilateral device. A real transistor cannot be unilateral because of unaviodable interaction between its input and output circuits (after all, it consists of a single piece of a crystal). Therefore, not only its output responds to its input but, to a lesser degree, its input also responds to its output.
(ii) even when input circuits is open, there is some effective value of conductanece when looking into the transistor from its output terminals. It is represented by h_{0}.
We will now draw low-frequency small-signal hybrid equivalent circuits after taking into account the 'feedback' voltage generator and output admittance.

(a) Hybrid CB Circuit

In Fig. $59.54(a)$ is shown an $N P N$ transistor connected in $C B$ configuration. Its ac equivalent circuit employing h-parameters is shown in Fig. 59.54 (b). The V / I relationships are given by the following two equations.

$$
\begin{aligned}
v_{e b} & =h_{i b} i_{e}+h_{r b} v_{c b} \\
i_{e} & =h_{f b} i_{e}+h_{o b} v_{e b}
\end{aligned}
$$

These equations are self-evident because applied voltage across input terminals must equal the drop over $h_{i b}$

Fig. 59.54 and the generator voltage. Similarly, current i_{c} in the output terminals must equal the sum of two branch currents.

As per current convention stated earlier (Art. 59.14), collector i_{e} is shown flowing inwards though actually this current flows outwards as shown by the arrow inside the ac current source. Similarly, ac voltage polarities have been taken by considering upper terminal positive and lower one as negative (please remember that the dc biasing rule of Art. 59.12 does not apply here).

It may be noted that no external dc biasing resistor or ac voltage sources have been connected to the equivalent circuit as yet.

Incidentally, it may be noted that the ac equivalent circuit contains a Thevenin's circuit in the input and a Norton's circuit in the output. It is all the more a reason to call it a hybrid equivalent circuit.
(b) Hybrid CE Circuit

The hybrid equivalent of the transistor alone when connected in $C E$ configuration is shown in Fig. 59.55 (b). Its V / I characteristics are described by the following two equations.

$$
\begin{aligned}
& v_{b e}=h_{i e} i_{b}+h_{r e} v_{e c} \\
& i_{e}=h_{f b} i_{b}+h_{o e} v_{e c}
\end{aligned}
$$

We may connect signal input
 source across its input terminals and load resistance across output terminals (Art. 59.22).

(c) Hybrid CC Circuit

The hybrid equivalent of a transistor alone when connected in $C C$ configuration is shown in Fig. 59.56 (b). Its V / I characteristics are defined by the follow- ${ }^{\mathrm{v}}$ ing two equations :

$$
\begin{aligned}
v_{b e} & =h_{i e} i_{b}+h_{r e} v_{e c} \\
i_{e} & =h_{f e} i_{b}+h_{o c} v_{c e}
\end{aligned}
$$

We may connect signal input source
 across ioutput terminals $B C$ and load resistance across output terminals $E C$ to get a $C C$ amplifier.

59.22. Transistor Amplifier Formulae Using h-parameters

As shown in Fig. 59.57, if we add a signal source across input terminals 1-1 of a transistor and

Fig. 59.57 a load resistor across its output terminals $2-2$, we get a small-signal, low-frequency hybrid model of a transistor amplifier. It is valid for all the three configurations and holds good for all types of load whether a resistance of an impedance. We will now find expressions for its gains and impedances.

Before undertaking the above derivations, let us consider different components in the hybrid model of Fig. 59.57. The input resistance looks like a resistance $\left(h_{i}\right)$ in series with a voltage generator $\left(h_{r} v_{2}\right)$. This generator represents the voltage feed-back from the output to the input circuit. It is known as voltage-controlled generator because its value is determined by v_{2} (as h_{r} is a dimensionless constant). The output circuit also has two components (i) h_{0} component which represents the conductance as seen from output terminals and (ii) the current-controlled generator $\left(h_{f} i_{l}\right)$ which simulates the transistor's ability to amplify. The parameter h_{f} is a dimensionless constant.

The above model can be described mathematically by using the following two equations :
Input Circuit

$$
\begin{align*}
& v_{1}=\text { sum of voltage drops from } a \text { to } b \\
& =h_{i} i_{1}+h_{r} v_{2} \tag{i}
\end{align*}
$$

Output Circuit

$$
\begin{align*}
i_{2} & =\text { sum of currents leaving junction } c \\
& =h_{f} i_{1}+h_{0} v_{2} \tag{ii}
\end{align*}
$$

Now, $v_{2}=-i_{2} r_{\mathrm{L}}$. Substituting this value in Eq. (ii) above, we have

$$
\begin{equation*}
i_{2}=h_{f} i_{1}-h_{0} i_{2} r_{L} \tag{iii}
\end{equation*}
$$

Eq. (i) and (iii) can now be used to find various gains of a transistor.
(i) Current Gain

It is given by $A_{i}=i_{2} / i_{1}$
Dividing both sides of Eq. (iii) by i_{1}, we get

$$
\begin{aligned}
& \frac{i_{2}}{i_{1}} \quad h_{f} \quad h_{0} \frac{i_{2}}{i_{1}} r_{L} \quad \text { or } \quad A_{i}=h_{f}-h_{0} A_{i} r_{L} \\
& \therefore \\
& \text { If } \\
& A_{i} \frac{h_{f}}{1 h_{0} r_{L}} \\
& r_{L}=0 \text { or } h_{0} r_{L} \ll 1 \text {, then } A_{i}=h_{f}
\end{aligned}
$$

Current Gain Taking \mathbf{R}_{S} into Account

The source current is not the transistor input current because i_{1} partly flows along R_{S} and partly along $r_{i n}$.

To illustrate this point, consider the Norton's equivalent of the source (Fig. 59.58). The overall current gain $A_{i s}$ is given by

$$
A_{i s} \frac{i_{2}}{i_{s}} \frac{i_{2}}{i_{1}} \frac{i_{1}}{i_{s}} \quad A_{i} \frac{i_{1}}{i_{s}}
$$

As seen from Fig. 9.58

$$
\begin{array}{ll}
& i_{1} \frac{i_{s} R_{s}}{r_{i n} R_{s}} \text { or } \frac{i_{1}}{i_{s}} \frac{R_{s}}{r_{i n} R_{s}} \\
\therefore \quad & A_{i s}=A_{i} \cdot R_{S} /\left(r_{i n}+R_{S}\right)
\end{array}
$$

(ii) Input Impedance

It is defined as the resistance when looking into the amplifier from its input terminals. Hence, $r_{i n}=v_{1} / i_{1}$.

From Eq. (i) above, we have

$$
r_{i n} \frac{1}{i_{1}} \quad \frac{h_{i} i_{1} h_{r} \quad 2}{i_{1}} \quad h_{i} \quad h_{r} \cdot \frac{2}{i_{1}}
$$

Substituting the value of $v_{2}=-i_{2} r_{\mathrm{L}}=-A_{i} i_{1} r_{\mathrm{L}}$, we get

$$
\begin{array}{ll}
r_{\text {in }} & h_{i} \quad h_{i} A_{i} r_{L}
\end{array} h_{i} \frac{h_{f} h_{r} r_{L}}{1 h_{0} r_{L}} \quad h_{i} \frac{h_{f} h_{r}}{h_{0} 1 / r_{L}} .
$$

It is seen that $r_{\text {in }}$ depends on r_{L} i.e. ac resistance of the load across output terminals of the transistor.
(iii) Voltage Gain
$A_{v}=v_{2} / v_{1}$. It is also known as the internal voltage gain of the transistor. It is different from $A_{v s}=v_{2} / v_{s}$ which is the gain from the source to the output terminals and is known as stage gain or overall gain.

As seen from above, $v_{2}=-A_{i} i_{2} r_{L}$ and $v_{1}=i_{1} r_{i n}$

$$
\begin{aligned}
\therefore \quad A_{v} \frac{2}{1} & \frac{i_{2} A_{i} r_{L}}{i_{L} r_{i n}}
\end{aligned} \quad A_{i} \frac{r_{L}}{r_{i n}}-1 .
$$

Overall voltage gain is

$$
A_{v s} \quad \frac{v_{2}}{s} \quad \frac{v_{2}}{v_{1}} \frac{v_{i}}{v_{s}} A_{v} \frac{v_{i}}{v_{s}}
$$

Now, v_{s} drops over series combination of R_{S} and $r_{i n}$.
Drop across $r_{i n}$ constitutes v_{l}. Hence, $v_{l}=v_{s} \times r_{i n} /\left(R_{S}+R_{i n}\right)$

$$
\therefore \quad \frac{v_{1}}{v_{s}} \frac{r_{i n}}{\left(R_{S} r_{i n}\right)} \quad \text { or } \quad A_{v s} \quad A_{v} \frac{r_{i n}}{\left(R_{5} \quad r_{i n}\right)}
$$

As seen, if $R_{S}=0, A_{v s}=A_{v}$
Value of $A_{v s}$ may also be obtained by adding R_{S} to h_{i} in the expression for A_{v}. (iv) Output Impedance

It is defined as $\left.r_{0} \frac{v_{2}}{i_{2}}\right|_{v_{s}} 0$ or $g_{0} \frac{i_{2}}{v_{2}}$
Dividing both sides of Eq. (ii) by v_{2}, we get

$$
\begin{equation*}
g_{0} \quad h_{f} \cdot \frac{i_{2}}{v_{2}} \quad h_{0} \tag{iv}
\end{equation*}
$$

Taking $v_{s}=0$ and then applying KVL to the input circuit in Fig. 59.57, we get

$$
-i_{1}\left(h_{i}+R_{S}\right)-h_{r} v_{2}=0 \quad \text { or } \quad i_{1} / v_{2}=-h_{r} /\left(h_{i}+R_{S}\right)
$$

Substituting this value in Eq. (iv) above, we have

$$
g_{0} h_{0} \cdot \frac{h_{f} h_{r}}{\left(h_{i} R_{S}\right)} \quad \frac{h_{o} R_{S} h}{\left(h_{i} R_{S}\right)} \quad \therefore \quad r_{o} \frac{1}{g_{o}} \frac{h_{i} R_{S}}{h_{o} R_{S} h}
$$

It is seen that rin depends on r_{L} whereas ro depends on R_{S}.
If R_{S} is very large (i.e. circuit is driven by a current source) or h_{r} is negligible, then $r_{o} \cong 1 / h_{o}$.
(v) Power Gain

$$
A_{p} \frac{P_{2}}{P_{1}} \frac{v_{2} i_{2}}{v_{1} i_{1}} \quad A_{v} A_{i} \quad A_{i}^{2} \frac{r_{L}}{r_{i n}}
$$

The above formulae are summarized below :

$$
\begin{equation*}
A_{i} \frac{h_{f}}{1 h_{o} r_{L}} \quad h_{f} \tag{i}
\end{equation*}
$$

$$
\left.A_{i} \frac{h_{f} R_{S}}{\left(1 h_{o} r_{L}\right)\left(r_{i n}\right.} \quad R_{S}\right) \quad \frac{h_{o} R_{S}}{\left(r_{i n} \quad R_{S}\right)}
$$

$$
\begin{equation*}
r_{\text {in }} h_{i} \frac{h_{f} h_{r} r_{L}}{1 h_{o} r_{L}} \quad h_{i} \tag{ii}
\end{equation*}
$$

(iii)

$$
A_{v} \frac{h_{f} h_{r}}{h_{i} \quad h \cdot r_{L}} \quad \frac{h_{f} r_{L}}{h_{i}} ; A_{v s} \quad \frac{h_{f} r_{L}}{\left(h_{i} R_{S}\right)}
$$

(iv)

$$
\begin{array}{llllll}
r_{o} & \frac{h_{i}}{} R_{S} & \frac{1}{h_{i} / R_{S}} & \frac{1}{h_{o} R_{S}} \quad h & \frac{h}{h_{o}} & h / R_{S}
\end{array} h_{h}
$$

59.23. Typical Values of Transistor h-pa rameters

In the table below are given typical values for each parameter for the broad range of transistors available today in each of the three configurations.

Parameter	$C B$	$C E$	$C C$
h_{i}	25Ω	1 K	1 K
h_{r}	3×10^{-4}	2.5×10^{-4}	$\cong 1$
h_{f}	-0.98	50	-50
h_{o}	$0.5 \times 10^{-6} \mathrm{~S}$	$25 \times 10^{-6} \mathrm{~S}$	$25 \times 10^{-6} \mathrm{~S}$

59.24. Approximate Hybrid Formulas

The approximate hybrid formulas for the three connections are listed below. These are applicable when h_{o} and h_{r} are very small and R_{S} is very large. The given values refer to transistor terminals. The values of $r_{\text {in(stage) }}$ or $r_{\text {in }}{ }^{\prime}$ and $r_{o(\text { stage })}$ will depend on biasing resistors and load resistance respectively.

Item	$C E$	$C B$	$C C$
$r_{\text {in }}$	$h_{i e}$	$h_{i b}$	$h_{i c}+h_{f e} R_{L}$
$r o$	$\frac{1}{h_{o c}}$	$\frac{1}{h_{o B}}$	$\frac{h_{i e}}{h_{f c}}$
A_{i}	$h_{f e}=\beta$	$-h_{f b} \cong 1$	$-h_{f e} \cong \beta$
A_{v}	$\frac{h_{i e} R_{C}}{h_{i s}}$	$\frac{f_{f b}}{h_{i b}} R_{C}$	1

59.25. Common Emitter h-pa rameter Analysis

The h-parameter equivalent of the $C E$ circuit of Fig. 59.59 (a) is shown in Fig. 59.59 (b). In Fig. 59.59 (a), no emitter resistor has been connected.

Fig. 59.59
However, Fig. 59.60 shows the $C E$ circuit with an emitter resistor R_{E}.

(a)

(b)

Fig. 59.60
We will now derive expressions for voltage and current gains for both these circuits.

1. Input Impedance

When looking into the base-emitter terminals of the transistor, $h_{i e}$ is in series with $h_{r e}$ no. For a $C E$ circuit, $h_{r e}$ is very small so that $h_{r e} v_{0}$ is negligible as compared to the drop over $h_{i e}$. Hence, $r_{i n} \cong h_{i e}$.

Now, consider the circuit of Fig. 59.60. Again ignoring $h_{r e} \nu_{o}$, we have

$$
\begin{aligned}
& v_{1}=h_{i e} i_{b}+i_{e} R_{E}=h_{i e} i_{b}+\left(i_{b}+i\right) R_{E} \\
& =h_{i e} i_{b}+i_{b} R_{E}+h_{f e} i_{b} R_{E} \quad\left(\begin{array}{lll}
\left(\begin{array}{ll}
c_{c} & h_{f e} i_{b}
\end{array}\right)
\end{array}\right. \\
& =i_{b}\left[h_{i e}+R_{E}\left(1+h_{f e}\right)\right] \\
& \therefore \quad r_{i n}=r_{\text {in(base })}=\frac{v_{1}}{i_{1}} \quad \frac{v_{1}}{i_{b}} h_{\text {ie }}\left(\begin{array}{ll}
1 & \left.h_{f e}\right) R_{E} \text { * }
\end{array}\right. \\
& r_{\text {in }} \text { or } r_{\text {in(base) }}=R_{1}\left\|R_{2}\right\| r_{\text {in(base })}
\end{aligned}
$$

2. Output Impedance

Looking back into the collector and emitter terminals of the transistor in Fig. 59.59 (b), $r_{o} \cong 1 / h_{o e}$.

As seen, $r_{o}{ }^{\prime}$ or $r_{o(\text { stage })}=r_{o}\left\|\mathrm{R}_{\mathrm{L}}=\left(1 / h_{o}\right)\right\| r_{L} \quad\left(\begin{array}{ll}r_{L} & R_{L}\end{array}\right)$
Since $1 / h_{o e}$ is typically 1 M or so and R_{L} is usually much smaller, $r_{o}{ }^{\prime} \cong R_{L}=r_{L}$
3. Voltage Gain

$$
\begin{equation*}
A_{v} \frac{v_{2}}{v_{1}} \frac{v_{o}}{v_{i n}} \tag{b}
\end{equation*}
$$

Now, $v_{o}=-i_{c} R_{L}$ and $\quad v_{i n} \cong i_{b} h_{i e}$

$$
\therefore \quad A_{v} \quad \frac{i_{s} R_{L}}{i_{b} h_{i e}} \quad \frac{i_{c}}{i_{b}} \cdot \frac{R_{L}}{h_{i e}} \quad \frac{h_{f} R_{L}}{h_{i e}}
$$

Now, consider Fig. $59.60(b)$. Ignoring $h_{r e} v_{o}$, we have from the input loop of the circuit

$$
v_{i n}=i_{b}\left[h_{i e}+R_{E}\left(1+h_{f e}\right)\right]
$$

$$
\begin{aligned}
& \therefore \quad A_{v}\left.\frac{v_{o}}{v_{i n}} \frac{i_{c} R_{L}}{i_{b}\left[h_{i e}\right.} R_{E}\left(1 h_{f e}\right)\right] \\
& \frac{h_{f e} R_{L}}{h_{f e}\left(1 h_{f e}\right) R_{E}} \\
& \\
& \frac{R_{L}}{R_{E}}
\end{aligned}
$$

[^14]In general,

4. Current Gain

$$
A_{i} \quad \frac{i_{2}}{i_{1}} \quad \frac{h_{f e}}{1 h_{o e} r_{L}} \quad h_{f e}
$$

$$
\text { - if } h_{o e} r_{L} \ll 1
$$

5. Power Gain

$$
A_{\mathrm{p}}=A_{v} \times A_{i}
$$

59.26. Common Collector h-pa rameter Analysis

The $C C$ transistor circuit and its h-parameter equivalent are shown in Fig. 59.61.
One can make quick approximations of $C C$ gains and impedance if one remembers that $h_{r e}=1$ i.e. all of v_{o} is fed back to the input (Art. 59.23).

1. Input Impedance

$$
\begin{aligned}
v_{i n} & =i_{b} h_{i c}+h_{r c} v_{\mathrm{o}}=i_{b} h_{i c}+v_{\mathrm{o}}=i_{b} h_{i c}+i_{e} R_{L} & \\
& =i_{b} h_{i c}+h_{f e} i_{b} R_{L}=i_{b}\left(h_{i c}+h_{f e} R_{L}\right) & i_{c}=h_{f e} i_{b}
\end{aligned}
$$

(a)

(b)

Fig. 59.61

$$
\therefore \quad r_{\text {in }} \frac{v_{i n}}{i_{b}} \quad h_{i c} \quad h_{f e} R_{L}
$$

As seen, $\quad r_{\text {in(stage) }}=r_{\text {in(base) }}\left\|R_{1}\right\| R_{2}=r_{\text {in(base) }} \| R_{B}$ where $R_{B}=R_{1} \| R_{2}$
2. Output Impedance

$$
\left.\left.r_{o} \quad \frac{v_{2}}{i_{2}}\right|_{v_{s}} 0 \quad \frac{v_{o}}{i_{c}}\right|_{v_{s}} 0
$$

Now, $\quad i_{e} \cong i_{c}=h_{f e} i_{b}=h_{f c} i_{l}$
Since $\quad v_{s}=0, i_{b}$ is produced by $h_{r c} v_{o}=v_{o}$
Hence, considering the input circuit loop, we get

\[

\]

where $R_{B}=R_{1} \| R_{2}$

$$
\therefore \quad r_{o} \quad \frac{V_{o}}{i_{e}} \quad \frac{h_{i c}\left(R_{S}\left\|R_{1}\right\| R_{2}\right)}{h_{f e}}
$$

Also, $r_{o}{ }^{\prime}$ or $\quad r_{o(\text { stage })}=r_{o} \| R_{L}$
3. Voltage Gain

$$
\begin{aligned}
& A_{v} \frac{v_{2}}{v_{1}} \frac{v_{o}}{v_{i n}} \\
\text { Now, } \quad & v_{o}=i_{e} R_{L}=h_{f e} i_{b} R_{L} \text { and } i_{b}=\left(v_{i n}-v_{o}\right) / h_{i c} \\
& v_{o} \frac{h_{f e} R_{L}}{h_{i e}}\left(\begin{array}{ll}
v_{i n} & v_{o}
\end{array}\right) \quad \text { or } \quad v_{o} 1 \frac{h_{f e} R_{L}}{h_{i c}} \quad \frac{h_{f e} R_{L} v_{i n}}{h_{i c}} \\
\therefore \quad & A_{v} \quad \frac{v_{o}}{v_{i n}} \frac{h_{f e} R_{L} / h_{i c}}{1 h_{f e} R_{L} / h_{i c}} 1
\end{aligned}
$$

4. Current Gain

$$
A_{i} \frac{i_{2}}{i_{1}} \quad \frac{i_{e}}{i_{b}} \quad h_{f e} ; A_{i s} \quad \frac{h_{f e} R_{B}}{r_{i n} R_{B}} \quad \quad \text { where } R_{B}=R_{1} \| R_{2}
$$

59.27. Conversion of h-parameters

Transistor data sheets generally specify the transistor in terms of its h-parameters for $C B$ connection i.e. $h_{i b}, h_{f b}, h_{r b}$ and $h_{o b}$. If we want to use the transistor in $C E$ or $C C$ configuration we will have to convert the given set of parameters into a set of $C E$ or $C C$ parameters. Approximate conversion formulae are tabulated over leaf :

Table No. 59.2

From $C B$ to $C E$

$$
\begin{aligned}
& h_{i e} \frac{h_{i b}}{1 h_{f b}} \\
& h_{o e} \frac{h_{o b}}{1 h_{f b}} \\
& h_{f e} \frac{h_{f b}}{1 h_{f b}} \\
& h_{r e} \frac{h_{i b} h_{o b}}{1 h_{f b}} \quad h_{r b}
\end{aligned}
$$

From $C E$ to $C B$
$h_{i e} \frac{h_{i e}}{1 h_{f e}}$ From CE to CC

$$
h_{i c}=h_{i c}
$$

$$
h_{o b} \frac{h_{o e}}{1 h_{f e}}
$$

$$
h_{o c}=h_{o e}
$$

$$
h_{f b} \frac{h_{f e}}{1 h_{f e}}
$$

$$
h_{f e}=-\left(1+h_{f e}\right)
$$

$h_{r b} \frac{h_{i e} h_{o e}}{1 h_{f e}} \quad h_{r e}$

$$
h_{r e}=1-h_{r e} \cong 1
$$

Example. 59.18. A transistor used in CB circuit has the following set of parameters.
$h_{i b}=36 \Omega, h_{f b}=0.98, h_{r b}=5 \times 10^{-4}, h_{o b}=10^{-6}$ Siemens
With $R_{S}=2 \mathrm{~K}$ and $R_{C}=10 \mathrm{~K}$, calculate (i) $r_{\text {in(base) }}\left(\right.$ ii) $r_{\text {out }}$ (iii) A_{i} and (iv) A_{v}.
(Applied Electronics-I; Punjab Univ. 1991)

Solution. Approximate Values

(i) $r_{i n}=h_{i b}=36 \Omega$
(ii) $r_{o} \quad \frac{1}{h_{o b}} \quad \frac{1}{10^{6}} \quad \mathbf{1 M}$
(iii) $A_{i}=h_{f b}=-0.98$
(iv) $A_{v} \quad \frac{h_{f b}}{h_{i b}} \quad R_{C} \quad \frac{0.98}{36} \quad 10 \mathrm{~K} \quad 272$

More Accurate Values

(i) $r_{\text {in(base) }} \quad h_{i b} \frac{h_{r b} h_{f b}}{h_{o b} 1 / r_{L}}$

$$
\begin{aligned}
& =36 \frac{0.98 \quad 510^{4}}{10^{6} 1 / 1010^{3}} \\
& =36+4.9=40.9 \Omega
\end{aligned} \quad\left(\therefore \quad r_{L}=R_{C} \text { since there is no } R_{L}\right)
$$

It is the input resistance at transistor terminals.

Fig. 59.62

(ii)		$h_{o} R_{S}$	36				2000
$h_{o}\left(h_{i b}\right.$	$\left.R_{S}\right)$	$h_{f b} \cdot h_{r b}$	$\mathbf{0 . 8} \mathbf{M}$				

It is the output resistance at transistor terminals.
(iii)

$$
A_{i} \frac{h_{f b}}{1 h_{o b} r_{L}} \quad \frac{0.98}{10^{6} 10^{4}}
$$

(iv) $\quad A_{v} \quad \frac{h_{f b} r_{L}}{h_{i b}\left(1 \quad h_{o b} r_{L}\right) \quad h_{f b} h_{r b} \cdot r_{L}}$

Here, ac load $r_{L}=R_{L}=10 \mathrm{~K}=104 \Omega$
$\left.\therefore A_{v} \frac{(0.98) 10^{4}}{36\left(110^{6}\right.} 10^{4}\right)\left(\begin{array}{llllll}(0.98) & 5 & 10^{4} & 10^{4} & & 249\end{array}\right.$
Example 59.19. A transistor used in CE connection (Fig. 59.63) has the following set of h-parameters : $h_{i r}=1 \mathrm{~K}, h_{f e}=100, h_{r e}=5 \times 10^{-4}$ and $h_{o c}$ $=2 \times 10^{-5} \mathrm{~S}$. With $R_{S}=2 \mathrm{~K}$ and $R_{C}=5 \mathrm{~K}$, determine
(i) $r_{i n}$ (ii) r_{o} (iii) A_{i} and (iv) A_{v}

Solution.
(i) $r_{i n} h_{i e} \frac{h_{f b} r_{L}}{h_{o} 1 / r_{L}}$

$$
\begin{aligned}
& =1000 \frac{5}{} 10^{4} \quad 100 \\
& 2 \quad 10^{5} \quad 1 / 5 \quad 10^{3} \\
& =723 \Omega
\end{aligned}
$$

Fig. 59.63
(ii) r_{0}

$$
\begin{aligned}
i & \frac{h_{i e} R_{s}}{\left(h_{i e} R_{s}\right) h_{o e} h_{f e} \cdot h_{r e}} \\
{=30,000 \Omega=\mathbf{0 . 0 3} \mathbf{~ M}}
\end{aligned}
$$

Fig. 59.64
(iii) $A_{i} \frac{h_{f e}}{1} \frac{}{c} \frac{100}{1} \begin{aligned} & h_{o e} r_{L} \\ & \end{aligned} \frac{2}{10^{5}} 5 \quad 10^{3} \quad 91$
(iv) $\quad A_{i} \quad \frac{h_{f e} r_{L}}{\left(\begin{array}{lll}h_{i e} & R_{s}\end{array}\right)\left(\begin{array}{lll}1 & h_{o e} \cdot r_{L}\end{array}\right) h_{f e} h_{r e} r_{L}}$

$$
\left.\begin{array}{ccccccc}
100 & 5 & 10^{3} \\
(100 & 2000
\end{array}\right)\left(\begin{array}{lllllllll}
1 & 2 & 10^{5} & 5 & 10^{3}
\end{array}\right) 100 \quad 5 \quad 10^{4} \quad 5 \quad 10^{3}-164
$$

The negative sign indicates that there is 180° phase shift between the input and output ac signals. Obviously, it is the overall (or circuit) voltage gain and not the voltage gain of the transistor alone.

Example 59.20. In the CE circuit shown in Fig. 59.65, the transistor parameters are:

$$
h_{i e}=2 \mathrm{~K}, h_{f e}=100, h_{r e}=5 \times 10^{-4}, h_{o e}=2 \times 10^{-5} S
$$

Calculate (i) $r_{\text {in(base) }}$, (ii) $r_{\text {in(stage) }}$, (iii) r_{o}, (iv) $r_{o(\text { stage })}$, $(v) A_{i}$ and (vi) A_{v}.
(Electronics-1, Karnataka Univ.)
Solution. The hybrid equivalent circuit is shown in Fig. 59.66. We will use the approximate formulas given in Art. 59.24.

$$
\begin{aligned}
& \text { (i) } r_{\text {in(base) }}=h_{i e} \quad=\mathbf{2 K} \\
& \text { (ii) } r_{\text {in(stage) }}=2 \mathrm{~K} \| 250 \mathrm{~K}=\mathbf{1 . 9 8} \mathbf{K} \\
& \text { (iii) } r_{o}=1 / h_{o e}=1 / 2 \times 10^{-5}=\mathbf{5 0} \mathbf{K}
\end{aligned}
$$

It is the output impedance of the transistor only.

$$
\text { (iv) } r_{o(\text { stage })}=r_{o}^{\prime}=50 \mathrm{~K} \| 5 \mathrm{~K}=4.54 \mathrm{~K}
$$

The impedance takes into account the collector load.

Fig. 59.65
(v) $A_{i} \cong h_{f e}=100$
(vi) $A_{v} \frac{h_{f e} r_{L}}{h_{i e}} \quad \frac{100 \quad 5}{2}-\mathbf{2 5 0}$

Fig. 59.66

Example 59.21. Determine the various gains of the circuit of Fig. 59.67 if an emitter resistance of 0.5 K is included in the circuit.
(Applied Electronics, Punjab Univ. 1991)
Solution. The $C E$ circuit with R_{E} included is shown in Fig. 59.47. Different performance characteristics of the circuit are as under :
(i) $\quad r_{\text {in(base })} \quad h_{\text {ie }} \quad(1 \quad) R_{E}$

$$
=2+101 \times 0.5=52.5 \mathbf{K}
$$

(ii) $r_{\text {in(stage) }}=R_{B}\left\|r_{i n}=250\right\| 52.5$
(iii) $\quad r_{o}=1 / h_{o e}=\mathbf{5 0 ~ K}$
(iv) $r_{o(\text { stage })}=r_{o}{ }^{\prime}=50 \mathrm{~K} \| 5 \mathrm{~K}$
$=4.54 \mathrm{~K}$
(v) $A_{v}=h_{f e}=100$
(vi) $A_{v} \frac{h_{f e} r_{L}}{h_{i e}(1 \quad) R_{E}} \quad \frac{100}{2} \quad 50.5 \quad-9.5$

Fig. 59.67

The value is reduced from 250 to 9.5 .
Example 59.22. The transistor of Fig. 59.68 has the following set of h-parameters :

$$
h_{i e}=2 \mathrm{~K}, h_{f e}=50, h_{r s}=4 \times 10^{-4}, h_{o e}=25 \times 10^{-6} \text { Siemens }
$$

Determine (i) $r_{\text {in(base) }}$ (ii) $r_{\text {in(base) }}$ (iii) $r_{o}\left(\right.$ iv) $r_{o(s t a g e)}$ and (v) A_{v}.
(Electronics-I, Patna Univ. 1991)
Solution. we will use the formula derived in Art. 59.25.
(i) $\quad r_{\text {in(base })} \quad h_{\text {ie }} \quad\left(\begin{array}{llllll}1 & h_{f e)} R_{E} & 2 & (1 & 50\end{array}\right) 5$
$\begin{aligned} & =257 \mathbf{K} \\ \text { (ii) } \quad r_{\text {in(stage) }} & =r_{\text {in(base })}\left\|R_{1}\right\| R_{2}=257\|80\| 40\end{aligned}$
$=24 \mathrm{~K}$
(iii) $r_{o}=1 / h_{o e}=1 / 25 \times 10^{-6}=40 \mathrm{~K}$
(iv) $r_{o \text { (stage) }}=r_{o} \| r_{L}$ where $r_{L}=15 \mathrm{~K} \| 30 \mathrm{~K}$

$$
=10 \mathrm{~K}=40 \mathrm{~K} \| 10=\mathbf{8} \mathbf{K}
$$

(v)

$$
A_{v} \quad \frac{h_{f e} R_{L}}{h_{i e}\left(\begin{array}{ll}
1 & h_{f e}
\end{array}\right) R_{E}}
$$

Fig. 59.68

$$
\begin{gathered}
50 \quad 10 \\
\hline 257
\end{gathered}
$$

Example 59.23. Draw a hybrid small-signal model for a transistor in CE configuration.
A single source with an open circuit voltage of 1 mV and internal impedance of 600 W is connected to the input of transistor AC 125 in CE configuration. The small-signal parameters measured at $V_{C B}=-5 V$ and $I_{E}=2 m A$, are as follows:

$$
h_{i e}=1.7 \mathrm{~K}, h_{r e}=6.5 \times 10^{-4}, h_{f e}=125, h_{o e}=80 \mu \mathrm{~S}
$$

Calculate the input and output impedances and signal amplification for a load of 5.6 K. Also, find the value of the signal voltage at the output. (Electronics-I, Gwalior Univ.)
Solution. $\Delta h=1.7 \times 10^{3} \times 80 \times 10^{-6}-125 \times 6.5 \times 10^{-4}=0.055$

(i) $\quad r_{i n} \frac{h_{i e}}{1} \frac{h \cdot R_{L}}{1} \quad h_{o e} R_{L} \quad$| 1700 | 5.6 | 10^{3} | 55 | 10^{3} |
| :--- | :--- | :--- | :--- | :--- | ---: | :--- |
| | 80 | 10^{6} | 5.6 | 10^{3} |

-Art. 59.22

(ii) $\quad r_{o} \frac{h_{i e} R_{S}}{h_{o e} R_{S} \quad h} \quad \frac{c c c c c}{80} 1700 \quad 600 \quad \frac{2300}{0.103} \quad 22.3 \mathrm{~K}$
(iii) $\quad A_{v} \quad \frac{h_{f e} R_{L}}{h_{i e} R_{L} \cdot h} \quad \frac{125}{1700} 308000348$

The negative sign merely indicates that there is phase reversal of 180° between the output and input voltages.

Now, 1 mV signal voltage is divided between $r_{i n}$ and R_{S}. The input voltage $v_{i n}$ is that which drops over $r_{\text {in }}=1 \times r_{\text {in }} /\left(r_{\text {in }}+R_{S}\right)=1 \times 1387 /(1387+600)=0.698 \mathrm{mV}$
\therefore output voltage $=-348.6 \times 0.698=\mathbf{- 2 4 3 . 3} \mathbf{~ m V}$.
Example 59.24. The transistor of Fig. 59.69 has the following set of h-parameters :

$$
h_{i e}=2 \mathrm{~K}, h_{f e}=100, h_{r e}=5 \times 10^{-4}, h_{o e}=2.5 \times 10^{-5} \mathrm{~S}
$$

Find the voltage gain and the ac impedance of the stage.
(Electronics-II, Bombay Univ. 1992)
Solution. Using somewhat exact formulas given in Art. 59.22, we have

$$
r_{i n(b a s e)} \quad h_{i e} \quad \frac{h_{f e} h_{r e}}{h_{o e} 1 / r_{L}}
$$

Now, collector load

$$
\begin{gathered}
r_{L}=10 \mathrm{~K} \| 30 \mathrm{~K}=7.5 \mathrm{~K} \\
\therefore \quad r_{\text {in (base })} \quad 200 \quad \frac{100 \quad 5 \quad 10^{4}}{2.5 \quad 10^{5} \quad 1 / 7.5 \quad 10^{3}} \\
=2000-316=\mathbf{1 6 8 4} \Omega
\end{gathered}
$$

The ac input impedance of the stage i.e. impedance when looking into point B is

$$
r_{\text {in(base })}=r_{\text {in(base) }}\left\|\mathrm{R}_{1}\right\| \mathrm{R}_{2}=1.684\|50\| 25=1.53 \mathrm{~K}
$$

Fig. 59.69

$$
A_{v} \frac{h_{f e}}{r_{i n(\text { base })}\left(h_{o e} \quad 1 / r_{L}\right)}
$$

$$
\text { Now, } \quad r_{L}=10 \mathrm{~K} \| 30 \mathrm{~K}=7.5 \mathrm{~K}
$$

$$
\therefore \quad A_{v} \frac{100}{0184\left(2.510^{5} 1 / 7500\right)}-375
$$

Obviously, R_{E} does not come into the ac picture because it is ac grounded by the bypass capacitor.
Example 59.25. In the CC circuit of Fig. 59.70, the transistor parameter are $h_{i c}=2 \mathrm{~K}$ and $h_{f c}=$ 100. Calculate the circuit input and output impedance and voltage, current and power gains.
(Electronic Technology, Bangalore Univ.)
Solution. $\quad r_{i n} \cong h_{i c}+h_{f e} R_{L}=2+100 \times 5=502 \mathbf{K}$

$$
\begin{aligned}
r_{\text {in(stage) }}= & R_{1}\left\|R_{2}\right\| r_{\text {in }} \\
= & 10\|10\| 502=4.95 \mathrm{~K} \\
r_{o} \quad & \frac{h_{i e}\left(R_{s}\left\|R_{1}\right\| R_{2}\right)}{h_{f e}} \\
& \frac{2(1\|10\| 100)}{100} 28.3 \Omega
\end{aligned}
$$

Fig. 59.70
$r_{o(\text { stage })}=r_{o}\left\|R_{L}=28.3 \Omega\right\| 5 \mathrm{~K}$

$$
=28.1 \Omega
$$

$$
A_{v} \cong 1 \text { and } A_{i}=h_{f e}=100
$$

Example 59.26. A transistor with $h_{i e}=1.5 \mathrm{~K}$ and $h_{f e}=75$ is used in an emitter follower circuit where resistances R_{1} and R_{2} are used for normal biasing. Calculate (i) A_{i} (ii) $r_{\text {in }}$ (iii) r_{o} and (iv) A_{v} if R_{E} $=860 \Omega, R_{1} \| R_{2}=20 \mathrm{~K}$ and $R_{S}=1 \mathrm{~K}$.
(Electronic Engg.; Indore Univ. 1992)
Solution. Let us first convert the given $C E$ values of h-parameters into their equivalent $C C$ values with the help of Table No. 59.2. It is seen that $h_{i c}=h_{i e}=1.5 \mathrm{~K}$ and $h_{f c}=\left(1+h_{f e}\right)=76$.
(i) $A_{i}=h_{f e}=76$
(ii) $r_{i n}=h_{i c}+h_{f c} R_{L}=1.5+76 \times 0.860=66.9 \mathrm{~K}$
(iii) $r_{o} \frac{h_{i c} \quad\left(R_{s}\left\|R_{1}\right\| R_{2}\right)}{h_{f e}}$
$\frac{1.5 \quad 1 \| 20}{76}$
32.3Ω
(iv) $A_{v} \cong 1$

Tutorial Problems No. 59.1

1. Using ideal transistor approximations for the single-stage $C B$ amplifier of Fig. 59.71, find (i) stage $r_{i n}$ (ii) r_{L} (iii) Avand (iv) A_{p}. Take transistor $\alpha=-0.99$.
[(i) $\mathbf{2 5} \Omega$ (ii) $\mathbf{1 0} \mathbf{K}$ (iii) 400 (iv) 396]
2. For the single-stage $C B$ amplifier circuit shown in Fig. 59.72, find
(i) $r_{\text {in }}$ (ii) r_{L} (iii) A_{v} and (iv) A_{p}

Fig. 59.71

Fig. 59.72

Transistor $\alpha=-0.9$. Take G_{e} transistor material. [(i) 25Ω (ii) 5 K (iii) 200 (iv) 196]
3. For the $C B$ amplifier circuit of Fig. 59.73, find approximate values of
(i) stage $r_{\text {in }}$
(ii) r_{L}
(iii) $A_{v}=v_{\text {out }} / v_{\text {in }}$
(iv) $\mathrm{A}_{v \sigma}=v_{\text {out }} / v_{\mathrm{s}}$
(v) A_{p}
(vi) G_{p}

Take transistor $\alpha=-0.98$

$$
[(i) 25 \Omega \text { (ii) 5K (iii) } 200 \text { (iv) } 22.2 \text { (v) } 196 \text { (vi) } 22.9 \mathrm{~dB}]
$$

Fig. 59.73
4. Find $r_{i n}, r_{L}, A_{i}, A_{v}$ and G_{p} for the $C E$ amplifier shown in Fig. 9.74.
$[(i) \mathbf{1 2 5 0} \boldsymbol{\Omega}$ (ii) 5K (iii) $\mathbf{5 0}$ (iv) $\mathbf{2 0 0}$ (v) $\mathbf{3 0} \mathbf{d B}]$

Fig. 59.74

Fig. 59.75
5. For the single-stage $C E$ amplifier circuit of Fig. 59.75, find
(i) $r_{i n}$
(ii) r_{L}
(iii) A_{v}
(iv) A_{p} and
(v) G_{p}
Take $\beta=100$ and use $r_{e}=50 \mathrm{mV} / I_{E}$.
[(i) $\mathbf{1 6 0} \mathbf{K}$ (ii) 5K (iii) $\mathbf{2 . 5}$ (iv) $\mathbf{2 5 0}$ (v) $\mathbf{2 4} \mathbf{~ d B] ~}$
6. For the C_{E} amplifier of Fig. 59.76, find approximate values of
(i) $r_{i n}$
(ii) r_{L}
(iii) A_{v}
(iv) A_{p} and G_{p}.

Take transistor $\beta=50$ and use $r_{e}=50 \mathrm{mV} / \mathrm{I}_{\mathrm{E}} . \quad[($ i $) \mathbf{2 K}$ (ii) $\mathbf{1 0 K}$ (iii) $\mathbf{2 0 0}$ (iv) $\mathbf{1 0 , 0 0 0}$ (v) $\mathbf{4 0} \mathbf{d B}]$
7. For the emitter follower circuit shown in Fig. 59.77, find
(i) $r_{\text {in(base) }}$
(ii) $r_{\text {in(stage) }}$
(iii) stage A_{v}
(iv) A_{p} in decibles

Take $\beta=100$ and use $r_{e}=25 \mathrm{mV} / \mathrm{I}_{\mathrm{E}} .[(i) 10 \mathrm{~K}$ (ii) 9.52 K (iii) 0.75 (iv) $\mathbf{1 8 . 7 5 \mathrm { dB }]}$

Fig. 59.76

Fig. 59.77
8. An $N P N$ silicon transistor is connected as a C_{E} amplifier with load R_{L} and a source resistance R_{S}. The h parameters are :
$h_{i e}=1.1 \mathrm{~K}, h_{r e}=2.5 \times 10^{-4}, h_{f e}=50$ and $h_{o e}=25 \mu \mathrm{~S}$
If $R_{L}=10 \mathrm{~K}$ and $R_{S}=1 \mathrm{~K}$, find the various gains and input and output impedances.
Derive the relations used.

$$
\left[A_{i}=40, A_{i s}=20, r_{i n}=1 \mathrm{~K}, A_{v}=-400, A_{v s}=-200, r_{o}=52.5 \mathrm{~K}, A_{p}=16,000, G_{p}=42 \mathrm{~dB}\right]
$$

9. Calculate the gain of a common-emitter transistor amplifier whose hybrid parameters are:

$$
h_{i e}=1100 \text { ohms, } h_{r e}=2.5 \times 10^{-4} ; h_{f e}=50, h_{o e}=25 \mu \mathrm{~S}, R_{L}=5 \mathrm{~K} .
$$

Derive any formula used.
(-213) (Electronic Engg., Indore Univ.)
10. A $C E$ amplifier has $h_{i e}=1.1 \mathrm{~K}, h_{f e}=50, h_{r e}=2.5 \times 10^{-4} ; h_{o e}=25 \mu \mathrm{~S}, R_{S}=R_{L}=500 \mathrm{ohm}$. Calculate the output impedance and voltage gain.
(Applied Electronics-I, Punjab Univ. Dec.)
11. A junction transistor has the following h-parameters $h_{i e}=2000 \mathrm{ohm}, h_{r e}=15 \times 10^{-4}, h_{f e}=49, h_{o e}=50 \mu \mathrm{~S}$. Determine the current gain, voltage gain, input resistance and output resistance of the $C E$ amplifier if the
load resistance is 10 K and source resistance is 600 ohm. Derive the expressions used.
(Applied Electronics-1, Punjab May)
12. A $C E$ amplifier has $h_{i e}=1.1 \mathrm{~K}, h_{f e}=50, h_{r e}=2.5 \times 10^{-4}, h_{o e}=25 \mu \mathrm{~S}, R_{S}=R_{L}=1 \mathrm{~K}$.

Calculate the output impedance and voltage gain.
(Applied Electronics-1, Punjab Univ. Dec.)
13. A junction transistor has the following h-parameters $h_{i e}=1 \mathrm{~kW}, h_{r e}=1, h_{f e}=-50, h_{o e}=25 \mathrm{~mA} / \mathrm{V}$. This transistor is connected to a source of internal resistance 600 ohm and a load of $40 \mathrm{k} \Omega$. Calculate the current gain, voltage gain, input resistance and output resistance of the amplifier. Derive the expressions used.
(Applied Electronics-I, Punjab Univ. June)
14. A transistor connected in CE configuration has following h-parameters.

$$
\begin{array}{ll}
h_{i e}=1.1 \mathrm{k} \Omega & h_{r e}=2.5 \times 10^{-4} \\
h_{f e}=50 & h_{o e}=25 \mu \text { Siemens } \\
\text { and } & r_{s}=r_{L}=1 \mathrm{k} \Omega \\
\end{array}
$$

Calculated current gain, input impedance and voltage gain.
(Electronics Engg. Bangalore Univ. 2001)

OBJECTIVE TESTS - 59

1. In an ac amplifier, larger the internal resistance of the ac signal source
(a) greater the overall voltage gain
(b) greater the input impedance
(c) smaller the current gain
(d) smaller the circuit voltage gain.
2. The main use of an emitter follower is as
(a) power amplifier
(b) impedance matching device
(c) low-input impedance circuit
(d) follower of base signal.
3. An ideal amplifier is one which
(a) has infinite voltage gain
(b) responds only to signals at its input terminals
(c) has positive feeback
(d) gives uniform frequency response.
4. The smallest of the four h-parameters of a transistor is
(a) h_{i}
(b) h_{r}
(c) h_{o}
(d) h_{f}
5. The voltage gain of a single-stage $C E$ amplifier is increased when
(a) its ac load is decreased
(b) resistance of signal source is increased
(c) emitter resistance R_{E} is increased.
(d) ac load resistance is increased.
6. When emitter bypass capacitor in a $C E$ amplifier is removed, its \qquad is considerably reduced.
(a) input resistance
(b) output load resistance
(c) emitter current
(d) voltage gain
7. Unique features of a $C C$ amplifier circuit is that it
(a) steps up the impedance level
(b) does not increase signal voltage
(c) acts as an impedance matching device
(d) all of the above.
8. The input impedance h_{11} of a network with output shorted is given by the ratio
(a) v_{1} / i_{1}
(b) v_{1} / v_{2}
(c) i_{2} / i_{1}
(d) i_{2} / v_{2}
9. The h-parameters of a transistor depend on its
(a) configuration
(b) operating point
(c) temperature
(d) all of the above
10. The output admittance h_{0} of an ideal transistor connected in $C B$ configuration is
\qquad siemens.
(a) 0
(b) $1 / \mathrm{r}$
(c) $1 / \beta r_{e}$
(d) -1 .
11. A transistor has $h_{f e}=100, h_{i e}=5.2 \mathrm{~K} \Omega$, and $r_{b b}=0$. At room temperature, $V_{T}=26 \mathrm{mV}$, the collector current, $\left|I_{C}\right|$ will be.
(a) 10 mA
(b) 5 mA
(c) 1 mA
(d) 0.5 mA

ANSWERS

1. (d)
2. (b)
3. (b)
4. (c)
5. (d)
6. (d)
7. (d)
8. (a)
9. (d)
10. (a)
11. (a)

ROUGH WORK

C H A P T E R

Learning Objectives

> Classification of Amplifiers
> Common Base (CB) Amplifier
> Common Emitter (CE) Amplifier
> Common Collector (CC) Amplifier
> Comparison of Amplifier Configurations
> Class-A Amplifier
$>$ Power Rectangle
> Power Efficiency
> Class-B Amplifier
$>$ Maximum Values
> Class-B Push-pull Amplifier
> Crossover Distortion
> Class-B Amplifier
> Class-C Amplifier
> Tuned Amplifier
> Distortion in Amplifiers
$>$ Noise
> The Decibel System
$>$ Value of 1 dB
$>$ Cause of Amplifier Gain Variations
$>$ Miller Effec \dagger
> Cut-off Frequencies of Cascaded Amplifiers
> The f_{T} of a Transistor
$>$ Relation between $f_{\alpha^{\prime}} f_{\beta}$ and f_{T}
$>$ Gain-bandwidth Produc \dagger

SINGLE-

STAGE TRANSISTOR AMPLIFIERS

Single stage amplifier analysis is of great value in understanding the practical amplifier circuits

60.1. Classification of Amplifiers

Linear amplifiers are classified according to their mode of operation i.e. the way they operate according to a predetermined set of values. Various amplifier descriptions are based on the following factors :

1. As based on its input
(a) small-signal amplifier
(b) large-signal amplifier
2. As based on its output
(a) voltage amplifier
(b) power amplifier
3. As based on its frequency response
(a) audio-frequency (AF) amplifier
(c) radio-frequency (RF) amplifier
(b) intermediate-frequency (IF) amplifier
4. As based on its biasing conditions
(a) class-A
(b) class-AB
. As based on transistor configuration
(a) common-base (CB) amplifier
(b) common-emitter (CE) amplifier
(c) common-collector (CC) amplifier

The description small-signal, class-A, CE, voltage amplifier means that input signal is small, biasing condition is class-A, transistor configuration is common-emitter and its output concerns voltage amplification.

We will first take up the basic working of a single-stage amplifier i.e. an amplifier having one amplifying element connected in $C B, C E$ and $C C$ configuration.

60.2. Common Base (CB) Amplifier

Both Fig. 60.1 and 60.2 show the circuit of a single-stage $C B$ amplifier using $N P N$ transistor. As seen, input ac signal is injected into the emitter-base circuit and output is taken from the collec-tor-base circuit. The E / B junction is forward-biased by $V_{E E}$ whereas C / B junction is reverse-biased by $V_{C C}$. The Q-point or dc working conditions are determined by dc batteries along with resistors R_{E} and R_{C}. In other words, values of I_{E}, I_{B} and $V_{C B}$ are decided by $V_{C C}$, $V_{E E}, R_{E}$ and R_{C}. The voltage $V_{C B}$ is given by the equation $V_{C B}=V_{C C}{ }^{-}$ $I_{C} R_{C}$.

When no signal is applied to the input circuit, the output just sits at the Q-point so that there is no

Fig. 60.1 output signal. Let us now see what happens when we apply an ac signal to the E / B junction via a coupling capacitor C_{1} (which is assumed to offer no reactance to the signal).

Circuit Operation

When positive half-cycle of the signal is applied, then

1. .forward bias is decreased because $V_{B E}$ is already negative with respect to the ground as per biasing rule of Art. 60.3.
2. consequently, I_{B} is decreased.
3. I_{E} and hence I_{C} are decreased (because they are both nearly β times the base current).
4. the drop $I_{C} R_{C}$ is decreased.
5. hence, $V_{C B}$ is increased as seen by the equation given above.

Fig. 60.2

It means that a positive output half-cycle is produced.

Since a positive-going input signal produces a positive-going output signal, there is no phase reversal between the two.

Voltage amplification in this circuit is possible by reason of relative input and output circuitry rather than current gain (α) which is always less than unity. The input circuit has low resistance whereas output circuit has very large resistance. Although changes in input and output currents are the same, the ac drop across R_{L} is very large. Hence, changes in $V_{C B}$ (which is the output voltage) are much larger than changes in input ac signal. Hence, the voltage amplification.

60.3. Various Gains of a CB Amplifier

1. Input Resistance

The ac input resistance of the transistor is given by the emitter junction resistance

$$
r_{e}=\frac{25 \mathrm{mV}}{I_{E}} \quad \text { or } \quad \frac{50 \mathrm{mV}}{I_{E}}
$$

As seen from the ac equivalent circuit (Fig. 10.3)

$$
r_{i n}=r_{e} \| R_{E}
$$

2. Output Resistance

$$
r_{0}=R_{C}
$$

If a load resistance R_{L} is connected across output terminals, then

$$
r_{o}=R_{C} \| R_{L}
$$

It is called the output resistance of the stage and is written as $r_{0(\text { stage })}$ or $r_{0}{ }^{\prime}$
3. Current Gain $A_{i}=\alpha$
4. Voltage Gain $A_{v}=\frac{r_{0}}{r_{i n}}=\frac{r_{0}}{r_{e}}$
5. Power Gain $A_{p}=A_{v} \cdot A_{i}$

The decibel gain is given by $G_{p}=10 \log _{10} A_{p} \mathrm{~dB}$

60.4. Characteristics of a CB Amplifier

Common-base amplifier has

1. very low input resistance $(30-150 \Omega)$, 2. very high output resistance (upto 500 K),
2. a current gain $\alpha<1$,
3. large voltage gain of about 1500 ,
4. power gain of upto 30 dB ,
5. no phase reversal between input and output voltages.

Uses

One of the important uses of a $C B$ amplifier is in matching a low-impedance circuit to a highimpedance circuit.

It also has high stability of collector current with temperature changes.

Example 60.1. For the single-stage CB amplifier shown in Fig. 60.3 (a), find
(a) stage input resistance,
(b) stage output resistance,
(c) current gain,
(d) voltage gain of the stage,
(e) stage power gain in $d B$,

Assume $\alpha=1$. Neglect $V_{B E}$ and use $r_{e}=25 \mathrm{mV} / I_{E}$
(Basic Electronics, Bombay Univ. 1991)
Solution. The ac equivalent circuit is shown in Fig. 60.3 (b).

Fig. 60.3
$I_{E}=20 / 20=1 \mathrm{~mA} \quad r_{e}=25 / I_{E}=25 \Omega$
(a) stage $r_{i n}=r_{e}\left\|R_{E}=25 \Omega\right\| 20 \mathrm{~K} \cong \mathbf{2 5} \Omega$
(b) stage $r_{0}=R_{C} \| R_{L}$
$\therefore \quad r_{0}{ }^{\prime}=10 \mathrm{~K} \| 10 \mathrm{~K}=\mathbf{5 K}$
(c)

$$
A_{i}=\alpha=1
$$

(d) $A_{v}=\frac{r_{0}{ }^{\prime}{ }^{\prime}}{r_{e}}=\frac{5000}{25}=\mathbf{2 0 0}$
(e) $\quad A_{p}=A_{v} \cdot A_{i}=200 \times 1=\mathbf{2 0 0}$

$$
G_{p}=10 \log _{10} A_{p} \mathrm{~dB}=10 \log _{10} 200=23 \mathrm{~dB}
$$

60.5. Common Emitter (CE) Amplifier

Fig. 60.4 and 60.5 show the circuit of a single-stage $C E$ amplifier using an $N P N$ transistor. Here, base is the driven element. The input signal is injected into the baseemitter circuit whereas output signal is taken out from the collectoremitter circuit. The E / B junction is forward-biased by $V_{B B}$ and C / B junction is reversed-biased by $V_{C C}$ (in fact, same battery $V_{C C}$ can provide

Fig. 60.4
dc power for both base and collector as in Fig. 60.5). The Q-point or working condition is determined by $V_{C C}$ together with R_{B} and R_{C}. The dc equation is (Fig. 60.5).

$$
\begin{array}{lrr}
I_{B} \cong V_{B B} / R_{B} & & \quad \text {-neglecting } V_{B E} \\
I_{C} & =\beta I_{B} & \text { and }
\end{array} \quad V_{C E}=V_{C C}-I_{C} R_{C}
$$

Now, let us see what happens when an ac signal is applied at the input terminals of the circuit.

Circuit Operations

When positive half-cycle of the signal is applied (Fig. 60.4)

1. $V_{B E}$ is increased because it is already positive w.r.t. the ground as per biasing rule of Art 6.3 .
2. it leads to increase in forward bias of baseemitter junction
3. I_{B} is increased somewhat
4. I_{C} is increased by α times the increased in I_{B}.
5. drop $I_{C} R_{C}$ is increased considerably and

Fig. 60.5 cons- equently.
6. $V_{C E}$ is decreased as seen from the equation given above.

Hence, negative half-cycle of the output is obtained. It means that a positive-going input signal becomes a negative going output signal as shown in Fig. 60.4 and 60.5.

60.6. Various Gains of a CE Amplifier

The ac equivalent of the given circuit (Fig. 60.5) is similar to the one shown in Fig. 60.6 (b).

1. Input Resistance

When viewed from base, ac resistance of the emitter junction is β_{re}. As seen, from Fig. 60.6 (b), circuit input resistance is

$$
\begin{array}{ll}
r_{i n}^{\prime}=R_{B} \| \beta r_{e} & \text {-remember } \beta \text {-rule } \\
\cong \beta r_{e} & \text {-when } R_{B} \gg \beta r_{e}
\end{array}
$$

It is called input resistance of the stage i.e. $r_{i n(s t a g e)}$.
2. Output Resistance : $r_{0}=R_{C}$
-Fig. 60.5
However, if a load resistor R_{L} is connected across the output terminals (Fig. 60.6), then

$$
r_{0}=R_{C} \| R_{L}=r_{L} \quad \text { - Fig. } 60.6(b)
$$

It is called output resistance of the stage and is written as $r_{o(s t a g e)}$ or $r_{\mathrm{o}}{ }^{\prime}$.
3. Current Gain : $A_{i}=\beta$
4. Voltage Gain : $A_{v}=\beta \cdot \frac{r_{0}{ }^{\prime}}{r_{i n}{ }^{\prime}}=\beta \cdot \frac{r_{0}}{\beta r_{e}} \cong \frac{r_{0}{ }^{\prime}}{r_{e}} \quad$-if $R_{B} \gg \beta r_{e}$

It is the stage voltage gain,
5. Power Gain : $A_{p}=A_{v} \cdot A_{i}=\beta . \frac{r_{0}^{\prime}}{r_{e}} ; \quad G_{p}=10 \log _{10} A_{P} \mathrm{~dB}$

60.7. Characteristics of a CE Amplifier

A $C E$ transistor amplifier has the following characteristics :

1. it has moderately low input resistance (1 K to 2 K),
2. its output resistance is moderately large (50 K or so),
3. its current gain (β) is high ($50-300$),
4. it has very high voltage gain of the order of 1500 or so,
5. it produces very high power gain of the order of 10,000 times or 40 dB ,
6. it produces phase reversal of input signal i.e. input and output signals are 180° out of phase with each other.

Uses

Most of the transistor amplifiers are of CE type because of large gains in voltage, current and

power. Moreover, their input and output impedance characteristics are suitable for many applications.

Example. 60.2. For the single-stage CE amplifier circuit shown in Fig. 60.6 (a), calculate (a) $r_{\text {in }}(b) r_{0}(c) A_{i}(d) A_{v}$ and (e) G_{p}

Take transistor $\beta=50$. Neglect $\stackrel{p}{V_{B E}}$ and take $r_{e}=25 \mathrm{mV} / I_{E}$
Solution. $\quad I_{B}=\frac{20}{1 \mathrm{M}}=20 \mu \mathrm{~A} ; \quad I_{C}=\beta I_{B}=50 \times 20=1 \mathrm{~mA}$

$$
r_{e}=25 / 1=25 \Omega, \quad \beta r_{e}=50 \times 25=1250 \Omega
$$

The ac equivalent circuit is shown in Fig. 60.6 (b).
(a) $r_{i n}{ }^{\prime}=1 \mathrm{M} \| 1250 \Omega \cong \mathbf{1 2 5 0} \Omega$

Fig. 60.6
Obviously, it is the input resistance of the stage and not that of the transistor alone.
(b) $r_{0}{ }^{\prime}=R_{C}\left\|R_{L}=10 \mathrm{~K}\right\| 10 \mathrm{~K}=5 \mathrm{~K}$
(c) $A_{i}=50$
(d) $A_{v}=\frac{5 \mathrm{~K}}{25 \Omega}=200$
(e) $G_{p}=10 \log _{10} 200=23 \mathrm{~dB}$

60.8. Common Collector (CC) Amplifier

Fig. 60.7 and 60.8 show the circuit of a single-stage $C C$ amplifier using an $N P N$ transistor. The input signal is injected into the base-collector circuit and output signal is taken out from the emitter-collector circuit. The E / B junction is forward-biased by $V_{E E}$ and C / B junction is reverse-biased by $V_{C C}$. The quiescent values of I_{B} and I_{E} are set by $V_{C C}$ and $V_{E E}$ together with R_{B}

Fig. 60.7 and R_{E}. As seen from Fig. 60.8.

$$
I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}+R_{B} / \beta} \cong \frac{V_{E E}}{R_{E}+R_{B} / \beta}
$$

Let us now see what happens when an ac signal is applied across the input circuit.

Circuit Operation

When positive half-cycle of the signal is applied, then

1. forward bias is increased since $V_{B E}$ is positive w.r.t. collector i.e. ground,
2. base current is increased,
3. emitter current is increased,
4. drop across R_{E} is increased,
5. hence, output voltage (i.e. drop across R_{E} is increased.
Consequently, we get positive half-cycle of the output.

It means that a positive-going input signal results in a positive going output signal and, conse-

Fig. 60.8 quently, the input and output signals are in phase with each other as shown in Fig. 60.8.

60.9. Various Gains of a CC Amplifier

The ac equivalent circuit of the $C C$ amplifier (Fig. 60.8) is given in Fig. 60.9.

1. $r_{\text {in }}^{\prime}=R_{B} \| \beta\left(r_{e}+r_{0}\right)$
2. $r_{o}^{\prime}=R_{E} \| R_{L}$
3. $A_{i}=\beta$
4. $A_{v}=\frac{r_{0}{ }^{\prime}}{r_{0}{ }^{\prime}+r_{e}}$

Since usually $r_{0}^{\prime} \gg r_{e}^{\prime}, A_{v} \cong \frac{r_{0}^{\prime}}{r_{0}^{\prime}}=1$

$$
\begin{aligned}
& A_{p}=A_{v} \cdot A_{i} \\
& \mathrm{G}_{\mathrm{p}}=10 \log 10 \mathrm{~A}_{\mathrm{p}} \mathrm{~dB}
\end{aligned}
$$

60.10. Characteristics of a CC Amplifier

A CC amplifier has the following characteristics :

1. high input impedance $(20-500 \mathrm{~K})$,
2. high current gain of $(1+\beta)$ i.e. $50-500$,
3. power gain of 10 to 20 dB ,
4. low output impedance (50-1000 Ω),
5. voltage gain of less than 1 ,
6. no phase reversal of the input signal.

60.11. Uses

The CC amplifiers are used for the following purposes :

1. for impedance matching i.e. for connecting a circuit having high output impedance to one having low input impedance;
2. for circuit isolation;
3. as a two-way amplifier since it can pass a signal in either direction;
4. for switching circuits.

Example 60.3. For the CC amplifier circuit of Fig. 60.10 (a), compute
(i) $r_{o}{ }^{\prime}$
(ii) $r_{\text {in }}{ }^{\prime}$
(iii) A_{v} and
(iv) A_{p}

Take transistor $\beta=100$. Neglect $V_{B E}^{v}$ and use $r_{e}=25 \mathrm{mV} / I_{E}$
(Electronics-I, M.S. Univ. 1991)
Solution. $\quad I_{E}=\frac{20}{20}=1 \mathrm{~mA} ; \quad r_{c}=\frac{25}{1}=25 \Omega$
The ac equivalent circuit is shown in Fig. 60.10 (b).

Fig. 60.10
(i) $\quad r_{o}{ }^{\prime}=R_{E}\left\|R_{L}=20 \mathrm{~K}\right\| 5 \mathrm{~K}=4 \mathrm{~K}$
(ii) $r_{i n}{ }^{\prime}=R_{B}\left\|\beta\left(r_{e}+r_{0}\right) \cong R_{B}\right\| \beta r_{o}{ }^{\prime}=\frac{50 \times 400}{450}=44.4 \mathrm{~K}$
(iii) $\quad A_{v}=\frac{4 k}{4 k+25 \Omega} \quad$ (iv) $\quad A_{p}=A_{v} \cdot A_{i}=1 \times 100=100$

60.12. Comparison of Amplifier Configurations

The basic building blocks of transistor amplifiers are single-stage common-base, commonemitter and common-collecter circuits. The choice of configuration and type of transistor for a given application will depend largely upon the desired input and output impedances, voltage, current and power gains and frequency response. For convenience, these values are tabulated in Table No. 10.1. Here the input and output parameters are resistances and apply only to low-frequency conditions.

Table No. 60.1
Type of Circuit

Characteristic	Common base	Common emitter	Common collector
Current gain	nearly unity (α)	high (β)	highest $(1+\beta)$
Voltage gain	high	very high	nearly unity
Power gain	moderate	highest	lowest
Input impedance	lowest	moderate	highest
Output impedance	highest	moderate	lowest
Phase reversal	No	Yes	No

In each case, the amplifying action depends on low-power input circuits controlling the highpower output circuits.

In the common-base circuit, although the input and output currents are nearly equal, the lowimpedance emitter circuit absorbs for less power as compared to that which is available at the highimpedance collector.

The low base current flowing into the common-emitter circuit (where the impedance is a few kilohms) gives rise to much higher collector current flowing out of the high-impedance output circuit.

The common-collector circuit with approximately equal input and output resistances requires a low input current to control much larger output current.

60.13. Amplifier Classification Based on Biasing Conditions

This classification is based on the amount of transistor bias and amplitude of the input signal. It takes into account the portion of the cycle for which the transistor conducts. The three main classifications are :
(a) Class-A Amplifier

In this case, the transistor is so biased that output current flows for the fullcycle of the input signal $\left(360^{\circ}\right)$ as shown in Fig. 60.11 (a). In other words, the transistor remains $F R$-biased throughout the input cycle. Hence, its conduction angle is 360°.
(b) Class-B Amplifier

In this case, the transistor bias and the amplitude of input signal are such that output current flows for only half-cycle (180°) of the in-

Fig. 60.11 put signal. It means that transistor stays $F R$-biased for half the input cycle. The transistor conduction angle equals 180°.
(c) Class-C Amplifier

In this case, transistor bias and signal amplitude are such that output current flows for appreciably less than half-cycle of the input signal i.e. upto 120° or 150° angle of conduction as shown in 60.11 (c). In other words, transistor remains FR-biased for less than half the cycle.
(d) Class-AB Amplifier

The characteristics of such an amplifier lie in-between those of class-A and class-B. Here, biasing conditions are such that output current flows for appreciably more than half but less than the entire cycle i.e. current flows for more than 180° but less than 360°.

60.14. Graphic Representation

Since common-emitter is the most versatile and widely-used configuration, we will use CE output characteristic curves to differentiate between main classes of amplifiers.

Fig. 60.12 shows the biasing condition for class-A operation. It is seen that Q-point is located at the centre of the load line so that output (collector) current flows for the complete cycle of the input signal (conduction angle of 360°). Because of centred Q-point, the positive and negative swings of the input

Fig. 60.12 signal are confined to linear portions of the load line. In this linear region, equal changes in input base current produce equal changes in output (collector) current and voltage. Hence, output is an exact replica of the input. If the amplitude of the input signal is so large as to drive the Q-point closer to either cut-off or saturation region (where base current lines are not equally spaced), the output

Fig. 60.13
will not be an exact replica of the input i.e. output signal will be distorted (Art. 60.30).

Fig. 60.13 shows biasing conditions for class-B operation. In this case, Q-point is located at cut-off point or very close to it. It is seen that the output current only flows for positive half-cycles of the input signal. For negative half-cycles, there is no output (collector) current. Obviously, output current flows only for 180° during the positive halfcycles of the input signal.

Fig. 60.14 shows biasing conditions for classC operation. Here, the transistor is biased well into cut-off. In this case, (collector) current flows only for a part (upto 150°) of the positive half-cycle of the input signal when transistor comes out of the cut-off. During negative halfcycles of the input, the transistor remains deep in cut-off.

Fig. 60.14

60.15. Class-A Amplifier

It is one which has centred Q-point so that the transistor operates only over the linear region of its load line.

Another way of defining is that it is an amplifier in which the output current flows during the entire cycle of the input signal i.e. it has a conduction angle of 360°. In other words, the transistor remains FR-biased throughout the input cycle.

Characteristics

1. Since the transistor operates over the linear portion of the load line, the output waveform is exactly similar to the input waveform. Hence, class-A amplifiers are characterised by a high fidelity of the output. They are used where linearity or freedom from distortion is the prime requisite.
2. Since its operation is restricted only over a small central region of the load line, this amplifier is meant only for amplifying input signals of small amplitude. Large signals, will shift the Q-point into non-linear regions near saturation or cut-off and produce distortion (Art. 60.30).
3. Due to the limitation of the input signal amplitude, ac power output per active device (i.e. transistor) is small.
4. The overall efficiency of the amplifier circuit is

$$
=\frac{\text { ac power delivered the load }}{\text { total power delivered by dc supply }}=\frac{\text { average ac power output }}{\text { average dc power input }}
$$

5. The collector efficiency of a transistor is defined as

$$
=\frac{\text { average ac power output }}{\text { average dc power input to transistor }}
$$

The maximum possible collector efficiency of a class - A amplifier with resistive load is 50\%
6. In case an output transformer is used, the maximum possible overall efficiency and maximum possible collector efficiency for a class-A amplifier are both 50%.

60.16. Power Distribution in a Class-A Amplifier

Fig. 60.15 (a) shows a $C E$ connected transistor which forms the active element of a singlestage class-A amplifier. Fig. 60.15 (b) shows its output characteristic with a centred Q-point. When ac input signal is applied, Q-point shifts up and down from its central position. The output current will also increase or decrease from its quiescent (or no-signal) value $I_{C Q}$. Similarly, collector-emitter voltage $V_{C E}$ will increase or decrease from its quiescent value $V_{C E Q}$. So long as signal variations are confined to linear region of the load line, average value of collector current is $I_{C O}$ because positive and negative input signal swings will produce equal changes in $I_{C Q}$.

Hence, total average dc power drawn by the circuit from collector bat-

Class-A amplifier tery $V_{C C}$ is

$$
P_{i n(d c)}=V_{C C} \cdot I_{C Q}
$$

Now, this power goes to supply the following :

Fig. 60.15
(i) heat dissipated by the load resistor $R C$ connected to the collector
$P_{R C(d c)}=R_{C}$
(ii) the balance $P_{t r(d c)}$ is given to the transistor.
It is further subdivided into :
(a) ac power developed across the load resistor which constitutes the ac power output

$$
P_{o(a c)}=I^{2} R_{C}=\frac{V^{2}}{R_{C}}=\frac{V_{m}{ }^{2}}{2 R_{C}}
$$

where I is the rms value of the ac output current through the load, V is rms value of ac voltage and V_{m} is its maximum value.
(b) power dissipated (in the form of heat) by the transistor itself i.e. its collector region. It may be called $P_{c(d c c)}$.
Since, under zero-signal condition, there is no ac output power, all the power given to the transistor is wasted as heat. Hence, a transistor dissipates maximum power under zero-signal condition.

The power flow diagram of the transistor is as follows :

60.17. Power Rectangle

The output or collector characteristic of a CE-connected transistor is shown in Fig. 60.16 with centred Q-point for class-A operation. When input signal is applied, the Q-point shifts to positions Q_{1} and Q_{2} alternately. The output current varies around its quiescent value from maximum value of $I_{C(\max)}$ to minimum value $I_{C(\text { min })}$. Similarly, collector-emitter voltage varies from maximum value of $V_{C E(\max)}$ to $V_{C E(\min)}$ around its quiescent value of $V_{C E Q}$.

Let us construct the various rectangles as shown in Fig. 60.16.

1. rectangle 0-1-4-5

$$
=V_{C C} \times I_{C Q}
$$

$=$ total average power supplied to the circuit by $V_{C C}$ battery

$$
=P_{i n(d c)}
$$

Now, $V_{C C}{ }^{\text {in (ac) }} V_{C E Q}$

Fig. 60.16

$$
\begin{aligned}
= & \text { voltage drop across load } \\
& \text { resistor } R_{C}
\end{aligned}
$$

2. rectangle 3-4-5-6 $=\left(V_{C C}-V_{C E Q}\right) I_{C Q}$
$=$ power lost as heat in load resistor $R_{C}=I_{C Q}{ }^{2} R_{C}$
Now, $V_{C E Q}$ is the voltage drop across the transistor itself i.e. potential difference between its collector and emitter as shown in Fig. 60.15 (b).
3. rectangle 0-1-3-6 $=V_{C E Q} \cdot I_{C Q}=$ power delivered to transistor $=P_{t r(d c)}$
4. triangle 2-3-7 $=\mathrm{ac}$ power across $R_{C}=P_{o(a c)}=\mathrm{I}^{2} R_{C}$

It can also be proved that

$$
\begin{aligned}
P_{o(a c)} & =\frac{V_{C E(\max)}-V_{C E(\min)}}{2 \sqrt{2}} \times \frac{I_{C(\max)}-I_{C(\min)}}{2 \sqrt{2}} \\
& =\frac{\left[V_{C E(\max)}-V_{C E(\min)}\right] \times\left[I_{c(\max)}-I_{c(\max)}\right]}{8}
\end{aligned}
$$

5. area $0-1-2-7-6=$ power dissipated by the collector region of the transistor

$$
=P_{c(d c)}
$$

Obviously, when there is no input signal, there is no output signal. Hence, $P_{o(a c)}=0$, which means that area of triangle 2-3-7 is zero. In that case, the transistor collector will have to dissipate
maximum power equal to the area of the rectangle 0-1-3-6. It is called worst-case condition of the transistor and equals quiescent power.

60.18. Power Effic iency

Fig. 60.17. shows the power rectangles and triangles of a class-A amplifier in a very simple way.

$$
\begin{array}{ll}
P_{i n(d c)} & =\operatorname{areas} A+B+C \\
P_{o(c a c)} & =\operatorname{area} B \\
P_{P_{c(d c)}} & =\operatorname{area} C \\
P_{R c(d c)} & =\operatorname{area} A
\end{array}
$$

Amplifier efficiency or circuit efficiency or overall efficiency.

$$
\eta_{\text {overall }}=\frac{B}{A+B+C}=\frac{P_{o(a c)}}{P_{\text {in }(d c)}}
$$

The collector efficiency is given by

Fig. 60.17

$$
\eta_{\text {overcall }}=\frac{B}{B+C}=\frac{P_{o(a c)}}{P_{t r(d c)}}
$$

Incidentally, it can be proved that $\eta_{\text {overall }}=25\left[\frac{V_{C E(\max)}-V_{C E(\text { min })}}{V_{C C}}\right]$
Now, maximum value of $V_{C E}=V_{C C}$ and minimum value is $=0$
\therefore maximum $\eta_{\text {overall }}=25\left[\frac{V_{C C}-0}{V_{C C}}\right] \%=25 \%$

Fig. 60.18

Summary

In a direct-coupled class-A amplifier

1. maximum ac power equals half the power transistor can dissipate (or one-fourth of the total dc input power);
2. maximum ac power the transistor can dissipate is half the dc input power supplied by the battery;
3. the dc input power equals 4 times the ac output in load or twice the maximum power dissipated by the transistor.
The above facts have been illustrated with the help of power square shown in Fig. 60.18.

60.19. Maximum AC Power in Load

Fig. 60.19 (a) shows part of a base-driven $C E$ amplifier with a collector load of R_{C}. Fig. 60.19 (b) shows its ac load line with centered Q-point. For the time being, we will neglect limitations of cut-off and saturation and assume (at least theoretically) that voltage and current swings down to zero are possible. Obviously, under such conditions, we will get the maximum possible ac output power.

Fig. 60.19
As seen, collector current is a sine wave having peak-to-peak value of $2 I_{\mathrm{CQ}}$ or a maximum value of $I_{C Q}$ or an rms value of $I_{C Q} / \sqrt{2}$. Since it passes through R_{C}, it delivers an ac power of

$$
P_{o(a c)}=\left(I_{C Q} / \sqrt{2}\right)^{2} R_{C}=0.5 I_{C Q}{ }^{2} R_{C}
$$

Similarly, ac collector-emitter voltage is a sine wave of peak-to-peak value $2 V_{\text {CEQ }}$ or peak value $V_{\text {CEQ }}$ or rms value $V_{C E Q} / \sqrt{2}$. Since this sine wave is applied across R_{C}, the ac power can also be expressed as

$$
P_{o(a c)}=\left(\frac{V_{C E Q}}{\sqrt{2}}\right)^{2} / R_{C}=\frac{0.5 V_{C E Q} 2}{R_{C}}
$$

Fig. 60.20

Note. If there had been an unbypassed resistor R_{E} in the emitter, then ac load $R_{a c}$ or $r_{L}=R_{C}+R_{E}$. Then, we would have used this value rather than R_{C} alone.

As seen from power rectangle diagram of Fig. 60.20, under maximum ac power condition

$$
\text { area } B=\text { area } C
$$

Also, \quad area $A=$ area $B+$ area $C=2 \mathrm{~B}$
$\therefore \quad$ maximum $\eta_{\text {overall }}=\frac{B}{A+B+C}$

$$
=\frac{B}{2 B+2 B}=\frac{B}{4 B}=0.25 \quad \text { or } 25 \%
$$

Example 60.4. The $2 N 1491$ power transistor is used in a CE amplifier meant for class-A operation. If its zero-signal power dissipation is 10 W and ac output power is 3.5 W , find
(a) collector efficiency and (b) power rating of the transistor

Solution. (i) $\quad \eta_{\text {coll }}=\frac{P_{o(a c)}}{P_{t r(d c)}}=\frac{3.5}{10}=0.35=\mathbf{3 5 \%}$
(ii) Since zero-signal condition represents worst case condition for the transistor, it means that all the 10 W power is dissipated by it. Hence, transistor power rating is 10 W .

Example 60.5. For the class-A, CE amplifier circuit of Fig. 60.21, $V_{C E Q}=10 \mathrm{~V}$ and $I_{C Q}=500$ $m A$. If collector i.e. output current varies by $\pm 250 \mathrm{~mA}$ when an input signal is applied at the base, compute
(i) total dc power taken by the circuit,
(iii) ac power developed across the load,
(v) dc power wasted in transistor collector,
(vii) collector efficiency.

Solution. (i) $\quad P_{\mathrm{in}(\mathrm{dc})}=V_{C C} \cdot I_{C O}=20 \times 500$
(ii) $P_{R c(d c)}=I_{\mathrm{CQ}}{ }^{2} R_{C}=0.5^{2} \times 20=5 \mathrm{~W}$
(iii) $P_{\text {o(ac) }}=I^{2} R_{C}$

Now, maximum value of output ac current is $250 \mathrm{~mA}=0.25 \mathrm{~A}$.
Hence, rms value $I=0.25 / \sqrt{2} \mathrm{~A}$.
$\therefore \quad P_{\mathrm{o}(\mathrm{ac})}=(0.25 / \sqrt{2})^{2} \times 20=\mathbf{0 . 6 2 5} \mathbf{W}$
(iv) $P_{\text {trddc }}=10-5=5 \mathrm{~W}$
(v) $P_{\mathrm{c}(\mathrm{dc})}^{\mathrm{tr}(\mathrm{dc})}=5-0.625=4.375 \mathrm{~W}$
(vi) $\eta_{\text {overall }}=\frac{0.625}{5} \times 100=6.25 \%$
(ii) dc power dissipated by the collector load,
(iv) power delivered to the transistor,
(vi) overall efficiency.

$$
\text { (i) } \quad \begin{aligned}
P_{\mathrm{in}(\mathrm{dc})} & =V_{C C} \cdot I_{C Q}=20 \times 500 \\
& =10^{4} \mathrm{~mW}=10 \mathrm{~W}
\end{aligned}
$$

(iii) ${ }_{\text {o(ac) }}=I R_{C}$

Fig. 60.21
(vii) $\eta_{\text {coll }}=\frac{0.625}{5} \times 100=\mathbf{1 2 . 5 \%}$

It is seen that due to resistive load in the collector, efficiency of the circuit is very low.
Example 60.6. For a class-A amplifier, $V_{C E}(\max)=25 \mathrm{~V}, V_{C E}(\min)=5 \mathrm{~V}, V_{C C}=30 \mathrm{~V}$. Find its overall efficiency.

Solution. As seen from Art. 10.18

$$
\% \eta_{\text {overall }}=25\left[\frac{V_{C E(\max)}-V_{C E(\text { min })}}{V_{C C}}\right]=25\left(\frac{25-5}{30}\right)=16.7
$$

60.20. Transformer-Coupled Class-A Amplifier

The main reason for the poor efficiency of a direct-coupled class-A amplifier is the large

Fig. 60.22 amount of dc power that the resistive load in collector must dissipate. This problem can be solved by using a suitable transformer for coupling the load (say, a speaker) to the amplifier stage as shown in Fig. 60.22. Since the load is not directly connected to the collector terminal, the dc collector current does not pass through it. In an ideal transformer, primary winding resistance is zero. Hence, dc power loss in the load is zero. In practice, however, there is a small dc resistance of the primary winding which does absorb some power though much less than a direct-coupled load.

In short, what the transformer does is to substitute ac load in place of ohmic or dc load.

The secondary load R_{L} when referred to primary becomes

$$
R_{L}^{\prime}=R_{L} / K^{2}=a^{2} R_{L}
$$

where $\quad K=$ voltage transformation ratio $=\mathrm{N}_{2} / \mathrm{N}_{1}=\mathrm{V}_{2} / \mathrm{V}_{1}$

$$
a=\text { turns ratio } N_{1} / N_{2}=1 / K
$$

Since a is usually made much more than unity or K is much less than unity, R_{L} can be made to look much bigger than what it actually is

In an ideal transformer, there is no primary drop, hence $V_{C C}=V_{C E Q}$. Now, all the power supplied by $V_{C C}$ is delivered to the transistor. Hence, the overall and collector efficiencies become equal.

$$
\eta_{\text {overall }}=\frac{P_{o(a c)}}{V_{C C} I_{C Q}}=\frac{P_{o(a c)}}{V_{C E Q} \cdot I_{C Q}}
$$

Power Diagram

The power distribution for a transformercoupled class-A amplifier is shown in Fig. 60.23. Since load loss is zero, the triangle A of Fig. 60.17 is nonexistent. Moreover, the load line of Fig. 60.17 becomes a.c. load line in Fig. 60.23. Consequently, $V_{C E Q}$ $=V_{C C}$. Area of triangle B equals that of triangle C. Also, sum of A and B represents power delivered to the transistor.

$$
\therefore \quad \eta_{\text {overall }}=\frac{B}{B+C}=\frac{B}{2 B}=0.5 \text { or } 50 \%
$$

It can be proved that maximum possible overall efficiency and the maximum possible collector effi-

Fig. 60.23 ciency of a class-A amplifier using an output transformer are both 50%.

In general, overall efficiency of a transformer-coupled class-A amplifier is given by

$$
\% \eta=50\left[\frac{V_{C E(\text { max })}-V_{C E(\text { min })}}{2 V_{C C}}\right]^{2}=50\left[\frac{V_{C E(\text { max })}-V_{C E(\text { min })}}{V_{C E(\text { max })}+V_{C E(\text { min })}}\right]^{2}
$$

Obviously, larger the value of $V_{C E(\max)}$ and smaller that of $V_{C E(\min)}$ closer the efficiency to the theoretical limit of 50%.

Proof

The conditions for the development of maximum ac power are shown in Fig. 60.24. It must be kept in mind that here

Fig. 60.24

$$
V_{C E Q}=V_{C C}
$$

Now, average power delivered by the battery

$$
P_{i n(d c)}=V_{C C} \cdot I_{C Q}
$$

Whole of the power is given to the transistor.

$$
\text { rms output voltage } \quad=\frac{V_{C C}}{\sqrt{2}}
$$

$$
\text { rms output current } \quad=\frac{I_{C Q}}{\sqrt{2}}
$$

$$
\therefore \quad \text { maximum } P_{o(a c)}=\frac{V_{C C}}{\sqrt{2}} \times \frac{I_{C Q}}{\sqrt{2}}=1 / 2 V_{C C} \cdot I_{C Q}
$$

$=$ half the input ac power

Hence, maximum value of overall efficiency

$$
\begin{gathered}
\eta_{\text {overall }}=\frac{P_{o(a c)}}{P_{i n(d c)}}=\frac{V_{C C} \cdot I_{C C} / 2}{V_{C C} \cdot I_{C Q}}=\frac{1}{2} \text { or } 0.5 \text { or } 50 \% \\
\eta_{\text {coll }}=\frac{P_{o(a c)}}{P_{t r(d c)}}
\end{gathered}
$$

Example 60.7. The optimum load resistance for a certain transistor is 200Ω. What is the turns ratio $\left(N_{1} / N_{2}\right)$ of a transformer required to couple an $8-\Omega$ loud-speaker to the transistor ?

Solution. $\quad R_{L}{ }^{\prime}=a^{2} R_{L} \quad \therefore \quad 200=a^{2} \times 8 \quad$ or $\quad a=\mathbf{5}$
Hence, it should be a $5: 1$ step-down transformer.
Example 60.8. In a transformer-coupled class-A amplifier $V_{C E(\text { max })}=27 \mathrm{~V}$ and $V_{C E(\text { min })}=3 \mathrm{~V}$. Compute its overall efficiency.

Solution. $\eta_{\text {overall }}=50\left(\frac{27-3}{27+3}\right)^{2}=32 \%$
Example 60.9. For the transformer-coupled optimally-biased class-A amplifier shown in Fig. 10.25, find
(a) transformer turns ratio
(b) collector current
(c) transistor power rating

Solution. As shown in Fig. 60.25, if V_{2} is the rms secondary voltage, then

$$
P_{\text {load }} \text { or } P_{o(a c)}=\frac{V_{2}^{2}}{R_{L}}=\frac{\left(V_{2 m} / \sqrt{2}\right)^{2}}{R_{L}}=\frac{V_{2 m}^{2}}{R_{L}}
$$

where $V_{2 m}$ is the maximum value of secondary voltage.

$$
\therefore \quad V_{2 m}=\sqrt{2 R P_{\text {load }}}=\sqrt{2 \times 4 \times 4.5}=6 \mathrm{~V}
$$

Now, peak, value of primary voltage is

$$
V_{1 m}=a \cdot V_{2 m}=6 a
$$

This also represents the peak value of collector voltage. For optimally-biased circuit, peak value of collector-emitter voltage equals $V_{C C}=30 \mathrm{~V}$.

Fig. 60.25

$$
\therefore \quad 6 a=30 \text { or } a=5 \quad \therefore \quad N_{1} / N_{2}=5
$$

(a) Hence, it is a step-down transformer with a turns ratio of $\mathbf{5 : 1}$
(b) The overall efficiency is 50%. Hence, for a load power of 4.5 W , total dc input power supply must be $4.5 / 0.5=9 \mathrm{~W}$

$$
\therefore \quad V_{C C} I_{C}=P_{i n(d c)}=9 \mathrm{~W} \quad \text { or } \quad 30 I_{C}=9000 \mathrm{~mW} \quad \therefore I_{C}=\mathbf{3 0 0} \mathrm{mA}
$$

(c) Worst case condition for the transistor is when there is no input signal. In that case, transistor has to dissipate the entire input. Therefore, transistor power rating $=9 \mathbf{W}$.
Example 60.10. For the optimally-biased transformer -coupled class-A amplifier, maximum collector current change is 100 mA . Find the power transferred to a 4-W speaker load if it is (a) directly-coupled (b) transformer-coupled to the transistor. Find also the turn ratio of the transformer required.
(Applied Electronics, Kerala Univ.)
Solution. (a) Direct-coupled Load [Fig. 60.26 (a)]
It should be remembered that for an optimally-biased class-A amplifier, peak change in collectoremitter voltage equals $V_{C C}=10 \mathrm{~V}$.
$R M S$ value of ac output current $\mathrm{I}=(100 / \sqrt{2}) \mathrm{mA}$
Average power delivered to the speaker

$$
=I^{2} R_{L}=\left(\frac{100}{\sqrt{2}} \times 10^{-3}\right)^{2} \times 4=0.02 \mathrm{~W}=20 \mathrm{~mW}
$$

(b) Transformer-coupled Load

Now, $\Delta V_{C E}=V_{C C}=10$
V : $\Delta I_{C Q}=100 \mathrm{~mA}$
If $R_{L}{ }^{\prime}$ is the secondary load reflected into the primary, then
$R_{L}{ }^{\prime}=\frac{\Delta V_{C E}}{\Delta I_{C Q}}=\frac{10 \mathrm{~V}}{100 \mathrm{~mA}}=100 \Omega$
Now, $a^{2} R_{L}=R_{L}{ }^{\prime}$
$\therefore \quad a_{2} \times 4=100$,
$a=5$
Hence, it is a step-down transformer with a turns ratio of $5: 1$

Peak value of secondary

Fig. 60.26 voltage $=10 \times 1 / 5=2 \mathrm{~V}$

Peak value of secondary current $=2 / 4=0.5 \mathrm{~A}$
$R M S$ value $=0.5 / \sqrt{2} \mathrm{~A}$
Average power transferred to the speaker $=\left(\frac{0.5}{\sqrt{2}}\right)^{2} \times 4=0.5 \mathrm{~W}=\mathbf{5 0 0} \mathbf{~ m W}$
Obviously, power transferred has increased 500/20 $=25$ times i.e. $a^{2}=\left(N_{1} / N_{2}\right)^{2}$ times where a is transformer primary-to-secondary turn ratio i.e. $a=N_{1} / N_{2}$.

Example 60.11. A class-A amplifier shown in Fig. 60.27 operates from $V_{C C}=20 \mathrm{~V}$, draws a no-signal current of $5 A$ and feeds a load of 40Ω through a step-up transformer of $N_{2} / N_{1}=3.16$. Find
(a) whether the amplifier is properly matched for maximum power transfer,
(b) maximum ac signal power output, (c) maximum dc power input,
(d) conversion efficiency at maximum signal input.
(Electronic Circuits, Gauhati Univ. 1990)
Solution. (a) Here, $\mathrm{a}=N_{1} / N_{2}=1 / 3.16$

$$
R_{L}^{\prime}=a^{2} R_{L}=(1 / 3.16)^{2} \times 40=4 \Omega
$$

$$
R_{L}^{\prime}=\frac{V_{C C}}{I_{C Q}}=\frac{20}{5}=4 \Omega
$$

Since, the two resistance values are the same, the amplifier is properly-matched.
(b) As seen from Art. 60.20, Maximum value of

$$
\begin{aligned}
& P_{o(a c)}=\frac{1}{2} V_{C C} I_{C Q} \\
& =\frac{1}{2} \times 20 \times 5=50 \mathbf{W}
\end{aligned}
$$

(c) The dc power input $=V_{C C} I_{C Q}=20 \times 5=100 \mathrm{~W}$

Fig. 60.27
(d) $\eta=\frac{50}{100} \times 100=\mathbf{5 0 \%}$

60.21. Class-B Amplifier

Biasing condition for class-B operation has been shown both on current transfer characteristic and output characteristic for $C E$ configuration in Fig. 60.28.

As seen, the transistor has been biased to cut-off. It remains FR-biased for only half-cycle of the input signal. Hence, its conduction angle is only 180°. It is obvious that with zero signal, its collector current is zero.

Characteristics

1. Since negative half-cycles are totally absent from the output, the signal distortion is high as compared to class-A amplifiers.
2. Since input voltage is large (upto $V_{C C}$), voltage amplification is reduced.
3. Zero-signal input represents worst condition for class-A amplifiers but best condition for class-B amplifiers.
4. In class-B amplifiers, transistor dissipates more power with increase in signal strength but opposite is the case in class-A amplifiers.
5. Average current in class-B operation is less than in class-A, hence power dissipated is less. Consequently, maximum circuit (or overall) efficiency of a class-B amplifier is 78.5% when peak signal makes $V_{C E(\text { min })}=0$. In general

$$
\eta_{\text {overall }}=78.5\left[1-\frac{V_{C E(\min)}}{V_{C C}}\right] \%
$$

6. The half-sinewave type of collector current contains very pronounced even harmonics (particularly the second one). These impulses can be rendered useful either by employing push-pull circuit (Art. 60.24) or by using tuned amplifiers (Art. 60.29).

Fig. 60.28

60.22. Power Relations for Class-B Operation

(i) Input DC Power: $P_{i n(d c)}=V_{C C} I_{d c}$ where $I_{d c}$ is the average or dc current drawn from the supply.
If $I_{C(\max)}$ is the maximum or peak value of collector or output current, then

$$
I_{d c}=\frac{I_{C(\max)}}{\pi} \quad \therefore \quad P_{i n(d c)}=V_{C C} \frac{I_{C(\max)}}{\pi}
$$

(ii) DC Power Loss in Load : $P_{R c(d c)}=I_{d c}{ }^{2} R_{C}$ where $I_{d c}=I_{C(\max)} / \pi$
(iii)

$$
\text { AC Power Output in Load : } P_{o(a c)}=I^{2} R_{C}=\frac{V^{2}}{R_{C}}=\frac{V_{m}^{2}}{2 R_{C}}
$$

where
$I=$ rms value of output ac current
$V=$ rms value of output ac voltage
$V_{m}=$ maximum value of output ac voltage
(iv) DC Power Loss in Collector Region or Transistor

$$
P_{c(d)}=P_{i n(d c)}-P_{R c(d c)}-P_{o(a c)} ; \quad \eta_{\text {overall }}=\frac{P_{o(a c)}}{P_{i n(d c)}}
$$

60.23. Maximum Values

The operation for maximum signal input is shown in Fig. 60.29.
Here,

$$
\begin{aligned}
& I_{d c}= \frac{I_{C(\max)}}{\pi} \quad \therefore \quad P_{i n(d c)}=V_{C C} \cdot I_{d c}=\frac{V_{C C} \cdot I_{C(\max)}}{\pi} \\
& R M S \text { value of output or collector current }
\end{aligned}
$$

$$
=\frac{I_{C(\max)}}{\sqrt{2}}
$$

RMS value of output voltage $=\frac{V_{C C}}{\sqrt{2}}$
Hence, ac output power during half-cycle

$$
=\frac{1}{2} \times \frac{V_{C C}}{\sqrt{2}} \frac{I_{C(\max)}}{\sqrt{2}}
$$

Fig. 60.29

The factor $\frac{1}{2}$ comes in because power is produced during one half-cycle only.

$$
\begin{gathered}
P_{o(a c)}=\frac{1}{4} \cdot V_{C C} \cdot I_{C(\max)} \\
\therefore \quad \eta_{\text {overall }}=\frac{P_{o(a c)}}{P_{i n(d c)}}=\frac{\pi}{4}=0.785 \text { or } 78.5 \%
\end{gathered}
$$

Example 60.12. In a class-B amplifier, $V_{C E(m i n)}=2 \mathrm{~V}$ and $V_{C C}=15 \mathrm{~V}$. Find its overall efficiency
Solution. As seen from Art 60.21, \% $\eta=78.5\left(1-\frac{2}{15}\right)=68 \%$

60.24. Class-B Push-Pull Amplifier

It employs two identical transistors operating as a single-stage of amplification. As shown in Fig. 60.30, the base of the two $C E$-connected transistors have been connected to the opposite ends of the secondary of the input transformer T_{1} and collectors to the opposite ends of the primary of the output transformer T_{2}. For getting a balanced circuit, the two emitters have been returned to the centre tap of T_{1} secondary and $V_{C C}$ connected to the centre tap on the primary of T_{2}. Since zero bias is required for cut-off, the two bases have been earthed. A push-pull amplifier is sometimes referred to as balanced amplifier.

Fig. 60.30

Principle of Operation

It is seen from Fig. 60.30 that transistor A and B are driven by two input signals which are 180° out of phase with each other. These two signals are produced by T_{1}.
Transistor A takes positive half-cycles of the signal whereas B handles negative half-cycles. When the two outputs are combined, an almost undistorted output waveform is produced as seen from Fig. 60.31 .

In Fig. 60.31, the transfer characteristic of transistor B has been plotted upside down with respect to that of A in order to get the combined output.

Detailed operation is as under :
During the positive half-cycle of the signal, A is turned ON because its base is driven positive. It draws collector current I_{C-1} in the upward direction from $V_{C C}$. Meanwhile, transistor B remains OFF because its base has negative voltage. Hence, $I_{C-2}=0$. Obviously, one positive half-cycle of the output signal appears across secondary load R_{L} of T_{2}.

During negative half-cycle of the input signal, B conducts whereas A remains OFF. Hence, I_{C-2} is taken by B but $I_{C-1}=0$. Now, negative output half-cycle is produced across R_{L} because I_{C-2} is pulled down through secondary of T_{2}. It is obvious that in the absence of input signal, neither A nor B draws any collector current. Hence, there is no drain on $V_{C C}$ battery.

Advantages

1. It has high efficiency, theoretical limit being 78.5%. It is primarily due to the fact that there is no power drawn by the circuit under zero-signal condi-

Fig. 60.31 tion.
2. Since in push-pull arrangement, 180° phase difference exists between even-order harmonics produced by each transistor, they cancel out thereby giving an almost distortion-free output. This automatic cancellation of all even-order harmonics from the output current makes class-B push-pull amplifiers highly desirable for communication sound equipment.
3. This double-ended class-B amplifier provides practically four times the power supplied by a single-ended amplifier provided signal load resistance remains the same.
4. The dc components of the two collector currents through the two halves of the primary of T_{2} flow in opposite directions so that net dc magnetisation of the transformer core is almost nil. Hence, distortions due to the effect of dc magnetic saturation of the trans former core are eliminated. Moreover, smaller size core can be used due to very small net core flux.

Fig. $\mathbf{6 0 . 3 2}$

Fig. 60.33

Uses

Class-B push-pull amplifiers are extensively used for audio work in portable record players, as stereo amplifiers and in high-fidelity radio receivers.

60.25. Crossover Distortion

In class-B push-pull operation, there is severe distortion at very low signal level because
(a) bases of the transistors do not turn ON at 0 V but at 0.3 V for Ge and 0.7 V for Si
(b) there is non-linearity in the low-signal area.

Fig. 60.34

In simple words, crossover distortion occurs as a result of one transistor cutting off before the other begins conducting. The effect is illustrated in Fig. 60.32. For silicon transistors, there is $2 \times$ $0.7=1.4 \mathrm{~V}$ dead zone on the input signal within which neither transistor is turned ON and output is zero (Fig. 60.33).

The distortion so introduced is called crossover distortion because it occurs during the time operation crosses over from one transistor to the other in the push-pull amplifier. The same was shown earlier in Fig. 60.31 by using transfer characteristics of the two transistors.

Crossover distortion can be eliminated by applying slight forward bias to each emitter diode. It, in effect, means locating the Q-point of each transistor slightly above cut-off as shown in Fig. 60.34 so that each one operates for more than one half-cycle. Strictly speaking, it results in class-AB operation because each transistor may operate for about 200° (instead of 180°). However, for all practical purposes, it is still regarded as class-B push-pull operation.

60.26. Power Efficiency of Push-Pull Amplifiers

Consider the circuit shown in Fig. 60.35 .

Since the two transistors are identical, $I_{C .1}=I_{C .2}=I_{C}$

$$
\therefore \quad I_{C}=I_{m} / \pi
$$

Total dc supply current $I_{d c}$ for the two transistors is

$$
\begin{array}{ll}
& I_{d c}=2 I_{C}=2 \frac{l_{m}}{\pi} \\
\therefore \quad & P_{i n(d c)}=V_{C C} \times I_{d c} \\
& =\frac{2 I_{m}}{\pi} V_{C C}
\end{array}
$$

Fig. 60.35

For the sake of simplicity, we will assume transformer turns ratio as $\left(N_{1}+N_{1}\right): N_{1}$ so that for each transistor, turns ratio is $N_{1}: N_{1}$ i.e. 1 because each uses half the secondary of the output transformer.

If V_{m} is the peak voltage at either collector, then peak load voltage is also V_{m}. The peak current in the load is I_{m}. Then, ac power delivered to the load is

$$
P_{o(d c)}=\frac{V_{m}}{\sqrt{2}} \cdot \frac{I_{m}}{\sqrt{2}}=\frac{V_{m} I_{m}}{2}
$$

The total collector dissipation for the two transistors is

$$
\begin{aligned}
& \text { 2. } P_{c(d c)}=P_{i n(d c)}-P_{o(d c)}=\frac{2 I_{m} V_{C C}}{\pi}-\frac{V_{m} I_{m}}{2}=2 I_{m}\left(\frac{V_{C C}}{\pi}-\frac{V_{m}}{4}\right) \\
& \eta_{\text {overall }}=\frac{P_{o(a c)}}{P_{\text {in }(d c)}} \times 100=\frac{V_{m} I_{m} / 2}{2 I_{m} / \pi} \times 100=\frac{\pi}{4} \cdot \frac{V_{m}}{V_{C C}} \times 100
\end{aligned}
$$

Under ideal condition of maximum power in the load, $V_{m}=V_{C C}$
$\therefore \quad$ maximum $\eta_{\text {overall }}=\frac{\pi}{4} \times 100=78.5 \%$
Same is the value of collector efficiency.

60.27. Complementary Symmetry Push-Pull Class-B Amplifier

The push-pull amplifier discussed in Art. 60.24 suffers from two disadvantages :
(i) it requires a bulky and expensive output transformer
(ii) it requires two out-of- phase input signals which necessitates an input centre-tapped transformer or phase inverter. It makes the driver circuitry quite complicated.
The complementary symmetry amplifier eliminates these two disadvantages while retaining the advantages of push-pull configuration.

As we know, a standard class-B push-pull amplifier requires two power transistors of the same type with closely-matched parameters. But the chief requirement of a complementary amplifier is a pair of closely-matched but oppositely-doped power transistors. The term 'complementary' arises from the fact that one transistor is PNP type and the other is of NPN type. They have symmetry i.e. both are

Fig. 60.36 made with the same material and technology and have the same maximum rating.

An elementary complementary symmetry class-B push-pull amplifier is diagrammed in Fig. 60.36. The two transistors are complementary to each other and operate as emitter-follower amplifiers. The input is capacitively-coupled whereas output is direct-coupled.

With no input signal, neither transistor conducts and, therefore, current through R_{L} is zero.
When input signal is positive-going, transistor A is biased into conduction whereas B is driven into cut-off. When the signal is negative-going. A is turned OFF while B conducts. Obviously, this circuit is a push-pull amplifier because turning one transistor ON turns the other OFF.

The circuit possesses the essential characteristics of an emitter follower i.e. unity voltage gain, no phase inversion and input impedance much higher than output impedance.

The circuit shown in Fig. 60.36 requires two dc supply batteries. Only one dc battery would be enough if 'totem-pole' circuit configuration is used.

Due to the elimination of transformer both the high and low-frequency responses of the circuit are extended apart from reduced cost and weight.

60.28. Class-C Amplifier

In such amplifiers, the active device i.e. the transistor is biased much beyond cut-off. Hence,

1. output current flows only during a part of the possible half-cycle of the input signal,
2. there is no output current flow during any part of the negative half-cycle of the input signal,
3. output signal has hardly any resemblance with the input signal. It consists of short pulses only,
4. class-C amplifiers have high circuit efficiency of about 85 to 90%.

Because of his distortion, class-C amplifiers are not used for audio-frequency work. They are used for high-power output at radio frequencies (i.e. RF amplifiers) where harmonic distortion can be removed by simple circuits. In reality, they are used as high-frequency power switchers in radio transmitters rather than as amplifiers.

60.29. Tuned Amplifier

The gain of a transistor amplifier depends directly on the value of its load impedance. Such a high impedance can be obtained by using a high- Q tuned or resonant $L C$ circuit as load (Fig. 60.37). The frequency response curve of the amplifier assumes the same shape as the resonance curve of the tuned circuit. Obviously, only a narrow band of frequencies around the resonant frequency f_{o} would be amplified well whereas other frequencies would be discriminated against.

Non-linear distortion is eliminated because of high selectivity of the load impedance. Hence, output is nearly sinusodial. With the removal of distortion, high amplifier efficiency can be achieved by operating the transistor in its nonlinear region.

Fig. 60.37

60.30. Distortion in Amplifiers

Amplifiers are supposed to produce an output which does not differ from the input in any respect except amplitude i.e. the output is expected to be larger than the input. In actual practice, it is impossible to construct such an ideal amplifier whose output is an exact duplication or replica of the input. The output is always found to differ from the input either in its waveform or frequency content. This difference between the output and input of an amplifier is called distortion.

The amplifier distortions may be divided into two broad categories depending on the region of the characteristic used by the transistor and the associated circuit and device reactances.
(a) non-linear distortion

This occurs when transistor operates in the non-linear region of its characteristic.
(i) when we visualize the signal in time domain, it is called amplitude distortion or waveform distortion;
(ii) when we think of the signal in the frequency domain, it is called harmonic distortion.; This distortion occurs when input signal is of one frequency, say, a pure sine wave.
(iii) Intermodulation (IM) distortion-when input signal has more than one frequency (like speech).
Non-linear distortion occurs in the case of large-signal inputs when the active device is driven into the non-linear regions of its characteristic.
(b) linear distortion

It occurs even when the active device is working on linear part of its characteristic with small-signal inputs. It is primarily due to frequency-dependent reactances associated with the circuit or active device itself and occurs when input signal is composite i.e. has signals of different frequencies (say, fundamental and its harmonics). However, output contains no frequencies other than those at the input. It may be further subdivided into :
(i) frequency distortion-due to unequal amplification of different frequencies present in the input signal;
(ii) phase or delay distortion-due to unequal phase shift of various signal components.

60.31. Non-Linear Distortion

Fig. 60.38 gives time-domain view of this distortion when it is called amplitude distortion. As seen, the positive half-cycle of the input signal has been amplified more than its negative halfcycle. Consequently, waveshape of the output signal differs from that of the input signal. As shown below, it is due to the appearance of new frequencies (called harmonics) at the output which are not present in the input.

Fig. 60.38
The frequency-domain view of non-linear distortion is shown in Fig. 60.39. The input is a single-frequency $\left(f_{1}\right)$ signal but output signal contains dc component and different harmonics i.e. frequencies which are harmonically related to each other. These harmonics are an integral multiple of the input signal frequency. Consequently, the output is distorted-the magnitude of distortion depending on the strength and number of these harmonics.

In audio amplifiers used for amplification of speech or music, lesser the harmonic distortion, the

Fig. 60.39 better. For speech, harmonic distortion should not exceed 10% otherwise intelligibility will suffer. High-fidelity amplifiers have harmonic and $I M$ distortion of less than 1 per cent.

60.32. Intermodulation Distortion

It occurs when input signal (like speech) consists of more than one frequency. It is also a type of non-linear distortion which generates frequency components not harmonically related to the signal frequencies. Suppose, an input signal contains two frequencies f_{1} and f_{2}. The output signal will contain their harmonics i.e. $f_{1}, 2 f_{1}, 3 f_{1}$ etc. and $f_{2}, 2 f_{2}, 3 f_{2}$ etc. In adddition, there would be components $\left(f_{1}+f_{2}\right)$ and $\left(f_{1}-f_{2}\right)$ and also the sum and difference of the harmonics. These sum and difference frequencies are called intermodulation $(I M)$ frequencies and are quite undesirable in amplifiers because they subtract from original intelligence. Since $I M$ frequencies are not harmonically related to the signal, they are easily detected by human ear as noise. Hence, great care is taken to minimize them particularly in hi-fi audio amplifiers.

60.33. Frequency Distortion

It occurs even when the device is working with small-signal inputs over linear region of its characteristic. It is basically due to change in the amplifier gain with frequency i.e. the different input signal frequencies are amplified by different amounts.

Suppose the input signal has two frequencies of 50 Hz and 100 Hz . If they are equally amplified, their resultant output wave is as shown in Fig. 60.40.

Fig. 60.40

Fig. 60.41

Suppose that the amplifier amplifies the first frequency n times and the second one $2 n$ times. Then their frequency-distorted output would be as shown in Fig. 60.41.

This distortion is due to the various fre-quency-dependent reactances (both capacitive and inductive) associated either with the circuit or the active device itself. In the case of audio signals the frequency distortion leads to a change in the quality of sound. Hence, in the design of untuned or wide-band amplifiers, special steps are taken to reduce variation of gain with signal frequency.

60.34. Phase or Delay Distortion

Phase distortion is said to take place when phase angles between the component waves of the output are not the same as the corresponding angles of the input. These changes in phase angles are also due to frequency-dependent capacitive and inductive reactances associated with the circuit and the active device of the amplifier.

As seen from Fig. 60.42, there has been a phase shift in the third harmonic. Hence, the resultant wave so obtained is entirely different from the input wave.

This type of distortion which is due to the non-uniform phase shift of different frequency components, is difficult to eliminate. It should be noted that if all the frequency components in a signal are shifted in phase

Fig. 60.42 by an integral multiple of 180°, the resultant output waveform is not changed, although the polarity of the wave may be altered but changes in polarity do not constitute distortion.

Fortunately, the human ear is unable to distinguish phase difference (though eye can) and is thus not sensitive to this distortion. Consequently, phase distortion is of no practical significance in audio amplifiers. But in amplifiers used in television sets (video amplifiers) and other systems where ear is not the final receiver, elimination of phase distortion is important.

60.35. Noise

In general, it may be defined as any kind of unwanted signal not derived from or related to the input signal. Just as distortion is the limiting factor in the amplification of large signals, noise is the limiting factor in the case of small signals.

The signal-to-noise (S / N) ratio should be high for good signal intelligibility. Since all amplifiers contribute some noise of their own to the signal being processed, their output S / N is bound to be less than their input S / N. High quality amplifiers are designed to have an output S / N as close to input S / N as possible. The amplifier performance is measured in terms of noise factor given by

Noise factor, $F=\frac{\operatorname{input} S / N}{\text { output } S / N}=\frac{S_{i} / N_{i}}{S_{0} / N_{0}}$; obviously, F is greater than unity.
When expressed in decibels, the noise factor is called noise figure ($N F$).

$$
\therefore \quad N F=10 \log _{10} F d B
$$

If an amplifier could be built which generated no noise of its own, then
(i) $S_{i} / N_{i}=S_{o} / N_{o}$
(ii) $F=1$
(iii) $N F=0 \mathrm{~dB}$

If G is the power gain of the amplifier, then output and input signal powers are related by

$$
\begin{array}{ll}
\qquad G=\frac{S_{0}}{S_{i}} \text { i.e. } \quad S_{o}=G . S_{i} \\
\text { The output noise } N_{o}=G N_{i}+N_{A} \\
\text { where } & N_{i}=\text { input noise power } \\
N_{A}=\text { noise power generated by amplifier itself }
\end{array}
$$

Example 60.13. The signal input to a small-signal amplifier consists of $50 \mu W$ of signal power and $0.5 \mu W$ of noise power. The amplifier generates an internal noise power of $50 \mu W$ and has a gain of 20 dB . For this amplifier, compute
(a) input S / N,
(b) output S / N,
(c) noise factor, (d) noise figure.
(Electronics \& Commun. Engg. Pune Univ. 1991)
Solution. (a) $\frac{S_{i}}{N_{i}}=\frac{50}{0.5}=100$
(b) Now, $10 \log _{10} G=20 \mathrm{~dB} \quad$ or $\quad 10 \log _{10} G=2 \quad$ or $\quad G=10^{2}=100$
$S_{o}=G S_{i}=100 \times 50=5000 \mu \mathrm{~W}$

$$
N_{o}=G N_{i}+N_{A}=100 \times 0.5+50=100 \mu \mathrm{~W} \quad \therefore \quad \frac{S_{0}}{N_{0}}=\frac{5000}{100}=50
$$

(c) $\quad F=\frac{S_{i} / N_{i}}{S_{0} / N_{0}}=\frac{100}{50}=\mathbf{2}$
(d) $N_{F}=10 \log _{10} 2 \mathrm{~dB}=10 \times 0.3=3 \mathrm{~dB}$

60.36. The Decibel System

The decibel system of measurement is widely used in audio, radio, TV and instrument industries for comparing two voltage or power levels. It is based on the established fact that an individual's response to seeing or hearing is nonlinear. It has been found that the changes in power and audio levels are related logarithmically. For example, when power is increased from 4 W to 16 W , the audio level does not increase $16 / 4=4$ times but by a factor of $2\left(\because 4^{2}=16\right)$. Similarly, for a power change from 4 W to 64 W , the audio level changes by a factor of 3 and not by $64 / 4=16$. In logarithmic form, the relationship can be written as
increase in audio level $=\log _{10} 64=3$.
While comparing two powers, it is common practice to choose the log base of 10. Suppose, we want to compare any two powers P_{1} and P_{2}. The simple method is to take their ratio P_{2} / P_{1} and to state how many times P_{2} is bigger or smaller than P_{1} which is used as reference power. In the decibel system, we take the \log of this ratio.

$$
\therefore \quad \text { power level }=10 \log _{10} R_{2} / P_{1} \text { bel }
$$

Since bel is too large, we use decibel (dB) instead. Remembering that 1 bel $=10$ decibel, the power level becomes

$$
=10 \log _{10} P_{2} / P_{1}
$$

Similarly, if P_{i} is the input power of an amplifier and P_{o} its power output, then power gain of the amplifier in decibels is

$$
=10 \log _{10} P_{0} / P_{i} \mathrm{~dB}
$$

Also, if the output power of an amplifier changes from P_{1} to P_{2}, the power level change is

$$
=10 \log _{10} P_{2} / P_{1}
$$

It is obvious that dB is the unit of power change (i.e. increase or decrease) and not of power itself.

Another point worth remembering is that 20 dB is not twice as much power as 10 dB .

Example 60.14. An amplifier has an input signal of 16 V peak-to-peak and an input impedance of 320 K. It gives an output voltage of 8 V peak-to-peak across a load resistor of 4 W . Calculate the $d B$ power gain of the amplifier.
(Electronics-I, Gujarat Univ.)
Solution. $\quad P_{i}=\frac{V_{i}^{2}}{R_{i}}=\frac{(16 / 2 \sqrt{2})^{2}}{320 \mathrm{~K}}=100 \mu \mathrm{~W}$
where

$$
V_{i}=\mathrm{rms} \text { value of input voltage }=\frac{V_{i \times p-p}}{2 \sqrt{2}}
$$

If V_{o} is the rms value of the output voltage, then

$$
P_{o}=\frac{V_{o}^{2}}{R_{o}}=\frac{(8 / 2 \sqrt{2})^{2}}{4}=2 \mathrm{~W}
$$

$\therefore \quad$ power amplification, $\frac{P_{0}}{P_{i}}=\frac{2 \mathrm{~W}}{100 \mu \mathrm{~W}}=20,000$
decibel power gain $=10 \log _{10} 20,000=10 \times 4.4=43 \mathrm{~dB}$

60.37. Other Expressions for Power Gain

Suppose P_{o} and P_{i} are the respective output and input powers of an amplifier, R_{o} and R_{i} are its output and input resistances and V_{0} and V_{i} the rms values of output and input voltages, then

$$
P_{o}=\frac{V_{o}^{2}}{R_{o}} \quad \text { and } \quad P_{i}=\frac{V_{i}^{2}}{R_{i}}
$$

Power amplification, $A_{p}=P_{o} / P_{i}$. But power gain is given by

$$
\begin{aligned}
G_{p} & =10 \log _{10} P_{o} / P_{i}=10 \log _{10} \frac{V_{0}^{2} / R_{o}}{V_{i}^{2} / R_{i}}=10 \log _{10}\left(V_{o} / V_{i}\right)^{2} \cdot R_{i} / R_{o} \\
& =\left[\log _{10}\left(V_{o} / V_{i}\right)^{2}+\log _{10} R_{i} / R_{o}\right]=10 \log _{10}\left(V_{0} / V_{i}\right)^{2}+10 \log _{10} R_{0} / R_{i} \\
& =20 \log _{10} V_{o} / V_{i}+10 \log _{10} R_{i} / R_{o}
\end{aligned}
$$

Also $\quad P_{o}=I_{o}{ }^{2} R_{0} \quad$ and $\quad P_{i}=I_{i}{ }^{2} R_{i}$
\therefore power gain, $G_{p}=10 \log _{10} P_{o} / P_{i}=10 \log _{10} I_{o}{ }^{2} R_{o} / I_{i}{ }^{2} R_{i}=10\left[\log _{10}\left(I_{o} / I_{i}\right)^{2} R_{o} / R_{i}\right]$

$$
=10\left[2 \log _{10} I_{o} / I_{i}+\log _{10} R_{o} / R_{i}\right]=20 \log _{10} I_{o} / I_{i}+10 \log _{10} R_{o} / R_{i} \mathrm{~dB}
$$

Of course, if $R_{o}=R_{i}$, then $\log _{10} R_{o} / R_{i}=\log _{10} 1=0$
Hence, in that case, power gain, $G_{p}=20 \log _{10} I_{o} / I_{i} \mathrm{~dB}$

60.38. Voltage and Current Levels

Though decibel was initially defined as the unit of power level, it can also be used with voltage and current levels.

Suppose, an amplifier has an input voltage of V_{i} and gives an output voltage of V_{0}. Then, its voltage amplification is $A_{n}=V_{o} / V_{i}$ but its decibel voltage gain is

$$
G_{v}=20^{n} \log _{10}{ }^{o} A_{v}{ }_{v} \mathrm{~dB}=20 \log 10 \mathrm{~V}_{0} / V_{i}
$$

It should be carefully noted that multiplying factor of 20 has been used and not of 10 as is done for finding power level. In fact, it implies that R_{o} has been taken equal to R_{i} in the power gain equation derived in Art 60.37.

Similarly, current amplification is $A_{i}=I_{o} I_{i}$. However, current gain of the amplifier is

$$
G_{i}=20 \log _{10} I_{o} / I_{i} \mathrm{~dB}
$$

Example 60.15. The input and output voltages of a network are 16 V and 8 V respectively. If input impedances are equal, find the voltage gain.

Solution.

$$
\begin{aligned}
& G_{v}=20=\log _{10} V_{o} / V_{i}=20 \log _{10} 8 / 16 \\
& =20\left[\log _{10} 8-\log _{10} 16\right]=20(0.90-1.2)=20 \times(-0.3)=-\mathbf{6 d B} .
\end{aligned}
$$

Alternative Method

When the voltage ratio is less than 1, its log is negative which is often difficult to handle. In such cases, it is best to invert the fraction and then make the result negative. The above problem could be solved thus :

$$
G_{v}=-20 \log _{10}{ }^{16 / 8}=-20 \times 0.3-6 \mathbf{d B}
$$

Example 60.16. A microphone delivers 30 mV to the 300Ω input of an amplifier. The ac power delivered to an $8-\Omega$ speaker is 18 W . What is the power gain of the amplifier ?

Solution. We may use any one of the equations given above.

$$
\begin{aligned}
& G_{p}=20 \log _{10} \mathrm{~V}_{0} / V_{i}+10 \log _{10} R_{i} / R_{0} \\
& \text { Now, } \quad P_{o}=\frac{V_{o}^{2}}{R_{o}} \quad \text { or } \quad 18=\frac{V_{o}^{2}}{8} \quad \therefore \quad V_{o}=\sqrt{8 \times 18}=12 \mathrm{~V}
\end{aligned}
$$

$$
\therefore \quad G_{p}=20 \log _{10} 12 \mathrm{~V} / 30 \mathrm{mV}+10 \log _{10} 300 / 8=20 \log _{10} 400+10 \log _{10} 37.5
$$

$$
=20 \times 2.6+10 \times 1.57=67.7 \mathrm{~dB} .
$$

Example 60.17. The output power of an amplifier is 100 mW when the signal frequency is 5 kHz . When the frequency is increased to 25 kHz , the output power falls to 50 mW . Calculate the $d B$ change in power.
(Electronics, Gujarat Univ. 1991)
Solution. The decibel change in power level

$$
=10 \log _{10} 50 / 100=10 \log _{10}^{1 / 2}=-10 \log _{10} 2=-10 \times 0.3=-\mathbf{3} \mathbf{d B} .
$$

Example 60.18.The output voltage of an amplifier is 10 V at 5 kHz and 7.07 V at 25 kHz . What is the decibel change in output power level?

Solution. Since changes in voltage are across the same output resistance, the decibel change in power is

$$
\begin{aligned}
& =20 \log _{10} V_{2} / V_{1}=20 \log _{10} 7.07 / 10 \mathrm{~dB}=-20 \log _{10} 10 / 7.07=-20 \log _{10} 1.414 \mathrm{~dB} \\
& =-20 \times 0.15=-3 \mathrm{~dB}
\end{aligned}
$$

It is seen from Ex. 60.17 and Ex. 60.18 that output decibel power falls by a 3 dB when
(i) absolute value of power falls to half its original value
or
(ii) output voltage falls to 0.707 or $1 / \sqrt{2}$ of its original value.

Example 60.19. A certain radio receiver delivers an output power of 3.6 W.
(i) what would be the decibel gain if power output is increased to 7.2 W ?
(ii) what power output would be required to produce a power gain of 10 dB ?

Solution.

$$
\text { (i) } G_{p}=10 \log _{10} P_{2} / P_{1}=10 \log _{10} 7.2 / 3.6=\mathbf{3} \mathbf{d B}
$$

(ii)

$$
\text { Here }, \quad G_{p}=10, \quad P_{1}=3.6 \mathrm{~W}, P_{2}=?
$$

$$
\therefore \quad 10=10 \log _{10} P_{2} / 3.6 \quad \therefore \quad \log _{10} P_{2} / 3.6=1 \quad \text { or } \quad \frac{P_{2}}{3.6}=10^{1}=10
$$

$$
\therefore \quad P_{2}=3.6 \times 10=36 \mathrm{~W}
$$

60.39. Characteristics of the Decibel System

1. a decibel is a measure of ratio and not of an amount. It tells us how many times one quantity is greater or lesser with respect to another or the reference quantity. It does not measure the actual (or absolute) voltage or power but only their changes;
2. decibel is non-linear i.e. 20 dB is not twice as much power or voltage as 10 dB ;
3. this log-based system allows a tremendous range of power ratios to be encompassed by using only two-digit numbers. For example
$1 \mathrm{~dB}=1.26: 1$ power ratio and $50 \mathrm{~dB}=100,000: 1$ power ratio;
4. total dB of a cascaded amplifier can be found by simply adding the stage dBs .

60.40. Value of 1 dB

It can be proved that 1 dB represents the \log of two powers which have a ratio of 1.26.

$$
1 \mathrm{~dB}=10 \log _{10} P_{2} / P_{1}
$$

$$
\therefore \quad \log _{10} P_{2} / P_{1}=\frac{1}{10}=0.1 \quad \text { or } \quad \frac{P_{2}}{P_{1}}=10^{0.1}=1.26
$$

Hence, +1 dB represents an increase in power of 26%.

60.41. Zero Decibel Reference Level

By now, it should be clear that decibel does not measure any physical quantity like voltage or power etc., but merely ratio of two physical quantities. For determining the power levels of various powers like P_{1}, P_{2}, P_{3} etc. it is essential to fix some reference power with which their ratios can be taken. If we fix P_{0} as the reference power, then different power levels would be

$$
10 \log _{10} P_{1} / P_{o} \quad \text { and } \quad 10 \log _{10} P_{2} / P_{o} \text { etc. }
$$

Obviously, \boldsymbol{P}_{o} cannot be 0 watt i.e. 0 watt cannot be taken as 0 dB because, in that case, power level of P_{1} would be

$$
=10 \log _{10} P_{1} / 0=\infty
$$

In fact, any power compared with zero power is infinity. Hence, decibels would not be defined if zero watt is taken as zero reference level.

Following three zero reference levels are in common use :

1. Zero dB refers to 6 mW dissipated in a 500Ω resistive load.

The reference voltage value corresponding to 0 dB is

$$
P=V^{2} / R \quad \text { or } \quad 6 \times 10^{-3}=V^{2} / 500 \quad \text { or } \quad V=1.73 \mathrm{~V}
$$

2. Zero dB refers to 1 mW dissipated in 600Ω.

Here, $1 \times 10^{-3}=V^{2} / 600 ; \quad \mathrm{V}=0.774 \mathrm{~V}$
3. Zero dB refers to a $1-\mathrm{mW}$ dissipation.

It is written as dBm indicating that it uses 1 mW as a reference.
This reference does not depend on any particular load impedance value.
Calculations are performed by using the relation.

$$
G_{p}=10 \log _{10} P_{2} / 0.001 \mathrm{~dB}_{\mathrm{in}}
$$

60.42. Variations in Amplifier Gain with Frequency

If the input voltage of an amplifier is kept constant but its frequency is varied, it is found that the amplifier gain
(i) remains practically constant over a sizable range of mid-frequencies,
(ii) decreases at low as well as high frequencies.

A typical frequency- versus-gain curve is shown in Fig. 60.43. While analyzing this curve, three value of frequency are important
(i) mid-frequency range,
(ii) lower cut-off frequency, f_{1},
(iii) upper cut-off frequency, f_{2}.

The lower and upper cut-off frequencies are defined as those frequencies.
(a) where voltage gain of the amplifier decreases to 0.707 times the mid-frequency gain i.e. to

$$
\frac{1}{\sqrt{2}} A_{v(m i d)}=0.707 A_{v(m i d)}
$$

or
(b) in terms of power, where power amplification of the amplifier decreases to half its value at mid-frequencies
i.e.
or $\quad A_{p .2}=\frac{1}{2} A_{p(\text { mid })}$
(c) in terms of decibels, where power gain falls by $\mathbf{3 d B}$.
That is why the two cut-off frequencies are referred to as

Fig. 60.43
(i) -3 dB frequencies or
(ii) down 3 dB frequencies or
(iii) 3 dB loss frequencies.

The points A and B in Fig. 60.43 are called 3-dB points or (sometime) as minus 3 dB points. The cut-off frequencies are also called roll-off frequencies because at these frequencies the amplifier gain starts rolling down from its midband value or maximum value.

The frequency span between these two cut-off frequencies is called the passband or bandwidth (BW) of the amplifier.

$$
\therefore \quad \Delta f=f_{2}-f_{1}=\text { band width }(\mathrm{BW})=\text { passband }
$$

All frequencies lying between f_{1} and f_{2} are amplified almost equally.
For maximum bandwidth, the stray capacitances in the amplifier must be kept to the minimum.

60.43. Causes of Amplifier Gain Variations

The primary cause of gain variation in amplifiers is the presence of capacitances, some of which are connected in series along the signal path and some in parallel.

The different types of external capacitances present in an amplifier circuit are :

1. coupling and bypass capacitors-usually of large capacitance value,
2. internal or inter-element capacitances of the transistor [Fig. 60.44 (a)] and stray wiring capacitance [Fig. 60.44 (b)].

The coupling and bypass capacitors [C_{1}, C_{2} and C_{3} in Fig. 60.44 (a)] are series-connected whereas interelement capacitances and stray

Fig. 60.44 capacitances are parallel-connected [Fig. $60.44(b)]$ to the signal path. At mid-frequencies, C_{1}, C_{2} and C_{3} act almost as 'shorts' but $C_{b c}$ and $C_{b e}$ act as 'open'. Hence, their effect on mid-frequencies is negligible.

However, at low frequencies, series-connected capacitors i.e. coupling and by-pass capacitors offer relatively large reactance thereby dropping off a large part of the input signal. Hence, amplifier gain starts decreasing as frequency is lowered.

The internal transistor capacitances and stray capacitances are (i) small and (ii) parallel-con-

Fig. 60.45 nected to the signal path. At low frequencies, they offer very high reactance and so act as effective 'open'. But with increase in frequency, their reactance keeps decreasing till at very high frequencies, they almost short or shunt the ac signal to ground both at the input and output ends. This explains why amplifier gain starts decreasing at high frequencies.

In summary
(i) series-connected coupling and bypass capacitors cause decrease in amplifier gain at low frequencies,
(ii) parallel-connected internal transistor capacitances and stray wiring capacitances cause decrease in amplifier gain at high frequencies.
Example 60.20. For the RC- coupled circuit of Fig. 60.45, calculate the lower cut-off frequency (i) at C_{1} (ii) at C_{2} and (iii) for the amplifier.

Solution. The low-frequency cut-off for each coupling capacitor is given by

$$
f_{1}=\frac{1}{2 \pi C R_{e q}}
$$

where $R_{e q}$ is the resistance 'seen' by the capacitor on its right and left.
(i) \mathbf{f}_{1} at C_{1}

For finding the resistance 'seen' by C_{1}, the dc

Fig. 60.46 and ac sources are shorted out because they have negligible resistance. The circuit becomes as shown in Fig. 60.46.

$$
\begin{aligned}
& R_{e q}=R_{S}+R_{1}\left\|R_{2}\right\| r_{\text {in(base })} \\
& \text { Now, } \begin{aligned}
r_{\text {in(base })}=\beta\left(r_{e}+R_{E}\right) & \cong \beta R_{E} \\
& =100 \mathrm{~K}
\end{aligned} \\
& \therefore \quad R_{e r}=3 \mathrm{~K}+90 \mathrm{~K}\|10 \mathrm{~K}\| 100 \mathrm{~K} \\
& =3+8.26 \\
& =11.26 \mathrm{~K} \\
& \therefore \quad f_{1}=\frac{1}{2 \pi \times 11.26 \times 10^{3} \times 1 \times 10^{-6}}=40 \mathrm{~Hz}
\end{aligned}
$$

(ii) f_{1} at C_{2}

Let us first find the resistance 'seen' by C_{2}. On one side, it sees $R_{L}=10 \mathrm{~K}$ load resistor to the ground and on the other side, it sees R_{C} to ground in parallel with the resistance seen looking into transistor collector.

Since C / B junction is reverse-biased, its resistance is very high. If we consider it as 'open', the equivalent circuit becomes as shown in Fig. 60.47.

$$
\begin{array}{ll}
\therefore & R_{e q}=R_{L}+R_{C}=10+10=20 \mathrm{~K} \\
\therefore & f_{1}=\frac{1}{2 \pi \times 20 \times 10^{3} \times 0.2 \times 10^{-6}}=\mathrm{Hz}
\end{array}
$$

Fig. 60.47
(iii) Since cut-off frequency for C_{2} occurs at 40 Hz while cut-off for C_{1} occurs way down at 14 $\mathrm{Hz}, \mathrm{C}_{2}$ determines the lower cut-off frequency for the amplifier i.e. 14 Hz .

60.44. Miller Effect

According to this effect, when viewed from input base terminal of the $C E$-connected transistor, the capacitance $C_{b c}$ appears as $\left(1+A_{v}\right) C_{b c}$ i.e. it is amplified by a factor of $\left(1+A_{v}\right)$. In fact, Miller effect takes into account the feedback from the collector to base and vice-versa due to $C_{b c}$.

Proof

When V_{i} is applied to the transistor's base in Fig. $60.44(b)$, the change in collector voltage is

$$
\Delta V_{C}=-A_{v} \cdot V_{i}
$$

The negative sign is due to phase shift inherent in a $C E$ amplifier. As seen, V_{C} is reduced by $\left(A_{v} . V_{i}\right)$ when base voltage is increased by V_{i}. Hence, total reduction in collector base voltage is

$$
\Delta V_{C B}=V_{i}+A_{v} \cdot V_{\mathrm{i}}=V_{i}\left(1+A_{v}\right)
$$

This also represents the change of voltage across $C_{b c}$ because it is connected across collector and base. Using $Q=C V$, the charge supplied to the input of the circuit is

$$
Q=C_{b c} \times \Delta V_{C B}=C_{b c} \times\left(1+A_{v}\right) V_{i}=\left(1+A_{v}\right) C_{b c} \times V_{i}
$$

Hence, $C_{b c}$ appears as $\left(1+A_{v}\right) C_{b c}$ when looked from the input side of the circuit.
Incidentally, the total input capacitance to the transistor is

$$
C_{i n}=C_{b e} \|\left(1+A_{v}\right) C_{b c}=C_{b e}+\left(1+A_{v}\right) C_{b c}
$$

At high frequencies, $C_{i n}$ reduces the input impedance of the circuit and affects the frequency response (Ex. 60.22).

Example 60.21. A CE-connected amplifier has $C_{b c}=4 p F, C_{b e}=10 p F$ and $r_{e}=50 \Omega$. If circuit load resistor is 10 K , calculate the value of $C_{i n}$.

Solution. $\quad A_{v} \cong \frac{R_{E}}{r_{e}}=\frac{100 K}{50 \Omega}=200 \quad \therefore \quad C_{\text {in }}=10+(1+200) 4=814 \mathrm{pF}$
Example 60.22. Calculate the upper cut-off frequency of the CE amplifier shown in Fig. 60.48. Given the input wiring capacitance $C_{w i}=40 \mathrm{pF}, C_{b c}=8 \mathrm{pF}, C_{b}=10 \mathrm{pF}$ and $\beta=100$.
(Electronic Engg-I, Osmania Univ.)
Solution. $\quad f_{2}=\frac{1}{2 \pi R_{e q} C_{i n}}$
The voltage amplification of the amplifier is

$$
A_{v} \cong \frac{R_{C} \| R_{L}}{R_{L}}=\frac{20 \mathrm{~K} \| 20 \mathrm{~K}}{400 \Omega}=25
$$

The total capacitance from base to ground is

$$
\begin{aligned}
& C_{i n}=C_{w i}+C_{b e}+\left(1+A_{v}\right) C_{b c} \\
& =40+10+(1+25) \times 8=258 \mathrm{pF}
\end{aligned}
$$

Now, let us determine the resistance 'seen' by $C_{i n}$. If we look to the right, a resistance of $\beta\left(r_{e}+R_{E}\right) \cong \beta R_{E}$ is seen while to the left $R_{1}\left\|R_{2}\right\| R_{S}$ is seen-all in parallel.

Fig. 60.48

$$
\begin{aligned}
& \therefore \quad \begin{array}{l}
R_{e q} \quad \begin{array}{l}
\\
= \\
\\
=
\end{array}\left\|R_{2}\right\| R_{S}\left\|\beta R_{E}\right\| 5 \mathrm{~K}\|10 \mathrm{~K}\| 40 \mathrm{~K}=2.88 \mathrm{~K}
\end{array} \\
& \therefore \quad f_{2}=\frac{1}{2 \pi \times 2.88 \times 10^{3} \times 258 \times 10^{-12}}=214 \mathrm{kHz}
\end{aligned}
$$

60.45. Cut-Off Frequencies of Cascaded Amplifiers

Cascading of stages gives higher amplification but narrow bandwidth because the product of the two remains almost constant. The approximate values of composite lower and upper cut-off frequencies of the cascaded amplifier having n identical stages are

$$
\begin{aligned}
& f_{1 . n}=1.1 \sqrt{n} \times f_{1} \quad \text { per stage }=\frac{f_{1} \text { per stage }}{\sqrt{\left(2^{1 / n}-1\right)}} \\
& f_{2 . n}=\frac{f_{2} \text { per stage }}{1.1 \sqrt{n}}=\sqrt{\left(2^{1 / n}-1\right)} \times f_{2} \text { per stage }
\end{aligned}
$$

The reduced bandwidth of the cascaded amplifier is $=f_{2 \mathrm{n}}-f_{1 . \mathrm{n}}$

60.46. Transistor Cut-off Frequencies

Even if no external stray capacitances were present in an amplifier, there would still be an upper limit on its frequency response due to
(i) internal or interelement capacitances of the transistor and
(ii) transit time of charge carriers across the transistor junctions and through the semiconductor material.
This limitation is expressed in terms of
(i) alpha cut-off frequency $\left(f_{\alpha}\right)$ and $(i i)$ beta cut-off frequency $\left(f_{\beta}\right)$

The two are defined below.

60.47. Alpha Cut-off Frequency

It is found that at high frequencies, the value of transistor α begins to fall. This decrease in α is related to the transit time effect of the charge carriers as they move from the emitter to collector.

The alpha cut-off frequency f_{α} is that high frequency at which the α of a $C B$-connected transistor becomes 0.707 of its low-frequency value (usually 1 kHz).

For example, if value of α at 1 kHz is 0.98 , then its value at f_{α} would be

$$
=0.707 \times 0.98=0.693
$$

It means that at f_{α}, the collector current I_{C} would be only 0.693 of the emitter current rather than $0.98 I_{E}$.

It is found that f_{α} is
(a) inversely proportional to the square of the base width,
(b) directly proportional to the minority carrier mobility.

In this regard, NPN transistors are superior to $P N P$ type because electrons have greater mobility than holes. For decreasing the base transit time, base should be as thin as possible.

It may be noted that alpha cut-off frequency of any given transistor is always greater than its beta cut-off frequency f_{β}. In fact, $f_{\alpha} \cong \beta f_{\beta}$.

60.48. Beta Cut-off Frequency

It is that high frequency at which the β of a $C E$-connected transistor drops to 0.707 of its lowfrequency (1 kHz) value.

60.49. The f_{\top} of a Transistor

It is another high-frequency characteristic of a transistor.
It is that high frequency of a $C E$-connected transistor where its β drops to unity i.e. $\beta=1$. This frequency is much larger than f_{β} but less than f_{α}. For example, for a typical transistor, their values may be $f_{\beta}=6 \mathrm{MHz}, f_{\mathrm{T}}=300 \mathrm{MHz}$ and $f_{\alpha}=345 \mathrm{MHz}$.

60.50. Relation Between $f_{\mathrm{a}}, f_{\mathrm{b}}$ and f_{T}

(i) For simple junction transistors $f_{\alpha}=1.2 f_{T}$ and (ii) $f_{\beta}=\frac{f_{T}}{\beta}$, where β refers to its low-frequency value.

60.5 1. Gain-Bandwidth Product

At its name indicates, it is the product of the gain and bandwidth of an amplifier. It is very useful in comparing the performance capability of various circuits.
For any amplifier, gain-bandwidth product (GBP) is constant and is equal to f_{T}.

If, for example, $\beta=1$, at a frequency of 6 MHz , then $f_{T}=\mathbf{6} \mathbf{M H z}$.
$\therefore \quad$ gain-bandwidth product $=\mathbf{6} \mathbf{M H z}$.
Hence, for a given f_{T} in an amplifier, increased gain may be obtained only at the expense of its bandwidth.

Example 60.23. A transistor has $f_{\alpha}=8 \mathrm{MHz}$ and $\beta=80$. When connected as an amplifier, it has stray capacitance of 100 pF at the output terminal. Calculate its upper 3 dB frequency when R_{L} is (a) 10 K and (b) 100 K .

Solution. It should be remembered that stray capacitance would reduce the amplifier gain by 3-dB when
capacitive reactance $=$ output resistance
i.e.

$$
\frac{1}{2 \pi f_{S} C_{S}}=R_{L} \quad \text { or } \quad f_{s}=\frac{1}{2 \pi C_{S} R_{L}}
$$

First, let us find the value of f_{β} for comparison with f_{s}.

$$
\begin{aligned}
& f_{\beta}=\frac{f_{1}}{80}=\frac{8 \mathrm{MHz}}{80}=100 \mathrm{kHZ} \\
& \text { (a) } \quad \mathbf{R}_{\mathrm{L}}=\mathbf{1 0} \mathbf{K} \\
& f_{2}=\frac{1}{2 \pi C_{s} R_{L}}=\frac{1}{2 \pi \times 100 \times 10^{-12} \times 10 \times 10^{3}}=159 \mathrm{kHz}
\end{aligned}
$$

Obviously, before this frequency is reached, cut-off would have been achieved at $f_{\beta}=100 \mathrm{kHz}$. Hence, $f_{2}=f_{\beta}=100 \mathbf{k H z}$.

$$
\text { (b) } \mathbf{R}_{\mathrm{L}}=100 \mathrm{~K}
$$

In this case, $f_{s}=\frac{10}{100} \times 159=15.9 \mathrm{kHz}$
In this case, cut-off would be achieved much earlier at 15.9 kHz before f_{β} is reached
$\therefore \quad f_{2}=15.9 \mathrm{kHz}$.

Tutorial Problems No. 60.1

1. An amplifier raises the power level of its $5-\mu \mathrm{W}$ input signal by 30 dB . What is the output power?
[5 mW]
2. An attenuation network provides an output of $5 \mu \mathrm{~W}$ with an input of 5 mW . Calculate the decibel loss of the network.
[-30 dB]
3. What is the decibel difference between a 100 kW and 500 kW radio transmitters?
[6.98 dB]
4. The noise level of a certain tape recording is 30 dB below the signal level. If the signal power is 5 mW , calculate the noise power.
5. An amplifier rated at $72-\mathrm{W}$ output is connected to an 8Ω speaker
(a) what input power is required for full power output if power gain is 30 dB ,
(b) what is the input voltage for rated output if amplifier voltage gain is 40 dB .
[(a) $72 \mu \mathrm{~W}$ (b) 240 mV]
6. The characteristics of a certain audio amplifier are such that it gives a voltage amplification of 10 at $100 \mathrm{~Hz}, 30$ at 3 kHz and 60 at 10 kHz . Taking the amplification at 3 kHz as the reference level, calculate the loss or gain in decibels at the other two frequencies.
[$-9.54 \mathrm{~dB}, 6.02 \mathrm{~dB}$]
7. An amplifier with full power rating of 100 W drives a speaker load of 16Ω. The hum-level rating of the amplifier is 80 dB below its full-power rating. Calculate
(i) hum-level in the load,
(ii) voltage produced by the hum across the load. [(i) $1 \mu \mathrm{~W}$ (ii) 4 mW$]$
8. Derive the voltage, current and power gain relationships and then find the voltage gain of the single-stage amplifier shown in Fig. 60.49. An $N P N$ transistor that has $h_{i e}=500 \Omega, h_{r e}$ negligible, $h_{f e}=150$, and $h_{o e}=50 \mu S$ is used. Neglect all coupling and stray capacitances.

Comment on the various methods available for biasing the

Fig. 60.49 base and discuss their merits.
[-545]

OBJECTIVE TESTS - 60

1. A CB amplifier has very low input resistance because
(a) low emitter ac resistance r_{e} ' shunts all other resistances
(b) it handles small input signals
(c) emitter bulk resistance is small
(d) its base is at ac ground.
2. CE amplifier is characterised by
(a) low voltage gain
(b) moderate power gain
(c) signal phase reversal
(d) very high output impedance.
3. A CC amplifier has the highest
(a) voltage gain
(b) current gain
(c) power gain
(d) output impedance.
4. In a CC amplifier, voltage gain
(a) cannot exceed unity
(b) depends on output impedance
(c) is dependent on input signal
(d) is always constant.
5. In a class-A amplifier, conduction extends over 360° because Q-point is
(a) located on load line
(b) located near saturation point
(c) centred on load line
(d) located at or near cut-off point.
6. The circuit efficiency of a class-A ampli- fier can be increased by using
(a) low dc power input
(b) direct-coupled load
(c) low-rating transistor
(d) transformer-coupled load.
7. In a class-A amplifier, worst-case condi- tion occurs with
(a) zero signal input
(b) maximum signal input
(c) high load resistance
(d) transformer coupling.
8. The output of a class-B amplifier
(a) is distortion-free
(b) consists of positive half-cycle only
(c) is like the output of a full-wave rectifier
(d) comprises short-duration current pulses.
9. The maximum overall efficiency of a transformercoupled class-A amplifier is - per cent.
(a) 78.5
(b) 25
(c) 50
(d) 85
10. A transistor audio amplifier is found to have an overall efficiency of 70 per cent. Most probably, it is a \qquad amplifier.
(a) class-B push-pull
(b) single-stage class-C
(c) transformer-coupled class-A
(d) direct-coupled class-A
11. The main purpose of using transformer coupling in a class-A amplifier is to make it more
(a) distortion-free
(b) bulky
(c) costly
(d) efficient.
12. A class-B push-pull amplifier has the main advantage of being free from
(a) any circuit imbalances
(b) unwanted noise
(c) even-order harmonic distortion
(d) dc magnetic saturation effects.
13. Crossover distortion occurs in \qquad amplifiers.
(a) push-pull
(b) class-A
(c) class-B
(d) class AB
14. The maximum overall efficiency of a class-B push-pull amplifier cannot exceed - per cent.
(a) 100
(b) 78.5
(c) 50
(d) 85
15. The circuit of a class B push-pull amplifier is shown in Fig. 60.50. If the peak output voltage, V_{0} is 16 V , the power drawn from the dc source would be
(a) 10 W
(b) 16 W
(c) 20 W
(d) 32 W
16. The dissipation at the collector is zero in the quiescent state and increases with excitation in the case of a
(a) class A series-fed amplifier
(b) class A transistor coupled amplifier
(c) class AB amplifier
(d) class B amplifier
17. Class AB operation is often used in power (large signal) amplifiers in order to,

(a) get maximum efficiency
(b) remove even harmonics
(c) overcome cross-over distortion
(d) reduce collector dissipation
18. The main use of a class-C amplifier is
(a) as an RF amplifier
(b) as stereo amplifier
(c) in communication sound equipment
(d) as distortion generator.
19. If a class C power amplifier has an input signal with frequency of 200 kHz and the width of collector current pulses of $0.1 \mu \mathrm{~S}$, then the duty cycle of the amplifier will be
(a) 1%
(b) 2%
(c) 10%
(d) 20%
20. The primary cause of linear distortion in amplifiers is
(a) change of gain with frequency
(b) unequal phase shift in component frequencies
(c) reactances associated with the circuit and active amplifying element
(d) inherent limitations of the active de vice.
21. An amplifier is said to suffer from distortion when its output is
(a) low
(b) different from its input
(c) noisy
(d) larger than its input.
22. While discussing amplifier performance, noise is defined as any kind of unwanted signal in the output which is
(a) unrelated to the input signal
(b) derived from the input signal
(c) not generated by the amplifier
(d) due to associated circuitry.
23. An ideal amplifier has
(a) noise figure of less than 1 dB
(b) noise factor of unity
(c) output S / N more than input S / N
(d) noise figure of more than 0 dB .
24. The decibel is a measure of
(a) power
(b) voltage
(c) current
(d) power level.
25. When power output of an amplifier doubles, the increase in its power level is \qquad . decibels.
(a) 2
(b) 20
(c) 3 (d)
10
26. When output power level of a radio recei- ver increases by 3 dB , its absolute power changes by a factor of
(a) 2
(b) 10
(c) $1 / 2$
(d) 3.
27. Zero watt cannot be chosen as zero deci- bel level because
(a) it is impossible to measure zero watt
(b) it is too small
(c) every power compared with it would be zero
(d) it would be impossible to define a decibel.
28. A minus 3 dB point on the gain versus frequency curve of an amplifier is that point where
(a) signal frequency drops to half the midband frequency
(b) voltage amplification becomes half of its maximum value
(c) power falls to half its maximum value
(d) upper cut-off frequency becomes twice the lower cut-off frequency
29. The bandwidth of an amplifier may be increased by
(a) decreasing the capacitance of its by pass capacitors
(b) minimizing its stray capacitances
(c) increasing input signal frequency
(d) cascading it.
30. Lower cut-off frequency of an amplifier is primarily determined by the
(a) interval capacitances of the active device used
(b) stray capacitance between its wiring and ground
(c) ac β value of its active devices
(d) capacitances of coupling and bypass capacitors.
31. The main reason for the variation of amp-lifier gain with frequency is
(a) the presence of capacitances, both ex- ternal and internal
(b) due to interstage transformers
(c) the logarithmic increase in its output power
(d) the Miller effect.
32. The gain-bandwidth product of an amp- lifier is given by
(a) $f_{2}-f_{1}$
(c) f_{T}
(b) $f_{\alpha}-f_{\beta}$
A Circuit which resonates $1 M H z$
(a) 10 kHz
(b) 100 kHz
(d) 100 Hz
(c) 10 Hz
(UPSC Engg. Services 2002) (Hint : BW = $\boldsymbol{F}_{\boldsymbol{o}} / \boldsymbol{a}$)

ANSWERS										
1. (a)	2. (c)	3. (b)	4. (a)	5. (c)	6. (d)	7. (a)	8. (b)	9. (c)	10. (a)	11. (d)
12. (c)	13. (a)	14. (b)	15. (b)	16. (d)	17. (a)	18. (a)	19. (d)	20. (c)	21. (b)	22. (a)
23. (b)	24. (d)	25. (c)	26. (a)	27. (d)	28. (c)	29. (b)	30. (d)	31. (a)	32. (c)	33. (a)

C H A P T E R

61

Learning Objectives

> General
> Amplifier Coupling
$>$ RC-coupled Two-stage Amplifier
> Impedance-coupled Twostage Amplifier
$>$ Advantages of Impedance Coupling
> Transformer-coupled Twostage Amplifier
$>$ Advantages of Transformer Coupling
> Frequency Response
> Direct-coupled Two-stage Amplifier Using Similar Transistors
> Direct-coupled Amplifier Using Complementary Symmetry of Two Transistors
> Darlington Pair
> Advantages of Darlington Pair
> Comparison Between Darlington Pair and Emitter Follower
> Special Features of a Differential Amplifier
> Common Code Input
> Differential Amplifier

MULTISTAGE AND
 FEEDBACK AMPLIFIERS

In a multistage amplifier, a number of single amplifiers are connected an cascade arrangement i.e. the output of first stage is connected to the input of second stage.

61.1. General

Often, the voltage amplification or power gain or frequency response obtained with a single stage of amplification is insufficient to meet the requirements of either a composite electronic circuit or a load device. Hence, two or more single stages of amplification are frequently used to achieve greater voltage or current am-

Fig. 61.1 plification or both. In such cases, the output of one stage serves as input of the next stage as shown in Fig. 61.1. Such amplifiers may be divided into following two categories :

(a) Cascaded Amplifiers

In these amplifiers, each stage as well as the type of interstage coupling used are identical.

(b) Compound Amplifiers

In these amplifiers, each stage may be different from the other (one may be $C E$ and the other may be $C C$ stage) and also different types of interstage couplings may be employed.

As stated above, in cascaded amplifiers, the output ac voltage of the first stage becomes the input voltage of the second stage and the ac output of the second stage becomes the input of the third stage and so on. The overall voltage gain of the cascaded amplifier is equal to the product (not the sum) of the gain of the individual stages.

$$
\therefore \quad A_{v}=A_{\mathrm{v} 1} \times A_{\mathrm{v} 2} \times A_{\mathrm{v} 3} \times .
$$

However, when the voltage gain is expressed in decibels (dB), then the overall decibel gain of the multistage amplifier is equal to the sum of the dB gains of the individual stage i.e.

$$
G=G_{1}+G_{2}+G_{3}+\ldots \ldots \ldots
$$

Similarly, the overall current amplification is given by

$$
A_{i}=A_{i 1} \times A_{i 2} \times A_{i 3} \times \ldots \ldots \ldots
$$

The overall power gain is given by

$$
A_{p}=A_{v} \cdot A_{i} \quad \text { and } \quad G_{p}=10 \log _{10} A_{P} \mathrm{~dB}
$$

Suppose in a two-stage cascaded amplifier, first stage has a voltage amplification of $2000(\mathrm{~dB}$ gain of the $\left.20 \log _{10} 2000=66 \mathrm{~dB}\right)$ and second stage has corresponding values of $1000(60 \mathrm{~dB})$. If the ac output of first stage is fed into the second stage, the overall amplification would theoretically become $=1000 \times 2000=2 \times 10^{6}$ which corresponds to a dB gain of $(60+66)=126$ i.e. $20 \log _{10}$ $2 \times 10^{6}=20 \times 6.3=126$. The above result would be true only when we neglect the loading effect of first stage by the second stage. It would be approximately true so long as the impedance looking into the input of second stage is much greater than the output impedance of the first stage. Otherwise, the overall gain would be much less.

61.2. Amplifier Coupling

All amplifiers need some coupling network. Even a single-stage amplifier has to be coupled to the input and output devices. In the case of multistage systems, there is interstage coupling. The type of coupling used determines the characteristics of the cascaded amplifier. In fact, amplifiers are classified according to the coupling network used.

Fig. 61.2
The four basic methods of coupling are :

1. Resistance-Capacitance (RC) Coupling

It is also known as capacitive coupling and is shown in Fig. 61.2 (a). Amplifiers using this coupling are known as $R C$-coupled amplifiers. Here, $R C$ coupling network consists of two resistors $R_{C 1}$ and $R_{\mathrm{C} 2}$ and one capacitor C. The connecting link between the two stages is C. The function of the $R C$-coupling network is two-fold :
(a) to pass ac signal from one stage to the next,
(b) to block the passage of dc voltages from one stage to the next.

2. Impedance Coupling or Inductive Coupling

It is also known as choke-capacitance coupling and is shown in Fig. 61.2 (b). Amplifiers using this coupling are known as impedance-coupled amplifiers. Here, the coupling network consists of L_{1}, C and R_{B}. The impedance of the coupling coil depends on (i) its inductance and (ii) signal frequency.

3. Transformer Coupling

It is shown in Fig. 61.2 (c). Since secondary of the coupling transformer conveys the ac component of the signal directly to the base of the second stage, there is no need for a coupling capacitor. Moreover, the secondary winding also provides a base return path, hence there is no need for a base resistance. Amplifiers using this coupling are called trans-former-coupled amplifiers.

4. Direct Coupling

It is shown in Fig. $61.2(d)$. This coupling is used where it is desirable to connect the load directly in series with the output terminal of the active circuit element. The examples of such load
devices are (i) headphones (ii) loud-speakers (iii) dc meters (iv) relays and (v) input circuit of a transistor etc. Of course, direct coupling is permissible only when
(i) dc component of the output does not disturb the normal operation of the load device,
(ii) device resistance is so low that it does not appreciably reduce the voltage at the electrodes.

61.3. RC-coupled Two-stage Amplifier

Fig. 61.3 shows a two-stage $R C$-coupled amplifier which consists of two single-stage transistor amplifiers using the $C E$ configuration. The resistors R_{2} and R_{3} and capacitor C_{2} form the coupling network. R_{2} is collector load of Q_{1} and R_{4} is that of Q_{2}. Capacitor C_{1} couples the input signal whereas C_{3} couples out the output signal. R_{1} and R_{3} provide dc base bias.

Fig. 61.3

(i) Circuit Operation

The brief circuit operation is as under :

1. the input signal n_{i} is amplified by Q_{1}. It is phase reversed (usual with C_{E} connection);
2. the amplified output of Q_{1} appears across R_{2};
3. the output of the first stage across R_{2} is coupled to the input at R_{3} by coupling capacitor C_{2}. This capacitor is also sometimes referred

Fig. 61.4 to as blocking capacitor because it blocks the passage of dc voltages and currents;
4. the signal at the base of Q_{2} is further amplified and its phase is again reversed;
5. the ac output of Q_{2} appears across R_{4};
6. the output across R_{4} is coupled by C_{3} to load resistor R_{5};
7. the output signal v_{0} is the twice-amplified replica of the input signal v_{i}. It is in phase with v_{i} because it has been reversed twice.
(ii) AC Equivalent Circuit

The ac equivalent circuits for the two stages have been shown separately in Fig. 61.4 and Fig. 61.5 respectively.

If Fig. 61.4, $r_{\mathrm{i} .1}=R_{1} \| \beta_{1} \cdot r_{e .1}$

It is the input impedance of the first stage and not $r_{i n(\text { base })}$.

The output impedance of the first stage is

$$
r_{0.1}=R_{2} \| r_{i .2}
$$

It is so because the input of the second stage forms a part of the output of the first stage. As seen from Fig. 61.5.

Fig. 61.5

$$
r_{i .2}=R_{3} \| \beta_{2} \cdot r_{e 2} \cong \beta_{2} r_{e, 2}
$$

where $r_{e .1}$ and $r_{e .2}$ are ac junction resistances of the two transistors and are given by
$r_{e .1}=\frac{25 \mathrm{mV}}{I_{E .1}}$ or $\frac{50 \mathrm{mV}}{I_{E .1}}$ and $r_{e .2}=\frac{25 \mathrm{mV}}{I_{E .2}}$ or $\frac{50 \mathrm{mV}}{I_{E .2}}$
The output impedance of Q_{2} is $r_{0.2}=R_{4} \| R_{5}$
(iii) Voltage Gain

$$
\begin{aligned}
& r_{1.2}=\beta_{2} r_{e .2} \quad \text { Now } \\
& \text { Also, } \quad A_{v 2}=\beta_{2} \frac{r_{0.2}}{\beta_{2} \cdot r_{1.2}}=\beta_{2} r_{e .2} \quad \therefore \quad \therefore \quad A_{v .2}=\beta_{2} \frac{r_{0.2}}{r_{e .2}} \\
& \beta_{2} \cdot r_{e .2}
\end{aligned}=\frac{r_{0.2}}{r_{e .2}}
$$

The voltage gain of the first stage is also given by a similar equation

$$
A_{v i}=\frac{r_{0.1}}{r_{e .1}}
$$

Example 61.1. For the two-stage RC-coupled low-level audio amplifier shown in Fig. 61.6, compute the following :
(i) $r_{i}\left(\right.$ ii) $A_{v 1}$ (iii) $A_{v 2}$ and (iv) A_{v} in dB. Neglect $V_{B E}$ and take $r_{e}=25 \mathrm{mV} / I_{E}$.
(Electronic Circuits, Mysore Univ.)
Solution. The input impedance of the cascaded amplifier is
(i) $r_{i}=R_{1} \| \beta_{1} \cdot r_{e .1}$

For finding $r_{e .1}$, we need $I_{E .1}$ which approximately equals $I_{C .1}$
Now, $\quad I_{C .1}=\beta . I_{B .1}$
Also, $\quad I_{B 1}=12 / R_{1}=12 / 0.6 \mathrm{M}$
$=20 \mu \mathrm{~A}$
$\therefore \quad I_{C 1}=100 \times 20$

$$
=2000 \mu \mathrm{~A}=2 \mathrm{~mA}
$$

$\therefore \quad I_{E .1}=2 \mathrm{~mA}$
$\therefore \quad r_{e .1}=25 / 2=12.5 \Omega$;

$$
\beta_{1} r_{e .1}^{e .1}=100 \times 12.5=1250
$$

$\therefore \quad r_{i}=R_{1} \| \beta_{1} \cdot r_{e .1}$

$$
=0.6 \mathrm{M} \| 1250 \Omega
$$

$$
\cong 1250 \Omega
$$

(ii) $A_{v 1}=\frac{r_{0.1}}{r_{e .1}} \quad$ Now, $\quad r_{0.1}=R_{2} \| r_{i .2}$

$$
\begin{aligned}
& r_{i .2}=R_{3}\left\|\beta_{2} r_{e .2}=0.6 \mathrm{M}\right\| 1250 \Omega \cong 1250 \Omega \\
& r_{0.1}=5 \mathrm{~K} \| 1250 \Omega=1000 \Omega ; r_{e .1}=12.5 \Omega \quad \therefore \quad A_{v .1}=1000 / 12.5=80
\end{aligned}
$$

(iii) $\quad A_{v 2}=\frac{r_{0.2}}{r_{e .2}}$

Now, $\quad r_{0.2}=R_{4}\left\|R_{5}=5 \mathrm{~K}\right\| 20 \mathrm{~K}=4 \mathrm{~K}, \quad I_{E .2}=2 \mathrm{~mA} \quad$ - same as $I_{E .1}$
$r_{e .2}=25 / 2=12.5 \Omega \quad \therefore \quad A_{v 2}=4000 / 12.5=320$
(iv) $\quad A_{v}=A_{v .1} \times A_{v .2}=80 \times 320=\mathbf{2 5 , 6 0 0}$
(v) $\quad G_{v}=20 \log _{10} A_{v} d B=20 \log _{10} 25,600=88 \mathrm{~dB}$.

Example 61.2. For the two-stage RC-coupled amplifier shown in Fig. 61.7 compute the following :
(i) r_{i},
(ii) $A_{v .1}$,
(iii) $A_{v .2}$,
(iv) A_{v} in decibels.

Take $\beta_{1}=\beta_{2}=100$. Neglect $V_{B E}$ and use $r_{e}=25 \mathrm{mV} / I_{E}$.
(Applied Electronics-I, Punjab Univ. 1991)
Solution. (i) The input impedance of the stage is $r_{i}=R_{1} \| \beta_{1} \cdot r_{\mathrm{e} .1}$
It should be noted that R_{6} does not come into the picture because it has been ac grounded by C_{4}. However, it would affect the dc emitter current.

$$
\begin{aligned}
I_{E .1} & =\frac{V_{C C}}{R_{6}+R_{1} / \beta_{1}}=\frac{25}{10,000+1.5 \times 10^{6} / 100}=1 \mathrm{~mA} \\
r_{e .1} & =25 / 1=25 \Omega ; \quad \beta_{1} \cdot r_{e .1}=100 \times 25=2500 \Omega \\
r_{i} & =1.5 \mathrm{M}| | 2500 \Omega \cong \mathbf{2 5 0 0} \Omega
\end{aligned}
$$

(ii) $A_{v .1}=\frac{r_{0.1}}{r_{e .1}}$

Now, $\quad r_{0.1}=R_{2} \| r_{i .2} \quad$ and $\quad r_{i .2}=R_{3} \| \beta_{2} r_{e .2}$
Now, $\quad I_{E .2}=\frac{25}{10,000+1.5 \times 10^{6} / 100}=1 \mathrm{~mA}$
$\therefore \quad r_{e .2}=25 / 1=25 \Omega ; \quad \beta_{2} \cdot r_{e .2}=2500 \Omega$
$r_{i .2}=1.5 \mathrm{M} \| 2500 \Omega$

$$
\cong 2500 \Omega
$$

$r_{0.1}=5 \mathrm{~K} \| 2.5 \mathrm{~K}$
$=1,667 \Omega$
$\therefore \quad A_{v .1}=1667 / 25=66.7$
(iii) $\quad A_{v, 2}=\frac{r_{0.2}}{r_{e .2}}$,

Now, $r_{0.2}=R_{4} \| R_{5}$

$$
=5 \mathrm{~K} \| 20 \mathrm{~K}=4 \mathrm{~K}
$$

$\therefore A_{v .2}=4000 / 25=160$

(iv) $A_{v}=A_{v .1} \times A_{v .2}$

$$
\begin{aligned}
& =66.7 \times 160=\mathbf{1 0 , 6 7 2} ; \\
G_{v} & =20 \log _{10} 10,672=\mathbf{8 0 . 3} \mathbf{~ d B}
\end{aligned}
$$

Example 61.3. Compute the overall voltage amplification for the two-stage $R C$-coupled amplifier shown in Fig. 61.8. Express the answer in decibels. Neglect $V_{B E}$ and use $r_{e}=50 \mathrm{mV} / I_{E}$. Take $\beta_{1}=\beta_{2}=100$.
(Electronics-I, Allahabad Univ. 1990)
Solution. For finding the overall gain, we will have to find each stage gain.
(i) $\quad A_{v 1}=\frac{r_{0.1}}{r_{e .1}}$, Now, $\quad r_{0.1}=R_{3} \| r_{i .2}$ and $r_{i .2}=R_{5}\left\|R_{6}\right\| \beta_{2} \cdot r_{e .2}$

Now, $\quad r_{e .2}=50 / I_{E .2}$
Fig. 61.7

Drop across

$$
R_{6}=20 \times \frac{5}{5+45}=2 \mathrm{~V}
$$

It also represents the approximate drop across R_{8}.
$\therefore \quad I_{E 2}=2 / 1 \mathrm{~K}=2 \mathrm{~mA}$
$\therefore r_{e .2}=50 / 2=25 \Omega$.
$\beta_{2} \cdot r_{e .2}=100 \times 25=2.5 \mathrm{~K}$ $r_{i .2}=45 \mathrm{~K} \| 5 \mathrm{~K}$
$\left\|2.5 \mathrm{~K}=1.6 \mathrm{~K} ; \quad \therefore \quad r_{0.1}=5 \mathrm{~K}\right\| 1.6 \mathrm{~K}=1.2 \mathrm{~K}$

$\therefore \quad r_{e .1}=50 / I_{E .1}=50 / 2=25 \Omega$
$\therefore \quad A_{v .1}=1200 / 25=48$

$$
\begin{aligned}
& A_{v .2}=\frac{r_{o .2}}{r_{c .2}} ; \quad r_{0.2}=R_{7}\left\|R_{9}=5 \mathrm{~K}\right\| 20 \mathrm{~K}=4 \mathrm{~K} \\
\therefore & A_{v .2}=4000 / 25=160 \quad \therefore \quad A_{v}=48 \times 160=7,680 ; G_{v}=20 \log _{10} 7,680=77.6 \mathrm{~dB}
\end{aligned}
$$

61.4. Advantages of RC Coupling

1. It requires no expensive or bulky components and no adjustments. Hence, it is small, light and inexpensive.
2. Its overall amplification is higher than that of the other couplings.
3. It has minimum possible nonlinear distortion because it does not use any coils or transformers which might pick up undesirable signals. Hence, there are no magnetic fields to interfere with the signal.

Fig. 61.9
4. As shown in Fig. 61.9, it has a very flat frequency versus gain curve i.e. it gives uniform voltage amplification over a wide range from a few hertz to a few megahertz because resistor values are independent of frequency changes.
As seen from Fig. 61.9, amplifier gain falls off at very low as well as very high frequencies. At low frequencies, the fall in gain (called roll-off) is due to capacitive reactance of the coupling capacitor between the two stages. The high-frequency roll-off is due to output capacitance of the first stage, input capacitance of the second stage and the stray capacitance.

The only drawback of this coupling is that due to large drop across collector load resistors, the collectors work at relatively small voltages unless higher supply voltage is used to overcome this large drop.

61.5. Impedance-coupled Two Stage Amplifier

The circuit is shown in Fig. 61.10. The coupling network consists of L, C_{2} and R_{3}. The only basic difference between this circuit and the one shown in Fig. 61.3 is that inductor L has replaced the resistor \boldsymbol{R}_{2}.

(i) AC Equivalent Circuit

The ac equivalent circuit (at midfrequency) of the cascaded amplifier has been shown in Fig. 61.11. Because of mid-frequency range, effects of all capacitances have been ignored.
(ii) Circuit Operation

The operation of this circuit is the same as that of the RC-coupled circuit described earlier.

Fig. 61.10
(iii) Voltage Gain

It is given by the product of two stage gains $A_{v}=A_{v 1} \times A_{v 2}$
\quad Now, $\quad A_{v .1}=\frac{Z_{0.1}}{r_{e .1}}$ where $Z_{0.1}=X_{L} \| r_{i .2}$ and $r_{i .2}=R_{3} \| \beta_{2} \cdot r_{e .2}$
In case, X_{L} » $r_{i .2}$, then, $Z_{0.1} \cong r_{i .2}$

Fig. 61.11

$$
\begin{array}{ll}
\therefore & A_{v .1}=\frac{r_{i .2}}{r_{e .1}} \quad \text { and } \quad A_{v .2}=\frac{r_{0.2}}{r_{e, 2}} \\
\therefore & A_{v}=A_{v .1} \times A_{v .2}
\end{array}
$$

Example 61.4. For the impedance-coupled two-stage amplifier shown in Fig. 61.12, compute the values of

> (i) $A_{v .2}$, (ii) $A_{v .1}$ at 4 kHz and (iii) A_{v} in $d B$.
> Neglect $V_{B E}$ and use $r_{e}=25 \mathrm{mV} / I_{E}$. Take $\beta_{1}=\beta_{2}=100$.
(Industrial Electronics, Calcutta Univ. 1991)
Solution. (i) $\quad A_{v, 2}=\frac{r_{0.2}}{r_{e .2}}$
Now, $\quad r_{0.2}=R_{4}\left\|R_{5}=8 \mathrm{~K}\right\| 24 \mathrm{~K}=6 \mathrm{~K}$
$I_{B 2}=12 / 1.2 \mathrm{M}=10 \mu \mathrm{~A}, I_{C .2}=\beta_{2} \cdot I_{B .2}=100 \times 10=1000 \mu \mathrm{~A}=1 \mathrm{~mA}$
$\therefore \quad I_{E 2} \cong 1 \mathrm{~mA}$
$\therefore \quad r_{e .2}=25 / 1=25 \Omega$

$$
A_{V, 2}=\frac{6,000}{25}=240
$$

(ii)

Now, $\quad r_{e .1}=25 \Omega$ - equal to $r_{e .2}$

$$
\begin{aligned}
X_{L} & =2 \pi f L \\
& =2 \pi \times 4 \times 10^{3} \times 1 \\
& =25,130 \Omega r_{i .2}=R_{3}
\end{aligned}
$$

Fig. 61.12
$\| \beta_{2} \cdot r_{e .2}=1.2 \mathrm{M}| | 2500 \Omega \cong 2500 \Omega$
Obviously, $X_{L}>r_{i .2}$ thus justifying the above approximation.
$\therefore \quad A_{v .1}=2500 / 25=100$
(iii) $\quad A_{v}=100 \times 240=24,000, G_{v}=20 \log _{10} 24,000=87.6 \mathrm{~dB}$

61.6. Advantages of Impedance Coupling

The biggest advantage of this coupling is that there is hardly any dc drop across L so that low collector supply voltages can be used.

However, it has many disadvantages :

1. It is larger, heavier and costlier than $R C$ coupling.
2. In order to prevent the magnetic field of the coupling inductor from affecting the signal, the inductor turns are wound on a closed core and are also shielded.
3. Since inductor impedance depends on frequency, the

Fig. 61.13 frequency characteristics of this coupling are not as good as those of $B C$ coupling. The flat part of the frequency versus gain curve is small (Fig. 61.13).

At low frequencies, the gain is low due to large capacitance offered by the coupling capacitor just as in R_{C} coupled amplifiers. The gain increases with frequency till it levels off at the middle frequencies of the audio range.

At relatively high frequencies, gain drops of again because of the increased reactance.
Hence, impedance coupling is rarely used beyond audio range.

61.7. Transformer-coupled Two Stage Amplifier

The circuit for such a cascaded amplifier is shown in Fig. 61.14. T_{1} is the coupling transformer whereas T_{2} is the output transformer. C_{1} is the input coupling capacitor whereas C_{2}, C_{3} and C_{4} are the bypass capacitors. Resistors R_{1} and R_{2} as well as R_{4} and R_{5} form voltage divider circuits whereas R_{3} and R_{6} are the emitter-stabilizing resistors.
(i) Circuit Operation

When input signal is coupled

Fig. 61.14
through C_{1} to the base of Q_{1}, it appears in an amplified form in the primary of T_{1}. From there, it is passed on to the secondary by magnetic induction. Moreover, T_{1} provides dc isolation between the input and output circuits. The secondary of T_{1} applies the signal to the base of Q_{2} which appears in an amplified form in the primary of T_{2}.

From there, it is passed on to the secondary by magnetic induction and finally appears across the matched load R_{7}.
(ii) Voltage Gain

$$
\begin{aligned}
& A_{v .1}=\frac{r_{0.1}}{r_{e .1}} \quad \text { Now } \quad r_{0.1}=a^{2} r_{i .2} \quad \text { - where } a=N_{1} / N_{2} \text { for } T_{1} \\
& r_{i .2}=R_{4}\left\|R_{5}\right\| \beta_{2} \cdot r_{e .2}
\end{aligned}
$$

Similarly,	$A_{e .2}=\frac{r_{0.2}}{r_{e .2}}$
where	$r_{e .2}=a^{2} R_{7}$

Example 61.5. For the trans-former-coupled two-stage amplifier shown in Fig. 61.15, calculate (i) $A_{v .1}$ (ii) $A_{v .2}$ and (iii) A_{v} in $d B$.

Neglect $V_{B E}$ and use $r_{e}=50 \mathrm{mV} /$ I_{E}. Take $\beta_{1}=\beta_{2}=50$ and treat the transformers as ideal ones.

(Electronics, Indore Univ.)

Solution. Here, for each transformer $a=5$

Drop across $\mathrm{R}_{2}=9 \times 4 / 24=1.5 \mathrm{~V}$
Drop across $R_{3} \cong 1.5 \mathrm{~V} \quad$ and $\quad I_{E .1}=1.5 / 1=1.5 \mathrm{~mA}$
$r_{e .1}=50 / 1.5=33.3 \Omega$
and $\quad \begin{aligned} r_{e .2}=33.3 \Omega & \text { - same as } r_{e .1}\end{aligned}$

$$
\beta_{2} . \quad r_{e .2}^{e .2}=50 \times 33.3=1665 \Omega
$$

$$
r_{i .2}^{e .2}=R_{4}\left\|R_{5}\right\| \beta_{2} \cdot r_{e, 2}
$$

$$
=20 \mathrm{~K}\|4 \mathrm{~K}\| 1665 \Omega=1110 \Omega
$$

$$
r_{0.1}=a^{2} \cdot r_{i .2}=5^{2} \times 1110=27,750 \Omega
$$

$$
\begin{equation*}
A_{v .1}=\frac{r_{0.1}}{r_{e .1}}=\frac{27,750}{33.3}=\mathbf{8 3 0} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
A_{v .2}=\frac{r_{0.2}}{r_{e .2}}=\frac{25 \times 100}{33.3}=\mathbf{7 5 0} \tag{ii}
\end{equation*}
$$

(iii) $\quad \mathrm{A}_{\mathrm{v}}=830 \times 750=622,500 ; G_{v}=20 \log _{10} 622,500=116 \mathrm{~dB}$

61.8. Advantages of Transformer Coupling

1. The operation of a transformer-coupled system is basically more efficient because of low dc resistance of the primary connected in the collector circuit,
2. It provides a higher voltage gain,
3. It provides impedance matching between stages which is desirable for maximum power transfer. Typically, the input impedance of a transistor stage is less than its output impedance. Hence, secondary impedance of the interstage (or coupling) transformer is typically lower than the primary impedance.
This coupling is effective when the final amplifier output is fed to a low-impedance load. For example, the impedance of a typical loud-speaker varies from 4Ω to 16Ω whereas output impedance of a transistor stage is several hundred ohms. Use of an output audio transformer can avoid the bad effects of such a mismatch.

Disadvantages

1. The coupling transformer is costly and bulky particularly when operated at audio frequencies because of its heavy iron core,
2. At radio frequencies, the inductance and winding capacitance present lot of problems,
3. It has poor frequency response because the transformer is frequency sensitive. Hence, the frequency range of the transformer-coupled amplifiers is limited.
4. It tends to introduce 'hum' in the output,

61.9. Frequency Response

The characteristics of a coupling transformer are that (i) it introduces inductances in both the input and output circuits (ii) leakage inductance exists between the primary and secondary windings and (iii) both windings introduce shunting (distributed) capacitance especially at high frequencies.

A typical gain versus frequency curve for a trans-former-coupled amplifier is shown in Fig. 61.16.

Fig. 61.16

It is seen that

1. There is decrease in gain at low frequencies and
2. Also there is decrease in gain at high frequencies except for the resonant rise in gain at resonant frequency of the tuned circuit formed by inductance and winding capacitance in the circuit.
The output voltage is equal to ac collector current multiplied by the primary reactance of the coupling transformer. Since at low frequencies, primary reactance is small, the gain is less.

At high frequencies, the distributed capacitance existing between different turns of the winding acts as a bypass capacitor and so reduces the output voltage and hence the gain. The peak or exaggerated gain occurs due to resonance or tuning effect of inductance and distributed capacitance which form a tuned circuit.

Moreover, there is frequency distortion i.e. all frequencies are not amplified equally. In fact, the flat response part of the curve is small as compared to $R C$ coupling. However, transformercoupled amplifiers can be designed to have a flat frequency response curve and excellent fidelity over the entire audio frequency range.

61.10. Applications

Transformer coupling is often employed in the last stage of a multistage amplifier where concerted effort is made to maximise power transfer by perfect impedance matching.

Example 61.6. In a multistage transformer-coupled amplifier, the output impedance of the first stage is 5 K and the input impedance of the second stage is 1 K. Determine the primary and secondary inductances of the tranformer for perfect impedance matching at $f=2000 \mathrm{~Hz}$. If one turn gives an inductance of $10 \mu \mathrm{H}$, find the number of primary and secondary turns.
(Electronic Engg.-I, Osmania Univ. 1991)
Solution. It should be clearly understood that primary has to match with the output impedance of the first stage and secondary with the input of the second stage.

$$
\begin{array}{lrl}
\therefore & X_{L p} & =\text { output of } 1 \text { st stage or } 2 \pi f L_{p}=5000 \\
\therefore & L_{p} & =5000 / 2 \pi \times 2000=\mathbf{0 . 4} \mathbf{H} \\
\text { Also, } & X_{L s} & =\text { input of } 2 \text { nd stage } \\
\therefore & 2 \pi f_{L s} & =1000 ; L_{s}=1000 / 2 \pi \times 2000=\mathbf{0 . 0 8} \mathbf{H}
\end{array}
$$

Now, inductance of a coil varies as the square of its turns.

$$
\begin{aligned}
& \therefore \\
& \text { When, } N=1, \quad L=10 \mu \mathrm{H} \quad \therefore \quad \therefore \quad 10 \times 10^{-6}=k \times 12^{2} \quad \text { or } \quad k=10^{-5}
\end{aligned}
$$

For primary winding $0.4=10^{-5} N p^{2} \times 5$ or $N_{p}=\mathbf{6 3 2}$
For secondary winding, $L_{s}=k N_{s}^{2}$ or $0.08=10^{-5} N s^{2}$ or $\quad N_{s}=\mathbf{8 9}$
As seen, it is a nearly $7: 1$ step-down transformer.

61.11. Direct-coupled Two-sta ge Amplifier Using Similar Tra nsistors

These amplifiers operate without the use of frequency-sensitive components like capacitors, inductors and transformers etc. They are especially suited for amplifying
(a) ac signals with frequencies as low as a fraction of a hertz,
(b) change in dc voltages.

Fig. 61.17 shows the circuit of such an amplifier which uses two similar transistors each connected in the $C E$ mode. Both stages employ direct coupling (i) collector of Q_{1} is connected directly to the base of Q_{4} and (ii) load resistor R_{2} is connected to the collector of Q_{2}. The resistor R_{1} establishes the forward bias of Q_{1} and also indirectly that of Q_{2}.

Fig. 61.17

Any signal current at the base of Q_{1} is amplified β_{1} times and appears at the collector of Q_{1} and becomes base signal for Q_{2}. Hence, it is further amplified β_{2} times. Obviously, signal current gain of the amplifier is

$$
A_{i}=\beta_{1} \times \beta_{2}=\beta^{2}
$$

— if transistors are identical

Fig. 61.18

$$
\begin{equation*}
A_{v .1}=\frac{r_{0.1}}{r_{e .1}}=\frac{\beta_{2} \cdot r_{e .2}}{r_{e .1}} \tag{i}
\end{equation*}
$$

(i) AC Equivalent Circuit

The ac equivalent circuit is shown in Fig. 61.18

(ii) Voltage Gain

The first stage i.e. Q_{1} does not produce any voltage gain i.e. $A_{v \cdot 1}=1$ as proved below :

As seen from Fig. 61.17, $I_{E .2} \cong \beta_{2} \cdot I_{B .2}$
Also

$$
I_{B .2}=I_{C .1}=I_{E .1} \quad \therefore \quad I_{E .2}=\beta_{2} \cdot I_{E^{*} 1} \text { or } \quad \beta_{2}=\frac{I_{E .2}}{I_{E .1}}
$$

$$
\text { Also } \quad r_{e .1}=\frac{25}{I_{E .1}} \quad \text { and } \quad r_{e .2}=\frac{25}{I_{E .2}}
$$

Substituting all these values in Eq. (i) above, we get

$$
A_{v .1}=\frac{I_{E .2}}{I_{E .1}} \times \frac{25}{I_{E .2}} \times \frac{I_{E .1}}{25}=1
$$

It proves the statement made above.

$$
\text { Now, } \quad A_{v .2}=\frac{r_{0.2}}{r_{e .2}} \quad \text { and } \quad A_{\mathrm{v}}=A_{\mathrm{v} .1} \times \mathrm{A}_{\mathrm{e} .2}=A_{\mathrm{v} .2}
$$

(iii) Advantages

1. The circuit arrangement is very simple since it uses minimum number of components.
2. It is quite inexpensive.
3. It has the outstanding ability to amplify direct current (i.e. as dc amplifier) and low-frequency signals.
4. It has no coupling or by-pass capacitors to cause a drop in gain at low frequencies. As seen from Fig. 61.19, the frequency-response curve is flat upto upper cut-off frequency determined by stray wiring capacitance and internal transistor capacitances.
(iv) Disadvantages
5. It cannot amplify high-frequency signals.
6. It has poor temperature stability.

It is due to the fact that any variation in base current (due to temperature changes) in one stage is amplified in the following stage (or stages) thereby shifting the Q-point. However, stability can be improved by using emitter-sta-

Fig. 61.19 bility resistor (Fig. 61.21).
(v) Applications

Some of the applications of direct-coupled amplifiers are in

1. regulator circuits of electronic power supplies,
2. pulse amplifiers 3. differential amplifiers,
3. computer circuitry,
4. electronic instruments.

Example 61.7. For the direct-coupled amplifier of Fig. 61.20, calculate
(a) current gain,
(b) voltage gain of first stage,
(c) voltage gain of second stage,
(d) overall voltage gain in $d B$,
(e) overall power gain in $d B$,
(f) input resistance.

Neglect $V_{B E}$ and use $r_{e}=50 \mathrm{mV} / \mathrm{I}_{E}$.
Solution. (a) $A_{i}=\beta_{1} \beta_{2}=100 \times 50=\mathbf{5 0 0 0}$ (b) $A_{v .1}=1 \quad$ - Art 61.11
(c) $A_{v .2}=\frac{r_{0.2}}{r_{e .2}}$
Now, $\quad r_{e .2}=\frac{50}{I_{E .2}}$

Let us find the value of $I_{E .2}$ starting from the value of $I_{B .1}$. As seen from Fig. 61.20,
$I_{B .1}=12 / 1.2 \mathrm{M}=10 \mu \mathrm{~A}$
$I_{C .1}=\beta_{1} \cdot 1_{\beta 1}=100 \times 10$
$=1000 \mu \mathrm{~A}$
$I_{E .1}=I_{C .1}=1000 \mu \mathrm{~A}$

$$
=1 \mathrm{~mA}
$$

$\mathrm{I}_{B .2}=\mathrm{I}_{C .1}=1 \mathrm{~mA}$
$I_{C .2}=\beta_{2} . I_{C 1}=50 \times 1$
$=50 \mathrm{~mA}$
$\therefore \quad I_{E .2}=50 \mathrm{~mA}$
and $\quad r_{e .2}=50 / 50=1 \Omega$
Also, $\quad r_{e .2}=R_{2}=200 \Omega$

Fig. 61.20

$$
\therefore \quad A_{v .2}=\frac{200}{1}=\mathbf{2 0 0}
$$

(d) $A_{n}=1 \times 200=200 ; G_{v}=20 \log _{10} 200=46 \mathrm{~dB}$
(e) $A_{p}^{n}=\mathrm{A}_{v} \cdot \mathrm{~A}_{i}=200 \times 5,000=10^{6} ; G p=20 \log _{10} 106=60 \mathrm{~dB}$
(f) $r_{i}=R_{1} \| \beta_{1} \cdot r_{e, 1}$
— Fig. 61.18

$$
r_{e .1}=\frac{50}{I_{E .1}}=\frac{50}{1}=50 \Omega \therefore \quad r_{i}=1.2 \mathrm{M} \|(50 \times 100) \cong 5 \mathbf{K}
$$

Example 61.8. For the emitter-stabilized direct-coupled amplifier of Fig. 61.21, find
(i) $A_{v, l}$,
(ii) $A_{v .2}$,
(iii) A_{v} and
(iv) r_{i}.Neglect $V_{B E}$ and use $r_{e}=50 \mathrm{mV} / I_{E}$.
(Electronics-I, Mysore Univ. 1992)
Solution. As seen, emitter resis-

Fig. 61.21 tors R_{3} and R_{5} have been used to improve temperature stability. The voltage divider $R_{1}-R_{2}$ together with R_{3} determines the emitter current of Q_{1}. The resistor R_{4} has dual function (i) it acts as load resistor for Q_{1} and (ii) it establishes base bias of Q_{2}.
(i) Since unbypassed resistor R_{3} is present

$$
A_{v .1}=\frac{r_{0.1}}{r_{e .1}+R_{3}}
$$

As seen from the ac equivalent diagram of Fig. 61.22

Fig. 61.22

Now

$$
\begin{aligned}
& r_{0.1}=R_{4} \| \beta_{2} \cdot\left(r_{e .2}+\mathrm{R}_{5}\right) \\
& r_{e .2}=\frac{50}{I_{E .2}}
\end{aligned}
$$

For finding $I_{E .2}$, let us first find $I_{E .1}$
Drop across

$$
R_{2}=20 \times \frac{20}{180+20}=2 \mathrm{~V}
$$

Same is the drop across R_{3} since $V_{B E}$ has been neglected.

$$
\therefore \quad I_{E .1}=2 \mathrm{~V} / 1 \mathrm{~K}=2 \mathrm{~mA}
$$

Now,

$$
I_{E .2}=\frac{V_{C C}-I_{E .1} R_{4}}{R_{5}}=\frac{20-2 \times 8}{2}=2 \mathrm{~mA}
$$

$\therefore \quad r_{e .2}=50 / 2=25 \Omega$ and $\beta_{2}\left(r_{e .2}+R_{5}\right) \cong 200 \mathrm{~K}$

$$
r_{0.1}=8 K \| 200 K=7.7 K_{i} r_{e .1}=\frac{50}{2}=25 \Omega
$$

$$
\therefore \quad A_{v .1}=\frac{7,700}{(25+1000)}=7.5
$$

$$
\begin{equation*}
A_{v .2}=\frac{r_{0.2}}{\left(r_{e .2}+R_{5}\right)} ; r_{0.2}=R_{6}=6000 \Omega \therefore \quad A_{V .2}=\frac{6,000}{(25+2000)} \cong 3 \tag{ii}
\end{equation*}
$$

(iii) $\quad A_{v}=7.5 \times 3=22.5$
(iv) As seen from Fig. 61.22

$$
\begin{aligned}
r_{i} & =R_{1}\left\|R_{2}\right\| \beta_{1}\left(r_{e .1}+R_{3}\right)=180 \mathrm{~K}\|20 \mathrm{~K}\| 100 \mathrm{~K} \quad \text {-neglecting } r_{e .1} \\
& =15.25 \mathrm{~K}
\end{aligned}
$$

Example. 61.9. In the circuit of Fig. 61.21, find dc voltage at points marked 1, 2, 3 and 4. Neglect $V_{B E}$

If a $1-V$ dc signal at input 1 changes by 0.01 V , what would be the voltage variation at the output?

Solution. $\quad V_{1}=$ drop across $R_{2}=2 \mathbf{V}$

$$
\begin{aligned}
& V_{2} \cong V_{1}=2 \mathrm{~V} ; \quad V_{3}=V_{C C}-I_{C .1} \quad R_{3}=20-2 \times 8=\mathbf{4} \mathbf{V} \\
& V_{4} \cong V_{3}=4 \mathrm{~V} ; \quad V_{5}=V_{C C}-I_{C .2} \quad R_{6}=20-2 \times 6=8 \mathbf{V} \\
& \Delta v_{0}=A_{v} \cdot \Delta v_{i}=22.5 \times 0.01=0.225 \mathrm{~V}=\mathbf{2 2 5} \mathbf{~ m V}
\end{aligned}
$$

61.12. Direct-coupled Amplifier Using Complementary Symmetry of Two Transistors

In this case, an $N P N$ transistor is directly-coupled to its complementary i.e. a $P N P$ transistor. Fig. 61.23 shows a two-stage cascaded amplifier using two complementary transistors connected in CE configuration.

The circuit differs from that shown in Fig. 61.17 in the following three ways :

1. It uses complementary transistors rather than similar ones,
2. Instead of $V_{C C}, V_{E E}$ power battery has been used,
3. Output is taken directly from terminal of load resistor R_{2}.

Fig. 61.23

More Practical Circuit

A more practical circuit of the above type is shown in Fig. 61.24. Here, bias current of Q_{1} is determined by voltage divider $R_{1}-R_{2}$ and R_{3}. As before, R_{4} performs two functions :

1. It acts as load for Q_{1} and
2. Establishes bias voltage for Q_{2}

The emitter resistors R_{3} and R_{6}, as usual, meant to improve amplifier stability.

Fig. 61.24

(i) Circuit Operation

When a positive-going signal is applied to the base of Q_{1}, then

1. its base current increases,
2. hence, its collector current increases $\left(I_{C}=\beta I_{B}\right)$, voltage drop across \boldsymbol{R}_{4} increases,
3. consequently, voltage at the collector of Q_{1} and the base of Q_{2} becomes less positive or in other words, more negative,
4. hence, a negative-going signal is applied to the base of Q_{2}.

The negative-going signal applied to the base of Q_{2} causes,

1. an increase in its forward bias (remember, it is a $P N P$ transistor),
2. an increase in collector current 3. an increase in the voltage developed across R_{6},
3. an amplified positive going output signal at R_{6}.

Hence, it is seen that a signal applied to the input of a two-stage complementary amplifier appears at the output in an amplified form and of the same polarity.

Voltage Gain

It is the same as for the circuit of Fig. 61.17.
Example 61.10. For the complementary symmetry circuit of Fig. 61.25, find (a) A_{v} (b) V_{1}, V_{2}, V_{3}, V_{4} and V_{5}. Neglect $V_{B E}$ and assume R_{3}, R_{5} » r_{e}.

Fig. 61.25
Solution. (a) The overall voltage gain is

$$
\begin{array}{ll}
& A_{v}=\mathrm{A}_{v .1} \times A_{v .2} \cong \frac{R_{4}}{R_{3}} \times \frac{R_{6}}{R_{5}}=\frac{6}{2} \times \frac{6}{8} \\
\text { (b) } & V_{1}=V_{E E} \frac{R_{2}}{R_{1}+R_{2}}=2 \mathrm{~V} \\
\therefore & I_{E .1}=\frac{2 V}{R_{3}}=\frac{2 V}{2 K}=1 \mathrm{~mA}, \\
& \mathrm{~V}_{3}=V_{2} \cong V_{1}=\mathbf{2 V} \\
& I_{C .2} \frac{20-14}{6 \mathrm{~K}}=1 \mathrm{~mA} \\
& =\frac{20-14}{6 \mathrm{~K}}=1 \mathrm{~mA} \\
& I_{C l} \cong I_{\mathrm{E} .1}=1 \mathrm{~mA} \\
& I_{4} \cong \mathrm{~V}_{3}=14 \mathbf{~ V} ; \\
\therefore & \\
& \\
&
\end{array}
$$

$$
\begin{aligned}
\therefore V_{5} & =I_{E .2} \times R_{6} \\
& =1 \times 8=\mathbf{8} \mathbf{V}
\end{aligned}
$$

61.13. Darlington Pair

It is the name given to a pair of similar transistors so connected that emitter of one is directly joined to the base of the other as shown in Fig. 61.26 (a). Obviously, the emitter current of Q_{1} becomes the base current of Q_{2}.

Darlington pairs are commercially mounted in a single package that has only

Fig. 61.26 three leads : base, collector and emitter as shown in Fig. 61.26 (b). It often forms a double CC stage in multistage amplifiers. It is so because a Darlington connection can be considered equivalent to two cascaded emitter followers.

Main Characteristics

(i) Current Gain

It can be proved that current gain of a Darlington pair is $\left(1+\beta_{1}\right)\left(1+\beta_{2}\right)=(1+\beta)^{2} \cong \beta^{2}$ if the transistors are identical (i.e. $\beta_{1}=\beta_{2}$).

Proof

$$
\begin{aligned}
& I_{B .2}=I_{E .1}=\left(1+\beta_{1}\right) I_{B .1} \cong \beta_{1} I_{B .1} \\
& I_{\text {E. } 2} \cong \beta_{2} \cdot I_{B .2}=\beta_{1} \beta_{2} I_{B .1} \quad \therefore \quad A_{i}=\frac{I_{E .2}}{I_{B .1}}=\beta_{1} \beta_{2}=\beta^{2}
\end{aligned}
$$

It means that a Darlington pair behaves like a single transistor having a beta of β^{2}.
(ii) Input Impedance

In Fig. 61.26 (a), the input impedance seen from the base of Q_{2} is

$$
r_{i .2}=\beta_{2}\left(r_{e .2}+R_{E}\right) \cong \beta_{2} \cdot R_{E}
$$

Input impedance as seen from the base of Q_{1} is

$$
\begin{aligned}
& r_{i .1}=\beta_{1}\left(r_{e .1}+r_{i .2}\right)=\beta_{1} r_{e .1}+\beta_{1} r_{i .2}=\beta_{1} r_{e .1}+\beta_{1} \beta_{2} R_{E} \cong \beta_{1} \beta_{2} R_{E} \\
& r_{\text {in(base) }} \text { of } Q_{1}=\beta_{2} R_{E}
\end{aligned}
$$

Note. If there is a load resistance R_{L} coupled to the emitter of Q_{2}, then

$$
r_{i .1}^{L}-\beta^{2}\left(R_{E} \| R_{L}\right)=\beta^{2} \cdot r_{E}
$$

As seen, load impedance R_{E} has been transformed into $\beta^{2} R_{E}$. Obviously, a Darlington pair is capable of high input impedance. In fact, whenever a load causes a severe loss in voltage gain (loading effect), it is usual to step up load impedance via a FET stage, a single CC stage or Darlington pair when much greater impedance transformation is required.
(iii) Voltage Gain

Assuming $r_{e .1}=r_{e .2}=r_{e}$ we have

$$
A_{v} \cong \frac{R_{E}}{r_{e}+R_{E}}=\frac{1}{1+\frac{r_{e}}{R_{E}}} \cong 1
$$

-as in an emitter follower

61.14. Advantages of Darlington Pair

1. It can be readly formed from two adjacent transistors in an IC.
2. It has enormous impedance transformation capability i.e. it can transform a low-impedance load into a high impedance load. Hence, it is used in a high-gain operational amplifier which depends on very high input impedance for its operation as an integrator or summing amplifier in analogue applications.
3. It uses very few components.
4. It provides very high β-value.

61.15. Comparison Between Darlington Pair and Emitter Follower

We will refer to Fig. 9.28 and Fig. 61.26.

1. Input impedance of Darlington pair is $\beta^{2} R_{E}$ whereas that of emitter follower is βR_{E} (Art. 9.8).
2. Current gain of Darlington pair is β^{2} whereas that of emitter follower is β.
3. However, voltage gains of the two are identical.

Example. 61.11. For the Darlington pair shown in Fig. 61.27, calculate the value of 1. β, 2.input impedance,3. voltage amplification.

Assume $\beta_{1}=\beta_{2}=100$ and $R_{L}>\left(r_{e .1}+r_{e .2}\right)$.
Solution. The approximate values are as under :

1. β of Darlington pair

$$
\begin{aligned}
& =\beta_{1} \times \beta_{2} \\
& =100 \times 100=\mathbf{1 0 , 0 0 0}
\end{aligned}
$$

2. $r_{E}=R_{E} \| R_{L}$

$$
\begin{gathered}
=10 \mathrm{~K} \| 500 \Omega=475 \Omega \\
r_{\text {in(base })} \text { of } Q_{1} \cong \beta^{2} r_{E} \\
=10,000 \times 475=4.75 \mathrm{M}
\end{gathered}
$$

$r_{i}=$ input impedance of the pair
$=R_{B} \| r_{\text {in(base) }}$ of Q_{1}

$$
=1 \mathrm{M} \| 4.75 \mathrm{M}=0.826 \mathrm{M}=\mathbf{8 2 6} \mathrm{K}
$$

3. $A_{v} \cong 1$

Example 61.12. A CE amplifier stage shown in Fig. 61.28 is to drive a 100Ω load to $10 V_{p-p}$ level. An input signal of $1 V_{p-p}$ is available. Find out if the stage is overloaded or not. Also, find out if this overloading has been avoided by using a Darlington pair as a buffer between Q_{1} and the load as shwon in Fig. 61.29. Take $\beta_{1}=\beta_{2}=50$.

Solution. The approximate voltage gain of Q_{1} is given by

Fig. 61.27

Fig. 61.28

Fig. 61.29

$$
A_{v}=\frac{r_{L}}{r_{E}}=\frac{R_{C} \| R_{L}}{R_{E}}=\frac{5 \mathrm{~K} \| 100 \Omega}{500 \Omega} \cong \frac{1}{5}
$$

$\therefore \quad v_{0}=1 \times \frac{1}{5}=0.2 \mathrm{mV}$

Fig. 61.30
Obviously, due to overloading of the stage, severe attenuation has occurred, Hence, the amplifier stage cannot, by itself, drive the heavy load.

By using a Darlington pair, a 100Ω load has been transformed to

$$
\beta^{2} R_{L}=2500 \times 100=250 \mathrm{~K}
$$

Now, $r_{L}=R_{C}\left\|\beta^{2} R_{L}=5 \mathrm{~K}\right\| 250 \mathrm{~K}$

$$
\cong 5 K \quad \therefore A_{v}=\frac{5 \mathrm{~K}}{500 \Omega}=10
$$

This also represents total voltage gain because

Fig. 61.31 voltage gain of Darlington pair is one.

$$
\therefore \quad v_{0}=A_{v} \times v_{i}=10 \times 1=\mathbf{1 0} \mathbf{V p}-\mathbf{p}
$$

As seen, now the stage would be able to drive the load since the design goal of $10 V_{P-P}$ has been met.

61.16. Special Features of a Differential Amplifier

It consists of two basic CE amplifiers having their emitters directly-coupled to each other. Fig. 61.30 shows both the block diagram and the circuit diagram of such an amplifier.

As seen, it has two separate input terminals 1 and 2 and two separate output terminals 3 and 4. Voltages may be applied to either or both input terminals and output may be taken from either or both output terminals.

There are certain specific phase relationships between both input and both output terminals as discussed below.
(a) Single-ended Operation

In Fig. 61.31, input signal $v_{i .1}$ is applied to terminal 1 with terminal 2 grounded.

It is seen that an amplified and inverted output signal is obtained at terminal 3 (phase inversion of a CE amplifier) but an equally-am-

Fig. 61.32 plified and in-phase signal appears across output terminal 4 . The differential output voltage has the polarity shown in the figure.

As shown in Fig. 61.32, when input signal v_{1-2} is applied to input terminal 2 , an amplified and inverted signal appears at output terminal 4 whereas equally-amplified but in-phase signal appears at terminal 3.

In summary, we can say that input at any of the two terminals causes outputs at both terminals 3 and 4. The two output are opposite in phase but of equal amplitude.
(b) Double-ended Operation

Fig 61.33 illustrates the double ended mode of operation when two input signals of opposite phase are applied to the two input terminals.

Input signal at each input terminal causes signals to appear at both output terminals. The resultant output signals have a peak value of 2 V - twice the value for single-ended operation.

However, if two in-phase and equal signals were applied at the two input terminals, the resultant output signal at each output terminal would be zero as shown in Fig. 61.34. It means that output between the collectors would be zero.

Fig. 61.33
Fig. 61.34

If $v_{i .1}$ and $v_{i .2}$ change by exactly the same amount, even then output voltage between terminals 4 and 3 remains zero because of symmetry. Only when $v_{i .1}$ and $v_{i .2}$ differ from each other, we get an output voltage. When $v_{i .1}$ is more positive than $v_{i .2}$, the output terminal 4 is more positive than terminal 3.
(c) Inverting and Non-inverting Inputs

When positive $v_{i .1}$ acts alone, it produces a differential output voltage with terminal 4 positive with respect to terminal 3 as shown in Fig. 61.35. That is why the input terminal 1 is called noninverting input terminal. How ever, when positive $v_{i .2}$ acts alone, the output voltage is inverted i.e. terminal 3 becomes positive with respect to terminal 4 . That is why input terminal 2 is called inverting terminal.

61.17. Common Mode Input

Fig. 61.36 illustrates the common-mode input of a differential amplifier i.e. when similar or same input signal is applied to both inputs. If the two halves of the diff-amp are identical, the ac output voltage will be zero. The diff-amp is then said to the perfectly balanced.

Fig. 61.35
Fig. 61.36
The common-mode rejection ratio $(C M M R)$ is defined as

$$
C M M R=\frac{A \times v_{i . c m}}{v_{\text {o.cm }}}
$$

Suppose, $v_{\text {i.cm }}=1 \mathrm{~V}$. In a perfectly-balanced and symmetrical diff-amp, the output should be zero. But, in practice, there is always a small output signal because of non-symmetry. Suppose, $\mathrm{A}=100$ and $\mathrm{v}_{\text {no.em }}=0.01 \mathrm{~V}$. Then

$$
C M M R=\frac{100 \times 1 \mathrm{~V}}{0.01 \mathrm{~V}}=10,000=20 \log _{10} 10,000=80 \mathrm{~dB}
$$

Larger the value of CMMR (i.e. smaller the value of $v_{o . c m}$), better the diff-amp. Ideally, a common-mode input should produce zero output voltage. Hence, an ideal diff-amp has a CMMR of infinity.

Example 61.13. Calculate the approximate output voltage for the diff-amp of Fig. 61.37 which uses only a single-ended non-inverting input of $n-1=1 \mathrm{mV}$. Take $r_{e}=25 \mathrm{mV} / I_{E}$ and neglect $V_{B E}$.

Solution. $\quad I_{E} \cong V_{E E} / R_{E}=12 / 6=2 \mathrm{~mA}$

Fig. 61.37
The current is divided equally between the two transistors so that $I_{E .1}=I_{E .2}=1 \mathrm{~mA}$.
Voltage amplification of each half is approximately given by $\mathrm{A}=R_{C} / r_{e}$
Now,

$$
r_{e}=25 / 1=25 \Omega
$$

$$
\therefore \quad A=\frac{12,000}{25}=480
$$

$$
\therefore \quad v_{0}=\mathrm{A} \times v_{\mathrm{i} .1}=480 \times 1
$$

$$
=480 \mathrm{mV}
$$

The ac output signal is in phase with the input.
Example 61.14. If a differential input signal of $1 m V$ is applied to the diff-amp shown in Fig. 61.38, calculate the output voltage. Neglect $V_{B E}$ and take $r_{e}=25 \mathrm{mV} / I_{E}$.

Fig. 61.38

Solution.

Here,
$v_{i .1}-v_{i .2}=1 \mathrm{mV}$
As seen from Ex. 61.13,

$$
\mathrm{A}=480
$$

$\therefore v_{o}=\mathrm{A}\left(v_{i .1}-v_{i .2}\right)=480 \times 1=480 \mathrm{mV}$

Example 61.15. A differential input signal of 1 mV is applied to the diff-amp of Fig. 61.39 when used in single-ended output mode. Calculate the approximate value of output voltage. Neglect $V_{B E}$ and take $r_{e}=$ $25 \mathrm{mV} / I_{E}$.

Solution. Here, again 1 mV is the differential input signal i.e. $v_{i .1}-v_{i .2}=1 \mathrm{mV}$

Since single-ended mode is being used, $\mathrm{A}=480 / 2=240$

$$
\begin{aligned}
\therefore \quad v_{0} & =\mathrm{A}\left(v_{i .1}-v_{i .2}\right) \\
& =240 \times 1=240
\end{aligned}
$$

Fig. 61.39

61.18. Differential Amplifier

Fig. 61.40 shows the circuit of a differential or difference amplifier. As seen

1. it contains two $C E$ amplifiers,
2. it uses only resistors and transistors
3. it is directly-coupled (emitter-to-emitter) amplifier,
4. it can accept two inputs by means of T_{1} and ground and also T_{2} and ground,
5. it can provide two separate outputs by means of T_{3} and ground and T_{4} and ground,
6. it can provide a single output between T_{3} and T_{4} i.e. differential output.

Circuit Operation

We will consider a balanced differential amplifier in which Q_{1} and Q_{2} are identical and their associated components are matched. In that case, each amplifier stage

Fig. 61.40 produces same voltage gain. $\mathrm{A}=r_{0} / r_{e}$

In Fig. 61.40. $\quad r_{o}=R_{2} \quad$ or $\quad R_{3}$
The output voltage between terminals T_{3} and T_{4} is

$$
v_{0}\left(T_{3}-T_{4}\right)=\mathrm{A}\left(v_{i .1}-v_{i, 2}\right)
$$

where, $\quad A=$ voltage gain of each stage
Advantages

1. It uses no frequency-dependent coupling or bypassing capacitors. All that it requires is resistors and transistors both of which can be easily integrated on a chip. Hence, it is extensively used in linear $I C_{5}$.
2. It can compare any two signals and detect any difference. Thus, if two signals are fed into its inputs, identical in every respect except that one signal has been slightly distorted, then only the difference between the two signals i.e. distortion will be amplified.
3. It gives higher gain than two cascaded stages of ordinary direct coupling.
4. It provides very uniform amplification of signal from dc upto very high frequencies.
5. It provides isolation between input and output circuits.
6. It is almost a universal choice for amplifying dc.
7. It finds a wide variety of applications such as amplification, mixing, signal generation, amplitude modulation, frequency multiplication and temperature compensation etc.
Example 61.16. Calculate the single-ended and differential gain of the diff-amp shown in Fig. 61.41. Use $r_{e}=25 \mathrm{mV} / \mathrm{I}_{E}$.

Solution. The current of 1 mA from a constantcurrent source divides into two equal parts.

$$
\begin{aligned}
& I_{E .1}=I_{E .2}=1 / 2=0.5 \mathrm{~mA} \\
& r_{e .1}=r_{e .2}=\frac{25}{0.5}=50 \Omega
\end{aligned}
$$

Hence, single-ended voltage gain is

$$
A=\frac{r_{0}}{r_{e}}=\frac{R_{C}}{r_{e}}=\frac{10 K}{50 \Omega}=\mathbf{2 0 0}
$$

Fig. 61.41

Hence, each stage has a voltage gain of 200 .
If we consider differential (double-ended) gain, its value is twice i.e. $2 \times 200=400$.
Example 61.17. For the diff-amp shown in Fig. 61.41, voltage gain of each stage is 200, $v_{i .1}=30 \mathrm{mV}$ and $v_{i .2}=20 \mathrm{mV}$. Find the voltages between
(i) T_{3} and ground, (ii) T_{4} and ground,(iii) T_{3} and T_{4}.

What are the polarities of output terminals T_{3} and T_{4} ?
(Basic Electronics, Bombay Univ.)
Solution. As stated earlier in Art. 61.18.
(i) $v_{0}\left(T_{3}\right)=\mathrm{A}_{1} \times v_{i .1}=200 \times 30 \mathrm{mV}=6 \mathbf{V}$
(ii) $v_{0}\left(T_{4}\right)=\mathrm{A}_{2} \times v_{i .2}=200 \times 20 \mathrm{mV}=4 \mathrm{~V}$
(iii) $v_{0}\left(T_{3}-T_{4}\right)=A\left(v_{i .1}-v_{i .2}\right)=200(30 \times 20) \mathrm{mV}=2 \mathbf{V}$

Since $v_{i .1}>v_{i .2} ; i_{c .1} R_{2}>i_{.2} R_{3}$, hence T_{4} will be positive with respect to T_{3}.
Example 61.18. Calculate the overall voltage gain of the two-stage RC coupled amplifier shown in Fig. 61.42. Neglect $V_{B E}$ and take $\beta_{1}=\beta_{2}=100$.

Solution. We will first find gain of Q_{2} and then multiply it with that of Q_{1} to find the overall gain.

DC voltage from base to ground for $Q_{2}=$ drop across 40 K

Fig. 61.42

$$
=30 \times 40 /(40+80)=10 \mathrm{~V}
$$

Hence, $I_{E .2} \cong 10 \mathrm{~V} / 10 \mathrm{~K}=1 \mathrm{~mA}$
Assuming silicon transistor
$r_{e .2}=50 / 1 \mathrm{~mA}=50 \Omega$

Fig. 61.43
$\therefore A_{v 2}=\frac{r_{L 2}}{r_{e .2}}=\frac{10 \mathrm{~K} \| 10 \mathrm{~K}}{50}=100$

Fig. 61.44
For finding $A_{v 1}$, we must first calculate the ac load resistance r_{L} as seen by Q_{1}. It equals the parallel combination of $10 \mathrm{~K}, 80 \mathrm{~K}, 40 \mathrm{~K}$ and $\beta r_{e}=100 \times 50=5 \mathrm{~K}$ (because it forms part of the load on $\left.Q_{1}\right)^{*}$.

Fig. 61.45

$$
\begin{array}{ll}
\therefore & r_{L 1}=10 \mathrm{~K}\|80 \mathrm{~K}\| 40 \mathrm{~K} \| 5 \mathrm{~K} \cong 3 \mathrm{~K} \\
\therefore & A_{v 1}=r_{L 1} / R_{e 1}=3 \mathrm{~K} / 50 \Omega=60 \\
\therefore & \mathrm{~A}=A_{v 1} \times A_{v 2}=100 \times 60=6000
\end{array}
$$

[^15]
Tutorial Problems No. 61.1

1. For the two-stage R_{C}-coupled amplifier shown in Fig. 61.43 calculate the approximate values of
(a) voltage gain for the first stage,
(b) voltage gain for the second stage,
(c) voltage gain for the amplifier,
(d) ac input resistance of the amplifier.

Neglect $V_{B E}$ and use $r_{e}=25 \mathrm{mV} / I_{E} \quad[(a) 76.2$ (b) 256 (c) 19,500 or 85.8 dB (d) $1250 \Omega]$

Fig. 61.46
2. For the two-stage $R C$-coupled amplifier using base and emitter bias and shown in Fig. 61.44, calculate approximate values of
(i) $A_{v .1}(i i) A_{v, 2}(i i i) A_{v}(i v) r_{\mathrm{i}}$

Neglect $V_{B E}$ and use $r_{e}=25 \mathrm{mV} / I_{E} \quad[(i) 61.6$ (ii) 128 (iii) 7,900 or 78 dB (iv) $\mathbf{2 . 6 \mathrm { K }]}$
3. Fig. 61.45 shows the circuit of a two-stage impedance-coupled amplifier. Compute the approximate values of
(i) voltage gain of 1st stage,
(ii) voltage gain of the 2 nd stage ; both at $f=2 \mathrm{kHz}$,
(iii) voltage gain of the amplifier.

Neglect $V_{B E}$ and take $r_{e}=25 \mathrm{mV} / I_{E}$.
[(i) 80 (ii) 420 (iii) $\mathbf{3 3 , 6 0 0}$ or $\mathbf{9 0 . 5 d B}$]
4. For the direct-coupled amplifier shown in Fig. 61.46, calculate the approximate value of
(i) A_{i}, (ii) $A_{v .1}$, (iii) $A_{v .2}$, (iv) A_{v}, (v) A_{p} and (vi) r_{4}

Neglect $V_{B E}$ and assume $r_{e}=25 \mathrm{mV} / \mathrm{I}_{E}$. Also, $\beta_{1}=50$ and $\beta_{2}=25$.
[(i) $\mathbf{1 2 5 0}$ (ii) 1 (iii) 240 (iv) 240 (v) 300,000 or $\mathbf{5 5 ~ d B ~ (v i) ~} \mathbf{1 2 5 0} \Omega$]

OBJECTIVE TESTS - 61

1. The decibel gain of a cascaded amplifier equals the
(a) product of individual gains
(b) sum of individual gains
(c) ratio of stage gains
(d) product of voltage and current gains.
2. If two stages of a cascaded amplifier have decibel gains of 60 and 30 , then overall gain is \qquad dB.
(a) 90
(b) 1800
(c) 2
(d) 0.5
3. Cascading two amplifiers will result in
(a) reduction in overall gain and increase in overall bandwidth
(b) reduction in overall gain and reduction in overall bandwidth
(c) increase in overall gain increase in overall bandwidth
(d) increase in overall gain and reduction in overall bandwith
4. The overall bandwidth of two identical voltage amplifiers connected in cascade will
(a) remain the same as that of a single stage
(b) be worse than that of a single stage
(c) be better than that of a single stage
(d) be better if stage gain is low and worse if stage gain is high
5. $R C$ coupling is popular in low-level audio amplifiers because it
(a) has better low frequency response
(b) is inexpensive and needs no adjustments
(c) provides an output signal in phase with the input signal
(d) needs low voltage battery for collec- tor supply.
6. Frequency response characteristic at a singlestage RC coupled amplifier is shown in Fig. 61.47. The fall in gain at both ends of the characteristic is due to
(a) transistor shunt capacitances
(b) bypass and coupling capacitances of the circuit
(c) transistor shunt capacitances of the lower end and bypass and coupling capacitances at the higher end

Fig. 61.47
(d) transistor shunt capacitances at the higher end and bypass and coupling capacitances at the lower end.
7. The most desirable feature of transformer coupling is its
(a) higher voltage gain
(b) wide frequency range
(c) ability to provide impedance match- ing between stages
(d) ability to eliminate hum from the output.
8. A transformer coupled amplifier would give
(a) maximum voltage gain
(b) impedance matching
(c) maximum current gain
(d) larger bandwidth
9. In multistage amplifiers, direct coupling is especially suited for amplifying
(a) high frequency ac signals
(b) changes in dc voltages
(c) high-level voltages
(d) sinusoidal signals.
10. The outstanding characteristic of a directcoupled amplifier is its
(a) utmost economy
(b) temperature stability
(c) avoidance of frequency-sensitive components
(d) ability to amplify direct current and lowfrequency signals.
11. A signal may have frequency components which lie in the range of 0.001 Hz to 10 Hz . Which one of the following types of couplings should be chosen in a multistage amplifier designed to amplify this signal ?
(a) $R C$ coupling
(b) transformer coupling
(c) direct coupling
(d) double-tuned transformer
12. Darlington pairs are frequently used in linear ICs because they
(a) do not require any capacitors or inductors
(b) have enormous impedance transformation capability
(c) can be readily formed from two adjacent transistors
(d) resemble emitter followers.
13. When same input signal is applied to both the inputs of an ideal diff-amp, the output
(a) is zero
(b) depends on its CMMR
(c) depends on its voltage gain
(d) is determined by its symmetry.
14. The common-mode rejection ratio of an ideal diff-amp is
(a) zero
(b) infinity
(c) less than unity
(d) greater than unity.
15. One of the advantages of a Darlington pair is that it has enormous \qquad transformation capacity.
(a) voltage
(b) current
(c) impedance
(d) power
16. A Darlington pair and an emitter follower have the same
(a) input impedance
(b) current gain
(c) voltage gain
(d) power gain.
17. Which of the following mode of operation is possible with a differential amplifier ?
(a) single-ended input
(b) differential input
(c) common-mode input
(d) all of the above.
18. The gain of a Darlington amplifier pair is determined by \qquad the beta values.
(a) subtracting
(b) adding
(c) dividing
(d) multiplying
19. The amplifier in which the emitter and collector leads of one transistor are connected to the base and collector leads of a second transistor is called an \qquad amplifier.
(a) push-pull
(b) Darlington
(c) differential
(d) complementary

ANSWERS

1. (b)
2. (a) 3. (c)
3. (c)
4. (b)
5. (d)
6. (c)
7. (b)
8. (b)
9. (d) 11. (c)
10. (c) 13. (a)
11. (b)
12. (c)
13. (c)
14. (d)
15. (d)
16. (b)

CONTENTS

C H A P T E R

Leaming Objectives

> FeedbackAmplifiers
> Principle of Feedback Amplifiers
> Advantages of Negative Feedback
$>$ Gain Stability
> Decreased Distortion
> Feedback Over Several Stages
> Increased Bandwidth
$>$ Forms of Negative Feedback
> Shunt-derived Series-fed Voltage Feedback
> Current-series Feedback Amplifier
> Voltage-shunt Negative FeedbackAmplifier
> Current-shunt Negative Feedback Amplifier
> Noninverting Op-amp with Negative Feedback
> Effect of Negative Feedback on $R_{\text {in }}$ and $R_{\text {out }}$
$>R_{\text {in }}$ and $R_{\text {out }}$ of Inverting Opamp with Negative Feedback

FEEDBACK AMPLIFIER

62.1. Feed back Amplifiers

A feedback amplifier is one in which a fraction of the amplifier output is fed back to the input circuit. This partial dependence of amplifier output on its input helps to control the output. A feedback amplifier consists of two parts : an amplifier and a feedback circuit.
(i) Positive feedback

If the feedback voltage (or current) is so applied as to increase the input voltage (i.e. it is in phase with it), then it is called positive feedback. Other names for it are : regenerative or direct feedback.

Since positive feedback produces excessive distortion, it is seldom used in amplifiers. However, because it increases the power of the original signal, it is used in oscillator circuits.
(ii) Negative feedback

If the feedback voltage (or current) is so applied as to reduce the amplifier input (i.e. it is 180° out of phase with it), then it is called negative feedback. Other names for it are : degenerative or inverse feedback.

Negative feedback is frequently used in amplifier circuits.

62.2. Principle of Feedback Amplifiers

For an ordinary amplifier i.e. one without feedback, the voltage gain is given by the ratio of the output voltage V_{o} and input voltage V_{i}. As shown in the block diagram of Fig. 62.1, the input voltage V_{i} is amplified by a factor of A to the value V_{o} of the output voltage.

Fig. 62.1

$$
\therefore \quad \mathrm{A}=V_{o} / V_{i}
$$

This gain A is often called open-loop gain.
Suppose a feedback loop is added to the amplifier (Fig. 62.2). If $V_{o}{ }^{\prime}$ is the output voltage with feedback, then a fraction β^{*} of this voltage is applied to the input voltage which, therefore, becomes ($V_{i} \pm \beta V_{\mathrm{o}}{ }^{\prime}$) depending on whether the feedback voltage is in phase or antiphase with it. Assuming positive feedback, the input voltage will become $\left(V_{i}+\beta V_{o}{ }^{\prime}\right)$. When amplified A times, it becomes $A\left(V_{i}+\beta V_{o}{ }^{\prime}\right)$.

Fig. 62.2

$$
\begin{array}{lll}
\therefore & A\left(V_{i}+\beta V_{o}^{\prime}\right) & =V_{o}^{\prime} \\
\text { or } & V_{o}^{\prime}(1-\beta A) & =A V_{i} .
\end{array}
$$

The amplifier gain A^{\prime} with feedback is given by

$$
\begin{aligned}
A^{\prime} & =\frac{V_{o}^{\prime}}{V_{i}}=\frac{A}{1-\beta A} \\
\therefore \quad A^{\prime} & =\frac{A}{1-\beta A} \quad \quad \text { - positive feedback } \\
& =\frac{A}{1-(-\beta A)}=\frac{A}{1+\beta A}
\end{aligned}
$$

- negative feedback

The term ' βA ' is called feedback factor whereas β is known as feedback ratio. The expression $(1 \pm \beta A)$ is called loop gain. The amplifier gain A^{\prime} with feedback is also referred to as closedloop gain because it is the gain obtained after the feedback loop is closed. The sacrifice factor is defined as $S=A / A^{\prime}$.

[^16]
(a) Negative Feedback

The amplifier gain with negative feedback is given by $A^{\prime}=\frac{A}{(1+\beta A)}$
Obviously, $A^{\prime}<A$ because $|1+\beta A|>1$.
Suppose, $A=90$ and $\beta=1 / 10=0.1$
Then, gain without feedback is 90 and with negative feedback is

$$
A^{\prime}=\frac{A}{1+\beta A}=\frac{90}{1+0.1 \times 90}=9
$$

As seen, negative feedback reduces the amplifier gain. That is why it is called degenerative feedback. A lot of voltage gain is sacrificed due to negative feedback. When $|\beta A|$ » 1 , then

$$
A^{\prime} \cong \frac{A}{\beta A} \cong \frac{1}{\beta}
$$

It means that A^{\prime} depends only on β. But it is very stable because it is not affected by changes in temperature, device parameters, supply voltage and from the aging of circuit components etc. Since resistors can be selected very precisely with almost zero temperature-coefficient of resistance, it is possible to achieve highly precise and stable gain with negative feedback.
(b) Positive Feedback

The amplifier gain with positive feedback is given by

$$
A^{\prime}=\frac{A}{1-\beta A} \quad \text { Since }|1-\beta A|<1, A^{\prime}>A
$$

Suppose gain without feedback is 90 and $\beta=1 / 100=0.01$, then gain with positive feedback is

$$
A^{\prime}=\frac{90}{1-(0.01 \times 90)}=900
$$

Since positive feedback increases the amplifier gain. It is called regenerative feedback. If βA $=1$, then mathematically, the gain becomes infinite which simply means that there is an output without any input! However, electrically speaking, this cannot happen. What actually happens is that the amplifier becomes an oscillator which supplies its own input. In fact, two important and necessary conditions for circuit oscillation are

1. the feedback must be positive, 2. feedback factor must be unity i.e. $\beta A=+1$.

62.3. Advantages of Negative Feedback

The numerous advantages of negative feedback outweigh its only disadvantage of reduced gain.
Among the advantages are :

1. higher fidelity i.e. more linear operation,
2. highly stabilized gain,
3. increased bandwidth i.e. improved frequency response,
4. less harmonic distortion,
5. less amplitude distortion,
6. less phase distortion,
7. less frequency distortion,
8. less phase distortion,
9. reduced noise,
10. input and output impedances can be modified as desired.

Example 62.1. In the series-parallel (SP) feedback amplifier of Fig. 62.3, calculate
(a) open-loop gain of the amplifier,
(b) gain of the feedback network,
(c) closed-loop gain of the amplifier,
(d) sacrifice factor, S.
(Applied Electronics-I, Punjab Univ. 1991)
Solution. (a) Since 1 mV goes into the amplifier and 10 V comes out

$$
\therefore \quad A=\frac{10 \mathrm{~V}}{1 \mathrm{mV}}=\mathbf{1 0 , 0 0 0}
$$

(b) The feedback network is being driven by the output voltage of 10 V .
\therefore Gain of the feedback network

$$
=\frac{\text { output }}{\text { input }}=\frac{250 \mathrm{mV}}{10 \mathrm{~V}}=0.025
$$

(c) So far as the feedback amplifier is concerned, input is $(250+1)=251 \mathrm{mV}$ and final output is 10 V . Hence, gain with feedback is

$$
A^{\prime}=10 \mathrm{~V} / 251 \mathrm{~mA}=40
$$

(d) The sacrifice factor is given by

$$
S=\frac{A}{A^{\prime}}=\frac{10,000}{40}=\mathbf{2 5 0}
$$

By sacrificing so much voltage gain, we have improved

Fig. 62.3 many other amplifier quantities. (Art. 62.3)

Example 62.2. Calculate the gain of a negative feedback amplifier whose gain without feedback is 1000 and $\beta=1 / 10$. To what value should the input voltage be increased in order that the output voltage with feedback equals the output voltage without feedback?

Solution. Since $|\beta A| » 1$, the closed-loop gain is $A^{\prime} \cong \frac{1}{\beta} \cong \frac{1}{1 / 10}=\mathbf{1 0}$
The new increased input voltage is given by

$$
V_{i}^{\prime}=V_{i}(1+\beta A)=50(1+0.04 \times 100)=\mathbf{2 5 0} \mathbf{~ m V}
$$

Example 62.3. In a negative-feedback amplifier, $A=100, \beta=0.04$ and $V_{i}=50 \mathrm{mV}$. Find
(a) gain with feedback,
(b) output voltage,
(c) feedback factor,
(d) feedback voltage. (Applied Electronics, AMIEE, London)

Solution. (a) $A^{\prime}=\frac{A}{1+\beta A}=\frac{100}{1+0.04 \times 100}=\mathbf{2 0}$

$$
\begin{aligned}
& \text { (b) } V_{0}^{\prime}=A^{\prime} V_{i}=20 \times 50 \mathrm{mV}=\mathbf{1 V} \quad(\text { c) feedback factor }=\beta A=0.04 \times 100=4 \\
& \text { (d) Feedback voltage }=\beta V_{o}^{\prime}=0.04 \times 1=\mathbf{0 . 0 4 ~ V}
\end{aligned}
$$

Example 62.4. An amplifier having a gain of 500 without feedback has an overall negative feedback applied which reduces the gain to 100. Calculate the fraction of output voltage feedback. If due to ageing of components, the gain without feedback falls by 20%, calculate the percentage fall in gain without feedback.
(Applied Electronics-II, Punjab Univ. 1993)

$$
\text { Solution. } \quad A^{\prime}=\frac{A}{1+\beta A} \quad \therefore \quad 1+\beta A=\frac{A}{A^{\prime}}
$$

$$
\therefore \quad \beta=\frac{1}{A^{\prime}}-\frac{1}{A}=\frac{1}{100}-\frac{1}{500}=0.008
$$

Now, gain without feedback $=80 \%$ of $500=400$

$$
\therefore \quad \text { New } \quad A^{\prime}=\frac{400}{1+0.008 \times 400}=95.3
$$

Hence, change in the gain with feedback in the two cases $=100-95.3=4.7$
$\therefore \quad$ Percentage fall in gain with feedback is $=\frac{4.7}{100} \times 100=4.7 \%$

Example 62.5. An amplifier with negative feedback has a voltage gain of 100. It is found that without feedback an input signal of 50 mV is required to produce a given output whereas with feedback, the input signal must be 0.6 V for the same output. Calculate the value of voltage gain without feedback and feedback ratio.
(Bangalore University 2001)
Solution. $V_{\mathrm{o}}{ }^{\prime}=A V_{i}=100 \times 0.6=60 \mathrm{~V} \quad$ and $\quad V_{\mathrm{o}}=A V_{i}$
Since the output voltage with and without feedback are required to be the same,

$$
\therefore \quad 60=\mathrm{A} \times 50 \mathrm{mV}, \quad \therefore \quad A=\frac{60}{50 \mathrm{mV}}=\mathbf{1 2 0 0}
$$

The amplifier gain with feedback,
$A^{\prime}=\frac{A}{1+\beta A}$
or $\beta=\frac{A-A^{\prime}}{A A^{\prime}}=\frac{1200-100}{1200 \times 100}=\mathbf{0 . 0 0 9}$

62.4. Gain Stability

The gain of an amplifier with negative feedback is given by $A^{\prime}=\frac{A}{1+\beta A}$
Taking logs of both sides, we have $\log _{e} A^{\prime}=\log _{e} A-\log _{e}(1+\beta A)$
Differentiating both sides, we get
$\frac{d A^{\prime}}{A^{\prime}}=\frac{d A}{A}-\frac{\beta \cdot d A}{1+\beta A}=d A\left(\frac{1}{A}-\frac{\beta}{1+\beta A}\right)=\frac{1}{1+\beta A} \frac{d A}{A}=\frac{(d A / A)}{1+\beta A}$
If $\beta A » 1$, then the above expression becomes

$$
\frac{d A^{\prime}}{A^{\prime}}=\frac{1}{\beta A} \cdot \frac{d A}{A}
$$

Example 62.6. An amplifier has an open-loop gain of 400 and a feedback of 0.1. If open-loop gain changes by 20% due to temperature, find the percentage change in closed-loop gain.
(Electronics-III, Bombay 1991)
Solution. Here, $A=400, \beta=0.1, d A / A=20 \%=0.2$

$$
\text { Now, } \quad \frac{d A^{\prime}}{A^{\prime}}=\frac{1}{\beta A} \cdot \frac{d A}{A}=\frac{1}{0.1 \times 400} \times 20 \%=0.5 \%
$$

It is seen that while the amplifier gain changes by 20%, the feedback gain changes by only 0.5% i.e. an improvement of $20 / 0.5=40$ times

62.5. Decreased Distortion

Let the harmonic distortion voltage generated within the amplifier change from D to D^{\prime} when negative feedback is applied to the amplifier.

$$
\begin{equation*}
\text { Suppose } \quad D^{\prime}=x D \tag{i}
\end{equation*}
$$

The fraction of the output distortion voltage which is fedback to the input is

$$
\beta D^{\prime}=\beta \times D
$$

After amplification, it become $\beta x D_{A}$ and is antiphase with original distortion voltage D. Hence, the new distortion voltage D^{\prime} which appears in the output is

$$
\begin{equation*}
D^{\prime}=D-\beta \times D A \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get

$$
x D=D-\beta x D A \quad \text { or } \quad x=\frac{1}{1+\beta A}
$$

Substituting this value of x in Eq. (i) above, we have $D^{\prime}=\frac{D}{1+\beta A}$

It is obvious from the above equation that $D^{\prime}<D$. In fact, negative feedback reduces the amplifier distortion by the amount of loop gain i.e. by a factor of $(1+\beta A)$.

However, it should be noted that improvement in distortion is possible only when the distortion is produced by the amplifier itself, not when it is already present in the input signal.

62.6. Feed back Over Several Sta ges

Multistage amplifiers are used to achieve greater voltage or current amplification or both. In such a case, we have a choice of applying negative feedback to improve amplifier performance. Either we apply some feedback across each stage or we can put it in one loop across the whole amplifier.

A multistage amplifier is shown in Fig. 62.4. In Fig. 62.4 (a) each stage of the n-stage amplifier has a feedback applied to it. Let A and β_{1} be the open-loop gain and feedback ratio respectively of each stage and A_{1} the overall gain of the amplifier. Fig. $62.4(b)$ shows the arrangemnent where n amplifiers have been cascaded in order to get a total gain of A^{n}. Let the overall feedback factor be β_{2} and the overall gain A_{2}. The values of the two gains are given as

Fig. 62.4

$$
\begin{equation*}
A_{1}=\left(\frac{A}{1+A \beta_{1}}\right)^{n} \quad \text { and } \quad A_{1}=\frac{A^{n}}{1+A^{n} \beta_{2}} \tag{i}
\end{equation*}
$$

Differentiating the above two expressions, we get

$$
\frac{d A_{1}}{A_{1}}=\frac{n}{1+A \beta_{1}} \cdot \frac{d A}{A} \quad \text { and } \quad \frac{d A_{2}}{A_{2}}=\frac{n}{1+A^{n} \beta_{2}} \cdot \frac{d A}{A}
$$

For the two circuits to have the same overall gain, $A_{1}=A_{2}$. Hence, from Eqn. (i) above, we get $(1-1 \beta)^{n}=1+A^{n} \beta_{2}$

$$
\therefore \quad \frac{d A_{2} / A_{2}}{d A_{1} / A_{1}}=\frac{1}{(1+A \beta)^{n-1}}
$$

If $n=1$, then the denominator in the above equation becomes unity so that fractional gain variations are the same as expected. However, for $n>1$ and with $\left(1+A \beta_{1}\right)$ being a normally large quantity, the expression $d A_{2} / A_{2}$ will be less than $d A_{1} / A_{1}$. It means that the overall feedback would appear to be beneficial as far as stabilizing of the gain is concerned.

Example 62.7. An amplifier with 10% negative feedback has an open-loop gain of 50. If open-loop gain increases by 10\%, what is the percentage change in the closed-loop gain?
(Applied Electronics-I, Punjab Univ. 1991)
Solution. Let A_{1}^{\prime} and A_{2}^{\prime} be the closed-loop gains in the two cases and A_{1} and A_{2} the open-loop gains respectively.
(i) $A_{1}^{\prime}=\frac{A_{1}}{1+\beta A_{1}}=\frac{50}{1+0.1 \times 50}=8.33$
(ii) When open-loop gain changes by 10%, then $A_{2}=50+0.1 \times 50=55$

$$
\therefore \quad A_{2}{ }^{\prime}=\frac{A_{2}}{1+\beta A_{2}}=\frac{55}{1+0.1 \times 55}=8.46
$$

$\therefore \quad$ Percentage change in closed-loop gain is

$$
=\frac{A_{2}^{\prime}-A_{1}^{\prime}}{A_{1}^{\prime}} \times 100=\frac{8.46-8.33}{8.33} \times 100=1.56 \%
$$

Example 62.8. Write down formulae for (i) gain (ii) harmonic distortion of a negative feedback amplifier in terms of gain and distortion without feedback and feedback factor. If gain without feedback is $36 d B$ and harmonic distortion at the normal output level is 10%, what is (a) gain and (b) distortion when negative feedback is applied, the feedback factor being 16 dB .
(Electronic Engg. II, Warangal 1991)
Solution. For first part, please refer to Art. 62.6. Distortion ratio is defined as the ratio of the amplitude of the largest harmonic to the amplitude of the fundamental.

$$
A_{f}=A^{\prime}=\frac{A}{1+\beta A}
$$

Now, dB gain $=20 \log _{10} A \quad \therefore \quad 36=20 \log _{10} A, A=63$
dB feedback factor $=20 \log _{10} \beta A \quad 16=20 \log _{10} \beta A$ or $\quad \beta A=6.3$
(a) $A_{f}=A /(1+\beta A)=63 /(1+6.3)=\mathbf{6 . 6 3}$ or $\mathbf{1 8 . 7 2} \mathrm{dB}$
(b) $D^{\prime}=10$ per cent $/(1+6.3)=\mathbf{1 . 4}$ per cent

Example 62.9.The overall gain of a two-stage amplifier is 150. The second stage has 10% of the output voltage as negative feedback and has -150 as forward gain. Calculate (a) gain of the first stage (b) the second harmonic distortion, if the second stage introduces 5\% second harmonic without feedback. Assume that the first stage does not introduce distortion.
(Electronics-II, Madras Univ. 1992)
Solution. (a) For second stage $D_{2}^{\prime}=\frac{D_{2}}{1+\beta A_{2}}=\frac{0.05}{1+150 \times 0.1}=\mathbf{0 . 3 1 \%}$
(b) For the second stage, gain with feedback is

$$
A_{2}^{\prime}=\frac{A_{2}}{1+\beta A_{2}}=\frac{150}{1+150 \times 0.1}=9.38
$$

Now, $\quad A_{1} \times A^{\prime}{ }_{2}=150 ; \quad A_{1}=150 / 9.38=16$
Example 62.10. Determine the effective $g a-$ *in of a feedback amplifier having an amplification without feedback of $(-200-j 300)$ if the feedback circuit adds to the input signal, a p.d. which is 0.5 percent of the output p.d. and lags a quarter of a cycle behind it in phase. Explain whether the feedback in this case is positive or negative. (Applied Electronics-II, Punjab Univ. 1992)

Solution. $\quad A=-200-j 300=360 \angle-123.7^{\circ}$
The feedback voltage V_{β} is 0.5 percent of the output voltage and lags 90° behind it.

$$
\begin{array}{ll}
\therefore & V_{\beta}=\left(\frac{0.5}{100} \angle-90^{\circ}\right) V_{0} \\
\therefore & \beta=\frac{V_{\beta}}{V_{0}}=\frac{0.5}{100} \angle-90^{\circ}=-j 0.005 \\
\therefore & \beta A=(-200-j 300)(-j 0.005)=-1.5+j 1.0
\end{array}
$$

In general, the stage gain with feedback is given by

$$
A^{\prime}=\frac{A}{1-\beta A}=\frac{360 \angle-123.7^{\circ}}{1-(-1.5+j 1.0)}=\frac{360 \angle-123.7^{\circ}}{2.69 \angle-21.8^{\circ}}=134 \angle-102^{\circ}
$$

Since both the magnitude and the phase shift of the amplifier are reduced by feedback, the feedback must be negative.

Example 62.11. An amplifier has a gain of 100 and 5 per cent distortion with an input signal of 1 V . When an input signal of 1 V is applied to the amplifier, calculate
(i) output signal voltage,
(ii) distortion voltage,
(iii) output voltage

Solution. (i) Signal output voltage $V_{o s}=A V_{i}=100 \times 1=100 \mathrm{~V}$
(ii) Distortion voltage $=D V_{o}=0.05 \times 100=\mathbf{5} \mathbf{V}$
(iii) Amplifier output voltage $V_{o}=V_{o s}+D=100+5=105 \mathrm{~V}$

62.7. Increased Bandwidth

The bandwidth of an amplifier without feedback is equal to the separation between the 3 dB frequencies f_{1} and f_{2}.

$$
\therefore B W=f_{2}-f_{1}
$$

where $f_{1}=$ lower 3 dB frequency, and $f_{2}=$ upper 3 dB frequency.

If A is its gain, the gain-bandwidth product is $A \times B W$.

Now, when negative feedback is applied, the amplifier gain is reduced. Since the gain-bandwidth product has to remain the same in both cases, it is obvious that the bandwidth must increase to compensate for the decrease in gain. It can be proved that with negative feedback, the lower and upper 3 dB frequencies of an am-

Fig. 62.5 plifier become.

$$
\left(f^{\prime}\right)_{1}=\frac{f_{1}}{(1+\beta A)} \text { and }(f)_{2}=f_{2}(1+\beta A)
$$

As seen from Fig. 62.5, f_{1}^{\prime} has decreased whereas f_{2}^{\prime} has increased thereby giving a wider separation or bandwidth. Since gain-bandwidth product is the same in both cases.

$$
\therefore A \times B W=A^{\prime} \times B W^{\prime} \text { or } A\left(f_{2}-f_{1}^{\prime}\right)=A\left(f^{\prime}{ }_{2}-f^{\prime}{ }_{1}\right)
$$

Example 62.12. An $R C$-coupled amplifier has a mid-frequency gain of 200 and a frequency response from 100 Hz to 20 kHz . A negative feedback network with $\beta=0.02$ is incorporated into the amplifier circuit. Determine the new system performance.
(Electronic Circuits, Mysore Univ. 1990)
Solution.

$$
\begin{aligned}
& A^{\prime}=\frac{A}{1+\beta A}=\frac{200}{1+0.02 \times 200}=\mathbf{4 0 ~ H z} \\
& f_{1}^{\prime}=\frac{f_{1}}{1+\beta A}=\frac{100}{1+0.02 \times 200}=20 \mathrm{~Hz}
\end{aligned}
$$

$$
\begin{aligned}
f_{2}^{\prime} & =f_{0}(1+\beta A)=20(1+0.02 \times 200)=\mathbf{1 0 0} \mathbf{~ H z} \\
d W^{\prime} & =f_{2}^{\prime}-f_{1}^{\prime} \cong \mathbf{1 0 0} \mathbf{~ k H z}
\end{aligned}
$$

Incidentally, it may be proved that gain-bandwidth product remains constant in both cases.

$$
\begin{aligned}
d W & =f_{2}-f_{1} \cong 20 \mathrm{kHz} \\
A \times d W & =200 \times 20=4000 \mathrm{kHz} \\
A^{\prime} \times d W^{\prime} & =40 \times 100=4000 \mathrm{kHz}
\end{aligned}
$$

As expected, the two are equal.

62.8. Forms of Negative Feedback

The four basic arrangements for using negative feedback are shown in the block diagram of Fig. 62.6. As seen, both voltage and current can be fedback to the input either in series or in parallel. The output voltage provides input in Fig. 62.6 (a) and (b). However, the input to the feedback network is derived from the output current in Fig. 62.6 (c) and (d).

(a) Voltage-series Feedback

It is shown in Fig. 62.6 (a). It is also called shunt-derived series-fed feedback. The amplifier and feedback circuit are connected series-parallel. Here, a fraction of the output voltage is applied in series with the input voltage via the feedback. As seen, the input to the feedback network is in parallel with the output of the amplifier. Therefore, so far as V_{o} is concerned, output resistance of the amplifier is reduced by the shunting effect of the input to the feedback network. It can be proved that

$$
R_{o}^{\prime}=\frac{R_{o}}{(1+\beta A)}
$$

Similarly, V_{i} sees two circuit elements in series :
(i) the input resistance of the amplifier and
(ii) output resistance of the feedback network.

Hence, input resistance of the amplifier as a whole is increased due to feedback. It can be proved that

$$
R_{i}^{\prime}=R_{i}(1+\beta A)
$$

In fact, series feedback always increases the input impedance by a factor of $(1+\beta A)$.
(b) Voltage-shunt Feedback

It is shown in Fig. $62.6(b)$. It is also known as

Shunt Voltage shunt-derived shunt-fed feedback i.e. it is parallelparallel ($P P$) prototype. Here, a small portion of the output voltage is coupled back to the input voltage parallel (shunt).

Since the feedback network shunts both the output and input of the amplifier, it decreases both its output and input impedances by a factor of $1 /(1+\beta A)$

A shunt feedback always decreases input impedance.
(c) Current-series Feedback

It is shown in Fig. 62.6 (c). It is also known as series-derived series-fed feedback. As seen, it is a series-series $(S S)$ circuit. Here, a part of the output current is made to feedback a proportional voltage in series with the input. Since it is a series pick-up and a series feedback, both the input and output impedances of the amplifier are increased due to feedback.
(d) Current-shunt Feedback

It is shown in Fig. $62.6(d)$. It is also referred to as series-derived shunt-fed feedback. It is a parallel-series ($P S$) prototype. Here, the feedback network picks up a part of the output current and develops a feedback voltage in parallel (shunt) with the input voltage. As seen, feedback network shunts the input but is in series with the output. Hence, output resistance of the amplifier is increased whereas its input resistance is decreased by a factor of loop gain.

The effects of negative feedback on amplifier characteristics are summarized below :

Characteristics	Type of Feedback			
	Voltage series	Voltage shunt	Current series	Current shunt
Voltage gain	decreases	decreases	decreases	decreases
Bandwidth	increases	increases	increases	increases
Harmonic Distortion	decreases	decreases	decreases	decreases
Noise	decreases	decreases	decreases	decreases
Input Resistance	increases	decreases	increases	decreases
Output Resistance	decreases	decreases	increases	increases

62.9. Shunt-derived Series-fed Voltage Feedback

The basic principle of such a voltage-controlled feedback is illustrated by the block diagram of Fig. 62.7. Here, the feedback voltage is derived from the voltage divider circuit formed of R_{1} and R_{2}.

As seen, the voltage drop across R_{1} forms the feedback voltage V_{f}

$$
\therefore \quad V_{f}=V_{o} \frac{R_{1}}{R_{1}+R_{2}}=\beta V_{o}
$$

Fig. 62.7

Example 62.13. In the voltage-controlled negative feedback amplifier of Fig. 62.8, calculate (a) voltage gain without feedback (b) feedback factor (c) voltage gain with feedback. Neglect $V_{B E}$ and use $r_{e}=25 \mathrm{mV} / \mathrm{I}_{E}$.

$$
\text { Solution. (a) } \quad A=\frac{r_{L}}{r_{e}}=\frac{R_{3}}{r_{e}}
$$

$$
\text { Now, } \begin{aligned}
I_{B}= & \frac{15 \mathrm{~V}}{1.5 M}=10 \mu \mathrm{~A} \\
I_{E}=\beta I B & =100 \times 10=1 \mathrm{~mA} \\
r_{e} & =25 / 1=25 \Omega ; \\
A & =\frac{10 K}{25 \Omega}=400
\end{aligned}
$$

(b) $\beta=\frac{R_{1}}{R_{1}+R_{2}}=\frac{1.5 \times 10^{6}}{(1.5+10) \times 10^{6}}=0.13$
$\therefore \quad \beta \mathrm{A}=0.13 \times 400=\mathbf{5 2}$
(c) $A^{\prime}=\frac{A}{1+\beta A}=\frac{400}{1+52}=7.55$

62.10. Current-series Feedback Amplifier

Fig. 62.9 shows a series-derived series-fed feedback amplifier circuit. Since the emitter resistor is unbypassed, it effectively provides current-series feedback. When I_{E} passes through R_{E}, the feedback voltage drop $V_{f}=I_{E} R_{E}$ is developed which is applied in phase opposition to the input voltage V_{i}. This negative feedback reduces the output voltage V_{0}. This feedback can, however, be eliminated by either removing or bypassing the emitter resistor.

It can be proved that

$$
\beta=\frac{R_{E}}{R_{C}} \quad ; \quad A^{\prime}=\frac{R_{C}}{r_{e}+R_{E}} ; \quad A=\frac{R_{C}}{r_{e}}
$$

Fig. 62.9

Example 62.14. For the current-series feedback amplifier of Fig. 62.10, calculate
(i) voltage gain without feedback, (ii) feedback factor, (iii) voltage gain with feedback. Neglect $V_{B E}$ and use $r_{e}=25 \mathrm{mV} / I_{E}$.
(Electronics-I, Madras Univ. 1990)
Solution. (i) $\quad A=\frac{R_{C}}{r_{e}}$

$$
\begin{aligned}
\text { Now, } & I_{E} & =\frac{V_{C C}}{R_{E}+R_{B} / \beta} \\
& & =\frac{10}{1+900 / 100}=1 \mathrm{~mA} \\
\therefore & r_{e} & =25 / I_{E}=25 \Omega \\
\therefore & A & =\frac{10 K}{25 \Omega}=400
\end{aligned}
$$

(ii) $\quad \beta=\frac{R_{E}}{R_{C}}=\frac{1}{10}=0.1$
$\beta A=0.1 \times 400=40$

$$
\begin{equation*}
A^{\prime}=\frac{R_{C}}{r_{e}+R_{E}}=\frac{10,000}{20+1000}=\mathbf{9 . 7 5 6} \tag{iii}
\end{equation*}
$$

or

$$
A^{\prime}=\frac{A}{1+\beta A}=\frac{400}{1+400}=9.756
$$

62.11. Voltage-shunt Negative Feedback Amplifier

The circuit of such an amplifier is shown in Fig. 62.11. As seen, a portion of the output voltage is coupled through R_{E} in parallel with the input signal at the base. This feedback stabilizes the overall gain while decreasing both the input and output resistances. It can be proved that

Fig. 62.11 $\beta=R_{C} / R_{F}$.
62.12. Current-shunt Negative Feedback Amplifier
The two-stage amplifier employing such a feedback is shown in Fig. 62.12. The feedback circuit (consisting of C_{F} and R_{F}) samples the output current and develops a feedback voltage in parallel with the input voltage. The unbypassed emitter resistor of Q_{2} provides current sensing.

Fig. 62.12

The polarity of the feedback voltage is such that it provides the negative feedback.
Example 62.15. Calculate $A, r_{i n(s t a g e)}$ and $I_{o(s t a g e)}$ of the cascaded amplifier shown in Fig. 62.13 with and without voltage series feedback. The transistor parameters are : $h_{f e}=100, . h_{i e^{e}}=2$ K and $h_{o e}=0$.
(Applied Electronics-I, Punjab Univ. 1992)

Fig. 62.13

Solution. (i) Without Feedback.The $r_{\text {in(base) }}$ for Q_{1} is $=h_{i e^{*}}=2 \mathrm{~K}$. Same is the value for Q_{2}.
Also, $r_{\text {in(stage) }}$ or r_{i-1} for $Q_{1}=200 \mathrm{~K}\|50 \mathrm{~K}\| 2 \mathrm{~K}=1.9 \mathrm{~K}$
$r_{0.2}$ or $r_{L .2}$ for $Q_{2}=10 \mathrm{~K} \|(2.0+0.25) \mathrm{K}=1.83 \mathrm{~K}$
$r_{0.1}$ or $r_{L .1}$ for $Q_{1}=10 \mathrm{~K} \|$
$150 \mathrm{~K} / / 50 \| 2 \mathrm{~K}=1.6 \mathrm{~K}$
$\therefore \quad A_{v 1}=\frac{h_{f e .1} r_{0.1}}{h_{i e}}=\frac{h_{f e .1} r_{L .1}}{h_{i e}}$

$$
=\frac{100 \times 1.6}{2}=80
$$

$$
A_{v 2}=\frac{h_{f e .2} r_{0.2}}{h_{i e}}=\frac{h_{f e .2} r_{L 2}}{h_{i e}}=\frac{100 \times 1.83}{2}=92
$$

Overall gain, $A_{v}=A_{v 1} \cdot A_{v \cdot 2}=80 \times 92=7360$
(ii) With Feedback

The feedback factor, $\beta=\frac{R_{1}}{R_{1}+R_{2}}=\frac{0.25}{0.25+2.0}=\frac{1}{9}$

$$
\begin{aligned}
& r_{02 f}=\frac{r_{o 2}}{1+\beta A}=\frac{1.83}{1+(11 / 9) \times 7360}=2.2 \Omega \\
& r_{i .1 f}=r_{\mathrm{i}-1}(1+\beta A)=1.9 \times 819=\mathbf{1 5 5 6} \mathrm{K} \\
& A_{f}=\frac{A}{(1+\beta A)}=\frac{7360}{819}=8.9
\end{aligned}
$$

Example 62.16. In the two-stage R_{C} coupled amplifier (Fig. 62.14) using emitter feedback, find the overall gain. Neglect $V_{B E}$ and take $\beta_{1}=\beta_{2}=100$.

Solution. In this amplifier circuit, voltage gain has been stabilized to some extent with the help of 500Ω unbypassed emitter resistance. This 500Ω resistance swamps out r_{e}.

$$
\therefore \quad A_{v .2}=\frac{r_{L .2}}{r_{e}+r_{E}} \cong \frac{r_{L .2}}{r_{E}}=\frac{10 \mathrm{~K} \| 10 \mathrm{~K}}{500 \Omega}=10
$$

Now, $\quad \beta r_{E}=100 \times 500=50 \mathrm{~K}$

$$
\begin{aligned}
& r_{i-2}=80 \mathrm{~K}\|40 \mathrm{~K}\| 50 \mathrm{~K} \\
& r_{L .1}=R_{\mathrm{C} .1} \| r_{i .2} \\
= & 10 \mathrm{~K}\|80 \mathrm{~K}\| 40 \mathrm{~K} \| 50 \mathrm{~K}=6.3 \mathrm{~K} \\
\therefore & A_{v .1}=\frac{r_{L 1}}{r_{E}}=\frac{6.3 \times 10^{3}}{500}=12.6 \\
\therefore & A=10 \times 12.6=126
\end{aligned}
$$

Fig. 62.14

62.13. Noninverting Op-amp With Negative Feedback

The closed-loop noninverting op-amp circuit using negative feedback is shown in Fig. 62.15. The input signal is applied to the noninverting input terminal. The output is applied back to the input terminal through the feedback network formed by R_{i} and R_{f}

Fig. 62.15
The op-amp acts as both the difference circuit and the open-loop forward gain. The differential input to the op-amp is $\left(V_{i n}-V_{f}\right)$. This differential voltage is amplified A times and an output voltage is produced which is given by

$$
V_{\text {out }}=A_{v 1}=A\left(V_{\text {in }}-V_{f}\right) ; \quad \text { where } A \text { is the open-loop gain of the op-amp }
$$

Since, $\left(R_{i}+R_{f}\right)$ acts as voltage divider across $V_{\text {out }}$,

$$
\therefore \quad V_{f}=V_{\text {out }} \frac{R_{i}}{R_{i}+R_{f}}
$$

Now,

$$
\beta=R_{i} /\left(R_{i}+R_{f}\right) \text {, hence } V_{f}=\beta V_{\text {out }}
$$

Substituting this value in the above equation, we get

$$
V_{\text {out }} \quad=A\left(V_{\text {in }}-\beta V_{\text {out }}\right) \text { or } V_{\text {out }}(1+\beta A)=A V_{\text {in }}
$$

Hence, voltage gain A^{\prime} with negative feedback is

$$
A^{\prime}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A}{1+\beta A}=\frac{A}{1+A R_{i}\left(R_{i}+R_{f}\right)}
$$

If A is so large that 1 can be neglected as compared to βA, the above equation becomes

$$
A^{\prime}=\frac{A}{\beta A}=\frac{1}{\beta}=\frac{R_{i}+R_{f}}{R_{i}}
$$

It is seen that closed-loop gain of a noninverting op-amp is essentially independent of the open-loop gain.

Example 62.17. A certain noninverting op-amp has $R_{i}=1 K, R_{f}=99 \mathrm{~K}$ and open-loop gain A $=500,000$. Determine (i) β, (ii) loop gain, (iii) exact closed-loop gain and (iv) approximate closedloop gain if it is assumed that open-loop gain $A=\infty$.
(Power Electronics, AMIE 1991)
Solution. (i) $\beta=\frac{R_{i}}{R_{i}+R_{f}}=\frac{1}{1+99}=0.01$, (ii) loop gain $=\beta A=500,000 \times 0.01=\mathbf{5 0 0 0}$
(iii) $A^{\prime}=\frac{A}{1+\beta A}=\frac{500,000}{1+5000}=9998$
(iv) approx. $A^{\prime}=\frac{1}{\beta}=\frac{1}{0.01}=\mathbf{1 0 0}$

It is seen that the gain changes by about 0.02%.

62.14. Effect of Negative Feedback on $R_{\text {in }}$ and $R_{\text {out }}$

In the previous calculations, the input impedance of an op-amp was considered to be infinite and its output resistance as zero. We will now consider the effect of a finite input resistance and a non-zero output resistance. Since the two effects are different and their values differ by several order of magnitude, we will focus on each effect individually.
(a) $\mathbf{R}_{\text {in }}$ of Noninverting Op-amp

For this analysis, it would be assumed that a small differential voltage V_{d} exists between the two inputs of the op-amp as shown in Fig. 62.16. It, in effect, means that neither the input resistance of the op-amp is assumed to be infinite nor its input current zero.

Fig. 62.16

Now, $\quad V_{d}=V_{\text {in }}-V_{f}$ or $V_{\text {in }}=V_{d}+V_{f}=V_{d}+\beta V_{\text {out }}$
Also, $\quad V_{\text {out }}=A . V_{d}$ where A is the open-loop gain of the op-amp.
$\therefore \quad V_{\text {in }}=V_{d}+A \beta V_{\text {out }}=(1+\beta A) V_{d}=(1+\beta A) I_{\text {in }} R_{\text {in }} \quad-\left(\therefore V_{d}=I_{\text {in }} R_{\text {in }}\right)$
where $R_{\text {in }}$ is the open-loop impedance of the op-amp (i.e. without feedback)

$$
\therefore \quad R_{i n}^{\prime}=\frac{V_{i n}}{I_{i n}}=(1+\beta A) R_{i n}
$$

where $R_{\text {in }}$ is the closed-loop input resistance of the non-inverting op-amp.

It will be seen that the closed-loop input resistance of the non-inverting op-amp is much greater than the input resistance without feedback.
(b) \mathbf{R}^{\prime} out of Noninverting Op-amp

An expression for R^{\prime} out would be developed with the help Fig. 62.17. Using $K V L$, we get

$$
V_{\text {out }}=A V_{d}-I_{\text {out }} R_{\text {out }}
$$

Fig. 62.17

Now, $\quad V_{d}=\left(V_{i n}-V_{f}\right)$ and neglecting $I_{\text {out }} R_{\text {out }}$ as compared to $A V_{d}$, we have

$$
V_{\text {out }}=A\left(V_{\text {in }}-V_{f}\right)=A\left(V_{\text {in }}-\beta V_{\text {out }}\right)
$$

or $\quad A V_{\text {in }}=(1+\beta A) V_{\text {out }}$
If, with negative feedback, output resistance of the noninverting op-amp is $R_{\text {out }}^{\prime}$, then $V_{\text {out }}=$ $I_{\text {out }} \cdot R_{\text {out }}^{\prime}$.

Substituting this value in the above equation, we get

$$
A V_{\text {in }}=(1+\beta A) I_{\text {out }} R_{\text {out }}^{\prime} \quad \text { or } \quad \frac{A V_{\text {in }}}{I_{\text {out }}}=(1+\beta A) R_{\text {out }}^{\prime}
$$

The term on the left is the internal output resistance $R_{\text {out }}$ of the op-amp because without feedback, $A V_{\text {in }}=V_{\text {out }}$.
or $\quad R_{\text {out }}=(1+\beta A) R_{\text {out }}^{\prime}$ or $R_{\text {out }}^{\prime}=\frac{R_{\text {out }}}{(1+\beta A)}$
Obviously, output resistance $R_{\text {out }}^{\prime}$ with negative feedback is much less than without feedback (i.e. $R_{o u t}$).

Example 62.18. (a) Calculate the input and output resistance of the op-amp shown in Fig. 62.18. The data sheet gives : $R_{\text {in }}=2 M, R_{\text {out }}=75 \Omega$. and $A=250,000$ (b) Also, calculate the closed-loop voltage gain with negative feedback.
(Industrial Electronics, Mysore, Univ. 1992) Solution. (a) The feedback ratio β is given by

$$
\begin{aligned}
\beta= & \frac{R_{i}}{R_{i}+R_{f}}=\frac{10}{10+200}=\frac{10}{210}=0.048 \\
R_{i n}^{\prime}=(1+\beta A) R_{i n}=(1 & +250,000 \times 0.048) \times 2 \\
& =24,002 \mathbf{M}
\end{aligned}
$$

Fig. 62.18
$R_{\text {out }}^{\prime}=\frac{R_{\text {out }}}{1+\beta A}=\frac{75}{1+12000}=0.006 \Omega$
(b) $A^{\prime}=1 / \beta=1 / 0.048=20.8$
62.15. $\mathrm{R}_{\text {in }}$ and $\mathrm{R}_{\text {out }}$ of Inverting Op-amp with Negative Feedback

Fig. 62.19

The input resistance $R_{\text {in }}$ of the inverting op-amp with negative feedback will be found by using Fig. 62.19. Since both the input signal and the negative feedback are applied to the inverting terminal. Miller's theorem will be applied to this configuration. According to this theorem, the effective input resistance of an amplifier with a feedback resistor from output to input is given by

$$
R_{\text {in }(\text { Miller })}=\frac{R_{f}}{1+A} \quad \text { and } \quad R_{\text {out (Miller })}=R_{f}\left(\frac{A}{1+A}\right)
$$

The Miller equivalent of the inverting op-amp is shown in Fig. 62.20 (a)

Fig. 62.20
As shown in Fig. 62.20 (b), the Miller input resistance appears in parallel with the internal resistance of the op-amp (without feedback) and R_{i} appears in series with this

$$
\therefore \quad R_{i n}^{\prime}=R_{i}+\frac{R_{f}}{(1+A)} \| R_{i n}
$$

Typically, the term $R_{f}(1+A)$ is much less than $R_{i n}$ of an open-loop op-amp. Hence,

$$
\frac{R_{f}}{(1+A)} \| R_{i n} \cong \frac{R_{f}}{1+A}
$$

Moreover, A » 1 , hence, $\quad \therefore \quad R_{i n}^{\prime} \cong R_{i}+\frac{R_{f}}{A}$
Now, R_{i} appears in series with $\left(R_{f} / A\right)$ and if $R_{i} » R_{f} / A$, we have, $R_{i n}^{\prime} \cong R_{i}$
As seen from Fig. $62.20(b)$, Miller output resistance appears in parallel with $R_{\text {out }}$ of the opamp.

$$
\therefore \quad R_{\text {out }}^{\prime}=R_{f}\left(\frac{A}{1+A}\right) \| R_{\text {out }}
$$

Normally, $A » 1$ and $R_{f} » R_{\text {out }}$ so that $R_{\text {out }}^{\prime}$ simplifies to $R^{\prime}{ }_{\text {out }}=R_{\text {out }}$
Example 62.19. For the inverting op-amp circuit of Fig. 62.21, find (a) input and output resistances and (b) the closed-loop gain. The op-amp has the following parameters :
$A=100,000, \quad R_{\text {in }}=5 \mathrm{M} \Omega$. and $R_{\text {out }}=50 \Omega$
Solution. (a) $R^{\prime}{ }_{i n} \cong R_{i} \cong 2 \mathrm{k} \Omega$

$$
R_{\text {out }}^{\prime} \cong R_{\text {out }}=\mathbf{5 0} \Omega
$$

(b) $A^{\prime}=\frac{R_{f}}{R_{i}}=-\frac{100}{2}=\mathbf{5 0}$

The negative sign indicates the inherent sign inversion in the process.

Fig. 62.21

Tutorial Problems No. 62.1

1. For the series-parallel feedback amplifier shown in Fig. 62.22. Calculate
(i) open-loop gain,
(ii) gain of feedback loop,
(iii) closed-loop gain,
(iv) sacrifice factor.

$$
\left[(i) 10^{6}(\text { ii }) 0.025 \text { (iii) } 40\right. \text { (iv) 25.000] }
$$

2. A negative-feedback amplifier has the following parameters:

Fig. 62.22
$A=200, \beta=0.02$ and $V_{i}=5 \mathrm{mV}$
Compute the following :
(i) gain with feedback,
(ii) output voltage,
(iii) feedback factor,
(iv) feedback voltage.
[(i) 40 (ii) 200 mV (iii) $\mathbf{4}$ (iv) $\mathbf{8} \mathbf{~ m V}$]
3. An amplifier has an open-loop gain of 500 and a feedback of 0.1 . If open-loop gain changes by 25% due to temperature etc., find the percentage change in closed-loop gain.
[0.5\%]
4. An $R C$-coupled amplifier has a mid-frequency gain of 400 and lower and upper 3-dB frequencies of 100 Hz and 10 kHz . A negative feedback network with $\beta=0.01$ is incorporated into the amplifier circuit. Calculate
(i) gain with feedback,
(ii) new bandwidth.
[(i) 80 (ii) 75 kHz$]$
5. In an amplifier with constant signal input of 1 volt, the output falls from 50 to 25 V when feedback is applied. Calculate the fraction of the output which is fed back. If, due to ageing, the amplifier gain fell to 40 , find the percentage reduction in stage gain
(i) without feedback
(ii) with the feedback connection.
[$\mathbf{0 . 0 2 \%}$ (i) $\mathbf{2 0 \%}$ (ii) $\mathbf{1 1 . 1 2 \%]}$
6. An amplifier has a gain of 1000 without feedback. Calculate the gain when 0.9 per cent of negative feedback is applied. If, due to ageing, gain without feedback falls to 800 , calculate the percentage reduction in gain (a) without feedback and (b) with feedback. Comment on the significance of the results of (a) and (b) and state two other advantages of negative feedback.
[100 (a) $\mathbf{2 0 \%}$ (b) $\mathbf{2 . 4 4 \%}$](City \& Guilds, London)
7. The open-loop gain of an amplifier is $1000 \angle 70^{\circ}$ and the feedback factor is $-0.02 \angle 20^{\circ}$. Calculate the amplifier gain with negative feedback. What is the limiting value of β to make the amplifier unstable ?
[$49.9 \angle-17.1^{\circ} ; 0.001 \angle-70^{\circ}$] (I.E.E. London)
8. When voltage feedback is applied to an amplifier of gain 100 , the overall stage gain falls to 50 . Calculate the fraction of the output voltage fed back. If this fraction is maintained, calculate the value of the amplifier gain required if the overall stage gain is to be 75 .
[0.01; 300]
(City \& Guilds, London)
9. An amplifier having a gain of 100 has 9 per cent voltage negative feedback applied in series with the input signal. Calculate the overall stage with feedback.
If a supply voltage variation causes the gain with feedback to all by 10 percent, determine the percentage change in gain with feedback.
[10; 52.6\%] (City \& Guilds, London)
10. If the gain of an amplifier without feedback is (800 $-j 100)$ and the feedback network of $\beta=$ $-1 /(40-j 20)$ modifies the output voltage to $V_{f b}$ which is combined in series with the signal voltage, determine the gain of the ampplifier with feeback.
[38.3 - j18.3] (I.E.R.E., London)

Fig. 62.23
11. Give three reasons for using negative feedback.

In Fig. 62.23, the box represents an amplifier of gain -1000 , input impedance $500 \mathrm{k} \Omega$ and negligible output impedance.
Calculate the voltage gain and input impedance of the amplifier with feedback.
[-9.9, 50.5 M Ω]
12. An amplifier with negative feedback has a voltage gain of 100 . It is found that without feedback an input signal of 50 mV is required to produce a given output; whereas with feedback, the input signal must be 0.6 V for the same output. Calculate the value of voltage gain without feedback and feedback ratio.
(Electronics Engg., Bangalore Univ. 2001)

OBJECTIVE TESTS - 62

1. The advantage of using negative feedback in an amplifier is that its gain can be made practically independent of
(a) temperature changes
(b) age of components
(c) frequency
(d) all of the above.
2. Feedback in an amplifier always helps to
(a) control its output
(b) increase its gain
(c) decrease its input impedance
(d) stabilize its gain.
3. The only drawback of using negative feedback in amplifiers is that it involves
(a) gain sacrifice
(b) gain stability
(c) temperature sensitivity
(d) frequency dependence.
4. Closed-loop gain of a feedback amplifier is the gain obtained when
(a) its output terminals are closed
(b) negative feedback is applied
(c) feedback loop is closed
(d) feedback factor exceeds unity.
5. A large sacrifice factor in a negative feedback amplifiers leads to
(a) inferior performance
(b) increased output impedance
(c) characteristics impossible to achieve without feedback
(d) precise control over output.
6. Negative feedback in an amplifier
(a) lowers its lower 3 dB frequency
(b) raises its upper 3 dB frequency
(c) increases its bandwidth
(d) all of the above.
7. Regarding negative feedback in amplifiers which statement is WRONG ?
(a) it widens the separation between 3 dB frequencies
(b) it increases the gain-bandwidth product
(c) it improves gain stability
(d) it reduces distortion.
8. Negative feedback reduces distortion in an amplifier only when it
(a) comes as part of input signal
(b) is part of its output
(c) is generated within the amplifier
(d) exceeds a certain safe level.
9. An amplifier with no feedback has a gain-bandwidth product of 4 MHz . Its closed-loop gain is
10. The new band-width is
(a) 100 kHz
(b) 160 MHz
(c) 10 MHz
(d) 20 kHz .
11. The shunt-derived series-fed feedback in an amplifier
(a) increases its output impedance
(b) decreases its output impedance
(c) increases its input impedance
(d) both (b) and (c).
12. A feedback amplifier has a closed gain of -200 . It should not vary more than 50% despite 25% variation in amplifier gain A without feedback. The value of A is
(a) 800
(b) -800
(c) 1000
(d) -1000
13. The gain of a negative feedback amplifier is 40 dB . If the attenuation of the feedback path is 50 dB , then the gain of the amplifier without feedback is
(a) 78.92
(b) 146.32
(c) 215.51
(d) 317.23
14. In a common emitter amplifier, the unbypassed emitter resistor provides
(a) voltage-shunt feedback
(b) current-series feedback
(c) negative-voltage feedback
(d) positive-current feedback

Fig. 62.24
14. The $O P-A M P$ circuit shown in Fig. 62.24 has an input impedance of $\mathrm{M} \Omega$ and an open-loop gain of 10^{5}. The output impedance seen by the source V_{s} is
(a) $10^{11} \Omega$
(b) $10^{10} \Omega$
(c) $10 \mathrm{k} \Omega$
(d) $1 \mathrm{k} \Omega$
15. An $O P-A M P$ with an open-loop gain of 10,000 , $R_{i n}=2 \mathrm{~K} \Omega$ and $R_{0}=500 \Omega$ is used in the noninverting configuration shown in Fig. 62.25. The output resistance R_{0}^{\prime} is

Fig. 62.25
(a) 250.5Ω
(b) 21Ω
(c) 2Ω
(d) 0.998Ω
16. The feedback used in the circuit shown in Fig. 62.25 can be classified as
(a) shunt-series feedback
(b) shunt-shunt feedback
(c) series-shunt feedback
(d) series-series feedback

Fig. 62.25

ANSWERS

1. (d)
2. (a)
3. (a)
4. (c)
5. (c)
6. (d)
7. (b)
8. (c)
9. (a)
10. (d)
11. (d)
12. (b)
13. (b)
14. (b)
15. (d)
16. (b)

C H A P T E R

 63
Learning Objectives

> What is a FET
$>$ Junction FET (JFET)
$>$ Static Characteristics of a JFET
$>$ JFET Drain Characteristic with $V_{G S}=0$
$>$ Characteristics with External Bias
$>$ Transfer Characteristic
$>$ Small Signal JFET Parameters
$>$ D.C. Baising of a JFET
$>$ DC Load Line
$>$ Common Source JFET Amplifier
> JFET Amplifier Gains
> Advantages of FETs
$>$ MOSFET or IGFET—DE MOSFET
$>$ Schematic Symbols for a DEMOSFET
$>$ Static Characteristics of a DEMOSFET
$>$ Enhancement-only N Channel MOSFET
> Biasing E-only MOSFETFET Amplifiers
$>$ FET Applications
$>$ MOSFET Handling

FIELD

 EFFECT TRANSISTORS

Field Effect Transistor as an Electronic Flute

63.1. What is a FET ?

The acronym 'FET' stands for field effect transistor. It is a three-terminal unipolar solid-state device in which current is controlled by an electric field as is done in vacuum tubes. Broadly speaking, there are two types of FETs :
(a) junction field effect transistor (JFET)
(b) metal-oxide semiconductor FET (MOSFET)

It is also called insulated-gate FET (IGFET). It may be further subdivided into :
(i) depletion-enhancement MOSFET i.e. DEMOSFET
(ii) enhancement-only MOSFET i.e. E-only MOSFET

Both of these can be either P-channel or N-channel devices.
The FET family tree is shown below :

63.2. Junction FET (JFET)

(a) Basic Construction

As shown in Fig. 63.1, it can be fabricated with either an N-channel or P-channel though N channel is generally preferred. For fabricating an N-channel JFET, first a narrow bar of N-type
semiconductor material is taken and then two P-type junctions are diffused on opposite sides of its middle part [Fig. 63.1 (a)]. These junctions form two $P-N$ diodes or gates and the area between these gates is called channel. The two P-regions are internally connected and a single lead is brought out which is called gate terminal. Ohmic contacts (direct electrical connections) are made at the two ends of the bar-one lead is called source terminal S and the other drain terminal D. When potential difference is established between drain and source, current flows along the length of the 'bar' through the channel located between the two P-regions. The current
 consists of only majority carriers which, in the present case, are electrons. P-channel JFET is
similar in construction except that it uses P-type bar and two N-type junctions. The majority carriers are holes which flow through the channel located between the two N -regions or gates.

Following FET notation is worth remembering:

1. Source. It is the terminal through which majority carriers enter the bar. Since carriers come from it, it is called the source.
2. Drain. It is the terminal through which majority carriers leave the bar i.e. they are drained out from this terminal. The drain-tosource voltage $V_{D S}$ drives the drain current I_{D}.
3. Gate. These are two internally-connected heavily-doped impurity regions which form two $P-N$ junctions. The gate-source voltage $V_{G S}$ reversebiases the gates.
4. Channel. It is the space between two gates through which

Fig. 63.1 majority carriers pass from source-to-drain when $V_{D S}$ is applied.
Schematic symbols for N-channel and P-channel JFET are shown in Fig. 63.1 (c). It must be kept in mind that gate arrow always points to N-type material.
(b) Theory of Operation

While discussing the theory of operation of a JFET, it should be kept in mind that

1. Gates are always reversed-biased. Hence, gate current I_{G} is practically zero.
2. The source terminal is always connected to that end of the drain supply which provides the necessary charge carriers. In an N-channel JFET, source terminal S is connected to the negative end of the drain voltage supply (for obtaining electrons). In a P-channel JFET, S is connected to the positive end of the drain voltage supply for getting holes which flow through the channel.
Let us now consider an N -channel JFET and discuss its working when either $V_{G S}$ or $V_{D S}$ or both are changed.
(i) When $\mathbf{V}_{G S}=0$ and $\mathbf{V}_{D S}=0$

In this case, drain current $I_{D}=0$, because $V_{D S}=0$. The depletion regions around the $P-N$ junctions are of equal thickness and symmetrical as shown in Fig. 63.2 (a)
(ii) When $\mathbf{V}_{G S}=\mathbf{0}$ and $\mathbf{V}_{D S}$ is increased from zero

For this purpose, the JFET is connected to the $V_{D D}$ supply as shown in Fig. 63.2 (b). The electrons (which are the majority carriers) flow from S to D whereas conventional drain current I_{D} flows through the channel from D to S. Now, the gate-to-channel bias at any point along the channel is $=\mid$ $V_{D S}\left|+\left|V_{G S}\right|\right.$ i.e. the numerical sum of the two voltages. In the present case, external bias $V_{G S}=0$.

Hence gate-channel reverse bias is provided by $V_{D S}$ alone. Since the value of $V_{D S}$ keeps decreasing (due to progressive drop along the channel) as we go from D to S, the gate-channel bias also decreases accordingly. It has maximum value in the drain-gate region and minimum in the source-gate region. Hence, depletion regions penetrate more deeply into the channel in the drain-gate region than in the source-gate region. This explains why the depletion regions become wedge shaped when $V_{D S}$ is applied [Fig. 63.2 (b)]

Fig. 63.2
As $V_{D S}$ is gradually increased from zero, I_{D} increases proportionally as per Ohm's law. It is found that for small initial values of $V_{D S}$, the N-type channel material acts like a resistor of constant value. It is so because $V_{D S}$ being small, the depletion regions are not large enough to have any significant effect on channel cross-section and, hence, its resistance. Consequently, I_{D} increases linearly as $V_{D S}$ is increased from zero onwards (Fig. 63.5).

The ohmic relationship between $V_{D S}$ and I_{D} continues till $V_{D S}$ reaches a certain critical value called pinch-off voltage $V_{P O}$ when drain current becomes constant at its maximum value called $I_{D S S}$. The $S S$ in $I_{D S S}$ indicates that the gate is shorted to source to make sure that $V_{G S}=0$. This current is also known as zero-gate-voltage drain current. It is seen from Fig. 63.2(c) that under pinch-off conditions, separation between the depletion regions near the drain end reaches a minimum value W. It should, however, be carefully noted that pinch-off does not mean 'current-off '. In fact, I_{D} is maximum at pinch-off.

When $V_{D S}$ is increased beyond $V_{P O}, I_{D}$ remains constant at its maximum value $I_{D S S}$ upto a certain point. It is due to the fact that further increase in $V_{D S}$ (beyond $V_{P O}$) causes more of the channel on the source end to reach the minimum width as shown in Fig. 63.2 (d). It means that the channel width does not increase, instead its length L increases. As more of the channel reaches the minimum width, the resistance of the channel increases at the same rate at which $V_{D S}$ increases. In other words, increase in $V_{D S}$ is neutralized by increases in $R_{D S}$. Consquently, $I_{D}=\left(V_{D S} / R_{D S}\right)$ remains unchanged even though $V_{D S}$ is increased. Ultimately, a certain value of $V_{D S}\left(\right.$ called $\left.V_{D S O}\right)$ is reached when JFET breaks down and I_{D} increases to an excessive value as seen from drain characteristic of Fig. 63.5.
(iii) When $\mathbf{V}_{\mathrm{DS}}=\mathbf{0}$ and \mathbf{V}_{GS} is decreased from zero

In this case, as $V_{G S}$ is made more and more negative, the gate reverse bias increases which increases the thickness of the depletion regions. As negative value of $V_{G S}$ is increased, a stage comes when the two depletion regions touch each other as shown in Fig. 63.3. In this condition, the channel is said to be cut-off. This value of $V_{G S}$ which cuts off the channel and

Fig. 63.3
hence the drain current is called $V_{G S(\text { off })}$.*
It may be noted that $V_{G S(\text { off })}=-V_{P O}$ or $\left|V_{P O}\right|=\left|V_{G S(\text { off })}\right|$. As seen from Fig. 63.6 because $V_{P O}=$ $4 \mathrm{~V}, V_{G S(o f f)}=-4 \mathrm{~V}$. Obviously, their absolute values are equal.
(iv) When $\mathrm{V}_{G S}$ is negative and $\mathrm{V}_{D S}$ is increased

As seen from Fig. 63.6, as $V_{G S}$ is made more and more negative, values of V_{P} as well as breakdown voltage are decreased.

Fig. 63.4
Summary. Summarizing the above, we have that
(i) keeping $V_{G S}$ at a fixed value (either zero or negative), as $V_{D S}$ is increased, I_{D} initially increases till channel pinch-off when it becomes almost constant and finally increases excessively when JFET breaks down under high value of $V_{D S}$. As $V_{G S}$ is kept fixed at progressively higher negative values, the values of V_{P} as well as breakdown voltage decrease.
(ii) keeping $V_{D S}$ at a fixed value, as $V_{G S}$ is made more and more negative, I_{D} decreases till it is reduced to zero for a certain value of $V_{G S}$ called $V_{G S(o f f) \text {. }}$

Since gate voltage controls the drain current, JFET is called a voltage-controlled device. A P channel JFET operates exactly in the same manner as an N-channel JFET except that current carriers are holes and polarities of both $V_{D D}$ and $V_{G S}$ are reversed.

Since only one type of majority carrier (either electrons or holes) is used in JFETs, they are called unipolar devices unlike bipolar junction transistors (BJTs) which use both electrons and holes as carriers.

63.3. Static Characteristics of a JFET

We will consider the following two characteristics:
(i) drain characteristic

It gives relation between I_{D} and $V_{D S}$ for different values of $V_{G S}$ (which is called running variable).
(ii) transfer characteristic

It gives relation between I_{D} and $V_{G S}$ for different values of $V_{D S}$.
We will analyse these characteristics for an N-channel JFET connected in the common-source mode as shown in Fig. 63.4. We will first consider the drain characteristic when $V_{G S}=0$ and then when $V_{G S}$ has any negative value upto $V_{G S(o f f)}$.

63.4. JFET Drain Characteristic With $\mathrm{V}_{\mathrm{GS}}=0$

Such a characteristic is shown in Fig. 63.5 and has been already discussed briefly in Art. 63.2. It can be subdivided into following four regions :

1. Ohmic Region OA

This part of the characteristic is linear indicating that for low values of $V_{D S}$, current varies directly with voltage following Ohm's Law. It means that JFET behaves like an ordinary resistor till

[^17]point A (called knee) is reached.

2. Curve AB

In this region, I_{D} increases at reverse square-law rate upto point B which is called pinch-off point. This progressive decrease in the rate of increase of I_{D} is caused by the square law increase in the depletion region at each gate upto point B where the two regions are closest without touching each other. The drain-to-source voltage $V_{D S}$ corresponding to point B is called pinch-off voltage $V p^{*}$. But it is essential to remember that "pinch-off" does not mean "cur-rent-off".

3. Pinch-off Region BC

It is also known as saturation region or 'amplified' region. Here, JFET operates as a constant-current device because I_{D} is relatively independent of $V_{D S}$. It is due to the fact that as $V_{D S}$ increases, channel resistance also increases proportionally thereby keeping I_{D} practically constant at $I_{D S S}$. It should also be noted that the reverse bias required by the gate-channel junction is supplied entirely by the voltage drop across the channel resistance due to flow of $I_{D S S}$ and none by external bias because $V_{G S}=0$.

Drain current in this region is given by Shockley's equation

$$
I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}=I_{D S S}\left(I-\frac{V_{G S}}{V_{G S(\text { off })}}\right)^{2}
$$

It is the normal operating region of the JFET when used as an amplifier.

4. Breakdown Region

If $V_{D S}$ is increased beyond its value corresponding to point C (called avalanche breakdown voltage), JFET enters the breakdown region where I_{D} increases to an excessive value. This happens because the reverse-biased gate-channel $P-N$ junction undergoes avalanche breakdown when small changes in $V_{D S}$ produce very large changes in I_{D}.

It is interesting to note that increasing values of $V_{D S}$ make a JFET behave first as a resistor (ohmic region), then as a constant-current source (pinch-off region) and finally, as a constant-voltage source (breakdown region).

63.5. J FTC C harac teristics With Extemal Bias

Fig. 63.6 shows a family of I_{D} versus $V_{D S}$ curves for different values of $V_{G S}$. It is seen that as the negative gate bias voltage is increased
(i) pinch off voltage is reached at a lower value of I_{D} than when $V_{G S}=0$.
(ii) value of $V_{D S}$ for breakdown is decreased.

When an external bias of, say, -1 V is applied between the gate and source, the $P-N$ junctions become reverse-biased even when $I_{D}=0$. Hence,

Fig. 63.6

[^18]the depletion regions are already formed which penetrate the channel to a certain extent.

The amount of reverse bias required to be produced by I_{D} would, obviously, be decreased by 1 V . In other words, a smaller voltage drop along the channel (i.e. smaller than when $V_{G S}=0$) will increase the depletion regions to the point where they will pinch off the current. Consequently, V_{P} is reached at a lower I_{D} value than when $V_{G S}=0$.

Now, let us see why value of $V_{D S}$ for breakdown is decreased as the negative gate bias voltage is increased. It is simply due to the fact that $V_{G S}$ keeps adding to the reverse bias at the junction produced by current flow.

It is seen that with $V_{G S}=0, I_{D}$ saturates at $I_{D S S}$ and the characteristic shows $V_{P}=4 \mathrm{~V}$. When an external bias of $-1 V$ is applied, gate-channel junctions still require -4 V to achieve pinch-off (remember, $V_{G S}=-V_{P}$). It means that a 3 V drop is now required along the channel instead of the previous 4 V . Obviously, this 3 V drop can be achieved with a lower value of I_{D}. Similarly, when $V_{G S}$ is -2 V and -3 V , pinch-off is achieved with 2 V and 1 V respectively along the channel.

These drops of 2 V and 1 V are obtained with further-

This micrograph shows a mock field effect transistor with a layer of crystalline strontium titanate instead of silicon dioxide as the gate electrode. reduced values of I_{D}. As seen, when $V_{G S}=-4 \mathrm{~V}$ (i.e. numerically equal to V_{P}), no channel drop is required. Hence, I_{D} is zero.

In general, $V_{P}=V_{D S(P)}-V_{G S}$ where $V_{D S(P)}$ is the pinch-off value of $V_{D S}$ for a given value of $V_{G S}$.

63.6. Transfer Characteristic

It is a plot of I_{D} versus $V_{G S}$ for a constant value of $V_{D S}$ and is shown in Fig. 63.7. It is similar to the transconductance characteristics of a vacuum tube or a transistor. It is seen that when $V_{G S}=0, I_{D}=$ $I_{D S S}$ and when $I_{D}=0, V_{G S}=V_{P}$. The transfer characteristic approximately follows the equation.

$$
I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}=I_{D S S}\left(1-\frac{V_{G S}}{V_{G S(\text { off })}}\right)^{2}
$$

The above equation can be written as

$$
V_{G S}=V_{G S(\text { off })}\left(1-\sqrt{\frac{I_{D}}{I_{D S S}}}\right)
$$

This characteristic can be obtained from the drain characteristics by reading off $V_{G S}$ and $I_{D S S}$ values for different values of $V_{D S}$.

63.7. Small Signal J FTT Parameters

The various parameters of a JFET can be obtained from its two characteristics. The main parameters of a JFET when connected in common-source mode are as under :

(i) AC Drain Resistance, r_{d}

It is the ac resistance between drain and source terminals when JFET is operating in the pinch-off region. It is given by

$$
r_{d}=\frac{\text { change in } V_{D S}}{\text { changein } I_{D}}-V_{G S} \text { constant or } \left.r_{d}=\frac{\Delta V_{D S}}{\Delta I_{D}} \right\rvert\, V_{G S}
$$

Fig. 63.7

An alternative name is dynamic drain resistance. It is given by the slope of the drain characteristic in the pinch-off region. It is sometimes written as $r_{d s}$ emphasizing the fact that it is the resistance from drain to source. Since r_{d} is usually the output resistance of a JFET, it may also be expressed as an output admittance $y_{o s}$. Obviously, $y_{o s}=1 / r_{d}$. It has a very high value.
(ii) Transconductance, g_{m}

It is simply the slope of transfer characteristic.

$$
g_{m}=\frac{\text { change in } I_{D}}{\text { change in } V_{G S}}-V_{D S} \text { constant or } \left.g_{m}=\frac{\Delta I_{D}}{\Delta V_{G S}} \right\rvert\, V_{D S}
$$

Its unit is Siemens (S) earlier called $m h o$. It is also called forward transconductance $\left(g_{f s}\right)$ or forward transadmittance $y_{f s}$.

The transconductance measured at $I_{D S S}$ is written as $g_{m o}$.
Mathematical Expression for \mathbf{g}_{m}
The Shockley equation* is $I_{D}=I_{D S S}$
Differentiating both sides, we have $\quad\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}$

$$
\frac{d I_{D}}{d I_{D S S}}=2 I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)\left(-\frac{1}{V_{P}}\right) \quad \text { or } \quad g_{m}=-\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S}}{V_{P}}\right)
$$

When $\quad V_{G S}=0, \quad g_{m}=g_{m o} \quad \therefore \quad g_{m o}=-\frac{2 I_{D S S}}{V_{P}}$
From the above two equations, we have

$$
g_{m}=g_{m o}\left(1-\frac{V_{D S S}}{V_{P}}\right)=g_{m o} \sqrt{\frac{I_{D}}{I_{D S S}}}
$$

(iii) Amplification Factor, μ

It is given by $\mu=\frac{\text { change in } V_{D S}}{\text { change in } V_{G S}}-I_{D}$ constant or $\left.\mu=\frac{\Delta V_{D S}}{\Delta V_{G S}} \right\rvert\, I_{D}$
It can be proved from above that

$$
\mu=g_{m} \times r_{d}=g_{f s} \times r_{d}
$$

(iv) DC Drain Resistance, $R_{D S}$

It is also called the static or ohmic resistance of the channel. It is given by

$$
R_{D S}=\frac{V_{D S}}{I_{D}}
$$

Example 63.1. For an N-channel JFET, $I_{D S S}=8.7 \mathrm{~mA}, V_{P}=-3 \mathrm{~V}, V_{G S}=-1 \mathrm{~V}$. Find the values of (i) $I_{D}\left(\right.$ ii) $g_{m o}$ (iii) g_{m} (Basic Electronics, Bombay Univ., 1985)

Solution. (i) $I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}=8.7\left(1-\frac{-1 \mathrm{~V}}{-3 \mathrm{~V}}\right)^{2}=3.87 \mathrm{~A}$
(ii)

$$
g_{m o}=\frac{-2 I_{D S S}}{V_{P}} \quad=\quad \frac{-2 \times 8.7}{-3}=5.8 \mathrm{mS}
$$

(iii)

$$
g_{m}=g_{m o}\left(1-\frac{V_{G S}}{V_{P}}\right) \quad=5.8\left(1-\frac{-1}{-3}\right)=3.87 \mathrm{mS}
$$

[^19]
63.8. DC Biasing of a J FET

A JFET may be biased by using either

1. a separate power source $V_{G G}$ as shown in Fig. 63.8 (a),
2. some form of self-bias as shown in Fig. 63.8 (b),
3. source bias as in Fig. 63.8 (c),
4. voltage divider bias as in Fig. 63.8 (d).

Fig. 63.8
The circuit of Fig. $63.8(b)$ is called self-bias circuit because the $V_{G S}$ bias is obtained from the flow of JFET's own drawn current I_{D} through R_{S}.
$\therefore \quad V_{S}=I_{D} R_{S}$ and $V_{G S}=-I_{D} R_{S}$
The gate is kept at this much negative potential with respect to the ground.
The addition of R_{G} in Fig. $63.8(b)$, does not upset this dc bias for the simple reason that no gate current flows through it (the gate leakage current is almost zero). Hence, gate is essentially at dc ground. Without R_{G}, gate would be kept 'floating' which could collect charge and ultimately cutoff the JFET.

The resistance R_{G} additionally serves the purpose of avoiding short-circuiting of the ac input voltage, v_{in}. Moreover, in case leakage current is not totally negligible, R_{G} would provide it an escape route. Otherwise, the leakage current would build up static charge (voltage) at the gate which could change the bias or even destroy the JFET.

Fig. 63.8 (c) shows the source bias circuit which employs a self-bias resistor R_{S} to obtain $V_{G S}$. Here, $V_{S S}=I_{D} R_{S}+V_{G S}$ or $V_{G S}=V_{S S}-I_{D} R_{S}$.

Fig. $63.8(d)$ shows the familiar voltage divider bias. In this case, $V_{2}=V_{G S}+I_{D} R_{S}$ or $V_{G S}=V_{2}-I_{D} R_{S}$

$$
\text { Since, } \quad V_{2}=V_{D D} \frac{R_{2}}{R_{1}+R_{2}}
$$

$$
\therefore V_{G S}=V_{D D} \frac{R_{2}}{R_{1}+R_{2}}-I_{D} R_{S}
$$

Example 63.2 . Find the values of $V_{D S}$ and $V_{G S}$ in Fig. 63.9 for $I_{D}=4 \mathrm{~mA}$.
(Applied Electronics-I, Punjab Univ. 1992)

$$
\begin{array}{lrl}
\text { Solution. } \quad V_{\mathrm{S}} & =\quad I_{D} R_{\mathrm{S}}=4 \times 10^{-3} \times 500=2.0 \mathrm{~V} \\
V_{D} & =\mathrm{V}_{D D}-I_{D} R_{L}=12-4 \times 1.5=6 \mathrm{~V} \\
\therefore \\
\text { Since } \quad V_{G S}=0, V_{G S} & =\mathrm{V}_{G_{D}}-\mathrm{V}_{S}=0-2.0-2=-2.0 \mathrm{~V}
\end{array}
$$

63.9. DC Load Line

The dc load line for a JFET can be easily drawn by remembering the following two points :
(i) At $I_{D}=0, \mathrm{~V}_{D S}=\mathrm{V}_{D D}$
(ii) At $V_{D S}=0, \quad I_{D}=\frac{V_{D D}}{R_{L}}$

2372

The Q-point is generally situated at the middle point of the load line (for class-A operation) so that

$$
\begin{aligned}
& V_{D S Q}=\frac{1}{2} V_{D D} \\
& \text { Also, } \quad I_{D S Q}=\frac{\frac{1}{2} V_{D D}}{R_{s}+R_{L}}
\end{aligned}
$$

Example 63.3. For the circuit of Fig. 63.11, find the values of $V_{D S Q}$ and $V_{G S}$ assuming centrally-located Q-point and
zero gate current.

Fig. 63.10

Fig. 63.9

Solution. Since $1_{G}=0$, dc circuit is not disturbed.

$$
V_{D S}=\frac{1}{2} V_{D D}=\frac{12}{2}=6 \mathbf{V}
$$

The balance of 6 V drops across series combination of R_{L} and R_{S}.

$$
\begin{aligned}
& \therefore \quad I_{D}=\frac{6}{150+450} 10 \mathrm{~mA} \\
& \therefore \quad V_{G S} \quad=-I_{D} R_{S}=-10 \times 150=1.5 \mathrm{~V}
\end{aligned}
$$

It is obvious that gate is 1.5 V negative with respect to the source which is the common point. Incidentally, in common source connection of a JFET, gate is the most negative point in the entire circuit.

Example 63.4. What values of R_{S} and R_{L} are required for the circuit of Fig. 63.12 for setting up an approximate mid-point bias? The JFET parameters are : $I_{D S S}=16 \mathrm{~mA}, V_{G S(o f f)}=-8 \mathrm{~V}$ and $V_{D}=$ $\frac{1}{2} V_{D D}$.

Solution. It should be noted that as found from Shockley's equation, for mid-point bias, $I_{D} \cong I_{D S S} / 2$ and $V_{G S}=V_{G S(\text { off })} / 4$. Hence, for mid-point bias

$$
\begin{aligned}
& I_{D} \cong 16 / 2=8 \mathrm{~mA} \\
& V_{G S}=\frac{1}{4} V_{G S(o f f)}=-\frac{8}{4}=-2 \mathrm{~V}
\end{aligned}
$$

Fig. 63.11

Fig. 63.12

$$
\begin{aligned}
R_{S} & =\frac{V_{G S}}{I_{D}}=\frac{2 \mathrm{~V}}{8 m \mathrm{~A}}=250 \Omega \\
\text { Now, } \quad V_{D}=V_{D D}-I_{D} R_{L}, R_{L} & =\frac{V_{D D}-V_{D}}{I_{D}}=\frac{16-8}{8 \mathrm{~mA}} \\
& =1000 \Omega
\end{aligned}
$$

Example 63.5. Determine the quiescent value of $V_{G S} I_{D}$ and $V_{D S}$ for the JFET circuit of Fig. 63.13 given that $I_{D S S}=10 \mathrm{~mA}, R_{S}=5 \mathrm{~K}$ and $V_{P}=-5 \mathrm{~V}$.
(Electronic Devices \& Circuits, Pune Univ. 1991)

Fig. 63.13

Solution. Since $\quad I_{S} \cong I_{D}, V_{G S}=-I_{D} R_{S}=-5000 I_{D}$
Now, $\quad I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}=10 \times 10^{-3}\left(1-\frac{V_{G S}}{-5}\right)^{2}$

$$
=10 \times 10^{-3}\left(1+0.2 V_{G S}\right)^{2}
$$

Substituting this value in the above equation, we get

$$
V_{G S}=-5000\left(10 \times 10^{-3}\right)\left(1+0.2 V_{G S}\right)
$$

Expanding and rearranging the above, we have

$$
2 V_{G S}{ }^{2}+21 V_{G S}+50=0
$$

$$
\therefore \quad V_{G S} \quad=-3.65 \mathrm{~V} \quad \text { or } \quad-6.85 \mathrm{~V}
$$

Rejecting the higher value because it is more than V_{P}, we have $V_{G S}=-3.65 \mathrm{~V}$

$$
\begin{aligned}
& \therefore \quad-3.65=-5000 I_{D} \quad \therefore \quad I_{D}=0.73 \mathrm{~mA} \\
& V_{D} \quad=V_{D D}-I_{D} R_{L}=12-0.73 \times 2=1.54 \mathrm{~V} \\
& V_{S} \quad I_{D} R_{S}=0.73 \times 5=3.65 \mathrm{~V} \quad \therefore \quad V_{D S} \quad=V_{D}-V_{S}=10.54-3.65=6.89 \mathrm{~V}
\end{aligned}
$$

63.10. Common Source J FETAmplifier

A simple circuit for such an amplifier is shown in Fig. 63.14. Here, R_{G} serves the purpose of providing leakage path to the gate current, R_{S} develops gate bias, C_{3} provides ac ground to the input signal and R_{L} acts as drain load.

Working

When negative-going signal is applied to the input

1. gate bias is increased,
2. depletion regions are widened,
3. channel resistance is increased,
4. I_{D} is decreased,
5. drop across R_{L} is decreased,
6. Consequently, a positive-going signal becomes available at the output through C_{2} in Fig. 63.14.
When positive-going signal is applied at the input, then in a similar way, a negative-going signal be-

Fig. 63.14 comes available at the output.

It is seen that there is a phase inversion between the input signal at the gate and output signal at the drain.

63.11. J FETAmplifier Gains

We will now find the expressions for voltage gain, input resistance, output resistance and input capacitance of a JFET amplifier when connected in different modes. The different capacitance due to $P-N$ junction and channel are shown in Fig. 63.15
(a) Common Source JFET Amplifier (Fig. 63.16)
(i) Input Resistance $\mathbf{r}_{\mathrm{i}}^{\prime}=\mathbf{R}_{\mathrm{G}} \| \mathbf{R}_{\mathrm{GS}}$

In an ideal JFET, $R_{G S}$ is infinite because $I_{G}=0$. In an actual device, however, $R_{G S}$ is not actually infinite but extremely high (100 M or so) as compared to R_{G}. Hence, $r_{\mathrm{i}}{ }^{\prime} \cong R_{G}$.

Fig. 63.15
(ii) Output Resistance $r_{o}{ }^{\prime}=r_{d} \| R_{L} \cong R_{L}$ — if $r_{d} » R_{L}$
(iii) Voltage Gain

$$
\begin{aligned}
& \quad V_{o}=i_{d} \times r_{d} \| R_{L} \quad \text { Now, } \quad i_{d}=-g_{m} \times \mathrm{v}_{\mathrm{i}} \\
& \therefore \quad V_{o}
\end{aligned}=-g_{m} V_{i} \times\left(r_{d} \| R_{L}\right) .
$$

(a)

(b)

Fig. 63.16
(iv) Input Capacitance

The input capacitance is $\mathrm{C}_{g s}$ which is increased because of Miller effect.
$\therefore \quad C_{i}=C_{g s}+\left(1-\mathrm{A}_{v}\right) \mathrm{C}_{g d}$.
It is the large value of $C_{g d}$ which is harmful in high-frequency work.
Example 63.6. The common-source amplifier of Fig. 63.16 (a) has $r_{d}=100 \mathrm{~K}, R_{L}=10 \mathrm{~K}, g_{m}=$ $3000 \mu S, C_{g s}=3 p F$ and $C_{g d}=1.5 \mathrm{pF}$. Compute its (i) A_{v} and (ii) C_{i}.

Solution. (i) $\quad \mathrm{A}_{v}=\frac{-g_{m} r_{d} R_{L}}{r_{d}+R_{L}}$

$$
=\frac{-3000 \times 10^{-6} \times 100 \times 10^{3} \times 10 \times 10^{3}}{\left(100 \times 10^{3}\right)+\left(10 \times 10^{3}\right)}=-27.3
$$

(ii) $\mathrm{C}_{i}=C_{g s}+\left(1-\mathrm{A}_{v}\right) C_{g d}$

$$
=3+(1+27.3) \times 1.5=45.5 \mathrm{pF} \text {. }
$$

Fig. 63.17

Example 63.7. The JFET shown in Fig. 63.17 has $g_{m}=3000 \mu S$ and $r_{d s}=100 \mathrm{~K}$. Calculate the voltage gain of the CS amplifier circuit.
(Basic Electronics, Bombay Univ. 1992)
Solution. As seen from Art. 63.11 (a)

$$
A_{v}=-g_{m} \times\left(r_{d s} \| r_{L}\right)
$$

$$
\text { Now, } r_{L}=10 \mathrm{~K} \| 10 \mathrm{~K}=\mathbf{5} \mathrm{K}
$$

$$
\therefore \quad r_{d s}\left\|r_{L}=100 \mathrm{~K}\right\| 5 \mathrm{~K} \quad=4.76 \mathrm{~K}
$$

$$
\therefore \quad A_{v}=-3000 \times 10^{-6} \times 4.76=\mathbf{- 1 4 . 3}
$$

(b) Common Drain JFET Amplifier

In the common-drain circuit (also called source follower), the load resistance is in series with the source terminal. There is no drain resistor as shown in Fig. 63.18 (a). The input signal is applied to the gate through the capacitor C_{1} and the output is taken out from the source via C_{2}. The commondrain equivalent circuit is shown in Fig. $63.18(b)$. The current generator is $g_{m}, V_{g s}$ where $v_{g s}=\left(V_{i}-\right.$ V_{o}). Moreover, $R_{G}=R_{1} \| R_{2}$.
(i) Voltage Gain

$$
\begin{array}{ll}
& V_{\mathrm{o}}=i_{d} \times\left(r_{d} \| R_{L}\right) . \\
\therefore \quad & \text { Since, } \quad i_{d}=g_{m} V_{\mathrm{gs}}=g_{m}\left(V_{\mathrm{i}}-V_{\mathrm{o}}\right), \\
& =g_{\mathrm{m}}\left(V_{\mathrm{i}}-V_{\mathrm{o}}\right) \times\left(r_{d} \| R_{L}\right)=g_{m}\left(V_{\mathrm{i}}-V_{\mathrm{o}}\right), \frac{r_{d} R_{L}}{r_{d}+R_{L}}
\end{array}
$$

(a)

(b)

Fig. 63.18
Solving for V_{o}, we get

$$
\begin{align*}
& V_{\mathrm{o}}=g_{m} V_{i} \frac{r_{d} R_{L}}{r_{d}+R_{L}+g_{m} r_{d} R_{L}} \tag{i}\\
\therefore \quad & A_{v}=\frac{V_{o}}{V_{i}}=\frac{r_{d} R_{L}}{r_{d}+R_{L}+g_{m} r_{d} R_{L}} \cong 1
\end{align*}
$$

$$
- \text { if } g_{m} r_{d} R_{L} »\left(r_{d}+R_{L}\right)
$$

(ii) Input Resistance

$$
r_{\text {in }}^{\prime}=R_{1} \| R_{2} \quad-\text { for circuit of Fig. } 63.18 \text { (a) only. }
$$

(iii) Output Resistance

In Eq. (i) above, $g_{m} V_{i}$ is a current which is directly proportional to V_{i} and $\left(r_{d} R_{L}\right) /\left(r_{d}+R_{L}+g_{m}\right.$ $\left.r_{d} R_{L}\right)=$ a resistance, r_{o}.

$$
\begin{aligned}
\therefore \quad r_{o}^{\prime} & =\frac{r_{d} R_{L}}{r_{d}+R_{L}\left(1+g_{m} r_{d} R_{L}\right)}=\frac{\left[r_{d} /\left(1+g_{m} r_{d}\right)\right] \times R_{L}}{\left[r_{d} /\left(1+g_{m} r_{d}\right)\right]+R_{L}} \\
& =\frac{r_{d}}{1+g_{m} r_{d}}\left\|R_{L} \cong \frac{1}{g_{m}}\right\| R_{L}
\end{aligned}
$$

The above result helps us to draw the modified equivalent circuit of Fig. 63.19 for the common-drain amplifier.

Fig. 63.19

Example 63.8. The common-drain circuit of Fig. 63.18 (a) uses a JFET having the following parameters :

$$
r_{d}=100 \mathrm{~K}, \quad g_{m}=3000 \mu \mathrm{~S} \text { and } \quad R_{L}=10 \mathrm{~K}
$$

Calculate (i) A_{v} and (ii) r_{o}^{\prime}.
Solution. (i) $A_{v}=g_{m} \frac{r_{d} R_{L}}{r_{d}+R_{L}+g_{m} r_{d} R_{L}}$

$$
=3000 \times 10^{-6} \frac{100 \times 10^{3} \times 10 \times 10^{3}}{\left(100 \times 10^{3}\right)+\left(10 \times 10^{3}\right)+\left(3000 \times 10^{-6} \times 100 \times 10^{3} \times 10 \times 10^{3}\right)}=0.965
$$

(ii) $\quad r_{0}^{\prime}=R_{L} \| \frac{r_{d}}{1+g_{m} r_{d}}$

$$
\text { Now, } \frac{r_{d}}{1+g_{m} r_{d}}=\frac{100 \times 10^{3}}{1+3000 \times 10^{-6} \times 100 \times 10^{3}}=330 \Omega, \begin{gathered}
r_{o}^{\prime}=10 \mathrm{~K} \| 330 \Omega \cong 320 \Omega
\end{gathered}
$$

(c) Common Gate JFET Amplifier

In this amplifier configuration, input signal is applied to the source terminal and output is taken from the drain as shown in Fig. $63.20(a)$. The gate is grounded, R_{L} is in series with drain and a source resistance R_{S} is included in the circuit across which V_{i} is dropped.

The ac equivalent circuit is shown in Fig. 63.20 (b) where current source is connected between the drain and the source

Fig. 63.20
terminals as always. However, since source and drain are the input and output terminals respectively, $\left(g_{m} V_{g s}\right)$ appears between the input and the output.
(i) Voltage Gain

$$
\begin{aligned}
V_{o} & =i_{d} \times\left(r_{d} \| R_{L}\right)=i_{d} \cdot \frac{r_{d} R_{L}}{r_{d}+R_{L}} \\
\text { Now, } \quad i_{d} & =g_{m} V_{\mathrm{gs}}=g_{m} V_{\mathrm{i}} \quad \therefore \quad V_{\mathrm{o}}=g_{m} V_{i} \cdot \frac{r_{d} R_{L}}{r_{d}+R_{L}} \quad \therefore \quad A_{\mathrm{v}}=\frac{V_{o}}{V_{i}}=\frac{g_{m} r_{d} R_{L}}{r_{d}+R_{L}}
\end{aligned}
$$

It is the same as the gain for a common source amplifier except that it is a positive quantity. It means that V_{o} and V_{i} are in phase as shown in Fig. 63.20 (a).
(ii) Input Resistance

If we ignore current through R_{S}, then as seen from the ac equivalent circuit of Fig. 63.20 (b), input current is i_{d}. Now, $i_{d}=g_{m} V_{g s}=g_{m} V_{i}$.

The input resistance of the device i.e. JFET is $r_{i}=\frac{V_{i}}{i_{d}}=\frac{V_{i}}{g_{m} V_{i}}=\frac{1}{g_{m}}$

The input resistance of the circuit is $r_{i}^{\prime}=r_{i}\left\|R_{S}=\frac{1}{g_{m}}\right\| R_{s}$
Actually speaking, r_{d} and R_{L} are also involved in r_{i}^{\prime} but their effect is negligible.
(iii) Output Resistance

As seen from the equivalent circuit of Fig. $63.20(b), r_{o}{ }^{\prime}=r_{d} \| R_{L}$.
Here, only input capacitance of importance is $C_{g s}$. Hence, this circuit has low input capacitance as compared to common-source circuit where input capacitance is increased due to Miller effect.*

63.12. Advantages of FETs

FETs combine the many advantages of both BJTs and vacuum tubes. Some of their main advantages are :

1. high input impedance,
2. small size,
3. ruggedness,
4. long life,
5. high frequency response,
6. low noise,
7. negative temperature coefficient, hence better thermal stability,
8. high power gain,
9. a high immunity to radiations,
10. no offset voltage when used as a switch (or chopper), 11. square law characteristics.

The only disadvantages are :

1. small gain-bandwidth product,
2. greater susceptibility to damage in handling them.

Tutorial Problems No. 63.1

1. For a particular N-channel JFET, $V_{G S(o f f)}=-4 \mathrm{~V}$. What would be the value of I_{D} when $V_{G S}=-6 \mathrm{~V}$?
2. For the N-channel JFET shown in Fig. 63.21, $V_{P}=8 \mathrm{~V}$ and $I_{D S S}=12 \mathrm{~mA}$. What would be the value of $(i) \mathrm{V}_{\mathrm{DS}}$ at which pinch-off begins and (ii) value of I_{D} when $V_{D S}$ is above pinch-off but below the breakdown voltage?
[$3 \mathrm{~V} ; \mathbf{1 2} \mathrm{mA}$]
3. The data sheet of a JFET indicates that it has $I_{D S S}=15 \mathrm{~mA}$ and $V_{G S(o f f)}=-5 \mathrm{~V}$. Calculate the value of I_{D} when $V_{G S}$ is (i) $0,(i i)-1 \mathrm{~V}$ and $(i i i)-4 \mathrm{~V}$.
[(i) $\mathbf{1 5} \mathbf{~ m A}$ (ii) 9.6 mA (iii) $\mathbf{0 . 6} \mathbf{~ m A]}$
4. The data sheet of a JEET gives the following information.
$I_{D S S}=20 \mathrm{~mA}, V_{G S(\text { off })}=-8 \mathrm{~V}$. and $g_{m o}=4000 \mu \mathrm{~S}$.
Calculate the value of I_{D} and g_{m} for $V_{G S}=-4 \mathrm{~V}$.
[$5 \mathrm{~mA} ; 2000 \mu \mathrm{~S}$]
5. For a JEET, $I_{D S S} 5 \mathrm{~mA}$ and $g_{m o}$ $=4000 \mu \mathrm{~S}$.
Calculate (i) $V_{G S(o f f)}$ and (ii) gm at mid-point bias.

$$
[(i)-\mathbf{5} \mathbf{V}(i i) \mathbf{3 0 0 0} \boldsymbol{\mu} \mathbf{S}]
$$

Fig. 63.22

Fig. 63.21
6. At a certain point on the transfer characteristics of an N-channel JFET, following values are read : $I_{D S S}=8.4 \mathrm{~mA}$, $V_{G S}=-0.5 \mathrm{~V}$ and $V_{P}=-3.0 \mathrm{~V}$.
Calculate (i) $g_{m o}$ and (ii) g_{m} at the point.
[(i) $\mathbf{5 6 0 0} \mu \mathrm{S}$ (ii) $\mathbf{4 6 7 0} \mu \mathrm{S}]$
7. For the JFET circuit of Fig. 63.22, $I_{D S S}=9 \mathrm{~mA}$ and $V_{P}=-3 \mathrm{~V}$. Find the value of R_{L} for setting the value of $V_{D S}$ at 7 V .
(Hint : $V_{G S}=-2 \mathrm{~V}$ as $I_{G}=0$)

[^20]
63.13. MOSFET or IGFET

It could be further subdivided as follows :
(i) Depletion-enhancement MOSFET or DE MOSFET

This MOSFET is so called because it can be operated in both depletion mode and enhancement mode by changing the polarity of $V_{G S}$. When negative gate-to-source voltage is applied, the N-channel DE MOSFET operates in the depletion mode. However, with positive gate voltage, it operates in the enhancement mode. Since a channel exists between drain and source, I_{D} flows even when $V_{G S}=0$. That is why DE MOSFET is known as normally-ON MOSFET.

(ii) Enhancement-only MOSFET

As its name indicates, this MOSFET operates only in the enhancement mode and has no depletion mode. It works with large positive gate voltages only. It differs in construction from the DE MOSFET in that structurally there exists no channel between the drain and source. Hence, it does not conduct when
 $V_{G S}=0$. That is why it is called normally-OFF MOSFET.

In a DE MOSFET, I_{D} flows even when $V_{G S}=0$. It operates in depletion mode with negative values of $V_{G S}$. As $V_{G S}$ is made more negative, I_{D} decreases till it ceases when $V_{G S}=V_{G S(o f f)}$. It works in enhancement mode when $V_{G S}$ is positive as shown in Fig. $63.24(b)$.

In the case of E-only MOSFET, I_{D} flows only when $V_{G S}$ exceeds $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ as shown in Fig. 63.30 (c).

Fig. 63.23

63.14. DE MOSFET

(a) Construction

Like JFET, it has source, gate and drain. However, as shown in Fig. 63.23, its gate is insulated from its conducting channel by an ultra-thin metal-oxide insulating film (usually of silicon dioxide SiO_{2}). Because of this insulating property. MOSFET is alternatively known as insulated-gate field-

effect transistor (IGFET or IGT). Here also, gate voltage controls drain current but main difference between JFET and MOSFET is that, in the latter case, we can apply both positive and negative voltages to the gate because it is insulated from the channel. Moreover, the gate, SiO_{2} insulator and channel from a parallel-plate capacitor. Unlike JFET, a DE MOSFET has only one P-region or N-region called substrate. Normally, it is shorted the source internally. Fig. 63.23 shows both P channel and N-channel DE MOSFETs along with their symbols.
(b) Working
(i) Depletion Mode of N-channel DE MOSFET

When $V_{G S}=0$, electrons can flow freely from source to drain through the conducting channel which exists between them. When gate is given negative voltage, it depletes the N-channel of its

Fig. 63.24
electrons by including positive charge in it as shown in Fig. 63.24 (a). Greater the negative voltage on the gate, greater is the reduction in the number of electrons in the channel and, consequently, lesser its conductivity. In fact, too much negative gate voltage called $V_{G S(o f f)}$ can cut-off the channel. Hence, with negative gate voltage, a DE MOSFET behaves like a JFET.

For obvious reasons, negative-gate operation of a DE MOSFET is called its depletion mode operation.

(ii) Enhancement Mode of N-channel DE MOSFET

The circuit connections are shown in Fig. 63.24 (b). Again, drain current flows from source to drain even with zero gate bias. When positive voltage is applied to the gate, the input gate capacitor is able to create free electrons in the channel which increases I_{D}. As seen from the enlarged view of the gate capacitor in Fig. 63.24 (b), free electrons are induced in the channel by capacitor action. These electrons are added to those already existing there. This increased number of electrons increases or enhances the conductivity of the channel. As positive gate voltage is increased, the number of induced electrons is increased, so conductivity of the source-to-drain channel is increased and, consequently, increasing amount of current flows between the terminals. That is why, positive gate operation of a DE MOSFET is known as its enhancement mode operation.

Since gate current in both modes is negligibly small, input resistance of a MOSFET is incredibly high varying from $10^{10} \Omega$ to $10^{14} \Omega$. In fact, MOSFET input current is the leakage current of the capacitor unlike the input current for JFET which is the leakage current of a reverse-biased $P-N$ junction.

63.15. Schematic Symbols for a DE MOSFET

Schematic symbol of an N-channel normally-ON or DE MOSFET is shown in Fig. 63.25. The gate looks like a metal plate. The arrow is on the substrate and towards the \mathbf{N}-channel. When $S S$ is connected to an external load, we have a 4-terminal device as shown in Fig. 63.25 (a) but when it is internally shorted to S, we get a 3-terminal device as shown in Fig. 63.25 (b). Fig. 63.25 (c) shows the symbol for a P-channel DE MOSFET.

Fig. 63.25

63.16. Static Characteristics of a DE MOSFET

In Fig. 63.26 are shown the drain current and transfer characteristics of a common-source N -channel DE MOSFET for $V_{G S}$ varying from +2 V to $V_{G S(o f f)}$.

Fig. 63.26
It acts in the enhancement mode when gate is positive with respect to source and in the depletion mode when gate is negative. As usual, $V_{G S(o f f)}$ represents the gate-source voltage which cuts off the source-to-drain current. The transfer characteristic is shown in Fig. 63.26 (b). For a given $V_{D S}$, I_{D} flows even when $V_{G S}=0$. However, keeping $V_{D S}$ constant, as $V_{G S}$ is made more negative, I_{D} keeps decreasing till it becomes zero at $V_{G S}=V_{G S(o f f)}$. When used in the enhancement mode, I_{D} increases as $V_{D S}$ is increased positively.

Example 63.9. For the N-channel zero-biased DE MOSFET circuit of Fig. 63.27, calculate $V_{D S}$ if $I_{D S S}=10 \mathrm{~mA}$ and $V_{G S(o f f)}=-6 \mathrm{~V}$.
(Electronics-I, Bangalore Univ. 1992)

Fig. 63.27

Solution. Since $\mathrm{I}_{\mathrm{D}}=I_{D S S}=10 \mathrm{~mA}$

$$
\begin{aligned}
\therefore \quad V_{D S} & =V_{D D}-I_{D S S} R_{L} \\
& =18-10 \times 10^{-3} \times 800=\mathbf{1 0} \mathbf{~ V}
\end{aligned}
$$

63.17. Enhancement-only N-Channel MOSFET

This N -channel MOSFET (also called NMOS) finds wide application in digital circuitry. As shown in Fig. 63.28 in the NMOS, the P-type substrate extends all the way to the metal-oxide layer. Structurally, there exists no channel between the source and drain. Hence, an NMOS can never operate with a negative gate voltage because it will induce positive charge in the space between the drain and source which will not allow the passage of electrons between the two. Hence, it operates with positive gate voltage only.

The normal biasing polarities of this E-only MOSFET (both N-channel and P-channel) are shown in Fig. 63.29. With $V_{G S}=0, I_{D}$ is non-existent even when some positive $V_{D D}$ is applied. It is found that for getting significant amount of drain current, we have to apply sufficiently high positive gate voltage. This voltage is found to produce a thin layer of free electrons very close to the metal-oxide film which stretches all the way from source to drain. The thin layer of P-substrate touching the metal-oxide film which provides channel for electrons (and hence acts like N-type material) is called N-type inversion layer or virtual N-channel [Fig. 63.29 (a)].

Fig. 63.28

The minimum gate-source voltage which produces this N-type inversion layer and hence drain current is called threshold voltage $V_{G S(t h)}$ as shown in Fig. 63.30 (c). When $V_{G S}<V_{G S(t h)}, I_{D}=0$. Drain current starts only when $V_{G S}>V_{G S(t h)}$. For a given $V_{D S}$, as $V_{G S}$ is increased, virtual channel deepens and I_{D} increases. The value of I_{D} is given by $I_{D}=\mathrm{K}\left(V_{G S}-V_{G S(t h)}\right.$)2 where K is a constant which depends on the particular MOSFET. Its value can be determined from the data sheet by taking the specified value of I_{D} called $I_{D(O N)}$ at the given value of $V_{G S}$ and then substituting the values in the above equation. Fig. 63.30 (a)

Fig. 63.29
shows the schematic symbol for an E-only N-channel MOSFET whereas Fig. 63.30 (b) shows its typical drain characteristics. As usual, arrow on the substrate points to the N-type material and the vertical line (representing-channel) is broken as a reminder of the normally-OFF condition.

Fig. 63.30
A P-channel E-only MOSFET (PMOS) is constructed like NOMS except that all the P - and $N-$ regions are interchanged. It operates with negative gate voltage only.

Differentiating the above-given drain current equation with respect to $V_{G S}$, we get

$$
\frac{d I_{D}}{d V_{G S}}=g_{m}=2 \mathrm{~K}\left(V_{G S}-V_{G S(\mathrm{th})}\right)
$$

Transfer Characteristics

It is shown in Fig. $63.30(c) . I_{D}$ flows only when $V_{G S}$ exceeds threshold voltage $V_{G S(t h)}$. This MOSFET does not have an $I_{D S S}$ parameter as do the JFET and DE MOSFET.

63.18. Biasing E-only MOSFET

As stated earlier, enhancement-only MOSFET must have a $V_{G S}$ greater than $V_{G S(t h)}$. Fig. 63.31 shows two methods of biasing an N -channel E-MOSFET. In either case, the purpose is to make the gate voltage more positive than the source by an amount exceeding $V_{G S(t h)}$. Fig. 63.31 (a) shows drain-feedback bias whereas Fig. 63.31 (b) shows voltage-divider bias.

Considering the circuit of Fig. 63.31 (b), we have

Fig. 63.31

$$
K=\frac{I_{D(O N)}}{\left(V_{G S}-V_{G S(t h)}\right)^{2}}=\frac{4}{(10-5)^{2}}=0.16 \mathrm{~mA} / \mathrm{V}^{2}
$$

Fig. 63.32

Example 63.10. The data sheet of the E-MOSFET shown in Fig. 63.32
$=4 \mathrm{~mA}$ at $V_{G S}=10 \mathrm{~V}$ and $V_{G S}=5 \mathrm{~V}$. Calculate $V_{G S}$ and $V_{D S}$ gives $I_{D(O N)}=4 \mathrm{~mA}$ at $V_{G S}=10 \mathrm{~V}$ and $V_{G S(t h)}=5 \mathrm{~V}$. Calculate $V_{G S}$ and $V_{D S}$ for the circuit.
(Applied Electronics, Punjab Univ. 1991)
Solution. $\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{2}=25 \times(9 / 15)=15 \mathrm{~V}$
Let us now find the value of K.

$$
\begin{array}{ll}
& V_{G S}=\mathrm{V}_{2}=V_{D D} \frac{R_{2}}{R_{1}+R_{2}} \\
\text { and } & V_{D S}=V_{D D}-I_{D} R_{L} \\
\text { where } & I_{D}=\mathrm{K}\left(V_{G S}-V_{G S(t h)}\right)^{2}
\end{array}
$$

Value of I_{D} for $V_{G S}=15 \mathrm{~V}$ is given by

$$
I_{D}=\mathrm{K}\left(V_{G S}-\mathrm{V}_{\mathrm{GS}(\mathrm{th})}\right)^{2}=0.16(15-5)^{2}=16 \mathrm{~mA}
$$

Now, $V_{D S} \quad=\mathrm{V}_{\mathrm{DD}}-I_{D} R_{L}=25-16 \times 1=9 \mathrm{~V}$
Example 63.11. An N-channel E-MOSFET has the following parameters:
$I_{D(O N)}=4 \mathrm{~mA}$ at $V_{G S}=10 \mathrm{~V}$ and $V_{G S(t h)}=5 \mathrm{~V}$
Calculate its drain current for $V_{G S}=8 \mathrm{~V}$.
Solution. $K=\frac{I_{D(O N)}}{\left(V_{G S}-V_{G S(t h)}\right)^{2}}=\frac{4 \mathrm{~mA}}{(10 \mathrm{~V}-5 \mathrm{~V})^{2}}=0.16 \mathrm{~mA} / \mathrm{V}^{2}$
Now, using this value of K, I_{D} can be found thus :

$$
I_{D}=K\left(V_{G S}-V_{G S(\mathrm{th})}\right)^{2}=0.16(8-5)^{2}=1.44 \mathrm{~mA}
$$

63.19. FET Amplifiers

We will consider the DE MOSFET and E-MOSFET separately.

Fig. 63.33

(i) DE MOSFET Amplifier

Fig. 63.33 (a) shows a zero-biased N-channel DE MOSFET with an ac source capacitivelycoupled to its gate. Since gate is at 0 volt dc and source is at ground, $V_{G S}=0$. Fig. 63.33 (b) shows the transfer characteristic.

The input ac signal voltage V_{i} causes $V_{G S}$ to swing above and below its zero value thus producing a swing in I_{D} as shown in Fig. $63.33(b)$. The negative swing in $V_{G S}$ produces depletion mode and I_{D}

(a)

(b)

Fig. 63.34

2384

is decreased. A positive swing in $V_{G S}$ produces enhancement mode so that I_{D} is increased. This leads to a large swing in drop across R_{L} and can be taken out via C_{2} as V_{0}.
(ii) E-MOSFET Amplifier

In Fig. $63.34(a)$ is shown a voltage-divider biased N-channel E-MOSFET having an ac signal source coupled to its gate. The gate is biased with a positive voltage such that $V_{G S}$ exceeds $V_{G S(t h)}$.

As shown in Fig. $63.34(b)$, the signal voltage produces a swing in $V_{G S}$ below and above its Q point value. This, in turn, causes a swing in I_{D} and hence in $I_{D} R_{L}$ which gives rise to no.

Example 63.12. The N-channel E-MOSFET used in the common-source amplifier of Fig. 63.35 has the following parameters :

$$
I_{D(O N)}=4 \mathrm{~mA} \text { at } V_{D S}=10 \mathrm{~V}, V_{G S(t h)}=4 \mathrm{~V} \text { and } g_{m}=5000 \mu \mathrm{~S}
$$

Calculate $V_{G S}, I_{D}, V_{G S}$ and v_{o}. (Elect. and Electronic Engg., Annamalai Univ. 1992)
Solution. $\quad V_{G S}=V_{D D} \frac{R_{2}}{R_{1}+R_{2}}=16 \times \frac{30}{80}=6 \mathrm{~V}$

$$
\begin{array}{lll}
\text { Now, } & K & =\frac{I_{D(N O)}}{\left(V_{G S}-V_{G S(t h)}\right)^{2}}=\frac{4}{(10-5)^{2}} \\
& =0.16 \mathrm{~mA} / \mathrm{V}^{2} \\
\therefore & I_{D}= & K\left(V_{G S}-V_{G S(t h)}\right)^{2}=0.16(6-4)^{2} \\
& =0.64 \mathrm{~mA} \\
\therefore & V_{D S}= & V_{D D}-I_{D} R_{L}=16-0.64 \times 5=\mathbf{1 2 . 8} \mathbf{V}
\end{array}
$$

Fig. 63.35

Now, $\quad A_{v} \quad=g_{m}\left(r_{d} \| R_{L}\right) \cong g_{m} R_{L}$

$$
=5000 \times 10^{-6} \times 5 \times 10^{3}=25
$$

$$
\therefore \quad V_{o} \quad=A_{v} v_{i}=25 \times 100=2500 \mathrm{mV}=2.5 \mathrm{~V}
$$

Example 63.13. The parameters of the enhancement-only NMOS shown in Fig. 63.36 are $V_{G S(t h)}=2 \mathrm{~V}$ and $K=2 \times 10^{-4} \mathrm{~A} / V^{2}$. Calculate the values of I_{D} and $V_{D S}$.

Solution. Since drain is directly returned to gate, $V_{G S}=V_{D S}$. As seen from the figure

$$
V_{D S} \quad=V_{D D}-I_{D} R_{L}=12-5 \times 10^{3} I_{D}
$$

$$
\therefore \quad I_{D} \quad=\left(12-V_{D S}\right) / 5 \times 10^{3} \mathrm{~A}
$$

$$
\text { Now, } \quad I_{D}=K\left(V_{G S}-V_{G S(t h)}\right)^{2}=K\left(V_{D S}-2\right)^{2}
$$

$$
\text { or } \quad \frac{12-V_{D S}}{5 \times 10^{3}}=2 \times 10^{-4}\left(V_{D S}-2\right)^{2} \text { or } \mathrm{V}_{\mathrm{DS}}^{2}-3 V_{D S}-8=0
$$

$$
\therefore \quad V_{D S} \quad=\frac{3 \pm \sqrt{9+32}}{.2}=\frac{3 \pm \sqrt{41}}{2}=4.7 \mathrm{~V}
$$

$$
\therefore \quad I_{D}=(12-4.7) / 5 \times 10^{3} \quad=\mathbf{1 . 5} \mathbf{m A}
$$

In Fig. $63.36(b)$, since gate has been directly returned to ground,
Fig. 63.36
$V_{G S}=0$. Hence, $I_{D}=0$, because $V_{G S} « V_{G S(t h)}$. With no current, $V_{D S}=$
$V_{D D}=12 \mathbf{V}$.

Example 63.14. A MOSFET has a drain resistance, R_{L} of $44 \mathrm{k} \Omega$ and operates at 20 kHz . Calculate the voltage gain of this device as a single stage amplifier. The MOSFET parameters are :

$$
g_{m}=1.6 \mathrm{~mA} / V, r_{d}=100 \mathrm{k} \Omega, C_{g s}=3.0 \mathrm{pf}, C_{d s}=1.0 \mathrm{pF} \text { and } C_{g d}=2.8 \mathrm{pF}
$$

(U.P.S.C. Engg. Services, 1996)

Solution. $A_{v}=g_{m}\left(r_{d} \| R_{L}\right)$

$$
\begin{aligned}
& =1.6 \times 10^{-3}\left(100 \times 10^{3} \| 44 \times 10^{3}\right) \\
& =1.6 \times 10^{-3} \times 30.56 \times 10^{3} \\
& =48.9
\end{aligned}
$$

63.20. FET Applications

FETs can be used in almost every application in which bipolar transistors can be used. However, they have certain applications which are exclusive to them :

1. As input amplifiers in oscilloscopes, electronic voltmeters and other measuring and testing equipment because their high $r_{\text {in }}$ reduces loading effect to the minimum.
2. In logic circuits where it is kept OFF when there is zero input while it is turned ON with very little power input.
3. For mixer operation of $F M$ and $T V$ receivers.
4. As voltage-variable resistor $(V V R)$ in operational amplifiers and tone controls etc.
5. Large-scale integration ($L S I$) and computer memories because of very small size.

63.21. MOSFET Handling

MOSFETs require very careful handling particularly when out of circuit. In circuit, a MOSFET is as rugged as any other solid-state device of similar construction and size.

It is essential not to permit any stray or static voltage on the gate otherwise the ultra-thin SiO_{2} layer between the channel and the gate will get ruptured. Since gate-channel junction looks like a capacitor with extremely high resistance, it requires only a few electrons to produce a high voltage across it. Even picking up a MOSFET by its leads can destroy it. Generally, grounding rings are used to short all leads of a MOSFET for avoiding any voltage build up between them. These grounding or shorting rings are removed only after MOSFET is securely wired into the circuit. Sometimes, conducting foam is applied between the leads instead of using shorting rings. As shown in Fig. 13.37, some MOSFETs

Fig. 63.37 have back-to-back Zener diodes internally formed to protect them against stray voltages.

Tutorial Problems No. 63.2

1. For a certain DE MOSFET, $I_{D S S}=10 \mathrm{~mA}$ and $V_{G S(o f f)}=-8 \mathrm{~V}$. Calculate I_{D} when $V_{G S}$ is $(i)-4 \mathrm{~V}$ and (ii) +4 V .
[(i) 2.5 mA (ii) 22.5 mA]
2. The data sheet of a certain zero-biased DE MOSFET gives $I_{D S S}=15 \mathrm{~mA}$ and $V_{G S(o f f)}=5 \mathrm{~V}$. What is the value of drain current ?
3. A certain E-only N-channel MOSFET has the following parameters :
$\mathrm{I}_{\mathrm{D}(\text { on })}=4 \mathrm{~mA}$ at $V_{G S}=8 \mathrm{~V}$ and $V_{G S(t h)}=2 \mathrm{~V}$
Calculate I_{D} for $V_{G S}=6 \mathrm{~V}$
[1.78 mA]

Fig. 63.38
4. The parameters of the E-only, N-channel MOSFET shown in Fig. $63.38(a)$ are : $V_{G S(t h)}=2 \mathrm{~V}$ and K $=0.3 \mathrm{~mA} / \mathrm{V}^{2}$. Determine the values of I_{D} and $V_{D S}$ If the gate is connected as shown in Fig. $63.38(b)$, what will be the new values of I_{D} and $V_{D S}$?
[(i) 2.07 mA (ii) $4.63 \mathrm{~V} ; 0 \mathrm{~A}, 15 \mathrm{~V}]$
5. The data sheet for the E-only N-channel MOSFET of Fig. $63.38(c)$ gives $I_{D(o n)}=3 \mathrm{~mA}$ at $V_{G S}=10$ V and $V_{G S(t h)}=5 \mathrm{~V}$. Calculate the values of $V_{G S}$ and $V_{D S}$
[14.4 V ; 13.4 V]
6. The amplifier circuit of Fig. 63.38 (d) used an E-only N-channel MOSFET having the following parameters : $I_{D(o n)}=5 \mathrm{~mA}$ at $V_{G S}=10 \mathrm{~V}, V_{G S(t h)}=4 \mathrm{~V}, g_{m}=5500 \mu \mathrm{~S}$
Calculate $V_{G S}, I_{D}, V_{D S}$ and $v_{o} . \quad[6 \mathrm{~V} ; \mathbf{0 . 5 5 6} \mathbf{m A} ; \mathbf{1 2 . 2} \mathbf{V} ; \mathbf{0 . 8 2 5} \mathbf{V}]$
7. A field-effect transistor has a small-signal equivalent circuit with input resistance $=1000 \mathrm{M} \Omega$, forward transfer conductance $=4 \mathrm{~m} \mathrm{~S}$ and output conductance $=100 \mu \mathrm{~S}$ when at the operating point, $V_{D S}=+4 \mathrm{~V}, I_{D}=2 \mathrm{~mA}, V_{G S}=-2 \mathrm{~V}$.
Draw the circuit that you would use for a single-stage voltage amplifier. Describe the use and specify the value of as many components as possible if a 30 V supply was available.
What voltage gain would you expect when the output was unloaded ? Give reasons which might account for not getting this gain exactly.
[Drain load = $12 \mathrm{k} \Omega$, Source Bias Resistor $=1 \mathrm{k} \Omega$, - 21.8]
8. A field-effect transistor is used as a voltage amplifier and with a load resistor of $40 \mathrm{k} \Omega$, a gain of 40 is obtained. If the load resistance is halved, the voltage gain drops to 30 . Calculate the output resistance and the mutual conductance of the transistor.
Briefly compare the advantages and limitations of the field-effect transistor with the bipolar transistor.
[20 k $\Omega, 3 \mathrm{mS}$]

OBJECTIVE TESTS - 63

1. A FET consists of a
(a) source
(b) drain
(c) gate
(d) all of the above.
2. FETs have similar properties to
(a) PNP transistors
(b) NPN transistors
(c) thermonic valves
(d) unijunction transistors.
3. For small values of drain-to-source voltage, JFET behaves like a
(a) resistor
(b) constant-current source
(c) constant-voltage source
(d) negative resistance
4. In a JFET, the primary control on drain current is exerted by
(a) channel resistance
(b) size of depletion regions
(c) voltage drop across channel
(d) gate reverse bias.
5. After $V_{D S}$ reaches pinch-off value V_{P} in a JFET, drain current I_{D} becomes
(a) zero
(b) low
(c) saturated
(d) reversed.
6. In a JFET, as external bias applied to the gate is increased
(a) channel resistance is decreased
(b) drain current is increased
(c) pinch-off voltage is reached at lower val ues of I_{D}.
(d) size of depletion regions is reduced.
7. In a JFET, drain current is maximum when $V_{G S}$ is
(a) zero
(b) negative
(c) positive
(d) equal to Vp
8. The voltage gain of a given common- source JFET amplifier depends on its
(a) input impedance
(b) amplification factor
(c) dynamic drain resistance
(d) drain load resistance.
9. A JFET has the disadvantage of
(a) being noisy
(b) having small gain-bandwidth product
(c) possessing positive temperature coe- fficient
(d) having low input impedance.
10. A JFET can be cut-off with the help of
(a) V_{GS}
(b) V_{DS}
(c) $V_{D G}$
(d) V_{DD}.
11. The drain source voltage at which drain current becomes nearly constant is called
(a) barrier voltage
(b) breakdown voltage
(c) pick-off voltage
(d) pinch-off voltage
12. The transconductance ' g_{m} ' of a JFET is equal to
(a) $-\frac{2 I_{D S C}}{V_{P}}$
(b) $\frac{2}{\left|V_{P}\right|} \sqrt{I_{D S S} I_{D}}$
(c) $-\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S}}{V_{P}}\right)$
(d) $\frac{I_{D S S}}{V_{P}}\left(1-\frac{V_{G S}}{V_{P}}\right)$
13. An FET source follower circuit has of 2 millimho and of $50 \mathrm{k} \Omega$. If the source resistance R_{S} is $1 \mathrm{k} \Omega$, the output resistance of the amplifier will be
(a) 330Ω
(b) 450Ω
(c) 500Ω
(d) $1 \mathrm{k} \Omega$
14. A DE MOSFET differs from a JFET in the sense that it has no
(a) channel
(b) gate
(c) $P-N$ junctions
(d) substrate.
15. For the operation of enhancement only N-channel MOSFET, value of gate voltage has to be
(a) high positive
(b) high negative
(c) low positive
(d) zero.
16. The extremely high input impedance of a MOSFET is primarily due to the
(a) absence of its channel
(b) negative gate-source voltage
(c) depletion of current carriers
(d) extremely small leakage current of its gate capacitor
17. The main factor which makes a MOSFET likely to break down during normal hand- ling is its
(a) very low gate capacitance
(b) high leakage current
(c) high input resistance
(d) both (a) and (c).
18. The main factor which differentiates a DE MOSFET from an E-only MOSFET is the absence of
(a) insulated gate
(b) electrons
(c) channel
(d) $P-N$ junctions.
19. The polarity of $V_{G S}$ for E-only MOSFET is
(a) positive
(b) negative
(c) zero
(d) depends on P-or N-channel.
20. A tranasconductance amplifier has
(a) high input impedance and low output impedance
(b) low input impedance and high output impedance
(c) high input and output impedances
(d) low input and output impedances
21. The threshold voltage of an n-channel enhancement mode MOSFET is 0.5 V , when the device is biased at a gate voltage of 3 V , pinch-off would occur at a drain voltage of
(a) 1.5 V
(b) $\quad 2.5 \mathrm{~V}$
(c) 3.5 V
(d) $\quad 4.5 \mathrm{~V}$
22. The zero gate bias channel resistance of a junction field-effect transistor is 750 and the pinch-off voltage is 3 V . For a gate bias of 1.5 V and very low drain voltage, the device would behave as a resistance of
(a) 320Ω
(b) 816Ω
(c) 1000Ω
(d) 1270Ω
23. A MOSFET rated for 15 A , carries a periodic current as shown in Fig. 63.39. the ON state resistance of the MOSFET is 0.15Ω. The average ON state loss in the MOSFET is

Fig. 63.39
(a) 33.8 W
(b) 15.0 W
(c) 7.5 W
(d) 3.8 W

ANSWERS

1. (d)
2. (b) 3. (a)
3. (d) 5. (c)
4. (c)
5. (a)
6. (d)
7. (b)
8. (a)
9. (d)
10. (c)
11. c 14. (c)
12. (a)
13. (d)
14. (c)
15. (d)
16. (a)
17. (c)
18. (b)
19. (c)

Learning Objectives

> What are Breakdown Devices?
> Unijunction Transistor
> UJT Relaxation Oscillator
> Programmable UJT(PUT)
> Silicon Controlled Rectifier
$>$ Comparison between Transistors and Thyristors
> Transient Effects in an SCR
> Phase Control
$>$ Theft Alarm
$>$ Emergency Lighting System
$>$ Light Activated SCR (LASCR)
> The Shockley Diode
\geqslant Triac
$>$ Diac
$>$ Silicon Controlled Switch (SCS)

BREAKDOWN DEVICES

The Silicon Controlled Rectifier, usually referred to as an SCR, is one of the family of semiconductors that includes transistors and diodes

64.1. What are Breakdown Devices?

These are solid-state devices whose working depends on the phenomenon of avalanche breakdown. They are sometimes referred to by the generic name of thyristor which is a semiconductor switch whose bistable action depends on $P-N-P-N$ regenerative feedback. We will discuss the following devices :

1. Unijunction Transistor (UJT).
2. Silicon Controlled Rectifier (SCR).
3. Light Activated SCR (LASCR).
4. Triac (short for 'triode ac').
5. Diac (short for 'diode ac').
6. Silicon Controlled Switch (SCS).

These devices have two or more junctions and can be switched ON or OFF at an extremely fast rate. They are also referred to as latching devices. A latch is a kind of switch which initially once closed, remains closed until someone opens it.

64.2. Unijunction Transistor

Basically, it is a three-terminal silicon diode. As its name indicates, it has only one $P-N$ junction. It differs from an ordinary diode in that it has three leads and it differs from a FET in that it has no ability to amplify. However, it has the ability to control a large ac power with a small signal. It also exhibits a negative resistance characteristic which makes it useful as an oscillator.

(a) Construction

It consists of a lightly-doped silicon bar with a heavily-doped P-type material alloyed to its one side (closer to B_{2}) for producing single $P-N$ junction. As shown in Fig. $64.1(a)$, there are three terminals : one emitter, E and two bases B_{2} and B_{1} at

Fig. 64.1 the top and bottom of the silicon bar. The emitter leg is drawn at an angle to the vertical and arrow points in the direction of conventional current when UJT is in the conducting state.
(b) Interbase Resistance ($\boldsymbol{R}_{B B}$)

It is the resistance between B_{2} and B_{1} i.e. it is the total resistance of the silicon bar from one end to the other with emitter terminal open [Fig. 64.2 (a)].

From the equivalent circuit of Fig. 64.2 (b), it is seen that $R_{B B}=R_{B 2}+R_{B 1}$

It should also be noted that point A is such that $R_{B 1}>$ $R_{B 2}$. Usually, $R_{B 1}=60 \%$ of $R_{B 1}$. The resistance $R_{B 1}$ has been shown as a variable resistor because its value varies inversely as I_{E}.

Fig. 64.2

(c) Intrinsic Stand-off Ratio

As seen from Fig. $64.3(a)$, when a battery of 30 V is applied across $B_{2} B_{1}$, there is a progressive fall of voltage over $R_{B B}$ provided E is open. It is obvious from Fig. 64.3 (b) that emitter acts as a voltage-divider tap on fixed resistance $R_{B B}$.

With emitter open, $I_{1}=I_{2}$, the interbase current is given by Ohm's Law.

$$
I_{1}=I_{2}=V_{B B} / R_{B B}
$$

Fig. 64.3
For example, if $V_{B B}=30 \mathrm{~V}$ and $R_{B B}=15 \mathrm{~K}, I_{1}=I_{2}=2 \mathrm{~mA}$.
It may be noted that part of $V_{B B}$ is dropped over $R_{B 2}$ and part on $R_{B 1}$. Let us call the voltage drop $\operatorname{across} R_{\mathrm{B} 1}$ as V_{A}. Using simple voltage divider relationship,

$$
V_{A}=V_{B B} \frac{R_{B 1}}{R_{B 1}+R_{B 2}}
$$

The voltage division factor is given a special symbol (η) and the name of 'intrinsic standoff ratio'.

$$
\eta=\frac{R_{B 1}}{R_{B 1}+R_{B 2}} \quad \therefore \quad V_{A}=\eta V_{B B}
$$

The intrinsic stand-off ratio is the property of the UJT and is always less than unity (0.5 to 0.85). If $V_{B B}=30 \mathrm{~V}$ and $\eta=0.6$, then potential of point A with respect to point $B_{1}=0.6 \times 30=$ 18 V . The remaining 12 V drop across $R_{B 2}$.
(d) Operation

When $V_{B B}$ is switched on, V_{A} is developed and reverse-biases the junction. If V_{B} is the barrier voltage of the $P-N$ junction, then total reverse bias voltage is

$$
=V_{A}+V_{B}=\eta V_{B B}+\mathrm{V}_{B}
$$

Value of V_{B} for Si is 0.7 V .
It is obvious that emitter junction will not become forward-biased unless its applied volt-

Fig. 64.4 age V_{E} exceeds $\left(\eta V_{B B}+V_{B}\right.$). This value of V_{E} is called peak-point voltage V_{P} (Fig. 64.4). When V_{E} $=V_{P}$, emitter (peak current), I_{P} starts to flow through $R_{B 1}$ to ground (i.e. B_{I}). The UJT is then said to have been fired or turned ON. Due to the flow of $I_{E}\left(=I_{P}\right)$ through $\mathrm{R}_{B 1}$, number of charge carriers in $\mathrm{R}_{B 1}$ is increased which reduces its resistance. As η depends on $R_{B 1}$, its value is also decreased.

2392

Hence, we find that as V_{E} and hence I_{E} increases (beyond I_{P}), $R_{B 1}$ decreases, η decreases and V_{A} decreases. This decrease in V_{A} causes more emitter current to flow which causes a further reduction in $R_{B 1}, \eta$ and V_{A}. Obviously, the process is regenerative. V_{A} as well as V_{E} quickly drop as I_{E} increases. Since, V_{E} decreases when I_{E} increases, the UJT possesses negative resistance. Beyond the valley point, UJT is in saturation and V_{E} increases very little with an increasing I_{E}.

It is seen that only terminals E and B_{1} are the active terminals whereas B_{2} is the bias terminal i.e. it is meant only for applying external voltage across the UJT.

Generally, UJT is triggered into conduction by applying a suitable positive pulse at its emitter. It can be brought back to OFF state by applying a negative trigger pulse.

(e) Applications

One unique property of UJT is that it can be triggered by (or an output can be taken from) any one of its three terminals. Once triggered, the emitter current I_{E} of the UJT increases regeneratively till it reaches a limiting value determined by the external power supply. Because of this particular behaviour, UJT is used in a variety of circuit applications. Some of which are :

1. phase control
2. switching
3. pulse generation,
4. sine wave generator
5. sawtooth generator
6. timing and trigger circuits,
7. voltage or current regulated supplies.

Example 64.1. A given silicon UJT has an interbase resistance of 10 K . It has $R_{B 1}=6 \mathrm{~K}$ with $I_{E}=0$. Find
(a) UJT current if $\mathrm{V}_{\mathrm{BB}}=20 \mathrm{~V}$ and V_{E} is less than V_{P},
(b) η and V_{A}, (c) peak point voltage, V_{P}.
(Applied Electronics-I, Punjab Univ. 1990)
Solution. (a) Since $V_{E}<V_{P}, I_{E}=0$, because $P-N$ junction is reverse-biased.

$$
\therefore \quad I_{1}=I_{2}=\frac{V_{B B}}{R_{B B}}=\frac{20}{10 K}=2 \mathrm{~mA}
$$

(b) $\eta=\frac{R_{B 1}}{R_{B B}}=\frac{6}{10}=\mathbf{0 . 6} ; V_{A}=\eta V_{B B}=0.6 \times 20=\mathbf{1 2 V}$
(c) $\quad V_{P}=\eta V_{B B}+V_{B}=12+0.7=\mathbf{1 2 . 7} \mathrm{V}$

64.3. UJT Relaxation Oscillator

The relaxation oscillator shown in Fig. 64.5 consists of a UJT and a capacitor C which is charged through R as $V_{B B}$ is switched on.

Fig. 64.5
When the capacitor voltage V_{C} reaches in time t_{s} the value of V_{P}, the UJT fires and rapidly discharges C via B_{1} till the voltage falls below the minimum value V_{V}. The device then cuts off and

C starts to charge again. This cycle is repeated continuously thus generating a sawtooth waveform across C.

The inclusion of external resistances R_{2} and R_{1} in series with B_{2} and B_{1} (Fig. 64.6) provides spike waveforms. When the UJT fires, the sudden surge of current through B_{1} causes a drop across R_{I} which produces positive going spikes. Also, at the time of firing, fall of $\mathrm{V}_{B B 1}$ causes I_{2} to increase rapidly which generates negative going spikes across R_{2} as shown in Fig. 64.6.

By switching over to different capacitors, frequency of the output waveform can be changed as desired.

Condition for Turn-ON and Turn-OFF

For satisfactory working of the above oscillator, following two conditions for the turn-on and turn-off of the UJT must be met. To ensure turn-on, R must not limit I_{E} at peak point to a value less than I_{P}. It means that

Fig. 64.6

$$
V_{B B}-V_{\mathrm{P}}>I_{P} R \text { or } R<\frac{V_{B B}-V_{P}}{I_{P}}
$$

To ensure turn-off of the UJT at valley point, R must be large enough to permit I_{E} (at valley point) to decrease below the specified value of I_{V}. In other words, drop across R at valley point must be less than IVR. Hence, condition for turn-off is

$$
V_{B B}-V_{V}<I_{V} \mathrm{R} \text { or } R>\frac{V_{B B}-V_{V}}{I_{v}}
$$

Hence, for reliable turn-on and turn-off of the UJT, R must be in the range

$$
\frac{V_{B B}-V_{P}}{I_{P}}>R>\frac{V_{B B}-V_{V}}{I_{V}}
$$

It should be noted that charging time constant of the capacitor for voltage V is $T=C R$ whereas discharging time constant is $T_{d}=C R_{B 1}$. The time required to charge upto $V_{P}($ called ramp rise time $)$ is $t_{\mathrm{s}}=T \log _{\mathrm{e}}\left(V-V_{V}\right) /\left(V-V_{P}\right)$.

Similarly, time required by the capacitor to discharge from V_{P} to V_{V} is $t_{d} \cong T_{d} \log _{\mathrm{e}} V_{P} / V_{V}$. The frequency of oscillation is given by $f=1 /\left(t_{s}+t_{d}\right)$.

Example 64.2. The windshield wiper motor of an automobile is controlled by a UJT with $\eta=$ 0.6. The capacitor has a value of $50 \mu F$ and the charging resistor is a series combination of $50 K$ resistor and a 500 K potentiometer. Determine the minimum and maximum number of blade strokes per minute possible with this arrangement.

Solution. The least value of time constant is $=50,000 \times 50 \times 10^{-6}=2.5$ second.
Maximum value of time constant when whole of potentiometer resistance is used is

$$
=(50+500) \times 10^{3} \times 50 \times 10^{-6}=27.5 \text { second }
$$

Maximum blade strokes per minute $=60 / 2.5=24$.
Minimum blade strokes per minute $=60 / 27.5=2.2$.
Example 64.3. The oscillator circuit shown in Fig. 64.5 uses a UJT with $R_{B B}=10 \mathrm{~K}, \eta=0.6$, $V_{B}=0.7 \mathrm{~V}, V=50 \mathrm{~V}, R_{l}=90 \mathrm{~K}, R=100 \mathrm{~K}$ and $\mathrm{C}=0.05 \mu \mathrm{~F}$. When UJT is in conduction, $R_{B I}=10 \Omega$ and $V_{V}=V_{B}$. Find (i) ramp rise time, t_{s} (ii) approximate discharge time, t_{d} and (iii) frequency of oscillation.

Solution. $V_{B B}=V \cdot R_{B B} /\left(R_{B B}+R_{1}\right)=50 \times 10 / 100=5 \mathrm{~V}$

$$
V_{P}=\eta V_{B B}+V_{B}=0.6 \times 5+0.7=3.7 \mathrm{~V}
$$

$$
T=C R=0.05 \times 10^{-6} \times 100 \times 10^{3}=5 \mathrm{~ms}
$$

(i) The capacitor charges from $V c=V_{B}=0.7 \mathrm{~V}$ to V_{P} towards V in the time t_{s} given by $t_{\mathrm{s}}=\mathrm{T} \log _{\mathrm{e}}\left(V-V_{V}\right) /\left(V-V_{P}\right)=5 \log _{\mathrm{e}}(50-0.7) /(50-3.7)=0.315 \mathrm{~ms}$.
(ii) The discharge time, $t_{d}=C R_{B 1}=0.05 \times 10=0.5 \mu \mathrm{~s}$. The time taken by C to discharge from V_{P} to $V_{V}(=0.7 \mathrm{~V})$ towards 0 volt is

$$
\begin{array}{rlrl}
T_{d} \cong t_{d} \log _{\mathrm{e}} V_{P} / V_{V}=0.5 \log _{e} 3.7 / 0.7 & =\mathbf{1 . 6 6} \mu \mathrm{S} \\
\text { (iii) } & f=1 /\left(t_{s}+t_{d}\right)=1 /(0.315+0.0016) & =\mathbf{3 . 1 5 8} \mathbf{k H z} .
\end{array}
$$

64.4. Programmable UJT (PUT)

Like a SCR, it is also a four-layer or $P N P N$ device with a gate G as shown in Fig. 64.7. However, its gate is connected to the N-region adjacent to the anode A. This $P-N$ junction controls the ON and OFF states of the PUT. The gate G is always biased positive with respect to cathode K. When anode voltage exceeds gate voltage by about 0.7 V , the $P-N$ junction J_{l} becomes forwardbiased and the PUT turns ON. When the anode voltage falls below this level, the PUT is turned OFF.

As shown in Fig. 64.8 (a), gate bias can be adjusted to any bias level with the help of an external voltage divider circuit $R_{2}-R_{3}$. Whenever anode voltage exceeds this programmable level, the PUT turns ON.

Fig. 64.7
Fig. 64.8 (b) shows the plot of anode-to- cathode voltage V_{AK} versus anode current I_{A}. It is similar to the V / I characteristic of a $U J T$. Hence, PUT replaces $U J T$ in many applications, one such application is as relaxation oscillator shown in Fig. 64.9 (a).

Since, $R_{2}=R_{3}, V_{\mathrm{G}}=12 / 2=6 \mathrm{~V}$. When dc voltage is applied, the PUT is off but C starts charging towards +12 V through R_{1} [Fig. $64.9(b)$]. When V_{C} exceeds $\left(V_{G}+0.7 \mathrm{~V}\right)$, the PUT turns ON and, at the same time, C starts discharging rapidly through the low ON-resistance of the PUT and R_{4}. Consequently, a voltage spike is developed across R_{4} during the discharge. As soon as C discharges, the PUT turns OFF and the charging cycle starts all over again as described above.

Fig. 64.8

64.5. Silicon Controlled Rectifier

It is one of the prominent members of the thyristor family. It is a fourlayer or PNPN device. Basically, it is a rectifier with a control element. In fact, it consists of three diodes connected back-to-back with a gate connection. It is widely used as a switching device in power control applications. It can control loads by switching current OFF and ON up to many thousand times a

Fig. 64.9 second. It can switch ON for variable lengths of time, thereby delivering selected amount of power to the load. Hence, it possesses the advantages of a rheostat and a
 switch with none of their disadvantages.
(a) Construction

As shown in Fig. 64.10 (a), it is a three terminal four-layer transistor, the layers being alternately of P-type and N -type silicon. The three junctions are marked J_{1}, J_{2} and J_{3} whereas the three terminals are : anode (A), cathode (C) and gate (G) which is connected to the inner P-type layer. The function of the gate is to control the firing of SCR. The schematic symbol is shown in Fig. 64.10 (b).

Since, they conduct large currents, junction areas of SCRs are very large. Commonly used stud-mounted units have their anode connected directly to the stud for good heat dissipation whereas larger units are of 'pillow' type in which many units are stacked in series and held in a pressurized clamp.
(b) Biasing

With the polarity of V as shown in Fig. 64.11 (a), the junctions J_{1} and J_{3} become forward-biased whereas J_{2} is re-verse-biased. Hence, no current (except leakage current) can flow through the SCR.

In Fig. 64.11 (b), polarity of \mathbf{V} has been reversed. It is seen that, now, junctions J_{1} and J_{3} become reverse-biased and only J_{2} is forward-biased. Again, there is no flow of current through the SCR.

Fig. 64.11
(c) Operation

In Fig. $64.11(a)$, current flow is blocked due to reverse-biased junction J_{2}. However, when anode voltage is increased, a certain critical value called forward breakover voltage $V_{B O}$ is reached when J_{2} breaks down and SCR switches suddenly to a highly conducting state. Under this condition,

SCR offers very little forward resistance $(0.01 \Omega-1.0 \Omega)$ so that voltage across it drops to a low value (about 1 V) as shown in Fig. 64.12 and current is limited only by the power supply and the

Fig. 64.12 load resistance. Current keeps flowing indefinitely until the circuit is opened briefly.

With supply connection as in Fig. 64.11 (b), the current through the SCR is blocked by the two reversebiased junctions J_{1} and J_{3}. When V is increased, a stage comes when Zener breakdown occurs which may destroy the SCR (Fig. 64.12). Hence, it is seen that SCR is a unidirectional device unlike triac which is bi-directional.

(d) Two Transistor Analogy

The basic operation of a SCR can be described by using two transistor analogy. For this purpose, SCR is split into two 3-layer transistor structures as shown in Fig. 64.13 (a). As seen, transistor Q_{1} is a $P N P$ transistor whereas Q_{2} is an NPN device interconnected together. It will also be noted from Fig. 64.13 (b) that
(i) collector current of Q_{1} is also the base current of Q_{2} and
(ii) base current of Q_{1} is also the collector current of Q_{2}.

Suppose that the supply voltage across terminals A and C is such that reverse-biased junction J_{2} starts breaking down. Then, current through the device begins to rise. It means that $I_{E 1}$ begins to increase.

Then,

1. $I_{C 1}$ increases (remember $I_{C}=\alpha I_{E}$);
2. since $I_{C 1}=I_{B 2}, I_{B 2}$ also increases;
3. hence, $\mathrm{I}_{C 2}$ increases (remember $I_{C}=\beta I_{B}$);
4. now, $I_{C 2}=I_{B 1}$, hence $I_{B 1}$ increases;
5. consequently, both $I_{C 1}$ and $I_{E 1}$ increase.

As seen, a regenerative action takes place whereby an initial increase in current produces further increase in the same current. Soon, maximum current is reached limited by external resistances. The two transistors are fully turned ON and voltage across the two transistors falls to a very low value. Typical turn-ON times for an SCR are 0.1 to $1.0 \mu \mathrm{~s}$.

It can be proved that if I_{G} is the gate current of the SCR and α_{1} and α_{2}, the current gains

Fig. 64.13 of the PNP and NPN transistors respectively, then anode current is given by

$$
I_{A}=\frac{\alpha_{2} I_{G}}{1-\left(\alpha_{1}+\alpha_{2}\right)}
$$

(e) Firing and Triggering

Usually, SCR is operated with an anode voltage slightly less than the forward breakover voltage $V_{B O}$ and is triggered into conduction by a low-power gate pulse. Once switched ON, gate has no further control on the device current. Gate signals can be (a) dc firing signals [Fig. 64.14 (a)] or (b) pulse signals [Fig. 64.14 (b)].

In Fig. $64.14(a)$ with S open, SCR does not conduct and the lamp is out. When S is closed momentarily, a positive voltage is applied to the gate which forward-biases the centre $P-N$ junction.

Fig. 64.14 As a result, SCR is pulsed into conduction and the lamp lights up. SCR will remain in the conducting state until the supply voltage is removed or reversed. Fig. 64.14 (b) shows triggering by timed pulses obtained from a pulse source.

We have discussed above the most common method of SCR triggering i.e. gate triggering. However, other available triggering methods are as under :

1. Thermal Triggering

In this case, the temperature of the forward-biased junction is increased till the reverse-biased junction breaks down.

2. Radiation Triggering

Here, triggering is achieved with the help of charge carriers which are produced by the bombardment of the SCR with external high-energy particles like neutrons or protons.

3. Voltage Triggering

In this case, the voltage applied across the anode and cathode of the SCR is increased which decreases the width of the depletion layer at the reverse-biased junction leading to its collapse.

4. $d v / d t$ Triggering

In this case, $\mathrm{dv} / \mathrm{dt}$ is made more than the value of the critical rate of rise of the voltage.

(f) Turning OFF

As stated earlier, once 'fired', SCR remains ON even when triggering pulse is removed. This ability of the SCR to remain ON even when gate current is removed is referred to as latching. In fact, SCR belongs to a class of devices known as latching devices.

By now, it is clear that an SCR cannot be turned OFF by simply removing the gate pulse. Number of techniques are employed to turn an SCR off. These are :

1. anode current interruption.
2. reversing polarity of anode-cathode voltage as is done each half-cycle by v in Fig. 64.14 (b);
3. reducing current through SCR below the holding current I_{H} (Fig. 64.12). It is also called low-current dropout.

(g) Applications

Main application of an SCR is as a power control device. It has been shown above that when SCR is OFF, its current is negligible and when it is ON, its voltage is negligible. Consequently, it never dissipates any appreciable amount of power even when controlling substantial amounts of load power. For example, one SCR requires only 150 mA to control a load current of 2500 A . Other common areas of its application include.

1. relay controls,
2. regulated power supplies,
3. static switches,
4. motor controls,
5. inverters,
6. battery chargers,
7. heater controls,
8. phase control.

SCRs have been designed to control powers upto 10 MW with individual ratings as high as 2000 A at 1.8 kV . Its frequency range of application has been extended to about 50 kHz .

Example 64.4. The two-transistor analogy of an SCR has the following data : gain of PNP transistor $=0.4$; gain of NPN transistor $=0.5$; gate current $\quad=50 \mathrm{~mA}$.
Calculate the anode current of the device.
Solution. Here, $\alpha_{1}=0.4 ; \quad \alpha_{2}=0.5 \quad$ and $\quad I_{\mathrm{G}}=50 \mathrm{~mA}=0.05 \mathrm{~A}$
anode current, $I_{A}=\frac{\alpha_{2} I_{G}}{1-\left(\alpha_{1}+\alpha_{2}\right)}=\frac{0.5 \times 0.05}{1-(0.4+0.5)}=0.25 \mathrm{~A}=250 \mathrm{~mA}$

64.6. Comparison Between Transistors and Thyristors

Table No. 64.1 gives the comparison between transistors and thyristors.

Table No. 64.1

Sl.No.

Transistors

1. 3-layers, 2-junction devices
2. fast response
3. high efficiency
4. highly reliable
5. small voltage drop
6. long life
7. small to medium power ratings
8. require a continuous flow of current to remaIn in conducting state
9. low power consumption
10. low control capability
11. small turn-ON and turn-OFF time

Thyristors

4-layer, 2 - or more junction devices
very fast response
very high efficiency
very highly reliable
very small voltage drop
very long life
very small to very large power ratings
require only a small pulse for triggering and
thereafter remaining in conducting state.
very low power consumption
high control capability
very small turn-ON and turn-OFF time very fast response very high efficiency very highly reliable very small voltage drop very long life ery small to very large power ratings thereafter remaining in conducting state. very low power consumption high control capability very small turn-ON and turn-OFF time

Example 64.5. A 250Ω resistor is connected in series with the gate of an SCR as shown in Fig. 64.15. The gate current required for firing the $S C R$ is 8 mA . Calculate the value of the input voltage $V_{\text {in }}$ required for causing the $S C R$ to break down.
(Basic Electronics, Osmania Univ. 1993)
Solution. The value of $V_{i n}$ should be such as to (i) overcome the barrier voltage of 0.7 V and (ii) cause 8 mA current to flow through 250Ω resistor.

$$
V_{\mathrm{in}}=V_{G C}+I_{G} R=0.7+8 \times 10^{-3} \times 250=2.7 \mathrm{~V}
$$

64.7. Transient Effects in an SCR

We will consider the following two effects :
(i) di/dt Effect

This effect is produced due to a high initial rate-of-rise of the anode current when an SCR is just switched ON and results in the formation of a local hot spot near the gate connection as explained below :

When a trigerring pulse is applied to the gate of an SCR, the holes are injected into the P-region where they crowd together and form an initial conduction zone over a small part of the junction J_{2} before spreading the conduct throughout the whole area of junction. If the anode current is allowed to rise very rapidly (as would be the case for resistive or capacitive loads), this high current will be forced to flow through this small conduction zone until the conduction has spread through the entire junction. This may result in local hot-spots in the

Fig. 64.15 junction which are likely to damage the SCR permanently.

The maximum allowable anode current $d i / d t$ can be increased (and, hence, turn-on time of an SCR decreased) by using specially-designed gate-connection geometries which result in a more rapid distribution of charge throughout the gate region.
(ii) $d v / d t$ Effect

It is found that sometimes an SCR unwantedly turns ON by itself during sudden changes of the applied anode potential at a time when there is no gate current applied and the SCR is supposed to be blocking. This false triggering is due to the capacitance possessed by the large-area junction J_{2} (Fig. 64.10). When rate-of-rise of the applied anode voltage $d v / d t$ is very high, the capacitive charging current may become high enough to initiate switch-on even in the absence of external gate current. False triggerings due to the $d v / d t$ are prevented by using a 'snubber circuit'.

64.8. Phase Control

In the phase control circuit of Fig. 64.16, gate triggering current is derived from the supply itself. The variable resistance R limits the gate current during positive half-cycles of the supply. If R is adjusted to a low value, SCR will trigger almost immediately at the commencement of the positive half-cycle of the input.

If, on the other hand, R is set to a high resistance, SCR may not switch ON until the peak of the positive half-cycle. By adjusting R between these two extremes, SCR can be

Fig. 64.16 made to switch ON somewhere between the commencement and peak of the positive half-cycle i.e. between 0° and 90°.

It is obvious that if I_{G} is not enough to trigger the SCR at 90°, then the device will not trigger at all because I_{G} has maximum value then. This operation is sometimes referred to as half-wave vari-able-resistance phase control. It is an effective method of controlling the load power.

The purpose of diode D is to protect the gate from negative voltage which would otherwise be applied to it during the negative half-cycle of the input.

It is seen from Fig. 64.16 that at the instant of SCR switch-ON, gate current flows through R_{L}, R and D. Hence, at that instant

$$
\mathrm{v}=I_{\mathrm{G}} R_{\mathrm{L}}+I_{\mathrm{G}} R+V_{\mathrm{D}}+V_{\mathrm{G}} \quad \therefore \quad R=\frac{V-V_{D}-V_{G}-I_{G} R_{L}}{I_{G}}
$$

Example 64.6. The circuit of Fig. 64.16 is connected to an ac supply $v=50 \sin \theta$ and $R_{L}=50 \Omega$. Gate current is $100 \mu \mathrm{~A}$ and $V_{G}=0.5 \mathrm{~V}$. Determine the range of adjustment of R for the $S C R$ to be triggered between 30° and 90°. Take $V_{D}=0.7 \mathrm{~V}$.

$$
\begin{aligned}
& \text { Solution. (i) } \quad \theta=30^{\circ} \\
& \text { Now, } \quad v=50 \sin \theta=50 \sin 30^{\circ}=25 \mathrm{~V} \\
& \therefore \quad R=\frac{25-0.7-0.5-\left(100 \times 10^{-6} \times 50\right)}{100 \times 10^{-6}}=238 \mathrm{~K}
\end{aligned}
$$

$$
\begin{align*}
& \theta=90^{\circ} \tag{ii}\\
& v=50 \sin 90^{\circ}=50 \mathrm{~V} \\
& R=\frac{50-0.7-0.5-0.005}{100 \times 10^{-6}}=488 \mathrm{~K}
\end{align*}
$$

64.9. Theft Alarm

The circuit shown in Fig. 64.17 can be used to protect a car tape deck or a radio receiver from theft. The switch S is located at some concealed point in the car and is kept closed. Since gate G is grounded through the tape deck, the SCR is OFF and the horn is silent. If the tape deck is removed, G is no longer grounded. Instead, it gets connected to the car battery through R. Consequently, gate current is set up which fires the SCR. As a result, the horn starts blowing and continues to do so until S is opened.

Fig. 64.17

64.10. Emergency Lighting System

SCRs find application in circuits that maintain lighting by using a backup battery in case of ac power failure. Fig. 64.18 shows a centre-tapped full-wave rectifier used for providing power to a low-voltage lamp. So long as ac power is available, the battery is charged via diode D_{3} and resistor R_{1} [Fig. 64.18 (a)].

With ac power ON, the capacitor C charges to the peak value of the full-wave rectified ac voltage $i . e$. to $12.4 \times 1.414=17.5 \mathrm{~V}$. Same is the voltage of the SCR cathode K .

Fig. 64.18

Since voltage of SCR anode A is less than that of K, the SCR does not conduct. The SCR gate G is at a voltage determined by voltage divider $R_{3}-R_{2}$. Under these conditions, the lamp is run by the ac supply and SCR is OFF.

When ac power is interrupted :
(i) the capacitor C discharges through the closed path $\mathrm{R}_{1}, \mathrm{D}_{3}$ and R_{3} shown by dotted arrows;
(ii) the cathode voltage decreases thereby making it less positive than anode;
(iii) this triggers SCR into conduction which allows the battery current to pass through the lamp thus maintaining illumination.
When ac supply is restored, C recharges and the SCR turns OFF. The battery starts recharging again.

64.11. Light Activated SCR (LASCR)

It is just an ordinary SCR except that it can also be light-triggered. Most LASCRs also have a gate terminal for being triggered by an electrical pulse just as a convential SCR. Fig. 64.19 shows the two LASCR symbols used commonly.

LASCRs are manufactured mostly in relatively low-current ranges and are used for triggering larger SCRs and triacs. They are used in optical light controls, relays, motor control and a variety of computer applications. Some LASCRs have clear windows in their cases so that light sources from other devices can be coupled to them. Many have the light source device encapsulated in the same package so that a relay is formed. Since the relay action does not require direct electrical connection, such relays are often used to couple signals into very high voltage equipment and other dangerous locations. Fig. 64.20 shows the connection of such a solid-state relay. Two LASCRs are connected in reverse parallel in order to obtain conduction in both half-cycles of the applied ac voltage V_{S}. A single LED is used to trigger both LASCRs. Bias resistors are used to reduce the light sensitivity of the gates and prevent sporadic triggering during off-periods. Usually, all the three active devices and the two bias resistors R_{G} are encapsulated in the same package.

64.12. The Shockley Diode*

It is a two-terminal four-layer or PNPN device as shown in Fig. 64.21 along with its schematic symbol. It is essentially a low-current $S C R$ without a gate. For switching the diode ON, its anode-to-cathode voltage $\left(V_{\mathrm{AK}}\right)$ must be increased to forward switching voltage $\left(V_{S}\right)$ which is the equivalent of SCR forward breakover voltage. Like an SCR, it also has a holding current. The $P N P N$ structure can be represented by an equivalent circuit consisting of a PNP transistor and an $N P N$ transistor. One application of the diode is as

Fvvvig. 64.21 a relaxation oscillator.

64.13. Triac

It is a 5-layer bi-directional device which can be triggered into conduction by both positive and negative voltages at its anodes and with both positive and negative triggering pulses at its gate. It behaves like two SCRs connected in parallel, upside down with respect to each other. That is, the anode of one is tied to the cathode of the other and their gates are directly tied together. Hence, anode and gate voltages applied in either direction will fire a triac because they would fire at least one of the two SCRs which are in opposite directions.

Since a triac responds to both positive and negative voltages at the anode, the concept of cathode used for an SCR is dropped. Instead, the two electrodes are called anodes A_{1} and A_{2}.

[^21]
1. Construction

As shown in Fig. $64.22(a)$, a triac has three terminals A_{1}, A_{2} and G. As seen, gate G is closer to anode A_{1}. It is clear from Fig. $64.22(b)$, that a triac is nothing but two inverse parallel-connected

Fig. 64.22

Fig. 64.23

SCRs with a common gate terminal. As seen, it has six doped regions. Fig. 64.23 shows the schematic symbol which consists of two inverse-connected SCR symbols.

2. Operation

(a) When \mathbf{A}_{2} is Positive

When positive voltage is applied to A_{2}, path of current flow is $P_{1}-N_{1}-P_{2}-N_{2}$. The two junctions $P_{1}-N_{1}$ and $P_{2}-N_{2}$ are forward-biased whereas $N_{1}-P_{2}$ junction is blocked. The gate can be given either positive or negative voltage to turn ON the triac as explained below.
(i) positive gate

A positive gate (with respect to A_{1}) forward-biases the $P_{2}-N_{2}$ junction and the breakdown occurs as in a normal SCR.
(ii) negative gate

A negative gate forward-biases the $P_{2}-N_{3}$ junction and current carriers injected into P_{2} turn on the triac.

(b) When A_{1} is Positive

When positive voltage is applied to anode A_{1}, path of current flow is $\mathrm{P}_{2}-\mathrm{N}_{1}-\mathrm{P}_{1}-\mathrm{N}_{4}$. The two junctions $P_{2}-N_{1}$ and $P_{1}-N_{4}$ are forward-biased whereas junction $N_{1}-P_{1}$ is blocked. Conduction can be achieved by giving either positive or negative voltage to G as explained below.
(i) positive gate

A positive gate (with respect to A_{1}) injects current carriers by forward-biasing $P_{2}-N_{2}$ junction and thus initiates conduction.
(ii) negative gate

A negative gate injects current carriers by forward-biasing $P_{2}-N_{3}$ junction thereby triggering conduction.

It is seen that there are four triac-triggering modes, two each for the two anodes.

Low-current dropout is the only way to open a triac.

Fig. 64.24

3. V/I Characteristics

Typical characteristics of a triac are shown in Fig. 64.24.
As seen, triac exhibits same forward blocking and forward conducting characteristics as an

Fig. 64.25 SCR but for either polarity of voltage applied to the main terminal. Obviously, a triac has latch current in either direction.

4. Applications

One fundamental application of triac is shown in Fig. 64.25. Here, it is used to control ac power to a load by switching ON and OFF during positive and negative half-cycles of the input ac power.

During positive half-cycle of the input, diode D_{1} is forward biased, D_{2} is reverse-biased and gate is positive with respect to A_{1}. By adjusting R, the point at which conduction commences can be varied.

Diac-triac combination for ac load power control is shown in Fig. 64.26. Firing control of diac is achieved by adjusting R.

Other applications of a triac include.

1. as static switch to turn ac power OFF and ON;
2. for minimizing radio interference;
3. for light control;
4. for motor speed control etc.
The only disadvantage of

Fig. 64.26 triac is that it takes comparatively longer time to recover to OFF state. Hence, its use is limited to ac supply frequencies of upto 400 Hz .

64.14. Diac

To put it simply, a diac is nothing else but a triac without its gate terminal as shown in Fig.

Fig. 64.27
64.27 (a). Its equivalent circuit is a pair of inverted four layer diodes. Its schematic symbol is shown in Fig. 64.27 (b). As seen, it can break down in either direction.

When anode A_{1} is positive, the current path is $P_{2}-N_{2}-P_{1}-N_{1}$. Similarly, when A_{2} is positive, the current flow path is $P_{1}-N_{2}-P_{2}-N_{3}$. Diac is designed to trigger triacs or provide protection against over-voltages.

The operation of a diac can best be explained by imaging it as two-diodes connected in series. Voltage applied across it in either direction turns ON one diode, reverse-biasing the other. Hence, it can be switched from OFF to ON state for either polarity of the applied voltage.

The characteristic curve of a typical diac is shown in Fig. 64.28. It resembles the letter Z since diac breaks down in either direction.

As stated above, diac has symmetrical bi-directional switching characteristics. Because of this feature, diacs are frequently used as triggering devices in triac phase control circuits used for light dimming, universal motor speed control and heat control etc.

64.15. Silicon Controlled Switch (SCS)

It is a four-layer, four-terminal PNPN device having anode A, cathode C, anode gate G_{1} and cathode gate G_{2} as shown in Fig. 64.29. In fact, it is a low-current SCR with two gate terminals. The two transistor equivalent circuit is shown in Fig. 64.30.

Switching ON and OFF

The device may be switched ON or OFF by a suitable pulse is applied at either gate. As seen from Fig. 64.30, a negative pulse is required at anode gate G_{1} to turn the device ON whereas positive pulse is needed to turn it OFF as explained below.

Fig. 64.30

Fig. 64.29
Similarly, at cathode gate G_{2}, a negative pulse is required to switch the device OFF and a positive pulse to turn it ON.

As seen from Fig. 64.30, when a negative pulse is applied to G_{1}, it forward-biases Q_{1} (being $P N P$) which is turned ON. The resulting heavy collector current I_{C}, being the base current of Q_{2}, turns it ON. Hence, SCS is switched ON. A positive pulse at G_{1} will reverse bias E/B junction of Q_{1} thereby switching the SCS OFF.

V/I Characteristics

The V/I characteristics of an SCS are essentially the same as those for the SCR (Fig. 64.13).

As compared to an SCR, an SCS has much reduced turn-OFF time. Moreover, it has higher control and triggering sensitivity and a more predictable firing situation.

Applications

The more common areas of SCS applications are as under :

1. in counters, registers and timing circuits of computers,
2. pulse generators,
3. voltage sensors,
4. oscillators etc.

OBJECTIVE TESTS - 64

1. A unijunction transistor has
(a) anode, cathode and a gate
(b) two bases and one emitter
(c) two anodes and one gate
(d) anode, cathode and two gates.
2. Which semiconductor device acts like a diode and two resistors ?
(a) SCR
(b) triac
(c) diac
(d) UJT.
3. A UJT has $R_{B B}=10 \mathrm{~K}$ and $\mathrm{R}_{\mathrm{B} 2}=4 \mathrm{~K}$. Its intrinsic stand-off ratio is
(a) 0.6
(b) 0.4
(c) 2.5
(d) $5 / 3$.
4. An SCR conducts appreciable current when its
\qquad with respect to cathode.
(a) anode and gate are both negative
(b) anode and gate are both positive
(c) anode is negative and gate is positive
(d) gate is negative and anode is positive.
5. After firing an $S C R$, the gating pulse is removed. The current in the SCR will
(a) remains the same
(b) immediately fall to zero
(c) rise up
(d) rise a little and then fall to zero.
6. An SCR may be turned OFF by
(a) interrupting its anode current
(b) reversing polarity of its anode- cathode voltage
(c) low-current dropout
(d) all of the above.
7. A triac behaves like two
(a) inverse parallel-connected SCRs with common gate
(b) diodes in series
(c) four-layer diodes in parallel
(d) resistors and one diode.
8. A triac can be triggered into conduction by (a) only positive voltage at either anode
(b) positive or negative voltage at either anode
(c) positive or negative voltage at gate
(d) both (b) and (c).
9. A diac is equivalent to a
(a) pair of SCRs
(b) pair of four-layer SCRs
(c) diode and two resistors
(d) triac with two gates.
10. An SCS has
(a) four layers and three terminals
(b) three layers and four terminals
(c) two anodes and two gates
(d) one anode, one cathode and two gates.
11. An SCS may be switched ON by a
(a) positive pulse at its anode
(b) negative pulse at its cathode
(c) positive pulse at its cathode gate G_{2}
(d) positive pulse at its anode gate G_{1}.
12. The $d v / d t$ effect in an SCR can result in
(a) high rate-of-rise of anode voltage
(b) increased junction capacitance
(c) false triggering
(d) low capacitive charging current.
13. The $d i / d t$ effect in an SCR leads to the formation of
(a) local hot spots
(b) conduction zone
(c) charge spreading zone
(d) none of the above.
14. SCR turns OFF from conducting state to blocking state on
(a) reducing gate current
(b) reversing gate voltage
(c) reducing anode current below holding current value
(d) applying ac to the gate
15. When a thyristor is negatively biased,
(a) all the three junctions are negatively biased
(b) outer junctions are positively biased and the inner junction is negatively biased.
(c) outer junctions are negatively biased and the inner junction is positively biased
(d) the junction near the anode is negatively biased and the one near the cathode is positively biased.
16. A LASCR is just like a conventional SCR except that it
(a) cannot carry large current
(b) can also be light-triggered
(c) has no gate terminal
(d) cannot be pulse-triggered.
17. The minimum value of current required to maintain conduction in an SCR is called its \qquad current.
(a) commutation
(b) holding
(c) gate trigger
(d) breakover
18. Diacs are primarily used as
(a) pulse generators
(b) triggering devices
(c) surge protection devices
(d) power thyristors.

ANSWERS								
1. (b)	2. (d)	3. (a)	4. (b)	5. (a)	6. (d)	7. (a)	8. (d)	9. (b)
10. (d)	11. (c)							
12. (c)	13. (a)	14. (c)	15. (c)	16. (b)	17. (b)	18. (b)		

C H A P T E R

Leaming Objectives

$>$ What is an Oscillator?
> Classification of Oscillators
> Damped and Undamped Oscillations
> Oscillatory Circ uit
> Essentialsofa FeedbackLC Oscillator
> Tuned Base Oscillator
> Tuned Collector Oscillator
> Hartley Oscillator
$>$ FETHartley Oscilla tor
> Colpitts Oscilla tor
> Clapp Oscillator
> FETColpitts Oscilla tor
> Crystal Controlled Oscillator
> Transistor Pierce Cystal Oscillator
> FETPierce Oscillator
> Phase Shift Principle
> RC Phase Shift Oscillator
> Wien Bridge Oscillator
> Pulse Definitions
> Basic Requirements of a Sawtooth Generator
> UJTSawtooth Generator
> Multivibrators (MV)
> Astable Multivibrator
> Bistable Multivibrator (BMV)
> Schmitt Trigger
> Transistor Blocking Oscillator

SINUSOIDAL AND NONSINUSOIDAL OSCILLATORS

An oscillator is an electronic device used for the purpose of generating a signal. Oscillators are found in computers, wireless receivers and transmitters, and audiofrequency equipment particularly music synthesizers

65.1. What is an Oscillator?

An electronic oscillator may be defined in any one of the following four ways :

1. It is a circuit which converts dc energy into ac energy at a very high frequency;
2. It is an electronic source of alternating current or voltage having sine, square or sawtooth or pulse shapes;
3. It is a circuit which generates an ac output signal without requiring any externally applied input signal;
4. It is an unstable amplifier.

These definitions exclude electromechanical alternators producing 50 Hz ac power or other devices which convert mechanical or heat energy into electric energy.

65.2. Comparison Between an Amplifier and an Osc illator

As discussed in Chapter-10, an amplifier produces an output signal whose waveform is similar to the input signal but whose power level is generally high. This additional power is supplied by

Fig. 65.1
the external dc source. Hence, an amplifier is essentially an energy convertor i.e. it takes energy from the dc power source and converts it into ac energy at signal frequency. The process of energy conversion is controlled by the input signal. If there is no input signal, there is no energy conversion and hence there is no output signal.

An oscillator differs from an amplifier in one basic aspect : the oscillator does not require an external signal either to start or maintain energy conversion process (Fig. 65.1). It keeps producing an output signal so long as the dc power source is connected.

Moreover, the frequency of the output signal is determined by the passive components used in the oscillator and can be varied at will.

65.3. Classific ation of Osc illators

Electronic oscillators may be broadly divided into following two groups :
(i) Sinusoidal (or harmonic) oscillators-which produce an output having sine waveform;
(ii) Non-sinusoidal (or relaxation) oscillators-they produce an output which has square, rectangular or sawtooth waveform or is of pulse shape.
Sinusoidal oscillators may be further subdivided into :
(a) Tuned-circuits or LC feedback oscillators such as Hartley, Colpitts and Clapp etc.;
(b) $R C$ phase-shift oscillators such as Wien-bridge oscillator;
(c) Negative-resistance oscillators such as tunnel diode oscillator;
(d) Crystal oscillators such as Pierce oscillator;
(e) Heterodyne or beat-frequency oscillator (BFO).

The active devices (bipolars, FETs or unijunction transistors) in the above mentioned circuits may be biased class-A, B or C. Class-A operation is used in high-quality audio frequency oscillators. However, radio frequency oscillators are usually operated as class-C.

65.4. Damped and Undamped Osc illations

Sinusoidal oscillations produced by oscillators may be (i) damped or (ii) undamped.
(i) Damped Oscillations

Fig. 65.2

Oscillations whose amplitude keeps decreasing (or decaying) with time are called damped or decaying oscillations. The waveform of such oscillations is shown in Fig. 65.2 (a). These are produced by those oscillator circuits in which $I^{2} R$ losses take place continuously during each oscillation without any arrangement for compensating the same. Ultimately, the amplitude of the oscillations decays to zero when there is not enough energy to supply circuit losses. However, the frequency or time-period remains constant because it is determined by the circuit parameters.

Sinusoidal oscillators serve a variety of functions in telecommunications and in electronics. The most important application in telecommunication is the use of sine waves as carrier signal in both radio and cable transmissions.

Sine wave signals are also used in frequency response testing of various types of systems and equipment including analogue communication channels, amplifiers and filters and closed-loop control systems.
(ii) Undamped Oscillations

Oscillations whose amplitude remains constant i.e. does not change with time are called undamped oscillations. These are produced by those oscillator circuits which have no losses or if they have, there is provision for compensating them. The constant-amplitude and constant-frequency sinusoidal waves shown in Fig. 65.2 (b) are called carrier waves and are used in communication transmitters for transmitting low-frequency audio information to far off places.

65.5. The Oscillatory Circ uit

It is also called $L C$ circuit or tank circuit. The oscillatory circuit (Fig. 65.3) consists of two reactive elements i.e. an inductor and a capacitor. Both are capable of storing energy. The capacitor stores energy in its electric field whenever there is potential difference across its plates. Similarly, a coil or an inductor stores energy in its magnetic field whenever current flows through it. Both L and C are supposed to be loss-free (i.e. their Q-factors are infinite).

As shown in Fig. 65.3 (a), suppose the capacitor has been fully-charged from a dc source. Since S is open, it cannot discharge through L. Now, let us see what happens when S is closed.

1. When S is closed [Fig. $65.3(b)$] electrons move from plate A to plate B through coil L as shown by the arrow (or conventional current flows from B to A). This electron flow reduces the strength of the electric field and hence the amount of energy stored in it.
2. As electronic current starts flowing, the self-induced emf in the coil opposes the current flow. Hence, rate of discharge of electrons is somewhat slowed down.
3. Due to the flow of current, magnetic field is set up which stores the energy given out by
the electric field [Fig. 65.3 (b)].
4. As plate A loses its electrons by discharge, the electron current has a tendency to die down and will actually reduce to zero when all excess electrons on A are driven over to plate B so that both plates are reduced to the same potential. At that time, there is no electric field but the magnetic field has maximum value.
5. However, due to self-induction (or electrical inertia) of the coil, more electrons are transferred to plate B than are necessary to make up the electron deficiency there. It means that now plate B has more electrons than A. Hence, capacitor becomes charged again though in opposite direction as shown in Fig. 65.3 (c).
6. The magnetic field L collapses and the energy given out by it is stored

Fig. 65.3 in the electric field of the capacitor.
7. After this, the capacitor starts discharging in the opposite direction so that, now, the electrons move from plate B to plate A [Fig. $65.3(d)]$. The electric field starts collapsing whereas magnetic field starts building up again though in the opposite direction. Fig. 65.3 (d) shows the condition when the capacitor becomes fully discharged once again.
8. However, these discharging electrons overshoot and again an excess amount of electrons flow to plate A, thereby charging the capacitor once more.
9. This sequence of charging and discharging continues. The to and fro motion of electrons between the two plates of the capacitor constitutes an oscillatory current.
It may be also noted that during this process, the electric energy of the capacitor is converted into magnetic energy of the coil and vice versa.

These oscillations of the capacitor discharge are damped because energy is dissipated away gradually so that their amplitude becomes zero after sometime. There are two reasons for the loss of the energy :
(a) Some energy is lost in the form of heat produced in the resistance of the coil and connecting wires;
(b) and some energy is lost in the form of electromagnetic (EM) waves that are radiated out from the circuit through which an oscillatory current is passing.

Both these losses subtract energy from the circuit with the result that circuit current decreases gradually till it becomes zero. The waveform of the oscillatory discharge is similar to that shown in Fig. 65.2 (a).

65.6. Frequency of Oscillatory Current

The frequency of time-period of the oscillatory current depends on two factors :
(a) Capacitance of the Capacitor

Larger the capacitor, greater the time required for the reversal of the discharge current i.e. lower its frequency.
(b) Self-inductance of the Coil

Larger the self-inductance, greater the internal effect and hence longer the time required by the current to stop flowing during discharge of the capacitor.

The frequency of this oscillatory discharge current is given by

$$
f=\frac{1}{2 \pi \sqrt{L C}}=\frac{159}{\sqrt{L C}} \mathrm{kHz}
$$

where $\quad L=$ self-inductance in μH and $C=$ capacitance in μF
It may, however, be pointed out here that damped oscillations so produced are not good for radio transmission purpose because of their limited range and excessive distortion. For good radio transmission, we need undamped oscillations which can be produced if some additional energy is supplied in correct phase and correct direction to the $L C$ circuit for making up the $I^{2} R$ losses continually occuring in the circuit.

65.7. Frequency Stability of an Osc illator

The ability of an oscillator to maintain a constant frequency of oscillation is called its frequency stability. Following factors affect the frequency stability :

1. Operating Point of the Active Device

The Q-point of the active device (i.e. transistor) is so chosen as to confine the circuit operation on the linear portion of its characteristic. Operation on non-linear portion varies the parameters of the transistor which, in turn, affects the frequency stability of the oscillator.

2. Inter-element Capacitances

Any changes in the inter-element capacitances of a transistor particularly the collector- to-emitter capacitance cause changes in the oscillator output frequency, thus affecting its frequency stability. The effect of changes in inter-element capacitances, can be neutralized by adding a swamping capacitor across the offending elements-the added capacitance being made part of the tank circuit.

3. Power Supply

Changes in the dc operating voltages applied to the active device shift the oscillator frequency. This problem can be avoided by using regulated power supply.

4. Temperature Variations

Variations in temperature cause changes in transistor parameters and also change the values of resistors, capacitors and inductors used in the circuit. Since such changes take place slowly, they cause a slow change (called drift) in the oscillator output frequency.

5. Output Load

A change in the output load may cause a change in the Q-factor of the $L C$ tuned circuit thereby affecting the oscillator output frequency.

6. Mechanical Vibrations

Since such vibrations change the values of circuit elements, they result in changes of oscillator frequency. This instability factor can be eliminated by isolating the oscillator from the source of mechanical vibrations.

65.8. Essentials of a Feedback LC Osc illator

The essential components of a feedback $L C$ oscillator shown in Fig. 65.4 are :

1. A resonator which consists of an $L C$ circuit. It is also known as fre-quency-determining network (FDN) or tank circuit.
2. An amplifier whose function is to amplify the oscillations produced

Fig. 65.4 by the resonator.
3. A positive feedback network $(P F N)$ whose function is to transfer part of the output energy to the resonant $L C$ circuit in proper phase. The amount of energy fed back is sufficient to meet $I^{2} R$ losses in the $L C$ circuit.
The essential condition for maintaining oscillations and for finding the value of frequency is

$$
\beta A=1+j 0 \quad \text { or } \quad \beta A \angle \phi=1 \angle 0
$$

It means that
(i) The feedback factor or loop gain $|\beta A|=1$,
(ii) The net phase shift around the loop is 0° (or an integral multiple of 360°). In other words, feedback should be positive.
The above conditions form Barkhausen criterion for maintaining a steady level of oscillation at a specific frequency.

Majority of the oscillators used in radio receivers and transmitters use tuned circuits with positive feedback. Variations in oscillator circuits are due to the different way by which the feedback is applied. Some of the basic circuits are :

1. Armstrong or Tickler or Tuned-base Oscillator - it employs inductive feedback from collector to the tuned $L C$ circuit in the base of a transistor.
2. Tuned Collector Oscillator-it also employs inductive coupling but the $L C$ tuned circuit is in the collector circuit.
3. Hartley Oscillator-Here feedback is supplied inductively.
4. Colpitts Oscillator-Here feedback is supplied capacitively.
5. Clapp Oscillator-It is a slight modification of the Colpitts oscillator.

65.9. Tuned Base Oscillator

Such an oscillator using a transistor in CE configuration is shown in Fig. 65.5. Resistors R_{1}, R_{2} and R_{3} determine the dc bias of the circuit. The parallel $R_{3}-$ C_{2} network in the emitter circuit is a stabilizing circuit to prevent signal degeneration. As usual, C_{1} is the dc blocking capacitor. The mutually-coupled coils L_{1} and L forming primary and secondary coils of an $R F$ transformer provide the required feedback between the collector and base circuits. The amount

Fig. 65.5 of feedback depends on the coefficient of coupling between the two coils. The $C E$ connected transistor itself provides a phase shift of 180° between its input and output circuits. The transformer provides another 180° phase shift and thus producing a total phase shift of 360° which is an essential condition for producing oscillations.

The parallel-tuned $L C$ circuit connected between base and emitter is the frequency determining network (FDN) i.e. it generates the oscillations at its resonant frequency.

Circuit Action

The moment switch S is closed, collector current is set up which tends to rise to its quiescent value. This increase in I_{C} is accompanied by :

1. An expanding magnetic field through L_{1} which links with L and
2. An induced e.m.f. called feedback voltage in L.

Two immediate reactions of this feedback voltage are:
(i) Increase in emitter-base voltage (and base current) and
(ii) A further increase in collector current I_{C}.

It is followed by a succession of cycles of

1. An increase in feedback voltage,
2. An increase in emitter-base voltage and
3. An increase in I_{C} until saturation is reached.

Meanwhile, C gets charged. As soon as I_{C} ceases to increase, magnetic field of L_{1} ceases to expand and thus no longer induces feedback voltage in L. Having been charged to maximum value, C starts to discharge through L. However, decrease in voltage across C causes the following sequence of reactions :

1. A decrease in emitter-base bias and hence in $I_{\mathrm{B}}, 2$. A decrease in I_{C};
2. A collapsing magnetic field in L_{1};
3. An induced feedback voltage in L though, this time, in opposite direction;
4. Further decrease in emitter-base bias and so on till I_{C} reaches its cut-off value.

During this time, the capacitor having lost its original charge, again becomes fully charged though with opposite polarity. Transistor being in cut-off, the capacitor will again begin to discharge through L. Since polarity of capacitor charge is opposite to that when transistor was in saturation, the sequence of reactions now will be

1. An increase in emitter-base bias,
2. An expanding magnetic field in L_{1},
3. A further increase in emitter-base bias and
4. So on till I_{C} increases to its saturation value.

This cycle of operation keeps repeating so long as enough energy is supplied to meet losses in the $L C$ circuit.

The output can be taken out by means of a third winding L_{2} magnetically coupled to L_{1}. It has approximately the same waveform as collector current.

The frequency of oscillation is equal to the resonant frequency of the $L C$ circuit.

65.10. Tuned Collector Oscillator

Such an oscillator using a transistor in $C E$ configuration is shown in Fig. 65.6.
(i) Frequency Determining Network (FDN)

It is made up of a variable capacitor C and a coil L which forms primary winding of a step-down transformer. The combination of L and C forms an oscillatory tank circuit to set the frequency of oscillation.

Resistors R_{1}, R_{2} and R_{3} are used to dc bias the transistor. Capacitors C_{1} and C_{2} act to bypass R_{3} and R_{2} respectively so that they have no effect on the ac operation of the circuit. Moreover, C_{2} provides ac ground for transformer secondary L_{1}.

Fig. 65.6

(ii) Positive Feedback

Feedback between the collector-emitter circuit and base-emitter circuit is provided by the transformer secondary winding L_{1} which is mutually-coupled to L. As far as ac signals are concerned, L_{1} is connected to emitter via low-reactance capacitors C_{2} and C_{1}.

Since transistor is connected in CE configuration, it provides a phase shift of 180° between its
input and output circuits. Another phase shift of 180° is provided by the transformer thus producing a total phase shift of 360° between the output and input voltages resulting in positive feedback between the two.
(iii) Amplifying Action

The transistor amplifier provides sufficient gain for oscillator action to take place.
(iv) Working

When the supply is first switched on, a transient current is developed in the tuned $L C$ circuit as the collector current rises to its quiescent value. This transient current initiates natural oscillations in the tank circuit. These natural oscillations induce a small emf into L_{1} by mutual induction which causes corresponding variations in base current. These variations in I_{B} are amplified β times and appear in the collector circuit. Part of this amplified energy is used to meet losses taking place in the oscillatory circuit and the balance is radiated out in the form of electromagnetic waves.

The frequency of oscillatory current is almost equal to the resonant frequency of the tuned circuit.

$$
\therefore \quad f_{0}=\frac{1}{2 \pi \sqrt{L C}}
$$

65.11. Tuned Drain Oscillator (FET)

The basic circuit is illustrated in Fig. 65.7. It is similar to the tuned collector oscillator of Fig. 65.6. Because of its high input impedance and high voltage amplification, a FET can be used to construct very simple and efficient oscillator circuit. This frequency of oscillation is given by

$$
f_{o}=\frac{1}{2 \pi \sqrt{L C}}=\sqrt{\left(1+\frac{R}{r_{d}}\right)}
$$

Fig. 65.7
where $\quad r_{d}=$ ac drain resistance
The value of mutual inductance required for maintaining oscillations is $M=\frac{r_{d} R C+L}{\mu}$.
Example 65.1. A tuned-collector oscillator has a fixed inductance of $100 \mu \mathrm{H}$ and has to be tunable over the frequency band of 500 kHz to 1500 kHz . Find the range of variable capacitor to be used. (Principles of Telecom. Engg. Pune Univ.)
Solution. Resonant frequency is given by

$$
f_{0}=1 / 2 \pi \sqrt{L C} \quad \text { or } \quad C=1 / 4 \pi^{2} f_{\mathrm{o}}^{2} L
$$

where L and C refer to the tank circuit.
When $\mathbf{f o}=\mathbf{5 0 0} \mathbf{~ k H z}$

$$
C=1 / 4 \pi^{2} \times\left(500 \times 10^{3}\right)^{2} \times 100 \times 10^{-6}=1015 \mathrm{pF}
$$

When fo $=1500 \mathrm{kHz}$

$$
C=1015 /(1500 / 500)^{2}=113 \mathrm{pF}
$$

Hence, capacitor range required is $\mathbf{1 1 3} \mathbf{- 1 0 1 5} \mathbf{p F}$
Example 65.2. The resonant circuit of a tuned-collector transistor oscillator has a resonant frequency of 5 MHz . If value of capacitance is increased by 50%, calculate the new resonant frequency.

Solution. Using the equation for resonant frequency, we have

$$
\begin{aligned}
5 \times 10^{6} & =1 / 2 \pi \sqrt{L C} & -1 \text { st case } \\
f_{0} & =1 / 2 \pi \sqrt{L \times 1.5 C} & -2 \text { nd case }
\end{aligned}
$$

$$
\therefore \quad \frac{f_{o}}{5 \times 10^{6}}=\frac{1}{\sqrt{1.5}} \quad \text { or } \quad f_{o}=4.08 \mathrm{MHz}
$$

65.12. Hartley Osc illator

In Fig. $65.8(a)$ is shown a transistor Hartley oscillator using $C E$ configuration. Its general principle of operation is similar to the tuned-collector oscillator discussed in Art. 65.10.

It uses a single tapped-coil having two parts marked L_{1} and L_{2} instead of two separate coils. So far as ac signals are concerned, one side of L_{2} is connected to base via C_{1} and the other to emitter via ground and C_{3}. Similarly, one end of L_{1} is connected to collector via C_{2} and the other to common emitter terminal via C_{3}. In other words, L_{1} is in the output circuit i.e. collector-emitter circuit whereas L_{2} is in the base-emitter circuit i.e. input circuit. These two parts are inductively-coupled and form an auto-transformer or a split-tank inductor. Feedback between the output and input circuits is accomplished through autotransformer action which also introduces a phase reversal of 180°. This phase reversal

Hartley oscillator

Fig. 65.8
between two voltages occurs because they are taken from opposite ends of an inductor ($L_{1}-L_{2}$ combination) with respect to the tap which is tied to common transistor terminal i.e. emitter which is ac grounded via C_{3}. Since transistor itself introduces a phase shift of 180°, the total phase shift becomes 360° thereby making the feedback positive or regenerative which is essential for oscillations (Art 65.8). As seen, positive feedback is obtained from the tank circuit and is coupled to the base via C_{1}. The feedback factor is given by the ratio of turns in L_{2} and L_{1} i.e. by N_{2} / N_{1} and its value ranges from 0.1 to 0.5 . Fig. 65.8 (b) shows the equivalent circuit of Hartley oscillator.

Resistors R_{1} and R_{2} form a voltage divider for providing the base bias and R_{3} is an emitter swamping resistor to add stability to the circuit. Capacitor C_{3} provides ac ground thereby preventing any signal degeneration while still providing temperature stabilisation. Radio-frequency choke (RFC) provides dc load for the collector and also keeps ac currents out of the dc supply $V_{C C}$.

When $V_{C C}$ is first switched on through S, an initial bias is established by $R_{1}-R_{2}$ and oscillations are produced because of positive feedback from the $L C$ tank circuit (L_{1} and L_{2} constitute L). The frequency of oscillation is given by

$$
f_{o}=\frac{1}{2 \pi \sqrt{L C}} \quad \text { where } \quad L=L_{1}+L_{2}+2 M
$$

The output from the tank may be taken out by means of another coil coupled either to L_{1} or L_{2}.
Example 65.3. Calculate the oscillation frequency for the transistor Hartley oscillator circuit (refer to Fig. 65.8). Given the circuit values: $L_{R F C}=0.5 \mathrm{mH}, L_{1}=750 \mu H, L_{2}=750 \mu H, M=150$ μH and $C=150 \mathrm{pF}$.

Solution. $f_{0}=\frac{1}{2 \pi \sqrt{L C}}$ where $L=L_{1}+L_{2}+2 M$
$\therefore \quad L=750 \mu \mathrm{H}+750 \mu \mathrm{H}+2+150 \mu \mathrm{H}=1800 \mu \mathrm{H}$
and

$$
f_{o}=\frac{1}{2 \pi \sqrt{1800 \mu \mathrm{H} \times 150 \mathrm{pF}}}=320 \mathrm{kHz}
$$

Example 65.4. In an Hartley oscillator if $L_{l}=0.1 \mathrm{mH}$ and mutual inductance between the coils equal to $20 \mu \mathrm{H}$. Calculate the value of capacitor C of the oscillating circuit to obtain frequency of 4110 kHz .
(Bangalore University 2001)
Solution. $L=L_{1}+L_{2}+2 \mathrm{M}=0.1 \mathrm{mH}+10 \mu \mathrm{H}+20 \mu \mathrm{H}=130$ $\mu \mathrm{H}$

Now the resonant frequency is given by

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}} \text { or } \quad C=\frac{1}{4 \pi^{2} f_{0}^{2} L}=\frac{1}{4 \pi^{2} \times 4110^{2} \times 130 \mu \mathrm{H}}
$$

$$
C=11.5 \mathrm{pF}
$$

65.13. FTHartley Osc illator

The basic circuit is shown in Fig. 65.9. R_{G} is the gate biasing resistor. There is mutual induction between the two parts L_{1} and L_{2} of the coil.

$$
\begin{aligned}
f_{0} & =\frac{1}{2 \pi \sqrt{L C}} \\
L & =L_{1}+L_{2}+2 M
\end{aligned}
$$

Fig. 65.9

Example 65.5. Calculate the oscillator frequency for a FET Hartley oscillator (refer to Fig. 65.9), for the following circuit values: $C=250 \mathrm{pF}, L_{1}=1.5 \mathrm{mH}, L_{2}=1.5 \mathrm{mH}$, and $M=0.5 \mathrm{mH}$.

Solution. $f_{0}=\frac{1}{2 \pi \sqrt{L C}} \quad$ where $L=L_{1}+L_{2}+2 \mathrm{M}$
$\therefore L=1.5 \mathrm{mH}+1.5 \mathrm{mH}+2 \times 0.5 \mathrm{mH}=4 \mathrm{mH}$
and $f_{0}=\frac{1}{2 \pi \sqrt{4 m H \times 250 p F}}=159.1 \mathrm{kHz}$

65.14. Colpitts Oscillator

This oscillator is essentially the same as Hartley oscillator except for one difference. Colpitts oscillator uses tapped capacitance whereas Hartley oscillator uses tapped inductance*. Fig. 65.10 (a)

[^22]

Fig. 65.10
shows the complete circuit with its power source and dc biasing circuit whereas Fig. 65.10 (b) shows its ac equivalent circuit. The two series capacitors C_{1} and C_{2} form the voltage divider used for providing the feedback voltage (the voltage drop across C_{2} constitutes the feedback voltage). The feedback factor is C_{1} / C_{2}. The minimum value of amplifier gain for maintaining oscillations is

$$
A_{v(\text { min })}=\frac{1}{C_{1} / C_{2}}=\frac{C_{2}}{C_{1}}
$$

The tank circuit consists of two ganged capacitors C_{1} and C_{2} and a single fixed coil. The frequency of oscillation (which does not depend on mutual inductance) is given by

$$
f_{o}=\frac{1}{2 \pi \sqrt{L C}} \quad \text { where } \quad C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

Transistor itself produces a phase shift of 180°. Another phase shift of 180° is provided by the capacitive feedback thus giving a total phase shift of 360° between the emitter-base and collectorbase circuits.

Resistors R_{1} and R_{2} form a voltage divider across $V_{C C}$ for providing base bias, R_{3} is for emitter stabilisation and $R F C$ provides the necessary dc load resistance R_{C} for amplifier action. It also prevents ac signal from entering supply dc $V_{C C}$. Capacitor C_{5} is a bypass capacitor whereas C_{4} conveys feedback from the collector-to-base circuit.

When S is closed, a sudden surge of collector current shock-excites the tank circuit into oscillations which are sustained by the feedback and the amplifying action of the transistor.

Colpitts oscillator is widely used in commercial signal generators upto 1 MHz . Frequency of oscillation is varied by gang-tuning the two capacitors C_{1} and C_{2}.

Example 65.6. Determine the circuit oscillation frequency for a transistor Colpitts oscillator shown in Fig. 65.10(a). Given,

$$
L=100 \mu H, L_{R F C}=0.5 \mathrm{mH}, C_{1}=0.005 \mu F, C_{2}=0.01 \mu F . \quad C_{6}=10 \mu \mathrm{~F}
$$

Solution. For a transistor Colpitts oscillator, the oscillation frequency,

$$
\begin{aligned}
& f_{o}=\frac{1}{2 \pi \sqrt{L C}} \quad \text { where } \quad C=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \\
& \therefore \quad C=\frac{0.005 \mu F \times 0.01 \mu F}{0.005 \mu F+0.01 \mu F}=3.3 n F \\
& \text { and } \quad f_{0}=\frac{1}{2 \pi \times \sqrt{100 \mu H \times 3.3 n F}}=277 \mathrm{kHz}
\end{aligned}
$$

Example 65.7.For the Colpitts oscillator circuit shown in Fig. 65.11, find the values of
(a) feedback fraction,
(b) minimum gain to sustain oscilla tions,
(c) emitter resistor R_{E}.
(Electronics-I, Bangalore Univ.)
Solution. (a)The voltage drop across C_{2} is feedback to the input circuit.
feedback fraction

Fig. 65.11

$$
=\frac{\operatorname{drop} \operatorname{across} C_{2}}{\operatorname{drop} \operatorname{across} C_{1}}=\frac{\mathrm{IX}_{2}}{\mathrm{IX}_{1}}=\frac{C_{1}}{C_{2}}=\frac{0.018}{0.16}=\mathbf{0 . 1 1}
$$

(b) $\mathrm{A}_{v(\text { min })}=\frac{1}{\text { feedback fraction }}=\frac{1}{0.11}=9$
(c) Now,
$A_{v} \cong \frac{R_{C}}{R_{E}}$
$\therefore \quad R_{E}=\frac{R_{C}}{A_{v}}=\frac{1500}{9}=167 \Omega$
It should be noted that the above calculations do not take into account the losses in the coil and the loading effect of the amplifier input impedance.

65.15. Clapp Oscillator

It is a variation of Colpitts oscillator and is shown in Fig. 65.12 (a). It differs from Colpitts oscillator in respect of capacitor C_{3} only which is joined in series with the tank inductor. Fig. 65.12 (b) shows the ac equivalent circuit.

(a)

(b)

Fig. 65.12
Addition of $C_{3}(i)$ improves frequency stability and (ii) eliminates the effect of transistor's parameters on the operation of the circuit.

The operation of this circuit is the same as that of the Colpitts oscillator.
The frequency of oscillation is given by

$$
f_{o}=\frac{1}{2 \pi \sqrt{L C}} \text { where } \frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}
$$

65.16. FETColpitts Oscillator

The circuit is shown in Fig. 65.13. It is similar to the transistor circuit of Fig. 65.10. Here, R_{G} is the gate biasing resistor. The radio-frequency coil choke ($R_{F C}$) performs two functions :
(i) It keeps ac current out of the dc drain supply and
(ii) It provides drain load.

As seen, C_{1} is in the input circuit whereas C_{2} is in the output circuit.

The frequency of oscillation is given by

$$
f_{0}=\frac{1}{2 \pi \sqrt{L C}} ; \text { where, } C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

Fig. 65.13

Example 65.8. Determine the circuit oscillation frequency for the FET Colpitts oscillator (refer to Fig. 65.13), given $C_{1}=750 \mathrm{pF}, C_{2}=2500 \mathrm{pF}$ and $L=40 \mu \mathrm{H}$.

Solution. For a Colpitts oscillator, the oscillation frequency,

$$
\begin{array}{ll}
& f_{0}=\frac{1}{2 \pi \sqrt{L C}} \quad \text { where } \quad C=\frac{C_{1} C_{2}}{C_{1}+C_{2}} \\
\therefore & C
\end{array} \begin{array}{ll}
& =\frac{750 \mathrm{pF} \times 2500 \mathrm{pF}}{750 \mathrm{pF}+2500 \mathrm{pF}}=\mathbf{5 7 6 . 9} \mathrm{pF} \\
\text { and } & f_{0}
\end{array}=\frac{1}{2 \pi \times \sqrt{40 \mu H \times 576.9 \mathrm{pF}}}=\mathbf{1 . 0 4 8} \mathbf{~ M H z}
$$

65.17. Crystals

For an exceptionally high degree of frequency stability, use of crystal oscillators is essential. The crystal generally used is a finely-ground wafer of translucent quartz (or tourmaline) stone held between two metal plates and housed in a package about the size of a postal stamp. The crystal wafers are cut from the crude quartz in two different ways. The method of 'cut-
 ting' determines the crystal's natural resonant frequency and its temperature coefficient. When the wafer is cut so that its flat surface are perpendicular to its electrical axis, it is called an X-cut crystal (Fig. 65.14). But if the wafer is so cut that its flat surfaces are perpendicular to its mechanical axis, it is called \mathbf{Y}-cut crystal.

(a) Piezoelectric Effect

The quartz crystal described above has peculiar properties. When mechanical stress is applied across its two opposite faces, a potential difference is developed across them. It is called piezoelectric effect. Conversely, when a potential difference is applied across its two opposite faces, it causes the crystal to either expand or contract. If an alternating voltage is applied, the crystal wafer is set into vibrations. The frequency of vibration is equal to the resonant frequency of the crystal as determined by its structural characteristics. Where the frequency of the applied ac voltage equals the natural resonant frequency of the crystal, the amplitude of vibration will be maximum. As a general rule, thinner the crystal, higher its frequency of vibration.
(b) Equivalent Electrical Circuit

The electrical equivalent circuit of the crystal is shown in Fig. 65.15 (b). It consists of a series $R L C_{1}$ circuit in parallel with a capacitor C_{2}.

Fig. 65.15
The circuit has two resonant frequencies :
(i) one is the lower series resonance frequency f_{1} which occurs when $X_{L}=X_{C l}$. In that case, $Z=R$ as shown in Fig. 65.15 (c).

$$
f_{1}=\frac{1}{2 \pi \sqrt{L C_{1}}}
$$

(ii) the other is the parallel resonance frequency f_{2} which occurs when reactance of the series leg equals the reactances of C_{2}. At this frequency, the crystal offers very high impedance to the external circuit.

$$
f_{2}=\frac{1}{2 \pi \sqrt{L C}} ; \quad \text { where } \quad C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

The impedance versus frequency graph of the crystal is shown in Fig. 65.15 (c). Crystals are available at frequencies of 15 kHz and above. However, at frequencies above 100 MHz , they become so small that handling them becomes a problem.
(c) Q-factor

The equivalent inductance of a crystal is very high as compared to either its equivalent capacitance or equivalent resistance. Because of high L / R ratio, the Q-factor of a crystal circuit is 20,000 as compared to a maximum of about 1000 for high-quality $L C$ circuits. Consequently, greater frequency stability and frequency discrimination are obtained because of extremely high Q (upto 10^{6}) and high L / R ratio of the series $R L C_{1}$ circuit.
(d) Temperature Coefficient

Temperature variations affect the resonant frequency of a crystal. The number of cycles change per million cycles for a $1^{\circ} \mathrm{C}$ change in temperature is called the temperature coefficient (TC) of the crystal. It is usually expressed in parts per million (ppm) per ${ }^{\circ} \mathrm{C}$. For example, a TC of 10 ppm per ${ }^{\circ} \mathrm{C}$ means that frequency variation is 0.001 per cent* per ${ }^{\circ} \mathrm{C}$ change in temperature. It can also be expressed as $10 \mathrm{~Hz} / \mathrm{MHz} /{ }^{\circ} \mathrm{C}$. When kept in temperature-controlled ovens, crystal oscillators have frequency stability of about $\pm 1 \mathrm{ppm}$.

Usually, X-cut crystals have negative TC whereas Y-cut crystals have positive TC.
Example 65.9. A 600 kHz X-cut crystal when calibrated at $50^{\circ} \mathrm{C}$ has a TC of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. What will be its resonant frequency when its temperature is raised to $60^{\circ} \mathrm{C}$?

Solution. A TC of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is the same thing as $20 \mathrm{~Hz} / \mathrm{MHz} /{ }^{\circ} \mathrm{C}$. Since temperature rise is $10^{\circ} \mathrm{C}$ and original frequency is $600 \mathrm{kHz}=0.6 \mathrm{MHz}$, the total change as calculated by ratio propor-

* Since 10 ppm means a change of 10 in 10^{6}, hence percentage change is

$$
=\frac{10}{10^{6}} \times 100=10^{-3}=0.001
$$

tion is $=20 \times 10 \times 0.6=120 \mathrm{~Hz}$.
Since TC is negative, the new resonance frequency of the crystal is

$$
=600,000-120=599,880=\mathbf{5 9 9 . 8 8} \mathbf{k H z} \text {. }
$$

Example 65.10. A certain X-cut quartz crystal resonates at 450 kHz . It has an equivalent inductance of 4.2 H and an equivalent capacitance of 0.0297 pF . If its equivalent resistance is 60 Ω, calculate its Q-factor.

Solution. $\quad Q=\frac{\omega L}{R}=\frac{2 \pi f L}{R}$

$$
=\frac{2 \pi \times 450 \times 10^{3} \times 4.2}{600}=\mathbf{1 9 , 7 9 0}
$$

Example 65.11. The parameters of a crystal oscillator equivalent circuit are : $L_{1}=0.8 H ; C_{1}$ $=0.08 \mathrm{pF}, R=5 \mathrm{k} \Omega$ and $C_{2}=1.0 \mathrm{pF}$. Determine the resonant frequencies f_{1} and f_{2}
(UPSC Engg. Services 1999)

$$
\begin{aligned}
& \text { Solution. } \begin{aligned}
f_{I} & =\frac{1}{2 \pi \sqrt{L C_{1}}}=\frac{1}{2 \pi \sqrt{0.8 \times 0.08 \times 10^{-12}}}=\frac{1}{2 \pi \times 0.253 \times 10^{-6}} \\
& =\frac{1}{1.5895 \times 10^{-6}}=0.629 \times 10^{6} \mathrm{~Hz}=6 \mathbf{2 9} \mathrm{kHz} \\
f_{2} & =\frac{1}{2 \pi \sqrt{L C}} \text { where } C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=\frac{0.08 \times 1}{0.08+1}=0.074 \mathrm{pF} \\
\therefore \quad f_{2} & =\frac{1}{2 \pi \sqrt{0.8 \times 074 \times 10^{-12}}}=\frac{1}{2 \pi \times 0.0243 \times 10^{6}}(\mathrm{~Hz}) \\
f_{2} & =\frac{1}{2 \pi \sqrt{0.8 \times 074 \times 10^{-12}}}=\frac{1}{2 \pi \times 0.0243 \times 10^{6}}(\mathrm{~Hz}) \\
& =0.654 \times 10^{6} \mathrm{~Hz}=\mathbf{6 5 4} \mathrm{kHz} .
\end{aligned}
\end{aligned}
$$

65.18. Crystal Controlled Oscillator

Fig. 65.16, shows the use of a crystal to stabilise the frequency of a tuned-collector oscillator which has a crystal (usually quartz) in the feedback circuit.

Fig. 65.16

The $L C$ tank circuit has a frequency of oscillation

$$
f_{0}=1 / 2 \pi \sqrt{L C}
$$

The circuit is adjusted to have a frequency nearabout the desired operating frequency but the exact frequency is set by the crystal and stabilized by the crystal. For example, if natural frequency of vibration of the crystal is 27 MHz , the $L C$ circuit is made to resonate at this frequency.

As usual, resistors R_{1}, R_{2} and R_{3} provide a volt-
age-divider stabilised dc bias circuit. Capacitor C_{1} by-passes R_{3} in order to maintain large gain. $R F C$ coil L_{1} prevents ac signals from entering dc line whereas R_{C} is the required dc load of the collector. The coupling capacitor C_{2} has negligible impedance at the operating frequency but prevents any dc link between collector and base. Due to extreme stability of crystal oscillations, such oscillators are widely used in communication transmitters and receivers where frequency stability is of prime importance.

65.19. Transistor Pierce C rystal Osc illator

A typical circuit originally suggested by Pierce is shown in Fig. 65.17. Here, the crystal is excited in the seriesresonance mode because it is connected as a series element in the feedback path from collector to the base. Since, in series resonance, crystal impedance is the smallest, the amount of positive feedback is the largest. The crystal not only provides the feedback but also the necessary phase

Fig. 65.17 shift.

As usual, R_{1}, R_{2} and R_{3} provide a voltage-divider stabilized dc bias circuit. C_{2} bypasses R_{3} to avoid degeneration. The $R F C$ coil provides dc collector load and also prevents any ac signal from entering the dc supply. The coupling capacitor C_{1} has negligible reactance at circuit operating frequency but blocks any dc flow between collector and base. The oscillation frequency equals the series-resonance frequency of the crystal and is given by

$$
\begin{equation*}
f_{0}=\frac{1}{2 \pi \sqrt{L C_{1}}} \tag{b}
\end{equation*}
$$

Advantages

1. It is a very simple circuit because no tuned circuit other than the crystal itself is required.
2. Different oscillation frequencies can be obtained by simply replacing one crystal with another. It makes it easy for a radio transmitter to work at different frequencies.
3. Since frequency of oscillation is set by the crystal, it remains unaffected by changes in supply voltage and transistor parameters etc.

65.20. FET Pierce Osc illator

It is shown in Fig. 65.18. Use of FET is desirable because its high input impedance results in light loading of the crystal which

1. results in good stability and
2. does not lower the Q-value.

The circuit shown in Fig. 65.18 is essentially a Colpitts oscillator in which
(i) crystal has replaced the inductor and
(ii) inherent FET junction capacitance provide the split capacitance as shown in the figure.

The circuit can be made to operate at different frequencies simply by plugging in different crystals between points A and B of the circuit.

The circuit oscillation frequency is given by the series-resonance frequency of the crystal (Art. 65.17)

Fig. 65.18

65.21. Phase Shift Princ iple

Tuned circuits are not an essential requirement for oscillation. What is essential is that there should be a 180° phase shift around the feedback network* and loop gain should be greater than unity. The 180° phase shift in the feedback signal can be achieved by using a suitable R - C network

* Total phase shift required is 360°. However, the balance of 180° is provided by the active device of the amplifier itself.
consisting of three or four $R-C$ sections. The sine wave oscillators which use $R-C$ feedback network are called phase-shift oscillators.

65.22. RC Phase Shift Oscillator

Fig. 65.19, shows a transistor phaseshift oscillator which uses a three-section R C feedback network for producing a total phase shift of 180° (i.e. 60° per section) in the signal fed back to the base. Since $C E$ amplifier produces a phase reversal of the input signal, total phase shift becomes 360° or 0° which is essential for regeneration and hence for sustained oscillations.

Values of R and C are so selected that each $R C$ section produces a phase advance

Fig. 65.19 of 60°. Addition of a fourth section improves oscillator stability. It is found that phase shift of 180° occurs only at one frequency which becomes the oscillator frequency.
(a) Circuit Action

The circuit is set into oscillations by any random or chance variation caused in the base current by
(i) noise inherent in a transistor or
(ii) minor variation in the voltage of the dc source.

This variation in the base current

1. is amplified in the collector circuit,
2. is then fed back to the $R C$ network $R_{1} C_{1}, R_{2} C_{2}$ and $R_{3} C_{3}$,
3. is reversed in phase by the $R C$ network,
4. is next applied to the base in phase with initial change in base current,
5. and hence is used to sustain cycles of variations in collector current between saturation and cut-off values.
Obviously, the circuit will stop oscillating the moment phase shift differs from 180°.
As is the case with such transistor circuits (i) voltage divider $R_{5}-R_{3}$ provides dc emitter-base bias, (ii) R_{6} controls collector voltage and (iii) R_{4}, C_{4} provide temperature stability and prevent ac signal degeneration. The oscillator output voltage is capacitively coupled to the load by C_{5}.
(b) Frequency of Oscillation

The frequency of oscillation for the three-section $R C$ oscillator when the three R and C components are equal is roughly given by

$$
f_{0}=\frac{1}{2 \pi \sqrt{6} \cdot R C} \mathrm{~Hz}=\frac{0.065}{R C} \mathrm{~Hz}
$$

Moreover, it is found that value of β is $1 /$ 29. It means that amplifier gain must be more than 29 for oscillator operation.
(c) Advantages and Disadvantages

1. Since they do not require any bulky and expensive high-value inductors, such oscillators are well-suited for frequencies below 10 kHz .
2. Since only one frequency can fulfil Barkhausen phase-shift requirement, positive feedback occurs only for one frequency. Hence, pure sine wave output is possible.

Fig. 65.20
3. It is not suited to variable frequency usage because a large number of capacitors will have to be varied. Moreover, gain adjustment would be necessary every time frequency change is made.
4. It produces a distortion level of nearly 5% in the output signal.
5. It necessitates the use of a high β transistor to overcome losses in the network.

Example 65.12. It is desired to design a phase-shift oscillator using a BJT and $R=10 \mathrm{k} \Omega$.. Select the value of C for oscillator operation at 1 kHz .

Solution. $f_{0}=\frac{0.065}{R C} \quad$ or $\quad C=\frac{0.065}{R f_{0}}=\frac{0.065}{10 K \times 1 K H z}$

$$
=0.0065 \times 10^{-6} \mathrm{~F}=6.5 \mathrm{nF}
$$

65.23. Wien Bridge Oscillator

It is a low-frequency $(5 \mathrm{~Hz}$ 500 kHz), low-distortion, tunable, high-purity sine wave generator, often used in laboratory work. As shown in the block diagrams of Fig. 65.20 and Fig. 65.21, this oscillator uses two $C E$-connected $R C$ coupled transistor amplifiers and one $R C$-bridge (called Wien bridge) network to provide feedback. Here, Q_{1} serves as amplifier-oscillator and Q_{2} provides phase reversal and additional amplification. The bridge circuit is used to control the phase of the feedback signal at Q_{1}.

Fig. 65.21
(a) Phase Shift Principle

Any input signal at the base of Q_{1} appears in the amplified but phase-reversed form across collector resistor R_{6} (Fig. 65.21). It is further inverted by Q_{2} in order to provide a total phase reversal of 360° for positive feedback. Obviously, the signal at R_{10} is an amplified replica of the input signal at Q_{1} and is of the same phase since it has been inverted twice. We could feed this signal back to the base of Q_{1} directly to provide regeneration needed for oscillator operation. But because Q_{1} will amplify signals over a wide range of frequencies, direct coupling would result in poor frequency stability. By adding the Wien bridge, oscillator becomes sensitive to a signal of only one particular frequency. Hence, we get an oscillator of good frequency stability.
(b) Bridge Circuit Principle

It is found that the Wien bridge would become balanced at the signal frequency for which phase shift is exactly $0^{\circ}\left(\right.$ or $\left.360^{\circ}\right)$,

The balance conditions are

$$
\begin{aligned}
\quad \frac{R_{4}}{R_{3}} & =\frac{R_{1}}{R_{2}}+\frac{C_{2}}{C_{1}} & \text { and } & \omega_{0}=\frac{1}{\sqrt{R_{1} C_{1} R_{2} C_{2}}}
\end{aligned} \quad \text { or } \quad f_{0}=\frac{1}{2 \pi \sqrt{R_{1} C_{1} R_{2} C_{2}}}
$$

(c) Circuit Action

Any random change in base current of Q_{1} can start oscillations. Suppose, the base current of Q_{1} is increased due to some reason. It is equivalent to applying a positive going signal to Q_{1}. Following sequence of events will take place :

1. An amplified but phase-reversed signal will appear at the collector of Q_{1};
2. A still further amplified and twice phase-reversed signal will appear at the collector of Q_{2}. Having been inverted twice, this output signal will be in phase with the input signal at Q_{1};
3. A part of the output signal at Q_{2} is fed back to the input points of the bridge circuit (point $\mathrm{A}-C$). A part of this feedback signal is applied to emitter resistor R_{3} where it produces degenerative effect. Similarly, a part of the feedback signal is applied across base-bias resistor R_{2} where it produces regenerative effect.
At the rated frequency f_{o}, effect of regeneration is made slightly more than that of degeneration in order to maintain continuous oscillations.

By replacing R_{3} with a thermistor, amplitude stability of the oscillator output voltage can be increased.

(d) Advantages

Such a circuit has

1. highly stabilized amplitude and voltage amplification,
2. exceedingly good sine wave output,
3. good frequency stability.

Example 65.13. Calculate the resonant frequency of a Wien Bridge oscillator (shown in Fig. 65.21) when $R=10 \mathrm{k} \Omega$ and $C=2400 \mathrm{pF}$.

Solution. $\quad f_{0}=\frac{1}{2 \pi R C}=\frac{1}{2 \pi \times 10 K \times 2400 p F}=6.63 \mathbf{~ k H z}$
Example 65.14. Design RC elements of a Wien Bridge oscillator (shown in Fig. 65.21), for operation at 2.5 kHz .

Solution. Using equal values of R_{1} and R_{2}, let us select $\mathrm{R}=100 \mathrm{k} \Omega$ (you can chose any value in kilo ohms). Then from the relation,

$$
\begin{gathered}
f_{0}=\frac{1}{2 \pi R C} \quad \text { we get } \quad C=\frac{1}{2 \pi f_{0} R}=\frac{1}{2 \pi \times 2.5 \mathrm{kHz} \times 100 \mathrm{~K}} \\
\mathrm{C}=\mathbf{6 3 6} \mathbf{~ p F}
\end{gathered}
$$

or

65.24. Non-sinusoidal Waveforms

Any waveform whose shape is different from that of a standard sine wave is called non-sinusoidal waveform. Examples are : square, rectangular, sawtooth, triangular waveforms and pulses as shown in Fig. 65.22.
(a) Pulses

(a)

(c)

(b)

(d)

Fig. 65.22
Fig. 65.22 (a) shows a pulse train i.e. a stream of pulses at regular intervals. A pulses may, in general, be defined as a voltage or current that changes rapidly from one level of amplitude to another i.e. it is an abrupt discontinuity in voltage or current. These pulses are extensively used in digital electronics.

1. Mark-to-Space Ratio (MSR)

$$
\begin{equation*}
M S R=\frac{\text { pulse width }}{\text { time between pulses }}=\frac{1 \mu s}{4 \mu s}=\mathbf{0 . 2 5} \tag{a}
\end{equation*}
$$

Hence, mark-to-space ratio of the pulse shown in Fig. 65.22 (a) is $1: 4$.
This name has come from early morse-code transmission systems where a pulse was used to cause a pen to mark the paper.
2. Pulse Repetition Time (PRT)

It may be defined as the time between the beginning of one pulse and that of the other.
As seen from Fig. $65.22(a), P R T=5 \mu \mathrm{~s}$
3. Pulse Repetition Frequency (PRF)

It is given by the number of pulses per second.

$$
P R F=\frac{1}{P R T}=\frac{1}{5 \mu s}=\frac{10^{6}}{5}=200,000 \mathrm{~Hz}=200 \mathrm{kHz}
$$

Pulse circuits find applications in almost all electronic-based industries. Various types of pulse code modulations are employed in communication systems whereas radars utilize pulses to track targets. Digital computers require circuits that can be switched very rapidly between two states by using appropriate pulses.
(b) Square Wave

It is shown in Fig. 65.22 (b) and is, in fact, a pulse waveform with a mark-to-space ratio of 1:1 Such square waves or pulses are used

1. for audio frequency note generation,
2. for digital electronic switching as in computers, 3 , in radars,
3. as synchronizing pulses in TV,
4. for switching of high-power electronic circuits such as thyristor circuits.
(c) Sawtooth Wave

It is shown in Fig. 65.22 (c). Such waves are used

1. in the scanning circuits of cathode-ray tubes (CRT),
2. in timing circuits where the time for the wave to proceed from one level to another is measured, such as that produced in an integrating circuit.
(d) Triangular Wave

It is shown in Fig. 65.22 (d). Such waves are often used

1. in scanning circuits where a uniform left-to-right scan is required as in computer displays,
2. for audio frequency note generation,
3. in timing circuits for electronic applications.

65.25. Classification of Non-sinusoidal Oscillators

Those oscillators which generate waveforms other than sine waveform are called non-sinusoidal oscillators or relaxation oscillators. Non-sinusoidal waveforms include: square, rectangular, sawtooth and pulse-shaped waves as shown in Fig. 65.22.

A relaxation oscillator may be defined as a circuit in which voltage or current changes abruptly from one value to another and which continues to oscillate between these two values as long as dc power is supplied to it.

We will consider the following three types of such oscillators :

1. Sawtooth generators 2. Blocking oscillators 3. Multivibrators (MV)

65.26. Pulse Definitions

Due to capacitive effects in a transistor (or to circuit elements external to it), its output does not directly follow its input. For example, if we apply a square input pulse to its E / B junction, some amount of time lapses be-

Fig. 65.23
fore I_{C} starts to rise. Similarly, when the input becomes zero, there is some time lapse before I_{C} starts to decrease. There is always some time delay between the application of input and change in the output. In order to measure how quickly the output changes i.e. in order to define the switching (i.e. OFF/ON) characteristics of a transistor, we will define the following few terms. It will be assumed that perfect square wave, as shown in Fig. 65.23 (a), has been applied at the input. The output wave and the various time delays are shown in Fig. 65.23 (b).

1. Time delay, t_{d}

It is the time interval between the beginning of the input pulse and the time the output voltage (or current) reaches 10 per cent of its maximum value.

It depends on (i) depletion region capacitances, (ii) turn-on base current and (iii) value of transistor β.
2. Rise time, t_{r}

It is the time taken by the output voltage (or current) to rise from 10% to 90% of its maximum value.

It primarily depends on diffusion capacitance C_{D} of the transistor (Art. 1.4).
3. Turn-on time T_{ON}

It is equal to the sum of the delay time and rise time i.e. $T_{O N}=t_{d}+t_{r}$
4. Storage time, T_{s}

It is the time interval between the end of the input pulse (trailing edge) and the time when output voltage (or current) falls to 90% of its initial maximum value.

It depends on the degree of saturation. Deeper the transistor is driven into saturation, more the stored charge that has to be removed and hence longer the storage time. That is why non-saturated switching is often preferred.
5. Fall time, t_{f}

It is the time interval during which the output voltage (or current) falls from 90% of its maximum value to 10%.

In simple words, it is the time interval between 90% and 10% levels of the output pulse.
6. Turn-off time, $\mathrm{TO}_{F F}$

It is equal to the sum of storage time and fall time i.e. $T_{O F F}=t_{s}+t_{f}$
For a fast switching transistor, T_{ON} and T_{OFF} must be of the order of nanoseconds.
7. Pulse Width, W

It is the time duration of the output pulse measured between two 50% levels of the rising and falling waveform.

65.27. Basic Requirements of a Sawtooth Generator

The essential requirements of a sawtooth generator are :

1. a dc power source, 2. a switching device (neon tube, thyratron, thyristor, UJT etc.),
2. a capacitor, 4. a resistor.

Circuit Action

The V / I characteristics of the $R C$ circuit play an important role in the operation of such a generator. By restricting the time interval equal to the time constant $\lambda=C R$, only the rising portion of the characteristic ($O A$ in Fig. 65.24) which is almost a straight line, is utilized. For periods of time greater than λ, the rising portion of the characteristic is no longer a straight line and hence cannot be utilized.

Fig. 65.24

The frequency of the wave is given by the reciprocal of time which elapses between the two waves. In Fig. $65.24, f=1 / \lambda$.

65.28. UJTSawtooth Generator

The circuit is shown in Fig. 65.25. It consists of a power source, a unijunction transistor and an $R-C$ network.

Circuit Action

When S is initially closed, following chain of events takes place :

1. a small current is set up through R_{2} and R_{1} via B_{2} and B_{1} and an initial reverse bias is established across the E / B_{1} junction;
2. at the same time, C begins to get charged through R_{E} and voltage across it increases exponentially with time towards the target voltage V;
3. when capacitor voltage equals the emitter firing (or peak point) voltage $V_{P}, E / B_{1}$ junction becomes forward-biased and the emitter goes into the negative region of its characteristic;
4. being forward-biased, E / B_{1} junction offers very low resistance. Hence, C starts discharging through B_{1} and R_{1} at a rate determined mainly by E / B_{1} junction resistance and R_{1};
5. as capacitor voltage approaches zero, the E / B_{1} junction again becomes reverse-biased and so stops conducting;
6. we revert to the initial state where C begins to charge and the whole cycle of circuit actions is repeated.
The emitter voltage waveform is shown in Fig. 65.25 (b). As seen, V_{E} rises exponentially towards the target voltage V but drops to a very low value after it reaches the value V_{P} due to sudden conduction through E / B_{1} junction. Since R_{E} is large (10 K or so) charging rate is comparatively slow but discharge is much quicker since R_{1} is very small (50Ω or less). This slow charge and fast discharge produces a sawtooth wave.

The time required for v_{E} to rise to V_{P} is given by

$$
\begin{align*}
& \mathrm{T}=k R C \quad \text { where } \quad k=\log _{\mathrm{e}}{ }^{1 /(1-\eta)} \text { and } \\
& \eta=\text { intrinsic stand-off ratio }=\frac{R_{B 1}}{R_{B 1}+R_{B 2}}
\end{align*}
$$

Here, $R_{B 1}$ and $R_{B 2}$ are the internal inter-base resistances.
The frequency of oscillation of the $U J T$ or of the output sawtooth wave is

Fig. 65.25
$f_{0}=\frac{1}{T}=\frac{1}{k R C}$

Its amplitude is determined primarily by applied voltage V and V_{P}.

Applications

Sawtooth voltage waves are commonly used as

1. sweep voltages at the picture tubes of TV receivers,
2. as sweep voltages of the viewing screens of oscilloscopes and radar equipment.

Example 65.15. For the UJT oscillator circuit shown in Fig. 65.25, $R_{E}=10 \mathrm{~K}, \eta=0.75$. If the required oscillator frequency is 1 kHz , find the value of C.
(Components and Devices, Pune Univ.)
Solution. $\quad k=\log _{e} 1 /(1-0.75)=\log _{e} 4=2.3 \log _{10} 4 \cong 1.4$
Now, $\quad f_{0}=\frac{1}{k R C} \quad \therefore \quad 1 \times 10^{3}=\frac{1}{1.4 \times 10 \times 10^{3} \times C} \quad$ or $\quad \mathrm{C}=\mathbf{0 . 0 7} \mu \mathrm{F}$

65.29. Multivibrators (MV)

These devices are very useful as pulse generating, storing and counting circuits. They are basically two-stage amplifiers with positive feedback from the output of one amplifier to the input of the other. This feedback (Fig. 65.26) is supplied in such a manner that one transistor is driven to saturation and the other to cut-off. It is followed by new set of conditions in which the saturated transistor is driven to cut-off and the cut-off transistor is driven to saturation.

There are three basic types of MVs distinguished by the type of coupling network employed.

1. astable multivibrator $(A V M)$,
2. monostable multivibrator (MMV),
3. bistable multivibrator $(B M V)$.

The first one is the non-driven type whereas the other two are the driven type (also called triggered oscillators).

1. Astable Multivibrator (AMV)

It is also called free-running relaxation oscillator. It has no stable state but only two quasistable (half-stable) states between which it keeps oscillating continuously of its own accord without any external excitation.

In this circuit, neither of the two transistors reaches a stable state. When one is ON, the other is OFF and they continuously switch back and forth at a rate depending on the $R C$ time constant in the circuit. Hence, it oscillates and produces pulses of certain mark-to-space ratio. Moreover, two outputs (180° out of phase with each other) are avail-

Fig. 65.26 able.

It has two energy-storing elements i.e.two capacitors.
2 . Monostable Multivibrator (MMV)
It is also called a single-shot or single swing or a one-shot

Multivibrator multivibrator. Other names are : delay multivibrator and univibrator. It has
(i) one absolutely stable (stand-by) state and (ii) one quasistable state.

It can be switched to the quasi-stable state by an external trigger pulse but it returns to the stable condition after a time delay determined by the value of circuit components. It supplies a single output pulse of a desired duration for every input trigger pulse.

It has one energy-storing element i.e. one-capacitor.
3. Bistable Multivibrator (BMV)

It is also called Eccles-Jordan or flip-flop multivibrator. It has two absolutely stable states. It can remain in either of these two states unless an external trigger pulse switches it from one state to the other. Obviously, it does not oscillate. It has no energy storage element.

Detailed discrete circuits for the above MVs are discussed below after listing their uses.

65.30. Uses of Multivibrators

Some of their uses are :

1. as frequency dividers, 2. as sawtooth generators,
2. as square wave and pulse generators,
3. as a standard frequency source when synchronized by an external crystal oscillator,
4. for many specialised uses in radar and TV circuits,
5. as memory elements in computers.

65.31. Astable Multivibrator

Fig. 65.27 shows the circuit of a symmetrical collector-coupled AMV using two similar transistors. It, in fact, consists of two $C E$ amplifier stages, each providing a feedback to the other. The feedback ratio is unity and positive because of 180° phase shift in each stage. Hence, the circuit oscillates. Because of the very strong feedback signal, the transistors are driven either to saturation or to cut-off (they do not work on the linear region of their characteristics).

The transistor Q_{1} is forward-biased by $V_{C C}$ and R_{1} whereas Q_{2} is forward-biased by $V_{C C}$ and R_{2}. The collector-emitter voltages of Q_{1} and Q_{2} are determined respectively by $R_{L 1}$ and $R_{L 2}$ together with $V_{C C}$. The output of Q_{1} is coupled to the input of Q_{2} by C_{2} whereas output of Q_{2} is coupled to Q_{1} by C_{1}.

Note that it is not essential to draw the coupling leads at 45° to the vertical as shown but it is usually done because it helps to identify the circuit immediately as MV.

Fig. 65.27
The output can be taken either from point A or B though these would be phase-reversed with respect to each other as shown in Fig. 65.27.

Circ uit Operation

The circuit operation would be easy to understand if it is remembered that due to feedback (i) when Q_{1} is ON, Q_{2} is OFF and (ii) when Q_{2} is ON, Q_{1} is OFF.

When the power is switched on by closing S, one of the transistors will start conducting before the other does (or slightly faster than the other). It is so because characteristics of no two seemingly similar transistors can be exactly alike. Suppose that Q_{1} starts conducting before Q_{2} does. The feedback system is such that Q_{1} will be very rapidly driven to saturation and Q_{2} to cut-off.

The following sequence of events will occur :

1. Since Q_{1} is in saturation, whole of V_{CC} drops across $R_{L 1}$. Hence, $V_{\mathrm{C} 1}=0$ and point A is at zero or ground potential.
2. Since Q_{2} is in cut-off i.e. it conducts no current, there is no drop across $R_{L 2}$. Hence, point B is at V_{CC}.
3. Since A is at $0 \mathrm{~V}, \mathrm{C}_{2}$ starts to charge through R_{2} towards $V_{C C}$.
4. When voltage across C_{2} rises sufficiently (i.e. more than 0.7 V), it biases Q_{2} in the forward direction so that it starts conducting and is soon driven to saturation.
5. $V_{C 2}$ decreases and becomes almost zero when Q_{2} gets saturated. The potential of point B decreases from $V_{C C}$ to almost 0 V . This potential decrease (negative swing) is applied to the base of Q_{1} through C_{1}. Consequently, Q_{1} is pulled out of saturation and is soon driven to cut-off.
6. Since, now, point B is at $0 \mathrm{~V}, C_{1}$ starts charging through R_{1} towards the target voltage $V_{C C}$.
7. When voltage of C_{1} increases sufficiently, Q_{1} becomes forward-biased and starts conducting. In this way, the whole cycle is repeated.
It is seen that the circuit alternates between a state in which Q_{1} is ON and Q_{2} is OFF and a state in which Q_{1} is OFF and Q_{2} is ON. The time in each state depends on $R C$ values. Since each transistor is driven alternately into saturation and cut-off the voltage wavefrom at either collector (points A and B in Fig. 65.27) is essentially a square waveform with a peak amplitude equal to $V_{C C}$ (Fig. 65.28).

Switching Times

It can be proved that off-time for Q_{1} is $T_{1}=0.69$ $R_{1} C_{1}$ and that for Q_{2} is $T_{2}=0.69 R_{2} C_{2}$.

Hence, total time-period of the wave is
$T=T_{1}+T_{2}=0.69\left(R_{1} C_{1}+R_{2} C_{2}\right)$
If $R_{1}=R_{2}=R$ and $C_{1}=C_{2}=C$ i.e. the two stages are symmetrical, then $T=1.38 R C$

Frequency of Oscillation

It is given by the reciprocal of time period,

$$
\therefore \quad f=\frac{1}{T}=\frac{1}{1.38 R C}=\frac{0.7}{R C}
$$

Fig. 65.28

Minimum Values of $\boldsymbol{\beta}$
To ensure oscillations, the transistors must saturate for which minimum values of β are as under :

$$
\begin{aligned}
& \beta_{1}=\frac{R_{1}}{R_{L 1}} \quad \text { and } \quad \beta_{2}=\frac{R_{2}}{R_{L 2}} \\
& \text { If } R_{1}=R_{2}=R \text { and } R_{L 1}=R_{L 2}=R_{L} \text {. then } \beta_{\min }=\frac{R}{R_{L}}
\end{aligned}
$$

Example 65.16. Determine the period and frequency of oscillation for an astable multivibrator with component values: $R_{1}=2 \mathrm{~K}, R_{2}=20 \mathrm{~K}, C_{1}=0.01 \mu \mathrm{~F}$ and $C_{2}=0.05 \mu \mathrm{~F}$.

Solution. $\quad T_{1}=0.69 \times 2 \mathrm{~K} \times 0.01 \mu \mathrm{~F}=13.8 \mu \mathrm{~s}$
and $\quad T_{2}=0.69 \times 20 \mathrm{k} \times 0.05 \mu \mathrm{~F}=690 \mu \mathrm{~s}$
$\therefore \quad T=T_{1}+T_{2}=13.8 \mu \mathrm{~s}+690 \mu \mathrm{~s}=703.8 \mu \mathrm{~s}$
$\therefore \quad f_{0}=\frac{1}{703.8 \mu \mathrm{~s}}=1.42 \mathrm{kHz}$

Example. 65.17. In the AMV circuit of Fig. 65.27, $R_{1}=R_{2}=10 K, C_{1}=C_{2}=0.01 \mu F$ and $R_{L 1}$ $=R_{L 2}=1$ K. Find
(a) frequency of circuit oscillation, (b) minimum value of transistor β.
(Digital Electronics, Bombay Univ.)
Solution. (a) $T_{1}=T_{2}=0.69 \times 10 \times 10_{3} \times 0.01 \times 10^{-6}=69 \mu \mathrm{~s}$ $\therefore \quad T=T_{1}+T_{2}=2 \times 69=138 \mu \mathrm{~s} \quad \therefore$

$$
f_{0}=\frac{1}{138 \times 10^{-6}}=7.25 \mathrm{kHz}
$$

(b) $\beta_{\text {min }}=\frac{R}{R_{L}}=\frac{10 \times 10^{3}}{1 \times 10^{3}}=10$

Example 65.18. Determine the value of capacitors to be used in an astable multivibrator to provide a train of pulses $1 \mu \mathrm{~s}$

Fig. 65.29 side at a repetition rate of 100 kHz . Given $R_{1}=R_{2}=10 \mathrm{~K}$.

Solution. Fig. 65.29 shows the waveform to be generated by the astable multivibrator. Note that the desired pulse width is actually the time interval $T_{1}=1 \mu \mathrm{~s}$ and the time period T which equals $10 \mu \mathrm{~s}($ i.e. $1 / 100 \mathrm{kHz})$ is the desired repetition time.

$$
\begin{array}{llll}
\text { Now } & T_{1}=0.69 R_{1} C_{1}, & \therefore & C_{1}=\frac{1 \mu \mathrm{~s}}{0.69 \times 10 \mathrm{~K}}=145 \mathrm{pF} \\
\text { and } & T_{2}=0.69 R_{2} C_{2}, & \therefore & C_{2}=\frac{9 \mu \mathrm{~s}}{0.69 \times 10 \mathrm{~K}}=1304 \mathrm{pF}
\end{array}
$$

65.32. Monostable Multivibrator (MMV)

A typical $M M V$ circuit is shown in Fig. 65.30. Here, Q_{1} is coupled to Q_{2} base as in an $A M V$ but the other coupling is different. In this multivibrator, a single narrow input trigger pulse produces a single rectangular pulse whose amplitude, pulse width and wave shape depend upon the values of circuit components rather than upon the trigger pulse.

Initial Condition

In the absence of a triggering pulse at C_{2} and with S closed,

Fig. 65.30

1. $V_{C C}$ provides reverse bias for C / B junctions of Q_{1} and Q_{2} but forward-bias for E / B junction of Q_{2} only. Hence, Q_{2} conducts at saturation.
2. $V_{B B}$ and R_{3} reverse bias Q_{1} and keep it cut off.
3. C_{1} charges to nearly $V_{C C}$ through $R_{L 1}$ to ground by the low-resistance path provided by saturated Q_{2}.
As seen, the initial stable state is represented by
(i) Q_{2} conducting at saturation and (ii) Q_{1} cut-off.

When Trigger Pulse is Applied

When a trigger pulse is applied to Q_{1} through $C_{2}, M M V$ will switch to its opposite unstable state where Q_{2} is cut-off and Q_{1} conducts at saturation. The chain of circuit actions is as under :

1. If positive trigger pulse is of sufficient amplitude, it will override the reverse bias of the E / B junction of Q_{1} and give it a forward bias. Hence, Q_{1} will start conducting.
2. As Q_{1} conducts, its collector voltage falls due to voltage drop across $R_{\mathrm{L} 1}$. It means that potential of point A falls (negative-going signal). This negative-going voltage is fed to Q_{2} via C_{1} where it decreases its forward bias.
3. As collector current of Q_{1} starts decreasing, potential of point B increases (positive-going signal) due to lesser drop over $\mathrm{R}_{L 2}$. Soon, Q_{2} comes out of conduction.
4. The positive-going signal at B is fed via R_{1} to the base of Q_{1} where it increases its forward bias further. As Q_{1} conducts more, potential of point A approaches 0 V .
5. This action is cumulative and ends with Q_{1} conducting at saturation and Q_{2} cut-off.

Retum to Initial Stable State

1. As point A is at almost $0 \mathrm{~V}, C_{1}$ starts to discharge through saturated Q_{1} to ground.
2. As C_{1} discharges, the negative potential at the base of Q_{2} is decreased. As C_{1} discharges further, Q_{2} is pulled out of cut-off.
3. As Q_{2} conducts further, a negative-going signal from point B via R_{1} drives Q_{1} into cut-off.

Hence, the circuit reverts to its original state with Q_{2} conducting at saturation and Q_{1} cut-off. It remains in this state till another trigger pulse comes along when the entire cycle repeats itself.

As shown in Fig. 65.30, the output is taken from the collector of Q_{2} though it can also be taken from point A of Q_{1}. The width of this pulse is determined by the time constant of $C_{1} R_{2}$. Since this MV produces one output pulse for every input trigger pulse it receives, it is called mono or one-shot multivibrator.

The width or duration of the pulse is given by $T=0.69 C_{1} R_{2}$
It is also known as the one-shot period.

Uses

1. The falling part of the output pulse from $M M V$ is often used to trigger another pulse generator circuit thus producing a pulse delayed by a time T with respect to the input pulse.
2. $M M V$ is used for regenerating or rejuvenating old and worn out pulses. Various pulses used in computers and telecommunication systems become somewhat distorted during use. An $M M V$ can be used to generate new, clean and sharp pulses from these distorted and used ones.

Example 65.19. A $20 \mathrm{kHz}, 75 \%$ duty cycle square (t_{p})wave is used to trigger continuously, a monostable multivibrator with a triggered pulse duration of $5 \mu \mathrm{~s}$. What will be the duty cycle of the waveform at output (B) of the monostable multivibrator (refer to Fig. 65.30).

Solution. Time period of the square wave

$$
T=\frac{1}{f}=\frac{1}{20 \mathrm{kHz}}=50 \mu \mathrm{~s}
$$

Since the duty cycle of the square wave is 75%, therefore the time interval during which the input waveform is at a higher voltage level is, $0.75 \times 50 \mu \mathrm{~s}=37.5 \mu \mathrm{~s}$. Fig. 65.31 (a) shows a sketch of the input waveform which is used to trigger the monostable multivibrator.

Now the monostable multivibrator is triggered once each time a new pulse arives. The monostable multivibrator remains triggered only for a duration, $t_{p}=5 \mu \mathrm{~s}$. A sketch of the waveform at the output (B) of the monostable multivibrator is as shown in Fig. 65.31(b).

Fig. 65.31
Example 65.20. A monostable multivibrator is required to convert a $100 \mathrm{kHz}, 30 \%$ duty cycle square wave to a $100 \mathrm{kHz}, 50 \%$ duty cycle square wave. Find the values of R_{2} and C_{2}.

Solution. Fig. 65.32 (a) shows a sketch of the input waveform. In order to convert it to a square waveform with 50% duty cycle, we want that the monostable multivibrator must remain triggered for 50% of the time period.

Now time period of 100 kHz square wave,

$$
T=\frac{1}{f}=\frac{1}{100 \mathrm{kHz}}=10 \mu \mathrm{~s}
$$

\therefore The duration for which the monostable multivibrator must remain triggered $=50 \% \times 10$ $\mu \mathrm{s}=5 \mu \mathrm{~s}$.

Fig. 65.32 (b) shows a sketch of the required waveform at the output of the monostable multivibrator.

Fig. 65.32
Now width or duration of the pulse,

$$
T=0.69 C_{1} R_{2}
$$

Let us select $* C_{1}=0.001 \mu \mathrm{~F}$, then from the above equation.

[^23]$$
R_{2}=\frac{T}{0.69 C_{1}}=\frac{5 \mu \mathrm{~s}}{0.69 \times 0.001 \mu \mathrm{~F}}=7.2 \mathrm{~K}
$$

65.33. Bistable Multivibrator (BMV)

The basic circuit is shown in Fig. 65.33. As stated earlier, it has two absolutely stable states. It can stay in one of its two states indefinitely (as long as power is supplied) changing to the other state only when it receives a trigger pulse from outside. When it receives another triggering pulse, only then it goes back to its original state. Since one trigger pulse causes the $M V$ to 'flip' from one state to another and the next pulse causes it to 'flop' back to its original state, the $B M V$ is also popularly known as 'flip-flop' circuit.

The $B M V$ circuit shown in Fig. 65.33 differs from the $A M V$ circuit of Fig. 65.27 in the following respects :

Fig. 65.33

1. the base resistors are not joined to $V_{C C}$ but to a common source- $V_{B B}$,
2. the feedback is coupled through two resistors (not capacitors).

Circuit Action

If Q_{1} is conducting, then the fact that point A is at nearly 0 V makes the base of Q_{2} negative (by the potential divider $R_{2}-R_{4}$) and holds Q_{2} off.

Similarly, with $Q_{2} \mathrm{OFF}$, the potential divider from $V_{C C}$ to $-V_{B B}\left(R_{\mathrm{L} 2} \cdot R_{1}, R_{3}\right)$ is designed to keep base of Q_{1} at about 0.7 V ensuring that Q_{1} conducts. It is seen that Q_{1} holds $Q_{2} \mathrm{OFF}$ and Q_{3} holds $Q_{1} \mathrm{ON}$.

Suppose, now, a positive pulse is applied momentarily to R, it will cause Q_{2} to conduct. As collector of Q_{2} falls to zero, it cuts Q_{1} OFF and, consequently, the $B M V$ switches over to its other state.

Similarly, a positive trigger pulse applied to S will switch the $B M V$ back to its original state.

Uses

1. in timing circuits as a frequency divider,
2. in counting circuits,
3. in computer memory circuits.

65.34. Schmitt Trigger

The Schmitt trigger (after the name of its invertor) is a binary circuit and closely resembles an MV. It has two bistable states and the magnitude of the input voltage determines which of the two is possible. It is also called emitter-coupled binary oscillator because positive feedback occurs by coupling through emitter resistor R_{E}.

The Quiescent Condition

As shown in Fig. 65.34, it consists of two similar transistors Q_{1} and Q_{2} coupled through R_{E}. Resistors R_{1}, R_{3} and R_{4} form a voltage divider across $V_{C C}$ and $-V_{B B}$ which places a small positive voltage (forward bias) on the base of Q_{2}. Hence, when power is first switched ON, Q_{2} starts conducting. The flow of its current through R_{E} places a small reverse bias on the base of Q_{1}, thereby cutting it OFF. Consequently, collector of Q_{1} rises to $V_{C C}$. This positive voltage, coupled to the base of Q_{2} through R_{3}, drives Q_{2} into saturation and holds it there.

Hence, in the initial static or quiescent condition of the Schmitt trigger,

1. Q_{2} is in saturation,
2. Q_{1} is cut-off,

Fig. 65.34
3. collector of Q_{2} is at 0 V ,
4. collector of Q_{1} is at $V_{C C}$.

Circuit Action

Suppose, positive half-cycle of the input ac voltage is applied to the trigger input first. Let us further suppose that this positive voltage is sufficient to overcome the reverse bias on the base of Q_{1} placed there by the voltage drop across R_{E}. Then, the chain of events that follows is as under :

1. Q_{1} comes out of cut-off and starts to conduct;
2. as it does so, its collector voltage drops (swings negative);
3. this negative-swinging voltage coupled to the base of Q_{2} via R_{3} reduces its forward bias and hence its emitter current;
4. with reduced emitter current, voltage drop across R_{E} is reduced;
5. consequently, reverse bias of Q_{1} is further lowered and it conducts more heavily;
6. as a result, collector voltage of Q_{1} falls further, thereby driving Q_{2} still closer to cut-off.

This process is cumulative and ends up with
(a) Q_{1} conducting at saturation with its collector voltage almost zero;
(b) Q_{2} becoming cut-off with its collector voltage nearly $V_{C C}$.

Negative Half-c ycle of the Input Voltage

Now, when the negative half-cycle of the input voltage is applied

1. Q_{1} becomes reverse-biased. Consequently, its collector current falls and collector voltage rises (i.e. potential of point A increases towards $V_{C C}$);
2. this positive-swinging voltage is coupled to the base of Q_{2} through R_{3} and, as a result, Q_{2} is driven to saturation;
3. this re-establishes the original conditions of
(a) Q_{1} cut off with collector voltage at $V_{C C}$ and
(b) Q_{2} at saturation with collector voltage at 0 V .

It completes one cycle. This cycle is repeated as the input voltage rises and falls again. Hence, each cycle of the Schmitt trigger produces a positive-going pulse at its output which is taken out from the collector of Q_{2} i.e. from point B in Fig. 65.34.

Output Pulse Width

It depends on the time during which Q_{2} is conducting. It, in turn, depends on the input voltage, within the limits imposed by emitter resistor R_{E}.

Uses

1. It is frequently used for wave-shaping purposes. As shown in Fig. 65.35, it can convert inputs with any waveshape into output pulses having rectangular or square waveshapes. That is why Schmitt trigger is often called a 'squaring' circuit or a 'squarer' circuit.
2. It can reshape worn-out pulses by giving them sharp leading and trailing edges.
3. Since a change of state occurs whenever the input crosses a trigger point, the Schmitt trigger is often used as a level detector i.e. as a pulse height discriminator.

Fig. 65.36

65.35. Transistor Bloc king Osc illator

The basic circuit is shown in Fig. 65.36. When S is closed, base current rises rapidly due to forward-bias placed by $V_{C C}$ on the E / B junction of Q. It causes a corresponding increase in its collector current. This rising flow of I_{C} through L_{1} produces an induced e.m.f. in L_{2}. Coupling between L_{1} and L_{2} is such that lower end of L_{2} becomes positive and the grounded end negative.

The positive voltage from L_{2} is applied to the base of Q through C. It further increases the forward-bias of the E / B junction which leads to further increase in $I_{C^{\text {. }}}$. Since this process is cumulative, Q is quickly driven to saturation. At that point, there is no further increase in I_{C} and hence, no induced e.m.f. in L_{2} to be applied to Q.

Now, C which had been charged earlier, places a negative charge on the base of Q which reverse-biases its E / B junction and ultimately drives it to cut-off.

The transistor remains at cut-off as C now starts to discharge through R. When sufficient amount of charge leaks off C so that reverse bias of E / B junction is removed and forward bias is re-established, Q comes out of cut-off and its collector current starts rising once again. Then, the entire cycle of operation is repeated. As shown, the output consists of sharp and narrow pulses.

Tutorial Problems No. 65.1

1. A tuned collector oscillator circuit is tuned to operate at 22 kHz by a variable capacitor set to 2 nF . Find the value of tuned circuit inductance.
(0.026 H)
2. A tuned collector oscillator operates at 2.2 MHz frequency. At what frequency will it work if its tuned circuit capacitance is reduced by 50% ?
(3.11 MHz)
3. In a transistorized Hartley oscillator, the tank circuit has the capacitance of 100 pF . The value of inductance between the collector and tapping point is $30 \mu \mathrm{H}$ and the value of inductance between the tapping point and the transistor base is $100 \mu \mathrm{H}$. Determine the frequency of oscillators. Neglect the mutual inductance.
(2.9 MHz)
4. For the transistor Hartley oscillator circuit shown in Fig. 65.37, find the frequency of operation. Neglect the mutual inductance between the coils.
(73.1 kHz)

Fig. 65.37
5. A transistor Hartley oscillator is designed with $L_{1}=2 \mathrm{mH}, L_{2}=20 \mu \mathrm{H}$ and a variable capacitance. Determine the range of capacitance values if the frequency of operation is varied from 950 kHz to 2050 kHz .
$(2.98 \mathbf{~ p F}$ to $13.9 \mathbf{p F})$
6. In a transistor Colpitts oscillator, $C_{1}=0.001 \mu \mathrm{~F}$, $C_{2}=0.01 \mu \mathrm{~F}$ and $\mathrm{L}=5 \mu \mathrm{H}$. Find the required gain for oscillation and the frequency of oscillations.
(0.91 nF and $\mathbf{2 . 3 7 \mathrm { MHz } \text {) }) ~}$
7. Determine the frequency of oscillations for the transistor Colpitts oscillator circuit shown in Fig. 65.38.
(24.4 kHz)
8. A Colpitts oscillator is designed with $C_{1}=100$ $\mathrm{pF}, C_{2}=7500 \mathrm{pF}$. The inductance is variable. Determine the range of inductance values if the

Fig. 65.38 frequency of oscillation is to vary between 950 kHz and 2050 kHz .
(61 $\mu \mathrm{H}$ to $284 \mu \mathrm{H}$)
9. The frequency of oscillation of a Colpitts oscillator is given by,

$$
f_{0}=\frac{1}{2 \pi \sqrt{L\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)}}
$$

where L, C_{1} and C_{2} are the frequency-determining components. Such a circuit operates at 450 kHz with $C_{1}=C_{2}$. What will be the oscillation frequency if the value of C_{2} is doubled.
10. Calculate the frequency of oscillations for the Clapp oscillator shown in Fig. 65.39. $\quad(734.5 \mathrm{kHz}$)
11. A crystal has the following parameters : $L=0.33 \mathrm{H}, C_{1}=0.065 \mathrm{pF}, C_{2}=1 \mathrm{pF}$ and $R=5.5 \mathrm{~K} \Omega$. Find the series resonant frequency and Q-factor of the crystal. (1.09 MHz and 411)
12. A Wien Bridge oscillator is used for operation at $f_{0}=10 \mathrm{kHz}$. The value of R is 100 K , find the value of capacitor, C. Assume $R_{1}=R_{2}=R$ and C_{1} $=C_{2}=C$.
$(159 \mathrm{pF})$
13. $A R C$ phase shift oscillator has $\mathrm{R}=1 \mathrm{k} \Omega$ and $C=0.01 \mu \mathrm{~F}$. Calculate the frequency of oscillations
(Electronics Engg, Annamalai Univ. 2002)
14. Calculate the frequency and the duty cycle of the output of stable multivibrator and draw the waveform obtained across the capacitor C_{T}. as shown in Fig. 65.40. (Electronics Engg. Bangalore Univ. 2001)
15. In an Hartey oscillator if $L_{1}=0.1$

Fig. 65.39

Fig. 65.40
$\mathrm{mH}, \mathrm{L}_{2}=10 \mu \mathrm{H}$ and mutual inductance between the coils equal to $20 \mu \mathrm{H}$. Calculate the value of capacitor C of the oscillatory circuit to obtain frequency of 4110 kHz and also find the condition for sustained oscillations.
(Electronics Engg: Bangalore Univ. 2001)
16. Calculate the frequency of oscillation of a colpit oscillator with $C_{1}=C_{2}=400 \mathrm{pF}$ and $L=2 \mathrm{mH}$.
(Electronics Engg., Bangalore Univ. 2002)
17. In an R-C phase shift oscillator $R=5000 \Omega$ and $C=0.1 \mathrm{MF}$. Calculate the frequency of oscillations.
(Electronics Engg., Bangalore Univ. 2002

OBJECTIVE TESTS - 65

1. An electronic oscillator is
(a) just like an alternator
(b) nothing but an amplifier
(c) an amplifier with feedback
(d) a converter of ac to dc energy.
2. The frequency of oscillation of an elementary $L C$ oscillatory circuit depends on
(a) coil resistance
(b) coil inductance
(c) capacitance
(d) both (b) and (c).
3. For sustaining oscillations in an oscillator
(a) feedback factor should be unity
(b) phase shift should be 0°
(c) feedback should be negative
(d) both (a) and (b).
4. If Barkhausen criterion is not fulfilled by an oscillator circuit, it will
(a) stop oscillating
(b) produce damped waves continuously
(c) become an amplifier
(d) produce high-frequency whistles.
5. In a transistor Hartley oscillator
(a) inductive feedback is used
(b) untapped coil is used
(c) entire coil is in the output circuit
(d) no capacitor is used
6. A Hartley oscillator is used for generating
(a) very low frequency oscillation
(b) radio-frequency oscillation
(c) microwave oscillation
(d) audio-frequency oscillation
7. A Colpitts oscillator uses
(a) tapped coil
(b) inductive feedback
(c) tapped capacitance
(d) no tuned $L C$ circuit
8. In $R C$ phase-shift oscillator circuits.
(a) there is no need for feedback
(b) feedback factor is less than unity
(c) pure sine wave output is possible
(d) transistor parameters determine osci- llation frequency.
9. Wien bridge oscillator is most often used whenever
(a) wide range of high purity sine waves is to be generated
(b) high feedback ratio is needed
(c) square output waves are required
(d) extremely high resonant frequencies are required.
10. The RC network shown in Fig 65.40 can provide a maximum theoretical phase shift of

Fig. 65.41
(a) 90°
(b) 180°
(c) 270°
(d) 360°
(UPSC Engineering Services 2002)
11. A $C E$ amplifier can be converted into oscillator by
(a) providing adequate positive feedback
(b) phase shifting the output by 180° and feeding this phase-shifted output to the input.
(c) using only a series tuned circuit as a load on the amplifier
(d) using a negative resistance device as a load on the amplifier
(e) all of the above
(UPSC Engineering Service, 2002)
12. The primary advantage of a crystal oscillator is that
(a) it can oscillate at any frequency
(b) it gives a high output voltage
(c) its frequency of oscillation remains almost constant
(d) it operates on a very low dc supply voltage.
13. Non-sinusoidal waveforms
(a) are departures from sine waveform
(b) have low mark-to-space ratio
(c) are much easier to generate
(d) are unfit for digital operation.
14. A relaxation oscillator is one which
(a) has two stable states
(b) relaxes indefinitely
(c) produces non-sinusoidal output
(d) oscillates continuously.
15. A square pulse has a mark-to-space ratio of
(a) $1: 1$
(b) $1: 2$
(c) $2: 1$
(d) 1:4.
16. Apart from a dc power source, the essential requirements of a sawtooth generator are
(a) a resistor
(b) a capacitor
(c) a switching device (d) all of the above.
17. Which of the following statement is WRONG ? In a multivibrator
(a) output is available continuously
(b) feedback between two stages is 100%
(c) positive feedback is employed
(d) when one transistor is ON, the other is OFF.
18. An MMV circuit
(a) has no stable state
(b) gives two output pulses for one input trig ger pulse
(c) returns to its stand-by states automatically
(d) has no energy-storage element.
19. A BMV circuit
(a) has two unstable states
(b) has one energy-storage element
(c) switches between its two states automatically
(d) is not an oscillator.
20. The digital circuit using two inverters shown in Fig. 65.42 will act as
(a) a bistable multi-vibrator
(b) an astable multi-vibrator
(c) a monostable multi-vibrator
(d) an oscillator

Fig. 65.42
21. In the Schmitt trigger circuit shown in Fig. 65.43 if $\mathrm{V}_{\mathrm{CE}(\text { sat) }}=0.1 \mathrm{~V}$, the output logic low level ($V_{O L}$) is
(a) 1.25 V
(b) 1.35 V
(c) 2.50 V
(d) 5.00 V

Fig. 65.43

1. (c)	2. (d)	3. (d)	4. (a)	5. (a)	6. (b)	7. (c)	8. (c)	9. (a)	10. (b)	11. (b)
12. (c)	13. (a)	14. (c)	15. (a)	16. (d)	17. (a)	18. (c)	19. (a)	20. (a)	21. (b)	

Leaming Objectives

$>$ What is a Camier Wave?
> Radio Frequency Spectrum
$>$ Sound
$>$ Need for Modulation
> Radio Broadcasting
$>$ Modulation
$>$ Methods of Modulation
> Amplitude Modulation
> Percent Modulation
> Upperand Lower Sidebands
$>$ Mathematical Analysis of a Modulated CarrierWa ve
> Power Relation in an AM Wave
> Forms of Amplitude Modulation
$>$ Generation of SSB
> Methodsof Amplitude Modulation
$>$ Modulating Amplifier Circ uit
> Frequency Modulation
> Modulation Index
> Deviation Ratio
> Percent Modulation
> FM Sidebands
$>$ Modulation Index and Number of Sidebands
$>$ Demodulation or Detection
$>$ Essentials of AM Detection
$>$ Transistor Detectors for AM Signals
$>$ Quadrature Detector
> Frequency Conversion
> Standard Superhet AM Receiver
> FM Receiver
> Comparison between AM and FM
$>$ The Four Fields of FM

MODULATION AND DEMODULATION

The radio waves travel through the air,

 bounce off a layer of the atmosphere called the ionosphere, or are relayed by satellite
66.1. Introduction

For successful transmission and reception of intelligence (code, voice, music etc.) by the use of radio waves, two processes are essential :
(i) modulation and (ii) demodulation.

Speech and music etc. are sent thousands of kilometres away by a radio transmitter. The scene in front of a television camera is also sent many kilometres away to viewers. Similarly, a Moon probe or Venus probe checking its environments, sends the information it gathers millions of kilometres through space to receivers on earth. In all these cases, the carrier is the high-frequency radio wave. The intelligence i.e. sight, sound or other data collected by the probe is impressed on the radio wave and is carried along with it to the destination.

Modulation is the process of combining the low-frequency signal with a very high-frequency radio wave called carrier wave (CW). The resultant wave is called modulated carrier wave. This job is done at the transmitting station.

Demodulation is the process of separating or recovering the signal from the modulated carrier wave. It is just the opposite of modulation and is performed at the receiving end.

66.2. What is a Camier Wave?

It is a high-frequency undamped radio wave produced by radio-frequency oscillators (Chapter 65). As seen from Fig. 66.1, the output of these oscillators is first amplified and then passed on to an antenna. This antenna radiates out these high-frequency (electromagnetic) waves into space. These waves have constant amplitude and travel with the velocity of light. They are inaudible i.e. by themselves they cannot produce

Fig. 66.1 any sound in the loudspeaker of a receiver. As their name shows, their job is to carry the signal (audio or video) from transmitting station to the receiving station. The resultant wave is called modulated carrier wave.

66.3. Radio Frequency Spectrum

Radio frequencies used by different communication systems extend from very low frequencies to extra high frequencies as tabulated below along with their acronym abbreviations.

Table No. 66.1			
Frequency	Designation	Abbreviation	Uses
$3-30 \mathrm{kHz}$	very low frequency	VLF	long distance telegraphy broadcasting
$30-300 \mathrm{kHz}$	low frequency	LF	long distance point-to-point service, navigational aids, sound broadcasting and line carrier systems.
$300 \mathrm{kHz}-3 \mathrm{MHz}$	medium frequency	MF	sound broadcasting, ship-shore services and line carrier systems
$3-30 \mathrm{MHz}$	high frequency	HF	medium and long-distance point-to-point services, sound broadcasting, linear carrier systems.

$30-300 \mathrm{MHz}$	very high frequency	VHF	short-distance communication, TV and
$300 \mathrm{MHz-3GHz}$	ultra high frequency	UHF	sound broadcasting, radar
$3-30 \mathrm{GHz}$	super high frequency	SHF	outer-space radio communication, $30-300 \mathrm{GHz}$
extra high frequency			

Generally, none of the frequencies above 300 GHz is classified as radio waves.

66.4. Sound

It is a sort of disturbance which requires some physical medium for its propagation. Human voice consists of a series of compressions and rarefactions which travel through air with a velocity of about $345 \mathrm{~m} / \mathrm{s}$. The fre-

Fig. 66.2 quency range of human voice is from $20-4000 \mathrm{~Hz}$ which lies within the audible range of 20 to 20,000 Hz. Variations in human voice can be converted into corresponding variations in electric current with the help of a microphone as shown in Fig.66.2.
When a sound wave strikes the microphone, it produces AF sound current. The positive halfcycles of sound current are produced by the compressions and negative half cycles by rarefactions.

As seen, human voice does not produce pure sinusoidal current because it does not consist of one frequency alone. It is quite complex and can be analysed to consist of a fundamental (or lowest frequency) and its integral multiple frequencies called overtones or harmonics.

We are interested in two main characteristics of sound :
(i) Intensity-It is the energy content of the wave. It depends on its amplitude. In fact, intensity of a wave is directly proportional to the square of its amplitude i.e. $I \propto a^{2}$. Sensation of loudness felt by a listener depends directly on the intensity of the wave falling on his ears.
(ii) Frequency-It produces the sensation called pitch. Audible sounds have a frequency range from 20 Hz to $20,000 \mathrm{~Hz}$.
Though every sound has complex frequency structure,
 we will consider only single-frequency sound whose current wave is a pure sine wave as shown in Fig. 66.3. It will be used as the modulating signal when discussing the process of modulation.

66.5. Need for Modulation

Sometimes, beginners question the necessity of modulation i.e. using a carrier wave to carry the low-frequency signal from one place to another. Why not transmit the signals directly and save lot of botheration? Unfortunately, there are three main hurdles in the process of such direct transmission of audio-frequency signals :

Fig. 66.3

1. They have relatively short range,
2. If everybody started transmitting these low-frequency signals directly, mutual interference will render all of them ineffective
3. Size of antennas required for their efficient radiation would be large i.e. about 75 km as explained below.
For efficient radiation of a signal, the minimum length of an antenna is one quarter wavelength $(\lambda / 4)$. The antenna length L is connected with the frequency of the signal wave by the relation $L=75 \times 10^{6} / f$ metres. For transmitting an audio signal of $f=1000 \mathrm{~Hz}, L=75 \times 10^{6} / 10^{3}=75,000 \mathrm{~m}$ $=75 \mathrm{~km}$! In view of this immense size of antenna length, it is impractical to radiate audio-frequency signals directly into space.

Hence, the solution lies in modulation which enables a low-frequency signal to travel very large distances through space with the help of a high-frequency carrier wave. These carrier waves need reasonably-sized antennas and produce no interference with other transmitters operating in the same area.

66.6. Radio Broadcasting

Let us see how radio broadcasting stations broadcast speech or music etc. from their broadcasting studios.

First, the speech or music which consists of a series of compressions and rarefactions is translated into a tiny varying electric current with the help of a crystal microphone. The frequency of variations of this current lies in the audio-range, hence it is known as audio frequency signal.

The audio-frequency signal cannot be radiated out from the antenna directly because transmission at audio-frequencies is not practical. For this purpose, oscillations of very high frequency or radio-frequency are produced with the help of any one of the oscillators discussed in Chapter 15. The electromagnetic waves so produced are of constant amplitude but of extremely high frequency. These waves, which are neither seen nor heard, travel through space with the velocity of light i.e. $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (approx). The audiofrequency signal which is to be broadcast, is then superimposed on the $R F$ waves, which are known as carrier waves (because they carry A.F. signal through space to distant places). In a way, the carrier waves can be likened to a horse and the audio-frequency signal to a rider. The
 process by which $A F$ signal or information is impressed on the carrier wave is known as modulation. The horse and rider travel through space. At the receiving end, they strike the receiving aerial and enter the receiver which separates the horse from the rider. The horse i.e. carrier wave is returned and the rider i.e. audio-frequency signal is converted back into sound. This process by which the R.F. waves and A.F. waves are separated is known as detection or demodulation (because it is the reverse of modulation).

66.7. Modulation

It is the process of combining an audiofrequency (AF) signal with a radio frequency ($\boldsymbol{R F}$) carrier wave. The AF signal is also called a modulating wave and the resultant wave produced is called modulated wave.

Fig. 66.4

During modulation, some characteristic of the carrier wave is varied in time with the modulating signal and is accomplished by combining the two.

66.8. Methods of Modulation

The mathematical expression for a sinusoidal carrier wave is

$$
e=E_{C} \sin \left(\omega_{\mathrm{c}} \mathrm{t}+\phi\right)=E_{C} \sin \left(2 \pi f_{c} \mathrm{t}+\phi\right)
$$

Obviously, the waveform can be varied by any of its following three factors or parameters :

1. E_{C} - the amplitude,
2. f_{c} - the frequency,
3. ϕ - the phase.

Accordingly, there are three types of sine-wave modulations known as :

1. Amplitude Modulation (AM)

Here, the information or $A F$ signal changes the amplitude of the carrier wave without changing its frequency or phase.
2. Frequency Modulation (FM)

In this case, the information signal changes the frequency of the carrier wave without changing its amplitude or phase.
3. Phase Modulation (PM)

Here, the information signal changes the phase of the carrier wave without changing its other two parameters.

66.9. Amplitude Modulation

In this case, the amplitude of the carrier wave is varied in proportion to the instantaneous amplitude of the information signal or AF signal. Obviously, the amplitude (and hence the intensity) of the carrier wave is changed but not its frequency. Greater the amplitude of the AF signal, greater the fluctuations in the amplitude of the carrier wave.

The process of amplitude modulation is shown graphically in Fig. 66.5. For the sake of simplicity, the $A F$ signal has been assumed sinusoidal [Fig. 66.5 (a)]. The carrier wave by which it is desired to transmit the $A F$ signal is shown in Fig. 66.5 (b). The resultant wave called modulated wave is shown in Fig. 66.5 (c).

The function of the modulator is to mix these two waves in such a way that (a) is transmitted along with (b). All stations broadcasting on the standard broadcast band ($550-1550 \mathrm{kHz}$) use $A M$ modulation.

If you observe the envelope of the modulated carrier wave, you will realize that it is an exact replica of the $A F$ signal wave.

In summary
(i) fluctuations in the amplitude of

Fig. 66.5 the carrier wave depend on the signal amplitude,
(ii) rate at which these fluctuations take place depends on the frequency of the audio signal.

66.10. Percent Modulation

It indicates the degree to which the AF signal modulates the carrier wave

$$
m=\frac{\text { maximum value of signal wave }}{\text { maximum value of carrier wave }} \times 100=\frac{\text { signal amplitude }}{\text { carrier amplitude }} \times 100
$$

$$
=\frac{B}{A} \times 100 \quad \text {-Fig. } 66.5
$$

The ratio B/A expressed as a fraction is called modulation index (MI)

$$
m=M . I . \times 100
$$

From Fig. 66.5, it is seen that $B=1$ V and $A=1.5 \mathrm{~V}$

$$
\therefore \quad m=\frac{1}{1.5} \times 100=66.7 \%
$$

Modulation may also be defined in terms of the values referred to the modulated carrier wave.

$$
m=\frac{E_{c(\text { max })}-E_{c(\text { min })}}{E_{c(\text { max })}+E_{c(\text { min })}} \times 100
$$

where $E_{c(\max)}$ and $E_{c(\min)}$ are the maximum and minimum values of the amplitude of the modulated carrier wave.

Again, from Fig. 66.5 we see that

$$
\begin{aligned}
m & =\frac{2.5-0.5}{2.5+0.5} \times 100 \\
& =\frac{2}{3} \times 100=66.7 \%
\end{aligned}
$$

Fig. 66.6 shows a modulated wave with different degrees of modulation. As before, both the signal and carrier waves are assumed to be sine waves. Smallest value of $m=0$ i.e. when amplitude of the modulating signal is zero. It means

Fig. 66.6 that $m=0$ for an unmodulated carrier wave. Maximum value of $m=1$ when $B=A$. Value of m can vary anywhere from 0 to 100% without introducing distortion. Maximum undistorted power of a radio transmitter is obtained when $m=100 \%$. If m is less than 100 per cent, power output is reduced though the power content of the carrier is not. Modulation in excess of 100 per cent produces severe distortion and interference (called splatter) in the transmitter output.

Example 66.1 A modulated carrier wave has maximum and minimum amplitudes of 750 mV and 250 mV . Calculate the value of percentage modulation.

Solution. The modulated wave is shown in Fig. 66.7.
Here, $\begin{aligned} E_{c(\text { max })} & =750 \mathrm{mV} \text { and } \\ E_{c(\text { min })} & =250 \mathrm{mV}\end{aligned}$
$\therefore \quad m=\frac{E_{c(\text { max })}-E_{c(\text { min })}}{E_{c(\text { max })}+E_{c(\text { min })}} \times 100$

$$
=\frac{750-250}{750+250} \times 100=\mathbf{5 0 \%}
$$

Fig. 66.7

66.11. Upper and Lower Side Frequencies

An unmodulated carrier wave consists of only one single-frequency component of frequency f_{c}. When it is combined with a modulating signal of frequency fm, heterodyning action takes place.

As a result, two additional frequencies called side frequencies are produced. The $A M$ wave is found to consist of three frequency components :

1. The original carrier frequency component, f_{c}.
2. A higher frequency component $\left(f_{c}+f_{m}\right)$. It is called the sum component.
3. A lower frequency component $\left(f_{c}-f_{m}\right)$. It is called the difference component.

The two new frequencies are called the upper-side frequency (USF) and lower-side frequency
 (LSF) respectively and are symmetrically located around the carrier frequency. The modulating frequency remains unchanged but does not appear in the amplifier output because the amplifier's load presents practically zero impedance to this low frequency.

Fig. 66.8
These are shown in time domain in Fig. 66.8 (a) and in frequency domain in Fig. 66.8 (b). The amplitude of the side frequencies depends on the value of m. The amplitude of each side frequency $=m A / 2$ where A is the amplitude of unmodulated carrier wave.

Example 66.2. A $10-\mathrm{MHz}$ sinusoidal carrier wave of amplitude 10 mV is modulated by a 5 kHz sinusoidal audio signal wave of amplitude 6 mV . Find the frequency components of the resultant modulated wave and their amplitudes.
(Electronics \& Comm. Engg.; Madras Univ. 1991)
Solution. Here, $f_{c}=10 \mathrm{MHz}$ and $f_{m}=5 \mathrm{kHz}=0.005 \mathrm{MHz}$. The modulated carrier contains the following frequencies :

1. original carrier wave of frequency

$$
f_{c}=10 \mathrm{MHz}
$$

2. USF of frequency

$$
=10+0.005=10.005 \mathrm{MHz}
$$

3. LSF of frequency

$$
=10-0.005=9.995 \mathrm{MHz}
$$

The frequency spectrum is shown in Fig. 66.9

$$
\text { Here, } m=\frac{B}{A}=\frac{6}{10}=0.6=0.6
$$

Fig. 66.9

Amplitude of $L S F=U S F=m A / 2=0.6 \times 10 / 2=3 \mathrm{mV}$ as shown .

66.12. Upper and Lower Sidebands

In Art 66.11, it was assumed that the modulating signal was composed of one frequency component only. However, in a broadcasting station, the modulating signal is the human voice (or music) which contains waves with a frequency range of $20-4000 \mathrm{~Hz}$. Each of these waves has its own $L S F$ and $U S F$. When combined together, they give rise to an upper-side band (USB) and a lower-side band (LSB) as shown in Fig. 66.10. The $U S B$, in fact, contains all sum components of the signal and carrier frequency whereas $L S B$ contains their difference components.

The channel width (or bandwidth) is given by the difference between extreme frequencies i.e. between maximum frequency of $U S B$ and minimum frequency of $L S B$. As seen,

Channel width $=2 \times$ maximum frequency of modulating signal $=2 \times f_{m(\max)}$

Example 66.3. An audio signal given by 15 sin 2π (2000 t) amplitude-modulates a sinusoidal carrier wave $60 \sin 2 \pi(100,000) t$.

Determine :

Fig. 66.10
(a) modulation index, (b) percent modulation, (c) frequencies of signal and carrier,
(d) frequency spectrum of the modulated wave.
(Electronics \& Telecom Engg., Jadavpur Univ. 1991)
Solution. Here, $B=15$ and $A=60$
(a) M.I. $=\frac{B}{A}=\frac{15}{60}=0.25$
(b) $m=$ M.I. $\times 100=0.25 \times 100=25 \%$
(c) $f_{m}=2000 \mathrm{~Hz}$ - by inspection of the given equation $f_{c}=100,000 \mathrm{~Hz} \quad$ - by inspection of the given equation
(d) The three frequencies present in the modulated $C W$ are
(i) $100,000 \mathrm{~Hz}=100 \mathbf{~ k H z}$
(ii) $100,000+2000=102,000 \mathrm{~Hz}=102 \mathbf{k H z}$
(iii) $100,000-2000=98,000 \mathrm{~Hz}=98 \mathrm{kHz}$

Example 66.4. A bandwidth of 15 MHz is available for AM transmission. If the maximum audio signal frequency used for modulating the carrier is not to exceed 15 kHz , how many stations can broadcast within this band simultaneously without interfering with each other?
(Electronics \& Telecom Engg.; Pune Univ. 1991)
Solution. $B W$ required by each station

$$
=2 f_{m(\max)}=2 \times 15=30 \mathrm{kHz}
$$

Hence, the number of station which can broadcast within this frequency band without interfering with one another is

$$
=\frac{15 \mathrm{MHz}}{30 \mathrm{kHz}}=\mathbf{5 0 0}
$$

Example 66.5. In a broadcasting studio, a 1000 kHz carrier is modulated by an audio signal of frequency range, $100-5000 \mathrm{~Hz}$. Find (i) width or frequency range of sidebands (ii) maximum and minimum frequencies of USB (iii) maximum and minimum frequencies of LSB and (iv) width of the channel. (Electronics \& Comm. Engg. IERE, London)
Solution. (i) Width of sideband $=5000-100$ $=4900 \mathrm{~Hz}$
(ii) Max. frequency of USB

$$
=1000+5=1005 \mathrm{kHz}
$$

Min. frequency of $U S B$

$$
=1000+0.1=1000.1 \mathrm{kHz}
$$

(iii) Max. frequency of $L S B$

$$
=1000-0.1=999.9 \mathrm{kHz}
$$

Min. frequency of $L S B$

$$
=1000-5=995 \mathrm{kHz}
$$

(iv) Width of channel $=1005-995=10 \mathrm{kHz}$

Fig. 66.11

66.13. Mathematic al Analysis of a Modulated Camier Wave

The equation of an unmodulated carrier wave is

Fig. 66.12

$$
e_{c}=E_{c} \sin 2 \pi f_{c} t=\mathrm{A} \sin 2 \pi f_{c} t=\mathrm{A} \sin \mathrm{wt}
$$

where A is the constant amplitude of the carrier wave and $\omega=2 \pi f_{c}$.

Let the equation of the single-frequency sinusoidal modulating signal be

$$
\begin{gathered}
e_{m}=E_{m} \sin 2 \pi f_{m} t=B \sin 2 \pi f_{m} t \\
=B \sin \pi t \quad \text { - where } p=2 \pi f_{m}
\end{gathered}
$$

As seen from Fig. 66.12, the amplitude of the modulated carrier wave at any instant is

$$
\begin{aligned}
& =\mathrm{A}+e_{m} \\
& =(A+B \sin \pi \mathrm{t})
\end{aligned} \quad(\therefore \mathrm{A} \text { is constant })
$$

Hence, its instantaneous value is given by
$e=(A+B \sin p \mathrm{t}) \sin \omega \mathrm{t}=A \sin \omega \mathrm{t}+B \sin \omega \mathrm{t} \cdot \sin p t$

$$
\begin{aligned}
& \left.=A \sin \omega t+\frac{B}{2} \cdot 2 \sin \omega t \cdot \sin p t=A \sin \omega t+\frac{B}{2}[\cos (\omega-p) t-\cos (\omega+p) t)\right]^{*} \\
& =A \sin \omega t+\frac{B}{2} \cos (\omega-p) t-\cos (\omega+p) t \\
& =A \sin 2 \pi f_{c} t+\cos 2 \pi\left(f_{c} f_{m}\right) t-\cos 2 \pi\left(f_{c}+f_{m}\right) t
\end{aligned}
$$

As seen from Art. 66.10, $m=B / A$ or $B=m A$

$$
\therefore \quad e=\mathrm{A} \sin 2 \pi f_{c} t+\cos 2\left(f_{c}-f_{m}\right) t-\cos 2\left(f_{c}+f_{m}\right) t
$$

It is seen that the modulated wave contains three components :
(i) $A \sin 2 \pi f_{c} t$ - the original carrier wave
(ii) $\frac{m A}{2} \cos 2 \pi\left(f_{c}+f_{m}\right) t \quad$ - upper side frequency
(iii) $\frac{m A}{2} \cos 2 \pi\left(f_{c}-f_{m}\right) t \quad$ - lower side frequency

Fig. 66.13
These three frequencies are not a mathematical fiction but they actually exist. In fact, with the help of a narrow band filter, we can separate side frequencies from the carrier wave.

Example 66.6. The tuned circuit of the oscillator in an AM transmitter uses a 40 mH coil and a 1 nF capacitor. If the carrier wave produced by the oscillator is modulated by audio frequencies upto 10 kHz , calculate the frequency band occupied by the side bands and channel width.
(Electronics \& Telecom. Engg., Calcutta Univ. 1990)
Solution. The resonant frequency is given by

$$
f_{c}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{40 \times 10^{-6} \times 1 \times 10^{-9}}}=796 \mathrm{kHz}
$$

* $2 \overline{\sin } \bar{A} \cdot \overline{\sin } \bar{B}=\overline{\cos (A}-B)-\overline{\cos }(\bar{A}+\bar{B})$

The frequency range occupied by the sidebands is from 786 kHz to 806 kHz . The channel width

$$
=2 \times 10=20 \mathrm{kHz}
$$

66.14. Power Relations in an AM Wave

As discussed in Art. 66.13, a modulated carrier wave consists of the following three components:

1. original carrier wave of amplitude A
2. USF wave of amplitude ($m A / 2$)
3. $L S F$ wave of amplitude ($m A / 2$)

Now, power radiated out by a wave through an antenna is proportional to (amplitude) ${ }^{2}$.
Carrier power, $P_{C} \propto A^{2}=K A^{2}$
$U S B$ power, $\quad P_{U S B} \propto\left(\frac{B}{2}\right)^{2}=\frac{K B^{2}}{4} ; L S B$ power, $P_{L S B} \propto\left(\frac{B}{2}\right)^{2}=\frac{K B^{2}}{4}$
Total sideband power $P_{S B}=2 \times \frac{K B^{2}}{4}=\frac{K B^{2}}{2}$
Total power radiated out from the antenna is $P_{T}=P_{c}+P_{S B}=K A^{2}+\frac{K B^{2}}{2}$
Substituting $B=m A$, we get $P_{T}=K A^{2}+\frac{K B^{2}}{2}(m A)^{2}=K A^{2}\left(1+\frac{m^{2}}{2}\right)$
Now $\quad P_{C}=K A^{2}$
(i) $\quad \therefore \quad P_{T}=P_{C}\left(1+\frac{m^{2}}{2}\right)=P_{C}\left(\frac{2+m^{2}}{2}\right) \quad$ (ii) $\quad P_{C}=P_{T}=P_{T}\left(\frac{2}{2+m^{2}}\right)$
(iii) $P_{S B}=P_{T}-P_{C}=P_{C}\left(1+\frac{m^{2}}{2}\right)-P_{C}=\frac{m^{2}}{2} P_{C}=\left(\frac{m^{2}}{2+m^{2}}\right) P_{T}$
(iv) $P_{U S B}=P_{L S B}=\frac{1}{2} P_{S B}=\frac{m^{2}}{4} P_{C}=\frac{1}{2}\left(\frac{m^{2}}{2+m^{2}}\right) P_{T}$

Let us consider the case when $m=1$ or 100%
(i) $P_{T}=1.5 P_{C}=1.5 \times$ carrier power
(ii) $P_{C}=\frac{2}{3} P_{T}=\frac{2}{3} \times$ total power radiated
(iii) $P_{U S B}=P_{L S B}=\frac{1}{4} P_{C}=25 \%$ of carrier power
(iv) $P_{S B}=\frac{1}{2} \mathrm{P}_{\mathrm{C}}=50 \%$ of carrier power
(v) $\quad \frac{P_{U S B}}{P_{T}}=\frac{0.25 P_{C}}{1.5 P_{C}}=\frac{1}{6}$

It means that single side-band contains $1 / 6$ th of the total power radiated out by the transmitter. That is why single-side band ($S S B$) transmission is more power efficient.

Example 66.7. The total power content of an AM wave is 1500 W. For a 100 percent modulation, determine
(i) power transmitted by carrier,
(ii) power transmitted by each side band.
(Electronics \& Comm. Engg., Kerala Univ. 1991)
Solution. $\quad P_{T}=1500 \mathrm{~W}, P_{C}=? \quad P_{U S B}=$? $\quad P_{L S B}=$?
(i) $P_{C}=P_{T}\left(\frac{2}{2+m^{2}}\right)=P_{T}\left(\frac{2}{2+1^{2}}\right)=\frac{2}{3} P_{T}=\frac{2}{3} \times 1500=1000 \mathrm{~W}$
(ii) $P_{U S B}=P_{L S B}=\frac{m^{2}}{4} P_{C}=\frac{1^{2}}{4} \times 1000=\mathbf{2 5 0} \mathbf{W}$

As seen, $P_{U S B}=\frac{1}{6} P_{T}$
Example 66.8. The total power content of an AM wave is 2.64 kW at a modulation factor of 80%. Determine the power content of
(i) carrier,
(ii) each sideband.
(Electronics \& Comm., Roorkee Univ. 1991)

Solution. (i) $P_{C}=P_{T}\left(\frac{2}{2+m^{2}}\right)=2.64 \times 10^{3}\left(\frac{2}{2+0.8^{2}}\right)=2000 \mathrm{~W}$
(ii) $\quad P_{U S B}=P_{L S B}=\frac{m^{2}}{4}=\frac{0.8^{2}}{4} \times 2000=320 \mathrm{~W}$

Example 66.9. A transmitter used for radio telephone has an unmodulated carrier power of 10 $k W$ and can be modulated to a maximum of 80 percent by a single-frequency signal before overloading. Find the value to which carrier power can be increased if a 50 percent modulation limit is imposed.
(Electronics \& Comm. Engg. Andhra Univ.)
Solution. $\quad P_{T}=P_{C}\left(\frac{2+m^{2}}{2}\right)=10\left(\frac{2+0.8^{2}}{2}\right)=13.2 \mathrm{~kW}$
Now, when $m=0.5, P_{T}$ is still 13.2 kW . Hence, new value of carrier power is given by

$$
13.2=P_{C}\left(\frac{2+0.5^{2}}{2}\right) ; \quad \quad P_{C}=11.73 \mathrm{~kW}
$$

It is seen that P_{C} can be increased from 10 kW to 11.73 kW with a total power limit of 13.2 kW and $m=0.5$

Example 66.10. A certain transmitter radiates 10 kW of power with the carrier unmodulated and 11.8 kW with the carrier sinusoidally modulated.
(a) Find the modulation factor,
(b) If another wave modulated to 40% is also transmitted, calculate the radiated power.

Solution. (a) $11.8=10\left(1+m^{2} / 2\right) ; \quad m=0.6$ or 60%
(b) $P_{T}=10\left(1+\frac{0.6^{2}}{2}+\frac{0.4^{2}}{2}\right)=12.6 \mathrm{~kW}$

66.15. Foms of Amplitude Modulation

As shown in Art. 66.11, one carrier and two sidebands are produced in AM generation. It is found that it is not necessary to transmit all these signals to enable the receiver to reconstruct the original signal. Accordingly, we may attenuate or altogether remove the carrier or any one of the sidebands without affecting the communication process. The advantages would be

1. less transmitted power and 2. less bandwidth required

The different suppressed component systems are :
(a) DSB-SC

It stands for double-sideband suppressed carrier system [Fig. 66.14 (a)]. Here, carrier component is suppressed thereby saving enormous amount of power. As seen from Art. 66.14, carrier signal contains 66.7 per cent of the total transmitted power for $m=1$, Hence, power saving amounts to 66.7% at 100% modulation.
(b) SSB-TC

As shown in Fig. 66.14 (b), in this case, one sideband is suppressed but the other sideband and carrier are transmitted. It is called single sideband transmitted carrier system. For $m=1$, power saved is $1 / 6$ of the total transmitted power.
(c) SSB-SC

This is the most dramatic suppression of all because it suppresses one sideband and the carrier and transmits only the remaining sideband as shown in Fig. 66.14 (c). In the standard or double-sideband full-carrier (DSB.FC) AM, carrier conveys no information but contains maximum power. Since the two sidebands are exact images of each other, they carry the

Fig. 66.14 same audio information. Hence, all information is available in one sideband only. Obviously carrier is superfluous and one side band is redundant. Hence, one sideband and the carrier can be discarded with no loss of information. The result is $S S B$ signal. The advantage of $S S B-S C$ system are as follows :

1. Total saving of 83.3% in transmitted power $(66.7 \%$ due to suppression of carrier wave and 16.6% due to suppression of one sideband). Hence, power is conserved in an SSB transmitter.
2. Bandwidth required is reduced by half i.e. 50%. Hence, twice as many channels can be multiplexed in a given frequency range.
3. The size of power supply required is very small. This fact assumes vital importance particularly in a spacecraft.
4. Since the SSB signal has narrower bandwidth, a narrower passband is permissible within the receiver, thereby limiting the noise pick up.
However, the main reason for wide spread use of $D S B-F C$ (rather than $S S B-S C$) transmission in broadcasting is the relative simplicity of its modulating equipment.

66.16. Generation of SSB

Three main systems are employed for the generation of SSB.

1. Filter method, 2. Phase cancellation method, 3. The 'third' method.

All these methods use some form of balanced modulator to suppress the carrier.
Example 66.11. In an AM wave, calculate the power saving when the carrier and one sideband are suppressed corresponding to
(i) $m=1$
(ii) $m=0.5$
(Electronics and Comm. Engg., Osmania Univ.)

Solution. (i) When $m=1$

$$
\begin{aligned}
& \begin{array}{l}
P_{T}=P_{C}\left(1+\frac{m^{2}}{2}\right)=1.5 P_{C} ; \quad P_{L S B}=P_{U S B}=\frac{m^{2}}{4} P_{C}=0.25 P_{C} \\
\therefore \quad \text { saving }=P_{T}-P_{U S B}=1.5 P_{c}-0.25 P_{c}=1.25 P_{c}
\end{array} \\
& \text { saving }=\frac{1.25}{1.5 P_{C}} \times 100=83.3 \%
\end{aligned}
$$

(ii) When $m=0.5$

$$
\begin{aligned}
P_{T} & =P_{C}\left(1+\frac{m^{2}}{2}\right)=P_{C}\left(\frac{1+0.5^{2}}{2}\right)=1.125 P_{C} \\
P_{U S B} & =P_{L S B}=\frac{m^{2}}{4} P_{C}=\frac{0.5^{2}}{4} P_{C}=0.0625 P_{C} \\
\therefore \quad \text { saving } & =\frac{1.125 P_{c}-0.0625 P_{C}}{1.125 P_{C}} \times 100=94.4 \%
\end{aligned}
$$

66.17. Methods of Amplitude Modulation

There are two methods of achieving amplitude modulation :
(i) Amplifier modulation,
(ii) Oscillator modulation.

Block diagram of Fig. 66.15 illustrates the basic idea of amplifier modulation.

Here, carrier and $A F$ signal are fed to an amplifier and the result is an $A M$ output. The modulation process takes place in the active device used in the amplifier.

66.18. Block Diagram of an AM Transmitter

Fig. 66.15

Fig. 66.16 shows the block diagram of a typical transmitter. The carrier wave is supplied by a crystal-controlled oscillator at the carrier frequency. It is followed by a tuned buffer amplifier and an $R F$ output amplifier.

The source of $A F$ signal is a microphone. The audio signal is amplified by a low level audio amplifier and, finally, by a power amplifier. It is then combined with the carrier to produce a modulated carrier wave which is ultimately radiated out in the free space by the transmitter antenna as shown.

Fig. 66.16

66.19. Modulating Amplifier Circ uit

It is shown in Fig. 66.17. The carrier signal from a crystal oscillator is coupled to the base of Q through transformer T_{l}. The low-frequency modulating signal is also coupled to the base of Q by capacitor C_{1}. The voltage divider $R_{1}-R_{2}$, as usual, provides proper forward bias for the transistor whereas C_{2} and C_{3} are bypass capacitors.

The modulating signal applied across R_{2} causes variations in the base bias in step with its own variations. The amplitude of the transistor $R F$ output changes according to the changes in $A F$ modulating signal. The $L_{l} C_{4}$ circuit is kept tuned to the carrier frequency. The amplitude-modulated
carrier or $R F$ current in L_{1} induces similar current in L_{2} which is connected to an antenna. Finally, the $A M$ carrier wave is radiated out in space by the transmitting antenna.

66.20. Frequency Modulation OR CAD Simulation Diagram.

As the name shows, in this modulation, it is only the frequency of the carrier which is changed and not its amplitude.

The amount of change in frequency is determined by the amplitude of the modulating signal whereas rate of change is determined by the frequency of the modulating signal. As shown in Fig. 16.18, in an FM carrier, information (or intelligence) is carried as variations in its frequency. As seen, frequency of the modulated carrier increases

Fig. 66.17 as the signal amplitude increases but decreases as the signal amplitude decreases. It is at its highest frequency (point H) when the signal amplitude is at its maximum positive value and is at its lowest frequency (point L) when signal ampli-

Fig. 66.18 tude has maximum negative value. When signal amplitude is zero, the carrier frequency is at its normal frequency f_{0} (also called resting or centre frequency.)

The fact that amount of change in frequency depends on signal amplitude is illustrated in Fig. 66.19 where R stands for resting frequency. Here, signal amplitude is almost double of that in Fig. 66.18 though its frequency is the same. This louder signal causes greater frequency change in modulated carrier as indicated by increased bunching and spreading of the waves as compared with relatively weaker signal of Fig. 66.18 .

The rate at which frequency shift takes place depends on the signal frequency as shown in Fig. 66.20. For example, if the modulating signal is 1 kHz , then the modulated carrier will swing between its maximum frequency and lowest frequency 1000 times per second. If $f_{m}=2 \mathrm{kHz}$, the rate of frequency swing would be twice as fast :

In short, we have established two important points about the nature of frequency modulation:
(i) The amount of frequency deviation (or shift or variation) depends on the amplitude (loudness) of the audio signal. Louder the sound, greater the frequency deviation and vice-versa.

However, for the purposes of $F M$ broadcasts, it has been internationally agreed to restrict maximum deviation to $\mathbf{7 5} \mathbf{~ k H z}$ on each side of the centre frequency for sounds of maximum loudness. Sounds of lesser loudness are permitted proportionately less frequency deviation.
(ii) The rate of frequency deviation depends on the signal frequency.

66.21. Frequency Deviation and Camier Swing

The frequency of an $F M$ transmitter without signal input is called the resting frequency or centre frequency $\left(f_{0}\right)$ and is the allotted frequency of the transmitter. In simple words, it is the carrier frequency on which a station is allowed to broadcast. When the signal is applied, the carrier frequency deviates up and down from its resting value f_{0}.

This change or shift either above or below the resting frequency is called

Fig. 66.19 frequency deviation $\left(\Delta_{f}\right)$

The total variation in frequency from the lowest to the highest is called carrier swing (CS). Obviously,
carrier swing $=2 \times$ frequency deviation of $C S=2 \times \Delta_{f}$
A maximum frequency deviation of 75 kHz is allowed for commercial $F M$ broadcast stations in the 88 to $168 \mathrm{MHz} V H F$ band. Hence, $F M$ channel width is $275=150 \mathrm{kHz}$. Allowing a 25 kHz guard band on either side, the channel width becomes $=2(75+25)=200 \mathrm{kHz}$ (Fig. 66.21). This guard band is meant to prevent interference between adjacent channels. However, a maximum frequency deviation of 25 kHz is allowed in the sound portion of the TV broadcast.

Fig. 66.20
In $F M$, the highest audio frequency transmitted is 15 kHz .
Consider an FM carrier of resting frequency 100 MHz . Since $(\Delta f)_{\max }=75 \mathrm{kHz}$, the carrier frequency can swing from the lowest value of 99.925 MHz to the highest value of 100.075 MHz . Of course, deviations lesser than 75 kHz corresponding to relatively softer sounds are always permissible.

Fig. 66.21

66.22. Modulation Index

It is given by the ratio $m_{f}=\frac{\text { frequency deviation }}{\text { modulation frequency }}=\frac{\Delta f}{f_{m}}$
Unlike amplitude modulation, this modulation index can be greater than unity. By knowing the value of m_{f}, we can calculate the number of significant sidebands and the bandwidth of the $F M$ signal.

66.23. Deviation Ratio

It is the worst-case modulation index in which maximum permitted frequency deviation and maximum permitted audio frequency are used.

$$
\therefore \quad \text { deviation ratio }=\frac{(\Delta f)}{f_{m(\max)}}
$$

Now, for $F M$ broadcast stations, $(\Delta f)_{\max }=75 \mathrm{kHz}$ and maximum permitted frequency of modulating audio signal is 15 kHz .
$\therefore \quad$ deviation ratio $=\frac{75 \mathrm{kHz}}{15 \mathrm{kHz}}=5$
For sound portion of commercial TV deviation ratio $=\frac{25 \mathrm{kHz}}{15 \mathrm{kHz}}=1.67$

66.24. Percent Modulation

When applied to $F M$, this term has slightly different meaning than when applied to $A M$. In $F M$, it is given by the ratio of actual frequency deviation to the maximum allowed frequency deviation.

$$
m=\frac{(\Delta f)_{a c t u a l}}{(\Delta f)_{\max }}
$$

Obviously, 100% modulation corresponds to the case when actual deviation equals the maximum allowable frequency deviation. If, in some case, actual deviation is 50 kHz , then

$$
m=\frac{50}{75}=\frac{2}{3}=0.667=66.7 \%
$$

Value of $m=0$ corresponds to zero deviation i.e. unmodulated carrier wave. It is seen from the above equation that $m \propto(\Delta f)_{\text {actual }}$. It means that when frequency deviation (i.e. signal loudness) is doubled, modulation is doubled.

Example 66.12. What is the modulation index of an FM carrier having a carrier swing of 100 kHz and a modulating signal of 5 kHz ?

Solution.

$$
C S=2 \times \Delta f
$$

$$
\therefore \quad \Delta f=\frac{C S}{2}=\frac{100}{2}=\mathbf{5 0} \mathbf{k H z} \therefore \quad m_{f}=\frac{\Delta f}{f_{m}}=\frac{50}{5}=10
$$

Example. 66.13. An FM transmission has a frequency deviation of 18.75 kHz . Calculate percent modulation if it is broadcast
(i) in the $88-108 \mathrm{MHz}$ band
(ii) as a portion of a TV broadcast.
(Elect. and Comm. Engg., Madurai Kamaraj Univ. 1990)
Solution. (i) For this transmission band,

$$
(\Delta f)_{\max }=75 \mathrm{kHz}
$$

$$
\begin{array}{ll}
\therefore & m=\frac{18.75}{75} \times 100=25 \% \\
\therefore & m=\frac{18.75}{75} \times 100=75 \%
\end{array}
$$

Example 66.14. An FM signal has a resting frequency of 105 MHz and highest frequency of 105.03 MHz when modulated by a signal of frequency 5 kHz . Determine
(i) frequency deviation,
(ii) carrier swing,
(iii) modulation index,
(iv) percent modulation,
(v) lowest frequency reached by the FM wave.
(Electronics and Comm. Engg., Osmania Univ. 1992)
Solution. (i) $\Delta f=105.03-105=0.03 \mathrm{MHz}=30 \mathrm{kHz}$
(ii) $C S=2 \times \Delta f=2 \times 30=60 \mathrm{kHz}$
(iii) $\quad m_{f}=\frac{30}{5}=6$
(iv) $m=\frac{30}{5} \times 100=40 \%$
(v) lowest frequency $=105-0.03=104.97 \mathbf{k H z}$

66.25. FM Sidebands

In $F M$, when a carrier is modulated, a number of sidebands are formed.* Though theoretically their number is infinite, their strength becomes negligible after a few sidebands. They lie on both sides of the centre frequency spaced fm apart as shown in Fig.66.22. Sidebands at equal distances from f_{0} have equal amplitudes. If f_{0} is the centre frequency and fm the frequency of the modulating signal, then FM carrier contains the fol-

Fig. 66.22 lowing frequencies :
(i) f_{0}
(ii)
$f_{0} \pm f_{m}$
(iii) $f_{0} \pm 2 f_{m}$
(iv) $f_{0} \pm 3 f_{m}$ and so on

The bandwidth occupied by the spectrum is $B W=2 n f_{m}$ where n is the highest order of the significant sideband.

Another approximate expression for spectrum bandwidth is $B W=2\left(1+m_{f}\right) f_{m}$
Now, $m_{f}=\frac{\Delta f}{f_{m}}$, hence $\quad B W=2\left(\Delta_{f}+f_{m}\right)$
This expression is based on the assumption that sidebands having amplitudes less than 5% of the unmodulated carrier wave are negligble or when m_{f} is at least 6 .

66.26. Modulation Index and Number of Sidebands

It is found that the number of sidebands

1. depends directly on the amplitude of the modulating signal,
2. depends inversely on the frequency of the modulating signal.
[^24]Since frequency deviation is directly related to the amplitude of the modulating signal, the above two factors can be combined in one factor called modulation index.

Hence, number of sidebands depends on $m_{f}=\Delta f / f_{m}$
Obviously, the number of pairs of sidebands
(i) increases as frequency deviation (or amplitude of modulating signal) increases.
(ii) increases as the modulating signal frequency decreases.

Table No. 66.2

m_{f}	0.5	1	2	3	4	5	6	7
n	2	3	4	6	7	8	9	11
$B W=2 n f_{m}$	$4 f_{m}$	$6 f_{m}$	$8 f_{m}$	$12 f_{m}$	$14 f_{m}$	$16 f_{m}$	$18 f_{m}$	$22 f_{m}$
m_{f}	8	9	10	11	12	13	14	15
n	12	13	14	15	16	17	18	19
$B W=2 n f_{m}$	$24 f_{m}$	$26 f_{m}$	$28 f_{m}$	$30 f_{m}$	$32 f_{m}$	$34 f_{m}$	$36 f_{m}$	$38 f_{m}$

Table 66.2 summarizes the relation between the number (n) of sidebands on either side of the carrier and the corresponding bandwidth of the spectrum.

Example 66.15. A 5 kHz audio signal is used to frequency-modulate a 100 MHz carrier causing a frequency deviation of 20 kHz . Determine
(i) modulation index
(ii) bandwidth of the FM signal.

Solution. (i) $m_{f}=\frac{\Delta f}{f_{m}}=\frac{20}{5}=4$
As seen from Table $66.2 B W=14 f_{m}=14 \times 5=70 \mathrm{kHz}$
Note. We cannot use the alternate expression for $B W$ given in Art. 66.25 above because $m_{f}<6$
Example 66.16. In an FM circuit, the modulation index is 10 and the higest modulation frequency is 20 kHz . What is the approximate bandwidth of the resultant FM signal ?
(Applied Electronics, Bombay Univ. 1990)
Solution. Since the value of m_{f} is more than 6 , we will use the expression

$$
B W=2\left(\Delta_{f}+f_{m}\right)
$$

Now, $m_{f} \quad=\frac{\Delta f}{f_{m}} \quad$ or $10=\frac{\Delta f}{20}$

$$
\therefore \quad \Delta_{f}=200 \mathrm{kHz}
$$

$$
\therefore \quad B W \quad=2(200+20)=440 \mathrm{kHz}
$$

66.27. Mathematic al Expression for RM Wave

The unmodulated carrier is given by $e_{c}=A \sin 2 \pi f_{0} t$
The modulating signal frequency is given by $e_{m}=B \sin 2 \pi f_{m} t$
The modulated carrier frequency f swings around the resting frequency f_{0} thus

$$
f=f_{0}+\Delta_{f} \cdot \sin 2 \pi f_{m} t
$$

Hence, equation for the frequency-modulated wave becomes

$$
\begin{aligned}
e & =A \sin 2 \pi f t=\mathrm{A} \sin \left[2 \pi\left(f_{0}+\Delta f \cdot \sin 2 \pi f_{m} t\right) t\right] \\
& =A \sin \left(2 \pi f_{0} t+\frac{\Delta f}{f_{m}}+\cos 2 \pi f_{m} t\right)=A \sin \left(2 \pi f_{0} t+m_{f} \cos 2 \pi f_{m} t\right)
\end{aligned}
$$

66.28. Demodulation or Detection

When the $R F$ modulated waves, radiated out from the transmitter antenna, after travelling through space, strike the receiving aerials, they induce very weak $R F$ currents and voltages in them. If these high-frequency currents are passed through headphones or loudspeakers, they produce no effect on them because all such sound-producing devices are unable to respond to such high frequencies due to large inertia of their vibrating discs etc. Neither will such $R F$ currents produce any effect on human ear because their frequencies are much beyond the audible frequencies (20 to $20,000 \mathrm{~Hz}$ approximately). Hence, it is necessary to demodulate them first in order that the sound-producing devices may be actuated by audio-frequency current similar to that used for modulating the carrier wave at the broadcasting station.

This process of recovering AF signal from the modulated carrier wave is known as demodulation or detection.

The demodulation of an $A M$ wave involves two operations:
(i) rectification of the modulated wave and
(ii) elimination of the $R F$ component of the modulated wave.

However, demodulation of an $F M$ wave involves three operations (i) conversion of frequency changes produced by modulating signal into corresponding amplitude changes, (ii) rectification of the modulating signal and (iii) elimination of $R F$ component of the modulated wave.

66.29. Essentials of AM Detection

For recovering the $A F$ waveform from modulated wave (a mixture of $A F$ wave and $R F$ carrier), it is essential to find some way of reducing (or better, eliminating) one half of the modulated wave. The result of this elimination (or rectification) would be that the average value of the wave would not be zero because, now, the impulse would be all in one direction as shown in Fig. 66.23. If this new wave is now passed through a headphone shunted by a suitable capacitor, then $A F$ wave will pass through the headphone whereas the $R F$ wave will be by-passed by the capacitor (because the high inductance of magnet coils of the headphones will offer tremendous impendance to $R F$ currents). Hence, two will become separated.

66.30. Diode Detec tor for AM Signals

Fig. 66.23

Diode detection is also known as envelope-detection or linear detection. In appearance, it looks like an ordinary half-wave rectifier circuit with capacitor input as shown in Fig. 66.24. It is called envelope detection because it recovers the $A F$ signal envelope from the composite signal. Similarly, diode detector is called linear detector because its output is proportional to the voltage of the input signal*.

Circuit Action
Of the various $R F$ voltages induced in the receiver aerial, only those having the same frequency as the resonant frequency of $L C$ circuit are tuned in due to electromagnetic induction between coils L_{l} and L. By varying C, the resonant frequency of the $L C$ circuit can be varied and hence $R F$ signal of any desired frequency can be tuned in. This input signal is rectified by the diode and passed on to the low-pass filter $R C_{1}$.

[^25]

Fig. 66.24
The $R F$ carrier wave is filtered out by low-reactance capacitor C_{1} which is called $R F$ filter capacitor or $R F$ by-pass capacitor. The dc component of the remaining signal is shunted out through R because it cannot pass through blocking capacitor $C B$. But the low, frequency $A F$ signal can easily get through $C B$ and becomes available across the output. When passed through a suitable device, say, a headphone, the original sound can be heard.

Advantages

Diode detectors are extensively used in AM broadcast receivers because they have the following advantages :

1. They can handle comparatively large input signals;
2. They can be operated as linear or power detectors;
3. They rectify with negligible distortion and, hence, have good linearity;
4. They are well-adopted for use in simple automatic-gain control circuits.

Disadvantages

However, the disadvantages are that

1. they do not have the ability to amplify the rectified signal by themselves as is done by a transistor detector (Art. 66.31). However, it is not a very serious drawback since signal amplification can be affected both before and after rectification;
2. while conducting, the diode consumes some power which reduces the Q of its tuned circuit as well as its gain and selectivity.

66.31. Transistor Detectors for AM Signals

Transistors can be used as detector amplifiers i.e. both for rectification and amplification. As shown in Fig. 66.25, the $R F$ signal is applied at the base-emitter junction where rectification takes place. The amplification of the recovered signal takes place in the emittercollector circuit.

It should be noted that when used as a detector, the transistor has to be biased at cut-off or operated

Fig. 66.25 as class-B. As is usual, C_{2} ac grounds R_{3} whereas voltage divider $R_{1}-R_{2}$ establishes proper bias which holds the transistor just at cut-off.

Obviously, only positive half-cycles of the modulated $R F$ input signal will drive the transistor into conduction, whereas negative half-cycles would be cut-off. Thus, rectification of the input signal takes place in the base-emitter circuit. The small variations in base current produced by the positive half-cycle of the input signal produce large (β time) variations in the collector current. Hence, an amplified version of the rectified signal appears across $R_{C}-C_{3}$ combination. C_{3} eliminates $R F$ component so that only $A F$ signal voltage drops across $R C$. The capacitor C_{4} permits $A F$ signal to pass through but blocks its dc component.

66.32. FM Detection

As discussed earlier, an $F M$ carrier signal contains information (or intelligence we wish to convey) in the form of frequency variations above and below the centre frequency of the carrier. For recovering the information, we must first convert the $F M$ signal in such a way that it appears as a modulated $R F$ voltage across the diode. A simple method of converting frequency variations into voltage variations is to make use of the principle that reactance (of coil or capacitor) varies with frequency. When an $F M$ signal is applied to an inductor, the current flowing through it varies in amplitude according to the changes in frequency of the applied signal. Now, changes in frequency of the $F M$ signal depend on the amplitude of the modulating $A F$ signal. Hence, the current in the inductor varies as per the amplitude of the original modulating signal. In this way, frequency changes in $F M$ signal are converted into amplitude changes in current. These changes in current when passed through a resistor produce corresponding changes in voltage.

Hence, we find that, ultimately, frequency variations in FM signal are converted into voltage changes. Also, there exists a linear relation between the two - something essential for distortion-less demodulation.

FM demodulation may be carried out with the help of (i) ratio detector and (ii) quadrature detector.

66.33. Quadrature Detector

This detector depends on the frequency/phase relationship of a tuned circuit. It uses only one tuned circuit and is becoming increasingly popular in the integrated $F M$ strips.

Theory
Let us first consider the general principle. A sinusoidal current is given by the equation

$$
i=I_{m} \sin \theta=I_{m} \sin \omega t
$$

Suppose, it flows through a circuit shown in Fig. 66.27 (a). The voltage V_{L} across the inductor (assumed pure) leads the current I by 90°

$$
\therefore \quad V_{L}=V_{L} \cos \omega t
$$

The voltage V_{z} across the parallel tuned circuit will be in phase with I at resonance. However, at frequencies slightly different ($\pm 1 \%$) from the resonant frequency, the phase angle f will be given b

$$
\tan \phi=\frac{y Q R}{R}=y Q \quad \text { assuming } f_{0} / f \cong 1 .
$$

Here

$$
\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}=\frac{f}{f_{0}}-\frac{f_{0}}{f} \cong \frac{2 \Delta_{f}}{f_{0}}
$$

where $\Delta f=f-f_{0}$
$f_{0}=$ resonant frequency
$f=$ slightly off-resonance frequency
Hence, equation for V_{z} is given by $V_{z}=V_{z} \sin (\omega t-f)$

Fig. 66.26

When the two voltages V_{L} and V_{z} are applied as inputs to a multiplier, the output voltage V_{0} is found to be proportional to their product as shown in Fig. 66.27(b).

$$
\begin{aligned}
V_{0} & \propto V_{L} \cdot V_{z} \propto \cos \omega t \cdot \sin (\omega t-\phi) \\
& \propto \sin (2 \omega t+f)+\sin \phi
\end{aligned}
$$

A low-pass filter is used to reject the double frequency component $\sin (2 \omega t+\phi)$ and select only the low-frequency $\sin \phi$ component.

$$
\begin{array}{rll}
\therefore & V_{0} \propto \sin \phi \propto \tan \phi & \text { - since } \phi \text { is very small } \\
& \propto y \phi \propto y \propto 2 . \frac{\Delta f}{f_{0}} & \text { - where } V_{m} \text { is the modulating } A F \text { voltage. }
\end{array}
$$

Now, $\Delta_{f}=f-f_{0} \propto \mathrm{k} V_{m}$
$\therefore \quad V_{0} \propto V_{m}$
It shows that output voltage v_{0} is proportional to the original modulating signal voltage.

66.34. Frequency Conversion

Let us first consider its necessity for radio broadcasting purposes and the basic principle of heterodyning action.

1. Need

Fig. 66.27

It is very difficult to design amplifiers which give uniformly high gain over a wide range of radio
 frequencies used in commercial broadcast stations. However, it is possible to design amplifiers which can provide high-gain uniform amplification over a narrow band of comparatively lower frequencies called intermediate frequencies (IF). Hence, it is necessary to convert the modulated $R F$ carrier into modulated $I F$ carrier by using a frequency converter.
This $I F$ signal is then amplified by narrow-band $I F$ amplifiers and passed on to the $A M$ detectors.

2. Basic Principle

The frequency conversion can be achieved by utilizing the heterodyne principle. For this purpose, the modulated $R F$ signal is mixed (in a mixer) with an unmodulated $R F$ signal produced by local oscillator as shown in Fig. 66.28.

The oscillator and the mixer may be either two separate devices or may be combined into one device called converter. The process of combining two ac signals of different frequencies in order to obtain a signal of new frequency is called heterodyning action.

3. Heterodyning Action

Suppose the carrier signal of frequency f_{s} is heterodyned with another signal of frequency f_{0}, then two additional signals are produced whose frequencies are :
(i) $f_{0}+f_{s}$-the sum component (ii) $f_{0}-f_{s}$ - the difference component

Usually, the sum frequency is removed by bandpass filtering. The difference frequency (also called beat frequency) is retained and forms the $I F$ frequency in $A M$ receivers.

Fig. 66.29

Suppose, an $A M$ carrier signal of frequency 1500 kHz is mixed with an unmodulated carrier (produced by local oscillator) of frequency 1955 kHz . Then, following two frequencies are produced
(i) 3455 kHz and
(ii) 455 kHz

The higher frequency is generally filtered out leaving behind the difference frequency of 455 kHz which forms the $I F$ frequency.

66.35. Superhetrodyne AM Receiver

It is also referred to as superhet and is extensively used in modern AM receivers. Its block diagram with signals is shown in Fig. 66.29. The operation of this receiver is as under :
(i) Let us assume that the incoming signal frequency is 1500 kHz . It is first amplified by the R.F. amplifier.
(ii) Next, it enters a mixer circuit which is so designed that it can conveniently combine two radio frequencies-one fed into it by the R.F. amplifier and the other by a local oscillator.
(iii) The local oscillator is an $R F$ oscillator whose frequency of oscillation can be controlled by varying the capacitance of its capacitor. In fact, the tuning capacitor of the oscillator is ganged with the capacitor of the input circuit so that the difference in the frequency of the selected signal and oscillator frequency is always constant. Usually, the difference is maintained at 455 kHz . If signal frequency is $1,500 \mathrm{kHz}$, then oscillator frequency can be either 1,955 or $1,045 \mathrm{kHz}$. Let us suppose that it is $1,955 \mathrm{kHz}$. In fact, local oscillator frequency is always higher than the frequency of the incoming signal.
(iv) When two alternating currents of these two different frequencies are combined in the mixer transistors, then phenomenon of beats is produced. In the present case, the beat frequency is $1955-1500=455 \mathrm{kHz}$. Since this frequency is lower than the signal frequency but still above the range of audio frequencies, it is called intermediate frequency (IF).
(v) The 455 kHz output of the mixer is then passed on to the $I F$ amplifier which is fixedtuned to 455 kHz frequency. In practice, one or more stages of IF amplification may be used.
(vi) The output of IF amplifier is demodulated by a detector which provides the audio signal.
(vii) This audio signal is amplified by the audio-frequency $(A F)$ amplifier whose output is fed to a loud-speaker which reproduces the original sound.

66.36. Standard Superhet AM Receiver

Fig. 66.30 shows the block diagram of a standard superhet $A M$ receiver alongwith its seventransistor circuit diagram. Usually, transistor radios are all-wave radios having two or more bands. With the help of a band switch, the coils and trimmers of any one band can be connected to the circuit at will. For the sake of simplicity, the coils and trimmers of one band only have been shown in Fig. 66.30. The operation of various stages and the functions of various radio components used in the radio circuit of Fig. 66.30 are described below.

1. Frequency Changer or Converter

It is the first stage* in a transistor radio and has two sections-oscillator and mixer. A single silicon transistor Q_{1} performs both the above functions. L_{4} is the oscillator coil whereas L_{2} is the signal input coil. Resistors R_{I} and R_{2} form a voltage divider for giving base bias to Q_{1}

The signals intercepted by the aerial are picked up by coil L_{l} which is tuned to the transmission frequency of the desired station with the help of ganged capacitor C_{1} and its fine-tuning trimmer C_{2}. This signal is then induced into the secondary winding L_{2} which passes it on to the base of Q_{1} via C_{3}. The local oscillations produced by L_{4} and ganged capacitor C_{7} are given to the emitter of Q_{1} via C_{4}.

As seen, Q_{1} has been used in $C E$ configuration for producing oscillations. The positive feedback required for producing oscillations is given from the collector of Q_{1} to its emitter through L_{3}, L_{4} and C_{4}.

[^26]

The transistor Q_{1} mixes the incoming signal frequency f_{s} and oscillation frequency f_{0} thereby producing the sum and difference frequencies of $\left(f_{0}+f_{\mathrm{s}}\right)$ and $\left(f_{0}-f_{\mathrm{s}}\right)$ respectively. The difference frequency called $I F$ frequency is then passed on to the $I F$ transformer IFT-1 connected in the collector of Q_{1}.

2. IF Amplifier

As the name indicates, its function is to amplify the $I F$ signal obtained from the frequency changer. Usually, two stages are used to obtain sufficient gain. The gain of the first stage is controlled by the automatic gain control circuit ($A G C$) with the help of dc voltage drop across R_{10}. This dc voltage is obtained from the detector diode. Three fixed-tuned $I F$ transformers are usedone at the collector of the frequency changer and the other two for the two $I F$ amplifier stages. These transformers are also used as collector load as well as for inter-stage-coupling.

Resistor R_{5} gives base bias to Q_{2} whereas capacitor C_{8} decouples the $A G C$ voltage. As usual, R_{8} and R_{9} form the voltage divider circuit for giving base bias to Q_{3}.

The amplified IF signal obtained from IFT-2 is further amplified by IFT-3 of the second IF amplifier stage before it is passed on to the detector diode.

3. Detector Circuit

It consists of a diode* which rectifies the $I F$ signal. Resistor R_{13}, capacitors C_{10} and C_{11} together filter out $R F$. The audio signal is given to the following audio section through potentiometer R_{14} which is also used as a volume control. Capacitor C_{12} blocks the dc component in the rectified signal. This dc voltage is used for $A G C$ via R_{10}. The main purpose of using $A G C$ is to minimize the variations in sound due to changes in signal strength (because of fading) and to prevent overloading of second IF stage because of a very strong signal from a close-by transmitter.

4. Audio Frequency (AF) Amplifier

The audio section consists of three stages i.e. audio amplifier, driver and output which feeds a loud speaker. The audio-amplifiers amplify the audio signal given to Q_{4} through volume control and C_{12}, R_{15} and R_{16} are biasing resistors whereas R_{19} is the emitter resistor with a by-pass capacitor C_{13}. The amplified signal is developed over collector load resistor R_{17}. This amplified signal is capaci-tively-coupled to the driver stage through C_{14}.

5. Driver

The driver stage further amplifies the audio signal obtained from the previous $A F$ amplifier till it is large enough to drive the output stage. Transformer T (having two secondary windings) is used for coupling to the output stage. The emitter resistor of Q_{5} is split into two parts (R_{23} and R_{24}) with only R_{24} being by-passed by C_{16}. This provides some negative feedback and reduces distortion.

6. Output Stage

The function of this stage is to amplify the audio signal received from the driver stage and hence provide sufficient power to drive the loudspeaker. Class-B push-pull amplifier employing transistors Q_{6} and Q_{7} is used for economizing battery consumption. Resistors R_{25} and R_{26} provide base bias to Q_{6} and R_{27} and R_{28} to Q_{7} whereas R_{29} and R_{30} are the emitter resistors of the two respective transistors. The audio signal is given via C_{17} to the loudspeaker which converts it into sound similar to the one transmitted by the broadcasting transmitter.

[^27]

Fig. 66.31

66.37. FM Receiver

The block diagram for such a receiver is shown in Fig. 66.31. These receivers operate in the $V H F$ band of $88-108 \mathrm{MHz}$ and have an $I F$ of 10.7 MHz with a bandpass of $2 \times 75 \mathrm{kHz}=150 \mathrm{kHz}$.

Like $A M$ receivers, such receivers also have a frequency converter and $I F$ amplifiers.
The function of the limiter is to remove all amplitude variations (caused by noise) from $I F$ signal which might have crept into the $F M$ signal. This removal of amplitude variations is necessary for distortionless demodulation. Limiter is a sort of clipping circuit.

The de-emphasis network reduces the amplitude of high frequencies in the audio signal which was earlier increased by the pre-emphasis network at the transmitting station. It serves to reestablish the tonal balance of the speech or music etc. lost in the pre-emphasis. Without it, the sound signal would have a heavy treble effect. It is, in fact, a low-pass filter having a time constant of $75 \mu \mathrm{~s}$.

66.38. Comparison Between AM and RM

Frequency modulation (FM) has the following advantages as compared to amplitude modulation (AM) :

1. All transmitted power in $F M$ is useful whereas in $A M$ most of it is in carrier which serves no useful purpose.
2. It has high signal-to-noise $(\mathrm{S} / \mathrm{N})$ ratio. It is due to two reasons : firstly, there happens to be less noise at VHF band and secondly, FM receivers are fitted with amplitude limiters which remove amplitude variations caused by noise.
3. Due to 'guard-band' there is hardly any adjacent-channel interference.
4. Since only transmitter frequency is modulated in $\boldsymbol{F M}$, only fraction of a watt of audio power is required to produce 100% modulation as compared to high power required in $A M$.
However, FM has the following disadvantages :
5. It requires much wider channel - almost 7 to 15 times as large as needed by AM.
6. It requires complex and expensive transmitting and receiving equipment.
7. Since FM reception is limited to only line of sight, area of reception for FM is much smaller than for $A M$.

66.39. The Four Fields of RM

There are four major areas of application for $F M$ transmission :

1. First use is in $\mathbf{F M}$ broadcast band $88-108 \mathrm{MHz}$ with 200 kHz channels in which commercial $F M$ stations broadcast programmes to their listeners.
2. Second use is in TV. Though video signal is amplitude-modulated, sound is transmitted by a separate transmitter which is frequency-modulated.
3. Third use is in the mobile or emergency services which transmit voice frequencies (204000 Hz) only.
4. Fourth use is in the amateur bands where again only voice frequencies are transmitted.

Tutorial Problems No. 66.1

1. A carrier wave has an amplitude of 500 mV . A modulating signal causes its amplitude to vary from 200 mV to 800 mV . What is the percentage modulation?
[60\%]
2. A $100 . \mathrm{MHz}$ carrier having an amplitude of 50 V is amplitude-modulated by a 5 kHz audio signal having an amplitude of 20 V . Find
(i) modulation index,
(ii) percent modulation,
(iii) components of modulated wave,
(iv) the amplitudes of sidebands.
[(i) 0.4 (ii) 40 (iii) $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{1 0 0 . 0 0 5} \mathbf{~ M H z}, 99.995 \mathbf{~ M H z}$ (iv) $\mathbf{1 0} \mathrm{V}$]
3. An audio signal given by $30 \sin (2 \pi \times 2500 t)$ is used for modulating a carrier wave given by the equation $60 \sin (2 \pi \times 200,000 t)$. Find
(i) percent modulation,
(ii) frequencies of the signal and the carrier,
(iii) frequency spectrum of the modulated wave.

$$
\text { [(i) } 50 \text { (ii) } 2500 \mathrm{~Hz}, 200,000 \mathrm{~Hz} \text { (iii) 200; 202.5; } 197.5 \mathrm{kHz})]
$$

4. How many AM broadcast stations can be accommodated in a 5 MHz bandwidth if each station transmits a signal modulated by an audio signal having a maximum frequency of 5 kHz .
5. A 100 kHz bandwidth is to accomodate 5 AM broadcasts simultaneously. What is the maximum modulating frequency permissible for each station?
[5 kHz]
6. Total power content of an AM signal is 3000 W . For 100 percent modulation, calculate
(i) carrier power
(ii) power in each sideband
[(i) $2 \mathbf{k W}$ (ii) $0.5 \mathbf{k W}$]
7. The total power content of an AM wave is 1320 W . What is the percent modulation if each sideband contains 160 W ?
[0.8]
8. An SSB-SC signal contains 2 kW . Find power contained in
(i) carrier (ii) sideband.
[(i) $\mathbf{0}$ (ii) $\mathbf{2} \mathbf{k W}$]
9. As compared to DSB-FC, Calculate the power saving in SSB-SC when percent modulation is (i) 1 (ii) 0.8 (iii) 0.5
[(i) $\mathbf{8 3 . 3} \%$ (ii) $\mathbf{8 7 . 8 7 \%}$ (iii) $\mathbf{9 4 . 4 \%}$]
10. What is the modulation index of an FM carrier having a carrier swing of 120 kHz and a modulating signal of 10 kHz .
11. An FM signal has a resting frequency of 100 MHz and the highest frequency of 100.05 MHz when modulated by an audio signal of 5 kHz . Determine
(i) frequency deviation,
(ii) carrier swing,
(iii) modulation index,
(iv) percent modulation.
[(i) $\mathbf{5 0} \mathbf{~ k H z}$ (ii) $\mathbf{1 0 0} \mathbf{~ k H z}$ (iii) $\mathbf{1 0}$ (iv) $\mathbf{6 6 . 7 \%}$]
12. A 10 kHz audio signal is used to frequency-modulate a 100 MHz carrier causing a frequency deviation of 50 kHz . Determine
(i) modulation index,
(ii) bandwidth of FM signal.
[(i) 5 (ii) $\mathbf{1 6 0} \mathbf{~ k H z)] ~}$
13. A carrier of $1 \mathrm{MH}_{z}$ with 400 Watt of its power is A amplitude modulated with a sinusoidal signal of 2500 Hz . The depth of modulation is 75%. Calculate the side band frequencies, the band width, the power in the side bands and the total power in the modulated wave.
[(Electronics Engg; Bangalore Univ. 2004)]
14. The total power content of an AM wave is 2.64 kW at a modulation factor of 80%. Determine the power content of (i) carrier (ii) each side band.
[(Electronics Engg. Bangalore Univ. 2002)]
15. A 100 MHz carrier wave is frequency modulated by a 10 kHz sinusoidal modulating signal. If the maximum frequency deviation is 50 kHz . Find the modulation index.
[(Electronics Engg. Bangalore Univ., 2002)]
16. A $500 \mathrm{~W}, 1 \mathrm{MHz}$ carrier is amplitude modulated with a sinusoidal signal of 1 kHz . The depth of modulation is 60%. Calculate the band width, power in the side bands and the total power transmitted.
[(Electronics Engg., Bangalore Univ., 2003)]
17. A carrier signal has a peak amplitude of 100 V . Modulation index is 40%. Power is developed across a load of 100Ω. Determine the value of transmitted power.
(Electronics Engg. Bangalore Univ., 2003)

OBJECTIVE TESTS - 66

1. The main purpose of modulation is to
(a) combine two waves of different fre- quencies
(b) achieve wave-shaping of the carrier wave
(c) transmit low-frequency information over long distances efficiently
(d) produce sidebands.
2. Demodulation
(a) is performed at the transmitting station
(b) removes side-bands
(c) rectifies modulated signal
(d) is opposite of modulation.
3. In amplitude modulation
(a) carrier frequency is changed
(b) carrier amplitude is changed
(c) three sidebands are produced
(d) fidelity is improved.
4. 100% modulation is produced in AM when carrier
(a) frequency equals signal frequency
(b) frequency exceeds signal frequency
(c) amplitude equals signal amplitude
(d) amplitude exceeds signal amplitude.
5. For a given carrier wave, maximum undistorted power is transmitted when value of modulation is
(a) 1
(b) 0.8
(c) 0.5
(d) 0
6. In an AM wave with 100 percent modulation, each sideband carries - of the total transmitted power.
(a) one-half
(b) one-sixth
(c) one-third
(d) two-third
7. Given a carrier frequency of 100 kHz and a modulating frequency of 5 kHz , the bandwidth of AM transmission is \qquad kHz.
(a) 5
(b) 200
(c) 10
(d) 20
8. When modulation of an AM wave is decreased
(a) percentage carrier power is decreased
(b) percentage carrier power is increased
(c) total transmitted power is increased
(d) percentage sideband power is unaffe cted.
9. In AM transmission, power content of the carrier is maximum when m equals
(a) 0
(b) 1
(c) 0.8
(d) 0.5 .
10. In AM transmission with $\mathrm{m}=1$, suppression of carrier cuts power dissipation by a factor of
(a) 6
(b) 2
(c) 3
(d) 4
11. As compared to DSB-FC 100% modulated transmission, power saving in SSB-SC system is \qquad per cent.
(a) 94.4
(b) 50
(c) 100
(d) 83.3
12. In an AM transmission with 100% modulation, 66.7% of power is saved when \qquad is/are suppressed.
(a) carrier
(b) carrier and USB
(c) carrier and LSB
(d) USB and LSB
13. In an AM system, full information can be conveyed by transmitting only
(a) the carrier
(b) the upper sideband
(c) the lower sideband (d) any one sideband.
14. A 10 M Hz carrier of peak value 10 V is amplifide modulated by a 10 kHz signal of amplitude 6 V . The amplitude of each side band frequency is
(a) 3 V
(b) 4 V
(c) 5 V
(d) 6 V
15. The block diagram of an AM receiver is shown in Fig. 66.32. The missing block and its location are respectively

Fig. 66.32
(a) Band - pass filter at A
(b) High-pass filter at B
(c) Band - pass filter at C
(d) Low-pass filter (audio amplifier) at D.
16. In FM transmission, amplitude of the modulating signal determines
(a) rate of frequency variations
(b) amount of frequency shift
(c) tonal balance of transmission
(d) distance of broadcast.
17. In FM, when frequency deviation is doubled
(a) modulation is doubled
(b) modulation is halved
(c) carrier swing is halved
(d) modulation index is decreased.
18. In an FM broadcast in VHF band, channel width is \qquad
(a) 75
(b) 25
(c) 88
(d) 200
19. Modern FM receivers use de-emphasis circuit for
(a) reducing high frequency noise
(b) reducing the amplitude of high fre- quencies in the audio signal
(c) increasing the amplitude of higher modulating frequencies
(d) making demodulation easy
20. One of the serious disadvantages of FM transmission is its
(a) high static noise
(b) limited line-of-sight range
(c) expensive equipment
(d) adjacent channel interference.
21. In India, the maximum frequency deviation is commercial FM broadcasting signals is about,
(a) 5 kHz
(b) 15 kHz
(c) 7.5 kHz
(d) 200 kHz
22. The correct sequence of subsystems in an FM receiver is
(a) mixer, RF amplifier, limiter, IF amplifier, discriminator, audio amplifier
(b) RF amplifier, mixer, IF amplifier, limiter, discriminator, audio amplifier
(c) RF amplifier, mixer, limiter, discriminator, IF amplifier, audio amplifier
(d) mixer, IF amplifier, limiter, audio amplifier, discriminator.

ANSWERS

1. (c)
2. (d)
3. (b)
4. (c)
5. (a) 6. (b)
6. (c)
7. (b)
8. (a)
9. (c) 11. (d)
10. (a)
11. (d)
12. (a) 15. (d)
13. (b) 17. (a)
14. (d)
15. (b)
16. (b)
17. (d)
18. (b)

Leaming Objectives

$>$ What is an Integrated Circuit?
$>$ Advantages of ICs
> Drawbacks of ICs
> Scale of Integration
> Classification of IC s by Structure
> Comparison between Different ICs
$>$ Classification of ICs by Function
> Linear Integrated Circuits(UCs)
$>$ Manufacturer's Designation of UCs
$>$ Digital Integrated Circ uits
$>$ IC Terminology
$>$ Semic onductors Used in Fabrication of ICs and Devices
> How ICsare Made?
> Material Preparation
> Crystal Growing and Wafer Preparation
> WaferFabrication
$>$ Oxidation
$>$ Etching
> Diffusion
$>$ Ion Implantation
> Photomask Generation
> Photolithography
$>$ Epitaxy
$>$ Metallization and Interconnections
$>$ Testing, Bonding and Packaging
> Semic onductor Devicesand Integrated Circuit Formation
> Popular Applications of ICs

INTEGRATED CIRCUITS

Jack Kilby would justly be considered one of the greatest electrical engineers of all time for one invention; the monolithic integrated circuit, or microchip. He went on to develop the first industrial, commercial and military applications for this integrated circuits-
including the first pocket calculator (pocketronic) and computer that used them

67.1. Introduction

Electronic circuitry has undergone tremendous changes since the invention of a triode by Lee De Forest in 1907. In those days, the active components (like triode) and passive components (like resistors, inductors and capacitors etc.) of the circuits were separate and distinct units connected by soldered leads.

With the invention of the transistor in 1948 by W.H. Brattain and I. Bardeen, the electronic circuits became considerably reduced in size. It was due to the fact that a transistor was not only cheaper, more reliable and less power consuming but was also much smaller in size than an electron tube. To take advantage of small transistor size, the passive components too were greatly reduced in size thereby making the entire circuit very small. Development of printed circuit boards (PCBs) further reduced the size of electronic equipment by eliminating bulky wiring and tie points.

In the early 1960s, a new field of microelectronics was born primarily to meet the requirements of the Military which wanted to reduce the size of its electronic equipment to approximately onetenth of its then existing volume. This drive for extreme reduction in the size of electronic circuits has led to the development of microelectronic circuits called integrated circuits (ICs) which are so small that their actual construction is done by technicians using high powered microscopes.

67.2. What is an Integrated Circ uit?

To put it very briefly, an integrated circuit (IC) is just a packaged electronic circuit.
A more detailed definition is as under :
An $I C$ is a complete electronic circuit in which both the active and passive components are fabricated on a tiny single chip of silicon.

Active components are those which have the ability to produce gain. Examples are : transistors and FETs.

Passive components or devices are those which do not have this ability. Examples are : resistors, capacitors and inductors.

ICs are produced by the same processes as are used for manufacturing individual transistors and diodes etc. In such circuits, different components are isolated from each other by isolation diffusion within the crystal chip and are interconnected by an aluminium layer that serves as wires.

A discrete circuit, on the other hand, is one that is built by connecting separate components. In this case, each component is produced separately and then all are assembled together to make the electronic circuit.
J.S. Kilby of Texas Instruments was the first person to develop (in 1959) an integrated circuit a single monolithic silicon chip in which active and passive components were fabricated by successive deposition, etching and diffusions. He was soon followed by Robert Noyce of Fairchild who successfully fabricated a complete $I C$ including the interconnections on a single silicon chip. Since then the evolution of this technology is fast-paced.

67.3. Advantages of ICs

As compared to standard printed circuits which use discrete components, ICs have the following advantages :

1. Extremely small physical size

Often the size is thousands of times smaller than a discrete circuit. The various components and their interconnections are distinguishable only under a powerful microscope.

2. Very small weight

Since many circuit functions can be packed into a small space, complex electronic equipment can be employed in many applications where weight and space are critical, such as in aircraft or space-vehicles.

3. Reduced cost

It is a major advantage of ICs. The reduction in cost per unit is due to the fact that many identical circuits can be built simultaneously on a single wafer-this process is called batch fabrication. Although the processing steps for the wafer are complex and expensive, the large number of resulting integrated circuits make the ultimate cost of each IC fairly low.

4. Extremely high reliability

It is perhaps the most important advantage of an $I C$ and is due to many factors. Most significant factor is the absence of soldered connections. Another is the need for fewer interconnections-the major cause of circuit failures. Small temperature rise due to low power consumptions of ICs also improves their reliability. In fact, an IC logic gate has been found to be 100,000 times more reliable than a vacuum tube logic gate and 100 times more reliable than a transistor logic gate.

Obviously, higher reliability means that $I C s$ will work for longer periods without giving any trouble-something most desirable from both military and consumer application point of view.

5. Increased response time and speed

Since various components of an IC are located close to each other in or on a silicon wafer, the time delay of signals is reduced. Moreover, because of the short distances, the chance of stray electrical pickup (called parasitic capacitance) is practically nil. Hence it makes them very suitable for small signal operation and high frequency operation. As a result, the response time or the operating speed of the system is improved.

6. Low power consumption

Because of their small size, ICs are more suitable for low power operation than bulky discrete circuits.

7. Easy replacement

ICs are hardly ever repaired because in case of failure, it is more economical to replace them than to repair them.

8. Higher yield

The yield is the percentage of usable devices. Because of the batch fabrication, the yield is very high. Faulty devices usually occur because of some defect in the silicon wafer or in the fabrication steps. Defects in silicon wafer can occur because of lattice imperfection and strains introduced in crystal growth, cutting and handling of the wafers. Usually such defects are extremely small, but their presence can ruin devices built on or around. Reducing the size of each device greatly increases the chance for a given device to be free of such defects. The same is true for fabrication defects such as the presence of a dust particle on the photolithographic mask.

67.4. Drawbacks of ICs

The integrated circuits suffer from the following drawbacks :

1. coils or inductors cannot be fabricated, 2. ICs function at fairly low voltages,
2. they handle only limited amount of power,
3. they are quite delicate and cannot withstand rough handling or excessive heat.

However, the advantages of ICs far outweigh their disadvantages or drawbacks.

67.5. Scale of Integration

Level of integration in ICs has been increasing ever since they were developed some three and a half decades back. The number of electronic circuits or components that can be fitted into a standard size $I C$ has been dramatically increasing with each passing year. In fact, whole electronic systems rather than just a circuit are incorporated in one package.

An approximate method of classifying the amount of circuit or component density is as follows:

1. SSI—small scale integration

In this case, the number of circuits contained in one IC package is less than 12 (or number of components is less than 50).
2. MSI—medium scale integration

Here, number of circuits per package is between 13 and 99 (or number of components is between 50 and 5000).
3. LSI-large scale integration

In this case, circuit density is between 100 and 9,999 (or component density is between 5000 and 100,000).
4. VLSI-very large scale integration

Here the number of circuits per package is between 10,000 to 99,999 (or number of components is between $100,000-1,000,000$).
5. ULSI—ultra large scale integration

In this case, the circuit density is between 100,000 to 999,999 (or component density is between $1,000,000-10,000,000$).
6. GSI—Giga scale integration

Here the number of circuits per package is $1,000,000$ or more (or number of components are over $100,000,000$).

In summary,
$\left.\begin{array}{ll}\text { SSI } & <12 \\ \text { MSI } & 12-99 \\ \text { LSI } & 100-9,999 \\ \text { VLSI } \\ 10,000-99,999 \\ \text { ULSI } \\ \text { GSI } & >1,000,000-999,999\end{array}\right]$ circuits per chip

67.6. Classification of ICs by Structure

Structurally speaking, ICs can be classified into the following three types :

1. Monolithic Integrated Circuits

The word 'monolithic' means 'single stone' or more appropriately 'a single-solid structure'. In this $I C$, all circuit components (both active and passive) are fabricated inseparably within a single continuous piece of silicon crystalline material called wafer (or substrate). All components are atomically part of the same chip. Transistors, diodes and other passive components are fabricated at appropriate spots in the substrate using epitaxial diffusion technique.

Component interconnections are provided on the surface of the structure and external connecting wires are taken out to

the terminals. It is a complete circuit requiring no 'add ons'.
Despite some of its distinct disadvantages, monolithic ICs are in wide use because for mass production, monolithic process has been found to be the most economical.

2. Thick and Thin-Film ICs

The essential difference between thick-film and thin-film ICs is not their relative thickness but the method of depositing the film. Both have similar appearance, properties and general characteristics though they both differ in many respects from monolithic ICs. These ICs are not formed within a silicon wafer but on the surface of an insulating substrate such as glass or a ceramic material. Moreover, only passive components (resistors, capacitors) are formed through thick or thin-film techniques on the insulating surface. The active elements (transistors, diodes) are added externally as discrete elements to complete a functional circuit. These discrete active components are frequently produced by using the monolithic process.

As stated above, the primary difference between the thick and thin film techniques is the process used for forming passive components and the metallic conduction pattern.

(a) Thin-film ICs

Such circuits are constructed by depositing films (typically 0.1 to $0.5 \mu \mathrm{~m}$) of conducting material through a mask on the surface of a substrate made of glass or ceramic. Resistors and conductors are formed by varying the width and thickness of the film and by using materials of different resistivity. Capacitors are produced by sandwiching an insulating oxide film between two conducting films. Small inductors can be made by depositing a spiral formation of film. The active components like transistors and diodes etc. are externally added and inter-connected by wire bonds.

Following two methods are used to produce thin films :
(i) vacuum evaporation

In this method, the vaporised material is deposited through a set of masks on the glass or ceramic substrate contained in vacuum.
(ii) cathode sputtering

In this method, atoms from a cathode made of the desired film material are deposited on the substrate which is located between the cathode and the anode.

(b) Thick-film ICs

Such type of integrated circuits are sometimes referred to as printed thin-film circuits. They are so called because silk-screen printing techniques are employed to create the desired circuit pattern on the surface of the substrate. The screens are made of fine stainless steel wire mesh and the 'inks' are pastes (of pulverised glass and aluminium) which have conductive, resistive or dielectric properties. After printing, the circuits are high-temperature fired in a furnace to fuse the films to the insulating substrate. As with thin-film ICs, active elements are added externally as discrete components.

3. Hybrid or Multichip ICs

As the name implies, such circuits are formed either by inter-connecting a number of individual chips or by a combination of film and monolithic $I C$ techniques. In such ICs, active components are first formed within a silicon wafer (using monolithic technique) which is subsequently covered with an insulating layer such as SiO_{2}. Film techniques are then employed to form passive components on the SiO_{2} surface. Connections are made from the film to the monolithic structure through 'windows' cut in the SiO_{2} layer.

67.7. Comparison Between Different ICs

Each type of $I C$ has its own advantages and disadvantages.
Monolithic circuits have the advantage of lowest cost and highest reliability. However they have the following disadvantages :

1. isolation between components is poorer,
2. range of values of passive components used in the circuits is comparatively small,
3. inductors cannot be fabricated,
4. they afford no flexibility in circuit design because for making any changes in the circuit, a new set of masks is required.
The film circuits have the advantage of forming passive components with broader range of values and reduced tolerances as compared to monolithic circuits. Isolation between their components is also better since they are deposited on a substrate that is an insulator. Use of external discrete active components allows greater flexibility in circuit design. These circuits also give better high frequency performance than monolithic circuits.

However, they suffer from the disadvantages of

1. not being able to fabricate active components,
2. comparatively higher cost and
3. larger physical size.

The chief advantage of multichip ICs is their greater flexibility but they are too expensive for mass production and have least reliability. Hence, such circuits are generally used as prototypes for monolithic ICs.

The various integrated circuits are arranged in the form of an ' $I C$ ' tree of Fig. 67.1.

Fig. 67.1

67.8. Classification of ICs By Function

The earlier classification of ICs was based on their method of construction. However, the integrated circuits can also be classified according to their general function. The two most important categories are :

1. linear and
2. digital

The same fact has been shown in Fig. 67.2.
Examples of linear ICs are :

1. BEL CA-3020—used as multipurpose wide-band power amplifier.

Fig. 67.2
2. BEL CA-3065-it is a monolithic $I C$ which combines a multistage $I F$ amplifier, limiter, an $F M$ detector, an electronic attenuator, a Zener diode regulated power supply and an audio amplifier. In fact, this IC provides a high performance multistage sub-system of a TV receiver. It is available in 14-pin dual-in-line package.
Both are manufactured by Bharat Electronics Ltd., Bangalore.
3. SSD 710-is a linear IC used as Differential Comparator

It is manufactured by Solid State Devices, Syed Abdullah Road, Bombay.
An example of a digital $I C$ is

1. BEL 7400-is a TTL IC gate which provides designer with one of the gating logic necessary to design medium-speed digital control and data processing systems. It is available in 14-pin dual-in-line plastic package.

67.9. Linear Integrated Circuits (LCs)

LICs are also referred to as analog ICs because their inputs and outputs can take on a continuous range of values and the outputs are generally proportional to the inputs. As compared to digital ICs, LICs are used much less. But LICs are quickly displacing their discrete circuit counterparts in many applications as their cost becomes competitive. They also possess much higher reliability because so many external connections (major source of circuit failure) are eliminated. LICs find wide use in military and industrial applications as well as in consumer products. They are frequently used in

1. operational amplifiers,
2. power amplifiers,
3. microwave amplifiers,
4. voltage comparators,

5. small-signal amplifiers,
6. $\quad R F$ and $I F$ amplifiers,
7. multipliers,

Operational amplifier is by far the most versatile form for an LIC and is discussed separately.

67.10. Manufacturer's Designation of UCs

Each manufacturer assigns a specific code and type number to the LICs produced by him. For example, an internally-compensated op-amp 741 produced by Fairchild is designated as $\mu \mathrm{A} 741$. Here, $\mu \mathrm{A}$ is the identifying code used by Fairchild. Many other manufacturers produce LICs similar to 741 but use their own code while retaining the same type number. For example, Fiarchild's original $\mu \mathrm{A} 741$ is manufactured by other manufacturers with the following codes :

1. National Semiconductor

- LM 741

2. Motorola

- MC 1741

3. RCA - CA 3741
4. Texas Instruments _ SN 5274

It is seen that the last three digits in each manufacturer's designation are the same i.e. 741. All these op-amps have the same specifications. Hence, in practice, the manufacturer's code number is often ignored and all such LICs are referred to as 741 .

Many LICs are available in different classes such as A, B, C, E, S and SC. For example, main classes of 741 are as under :

741	-	Military grade op-amp
741 C	-	Commercial grade op-amp
741 A	-	Improved version of 741
741 E	-	Improved version of 741 C
741 S	-	Military grade op-amp with higher slew rate
741 SE	-	Commercial grade op-amp with higher slew rate

67.11. Digital Integrated Circ uits

About 80 per cent of the IC market has been captured by digital ICs which are mostly utilized by the computer industry. Digital ICs lend themselves easily to monolithic integration because a computer uses a large number of identical circuits. Moreover, such circuits employ relatively few capacitors and values of resistances, voltages and currents are low.

Digital ICs contain circuits whose input and output voltages are limited to two possible levelslow or high. It is so because digital signals are usually binary. Sometimes, digital circuits are referred to as switching circuits. Digital ICs include circuits such as

1. logic gates
2. flip-flops
3. counters
4. clock-chips
5. calculator chips
6. memory chips
7. microprocessors $(\mu \mathrm{P})$ etc.

67.12. IC Temminology

Some of the common terms used in fabricating integrated circuits are defined below :

1. Bonding - attaching the die on the ceramic substrate and then connecting the leads to the package.
2. Chip - an extremely small part of a silicon wafer on which $I C$ is fabricated. A photograph of the wafer containing hundreds of chips (or dice) and a drawing of a chip are shown in Fig. 67.3. The identical chips, each of which may vary in area from 10 to over $100 \mathrm{~mm}^{2}$, may contain up to several million devices.

Dish silicon wafer in DHD

Fig. 67.3
3. Circuit probing - testing the electrical performance of each $I C$ chip with the help of a microscope and multi-point probe.
4. Die - same as a chip.
5. Diffusion - a process that consists of the introduction of impurities into selected regions of a wafer to form junctions.
6. Encapsulation - putting a cap over the $I C$ and sealing it in an inert atmosphere.
7. Epitaxy - a process of the controlled growth of a crystalline doped layer of silicon on a single crystal substrate.
8. Etching - a process of selective removal of regions of a semiconductor, metal or silicon dioxide.
9. Mask - a glass plate with desired pattern for diffusion or metallization. Usually a single mask is not sufficient to fabricate an $I C$.
10. Metallization - a process for providing ohmic contacts and interconnections by evaporating aluminium over the chip.
11. Photolithography - a process to transfer geometrical pattern from the mask to the surface of the wafer.
12. Photoresist - a light-sensitive material that hardens when exposed to ultraviolet light.
13. Wafer - a thin disk of semiconductor in which number of ICs are fabricated simultaneously.

67.13. Semic onductors Used in Fabric ation of ICs and Devices

The fabrication of $I C s$ has been based on the use of silicon (Si) as the premier semiconductor. Two other semiconductors used for $I C$ fabrication are germanium and gallium arsenide (GaAs). But these semiconductors present special problems for device fabrication as discussed below.

Gallium arsenide has very attractive electrical properties but its crystals have a high density of defects which limit the performance of devices made from it. Moreover gallium arsenide is more difficult to grow in single crystal form. Both silicon and germanium do not suffer from these problems. On the plus side, gallium arsenide has an electron velocity that is larger than silicon. Because of this gallium arsenide devices are faster than silicon devices. Also, gallium arsenide has a lower saturation electric field than silicon. Because of this, the gallium arsenide devices have lower powerdelay product. Devices made from substrates of gallium arsenide have lower parasitic capacitances. This property contributes to their speed advantage over the silicon devices. Another advantage of gallium arsenide results from direct band gap which makes it possible to provide certain functions not possible in silicon such as coherent and incoherent light emission.

A major advantage of silicon, in addition to its abundant availability in the form of sand, is that it is possible to form a superior stable oxide $\left(\mathrm{SiO}_{2}\right)$. This oxide has superb insulating properties and provides an essential and excellent ingredient in the fabrication and protection of devices or ICs. On the other hand, germanium oxide is unsuited for device applications. The intrinsic resistivity of germanium is $47 \Omega-\mathrm{cm}$, while that of silicon is $230,000 \Omega-\mathrm{cm}$. The low resistivity of germanium would have precluded the fabrication of rectifying devices with high breakdown voltages. Thus highvoltage rectifying devices and certain infrared sensing devices are practical with silicon. Finally, there is an economic consideration and that is electronic grade germanium is now more costly than silicon. Thus, at present time, silicon remains the major semiconductor in the fabrication of ICs.

Some other semiconductors used in semiconductor industry are gallium phosphide (GaP), gallium nitride (GaN), zinc sulphide (ZnS), indium antimonide (InSb), compound of cadmium and selenium (CdSe). GaAs, GaP and GaN are used in high-speed devices and devices requiring emission and absorption of light such as lasers and light emitting diodes (LEDs). ZnS is used as fluorescent material such as those in television screens. In Sb and CdSe are used as light detectors.

67.14. How ICs are Made?

The ICs are manufactured in four distinct stages (refer to Fig. 67.4). These are (1) material preparation, (2) crystal growing and wafer preparation, (3) wafer fabrication and (4) testing, bonding and packaging. All these stages are discussed one by one in the following pages.

Fig. 67.4

67.15. Material Preparation

Silicon, as an element is not found in nature. However, it is found abundantly in nature in the form of silicon dioxide, which constitutes about 20% of earth's crust. Silicon is commonly found as quartz or sand. A number of processes are required to convert sand into pure silicon with a polycrystalline structure. Fig. 67.5 shows the different processes involved in the preparation of polycrystalline silicon from sand. As seen from this figure, the sand is allowed to react with a gas produced from the burning of carbon (coal, coke and wood chips). This produces silicon with 98% purity. Next silicon is further purified in a reactor to produce electronic-grade polycrystalline silicon.

Fig. 67.5

67.16. Crystal Growing and Wafer Preparation

The polycrystalline silicon is composed of many small crystals having random orientation and containing many defects. For silicon to be used in the fabrication of ICs, it must be nearly perfect and crystalline in nature. We, therefore, now need to produce single crystals of silicon. This is done by a process called crystal growth. There are two methods to carryout the crystal growth : (i) the Czochralski and (ii) the flat zone process. The Czochralski process prepares virtually all the silicon used for $I C$ fabrication. The flat zone process is used to prepare crystals for fabricating high-power, high voltage semiconductor devices.

The Czochralski process. The equipment used for single crystal growth (called puller) is as shown in Fig. 67.6. The puller has three main components : (i) a furnace which includes quartz crucible, a rotation mechanism (clockwise as shown), and a radio frequency $(R F)$ heating element, (ii) a crystal pulling mechanism which includes a seed holder and a rotation mechanism (counterclockwise), and (iii) an ambient control which includes an argon gas source, a flow control and an exhaust system. In addition the puller has a computer system to control process parameters such as temperature, crystal diameter, pull rate and rotation speed.

To grow crystals, the polycrystalline silicon is placed in the crucible. The furnace is heated to a temperature of 1690 K which is slightly greater than the melting point $(1685 \mathrm{~K})$ of silicon. A precisely controlled amount of dopant (boron or phosphorus) is added to the melt to make the silicon as P-type or N-type. A suitable oriented seed crystal (i.e., a small highly perfect crystal) is suspended over the crucible in a seed holder. The seed is inserted into the melt and a small portion of it is
allowed to melt. The seet is rotated and pulled up very slowly, while at the same time, the crucible is rotated in the opposite direction. The molten silicon attaches itself to the seed and it becomes identical to the seed in structure and orientation. As the seed is pulled up, the material that is attached to the seed solidifies (i.e., freezes). Its crystal structure becomes the same as that of the seed and a larger crystal is formed. Thus using this method, cylindrical single crystal bars (called ingots) of silicon are produced.

The desired diameter of the silicon ingot is obtained by controlling both the temperature and the pulling speed. In the final step, when the bulk of the melt has been grown, the crystal diameter is decreased until there is a point contact with the melt. The resulting ingot is cooled and is removed to be made into thin discs called wafers. The ingots have diameters as large as 200 mm with the latest ones approaching 300 mm . The ingot length is of the order of 1000 mm .

Wafer preparation: In this stage

Fig. 67.6 the ingot surface is grounded throughout to an exact diameter and the top and bottom portions are cut off. After that one or more flat regions are ground along the length of the ingot. These flat regions mark the specific crystal orientation of the ingot and conductivity type (i.e., P-type or N-type) of silicon material. Refer to Fig. 67.7.

Notice that the ingot is marked with two flats regions: (i) the larger flat (called primary flat) and (ii) the smaller flat or secondary flat regions. The primary flat allows a mechanical locator in automatic processing equipment to position the wafer and to orient the devices relative to the crystal in a specific manner. The secondary flat regions are used to identify the orientation and conductivity type of the crystal. The conductivity of the wafer could be either P-type or N-type and the crystal orientation, $\{100\}$ or $\{111\}$ (refer to Art 50.16 to know more about crystal orientation). If there is no secondary flat as shown in Fig. 67.7 (a), or in words the primary and the secondary flat are superimposed, the wafer is identified as P-type with $\{111\}$-crystal orientation. If the secondary flat is 45° with respect to the primary flat as shown in Fig. 67.7 (b), it is $\{111\} N$-type wafer. However, if the secondary flat is 90° with respect to the primary flat as shown in Fig. 67.7 (c), it is $\{100\} P$-type wafer and if the secondary flat is at 180° with respect to the primary flat as shown in Fig. 67.7 (d), it is $\{100\}$ N-type wafer.

Fig. 67.7
The semiconductor industry uses $\{111\}$ wafers for fabricating ICs with bipolar transistor technology and $\{100\}$ wafers for metal-oxide semiconductor (MOS) circuits. The choice of wafer conductivity (i.e., P-type or N-type) depends upon the actual process used for fabricating the ICs. Once the orientations are done, the ingot is sliced into wafers by a high-speed diamond saw. The wafer thickness varies from 0.4 to 1.0 mm .

After slicing, both sides of the wafer are lapped to produce typical flatness uniformity with in 2 $\mu \mathrm{m}$. The lapped orientation usually leaves the surface and edges of the wafer, damaged and contaminated. These can be removed by a process called chemical etching. The next step is to polish the wafer surface to a mirror-like finish. Finally the wafers are cleaned, rinsed and dried for use in fabrication of ICs. It is interesting to note that the final wafer thickness is about one-third less than after the slicing.

67.17. Wafer Fabric ation

Following is the category of the processes that are used in the fabrication of ICs :
(i) oxidation
(ii) etching
(iii) diffusion
(iv) ion implantation
(v) photolithography
(vi) epitaxy
(vii) metallization and interconnections.

We will study each process separately and apply some of these later to the formation of a diode bipolar transistor and metal oxide semiconductor field effect transistor. The basic fabrication process is called planar process, i.e., a process in which the introduction of impurities and metallic interconnections is carried out from the top of the wafer. A major advantage of the planar process is that each fabrication step is applied to all identical circuits and each of the many wafers at the same time.

It is important to initially emphasize that the fabrication requires an extremely clean environment in addition to the precise control of temperature and humidity.

67.18. Oxidation

The process of oxidation consists of growing a thin film of silicon dioxide $\left(\mathrm{SiO}_{2}\right)$ on the surface of a silicon wafer. Silicon dioxide has several uses :

1. to serve as a mask against implant or diffusion of dopant into silicon,
2. to provide surface passivation,
3. to isolate one device from another,
4. to act as a component in MOS structures.

Fig. 67.8 shows oxide layer grown on the surface of silicon substrate. The commonly used silicon dopants, such as boron, phosphorus, arsenic, and antimony, have very low diffusion coefficients (i.e., they diffuse with great difficulty) in silicon dioxide. Because of this reason, silicon dioxide is used as a shield

Fig. 67.8 against infiltration of these dopants. On the other hand, these dopants diffuse easily if the surface is silicon.

Several techniques have been developed for forming oxide layers. Some of these are thermal oxidation, vapour phase technique [chemical vapour deposition (CVD)], and plasma oxidation. However, thermal oxidation is the more commonly used technique in $I C$ processing.

Fig. 67.9 shows a thermal oxidation system. As seen, the oxidation is accomplished by placing the silicon wafers vertically into a quartz boat in a quartz tube. The quartz boat is slowly passed through a resistance heated furnace, in the presence of oxygen, operating at a temperature of about $1000^{\circ} \mathrm{C}$. The oxidizing agent may be dry by using dry oxygen or be using a mixture of water vapour and oxygen. A computer controls the whole operation in the thermal oxidation system. The operation include regulating the gas flow sequence, automatic insertion and removal of wafers and the furnace temperature.

Fig. 67.9
It will be interesting to note that the oxide growth in the dry process is much slower but it produces an oxidized layer that has excellent electrical properties. For relatively thin oxides such as gate oxide in a MOSFET (typically 10 nm), dry oxidation is used. However, for thicker oxides (≥ 500 nm) such as field oxides in MOS integrated circuits and for bipolar devices, wet oxidation is used to provide both isolation and passivation.

Once the silicon dioxide layer has been formed on the surface of the wafer, it is selectively removed (etched) from those surfaces where impurities are to be introduced and kept as a shield, for the underlying silicon surface, where no dopants are to be allowed.

Oxide layers are relatively free from defects and provide stable and reliable electrical properties.

67.19. Etching

Etching is the process of selective removal of regions of a semiconductor, metal or silicon dioxide. There are two types of etching : wet and dry. In wet etching, the wafers are immersed in a chemical solution at a predetermined temperature. In this process, the material to be etched is removed equally in all directions (i.e., etching is isotropic). Because of this, some material is etched from the regions where it is to be left. This becomes a serious problem when dealing with small dimensions.

In dry (or plasma) etching, the wafers are immersed in gaseous plasma created by a radiofrequency electric field applied to a gas such as argon. The gas breaks down and becomes ionized. Electrons are initially released by field emission. These electrons gain kinetic energy from the field, collide with, and transfer energy to gas molecules, which result in generating ions and electrons. The newly generated electrons collide with other gas molecules and the avalanche process continues throughout the gas, forming plasma. The wafer to be etched is placed on an electrode and is subjected to the bombardment of its surface by gas ions. As a result, the transfer of momentum from the ions to the atoms removes atoms at or near the surface to be etched.

Dry etching also called reactive ion etching (RIE) is directional (or anisotropic). In other words, the material is removed only from those regions where it is required. Most modern processes use only dry etching to produce fine line patterns needed for VLSI integrated circuits.

67.20. Diffusion

This process consists of the introduction of impurities into selected regions of a wafer to form junctions. Diffusion occurs in two steps : the pre-deposition and the drive-in diffusion. In the predeposition step, a high concentration of dopant atoms is introduced at the silicon surface by a vapour that contains the dopant at a temperature of $1000^{\circ} \mathrm{C}$. More recently, a more accurate method of predeposition known as ion implantation is used.

Pre-deposition tends to produce, a shallow but heavily doped layer, near the silicon surface. Drive-in is used to drive the impurity atoms deeper into the surface, without adding any more impurities. Fig. 67.10 shows the graph of doping profiles, (i.e., impurity concentration versus depth into the substrate) during the pre-deposition and the drive-in steps of diffusion. The doping profiles indicate that the impurity concentration decreases monotonically from the surface of the substrate. The profiles of the dopant distribution is determined mainly by the tempera-

Fig. 67.10 ture and diffusion time. Note that the impurity concentration drops from $O A$ (during pre-deposition step) to $O B$ at the surface of the substrate after the drive-in step. However the depth into the substrate of impurity has increased from $O C$ to $O D$ as required.

Common dopants are boron for P-type layers and phosphorus, antimony and arsenic for N-type layers. However, diffusion is rarely performed using pure elements themselves. Rather, compounds of elements are used and impurities may be introduced from either solid, liquid, or gaseous substances.

Fig. 67.11 shows the equipment used in diffusion. The wafers are placed in a quartz boat within a quartz furnace tube. The furnace is heated by resistance heaters surrounding it. To introduce an impurity, phosphorus for example, phosphorus oxychloride $\left(\mathrm{POCl}_{3}\right)$ is placed in a container either inside the quartz tube in a region of relatively low temperature or in a container outside the furnace at a temperature that maintains its liquid form. For a P-type dopant, boron is used. The proper vapour pressure is maintained by a control of the temperature. Nitrogen and oxygen gas are made to pass over the container. These gases react with the silicon, forming a layer on the surface of the wafer that contains silicon, oxygen and phosphorus. At the high temperature of the furnace, phosphorus easily diffuses into the silicon.

Fig. 67.11
In order that the dopant may be diffused deeper into silicon, the drive-in step follows. This is done at a higher temperature of about $1100^{\circ} \mathrm{C}$ inside a furnace similar to that used for pre-deposition, except that no dopant is introduced into the furnace. The higher temperature, causes the dopant atoms to move into silicon more quickly. Diffusion depth is controlled by the time and temperature of the drive-in process. By precise control of the time and temperature, accurate junction depths of fraction of a micron can be obtained. Fig. 67.12 shows the diffusion of dopant into silicon.

Fig. 67.12

67.21. Ion Implantation

This is a process of introducing dopants into selected areas of the surface of the wafer by bombarding the surface with high-energy ions of the particular dopant.

Fig. 67.13 shows a typical ion implantation equipment. To generate ions, such as those of phosphorus, an arc discharge is made to occur in a gas, such as phosphine $\left(\mathrm{PH}_{3}\right)$, that contains the dopant.

The ions are then accelerated in an electric field so that they acquire energy of about 20 keV and are passed through a strong magnetic field. The ions are further accelerated so that their energy reaches several hundred keV or MeV , whereupon they are focused on and strike the surface of the silicon wafer.

As is the case with diffusion, the ion beam is made to penetrate only into selected regions of the wafer by a process of masking (discussed later). On entering the wafer, the ions collide with silicon atoms and lose their energy. The depth of penetration of ions in ion implantation is about 0.1 to $1 \mu \mathrm{~m}$. The higher the energy of ions and the smaller their mass, the greater is the depth of penetration.

Fig. 67.13

Advantages of ion implantation over diffusion :

1. Doping levels can be precisely controlled since the incident ion beam can be accurately measured as an electric current.
2. The depth of the dopant can be easily regulated by control of the incident ion velocity. It is capable of very shallow penetrations.
3. Extreme purity of the dopant is guaranteed.
4. The doping uniformity across the surface can be accurately controlled.
5. Because the ions enter the solid as a directed beam, there is very little spread of the beam, thus the doping area can be clearly defined.
6. Since ion implantation is carried out at room temperature, wafers do not face temperature stress. In addition photo-resist can be used as mask for masking impurities, thus there is no need to grow thick masking oxides.

Disadvantages of ion implantation over diffusion :

1. The ion implantation may create considerable damage to the crystal structure because of the collisions of the high-energy ions with the silicon. Such damage results in inferior performance of ICs made by this process. If the damage is not extensive, the process of annealing restores the structure.
2. High initial investment and operational cost of the equipment (> US $\$ 1$ million).
3. Uses very toxic gases for some of the dopants such as phosphorus and arsenic.

67.22. Photomask Generation

The whole process of $I C$ fabrication consists of identifying selected regions of each circuit of the wafer surface into which identical dopant or metallic interconnections are made, while protecting other regions of the wafer surface. To carry out one of the many fabrication processes, a separate
mask is required for each operation whose function is to expose the selected regions and protect the others. There may be hundreds of identical dies (or $I C s$) on a wafer with each circuit containing hundreds of thousands or millions of devices. Identical steps are carried out simultaneously for each process. For each process, separate mask is needed.

The mask production starts with a drawing using a computer-assisted graphics system with all the information about the drawing stored in digital form. Commands from the computer are prepared that drive a pattern generator, which uses an electron beam to write the particular pattern, for one or several dies, on a glass plate covered with thin chromium film. When the glass plate is prepared, it is called reticle. A mask usually refers to a glass plate that contains a pattern for the whole wafer. The reticle pattern is projected onto the wafer and a wafer stepper is used that reduces the reticle circuit onto the photo-resist covered wafer that steps across over the surface until the entire array of circuits is built up.

It may be noted that the use of a single mask for all the circuits on a wafer is not feasible for printing very small $(<1 \mu \mathrm{~m})$ features because of alignment problems. However, the use of single mask is still in use for fabricating simple digital and analog circuits such as light emitting diodes (LEDs).

67.23. Photolithography

It is a process in which the geometrical pattern on the glass plate (called reticle) is transferred to the surface of the wafer. This is done to open identical windows so that the diffusion (or the ion implantation) process may take place in all identical regions of the same $I C$ and for all $I C s$ on the wafer. As an illustration we assume that the first reticle is used over an oxidized surface as shown in Fig. 67.14 (a).
(a) P silicon substrate and oxide film
(b) Photoresist applied
(c) Mask placed above photoresist and UV light directed at it
(d) Photoresist etched away under transparent regions of mask
(e) SiO_{2} etched away
(f) Remaining photoresist etched away

Fig. 67.14

To transfer the patterns, the wafer is coated with light-sensitive material called photoresist. By applying small amount (about 1 ml) of the photoresist to the wafer surface and spinning the wafer very rapidly, a uniform film of about $1 \mu \mathrm{~m}$ thick is formed over the oxidized surface of the wafer [refer to Fig. $67.14(b)]$. After this the following steps are taken to open a window on the surface of the wafer :

1. The wafer is baked at $100^{\circ} \mathrm{C}$ to solidify the photoresist on the wafer.
2. The glass plate is placed on the wafer and aligned by the computer control.
3. The glass plate is exposed to ultraviolet (UV) light with the transparent parts of the glass plate passing the light on to the wafer. The photoresist under the opaque regions of the glass plate is unaffected [refer to Fig. 67.14 (c)].
4. The exposed photoresist is chemically removed by dissolving it in an organic solvent and exposing the silicon dioxide underneath [refer to Fig. 67.14 (d)].
5. The exposed silicon dioxide is then etched away using hydrofluoric acid. The hydrofluoric acid dissolves silicon dioxide and not silicon. The regions under the opaque part of the glass plate are still covered by the silicon dioxide and the photoresist [refer to Fig. $67.14(e)]$.
6. The photoresist under the opaque regions of the glass plate is removed using a proper solvent and the silicon dioxide is exposed [refer to Fig. 67.14 (f)].
All surfaces in Fig. 67.14 (f) are protected except those covered by silicon only in which diffusion or ion implantation is to take place. It may be noted that the surfaces covered by silicon dioxide do not permit any entry of dopants.

The photolithograph is used to add circuit elements to the wafer. The wafer is coated with layer of a chemical called photoresist.

The photoresist used in the explanation above is called a positive photoresist. Thus a positive photoresist is that which allows the windows to be opened wherever the UV light passes through the transparent parts of the mask. On the other hand a photoresist which remains on the surface, when exposed to UV light, and windows are opened under the opaque parts of the mask, is called a negative photoresist. The negative photoresist is limited to a resolution of 2 to $3 \mu \mathrm{~m}$. On the other hand, the positive photoresist sacrifice adhesion and simplicity of development to achieve higher resolution.

The method of using UV light has a practical limit for transferring patterns on the silicon. It can be used for the patterns where the linewidths are above 1 to $2 \mu \mathrm{~m}$. In order to transfer small patterns (i.e., those with below $1 \mu \mathrm{~m}$ linewidth), very short wavelength radiation such as electron-beam or X-rays are used.

67.24. Epitaxy

Epitaxy or Epitaxial growth is the process of the controlled growth of a crystalline doped layer of silicon on a single crystal substrate. The process of diffusion and ion implantation, which
were earlier described, produce a layer at the surface that is of higher doping density than that which existed before the dopant was added. It is not possible by these methods to produce, at the surface a layer of lower concentration than exists there. This can however, be accomplished by the method of epitaxy. In the processes of diffusion and ion implantation, a dopant is driven into a substrate of doped silicon. In epitaxy, a layer of doped silicon is deposited on top of the surface of the substrate. Normally this single crystal layer has different type of doping from that of the substrate.

Epitaxy is used to deposit N or N^{+}(i.e., heavily doped N-type) silicon, which is impossible to accomplish by diffusion. It is also used in isolation between bipolar transistors where N^{-}(i.e., lightly doped N-type) is deposited on P-type layer. It may also be used to improve the surface quality of an N-type substrate by depositing N-type material over it. A variety of methods are used to grow the epitaxial layer. These methods include vapour-phase epitaxy (VPE), liquid-phase epitaxy (LPE), and molecular beam epitaxy (MPE). The system for growing an epitaxial layer using vapour-phase epitaxy (VPE) is shown in Fig. 67.15.

In this system, silicon wafers are placed in a long boat-shaped crucible made of graphite. The boat is placed in a long cylindrical quartz tube, which has inlets and outlets for the gases. The tube is heated by induction using the heating coils wound around the tube.

All the chemicals that are introduced and that take part in the reactions are in the form of gases, hence the process is known as Chemical Vapour Deposition (CVD). The epitaxial layer is grown from the vapour phase onto the silicon, which is in the solid state. The thickness of the layer varies from 3 to $30 \mu \mathrm{~m}$ and the thickness of the layer and its doping content are controlled to an accuracy of less than 2 percent. The reactions are carried out at a temperature of approximately $1200^{\circ} \mathrm{C}$. The high temperature is necessary so that the dopant atoms can acquire a sufficient amount of energy to allow them to move into the crystal to form covalent bonds and become extension of the single crystal. Because the layer is grown on the substrate, epitaxy is a growth technique where the crystal is formed without reaching the melting point of silicon.

Fig. 67.15

67.25. Metallization and Interc onnections

After all the fabrication steps of an IC are completed, it becomes necessary to provide metallic interconnections for the $I C$ and for external connections to the $I C$. The requirement that must be met by the interconnections is that they have low resistance to minimize both the voltage drops on the lines as well as the capacitances between the lines so as to reduce delay times. The connections must
also make ohmic contacts to semiconductors in the devices such as P and N regions of a $P N$ junction diode. An ohmic contact is one that exhibits a very low resistance, allowing currents to pass easily in both directions through the contact.

The high conductivity of aluminium makes it the metal of obvious choice, particularly in silicon-based devices. It also has the following advantages :

1. easy to evaporate
2. can be easily etched
3. not expensive,
4. adheres well to silicon dioxide.
There are variety of processes for depositing aluminium on silicon substrates but the following three are important from the subject point of view : (1) resistance heating, (2) electron beam heating and (3) sputtering.

Resistance heating : In this process, the

Several cycles of photolithography etching and doping are performed producing multiple layers of circuit elements on the wafer. source of the heated element and the silicon substrate are located in an evacuated chamber. The source is a small piece of aluminium attached to a coil of tungsten, which serves as a heater [refer to Fig. 67.16 (a)]. The heated element with a high melting point remains solid while the aluminium is vaporized. The aluminium atoms travel to the substrate where they condense, depositing an aluminium layer on the surface of the silicon. A photolithographic masking and etching method is used to remove the metal from the regions where it is not wanted. A typical interconnection between two diffused layers is as shown in Fig. 67.16 (b).

Fig. 67.16
In another method, the evaporation source kept in a boron nitride crucible is heated by radio frequency induction as shown in Fig. 67.17 (a). High deposition rates are possible through this process. However, the crucible may contaminate the metal.

Fig. 67.17

Electron-beam heating : In this process, aluminium in a crucible is placed into a vacuum chamber together with the substrate. The aluminium is subjected to a high intensity electron beam formed by an electron gun, which vaporizes the aluminium as shown in Fig. 67.17 (b). This causes the aluminium to travels to the wafer. By the use of mask and photolithography, the aluminium is deposited on the identified regions on the wafer surface.

Sputtering : In this process, the material to be deposited is placed in a container maintained at low pressure in the vicinity of the substrate. The material to be deposited is labelled the cathode or the target, while the anode is the substrate. A DC or a radio-frequency high voltage is applied between anode and cathode. This high voltage ionizes the inert gas in the chamber. The ions are accelerated to the cathode (in this operation the anode is usually grounded) where, by impact with the aluminium target, atoms of aluminium are vaporized. A gas of aluminium atoms is generated and deposited on the surface of the wafer.

Following the deposition of aluminium, the silicon wafers are placed in a furnace to solidify the connections so that low resistance metallic contacts are made.

The interconnections between the elements of an IC are made by aluminium lines having a thickness of about $0.5 \mu \mathrm{~m}$. These are laid on top of the silicon dioxide layer, which covers the surface of the wafer. By using photolithography, openings are made in silicon dioxide so that the aluminium layer is connected to the silicon or to the ohmic contact on the silicon. In very complicated integrated circuits, it is necessary to have two or three vertically stacked layers of interconnections separated by silicon dioxide layers. The interconnecting lines terminate at aluminium pads (called bonding pads) from which connections to the outside are made.

67.26. Testing, Bonding and Packaging

The individual $I C$ chip must be connected properly to outside leads and packaged in a way that is convenient for use in a larger circuit or a system. Since the devices are handled individually once they are separated from the wafer, bonding and packaging are expensive processes.

Testing - After the wafer of monolithic circuits has been processed and the final metallization pattern defined, it is placed in a holder under a microscope and is aligned for testing by a machine called multiple-point probe. The probe contacts the various pads on an individual circuit, and a series of tests are made to verify the electrical properties of the device in a very short time. After all the circuits are tested, the wafer is removed from the testing machine, sawed between the circuits, and broken apart. Then each die that passed the test is picked up and placed in the package.

Bonding - It consists of two steps. In the first step the back of the die is mechanically attached to an appropriate mount medium such as ceramic substrate, multi-layer-ceramic package or metal lead frame. The two common die bonding methods are hard solders and polymers. In the second step, the bond pads on the circuit side of the die are connected by wires to the package as shown in Fig. 67.18. The three common schemes of interconnection to the chip bond pads are (i) wire bonding, (ii) tape-automated bonding (TAB), and (iii) flip-chip solder bonding. Wire bonding is further split into two different processes : thermosonic and thermocompression. The further detail of these processes is beyond the scope of this book.

Packaging - The final step in IC fabrication is packaging the device in a suitable medium that can protect it from environment of its intended application. In most cases this means the surface of the device must be isolated from the moisture and contaminants and the bonds and other elements must be protected from corrosion and mechanical shocks. The modern ICs are mounted in pack-

Fig. 67.18
ages with many output leads. In one version, chip is mounted on a stamped metal lead frame and wire bonding is done between the chip and the leads. The package is formed by applying a ceramic or plastic case and trimming away the unwanted parts of the lead frame.

Fig. 67.19 shows various types of the packaging of $I C s$ used these days. As seen from this figure, the packages can be broadly classified into the following two categories :

Fig. 67.19

1. through-hole mount that involve inserting the package pins through holes on the printed circuit board (PCB) before soldering [Fig. 67.19 (a) through (d)].
2. surface mount type where the leads do not pass through holes in the PCB. Instead, surfacemounted package leads are aligned to electrical contacts on the PCB, and are connected simultaneously by solder reflow [Fig. $67.19(e)$ through (m)]. As refer to the picture shown in Fig 67.20.
Most packages can be made using ceramic or plastic. The ICs are hermetically sealed for protection from the environment. The pins can be on one side (single inline or zigzag pattern of leads), two sides (dual inline package or DIP), or four sides of the package (quad package). Most advanced packages have leads distributed over a large portion of the surface of the package as in through-hole pin grid arrays (PGAs) or surface-mounted ball grid arrays (BGAs).

67.27. Semic onduc tor Devic es and Integrated Circ uit Formation

There are literally thousands of different semiconductor device structures. They have been developed to achieve specific performances, either as discrete components or in ICs. Accordingly there are many different structures. However, there are basic structures required for each of the major device and circuit types.

1. Resistors : Most of the resistors in ICs are formed by the same processes that are used to form devices (i.e., a sequence of oxidation, masking and doping operation). Fig. 67.21 (a) shows a resistor made of a P-type region diffused into an N-type epitaxial layer. Notice the metallic contacts made at the two ends of the epitaxial layer. The section of the resistor, as dictated by the diffusion, is very nearly rectangular in shape, as shown in Fig. 67.21 (b). The

Fig. 67.20 value of a resistor (in ohms) is given by :

$$
R=\rho \cdot l / a \text { or } \rho \cdot l / w \cdot d
$$

where ρ is the resistivity of the layer in ohm- cm, l is the length of the resistive region, and a is the cross-sectional area of the resistive region. The value of a is equals to $w . d$. where w is the width and d is the depth of the resistive region.

Fig. 67.21

Resistance in monolithic circuits are defined by the term called sheet resistance. The sheet resistance is the resistance of a square region having $w=l$ and has units of ohms per square. Assuming a sheet resistance of 100 to 200 ohms per square, practical resistors may have values ranging from 100 to several kilohms. Higher resistance values are obtained by using a meander pattern as shown in Fig. 67.21 (c). The major problem with the resistors of high values is that they tend to occupy a large area on the chip. For example, a resistor of $50 \mathrm{k} \Omega$ uses up an area of the wafer that may be occupied by hundreds of the transistors. Ion-implantation instead of diffusion can be used to make resistors with precise values of resistance.

Fig. 67.22
2. Capacitors: One type of capacitor in monolithic circuits is made by using the capacitance formed between the P and N regions of a reverse-biased diode. Such a capacitor is shown in Fig. 67.22. These capacitors are formed by using the same diffusion processes that are used to form devices. Bipolar transistors are made of three regions in which either of the two $P N$ junctions may be used as capacitors whereby the breakdown voltage of the capacitor may vary considerably from one to the other. The disadvantage of the junction capacitors is the dependence of the capacitance on the voltage applied to the junction. Capacitors that are voltage-independent can be formed from metal insulator N^{+}(i.e., heavily-doped) semiconductor layers as used in MOS structures.

In dense circuits, an oxide/nitride/oxide dielectric sandwich is used. The combination film has a lower dielectric constant, allowing a capacitor area smaller than a conventional silicon dioxide capacitor.

Capacitors can also be fabricated by creating a trench etched vertically into the wafer surface (refer to Fig. 67.23). The trenches are etched either isotropically with wet etching or anisotropically with dry etching techniques. The trench side walls are oxidised and the centre of the trench is filled with deposited polysilicon. The final structure is "wired" from the surface, with the silicon and polysilicon serving as two electrodes and silicon dioxide as a dielectric material.

The trenched capacitors are useful when pres-

Fig. 67.23 ervation of wafer surface is main criteria. Another alternative to conserve wafer surface area is to build stacked capacitors on the wafer surface. This effort has been driven by the need for small high dielectric capacitors for dynamic random access memory (DRAM) circuits.
3. Diodes : In integrated circuits, where all the interconnections and device terminals are made at the surface, a diode is formed in the following two ways :
(a) In bipolar circuits from a bipolar transistor by placing a short-circuit between two of the three terminals of the transistor (i.e., collector to base or emitter to base). Thus there are emitter-base diodes and base-collector diodes.
(b) In MOS circuits, most of the diodes are formed with the source-drain doping step.

However, in order to make a discrete $P N$ junction diode, we will discuss the various steps involved in the fabrication.

The starting material is a heavily doped N-type $\left(\mathrm{N}^{+}\right)$substrate about $150 \mu \mathrm{~m}$ thick. A layer of N-type silicon (1 to $5 \mu \mathrm{~m}$) is grown on the substrate by epitaxy as shown in Fig. 67.24 (a). Then a layer of silicon dioxide $\left(\mathrm{SiO}_{2}\right)$ is deposited by oxidation as shown in Fig. 67.24 (b). Next, the surface is coated with positive photoresist as shown in Fig. 67.24 (c). Then a mask is placed on the surface of silicon, aligned and exposed to ultraviolet light (UV) as shown in Fig. 67.24 (d). Next, mask is removed, resist is removed and silicon dioxide layer under the exposed resist is etched as shown in Fig. 67.24 (e). Then boron is diffused to form P-type region a shown in Fig. 67.24 (f). Note that boron diffuses easily in silicon but not in silicon dioxide. Next, a thin aluminium film is deposited over the surface as shown in Fig. $67.24(\mathrm{~g})$. Then the metallized area is covered with resist another mask is used to identify areas where metal is to be preserved. Wafer surface is etched to remove unwanted metal. Resist is then dissolved and we get a structure as shown in Fig. 67.24 (h). Finally, contact metal is deposited on the back surface and ohmic contacts are made by heat treatment.
4. Bipolar Transistor : Let us consider the fabrication of an NPN bipolar junction transistor (BJT) on a silicon wafer. While our discussion will be focussed on the BJT, it is understood that the surface of the whole wafer is being processed.

The starting material is a lightly doped P-type wafer. We will consider a small area on this wafer where we will form a BJT. The base on which the transistor is made is known as the substrate. The function of the substrate is to act as a mechanical support for the device. The reason for the use of a P-type substrate for the NPN transistor will be clarified when the term isolation is discussed. The substrate has a resistivity of $3-10 \Omega \mathrm{~cm}$ with a thickness between 500 and $700 \mu \mathrm{~m}$ for wafers having diameters over 100 mm .

Fig. 67.24

Fig. 67.25 shows the fabrication steps up to, and including the metal contacts to the three regions (i.e., emitter, base and collector).

Fig. 67.25

First a layer of silicon dioxide $\left(\mathrm{SiO}_{2}\right)$, about $0.5 \mu \mathrm{~m}$ thick, is deposited on the surface of the substrate by thermal oxidation as shown in Fig. 67.25 (a). Using the first mask and the photolithographic process, windows are opened in the oxide for the buried layer. The N^{+}(i.e., heavily doped N type) buried layer is diffused to a depth of about $3 \mu \mathrm{~m}$ as shown in Fig. 67.25 (b). This layer serves to collect the carriers that have crossed the base on their way to the collector terminal. It serves as a sub-collector and is used to reduce the collector ohmic-resistance. After the buried layer is diffused, the wafer is stripped of all oxide to permit the next deposition. It is to be noted that during the subsequent high-temperature processes, the buried layer tends to diffuse out.

The next operation is the deposition of a phosphorus-doped N-type epitaxial layer on the whole wafer. This layer has a resistivity of 0.1 to $1 \Omega \mathrm{~cm}$. The thickness of this layer is 0.5 to $5 \mu \mathrm{~m}$ for high-speed digital circuit applications and 10-20 $\mu \mathrm{m}$ for linear analog circuits. A layer of silicon dioxide $\left(\mathrm{SiO}_{2}\right)$ about 0.5 to $1 \mu \mathrm{~m}$ thick is grown thermally on the surface of the epitaxial layer as shown in Fig. 67.25 (c).

Since the collector of NPN transistor is N -type, and so are the collectors of the adjacent transistors, there is an obvious need to isolate the collectors from each other. The second mask is used to etch windows for this isolation regions, which are formed by the subsequent diffusion of boron extending from the surface down to the substrate as shown Fig. 67.25 (d). An N-type epitaxial layer separates the isolation regions, thus serving as the tub in which each transistor is formed. The diffusion of the isolation region is followed by oxidation of the wafer surface.

The third mask is used to open a window for the P-type base of the transistor, P-type diffusion or ion implantation is driven to form the base to a depth of about 2-3 $\mu \mathrm{m}$ as shown in Fig. 67.25 (e). This is followed by the deposition of an oxide layer. The fourth mask is used to open windows in the oxide for the N^{+}emitter and the collector contacts. The phosphorus or arsenic diffusion is driven to a depth of about $2 \mu \mathrm{~m}$ as shown in Fig. $67.25(f)$. The need for N^{+}collector is to form a good ohmic contact. The ohmic contact permits easy current flow in both directions. To form a good ohmic contact to an N material, an N^{+}region is needed between the metal on the top and the N region. Following the N^{+}diffusion, an oxidation layer is formed over the entire wafer surface.

The fifth mask is used to open windows for the formation of metallic contacts to the bipolar transistor terminals. Then an aluminium film 0.5 and $1 \mu \mathrm{~m}$ thick is deposited, by evaporation or sputtering, on the top surface of the $I C$ wafer. Assuming that the complete circuits are to be formed on the surface of the wafer, the sixth mask is used to define the interconnection pattern in the circuits. These interconnections are etched into the metal that has been deposited on the surface, as shown in Fig. 67.25 (g).

In order to protect the surface of the wafer from moisture and chemical contamination, a silicon nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$, called a passivation layer, is deposited on the surface. Contacts to the integrated circuits are made on pads that are located on the periphery of the $I C$ chip. Since the $I C$ chip will be bonded to an IC package, connections are to be made from the package leads to the bonding pads on the $I C$ chip.

The seventh mask is used to define the bonding holes over the aluminium pads for external connections. Following the seven masks, the circuits are tested by a computer-controlled system and all faulty chips are identified and marked. The wafer is then sawed into chips, which are bonded on IC packages. Gold wires about $25 \mu \mathrm{~m}$ in diameter are used to connect the package leads to the bonding pads on the chip.

Fig. 67.26 shows an additional detail on the buried layer. It indicates the path taken by the carriers on their way from the emitter to the base and to the collector. This path is considerably longer than the path in the discrete BJT shown in Fig. 67.26 (a). Because of this the collector series resistance, labelled the parasitic resistance, is quite large and is of the order of hundreds of ohms. To reduce this resistance, we have placed the low resistivity buried layer in Fig. 67.26 (b) into the path of
the carriers which acts as a subcollector. The use of the buried layer reduces the collector resistance by as much as a factor of 20 . The result of this is to improve gain-bandwidth product of the transistor by the same factor.
5. MOSFET: Let us consider the fabrication of Enhancement mode N-channel metal oxide semiconductor field-effect transistor. The starting material is a lightly doped P-type silicon substrate having a resistivity of about $5 \Omega \mathrm{~cm}$. The doping density is determined by the drain-substrate breakdown voltage of $20-30 \mathrm{~V}$. A thin (about 20 nm) layer of silicon dioxide is formed over the substrate to provide stress relief to the wafer. Next a thin (about 20 nm) layer of silicon nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ is deposited by the chemical vapour deposition (CVD) process on top of the silicon dioxide. The silicon dioxide permits selective oxidation so that a thick oxide (about 500 nm) can be formed in the field region. These operations result in Fig. 67.27 (a).

The first mask defines the field-effect

Fig. 67.26 transistor areas, so that the silicon dioxide and the silicon nitride are chemically etched out except where the transistor is formed.

The next step is to diffuse (or ion-implant) boron in the field-regions to form P^{+}(i.e. heavily doped P-type) islands in the substrate. The function of P^{+}islands is to help increase the threshold voltage, V_{T} and prevent the formation of "parasitic" transistors (or electrical cross talk) between adjacent devices on the wafer. This is followed by the formation of a field oxide layer (about 500 nm thick) over the P^{+}implanted region as shown in Fig. 67.27 (b). The field oxide layer also helps to increase V_{T}.

The remaining silicon nitride and silicon dioxide are etched away and an ultra thin (about 5 to 10 nm) layer of SiO_{2} is grown over the transistor area (not above the field oxide). This forms the gateoxide of the transistor. Refer to Fig. 67.27 (c). Next, a layer of heavily doped (typically N^{+}) polysilicon is deposited over the entire wafer surface. This is shown in Fig. 67.27 (d).

The second mask defines the gate region, whereupon the polysilicon is etched away except over the gate as shown in Fig. 67.27 (e). The heavily doped polysilicon region above the gate behaves electrically like a metal electrode.

By ion-implantation and using the polysilicon gate and the field oxide, as the mask, the source and drain N^{+}regions are formed as shown in Fig. $67.27(e)$. The N^{+}layers literally diffuse a sufficient distance to ensure proper alignment so that the channel length is well defined. The dopants do not penetrate the field oxide. A thin layer of silicon dioxide is then grown, by the CVD process over the wafer.

The third mask is used to open windows for the metal contacts to the transistor regions as shown in Fig. $67.27(f)$. The thin layer of silicon dioxide is etched away and aluminium is deposited over the surface of the wafer by evaporation or sputtering. The fourth mask defines the interconnection pattern that is etched in the aluminium, as shown in Fig. $67.27(g)$. This is followed by the deposition of a protective passivation layer of phosphosilicate glass (called P-glass) over the entire surface of the wafer.

Fig. 67.27
Just as with the BJT, the fifth mask is used to open windows, so that bonding wires can be connected to the pads on the $I C$ chip.

67.28. Comparison of ICs based on MOS and Bipolar Transistor Tec hnology

1. The ICs based on MOS are less costly to fabricate as compared to those using bipolar transistor. The reason for this is that MOS devices are self-isolating. Bipolar transistors require tubs to isolate devices from each other on one integrated circuit. Isolation in MOS devices is provided by heavy doping and a thick oxide in the regions between adjacent devices.
2. MOS circuits consume less DC power as compared to bipolar transistor circuits.
3. The MOS transistor has lower value of transconductance $\left(g_{m}\right)$ as compared to the bipolar transistor. This feature makes the bipolar transistor ICs superior to MOS circuits for analog circuit applications.
4. For the same channel length and the base width, the limiting cut-off frequency of the MOS transistor is better than a bipolar transistor. Therefore the MOS transistor has a higher bandwidth than the bipolar transistor.
5. The packing density of MOS ICs is at least 10 times more than that for bipolar ICs. Also, a MOS resistor occupies less than 1% of the area of a conventional diffused resistor. This high packing density makes MOS ICs especially suited for LSI, VLSI and ULSI circuits.

The main disadvantage of MOS ICs is their slower speed as compared to bipolar ICs. Hence they do not compete with bipolar ICs in ultrahigh-speed applications.

However, due to their (i) low cost, (ii) low power consumption and (iii) high packing density, MOS ICs are widely produced by semiconductor manufacturing industry. The MOS ICs are available as calculator chips, memory chips, microprocessors ($\mu \mathrm{P}$), single-chip computers etc.

67.29. Popular Applic ations of ICs

There are plenty of electronic products in the market, which used integrated circuits extensively. One of the widely accepted applications is the digital watch, which can display hours, minutes, seconds, day and month. Another popular application is electronic calculator which can perform various functions like addition, subtraction, multiplication and division. There are also advanced scientific calculators that are programmable and can display the graphs.

Modern electronic products such as pocket PC, personal digital assistant (PDA), MP3 players, digital cameras, digital camcorders, mobile phones, digital dictionaries and digital translators, CD (compact disk) players, DVD (digital versatile disk) players etc. also make use of ICs extensively. With a Pocket PC, you can read and send e-mail, edit Word, Excel and Outlook files, listen to digital music, read electronic books (eBooks), track your finances, and browse the web. The digital camera shown in Fig. 67.28 can take pictures and store on the floppy diskette or memory stick. A personal digital assistant (PDA) as shown in Fig. 67.29 is a handheld computer which allows the user to organise calendar, contacts or tasks. These little electronic wonders might put office secretary out of a job.

Electronic games have evolved from microelectronics and computer knowhow. Video games that have to be hooked up to home TV have become very popular. Hand held PCs and mobile phones also come with games that require no TV hook-up.

Fig. 67.28
(courtesy Sony Corporation, Japan)

OBJECTIVE TESTS - 67

1. First integrated circuit chip was developed by
(a) C.V. Raman
(b) W.H. Brattain
(c) J.S. Kilby
(d) Robert Noyce.
2. An integrated electronic circuit is
(a) a complicated circuit
(b) an integrating device
(c) much costlier than a single transistor
(d) fabricated on a tiny silicon chip.
3. Most important advantage of an IC is its
(a) easy replacement in case of circuit failure
(b) extremely high reliability
(c) reduced cost
(d) low power consumption.
4. In monolithic ICs, all components are fabricated by \qquad process.
(a) evaporation
(b) sputtering
(c) diffusion
(d) oxidisation.
5. Monolithic ICs are fabricated within a
(a) soft stone
(b) single stone
(c) silicon layer
(d) ceramic base.
6. As compared to monolithic ICs, film ICs have the advantage of
(a) better high-frequency response
(b) much reduced cost
(c) smaller size
(d) less flexibility in circuit design.
7. Monolithic technique is ideally suited for fabricating \qquad ICs.
(a) thin-film
(b) digital
(c) linear
(d) thick-film
8. In the context of IC fabrication, metallisation means
(a) connecting metallic wires
(b) forming interconnecting conduction pattern and bonding pads
(c) depositing SiO_{2} layer
(d) covering with a metallic cap.
9. Monolithic transistors are formed in the epitaxial N-layer
(a) in one operation
(b) by evaporation process
(c) by successive impurity diffusions
(d) by oxidisation.
10. The major component of a MOS IC is a/an
(a) FET
(b) MOSFET
(c) BJT
(d) SCR.
11. Processing of MOS ICs is less expensive than bipolar ICs primarily because they
(a) use cheaper components
(b) need no component isolation
(c) require much less diffusion steps
(d) have very high packing density.
12. In an integrated circuit, the SiO_{2} layer provides
(a) electrical connection to the external circuit
(b) physical strength
(c) isolation
(d) conducting path.
13. The foundation on which an IC is built is called an
(a) insulator
(b) base
(c) wafer
(d) plate
14. Monolithic IC construction uses
(a) discrete components
(b) high-value resistors
(c) connecting wires
(d) extensive number of components

ANSWERS

1. (c) 2. (d) 3. (b)
2. (c)
3. (c)
4. (c)
5. (d)

C H A P T E R

68

Learning Objectives

$>$ What is an OP-AMP?
$>$ OP-AMP Symbol
> Polarity Conventions
> Ideal Operational Amplifier
$>$ Virtual Ground and Summing Point
$>$ Why V_{i} is Reduced to Almos \dagger Zero?
> OP-AMP Applications
> Linear Amplifier
$>$ Unity Follower
> Adder or Summer
$>$ Subtractor
> Integrator
> Differentiator
> Comparator
> Audio Amplifier
> OP-Amp Based Oscillator Circuits
> OP-Amp Based Wien Bridge Oscillator
$>$ OP-Amp Based Crystal Oscillator
$>$ A Triangular-wave Oscillator
$>$ A Voltage- controlled
Sawtooth Oscillator (VCO)
> A Square-wave Relaxation Oscillator
> High-impedance Voltmeter
$>$ Active Filters
$>$ Low-pass Filter
> High-pass Filter
$>$ Band-pass Filter
> Notch Filter

OP-AMP AND ITS

 APPLICATIONS

The operational amplifier was designed to perform mathematical operations. Although now superseded by the digital computer, opamps are a common feature of modern analog electronics

68.1 What is an OP-AMP ?

It is a very high-gain, high- $r_{\text {in }}$ directly-coupled negative-feedback amplifier which can amplify signals having frequency ranging from $\mathbf{0} \mathbf{H z}$ to a little beyond $\mathbf{1 M H z}$. They are made with different internal configurations in linear ICs. An $O P-A M P$ is so named because it was originally designed to perform mathematical operations like summation, subtraction, multiplication, differentiation and integration etc. in analog computers. Present day usage is much wider in scope but the popular name $O P-A M P$ continues.

Typical uses of $O P-A M P$ are : scale changing, analog computer operations, in instrumentation and control systems and a great variety of phase-shift and oscillator circuits. The $O P-A M P$ is available in three different packages (i) standard dual-in-line package (DIL) (ii) TO-5 case and (iii) the flat-pack.

Although an $O P-A M P$ is a complete amplifier, it is so designed that external components (resistors, capacitors etc.) can be connected to its terminals to change its external characteristics. Hence, it is relatively easy to tailor this amplifier to fit a particular application and it is, in fact, due to this versatility that $O P-A M P s$ have become so popular in industry.

An OP-AMP IC may contain two dozen transistors, a dozen resistors and one or two capacitors.

Example of OP-AMPs

1. $\mu \mathrm{A} 709$-is a high-gain operational amplifier constructed on a single silicon chip using planar epitaxial process.
It is intended for use in dc servo systems, high-impedance analog computers and in lowlevel instrumentation applications.
It is manufactured by Semiconductors Limited, Pune.
2. [LM 108-LM 208]-Manufactured by Semiconductors Ltd. Bombay,
3. $C A 741 C T$ and $C A 741 T$-these are high-gain operational amplifiers which are intended for use as (i) comparator, (ii) integrator, (iii) differentiator, (iv) summer, (v) dc amplifier, ($v i$) multivibrator and (vii) bandpass filter.
Manufactured by Bharat Electronics Ltd (BEL), Bangalore.

68.2. OP-AMP Symbol

Standard triangular symbol for an $O P-A M P$ is shown in Fig. 68.1 (a) though the one shown in Fig. 68.1 (b) is also used often. In Fig. 68.1 (b), the common ground line has been omitted. It also does not show other necessary connections such as for dc power and feedback etc.

The $O P$ - $A M P$'s input can be single-

Fig. 68.1 ended or double-ended (or differential input) depending on whether input voltage is applied to one input terminal only or to both. Similarly, amplifier's output can also be either single-ended or doubleended. The most common configuration is two input terminals and a single output.

All OP-AMPs have a minimum of five terminals :

1. inverting input terminal,
2. output terminal,
3. negative bias supply terminal.
4. non-inverting input terminal,
5. positive bias supply terminal,

68.3. Polarity Conventions

In Fig. 68.1 (b), the input terminals have been marked with minus (-) and plus (+) signs. These are meant to indicate the inverting and noninverting terminals only [Fig. 68.2]. It simply means that a signal applied at negative input terminal will appear amplified but phase-inverted at the output terminal as shown in Fig. 68.2 (b). Similarly, signal applied at the positive input terminal will appear amplified and inphase at the output. Obviously, these plus and minus polarities indicate phase reversal only. It does not mean that voltage v_{1} and v_{2} in Fig. 68.2 (a) are negative and positive respectively. Additionally, it also does not imply that a positive input
 voltage has to be connected to the plus-marked non-inverting terminal 2 and negative input voltage to the negative-marked inverting terminal 1. In fact, the amplifier can be used 'either way up' so to speak. It may also be noted that all input and output voltages are referred to a common reference usually the ground shown in Fig. 68.1 (a).

68.4. Ideal Operational Amplifier

When an $O P-A M P$ is operated

Fig. 68.2 without connecting any resistor or capacitor from its output to any one of its inputs (i.e., without feedback), it is said to be in the open-loop condition. The word 'open loop' means that feedback path or loop is open. The specifications of $O P-A M P$ under such condition are called open-loop specifications.

An ideal $O P-A M P$ (Fig. 68.3) has the following characteristics :

1. its open-loop gain A_{v} is infinite i.e., $A_{v}=-\infty$
2. its input resistance R_{i} (measured between inverting and non-inverting terminals) is infinite i.e., $R_{i}=\infty \mathrm{ohm}$
3. its output resistance R_{0} (seen looking back into output terminals) is zero i.e., $R_{0}=0 \Omega$
4. it has infinite bandwith i.e., it has flat frequency response from dc to infinity.

Though these characteristics cannot be achieved in practice, yet an ideal $O P-A M P$ serves as a convenient reference against which real $O P-A M P s$ may be evaluated.

Following additional points are worth noting :

1. infinte input resistance means that input current $i=0$ as indicated in Fig. 68.3. It means that an ideal $O P-A M P$ is a voltage-controlled device.
2. $R_{0}=0$ means that v_{0} is not dependent on the load resistance connected across the output.
3. though for an ideal $O P-A M P A_{v}=\infty$, for an actual one, it is extremely high i.e., about 10^{6}. However, it does not mean that 1 V signal will be amplified to $10^{6} \mathrm{~V}$ at the output. Actually, the maximum value of v_{0} is limited by the basis supply voltage, typically $\pm 15 \mathrm{~V}$. With $A_{v}=10^{6}$ and $v_{0}=15 V_{2}$ the maximum value of input voltage is limited to $15 / 10^{6}=15 \mu \mathrm{~V}$. Though $1 \mu \mathrm{~V}$ in the $O P-A M P$, can cer-

Fig. 68.3 tainly become 1 V .

68.5. Virtual Ground and Summing Point

In Fig. 68.4 is shown an $O P-A M P$ which employs negative feedback with the help of resistor R_{f} which feeds a portion of the output to the input.

Since input and feedback currents are algebraically added at point A, it is called the summing point.

The concept of virtual ground arises from the fact that input voltage v_{i} at the inverting terminal of the $O P-A M P$ is forced to such a small value that, for all practical purposes, it may be assumed to be zero. Hence, point A is essentially at ground voltage and is referred to as virtual ground. Obviously, it is not the actual ground, which, as seen from

Fig. 68.4 Fig. 68.4, is situated below.

68.6. Why V_{i} is Reduced to Almost Zero ?

When v_{1} is applied, point A attains some positive potential and at the same time v_{0} is brought into existence. Due to negative feedback, some fraction of the output voltage is fed back to point A antiphase with the voltage already existing there (due to v_{1}).

The algebraic sum of the two voltages is almost zero so that $v_{i} \cong 0$. Obviously, v_{i} will become exactly zero when negative feedback voltage at \mathbf{A} is exactly equal to the positive voltage produced by V_{1} at A .

Another point worth considering is that there exists a virtual short between the two terminals of the $O P-A M P$ because $v_{i}=0$. It is virtual because no current flows (remember $i=0$) despite the existence of this short.

68.7. OP-AMP Applications

We will consider the following applications :

1. as scalar or linear (i.e., small-signal) constant-gain amplifier both inverting and non-inverting,
2. as unity follower, 3. Adder or Summer
3. Subtractor,
4. Integrator
5. Differentiator
6. Comparator.

Now, we will discuss the above circuits one by one assuming an ideal $O P$ AMP.

68.8. Linear Amplifier

We will consider the functioning of an $O P-A M P$ as constant-gain amplifier both in the inverting and non-inverting configurations.
(a) Inverting Amplifier or Negative Scale.

As shown in Fig. 68.5, noninverting

Fig. 68.5
terminal has been grounded, whereas R_{1} connects the input signal v_{1} to the inverting input. A feedback resistor R_{f} has been connected from the output to the inverting input.

Gain
Since point A is at ground potential ${ }^{*}, i_{1}=\frac{v_{\text {in }}}{R_{1}}=\frac{v_{1}}{R_{1}}$

$$
i_{2}=\frac{-v_{0}}{R_{f}} \text { Please note }- \text { ve sign }
$$

Using $K C L$ (Art. 2.2) for point A,

$$
\begin{array}{lllll}
& i_{1}+\left(-i_{2}\right) & =0 \quad \text { or } \quad \frac{v_{1}}{R_{1}}+\frac{v_{0}}{R_{f}}=0 \quad \text { or } \quad \frac{v_{0}}{R_{f}}=-\frac{v_{1}}{R_{1}} \quad \text { or } \quad \frac{v_{0}}{v_{1}}=-\frac{R_{f}}{R_{1}} \\
\therefore & A_{v}=-\frac{R_{f}}{R_{1}} \quad \text { or } A_{v}=-K & \text { Also, } v_{0}=-K v_{i n}
\end{array}
$$

It is seen from above, that closed-loop gain of the inverting amplifier depends on the ratio of the two external resistors R_{1} and R_{f} and is independent of the amplifier parameters.

It is also seen that the $O P-A M P$ works as a negative scaler. It scales the input i.e., it multiplies the input by a minus constant factor K.
(b) Non-inverting Amplifier or Positive Scaler

This circuit is used when there is need for an output which is equal to the input multiplied by a positive constant. Such a positive scaler circuit which uses negative feedback but provides an output that equals the input multiplied by a positive constant is shown in Fig. 68.6.

Since input voltage v_{2} is applied to the non-inverting terminal, the circuits is also called non-inverting amplifier.

Fig. 68.6

Here, polarity of v_{0} is the same as that v_{2} i.e., both are positive.
Gain
Because of virtual short between the two $O P-A M P$ terminals, voltage across R_{1} is the input voltage v_{2}. Also, v_{0} is applied across the series combination of R_{1} and R_{f}

$$
\begin{array}{ll}
\therefore & v_{i n}=v_{2}=i R_{1}, v_{0}=i\left(R_{1}+R_{f}\right) \\
\therefore & A_{v}=\frac{v_{0}}{v_{i n}}=\frac{i\left(R_{1}+R_{f}\right)}{i R_{1}} \quad \text { or } A_{v}=\frac{R_{1}+R_{f}}{R_{1}}=\left(1+\frac{R_{f}}{R_{1}}\right)
\end{array}
$$

Alternative Derivation

As shown in Fig. 68.7, let the currents through the two resistors be i_{1} and i_{2}.

The voltage across R_{1} is v_{2} and that across R_{f} is $\left(v_{0}-v_{2}\right)$.

$$
\therefore \quad i_{1}=\frac{v_{2}}{R_{1}} \quad \text { and } \quad i_{2}=\frac{v_{0}-v_{2}}{R_{f}}
$$

Applying $K C L$ to junction A, we have

Fig. 68.7

* If not, then $i_{1}=\frac{v_{1}-\overline{v_{i}}}{R_{1}}$ and $i_{2}=\frac{v_{0}-v_{1}}{R_{f}}$

$$
\begin{array}{ll}
& \left(-i_{1}\right)+i_{2}=0 \text { or } \frac{v_{2}}{R_{1}}+\frac{\left(v_{0}-v_{2}\right)}{R_{f}}=0 \\
\therefore & \frac{v_{0}}{R_{f}}=v_{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{f}}\right)=v_{2} \frac{R_{1}+R_{f}}{R_{1} R_{f}} \\
\therefore & \frac{v_{0}}{v_{2}}=\frac{R_{1}+R_{f}}{R_{1}} \text { or } A_{v}=1+\frac{R_{f}}{R_{1}} \quad \text {-as before }
\end{array}
$$

Example 68.1. For the inverting amplifier of Fig. 68.5, $R_{1}=1 \mathrm{~K}$ and $R_{f}=1 \mathrm{M}$. Assuming an ideal OP-AMP amplifier, determine the following circuit values :
(a) voltage gain,
(b) input resistance,
(c) output resistance

Solution. It should be noted that we will be calculating values of the circuit and not for the $O P$ AMP proper.
(a)

$$
A_{v}=-\frac{R_{f}}{R_{1}}=-\frac{1000 K}{1 K}=-1000
$$

(b) Because of virtual ground at $A, R_{\text {in }}=R_{1}=1 \mathrm{~K}$
(c) Output resistance of the circuit equal the output resistance of the $O P-A M P$ i.e., zero ohm.

68.9. Unity Follower

It provides a gain of unity without any phase reversal. It is very much similar to the emitter follower (Art 68.8) except that its gain is very much closer to being exactly unity.

Fig. 68.8

This circuit (Fig. 68.8) is useful as a buffer or isolation amplifier because it allows, input voltage $v_{i n}$ to be transferred as output voltage v_{0} while at the same time preventing load resistance R_{L} from loading down the input source. It is due to the fact that its $R_{i}=\infty$ and $R_{0}=0$.

In fact, circuit of Fig. 68.8 can be obtained from that of Fig. 68.6 by putting

$$
R_{1}=R_{f}=0
$$

68.10. Adder to Summer

The adder circuit provides an output voltage proportional to or equal to the algebraic sum of two or more input voltages each multiplied by a constant gain factor. It is basically similar to a scaler (Fig. 68.5) except that it has more than one input. Fig. 68.9 shows a three-input inverting adder circuit. As seen, the output voltage is phase-inverted.

Calculations

As before, we will treat point A as virtual ground

$$
\begin{aligned}
& i_{1}=\frac{v_{1}}{R_{1}} \quad \text { and } \quad i_{2}=\frac{v_{2}}{R_{2}} \\
& i_{3}=\frac{v_{3}}{R_{3}} \quad \text { and } \quad i=-\frac{v_{0}}{R_{f}}
\end{aligned}
$$

Applying $K C I$ to point A, we have

$$
i_{1}+i_{2}+i_{3}+(-i)=0
$$

Fig. 68.9
or

$$
\frac{v_{1}}{R_{1}}+\frac{v_{2}}{R_{2}}+\frac{v_{3}}{R_{3}}-\left(\frac{-v_{0}}{R_{f}}\right)=0
$$

$$
\therefore \quad \mathrm{v}_{0}=-\left(\frac{R_{f}}{R_{1}} \mathrm{v}_{1}+\frac{R_{f}}{R_{2}} \mathrm{v}_{2}+\frac{R_{f}}{R_{3}} \mathrm{v}_{3}\right)
$$

or

$$
v_{0}=-\left(K_{1} v_{1}+K_{2} v_{2}+K_{3} v_{3}\right)
$$

The overall negative sign is unavoidable because we are using the inverting input terminal.
If

$$
\begin{aligned}
& R_{1}=R_{2}=R_{3}=R, \text { then } \\
& v_{0}=-\frac{R_{f}}{R}\left(v_{1}+v_{2}+v_{3}\right)=-K\left(v_{1}+v_{2}+v_{3}\right)
\end{aligned}
$$

Hence, output voltage is proportional to (not equal to) the algebraic sum of the three input voltages.

If

$$
R_{f}=R \text {, then ouput exactly equals the sum of inputs. However, if } R_{f}=R / 3
$$

then

$$
v_{0}=-\frac{R / 3}{R}\left(v_{1}+v_{2}+v_{3}\right)=-\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right)
$$

Obviously, the output is equal to the average of the three inputs.

68.11. Subtractor

The function of a subtractor is to provide an output proportional to or equal to the difference of two input signals. As shown in Fig. 68.10 we have to apply the inputs at the inverting as well as noninverting terminals.

Calculations

According to Superposition Theorem (Art. 2.17) $v_{0}=v_{0}{ }^{\prime}+v_{0}{ }^{\prime \prime}$
where $v_{0}{ }^{\prime}$ is the output produced by v_{1} and $v_{0}{ }^{\prime \prime}$ is that produced by v_{2}.
Now, $\quad v_{0}{ }^{\prime}=-\frac{R_{f}}{R_{1}} \cdot v_{1} \quad \ldots \operatorname{Art} 67.37$ (a)

$$
\begin{aligned}
& \qquad \mathrm{v}_{0}^{\prime \prime}=\left(1+\frac{R_{f}}{R_{1}}\right) \mathrm{v}_{2} \quad \ldots \operatorname{Art} 67.37(b) \\
& \therefore \quad \mathrm{v}_{0}=\left(1+\frac{R_{f}}{R_{1}}\right) \mathrm{v}_{2}-\frac{R_{f}}{R_{1}} \cdot \mathrm{v}_{1} \\
& \text { Since } R_{f} \gg R_{1} \text { and } R / R_{1} \gg 1 \text {, hence } \\
& \mathrm{v}_{0} \cong \frac{R_{f}}{D}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)=K\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)
\end{aligned}
$$

$$
\mathrm{v}_{0} \cong \frac{R_{f}}{R_{1}}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)=K\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)
$$

Further, If $R_{f}=R_{1}$, then

$$
v_{0}=\left(v_{2}-v_{1}\right)=\text { difference of the two input voltages }
$$

Obviously, if $R_{f} \neq R_{1}$, then a scale factor is introduced.
Example 68.2. Find the output voltages of an OP-AMP inverting adder for the following sets of input voltages and resistors. In all cases, $R_{f}=1 \mathrm{M}$.

$$
v_{1}=-3 V, v_{2}=+3 V, v_{3}=+2 V ; R_{1}=250 K, R_{2}=500 \mathrm{~K}, R_{3}=1 \mathrm{M}
$$

[Electronic Engg. Nagpur Univ. 1991]
Solution. $\quad v_{0}=-\left(K_{1} v_{1}+K_{2} v_{2}+K_{3} v_{3}\right)$

$$
K_{1}=\frac{R_{f}}{R_{1}}=\frac{1000 K}{250 K}=4, K_{2}=\frac{1000}{500}=2, K_{3}=\frac{1 M}{1 M}=1
$$

$\therefore \quad v_{0}=-[(4 \times-3)+(2 \times 3)+(1 \times 2)]=+4 \mathrm{~V}$
Example 68.3. In the subtractor circuit of Fig. 68.10, $R_{l}=5 \mathrm{~K}, R_{f}=10 \mathrm{~K}, v_{l}=4 \mathrm{~V}$ and $v_{2}=5$
V. Find the value of output voltage.
Solution. $\quad v_{0}=\left(1+\frac{R_{f}}{R_{1}}\right) v_{1}-\frac{R_{f}}{R_{1}} v_{2}=\left(1+\frac{10}{5}\right) 4-\frac{10}{5} \times 5=+2 \mathbf{V}$
Example 68.4. Design an $O P-A M P$ circuit that will produce an output equal to $-\left(4 v_{1}+v_{2}+\right.$ $0 \cdot 1 v_{3}$). Write an expression for the output and sketch its output waveform when $v_{1}=2 \sin \omega t, v_{2}=$ +5 Vdc and $v_{3}=-100 \mathrm{Vdc}$.
[Banglore University 2001]
Solution.

$$
\begin{equation*}
\mathrm{v}_{0}=-\left[\frac{R_{f}}{R_{1}} v_{1}+\frac{R_{f}}{R_{2}} v_{2}+\frac{R_{f}}{R_{3}} v_{3}\right] \tag{1}
\end{equation*}
$$

and also

$$
\begin{equation*}
v_{0}=-\left(4 v_{1}+v_{2}+0 \cdot 1 v_{3}\right) \tag{2}
\end{equation*}
$$

Comparing equations (1) and (2), we find,

$$
\frac{R_{f}}{R_{1}}=4, \frac{R_{f}}{R_{2}}=1, \frac{R_{f}}{R_{3}}=0 \cdot 1
$$

Therefore if we assume $R_{f}=100 \mathrm{~K}$, then $R_{1}=25 \mathrm{~K}, R_{2}=100 \mathrm{~K}$ and $R_{3}=10 \mathrm{~K}$. With there values of R_{1}, R_{2} and R_{3}, the $O P-A M P$ circuit is as shown in Fig. 68.11(a)

(a)

(b)

Fig. 68.11
With the given values of $v_{1}=2 \sin \omega t, v_{2}=+5 \mathrm{~V}, v_{3}=-100 \mathrm{~V}$ dc, the output voltage, $v_{0}=2 \sin \omega t$ $+5-100=2 \sin \omega t-95 \mathrm{~V}$. The waveform of the output voltage is sketched as shown in Fig. 68.11 (b).

68.12. Integrator

The function of an integrator is to provide an output voltage which is proportional to the integral of the input voltage.

Fig. 68.12

A simple example of integration is shown in Fig. 68.12 where input is dc level and its integral is a linearly-increasing ramp output. The actual integration circuit is shown in Fig. 68.13. This circuit is similar to the scaler circuit of Fig. 68.5 except that the feedback component is a capacitor \mathbf{C} instead of a resistor \mathbf{R}_{f}.

Calculations

As before, point A will be treated as virtual ground.
$i_{1}=\frac{v_{1}}{R} ; i_{2}=-\frac{v_{0}}{X_{C}}=-\frac{v_{0}}{1 / j \omega C}=-\frac{v_{0}}{1 / s C}=-s C v_{0}$

$$
\text { where } \quad s=j \omega \text { in the Laplace notation. }
$$

$$
\begin{array}{ll}
\therefore & \frac{v_{1}}{R}
\end{array}=-s C v_{0}, ~\left(~ \frac{v_{0}}{v_{i n}}=\frac{v_{0}}{v_{1}}=-\frac{1}{s C R}\right.
$$

Now, the expression of Eq. (i) can be written in time domain as

$$
v_{0}(t)=-\frac{1}{40 \pi}(\cos 2000 \pi t-1)
$$

Fig. 68.13
It is seen from above that output (right-hand side expression) is an integral of the input, with an inversion and a scale factor of $1 / C R$.

This ability to integrate a given signal enables an analog computer solve differential equations and to set up a wide variety of electrical circuit analogs of physical system operation. For example, let

$$
\begin{aligned}
R & =1 \mathrm{M} \text { and } C=1 \mu \mathrm{~F} . \text { Then } \\
\text { scale factor } & =-\frac{1}{C R}=-\frac{1}{10^{6} \times 10^{-6}}=-1
\end{aligned}
$$

Fig. 68.14
As shown in Fig. 68.14 the input is a step voltage, whereas output is a ramp (or linearly-changing voltages) with a scale multiplier of -1 . However, when $R=100 \mathrm{~K}$, then

$$
\begin{aligned}
& \text { scale factor } & =-\frac{1}{10^{5} \times 10^{-6}}=-10 \\
\therefore & v_{0}(t) & =-10 \int v_{1}(t) . d t
\end{aligned}
$$

It is also shown in Fig. 68.14. Of course, we can integrate more than one input as shown below in Fig. 68.15. With multiple inputs, the output is given by

$$
\text { where } \quad \begin{aligned}
v_{0}(t) & =-\left[K_{1} \int \mathrm{v}_{1}(t) d t+K_{2} \int \mathrm{v}_{2}(t) d t+k_{3} \int \mathrm{v}_{3}(t) d t\right] \\
K_{1} & =\frac{1}{C R_{1}}, K_{2}=\frac{1}{C R_{2}} \quad \text { and } \quad K_{3}=\frac{1}{C R_{3}}
\end{aligned}
$$

Fig. 68.15 (a) shows a summing integrator as used in an analog computer. It shows all the three resistors and the capacitor. The analog computer representation of Fig. 68.15 (b) indicates only the scale factor for each input.

Example 68.5. A $5-\mathrm{mV}, 1-\mathrm{kHz}$ sinusoidal signal is applied to the input of an OP-AMP integrator of Fig. 64.37 for which $R=100 K$ and $C=1 \mu F$. Find the output voltage.
[Electronic \& Comm. Engg. Kurukshetra Univ. 1990]

$$
\text { Solution. } \quad \text { Scale factor }=-\frac{1}{C R}=\frac{1}{10^{5} \times 10^{-6}}=-\mathbf{1 0}
$$

The equation for the sinusoidal voltage is

$$
v_{1}=5 \sin 2 \pi f t=5 \sin 2000 \pi t
$$

Obviously, it has been assumed that at $t=0, v_{1}=0$

$$
\begin{aligned}
\therefore \quad \mathrm{v}_{0}(t) & =-10 \int_{0}^{t} 5 \sin 2000 \pi t=-50\left|\frac{-\cos 2000 \pi t}{2000}\right|_{0}^{t} \\
& =-\frac{1}{40 \pi}(\cos 2000 \pi t-1)
\end{aligned}
$$

Fig. 68.15

68.13. Differentiator

Its function is to provide an output voltage which is proportional to the rate of the change of the input voltage. It is an inverse mathematical operation to that of an integrator. As shown in Fig. 68.16, when we feed a differentiator with linearly-increasing ramp input, we get a constant dc output.

Circuit
Differentiator circuit can be obtained by interchanging the resistor and capacitor of the integrator circuit of Fig. 68.13.

Let $i=$ rate of change of charge

Input

Differentiator

Output

Fig. 68.16

$$
\begin{array}{ll}
\text { Now, } \quad q=C v_{c} \\
\therefore & i=\frac{d}{d t}\left(C v_{c}\right)=C \frac{d v_{c}}{d t}
\end{array}
$$

Taking point A as virtual ground

$$
v_{0}=-i R=-\left(C \cdot \frac{d v_{c}}{d t}\right) R=-C R \cdot \frac{d v_{c}}{d t}
$$

As seen, output voltage is proportional to the derivate of the input voltage, the constant of propor tionality (i.e., scale factor) being $(-R C)$.

Fig. 68.17

Example 68.6. The input to the differentiator circuit of Fig. 68.17 is a sinusoidal voltage of peak value of 5 mV and frequency 1 kHz . Find out the output if $R=1000 \mathrm{~K}$ and $C=1 \mu$.

Solution. The equation of the input voltage is

$$
v_{1}=5 \sin 2 \pi \times 1000 t=5 \sin 2000 \pi t \mathrm{mV}
$$

scale factor $=C R=10^{-6} \times 10^{5}=0 \cdot 1$

$$
v_{0}=0.1 \frac{d}{d t}(5 \sin 2000 \pi t)=(0.5 \times 2000 \pi) \cos
$$

$2000 \pi t=1000 \pi \cos 2000 \pi t \mathrm{mV}$
As seen, output is a cosinusoidal voltage of frequency 1 kHz and peak value $1000 \pi \mathrm{mV}$.

68.14. Comparator

It is a circuit which compares two signals or voltage levels. The circuit is shown in Fig. 68.18 and (like that of the unity follower) is the simplest because it needs no additional external components.

If v_{1} and v_{2} are equal, then v_{0} should idealy be zero. Even if v_{1} differs from v_{2} by a very small amount, v_{0} is large because of amplifier's high gain. Hence, circuit of Fig. 68.18 can detect very small changes which is another way of saying that it compares two signals,

68.15. Audio Amplifier

As a matter of fact, in most communication receivers, the final output stage is the audio amplifier. The ideal audio amplifier will have the following characteristics :

1. High gain
2. Minimum distortion in the audio frequency range (i.e., 20 Hz to 20 kHz range).
3. High input resistance (or impedance).
4. Low output resistance (or impedance) to provide optimum coupling to the speaker.

The use of $O P-A M P$ is an audio amplifier will fullfill the requirements listed above very nicely. An $O P-A M P$ audio amplifier is shown in Fig. 68.19.

Note that the $O P-A M P$ is supplied only for $+V$ volt power supply, the $-V$ terminal is grounded. Because of this, the output will be between the limits of $(+V-1)$ volts and +1 volt approximately. Also notice the use of a coupling capacitor C_{2} between the $O P-A M P$ and speaker. This capacitor is necessary to reference the speaker signal around ground. The capacitor C_{s}, is included in the $V_{C C}$ line to prevent any transient current caused by the operation of $O P-A M P$ from being coupled back to Q_{1} through the power supply. The high gain requirements is accomplished by the combination of two amplifier stages. The high $R_{m} /$ Low $R_{\text {out }}$ of the audio amplifier is accomplished by the $O P-A M P$ itself, as the low distortion characteristic.

Fig. 68.19

68.16. OP-AMP Based Oscillator Circuits

We have already discussed about sinusoidal oscillators in Chapter 15. There we defined the oscillator as a circuit that produces an output waveform without any external signal source. The only input to an oscillator is the dc power supply. As such, the oscillator can be viewed as being a signal generator. We have also discussed in the same chapter, about the different types of oscillator circuits (like Wien Bridge oscillator, Colpitts Oscillator and Crystal Oscillator) using bipolar junction and field-effect transistor. Now we still study these oscillator circuits using $O P-A M P$.

68.17. OP-AMP Based Wien Bridge Oscillator

Fig. 68.20 shows the basic version of a Wien Bridge oscillator. The circuits uses an $O P-A M P$ and $R C$ bridge circuit. Note the basic bridge connection carefully. Resistors R_{1}, R_{2} and capacitors C_{1} and C_{2} form the frequency adjustment elements while resistors R_{3} and R_{4} form part of the feedback path. The $O P-A M P$ output is connected as the bridge input as points ' A ' and ' C '. The bridge circuit output at points ' B ' and ' D ' is the input to the $O P$ $A M P$ shows an alternative way of connecting the $R C$ bridge circuit to

Fig. 68.20 the $O P-A M P$. In a typical Wien Bridge oscillator, $R_{1}=R_{2}=R$, and $C_{1}=C_{2}=C$. This means that the two $R C$ circuits will have the same cut-off frequency. The cut-off frequency is given by $(1 / 2 \pi R C)$.

Example 68.7. Fig. 68.21 shows the circuit of a Wien-Bridge Oscillator using OP-AMP as an amplifier. Notice the components $R_{1}, C_{1}, R_{2}, C_{2}, R_{3}$ and R_{4} are connected in the bridge configuration in the same way as shown in Fig. 68.22.

Calculate the frequency of the Wien Bridge oscillator.
Solution. The frequency of oscillations,

$$
f_{0}=\frac{1}{2 \pi R C}=\frac{1}{2 \pi \times 51 K \times 0.001 \mu \mathrm{~F}}=3.12 \mathrm{kHz}
$$

Fig. 68.21

Fig. 68.22

68.18. OP-AMP Based Colpitts Oscillator

An $O P-A M P$ based Colpitts oscillator is as shown in Fig. 68.23. Here the $O P-A M P$ provides the basic amplification needed while a $L C$ feedback network of Colpitts configuration sets the oscillator frequency.

Fig. 68.23

Fig. 68.24

68.19. OP-AMP Based Crystal Oscillator

An $O P-A M P$ can be used in a crystal oscillator as shown in Fig. 68.24. The crystal is connected in the series resonant path and operates at the crystal series resonant frequency. The present circuit has high gain so that an output square-wave results are shown in the figure. A pair of Zener diodes is shown at the output to provide output amplitude at exactly the Zener voltage $\left(V_{Z}\right)$.

68.20. A Triangular-Wave Oscillator

Fig. 68.25 shows an $O P-A M P$ circuit to generate a triangular-wave from a square-wave. The circuit makes use of two $O P-A M P$: one of them is used as a comparator and the other as an integrator. The operation of the circuit is as given below :

To begin with, let us assume that the output voltage of the comparator is at its maximum negative level. This output is connected to the inverting input

Fig. 68.25

2516 Electrical Technology

of the integrator through resistor, R_{1}. This produces a positive-going ramp on the output of the integrator. When the ramp voltage reaches the upper trigger point (UTP), the comparator switches to its maximum positive level. This positive level causes the integrator ramp to change to a negative going direction. The ramp continues in this direction until the lower trigger point (LTP) of the comparator is reached. At this point, the comparator output switches back to its maximum negative level and the cycle repeats. This action is shown in Fig. 68.26.

Fig. 68.26
Since the comparator produces square-wave output, therefore, circuit shown in Fig. 68.25 can be used as both a triangular-wave oscillator and a square-wave oscillator. Devices of this type are commonly known as function generator because they produce more than one output function. The output amplitude of the square-wave is set by the output swing of the comparator. While the output amplitude of the triangular-wave is set by the resistors R_{2} and R_{3} by establishing the UTP and LTP voltages according to the following formulas :

$$
\begin{aligned}
V_{\mathrm{UTP}} & =+V_{\max }\left(\frac{R_{3}}{R_{2}}\right) \\
V_{\mathrm{LTP}} & =-V_{\max }\left(\frac{R_{3}}{R_{2}}\right)
\end{aligned}
$$

It may be noted that the comparator output levels, $+V_{\max }$ are equal. The frequency of both waveforms depend on the $R_{1} C$ time constant as well as the amplitude-setting resistors R_{2} and R_{3}. By varying R_{1}, the frequency of oscillation can be adjusted without changing the output amplitude.

$$
f=\frac{1}{4 R_{1} C}\left(\frac{R_{2}}{R_{3}}\right)
$$

68.2 1. A Voltage-Controlled Sawtooth Oscillator (VCO)

The voltage-controlled oscillator (VCO) is an oscillator whose frequency can be changed by a variable dc control voltage. The VCOs can be either sinusoidal or nonsinusoidal. One way to build a voltage-controlled sawtooth oscillator is shown in Fig. 68.27 (a). This circuit makes use of an $O P$ $A M P$ integrator that uses switching device called programmable unijunction transistor (abbreviated as PUT) in parallel with the feedback capacitor to terminate each ramp at a prescribed level and effectively "reset" the circuit.

The programmable unijunction transistor (PUT) is a three terminal device i.e., it has an anode, a cathode and a gate terminal. The gate is always biased positively with respect to the cathode. When the anode voltage exceeds the gate voltage by approximately 0.7 V , the PUT turns on and acts as a forward biased diode. When the anode voltage falls below this level, the PUT turns off. Also, the value of current must be above the holding value to maintain conduction.

(a)

(b)

Fig. 68.27
The operation of the circuit may be explained as below. The negative dc input voltage, $-V_{\text {IN }}$, produces a positive-going ramp on the output. During the time that ramp is increasing the circuit acts as a regular integrator. When the ramp voltage (i.e., voltage at PUT anode) exceeds the gate voltage by 0.7 V , the PUT turns on. This forces the capacitor to discharge rapidly as shown in Fig. 68.27 (b). However, the capacitor does not discharge completely to zero because of the PUT's forward voltage, V_{F}. Discharging of the capacitor continues until the current through PUT drops below the holding value. At this point, the PUT turn off and capacitor begins to charge again, thus generating a new output ramp. The cycle

Fig. 68.28 repeats and the resulting output is a repetitive sawtooth waveform as shown in the figure. It may be noted that the sawtooth amplitude and period can be adjusted by varying the PUT gate voltage.

The frequency of smooth curve is given by the relation :

$$
f=\frac{\left|V_{I N}\right|}{R_{1} C}\left(\frac{1}{V_{P}-V_{F}}\right)
$$

It is evident from the above equation that the frequency depends upon the time constant " $R_{1} C$ " of the integrator and the peak voltage set by the PUT. The time period of the sawtooth wave is the reciprocal of the frequency, i.e.,

$$
T=\frac{V_{P}-V_{F}}{\left|V_{I N}\right| / R_{1} C}
$$

68.22. A Square-wave Relaxation Oscillator

Fig. 1.28 shows the circuit of a basic relaxation oscillator. Its operation depends upon charging and discharging of a capacitor. Notice that the $O P-A M P$'s inverting input is the capacitor voltage and the noninverting input is a portion of the output fed-back through resistors R_{2} and R_{3}.

When the circuit is first turned on, the capacitor is uncharged. Because of this, the inverting input is at 0 V . This makes the output a positive maximum, and capacitor begins to charge towards $V_{\text {out }}$ through R_{1}. When the capacitor voltage reaches a value equal to the feedback voltage on the noninverting input, the switches to the maximum negative stage. At this point, the capacitor begins to discharge from $+V_{f}$ toward $-V_{f}$. When the capacitor voltage reaches $-V_{f}$ the $O P-A M P$ switches back to the maximum positive state. This action continues to repeat and a square wave input is obtained as

2518

shown in Fig. 68.29.

Fig. 68.29

68.23. High-impedance Voltmeter

Fig. 68.30 shows the circuit of a high impedance voltmeter. In such a circuit, the closed loop-gain depends on the internal resistance of the meter R_{M}. The input voltage will be amplified and the output voltage will cause a proportional current to flow through the meter. By adding a small series potentiometer in the feedback loop, the meter can be calibrated to provide a more accurate reading.

The high input impedance of the $O P-A M P$ reduces the circuit loading that is caused by the use of the meter. Although this type of circuit would cause some circuit loading, it would be much more accurate than a VOM (Volt-Ohm-Meter) with an input impedance of 20 K/V.

Fig. 68.30

68.24. Active Filters

We have already discussed in Chapter 10, about tuned amplifiers. Such amplifiers are designed to amplify only those frequencies that are within certain range. As long as the input signal is within the specified range, it will be amplified. If it goes outside of this frequency range, amplification will be drastically reduced. The tuned amplifier circuits using $O P-A M P$ are generally referred to as active filters. Such circuits do not require the use of inductors. The frequency response of the circuit is determined by resistor and capacitor values.

A filter circuit can be constructed using passive components like resistors and capacitors. But an active filter, in addition to the passive components makes use of an $O P-A M P$ as an amplifier. The amplifier in the active filter circuit may provide voltage amplification and signal isolation or buffering.

There are four major types of filters namely, low-pass, filter-high-pass filter, and band-pass filter and band-stop or notch filter. All these four types of filters are discussed one by one in the following pages.

68.25. Low-Pass Filter

A filter that provides a constant output from dc up to a cut-off frequency $\left(f_{\mathrm{OH}}\right)$ and then passes no signal above that frequency is called an ideal low-pass filter. The ideal response of a low-pass filter is as shown in Fig. $68.31(a)$. Notice that the response shows that the filter has a constant output (indicated by a horizontal line AB) from dc or zero frequency up to a cutt-off frequency $\left(f_{\mathrm{OH}}\right)$. And beyond f_{OH}, the output is zero as indicated by the vertical line ' BC ' in the figure.

(a)

(b)

Fig. 68.31
Fig. 68.31 (b) shows the circuit of a low-pass active filer using a single resistor and capacitor. Such a ricuit is also referred to as first-order (or single-pole) low-pass filter. It is called first-order because it makes use of a single resistor and a capacitor. The response of such a firstorder low pass filter is as shown in Fig. 68.32. Notice that the response below the cut-off frequency $\left(f_{\mathrm{OH}}\right)$ shows a constant gain (indicated by a horizontal line 'AB')

However, beyond the cut-off frequency, the gain does not reduce immediately to zero as expected in Fig. 68.31 (a) but

Fig. 68.32 reduces with a slope of $20 \mathrm{~dB} /$ decade (means that the output voltage reduces by a factor of 100 when the fequency increases by a factor of 10). The voltage gain for a low-pass filter below the cut-off frequency $\left(f_{\mathrm{OH}}\right)$ is given by the relation.

$$
A_{v}=1+\frac{R_{3}}{R_{1}}
$$

And the cut-off frequency is determined by the relation

$$
f_{\mathrm{OH}}=\frac{1}{2 \pi R_{1} C_{1}}
$$

It is possible to connect two sections of the filter together as shown in Fig. 68.33 (a). Such a circuit is called second-order (or two-pole) low pass filter. Fig. 68.33 configuration of the secondorder low-pass filter.

Fig. 68.33
Each circuit shown in Fig. 68.33 has two RC circuits, $R_{1}-C_{1}$ and $R_{2}-C_{2}$. As the operating frequency increases beyond f_{2}, each circuit will be dropping the closed-loop gain by 20 dB , giving a total roll-off rate of $40 \mathrm{~dB} /$ decade when operated above f_{2}. The cut-off frequency for each of the circuit is given by,

$$
f_{2}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}
$$

68.26. High-pass Filter

As a matter of a fact, there is very little difference between the high-pass filter and the low-pass filter. Fig. 68.34 (a) shows the circuit of a first order (or single-pole) high-pass filter and Fig. 68.34 (b), the circuit of a second-order (or two-pole) high-pass filter. Notice that the only thing that has changed is the position of the capacitors and resistors. The value of cut-off frequencies f_{1} and f_{2} is obtained by using the same equations we used for low-pass filter.

Fig. 68.34
Fig. 68.35 shows the gain versus frequency response of a highpass filter. Notice that the solid line indicates the ideal response while the dashed line, corresponds to the actual response of the filter circuit. The ideal curve indicates that the filter has a zero output for the frequencies below f_{OL} (indicated by the line ' AB '). And beyond f_{OL}, it has a constant output. The actual response curve may correspond to the roll-off gain by 20 dB /decade for first order to $40 \mathrm{~dB} /$ decade for second-order low-pass filters.

68.27. Band-pass Filters

Fig. 68.35

A band-pass filter is the one that is designed to pass all frequencies within its bandwith. A simple way to construct a band-pass filter is to cascade a low-pass filters and a high-pass filter as shown in Fig. 68.36. The first stage of the band-pass filter will pass all frequencies that are below its cutt-off value, f_{2}. All the frequencies passed by the first stage will head into the second stage. This stage will pass all frequencies above its value of f_{1}. The result of this circuit action is as shown in Fig. 68.37. Note that the only frequencies that all will pass through the amplifier are those that fall within the pass band of both amplifiers. The values of f_{1} and f_{2} can be obtained by using the relations, $1 / 2 \pi R_{1} C_{1}$ and, $1 / 2 \pi R_{2} C_{2}$. Then bandwith,

$$
B W=f_{2}-f_{1}
$$

Fig. 68.36

And the centre frequency,

$$
f_{0}=f_{1} \cdot f_{2}
$$

The Quality-factor (or Q-factor) of the bandpass filter circuit.

$$
Q=\frac{f_{0}}{B W}
$$

68.28. Notch Filter

The notch filter is designed to block all fre-

Fig. 68.37 quencies that fall within its bandwith Fig. 68.38 (a) shows a block diagram and 68.38 (b), the gain versus frequency response curve of a multistage notch filter.

Fig. 68.38
The block diagram shows that the circuit is made up of a high-pass filter, a low-pass filter and a summing amplifier. The summing amplifier produces an output that is equal to a sum of the filter output voltages. The circuit is designed in such a way so that the cut-off frequency, f_{1} (which is set by a low-pass filter) is lower in value than the cut-off frequency, f_{2} (which is set by high-pass filter). The gap between the values of f_{1} and f_{2} is the bandwidth of the filter.

When the circuit input frequency is lower than f_{1}, the input signal will pass through low-pass filter to the summing amplifier. Since the input frequency is below the cut-off frequency of the highpass filter, v_{2} will be zero. Thus the output from the summing amplifier will equal the output from the low-pass filter. When the circuit input frequency is higher than f_{2}, the input signal will pass through the high-pass filter to the summing amplifier. Since the input frequency is above the cut-off frequency of the low-pass filter, v_{1} will zero. Now the summing amplifier output will equal the output from the high-pass filter.

It is evident from the above discussion that frequencies below f_{1} and those above f_{2}, have been passed by the notch filter. But when the circuit frequency between f_{1} and f_{2}, neither of the filters will produce an output. Thus v_{1} and v_{2} will be both zero and the output from the summing amplifier will also be zero.

The frequency analysis of the notch filter is identical to the band-pass filter. Fisrt, determine the cut-off frequencies of the low-pass and the high-pass filters. Then using these calculated values, determine the bandwidth, center frequency and Q values of the circuit.

Tutorial Problems No. 68

1. Determine the maximum allowable value of $v_{\text {in }}$ for the circuit shown in Fig. 68.39. Assume that the gain of the amplifier is 200 .
(40 mV)

Fig. 68.39

Fig. 68.40
2. For the non-inverting amplifier shown in Fig. 68.40, find the voltage gain of the circuit.
3. Determine the value of output voltage for the summing circuit shown in Fig. 68.41.

Fig. 68.41

OBJECTIVE TESTS - 68

1. An OP-AMP can be classified as \qquad amplifier.
(a) linear
(b) low- $r_{\text {in }}$
(c) positive feedback
(d) $R C$-coupled.
2. An ideal OP-AMP has
(a) infinite A_{v}
(b) infinite R_{i}
(c) zero R_{0}
(d) all the above.
3. OP-AMP have become very popular in industry mainly because
(a) they are dirt cheap
(b) their external characteristics can be changed to suit any application
(c) of their extremely small size
(d) they are available in different packages.
4. Since input resistance of an ideal OP-AMP is infinte
(a) its output resistance is zero
(b) its output voltage becomes independent of load resistance
(c) its input current is zero
(d) it becomes a current-controlled device.
5. The gain of an actual OP-AMP is around
(a) 1,000,000
(b) 1000
(c) 100
(d) 10,000
6. When an input voltage of 1 V is applied to an OP-AMP having $A_{v}=10^{6}$ and bias supply of + 15 V , the output voltage available is
(a) $15 \times 10^{6} \mathrm{~V}$
(b) $10^{6} \mathrm{~V}$
(c) $15 \mu \mathrm{~V}$
(d) 15 V .
7. An inverting amplifier has $R_{f}=2 \mathrm{M}$ and $R_{1}=2$ K , Its scale factor is
(a) 1000
(b) -1000
(c) 10^{-3}
(d) -10^{-3}
8. In an inverting amplifier, the two input terminals of an ideal OP-AMP are at the same potential because
(a) the two input terminals are directly shorted internally
(b) the input impedance of the OP-AMP is infinity
(c) common-mode rejection ratio is infinity
(d) the open-loop gain of the OP-AMP is infinity.
9. The open-loop gain of an operational amplifier is 10^{5}. An input signal of 1 mV is applied to the inverting input with the non-inverting input connected to the ground. The supply voltages are $\pm 10 \mathrm{~V}$. The output of the amplifier will be
(a) +100 V
(b) -100 V
(c) +10 V (approximately)
(d) -10 V (approximately)
10. The output voltage of the circuit shown in Fig. 68.42 is

Fig. 68.42
(a) 1.0 V
(b) 1.5 V
(c) 2.0 V
(d) 2.5 V
11. In the circuit shown in Fig. 68.43, the value of output, v_{0} is
(a) +3 V
(b) -3 V
(c) -7 V
(d) +7 V

Fig. 68.43
12. When in a negative scaler, both R_{1} and R_{f} are reduced to zero, the circuit functions as
(a) integrator
(b) subtractor
(c) comparator
(d) unity follower.
13. The two input terminals of an OP-AMP are known as
(a) positive and negative
(b) differential and non-differential
(c) inverting and non-inverting
(d) high and low.
14. The purpose of comparator is to
(a) amplify an input voltage
(b) detect the occurrence of a changing input voltage
(c) maintain a constant output when the dc input voltage changes.
(d) produce a change in input voltage when an input voltage equals the reference voltage.
15. The OP-AMP comparator circuit uses
(a) positive feedback
(b) negative beedback
(c) regenerative feedback
(d) no feedback
16. The feedback path in an OP-AMP integrator consists of
(a) a resistor
(b) a capacitor
(c) a resistor and a capacitor in series
(d) a resistor and a capacitor in parallel.
17. The feedback path in an OP-AMP differentiator consists of
(a) a resistor
(b) a capacitor
(c) a resistor and a capacitor in series
(d) a resistor and a capacitor in parallel.

ANSWERS

1. (a)
2. (d)
3. (b)
4. (c)
5. (a)
6. (d)
7. (b)
8. (b)
9. (b)
10. (c) 11. (d)
11. (d)
12. (c) 14. (d) 15. (d) 16. (b) 17. (a)

Leaming Objectives

$>$ NumberSystems
> The Decimal NumberSystem
> Binary Number System
$>$ Binary to Decimal Conversion
> Binary Fractions
$>$ Double-Dadd Method
$>$ Decimal to Binary Conversion
> Shifting the Place Point
> Binary Operations
> Binary Addition
$>$ Binary Subtraction
> Complement of a Number
> 1'sComplemental Subtraction
> 2'sComplemental Subtraction
> Binary Multiplication
$>$ Binary Division
$>$ Shifting a Numberto LeftorRight
> Octal Number System
> Octalto Decimal Conversion
> Decimal to Octal Conversion
> Binary to Octal Conversion
> Octal to Binary Conversion
$>$ Binary to Hexadecimal Conversion
$>$ Decimal to Hexadecimal Conversion
$>$ Hexadecimal to Decimal Conversion
$>$ Digital Coding
$>$ Binary Coded Decimal (BCD) Code
$>$ OctalCoding
$>$ HexadecimalCoding
$>$ Excess-3Code
$>$ Gray Code
> Excess-3 Gray Code
$>$ ASCIICode

NUMBER SYSTEMS AND CODES

Logic gates use switches that control the flow of an electrical current. '1' is 'true' and ' 0 ' is 'false'. The columns in the binary system wave the values $1,2,4,8,16,32$ and so no.

69.1. Number Systems

The number systems are used quite frequently in the field of digital electronics and computers. However the type of number system used in computers could be different at different stages of the usage. For example, when a user key-in some data into the computer, s (he), will do it using decimal number system i.e. the system we all have used for several years for doing arithmetic problems. But when the information goes inside the computer, it needs to be converted to a form suitable for processing data by the digital circuitry. Similarly when the data has to be displayed on the monitor for the user, it has to be again in the decimal number system. Hence the conversion from one number system to another one is an important topic to be understood.

There are four systems of arithmetic which are often used in digital circuits. These systems are:

1. Decimal-it has a base (or radix) of 10 i.e. it uses 10 different symbols to represent numbers.
2. Binary-it has a base of 2 i.e. it uses only two different symbols.
3. Octal-it has a base of 8 i.e. it uses eight different symbols.
4. Hexadecimal-it has a base of 16 i.e. it uses sixteen different symbols.

All these systems use the same type of positional notation except that

- decimal system uses powers of 10 - binary system uses power of 2
— octal system uses powers of 8 — hexadecimal system uses powers of 16.
Decimal numbers are used to represent quantities which are outside the digital system. Binary system is extensively used by digital systems like digital computers which operate on binary information. Octal system has certain advantages in digital work because it requires less circuitry to get information into and out of a digital system. Moreover, it is easier to read, record and print out octal numbers than binary numbers. Hexadecimal number system is particularly suited for microcomputers.

69.2. The Dec imal Number System

We will briefly recount some important characteristics of this more-familiar system before taking up other systems. This system has a base of 10 and is a position-value system (meaning that value of a digit depends on its position). It has following characteristics :
(i) Base or Radix

It is defined as the number of different digits which can occur in each position in the number system.

The decimal number system has a base of 10 meaning that it contains ten unique symbols (or digits). These are : $0,1,2,3,4,5,6,7,8,9$. Any one of these may be used in each position of the number.

Incidentally, it may be noted that we call it a decimal (10's) system although it does not have a distinct symbol of 10. As is well-known, it expresses 10 and any number above 10 as a combination of its ten unique symbols.
(ii) Position Value

Fig. 69.1

The absolute value of each digit is fixed but its position value (or place value or weight) is determined by its position in the overall number. For example, position value of 3 in 3000 is not the same as in 300. Also, position value of each 4 in the number 4444 is different as shown in Fig. 69.1.

Similarly, the number 2573 can be broken down as follows :

$$
2573=2 \times 10^{3}+5 \times 10^{2}+7 \times 10^{1}+3 \times 10^{0}
$$

It will be noted that in this number, 3 is the least significant digit ($L S D$) whereas 2 is the most significant digit (MSD).

Again, the number 2573.469 can be written as

$$
2573.469=2 \times 10^{3}+5 \times 10^{2}+7 \times 10^{1}+3 \times 10^{0}+4 \times 10^{-1}+6 \times 10^{-2}+9 \times 10^{-3}
$$

It is seen that position values are found by raising the base of the number system (i.e. 10 in this case) to the power of the position. Also, powers are numbered to the left of the decimal point starting with 0 and to the right of the decimal point starting with -1 .

69.3. Binary Number System

Like decimal number (or denary) system, it has a radix and it also uses the same type of position value system.
(i) Radix

Its base or radix is two because it uses only two digits 0 and 1 (the word 'binary digit' is contracted to bit). All binary numbers consist of a string of 0 s and 1 s . Examples are 10, 101 and 1011 which are read as onezero, one-zero-one and one-zero-oneone to avoid confusion with decimal numbers. Another way to avoid confusion is to add a subscript of 10 for decimal numbers and of 2 for binary numbers as illustrated below.
$10_{10}, 101_{10}, 5742_{10}$-decimal number and $10_{2}, 101_{2}, 110001_{2}$ binary numbers.

It is seen that the subscript itself

Binary numbers represent all values within computers is in decimal. It may be noted that binary numbers need more places for counting because their base is small
(ii) Position Value

Like the decimal system, binary system is also positionally-weighted. However, in this case, the

Fig. 69.2 position value of each bit corresponds to some power of 2. In each binary number, the value increases in powers of 2 starting with 0 to the left of the binary point and decreases to the right of the binary point starting with power of -1 . The position value (or weight) of each bit alongwith a 7-bit binary number 1101.011 is shown in Fig. 69.2.

As seen, the fourth bit to the left of binary point carries the maximum weight (i.e. it has the highest value) and is called most significant digit (MSD). Similarly, the third bit to the right of the binary point is called least significant digit $(L S D)$. The decimal equivalent of the binary number may be found as under

$$
\begin{aligned}
1101.011_{2} & =\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)+\left(0 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right) \\
& =8+4+0+1+0+\frac{1}{4}+\frac{1}{8}=13.375_{10}
\end{aligned}
$$

2528

As stated earlier, position values of different bits are given by ascending powers of 2 to the left of binary point and by descending power of 2 to the right of binary point. The different digit positions of a given binary number have the following decimal weight (Fig. 69.3)

Binary numbers are used extensively by all digital systems primarily due to the nature of electronics itself. The bit 1 may be represented by

Fig. 69.3 a saturated (fully-conducting) transistor, a light turned ON, a relay energised or a magnet magnetised in a particular direction. The bit 0 , on the other hand, can be represented as a cut-off transistor, a light turned OFF, a relay de-energised or a magnet magnetised in the opposite direction. In such cases, there are only two values which a device can assume.

69.4. Binary to Decimal Conversion

Following procedure should be adopted for converting a given binary integer (whole number) into its equivalent decimal number :

Step 1. Write the binary number i.e. all its bits in a row.
Step 2. Directly under the bits, write $1,2,4,8,16, \ldots$. starting from right to left.
Step 3. Cross out the decimal weights which lie under 0 bits.
Step 4. Add the remaining weights to get the decimal equivalent.

Example 69.1. Convert 11001_{2} to its equivalent decimal number.

Solution. The four steps involved in the conversion are as under

Step 1.	1	1	0	0	1
Step 2.	16	8	4	2	1
Step 3.	16	8	\nsim	$\not 2$	1
Step 4.	$16+8+1=25$		\therefore	$11001_{2}=25_{10}$	

It is seen that the number contains 1 sixteen, one eight, 0 four's, 0 two's and 1 one. Certain decimal and binary equivalent numbers are tabulated below in Table No. 69.1

Table No. 69.1

Decimal	Binary	Decimal	Binary	Decimal	Binary
1	1	11	1011	21	10101
2	10	12	1100	22	10110
3	11	13	1101	23	10111
4	100	14	1110	24	11000
5	101	15	1111	25	11001
6	110	16	10000	26	11010
7	111	17	10001	27	11011
8	1000	18	10010	28	11100
9	1001	19	10011	29	11101
10	1010	20	10100	30	11110

69.5. Binary Fractions

Here, procedure is the same as for binary integers except that the following weights are used for different bit positions .

-2^{-1}	2^{-2}	2^{-2}	2^{-4}	\rightarrow	
\uparrow	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	\rightarrow

Binary Point
Example 69.2. Convert the binary fraction 0.101 into its decimal equivalent.
Solution. The following four steps will be used for this purpose.

Step 1.	0	1	0	1
Step 2.	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	
Step 3.	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	

Step 4. $\frac{1}{2}+\frac{1}{8}=0.625$
\therefore
$0.101_{2}=0.625_{10}$

Example 69.3. Find the decimal equivalent of the 6-bit binary number 101.101_{2}.

| Solution. | 1 | 0 | 1 | 1 | 0 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 4 | 2 | 1 | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{8}$ | |
| | 4 | $\mathscr{2}$ | 1 | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{8}$ | $=5+\frac{1}{2}+\frac{1}{8}=5.625$ |
| $\therefore \quad 101.101_{2}=5.625_{10}$ | | | | | | | |

69.6. Double-Dadd Method

This method of converting binary integers into decimal equivalents is much simpler and quicker than the method given in Art. 69.4 especially in the case of large numbers. Following three steps are involved:

1. Double the first bit to the extreme left and add this doubled value to the next bit on the right.
2. Double the sum obtained and add the doubled value to the next bit.
3. Continue step 2 until the last bit has been added to the previously-doubled sum.

The conversion of 11001_{2} is shown in Fig. 69.4. It is seen that $11001_{2}=25_{10}$

Fig. 69.4

Using double-dadd method, let us convert $111010{ }_{2}$ into its binary equivalent.

1. $2 \times 1=2$, add next bit 1 so that $2+1=3$
2. $2 \times 3=6, \quad$ add next bit 1 so that $6+1=7$
3. $2 \times 7=14$, add next bit 0 so that $14+0=14$
4. $2 \times 14=28, \quad$ add next bit 1 so that $28+1=29$

$$
\begin{aligned}
& \text { 5. } 2 \times 29=58, \quad \text { add next bit } 0 \text { so that } 58+0=58 \\
& \therefore \quad 111010_{2}=58_{10}
\end{aligned}
$$

69.7. Decimal to Binary Conversion

(a) Integers

Such conversion can be achieved by using the so-called double-dabble method. It is also known as divide-by-two method. In this method, we progressively divide the given decimal number by 2 and write down the remainders after each division. These remainders taken in the reverse order (i.e. from bottom-to-top) form the required binary number. As an example, let us convert 25_{10} into its binary equivalent.

$$
\begin{aligned}
25 \div 2 & =12+\text { remainder of } 1 & \text { TOP } \\
12 \div 2 & =6+\text { remainder of } 0 & \\
6 \div 2 & =3+\text { remainder of } 0 & \\
3 \div 2 & =1+\text { remainder of } 1 & \\
1 \div 2 & =0+\text { remainder of } 1 & \\
\therefore \quad 25_{10} & =11001_{2} & \text { BOTTOM }
\end{aligned}
$$

The above process may be simplified as under :

Successive Divisions	Remainders
2) 25	
$\frac{2) 12}{2)}=$	1
$\frac{2)}{2)}=$	0
$\frac{2)}{2}=$	1
2$) 0$	1

Reading the remainders from bottom to top, we get $25_{10}=11001_{2}$ It may also be put in the following form :

(b) Fractions

In this case, Multiply-by-two rule is used i.e. we multiply each bit by 2 and record the carry in the integer position. These carries taken in the forward (top-to-bottom)direction gives the required binary fraction.

Let us convert 0.8125_{10} into its binary equivalent.

$$
\begin{array}{rlrlrl}
0.8125 \times 2 & =1.625 & & =0.625 & & \text { with a carry of } 1 \\
0.625 \times 2 & =1.25 & & =0.25 & & \text { with a carry of } 1 \\
0.25 \times 2 & =0.5 & & =0.5 & & \text { with a carry* of } 0 \\
0.5 \times 2 & =1.0 & & =0.0 & & \text { with a carry of } 1 \\
\therefore \quad 0.8125_{10} & =0.1101_{2} & & & \\
\therefore \quad 0 & &
\end{array}
$$

[^28]Please note that we have to add the binary point from our side. Let us now convert 0.77_{10} into its binary equivalent.
$0.77 \times 2=1.54=0.54$ with a carry of 1
$0.54 \times 2=1.08=0.08$ with a carry of 1
$0.08 \times 2=0.16=0.16$ with a carry of 0
$0.16 \times 2=0.32=0.32$ with a carry of 0
$0.32 \times 2=0.64=0.64$ with a carry of 0
$0.64 \times 2=1.28=0.28$ with a carry of 1

We may stop here but the answer would be approximate. $\therefore 0.77_{10} \cong .110001_{2}$
Example 69.4. Convert 25.625_{10} into its binary equivalent.
Solution. We will do the conversion in two steps (i) first for the integer and (ii) then for the fraction.

(a) Integer	
$25 \div 2$	$=12+1$
$12 \div 2$	$=6+0$
$6 \div 2$	$=3+0$
$3 \div 2$	$=1+1$
$1 \div 2$	$=0+1$
$\therefore \quad 25_{10}$	$=11001_{2}$

(b) fraction

$$
\begin{aligned}
0.625 \times 2 & =1.25=0.25+1 \\
0.25 \times 2 & =0.5=0.5+0 \\
0.5 \times 2 & =1.0=0.0+1
\end{aligned}
$$

Considering the complete number, we have $25.625_{10}=11001.101_{2}$
Obviously, binary system needs more bits to express the same number than decimal system.

69.8. Shifting the Place Point

In a decimal number if the decimal point is moved one place to the right, the number is multiplied by 10. For example, when decimal point in 7.86 is shifted one place to the right, it becomes 78.6 i.e. it increases the value of the number 10 times. Moving the decimal point one place to the left reduces its value to one-tenth.

In binary numbers, shifting the binary point by one place multiplies or divides the number by 2 . For example, 111.0_{2} is equal to 7_{10} but 1110.0_{2} is 14_{10}. As seen, 7 is doubled to 14 by moving the binary point one place to the right.

Similarly, 11.1_{2} is $\left(2+1+\frac{1}{2}\right)=3.5_{10}$. Hence, 111.0_{2} is halved to 3.5_{10} by moving its binary point one place to the left.

69.9. Binary Operations

We will now consider the following four binary operations :

1. addition
2. subtraction
3. multiplication
4. division

Addition is the most important of these four operations. In fact, by using 'complements', subtraction can be reduced to addition. Most digital computers subtract by complements. It leads to reduction in hardware because only adding type of circuits are required. Similarly, multiplication is nothing but repeated addition and, finally, division is nothing but repeated subtraction.

69.10. Binary Addition

Addition is simply the manipulation of numbers for combining physical quantities. For example, in the decimal number system, $2+3=5$ means the combination of $\bullet \bullet$ with $\bullet \bullet$ to give a total of $\bullet \bullet$ - - Addition of binary numbers is similar to the decimal addition.

Following points will help in understanding the rules of binary addition.

1. When 'nothing' is combined with 'nothing', we get nothing.

Binary representation of the above statement is : $0+0=0$
2. When nothing is combined with \bullet, we get \bullet.

In binary language

$$
0+1=1
$$

3. Combining • with nothing, gives \bullet.

The binary equivalent is $\quad 1+0=1$
4. When we combine \bullet with \bullet, we get $\bullet \bullet$.

The binary representation of the above is $\quad 1+1=10$
It should be noted that the above sum is not 'ten' but 'one-zero' i.e. it represents $\bullet \bullet$ and not $\bullet \bullet$
-••••• In other words, it is 10_{2} which represents decimal 2. It is not decimal ten.
The last rule is often written as $1+1=0$ with a carry of 1
The above rules for binary addition can be summarized as under :

$$
\begin{array}{llll}
0+0=0 & 0+1=1 \\
1+0=1 & 1+1=0 & \text { with a carry of } 1 & \text { or }=10_{2}
\end{array}
$$

It is worth noting that 'carry-overs' are performed in the same manner as in decimal arithmetic. The rules of binary addition could also be expressed in the form of a table as shown below

| | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad or \quad| | | | |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 |
| 1 | 1 | 10_{2} | |
| 1 | 1 | 0 | 1 |\quad with a carry 1

As an illustration, let us add 101 and 110.

$$
\begin{array}{rll}
101 & \text { - first column } & 1+0=1 \\
+\quad 110 \\
\hline 1011 & - \text { second column } & 0+1=1 \\
\text { - third column } & 1+1=10
\end{array}
$$

(i.e. 0 with carry 1)

Similarly,
1 carry

$$
\begin{array}{rrr}
111 & -1 \text { st column } & 1+0=1 \\
+110 & -2 \text { nd column } & 1+1=0 \\
1101 & -3 \text { rd column } & 1+1+\text { carry of } 1 \\
& & =10+1=11_{2}
\end{array}
$$

Let us consider one more example :

1 carry	\leftarrow	\leftarrow
1011		
+1001	11 carry	11 carry

Hence, we find from the above examples that the only two possible combinations with a carry are :
(a) $1+1=$ sum of 0 with a carry of 1 .

It is binary 10 i.e. 10_{2} which equals decimal 2 .
(b) $1+1+$ carry of $1=$ a sum of 1 with a carry of 1 .

It equals binary 11 i.e. 11_{2} or decimal 3 .

Example 69.5. Add 110011_{2} to 101101_{2}
(Digital Electronics, Bombay Univ. April)
Solution. 110011

$$
\begin{array}{r}
101101 \\
\hline 1100000
\end{array}
$$

1. first column : $1+1=0$ with a carry of 1 . Hence, we put down zero there and carry 1 to the second column.
2. second column : $1+0=1$. But combined with carry 1 from first column, it gives $1+1=$ 0 and a carry of 1 . Hence, we put down 0 there and carry 1 further to the third column.
3. third column : $0+1=1$. Again, when it is combined with carry of 1 from the second column, we get $1+1=0$ with a carry of 1 . Hence, again, we put down 0 and carry 1 to the fourth column.
4. fourth column : Here, $0+1=1$. When combined with carry 1 from third column, we get $1+1=0$ with a carry of 1 . Hence, we put down 0 there and carry 1 to the fifth column.
5. fifth column : Here, $1+0=1$ When combined with the carry 1 from fourth column, we get $1+1=0$ with a carry of 1 . Hence, we put down 0 there and carry 1 to the sixth column.
6. sixth column : Here, it is a case of $1+1+$ carry of $1=11_{2}$ as stated earlier in (b) above.

69.11. Binary Subtraction

It is also performed in a manner similar to that used in decimal subtraction. Because binary system has only two digits, binary subtraction requires more borrowing operations than decimal subtraction. The four rules for binary subtraction are as under:

1. $0-0=0$,
2. $1-0=1$,
3. $1-1=0$,
4. $0-1=1$ with a borrow of 1 from the next column of the minuend or $\quad 10-1=1$

The last result represents $\bullet \bullet-\bullet-\bullet$ which makes sense.
While using Rule 4 , it should be borne in mind that borrow reduces the remaining minuend by 1. It means that a borrow will cause a 1 in the next column to the left in the minuend to become 0 . If the next column also happens to contain 0 , it is changed to a 1 and the succeeding 0 s in the minuend are changed to 1 s until a 1 is found which is then changed to a 0 .

Example 1

Let us subtract 0101_{2} from 1110 . The various steps are explained below :

$\not \partial 1$ borrow	$\varnothing 1$	$\varnothing 1$	$\varnothing 1$
1110	1110	1110	1110
-0101	-0101	$-\overline{0101}$	-0101
1	01	001	1001

Explanation

1. In the first column, since we cannot subtract 1 from 0 , we borrow 1 from the next column to the left. Hence, we put down 1 in the answer and change the 1 of the next left column to a 0 .
2. We apply Rule 1 to next column i.e. $0-0=0$
3. We apply Rule 3 to the 3 rd column i.e. $1-1=0$
4. Finally, we apply Rule 2 to the last i.e. fourth column it. $1-0=1$ As a check, it may be noted that talking in terms of decimal numbers, we have subtracted 5 from 14. Obviously, the answer has to be $9\left(1001_{2}\right)$.

Example 2.

Let us now try subtracting 0001_{2} from 1000_{2}.

Step 1	Step 2	Step 3	Step 4
1	11	011	011
$10 \emptyset 0$	$1 \emptyset \emptyset 1$	$1 \emptyset \emptyset 1$	$1 \emptyset \emptyset 1$
-0001			
1	$\frac{-0001}{1}$	$\frac{-0001}{1}$	$\frac{-0001}{0111}$

Since there happened to be a 0 in the second column, it was changed to 1 . Again, there was a 0 in the third column, so it was also changed to a 1 . Finally, we met a 1 in the forth column which was changed to a 0 and the final answer was written down as shown above.

Example 69.6. Subtract 0111_{2} from $1001_{2} \quad$ (Digital Computations, Punjab Univ. 1991)
1001 1st column
: $1-1=0$

$$
\begin{array}{ll}
-0111 \\
\hline 0010
\end{array} \begin{aligned}
& \text { 2nd column } \\
& \text { 3rd column } \\
& \text { 4th column }
\end{aligned} \quad: 1 \text { (after borrow) }-1=0 \text { (after borrow) }-0=0
$$

Example 69.7. Subtract 01011_{2} from 10110_{2}
Solution. Step-wise the solution is as under :

Step 1	Step 2	Step 3	Step 4	Step 5
0	00	00	000	000
10110	10110	10110	10110	10110
$-\frac{01011}{1}$	$-\frac{01011}{11}$	$-\frac{01011}{011}$	$\frac{-01011}{1011}$	$-\frac{01011}{01011}$

69.12. Complement of a Number

In digital work, two types of complements of a binary number are used for complemental subtraction :
(a) 1's complement

The 1 's complement of a binary number is obtained by changing its each 0 into a 1 and each 1 into a 0 . It is also called radix-minus-one complement. For example, 1 's complement of 100_{2} is 011_{2} and of 1110_{2} is 0001_{2}.
(b) 2's complement

The 2 's complement of a binary number is obtained by adding 1 to its 1 's complement.

$$
2 \text { 's complement }=1 \text { 's complement }+1
$$

It is also known as true complement. Suppose we are asked to find 2's complement of 1011_{2}. Its 1 's complement is 0100_{2}. Next, add 1 to get 0101_{2}. Hence, 2 's complement of 1011_{2} is 0101_{2}.

The complement method of subtraction reduces subtraction to an addition process.
This method is popular in digital computers because

1. only adder ciruits are needed thus simplifying the circuitry,
2. it is easy with digital circuits to get the complements.

69.13. 1's Complemental Subtraction

In this method, instead of subtracting a number, we add its 1 's complement to the minuend. The last carry (whether 0 or 1) is then added to get the final answer. The rules for subtraction by 1's complement are as under :

1. compute the 1 's complement of the subtrahend by changing all its 1 s to 0 s and all its 0 s to 1 s .
2. add this complement to the minuend
3. perform the end-around carry of the last 1 or 0
4. if there is no end-around carry (i.e. 0 carry), then the answer must be recomplemented and a negative sign attached to it.
5. if the end-around carry is 1 , no recomplementing is necessary.

Suppose we want to subtract 101_{2} from 111_{2}. The procedure is as under :

$$
\begin{array}{r}
111 \\
+010 \\
\hline 1001 \\
\begin{array}{r}
1 \\
\hline 010
\end{array} \quad \leftarrow 1 \text { 's complement of subtrahend } 101 \\
\end{array}
$$

As seen, we have removed from the addition sum the 1 carry in the last position and added it onto the remainder. It is called end-around carry.

Let us now subtract 11012 from $1010{ }_{2}$.

$$
\begin{array}{r}
1010 \\
+\begin{array}{r}
0010 \\
\hline 1100 \\
\text { NO CARRY }
\end{array} \quad \leftarrow 1 \text { 's complement of } 1101
\end{array}
$$

As seen, there is no end-around carry in this case. Hence, as per Rule 4 given above, answer must be recomplemented to get 0011 and a negative sign attached to it. Therefore, the final answer be-comes-0011.

Finally, consider the complemental subtraction of 1110_{2} from 0110_{2}.

$$
\begin{array}{r}
0110 \\
+\quad 0001 \\
\hline 0111 \\
\quad \text { NO CARRY }
\end{array} \quad \leftarrow \text { 's complement of } 1110_{2}
$$

As seen, there is no carry. However, we may add an extra 0 from our side to make it a 0 carry as shown below.

$$
\begin{aligned}
& 0110 \\
&+0001 \\
& \hline 00111 \\
& 0 \leftarrow 1 \text { 's complement of subtrahend } \\
& \hline 00111
\end{aligned} \quad \leftarrow \text { end-around carry }
$$

After recomplementing, it becomes 1000. When negative sign is attached, the final answer becomes -1000_{2}.

Example 69.8. Using I's complemental method, subtract 01101_{2} from 11011_{2}.
Solution. $\quad 11011$

$$
\begin{aligned}
& \frac{+10010}{101101} \leftarrow 1 \text { 's complement of subtrahend } \\
& 1 \\
& \hline 01110 \leftarrow \text { end-around carry }
\end{aligned}
$$

Since end-around carry is 1 , we take the final answer as it is (Rule 5).

Example 69.9. Use l's complement to subtract 11011_{2} from 01101_{2}. (Computer Science, Allahabad Univ.)
Solution. $\quad 01101$

$$
\begin{aligned}
+00100 & \leftarrow 1 \text { 's complement of } 11011_{2} \\
10001 & \rightarrow-01110
\end{aligned}
$$

NO CARRY

Since there is no final carry, we recomplement the answer and attach a minus sign to get the final answer- 01110_{2}.

69.14. 2's Complemental Subtraction

In this case, the procedure is as under :

1. find the 2 's complement of the subtrahend,
2. add this complement to the minuend,
3. drop the final carry,
4. if the carry is 1 , the answer is positive and needs no recomplementing,
5. if there is no carry, recomplement the answer and attach minus sign.

Example 69.10. Using 2's complement, subtract 1010_{2} from 1101_{2}.
Solution. The 1's complement of 1010 is 0101 . The 2's complement is $0101+1=0110$. We will add it to 1101.

$$
\begin{array}{r}
1101 \\
+0110 \\
\hline 10011
\end{array} \quad \leftarrow 2 \text { 's complement of } 1010_{2}
$$

DROP
The final answer is 0011_{2}.
Example 69.11. Use 2's complement to subtract 1101_{2} from $1010{ }_{2}$.
(Digital Computations, Punjab Univ. 1992)
Solution. The 1's complement of 1101 is 0010 . The 2's complement is 0011.

$$
1010
$$

$$
\begin{aligned}
& +\frac{0011}{1101} \quad \leftarrow 2 \text { 's complement of } 1101_{2} . \\
& \quad \text { NO CARRY }
\end{aligned}
$$

In this case, there is no carry. Hence, we have to recomplement the answer. For this purpose, we first subtract 1 from it to get 1100 . Next, we recomplement it to get 0011 . After attaching the minus sign, the final answer becomes -0011_{2}.

Talking in terms of decimal numbers, we have subtracted 13 from 10 . Obviously the answer is -3 .

69.15. Binary Multiplication

The procedure for this multiplication is the same as for decimal multiplication though it is comparatively much easier. The four simple rules are as under:

1. $0 \times 0=0$,
2. $0 \times 1=0$,
3. $1 \times 0=0$,
4. $1 \times 1=1$.

The rules of binary multiplication could be summarized in the form of a table as shown.

$$
\begin{array}{r}
01 \\
\frac{000}{101}
\end{array}
$$

As in the decimal system, the procedure is

1. copy the multiplicand when multiplier digit is 1 but not when it is 0
2. shift as in decimal multiplication
3. add the resulting binary numbers according to the rules of binary addition.

Example 69.12. Multiply 111_{2} by 101_{2} using binary multiplication method.
(Electronics-1, Indore Univ. 1991)
Solution.

111

$$
\begin{array}{r}
\times 101 \\
\hline 111
\end{array}
$$

$$
000 \quad \text { - shift left, no add }
$$

$$
111 \quad \text { - shift left and add }
$$

Example 69.13. Multiply 1101_{2} by 1100_{2}.
(Digital Electronics, Bombay Univ. 1990)
Solution.

$$
1101
$$

$$
\begin{array}{r}
\times 1100 \\
\hline 0000
\end{array}
$$

$$
0000
$$

1101

$$
\frac{1101}{10011100}
$$

Example 69.14. Multiply 1111 by 0111_{2}.

Solution. This example has been included for the specific purpose of explaining how to handle the addition if multiplication results in columns with more than two $1 s$.

1. Result of the first column is 1 .
2. In the second column, addition of $1+1=10_{2}$. Hence, we put down 0 there and carry 1 to the third column.
3. In the third column, $1+1+1+$ $1=100_{2}$ (decimal 4). We keep one 0 there, put the second 0 in fourth column and pass on 1 to the fifth column.
4. In the fourth column, $1+1+1+$ $0=11$, (decimal 3). Hence, one 1 is kept there and the other 1 is passed on to the fifth column.
5. In the fifth column, $1+1+1+1$ $=100_{2}$ (decimal 4). Again, one 0 is retained there, second 0 is passed on to the sixth column and 1 to the seventh column.
6. In the sixth column, $1+0=1$.
7. The seventh column already has 1 given by the addition of the
 fifth column.

69.16. Binary Division

It is similar to the division in the decimal system. As in that system, here also division by 0 is meaningless. Rules are :

1. $0 \div 1=0 \quad$ or $\quad \frac{0}{1}=0$,
2. $1 \div 1=1$ or $\frac{1}{1}=1$.

Example 69.15. Carry out the binary division $11001 \div 101$
Solution.

101 \begin{tabular}{r}
101

11001
$\frac{101}{10}$
101
$\frac{101}{000}$

\end{tabular}

After we bring down the next 0 bit, the number 10 so formed is not divisible by 101 . Hence, we put a 0 in the quotient. Therefore, the answer is 101_{2} (decimal 5).

Incidentally, it may be noted that the dividend 25_{10} and divisor is 5_{10} so that the result of division, as expected, is 5_{10}.

Example 69.16. Divide 11011_{2} by 100_{2}
(Digital Computations, Punjab Univ. 1990)
Solution. $\begin{array}{r}1 0 0 \longdiv { 1 1 0 . 1 1 } \\ 1011\end{array}$
100
101
$4 \longdiv { 2 7 }$
24
100
30
11
$\underline{28}$
110
20
$\frac{100}{100} \quad \frac{20}{00}$
$\frac{100}{000}$

69.17. Shifting a Number to Left or Right

Shifting binary numbers one step to the left or right corresponds respectively to multiplication or division by decimal 2 .

When binary number $101100_{2}\left(44_{10}\right)$ is shifted one step to the left, it becomes 1011000_{2} which is 88_{10} i.e. it is doubled. If the given number is shifted one step to the right, it becomes 10110_{2} which is 22_{10}. Obviously, the number is halved.

69.18. Representation of Binary Numbers as Electrical Signals

As seen from above, any binary number can be represented as a string of 0 s and 1 s . However, it is fine for paper and pencil calculations only. Practical problem is how to apply the desired binary information to logic circuits in digital computers. For that purpose, two types of electrical signals are selected to represent 1 and 0 . Since speed and accuracy are of primary importance in digital circuits, the two electrical signals chosen to represent 1 and 0 must meet very rigid requirements.

1. they must be suitable for use in high-speed circuitry,
2. the signals should be very easy to tell apart,
3. they must be hard to confuse with each other.

The second and third statements may look alike but they, in fact, are not so. It is found that all transistor circuits distort, to some extent, the electrical signals that pass through them. Sometime, these distorted signals can look confusingly alike. Hence, this effect of distortion or degradation has to be kept in mind while selecting the two signals.

Fig. 69.6

Fig. 69.7

In Fig. 69.6 are shown several signal pairs that meet the above requirements. It will be noted that it is impossible to distort a positive pulse (representing 1) to look like the no pulse or negative pulse (representing 0).

Fig. 69.7 shows how signal pairs can be used to represent different binary numbers.

69.19. Octal Number System

(i) Radix or Base

It has a base of 8 which means that it has eight distinct counting digits :

$$
0,1,2,3,4,5,6 \text {, and } 7
$$

These digits 0 through 7, have exactly the same physical meaning as in decimal system.
For counting beyond 7, 2-digit combinations are formed taking the second digit followed by the first, then the second followed by the second and so on. Hence, after 7, the next octal number is 10 (second digit followed by first), then 11 (second digit followed by second) and so on. Hence, different octal numbers are :

0,	1,	2,	3,	4,	5,	6,	7,
10,	11,	12,	13,	14,	15,	16,	17,
20,	21,	22,	23,	24,	25,	26,	27,
30,	31,	32,	\ldots	\ldots	\ldots	\ldots	\ldots

(ii) Position Value

The position value (or weight) for each digit is given by different powers of 8 as shown below:

$$
\leftarrow 8^{3} \quad 8^{2} \quad 8^{1} \quad 8^{0} \quad \underset{\uparrow}{\bullet} \quad 8^{-1} \quad 8^{-2} \quad 8^{-3} \rightarrow
$$

octal point

For example, decimal equivalent of octal 352 is

$$
\begin{array}{llll}
3 & 5 & 2 & 0 \\
8^{2} & 8^{1} & 8^{0} & \\
64 & 8 & 1 & =3 \times 64+5 \times 8+2 \times 1=234_{10} \\
352_{8} & =3 \times 8^{2}+5 \times 8^{1}+2 \times 8^{0}=192+40+2=234_{10}
\end{array}
$$

or
Similarly, decimal equivalent of octal 127.24 is

$$
\begin{aligned}
127.24_{8} & =1 \times 8^{2}+2 \times 8^{1}+7 \times 8^{0}+2 \times 8^{-1}+4 \times 8^{-2} \\
& =64+16+7+\frac{2}{8}+\frac{4}{64}=87.3125_{10}
\end{aligned}
$$

69.20. Octal to Decimal Conversion

Procedure is exactly the same as given in Art. 68.4 except that we will use digit of 8 rather than 2 .
Suppose, we want to convert octal 206.104_{8} into its decimal equivalent number. The procedure is as under:

$$
\left.\begin{array}{ccccll}
& \begin{array}{ccccc}
2 & 0 & 6 & 1 & 0
\end{array} \\
8^{2} & 8^{1} & 8^{0} & 8^{-1} & 8^{-2} & 8^{-3} \\
\therefore & & 206.104_{8} & = & 2 \times 8^{2}+6 \times 8^{0}+\frac{1}{8}+\frac{4}{8^{3}} & =128+6+\frac{1}{8}+\frac{1}{128}=\left(134 \frac{17}{128}\right.
\end{array}\right)
$$

69.21. Decimal to Octal Conversion

The double-dabble method (Art 69.7) is used with 8 acting as the multiplying factor for integers and the dividing factor for fractions.

Let us see how we can convert 175_{10} into its octal equivalent.

$$
\begin{aligned}
175 \div 8 & =21 \\
21 \div 8 & =2 \\
2 \div 8 & =0
\end{aligned}
$$

with 7 remainder
with 5 remainder
with 2 remainder

Taking the remainders in the reverse order, we get $257_{8} . \quad \therefore \quad 175_{10}=257_{8}$ Let us now take decimal fraction 0.15 . Its octal equivalent can be found as under:

$$
\begin{array}{rlrl}
0.15 \times 8 & =1.20=0.20 & & \text { with a carry of } 1 \\
0.20 \times 8 & =1.60=0.60 & & \text { with a carry of } 1 \\
0.60 \times 8 & =4.80=0.80 & & \text { with a carry of } 4 \\
\therefore \quad 0.15_{10} & \cong 114_{8} &
\end{array}
$$

As seen, here carries have been taken in the forward direction i.e. from top to bottom.
Using positional notation, the first few octal numbers and their decimal equivalents are shown in Table 69.2.

Table No. 69.2					
Octal	Decimal	Octal	Decimal	Octal	Decimal
0	0	12	10	24	20
1	1	13	11	25	21
2	2	14	12	26	22
3	3	15	13	27	23
4	4	16	14	30	24
5	5	17	15	31	25
6	6	20	16	32	26
7	7	21	17	33	27
10	8	22	18	34	28
11	9	23	19	35	29

69.22. Binary to Octal Conversion

The simplest procedure is to use binary-triplet method. In this method, the given binary number is arranged into groups of 3 bits starting from the octal point and then each group is converted to its equivalent octal number. Of course, where necessary, extra 0 s can be added in front (i.e. left end) of the binary number to complete groups of three.

Suppose, we want to convert 101011_{2} into its octal equivalent. Converting the bits into groups of three, we have \therefore

101011
Now, 101_{2} is 5 octal and 011 is 3 octal.

$$
\begin{array}{ccccc}
\therefore & 101 & 011 & & \\
& \downarrow & \downarrow & & \\
5 & 3 & \therefore & 101011_{2}=53_{8}
\end{array}
$$

Now, take 111110111_{2}. We will first split it into groups of three bits (space is left between the groups for easy reading). Then, each group is given its octal number as shown below.

111	110	111				
\downarrow	\downarrow	\downarrow				
7	6	7	\therefore	111	110	$111_{2}=767_{8}$

Finally, take the example of a mixed binary number 10101.11_{2}. Here, we will have to add one 0 in front of the integral part as well as to the fractional part

010	101	110		
\downarrow	\downarrow	\downarrow		
2	5	6	\therefore	$10101.11_{2}=25.6_{8}$

The equivalence between binary triplets and octal numbers is given in Table 69.3.

Table No. 69.3			
Binary	Octal	Binary	Octal
000	0	1010	12
001	1	1011	13
010	2	1100	14
011	3	1101	15
100	4	1110	16
101	5	1111	17
110	6	10000	20
111	7	10001	21
1000	10	10010	22
1001	11	10011	23

69.23. Octal to Binary Conversion

The procedure for this conversion is just the opposite of that given in Art 69.22. Here, each digit of the given octal number is converted into its equivalent binary triplet. For example, to change 75_{8} into its binary equivalent, proceed as under:

7	5		
\downarrow	\downarrow		
111	101	\therefore	$75_{8}=111101_{2}$

Similarly, 74.562_{8} can be converted into binary equivalent as under:

7	4	5	6	2		
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		
111	100	101	110	010	\therefore	$74.562_{8}=111100.101110010_{2}$

Incidentally, it may be noted that number of digits in octal numbers is one-third of that in equivalent binary numbers. In the present case, it is five versus fifteen.

69.24. Usefulness of Octal Number System

We have already discussed the octal number system and conversion from the binary and decimal numbers to octal and vice versa. The ease with which conversions can be made between octal and binary makes the octal system attractive as a "shorthand" means of expressing large binary numbers, In computer work, binary number with up to 64 bits are not uncommon. These binary numbers, as we shall see, do not always represent a numerical quantity but are often some type of code that conveys non numerical information. In computers, binary numbers might represent :

1. actual numerical data
2. numbers corresponding to a location called (address) in memory,
3. an instruction code
4. a code representing alphabetic and other non numerical characters,
5. group of bits representing the status of devices internal or external to the computer

When dealing with a large quantity of binary numbers of many bits, it is convenient and more efficient for us to write the numbers in octal rather than binary. However keep in mind that the digital circuits and systems work strictly in binary. We use octal numbers only as a convenience for the operators of the system.

69.25. Hexadec imal Number System

The characteristics of this system are as under :

1. it has a base of 16 . Hence, it uses sixteen distinct counting digits 0 through 9 and A through F as detailed below :
$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$
2. place value (or weight) for each digit is in ascending powers of 16 for integers and descending powers of 16 for fractions.
The chief use of this system is in connection with byte-organised machines. It is used for specifying addresses of different binary numbers stored in computer memory.

69.26. How to Count Beyond F in Hex Number System ?

As usual, we resort to 2-digit combinations. After reaching F, we take the second digit followed by the first digit, then second followed by second, then second followed by third and so on. The first few 'hex' numbers and their decimal equivalents are given in Table 69.4.

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
0	0	B	11	16	22
1	1	C	12	17	23
2	2	D	13	18	24
3	3	E	14	19	25
4	4	F	15	1 A	26
5	5	10	16	1 B	27
6	6	11	17	1 C	28
7	7	12	18	1 D	29
8	8	13	19	1 E	30
9	9	14	20	1 F	31
A	10	15	21	20	32
				21	33

69.27. Binary to Hexadecimal Conversion

The simple method is to split the given binary number into 4-bit groups (supplying 0s from our own side if necessary) and then give each group its 'hex' value as found from Table 69.5.

Table No. $\mathbf{6 9 . 5}$					
Binary	Hex.	Binary	Hex.	Binary	Hex.
0000	0	0110	6	1100	C
0001	1	0111	7	1101	D
0010	2	1000	8	1110	E
0011	3	1001	9	1111	F
0100	4	1010	A	10000	10
0101	5	1011	B	10001	11

Let us see how we would convert 10001100_{2} into its hexadecimal equivalent number. We will first split the given binary number into 4-bit groups and then give each group its proper value from Table 69.5.

1000	1100		
\downarrow	\downarrow		
8	C	\therefore	$10001100_{2}=8 C_{16}$

Let us now consider 1011010111_{2}. Following the above procedure, we have

0010	1101	0111		
\downarrow	\downarrow	\downarrow		
2	D	7	\therefore	$1011010111_{2}=2 \mathrm{D} 7_{16}$

It is seen that two 0 s have been added to complete the 4-bit groups.

69.28. Hexadecimal to Binary Conversion

Here, the procedure is just the reverse of that given in Art. 69.27. Each hexadecimal digit is converted into its equivalent 4-bit binary.

Suppose, we want to convert $23 \mathrm{~A}_{16}$ into its binary equivalent. It can be done as given below:

2	3	A		
\downarrow	\downarrow	\downarrow		
0010	0011	1010	\therefore	$23 \mathrm{~A}_{16}=001000111010_{2}$

Incidentally, hex numbers contain one-fourth the number of bits contained in the equivalent binary number. Optionally, we could drop off the two 0 s in front of the binary equivalent.

69.29. Decimal to Hexadecimal Conversion

Two methods are available for such a conversion. One is to go from decimal to binary and then to hexadecimal. The other method called hex dabble method is similar to the double-dabble (or divide-by-two) method of Art 69.7 except that we use 16 (instead of 2) for successive divisions. As an example let us convert decimal 1983 into hexadecimal by consulting Table No. 69.4 for remainders.

$$
\text { Hence, } 1983_{10}=7 \mathrm{BF}_{16} \quad \begin{array}{rlll}
1983 \div 16 & =123+15 & \rightarrow & \mathrm{~F} \\
123 \div 16 & =7+11 & \rightarrow & \mathrm{~B} \\
7 \div 16 & =0+7 & \rightarrow & 7
\end{array}
$$

69.30. Hexadecimal to Decimal Conversion

Two methods are available for such a conversion. One is to convert from hexadecimal to binary and then to decimal. The other direct method is as follows :

Instead of using powers of 2 , use power of 16 for the weights. Then, sum up the products of hexadecimal digits and their weights to get the decimal equivalent. As an example, let us convert F6D9 to decimal.

$$
\begin{aligned}
\text { F6D9 } & =\mathrm{F}\left(16^{3}\right)+6\left(16^{2}\right)+\mathrm{D}\left(16^{1}\right)+9\left(16^{0}\right)=15 \times 16^{3}+6 \times 16^{2}+13 \times 16^{1}+9 \times 16^{0} \\
& =61,440+1536+208+9=63,193_{10}
\end{aligned}
$$

Example 69.17. Find the binary, octal and hexadecimal equivalents of the following decimal numbers (i) 32 (ii) 256 (iii) 51.
(Digital Computations, Punjab Univ. May 1990)
Solution. (i) Decimal number 32
As seen from Art : $10-7 \quad 32 \quad 16 \quad 8 \quad 4 \quad 2 \quad 1$ $1 \quad \emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad \therefore 32_{10}=100000_{2}$
$\begin{array}{ccccc}\text { For octal conversion : } & 100 & 000 \\ \downarrow & \downarrow\end{array} \quad \therefore \quad 32_{10}=40_{8}$
$4 \quad 0$

Number Systems and Codes

2545
For hexadecimal conversion

0010	0000		
\downarrow	\downarrow	\therefore	$32_{10}=20_{16}$
2	0		

As will be seen, the binary number has been divided into two 4-bit groups for which purpose two 0 s have been added to the left.
(ii) In the same way, it can be found that $256_{10}=100000000_{8}=100_{16}$
(iii) Also $51_{10}=110011_{2}=63_{8}=33_{16}$

Example 69.18. Convert the following numbers to decimal
(i) $(11010)_{2}$
(ii) $(A B 60)_{16}$
(iii) $(777)_{8}$
(Digital Computations, Punjab Univ. 1992)
Solution. (i) For binary to decimal conversion, we will follow the procedure given in Art. 69.4.

$$
\therefore \quad 11010_{2}=16+8+2=26_{10} \quad \begin{array}{lllll}
16 & 8 & A & 2 & 1 \\
16 & 8 & A & 2 & 1
\end{array}
$$

(ii) Following the procedure given in Art. 69.30, we have,

$$
\begin{aligned}
\mathrm{AB} 60_{16} & =\mathrm{A}\left(16^{3}\right)+\mathrm{B}\left(16^{2}\right)+6\left(16^{1}\right)+0\left(16^{0}\right)=10 \times 16^{3}+11 \times 16^{2}+6 \times 16^{1}+0 \times 16^{0} \\
& =43,872_{10}
\end{aligned}
$$

(iii) As per the procedure given in Art. 69.20, $777_{8}=7\left(8^{2}\right)+7\left(8^{1}\right)+7\left(8^{0}\right)=511_{10}$.

Example 69.19. A computer is transmitting the following groups of bytes (each consisting of 8 -bits) to some output device. Give the equivalent octal and hexadecimal listings.

1000	1100	0011	1010
0010	1110	1001	0101
0101	1111	1011	0110
0111	1011	0101	1011

Solution.

Binary		Octal			Hexadecimal	
1000	1100	10	001	100	1000	1100
		2	1	4	8	C
0010	1110	00	101	110	0010	1110
		0	5	6	2	E
0101	1111	01	011	111	0101	1111
0111		1	3	7	5	F
		01	111	011	0111	1011
0011	1010	1	7	3	7	B
		00	111	010	0011	1010
1001	0101	0	7	2	3	A
		10	010	101	1001	0101
1011	0110	2	2	5	9	5
		10	110	110	1011	0110
0101	1011	2	6	6	B	6
		01	011	011	0101	1011
	1	3	3	5	B	

Hence, the groups of given memory bytes when expressed in different number systems become as under :

Binary	Octal	Hexadecimal
10001100	214	8 C
00101110	056	2 E
0101111	137	5 F
01111011	173	7 B
00111010	072	3 A
10010101	225	95
10110110	266	B6
01011011	133	5 B

It is clear from above that so far as the computer operator (or programmer) is concerned, it is much easier to handle this data when expressed in octal or hexadecimal system than in the binary system. For example, it is much easier and less error-prone to write the hexadecimal 8C than the binary 10001100 or 6AF than 011010101111 . Of course, when the need arises, the operator can easily convert from octal or hexadecimal to binary.

69.31. Digital Coding

In digital logic circuits, each number or piece of information is defined by an equivalent combination of binary digits. A complete group of these combinations which represents numbers, letters or symbols is called a digital code.

Codes have been used for security reasons so that others may not be able to read the message even if it is intercepted. In modern digital equipment, codes are used to represent and process numerical information. The choice of a code depends on the function or purpose it has to serve. Some codes are suitable where arithmetic operations are performed whereas others have high efficiency i.e. they give more information using fewer bits.

In certain applications, use of one code or the other simplifies and reduces the circuitry required to process the information. By limiting the switching circuitry, reliability of the digital system is increased. Of continuing importance are other codes which allow for error detection or correction. These codes enable the computers to determine whether the information that was coded and transmitted is received correctly and, if there is an error, to correct it. Since coding itself is a detailed subject, only few of the more familiar codes will be discussed.

69.32. Binary Coded Decimal (BCD) Code

It is a binary code in which each decimal digit is represented by a group of four bits. Since the right-to-left weighting of the 4 -bit positions is $8-4-2-1$, it is also called an 8421 code. It is a weighted numerical code. As said above, here each decimal digit from 0 through 9 requires a 4-bit binary-coded number. For example, the decimal number 35 in $B C D$ code is 0101 . The coding of ten decimal digits is given in Table No. 69.6. Lest you think that $B C D$ code is the same thing as binary numbers, consider the following.

In the binary system, ten is represented by 1010 but in $B C D$ code, it is 00010000 . Seventeen in binary is 10001 but in $B C D$ code, it is 0001 0111. See the difference! Actually, the confu-

Table No. 69.6	
Decimal	$\boldsymbol{B C D}$
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

sion is due to the fact that the first nine numbers in $B C D$ and binary are exactly similar (Table No. 69.6). After that, they become quite different (Table No. 69.7).

It should be realized that with four-bits, sixteen num bers $\left(2^{4}\right)$ can be represented although in the $B C D$ code only ten of these are used. The following six combinations are invalid in the $B C D$ code : $1010,1011,1100,1101,1110$ and 1111.

The main advantage of $B C D$ code is that it can be read and recognised easily although special adders are needed for arithmetic operations.

Any decimal number can be expressed in $B C D$ code by replacing each decimal digit by the appropriate 4-bit combination. Conversely, a $B C D$ number can be easily converted into a decimal number by dividing the coded number into groups of four bits (starting with $L S B$) and then writing down the decimal digit represented by each four-bit group.

Example 69.20. Write the decimal number 369 in BCD code.
Solution. For writing this 3-digit number in $B C D$, the value of each digit must be replaced by its 4-bit equivalent from the $B C D$ code. From Table No. 69.6, we get

$$
\begin{array}{ll}
3=0011, & 6=0110, \\
\therefore \quad 369_{10}=001101101001_{B C D} & 9=1001 \\
&
\end{array}
$$

Example 69.21. Typically digital thermometers use BCD to drive their digital displays. How many $B C D$ bits are required to drive a 3-digit thermometer display? What 12 bits are sent to display for a temperature of 157 degrees.

Solution. There are $12 B C D$ bits required to drive a 3-digit thermometer display because each $B C D$ digit is represented by a group of four bits.

In order to display a temperature of 157 degrees, we know that we have to send 12 -bits. These bits can be determined by replacing each decimal digit by its equivalent four bit binary. Thus,

\[

\]

Example 69.22. Find the equivalent decimal value for the BCD code number 0001010001110101. (Applied Electronics, A.M.I.E.E., London)

Solution. Starting from the $L S B$, the given number can be divided into groups of four bits as 000101000111 0101. As seen from Table No. 69.6,

$$
0001=1
$$

$0111=7$
Hence,

$$
0100=4,
$$

$$
\text { and } 0101=5
$$

$$
0001010001110101_{B C D}=1475_{10}
$$

Example 69.23. (a) Convert the hexadecimal number F8E6 to the corresponding decimal number.
(b) Convert the decimal number 2479 to the corresponding hexadecimal number.
(c) Encode the following decimal numbers into 8421 BCD numbers (i) 59 (ii) 39 and (iii) 584.
(d) Decode the following 8421 BCD numbers (i) 0101 (ii) 0111.
(Digital Computations, Punjab Univ. 1990)

Solution. (a)

$$
\begin{aligned}
\text { F8E6 } & =\mathrm{F}\left(16^{3}\right)+8\left(16^{2}\right)+\mathrm{E}\left(16^{1}\right)+6\left(16^{0}\right) \\
& =15 \times 16^{3}+8 \times 16^{2}+14 \times 16^{1}+6 \times 16^{0}=\mathbf{6 3 , 7 1 8 1 0}
\end{aligned}
$$

(b) We would use the hex-dabble method explained in Art 69.29

$2479 \div 16$	$=154$	+	15		\rightarrow
$154 \div 16$	$=9$	+	10		\rightarrow
A					
$\therefore \quad 2479_{10}=9 \mathrm{AF}_{16} 9 \div 16$	$=0$	+	9	\rightarrow	9

(c) As seen from Table No. 69.6

69.33. Octal Coding

It involves grouping the bits in three's. For example, $\left(\begin{array}{llll}1756\end{array}\right)_{8}=\left(\begin{array}{lll}001 & 111 & 101 \\ 110\end{array}\right)_{2}=$ (001111101110$)_{2}$. Similarly, the 24-bit number stored in the computer memory such as 101010011 100010111000110 can be read in the octal as

101	010	011	100	010	111	000	110
\downarrow							
5	2	3	4	2	7	0	6

Apart from ease of recognition and conversion to binary, one important feature of the octal code is that its numbers are straight binary numbers which can be manipulated mathematically. For example, octal 25 expressed in octal code is 010101 which can be read as binary 010101

$$
\begin{aligned}
(25)_{8} & =2 \times 8^{1}+5 \times 8^{0}(21)_{10} \\
(010101)_{2} & =0 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=(21)_{10}
\end{aligned}
$$

You might recall that in $B C D$ code, the resulting number is always a 4 -bit group and a special adder is needed to convert it into decimal. In octal coding, 3-bit grouping is used but the resulting binary number can be considered a single number in natural binary form.

69.34. Hexadecimal Coding

The advantage of this coding is that four bits are expressed by a single character. However, the disadvantage is that new symbols have to be used to represent the values from 1010 to 1111 binary. As seen from Table No. 69.5, the binary number 10100101 is hex number A5. Similarly, hexadecimal number $C 7$ is $(11000111)_{2}$. To prove that the resulting binary number is the same as the hexadecimal value, consider the following example:

$$
\begin{aligned}
& (3 D)_{16}=3 \times 16^{1}+D \times 16^{0}=3 \times 16+13 \times 1=(61)_{10} \\
& (3 D)_{16}=(00111101)_{2}=1 \times 2^{5}+1 \times 2^{4}+1 \times \\
& 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=(61)_{10}
\end{aligned}
$$

69.35. Excess-3 Code

It is an unweighted code and is a modified form of $B C D$. It is widely used to represent numerical data in digital equip-

Table No. 69.8				
Decimal	XS-3			
3				0110
26			0101	1001
629		1001	0101	1100
3274	0110	0101	1010	0111

69.36. Gray Code

It is an unweighted code for numbers 0 through 9 and is largely used in mechanical switching systems. As seen from Table No. 69.9, only a single bit changes between each successive word. Because of this, the amount of switching is minimized and the reliability of the switching system is improved.

69.37. Excess-3 Gray Code

It is shown in Table No. 69.9 and is the original gray code shifted by three binary combinations. It exhibits the same properties as the Gray Code.

Example 69.24. Express the number 43_{10} in XS 3 code.

Solution. Let us first represent each decimal digit by its 4-bit XS-3 code

$$
4=0111, \quad 3=0110 \quad \therefore \quad 43_{10}=01110110{ }_{\mathrm{xS}-3}
$$

Example 69.25. The number 01101001 is expressed in $\mathrm{XS}-3$ code. What is its decimal value ?
Solution. Starting from least significant bit ($L S B$), the given number is first separated into groups of four and then each group is replaced by its equivalent value i.e. actual value decreased by 3 .

$$
0110=6-3=3 ; 1001=9-3=6
$$

$\therefore \quad 01101001_{X S-3}=(36)_{10}$

69.38. Other Codes

Some of the other codes which are presently popular are given below:
(a) 4-bit codes

The different 4-bit weighted $B C D$ codes for decimal numbers 0 through 9 in use are :5421, $2 * 421,7421,7421$, etc. and are tabulated below:

Table No. $\mathbf{6 9 . 1 0}$				
Decimal	5421	$2 * 421$	7421	$74 \overline{21}$
0	0000	0000	0000	0000
1	0001	0001	0001	0111
2	0010	0010	0010	0110
3	0011	0011	0011	0101
4	0100	0100	0100	0100
5	1000	1011	0101	1010
6	1001	1100	0110	1001
7	1010	1101	1000	1000
8	1011	1110	1001	1111
9	1100	1111	1010	1110

(b) 5-bit Codes
(i) 2-out-of-5 codes is an unweighted $B C D$ code and allows easy error detection. It has been used in communications and telephone operation.
(ii) 51111 Code is a weighted $B C D$ code and is much easier to operate with electronic circuitry.
(iii) Shift-counter (Johnson) Code is an unweighted BCD code and because of its pattern is easily operated on with electronic circuitry.
(c) 7-bit Biquinary Code- it uses a group of seven bits to represent decimal numbers and has code features which provide easy error detection and ease of operation.
(d) Ring-counter Code- it is also called 10-bit code because it uses a group of 10 bits to represent a decimal number. Though it requires as many as 10 positions, the ease of error detection with the code and of operating electronic circuits to implement the code make it quite attractive.
(e) Alphanumeric Code- In addition to numerical data, a computer must be able to handle non-numerical information used in input/output (I/O) processing. In other words, a computer should recognize codes that represent letters of the alphabet, punctuation marks, and other special characters as well as numbers. These codes are called alphanumeric codes. A complete alphanumeric code would include the 26 lowercase letters, 26 uppercase letters, 10 numeric digits, 7 punctuation marks, and anywhere from 20 to 40 other characters, such as,,$+- /$, \#, \$, ", and so on. We can say that an alphanumeric code represents all of the various characters and functions that are found on a computer keyboard. The most widely used alphanumeric code is the American standard code for Information Interchange (ASCII). Another similarly I/O-oriented code is EBCDIC (Extended Binary Coded Decimal Interchange Code).

69.39. ASCII Code

The ASCII code (Pronounced "askee) is a seven-bit code, and so it has $2^{7}(=128)$ possible code groups. This is more than enough to represent all of the standard keyboard characters as well as control functions such as the (RETURN) and LINEFEED) functions. Table No. 69.11 shows a partial listing of the ASCII code. In addition to the binary code group for each character, the table gives the octal and hexadecimal equivalents. The complete list of the ASCII code is given in the Appendix.

Table No. 69.11							
Character	7-Bit ASCII	Octal	Hex	Character	7-Bit ASCII	Octal	Hex
A	1000001	101	41	Y	1011001	131	59
B	1000010	102	42	Z	1011010	132	5A
C	1000011	103	43	0	0110000	060	30
D	1000100	104	44	1	0110001	061	31
E	1000101	105	45	2	0110010	062	32
F	1000110	106	46	3	0110011	063	33
G	1000111	107	47	4	0110100	064	34
H	1001000	110	48	5	0110101	065	35
I	1001001	111	49	6	0110110	066	36
J	1001010	112	4A	7	0110111	067	37
K	1001011	113	4B	8	0111000	070	38
L	1001100	114	4C	9	0111001	071	39
M	1001101	115	4D	blank	0100000	040	20
N	1001110	116	4E	.	0101110	056	2 E
O	1001111	117	4F	(0101000	050	28
P	1010000	120	50	+	0101011	053	2B
Q	1010001	121	51	\$	0100100	044	24
R	1010010	122	52	*	0101010	052	2 A

S	1010011	123	53	$)$	0101001	051	29
T	1010100	124	54	-	0101101	055	2 D
U	1010101	125	55	$/$	0101111	057	2 F
V	1010110	126	56	,	0101100	054	2 C
W	1010111	127	57	$=$	0111101	075	3 D
X	1011000	130	58	<RETURN	0001101	015	0 D
				<LINEFEED>	0001010	012	0 A

Example. 69.26. The following is a message encoded in ASCII code. What is the message ? $10010001000101 \quad 1001100 \quad 10011001001111$

Solution. Convert each seven-bit code to its equivalent hexadecimal number. The resulting values are:

$$
48 \quad 45 \quad 4 \mathrm{C} \quad 4 \mathrm{C} \quad 4 \mathrm{~F}
$$

Now locate these hexadecimal values in Table No. 19.11 and determine the character represented by each. The results are:
"HE L L O".

Tutorial Problems No. 69.1

1. Find the decimal equivalents of the following binary numbers:
(a) 101
(b) 1001
(c) 10.011
[(a) 510 (b) 910 (c) 3.037510]
2. What are the decimal equivalents of the following binary numbers?
(a) 1111
(b) 10100
(c) 11011001
(d) 10011001
((a) 1510 (b) 2010 (c) 10910 (d) 15310]
3. Express the following binary numbers into their equivalent decimal numbers:
(a) 11.01
(b) 101.11
(c) $110.01 \quad[(a) 3.2510$ (b) 5.7510
(c) 6.2510$]$
4. Convert the following decimal numbers into their binary equivalents:
(a) 25
(b) 125
(c) 0.85
[(a) 110012 (b) 11111012 (c) 0.1101102$]$
5. What are the binary equivalents of the following decimal numbers ?
(a) 27
(b) 92
(c) 64
[(a) 110112 (b) 10111002 (c) 10000002]
6. Perform the following binary additions:
(a) $1011+1001$
(b) $1011+110$
(c) $101101+1101101$
(d) $1011.01+1001.11$
(e) $0.0011+0.1110$
(f) $1111+111+1111$
[(a) 101002 (b) 100012 (c) 11000112 (d) 101012 (e) 1.00012 (f) 11010012]
7. Add the following binary numbers 1011 and 1001
[10100](Digital Computations, Punjab Univ. Dec.)
8. Perform the following binary subtractions :
(a) 1101-1011
(b) 111-101
(c) 1000-11
(d) 101011-10010 [(a) 00102 (b) 0102 (c) 010012 (d) 0110012]
9. Carry out the following subtractions using binary number system:
(a) $64_{10}-32_{10}$
(b) $128_{10}-64_{10}$
(c) $93.5_{10}-42.75_{10}$
(d) $7_{10}-11_{10}$
[(a) 1000002 (b) 10000002 (c) 110010.112 (d) Ä1002]
10. Subtract the following binary numbers: $100011-111010$
[-10111](Digital Computations, Punjab Univ., Dec. 1984)
11. Find the 1 's complements of the following binary numbers:
(a) 01101
(b) 1101
(c) 1001
(d) 1010
[(a) 100102 (b) 00102 (c) 01102 (d) 01012]
12. What are 2 's complements of the following binary numbers ?
(a) 1011
(b) 11011
(c) 11011.01
(d) 10011.11
[(a) 01012 (b) 001012 (c) 00100.112 (d) 01100.012]
13. Use the 1's and 2's complements of the following binary subtractions :
(i) 1111 - 1011
(ii) 110011 - 100101
(ii) $100011-111010$
[(i) 0100 (ii) 1110 (iii) -10111] (Digital Computations, Punjab Univ. Dec.)
14. Multiply the following binary numbers:
(a) 1100×101
(b) 10101×101
(c) 10111×101
(d) 1110×111
[(a) 1111002 (b) 11010012 (c) 11100112 (d) 11000102]
15. Perform the following binary divisions :
(a) $11011 \div 100$
(b) $1110011 \div 101$
(c) $1100010 \div 111$
[(a) 110.112 (b) 101112 (c) 11102]
16. Convert the following binary numbers into their octal equivalents :
(a) 1001
(b) 11011
(c) 10101111
(d) 1101.0110111
(e) 11111011110101
[(a) 118 (b) 338 (c) 258 (d) 15.3348 (e) 373658$]$
17. Convert the undergiven octal numbers into their binary equivalents:
(a) 13
(b) 11
(c) 713
(d) 3674
[(a) 0112 (b) 10012 (c) 1110010112 (d) 11110111 1002]
18. Convert the following numbers :
(a) 357_{8} to decimal
(b) 6421_{8} to decimal
(c) 1359_{10} to octal
(d) 7777_{10} to octal
[(a) 23910 (b) 334510 (c) 25178 (d) 171418]
19. Convert the following real numbers to the binary numbers:
(i) 12.0
(ii) 25.0
(iii) 0.125
[(i) 1100 (ii) 11001 (iii) 0.001] (Digital Computations, Punjab Univ.)
20. Convert the following binary numbers into their equivalent hexadecimal numbers:
(a) 11010111
(b) 10100110
(c) 10011110
(d) 11001111
[(a) D716 (b) A616 (c) 9E16 (d) CF16]
21. Convert the following decimal numbers to binary numbers by converting them to octal, then to binary.
(i) 850
(ii) 7563
[(a) 1101010010 (ii) 1110110001011$]$ (Digital Computations, Punjab Univ. Dec.)
22. Convert the following numbers to decimal
(i) $(11010)_{2}$
(ii) $(777)_{8}$
[(i) 26 (ii) 511] (Digital Computations, Punjab Univ. June)
23. What are the binary equivalents of the following hexadecimal numbers ?
(a) 9 F
(b) A2
(c) ED
(d) 27
[(a) 100111112 (b) 101000102 (c) 111011012 (d) 001101112]
24. Convert the decimal number 4397 and the octal number 2735 to hexadecimal numbers.
[(i) 5DD (ii) 12D] (Power \& Digital Electronics, Punjab Univ. Dec. 1984)
25. Convert the following decimal numbers into $B C D$ code
(a) 18
(ii) 92
(iii) 321 and
(iv) 4721
[(i) 00011000 (ii) 10010010 (iii) 001100100001 (iv) 0100011100100001]
26. Find the decimal values for the BCD-coded numbers
(i) 01101000
(ii) 011101001001 and
(iii) 1000010001110110]
[(i) 68 (ii) 749 (iii) 8476$]$
27. Convert the following hexadecimal numbers into binary numbers:
(i) E 5
(ii) B4D
(iii) 7AF4
(Digital Computations, Punjab Univ. May)
[(i) 11100101 (ii) 101101001101 (iii) 0111101011110100]
28. Encode the following decimal numbers into 8421 numbers.
(i) 45
(ii) 732
(iii) 94,685
(Digital Computations, Punjab Univ. May)
[(i) 01000101 (ii) 11100110010 (iii) 0010100011010000101]
29. Decode the following $8421 B C D$ numbers :
(i) 001110000111 (ii) 100101100111100001110011
[(i) 387 (ii) 967,873] (Digital Computations, Punjab Univ. Dec.)
30. Decode the following $8421 B C D$ numbers :
(i) 0011
(ii) 0111
(iii) 0101
(iv) 0110
(v) 1000
[(i) 3 (ii) 7 (iii) 5 (iv) 6 (v) 8] (Di
31. Convert the following binary numbers into octal code :
(i) 100110111 and
(ii) 101010001
[(i) 4678
(ii) 5218]
32. Convert the following decimal numbers into XS-3 code:
(i) 35
(ii) 159
(iii) 340
[(i) 01101000 (ii) 010010001100 (iii) 011001110011$]$
33. What is the decimal value of the following numbers expressed in Excess- 3 code ?
(i) 10010110 and
(ii) 100101011100
[(i) 63 (ii) 629]

OBJECTIVE TESTS - 69

1. The digital systems usually operate on \qquad ..system.
(a) binary
(b) decimal
(c) octal
(d) hexadecimal.
2. The binary system uses powers offor positional values.
(a) 2
(b) 10
(c) 8
(d) 16
3. After counting $0,1,10,11$, the next binary number is
(a) 12
(b) 100
(c) 101
(d) 110 .
4. The number 1000_{2} is equivalent to decimal number
(a) one thousand
(b) eight
(c) four
(d) sixteen.
5. In binary numbers, shifting the binary point one place to the right.
(a) multiplies by 2
(b) divides by 2
(c) decreases by 10
(d) increases by 10.
6. The binary addition $1+1+1$ gives
(a) 111
(b) 10
(c) 110
(d) 11
7. The cumulative addition of the four binary bits $(1+1+1+1)$ gives
(a) 1111
(b) 111
(c) 100
(d) 1001
8. The result of binary subtraction $(100-011)$ is
(a) -111
(b) 111
(c) 011
(d) 001 .
9. The 2 's complement of 1000_{2} is
(a) 0111
(b) 0101
(c) 1000
(d) 0001
10. The chief reason why digital computers use complemental subtraction is that it
(a) simplifies their circuitry
(b) is a very simple process
(c) can handle negative numbers easily
(d) avoids direct subtraction.
11. The result of binary multiplication $111_{2} \times 10_{2}$ is
(a) 1101
(b) 0110
(c) 1001
(d) 1110
12. The binary division $11000_{2} \div 100_{2}$ gives
(a) 110
(b) 1100
(c) 11
(d) 101
13. The number 12_{8} is equivalent to decimal
(a) 12
(b) 20
(c) 10
(d) 4
14. The number 100101_{2} is equivalent to octal
(a) 54
(b) 45
(c) 37
(d) 25.
15. The number 17_{8} is equivalent to binary
(a) 111
(b) 1110
(c) 10000
(d) 1111.
16. Which of the following is NOT an octal number?
(a) 19
(b) 77
(c) 15
(d) 101
17. Hexadecimal number system is used as a shorthand language for representingnumbers.
(a) decimal
(b) binary
(c) octal
(d) large
18. The binary equivalent of A_{16} is
(a) 1010
(b) 1011
(c) 1000
(d) 1110 .
19. $B C D$ code is
(a) non-weighted
(b) the same thing as binary numbers
(c) a binary code
(d) an alphanumeric code.
20. Which of the following 4-bit combinations is/ are invalid in the $B C D$ code ?
(a) 1010
(b) 0010
(c) 0101
(d) 1000 .
21. Octal coding involves grouping the bits in
(a) 5 's
(b) 7's
(c) 4 's
(d) 3's.
22. In Excess-3 code each coded number isthan in BCD code
(a) four larger
(b) three smaller
(c) three larger
(d) much larger.
23. Which numbering system uses numbers and
letters as symbols ?
(a) decimal
(b) binary
(c) octal
(d) hexadecimal
24. To convert a whole decimal number into a hexadecimal equivalent, one should divide the decimal value by......
(a) 2
(b) 8
(c) 10
(d) 16 .

ANSWERS

1. (a) 2. (a)
2. (b)
3. (b)
4. (a)
5. (d)
6. (b)
7. (d)
8. (c)
9. (a)
10. (d) 12. (a)
11. (c)
12. (b)
13. (d)
14. (a)
15. (a)
16. (a)
17. (c)
18. (a)
19. (d)
20. (c)
21. (d)
22. (a)

C H A P T E R

70

Leaming Objectives

> Definition of a Logic Gate
> Positive and Negative Logic
> The OR Gate
$>$ Equivalent Relay Circuit of an OR Gate
> Diode OR Gate
> Transistor OR Gate
$>$ OR Gate Symbolizes Logic Addition
$>$ Three Input OR Gate
$>$ Exclusive OR Gate
> The AND Gate
$>$ Equivalent Relay Circuit of an AND Gate
$>$ Diode AND Gate
$>$ Transistor AND Circ uit
$>$ AND Gate Symbolizes Logic Multiplication
$>$ The NOTGate
> The NOT Operation
> Bubbled Gates
$>$ The NOR Gate
> The NAND Gate
> The XNOR Gate
$>$ Logic Gate at Glance
$>$ Digital Signals Applied to Logic Gates
> Sequential Logic Circuits
$>$ Adders and Subtractors
$>$ Half Adder
> Full Adder
> Parallel Binary Adder
$>$ Half Subtractor
$>$ Full Subtractor

LOGIC GATES

A logic gate is a circuit that has one or more input signals but only one output signal. All logic gates can be analysed by constructing a truth table

70.1. Definition of a Logic Gate

A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs. The output signal appears only for certain combinations of input signals. Logic gates are the basic building blocks from which most of the digital systems are built up. They implement the hardware logic function based on the logical algebra developed by George Boole which is called Boolean algebra in his honour. A unique characteristic of the Boolean algebra is that variables used in it can assume only one of the two values i.e. either 0 or 1 . Hence, every variable is either a 0 or a 1.

These gates are available today in the form of various IC families. The most popular families are: transistor-transistor logic (TTL), emitter-coupled logic (ECL), metal-oxide-semiconductor (MOS) and complementary metal-oxide-semiconductor (CMOS).

In this chapter, we will consider the $O R, A N D, N O T, N O R, N A N D$, exclusive $O R(X O R)$ and exclusive $N O R(X N O R)$ gates along with their truth tables.

70.2. Positive and Negative Logic

In computing systems, the number symbols 0 and 1 represent two possible states of a circuit or device. It makes no difference if these two states are referred to as $O N$ and $O F F, C L O S E D$ and $O P E N$, HIGH and LOW PLUS and MINUS or TRUE and FALSE depending on the circumstances. Main point is that they must be symbolized by two opposite conditions.

In positive logic, a 1 represents

1. an $O N$ circuit
2. a CLOSED switch
3. a PLUS sign
4. a TRUE statement
5. a HIGH voltage

Consequently, a 0 represents

1. an $O F F$ circuit 2. an $O P E N$ switch 3. a $L O W$ voltage 4. a MINUS sign 5. a FALSE statement. In negative logic, just opposite conditions prevail.
Suppose, a digital system has two voltage levels of 0 V and 5 V . If we say that symbol 1 stands for 5 V and symbol 0 for 0 V , then we have positive logic system. If, on other hand, we decide that a 1 should represent 0 V and 0 should represent 5 V , then we will get negative logic system.

Main point is that in positive logic, the more positive of the two voltage levels represents the 1 while in negative logic, the more negative voltage represents the 1 . Moreover, it is not essential that a 0 has to be represented by 0 V although in some cases the two may coincide. Suppose, in a circuit, the two voltage levels are 2 V and 10 V . Then for positive logic, the 1 represents 10 V and the 0 represents 2 V (i.e. lesser of the two voltages). If the voltage levels are -2 V and -8 V , then, in positive logic, the 1 represents -2 V and the 0 represents -8 V (i.e. lesser of the two voltages).

Unless stated otherwise, we will be using only positive logic in this chapter.

70.3. The OR Gate

The electronic symbol for a two-input $O R$ gate is shown in Fig. 70.1 (a) and its equivalent switching circuit in Fig. 70.1 (b). The two inputs have been marked as A and B and the output as X. It is worth reminding the reader that as per Boolean algebra, the three variables A, B and X can have only one of the two values i.e. either 0 or 1 .

Logic Operation
The $O R$ gate has an output of 1 when either A or B or both are 1 .

Fig. 70.1

In other words, it is an any-or-all gate because an output occurs when any or all the inputs are present.

As seen from Fig. 70.1 (b), the lamp will light up (logic 1) when either switch A or B or both are closed.

Obviously, the output would be 0 if and only if both its inputs are 0. In terms of the switching conditions, it means that lamp would be OFF (logic 0) only when both switches A and B are $O F F$.

The $O R$ gate represents the Boolean equation $A+B=X$
The meaning of this equation is that X is true when either A is true or B is true or both are true. Alternatively, it means that output X is 1 when either A or B or both are 1 .

Table 70.1

A	B	X
0	0	1
0	1	0
1	0	0
1	1	1

Fig. 70.2

The above logic operation of the $O R$ gate can be summarised with the help of the truth table given in Fig. 70.2. A truth table may be defined as a table which gives the output state for all possible input combinations. The OR Table 70.1 gives outputs for all possible $A B$ inputs of $00,01,10$ and 11.

We may interpret the truth table as follows:
When both inputs are 0 (switches are $O P E N$), output X is 0 (lamp is $O F F$). When A is in logic state 0 (switch A is $O P E N$) but B is in logic state 1 (switch B is CLOSED), the output X is logic state 1 (lamp is $O N$). Lamp would be also $O N$ when A is CLOSED and B is $O P E N$. Of course, lamp would be $O N$ when both switched are CLOSED. It is so because an $O R$ gate is equivalent to a parallel circuit in its logic function.

Another point worth remembering is that the above $O R$ gate is called inclusive $O R$ gate because it includes the case when both inputs are true.

70.4. Equivalent Relay Circuit of an OR Gate

In Fig. 70.3, the relay contacts have been wired in parallel. When +5 V is applied to A, relay K_{1} is energised and pulls M down thereby closing the contact. Hence, supply voltage of +5 V appears at the output X.

Similarly, when +5 V are applied to input B, K_{2} is energised and pulls N down thereby bringing X in contact with S. Of course, when both A and B are at $+5 \mathrm{~V}, X$ is at +5 V . Incidentally, when inputs at A and B are $0, X$ is also 0 .

70.5. Diode OR Gate

Fig. 70.3

Fig. 70.4. shows the diode $O R$ gate consisting of two ideal diodes D_{1} and D_{2} connected in parallel across the output X.

1. When A is at $+5 \mathrm{~V}, D_{1}$ is forward-biased and hence conducts. The circuit current flows via R dropping 5 V across it. In this way, point X achieves potential of +5 V .
2. When +5 V is applied to B, D_{2} conducts causing point X to go to +5 V .
3. When both A and B are +5 V , the drop across R is 5 V because voltages of A and B are in parallel.

Fig. 70.4

Again, point X is driven to +5 V .
4. Obviously, when there is no voltage either at A or B, output X remains 0 .

70.6. Transistor OR Gate

Fig. 70.5 illustrates a possible transistor $O R$ gate consisting of three interconnected transistors Q_{1}, Q_{2}, and Q_{3} supplied from a common supply $V_{c c}=+5$ V.

1. When +5 V is applied to A, Q_{1} is forward-biased and so it conducts. Assuming that Q_{1} is saturated, entire $V_{c c}=$ 5 V drops across R_{1} thus causing N to

Fig. 70.5 go to ground. This, in turn, cuts off Q_{3} thereby causing X to go to $V_{c c} i . e .+5 \mathrm{~V}$.
2. When +5 V is applied to B, Q_{2} conducts thereby driving N to ground i.e. 0 V . With no forward bias on its base, Q_{3} is cut-off thus driving X again to $V_{c c}$ i.e. +5 V .
3. If both inputs A and B are grounded, Q_{1} and Q_{2} are cut-off driving N to +5 V . As a result, Q_{3} becomes forward-biased and conducts fully. In that case, entire $V_{c c}$ drops across R_{2} driving M and hence X to ground.

70.7. OR Gate Symbolizes Logic Addition

According to Boolean algebra, $O R$ gate performs logical addition. Its truth table can be written as given below:

It must be clearly understood that ' + ' sign in Boolean algebra does not stand for the addition as understood in the ordinary or numerical algebra. In symbolic logic, the ' + ' sign indicates $\mathbf{O R}$ operation whose rules are given above. In logic algebra, A $+B=X$ means that if A is true $O R B$ is true, then X will be true. It does not mean here

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1
\end{aligned}
$$

$$
\text { that sum of } \boldsymbol{A} \text { and } \boldsymbol{B} \text { equals } \boldsymbol{X} \text {. The other symbols used for ' }+ \text { ' sign are } U \text { and } V . \quad 1+1=1
$$ Hence, the above equation could also be written as $A U B=X$ or $A V B=X$.

The meaning of the last three logic additions is that output is 1 when either input A or B or both are 1 . The first addition implies that output is 0 only when both inputs are 0.

The meaning of the ' + ' sign often becomes clear from the context as shown below:

$$
\begin{array}{lll}
1+1 & =2 &
\end{array}
$$

We can put the above $O R$ laws in more general terms

$$
\begin{array}{r}
A+1=1 \\
A+0=A \\
A+A=A \tag{not}
\end{array}
$$

(a)

(b)

Fig. 70.6
(i) $\mathrm{A}+\mathbf{1}=1$

As we know, A can have two values: 0 or 1 . When A is 0 , then we have $0+1=1$ as shown in Fig. 70.6 (a).

When $A=1$, then the above expression becomes : $1+1=1$ as shown in Fig. 70.6 (b), Hence, we find that irrespective of the value of A.

$$
A+1=1
$$

(a)
$\mathrm{A}+0=\mathrm{A}$

(b)

(a)

Fig. 70.7

$$
\mathrm{A}+\mathrm{A}=\mathrm{A}
$$

Fig. 70.8
(ii) $\mathrm{A}+\mathbf{0}=\mathrm{A}$

If $A=0$, then $0+0=0$ i.e. output is 0 which is correct and is shown in Fig. 70.7(a). The output is what the value of A is.

As shown in Fig. 70.7 (b), when $A=1$, output is 1 because $1+0=1$. Again, output is what the value of A is.
(iii) $\quad \mathbf{A}+\mathbf{A}=\mathbf{A}$

With A set to 0 , the output is 0 because $0+0=0$ as shown in Fig. 70.8 (a).

With A set to 1 , the output is 1 because $1+1$ $=1$ as shown in Fig. 70.8 (b). Obviously, the output in both cases is A.

70.8. Three Input OR Gate

The electronic symbol for a 3-input (fan-in of 3) inclusive OR gate is shown in Fig. 70.9. As is usual in logic algebra, the inputs A, B, C as well as the output X can have only one of the two values i.e. 0 or 1 .

Truth Table

It is shown in Table 70.2. Following points are worth noting:

1. The number of rows in the table is $2^{3}=8$ i.e. there are eight ways of combining the three inputs. In general, the number of horizontal rows is 2^{n} where n is the number of inputs.

Fig. 70.9
2. In first column A, logic values alternate between 0 and 1 every four rows twice.
3. The second input column B alternates between 0 and 1 every two rows four times.
4. The third input column C alternates between 0 and 1 every other row eight times.

The truth table symbolizes the Boolean equation $A+B+C=X$ which means that output X is 1 when either A or B or C is 1 or all are 1. Alternatively, X is true when either A or B or C is true or all are true.

vvhh

Its electronic symbol is shown in Fig. 70.10 (a) and its equivalent switching circuit in Fig. 70.10 (b).

In this gate, output is 1 if its either

Table No. 70.2

A	B	C	X
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

To put it a bit differently, this logic gate has output 0 when inputs are either all $\mathbf{0}$ or all 1.

A	B	C
0	0	0
0	1	1
1	0	1
1	1	0

Fig. 70.11

This gate works on the Boolean equation $\quad A \oplus B=X$
The circle around plus (+) sign is worth noting.
The circuit is also called an inequality comparator or detector because it produces an output only when the two inputs are different.

Explanation

The inclusive $O R$ gate exemplifies the everyday usage of the word $O R$ which stands for one or the other or both. Take the following statement:

To qualify for a competition, you might have to subscribe to a magaine OR belong to a club. Obviously, there is no bar on your doing both. But now take exclusive statement:

You can be rich OR you can be poor.
Obviously, you cannot be both at the same time.
The change-over switching circuit of Fig. 70.10 (b) simulates the exclusive $O R(X O R)$ gate. Switch positions A and B will individually light up the lamp but a combination of A and B is not possible.

The truth table for a 2-input $X O R$ gate is given in Table No.70.3. It is instructive to compare it with that for an inclusive $O R$ gate (Table 70.1).

70.10. The AND Gate

The electronic (or logic) symbol for a 2-input AND gate is shown in Fig. 70.12 (a) and its equivalent switching circuit in Fig. 70.12 (b). It is worth reminding the readers once again that the three variables A, B, C can have a value of either 0 or 1 .

Logic Operation

1. The $A N D$ gate gives an output only when all its inputs are present.
2. The $A N D$ gate has a 1 output when both A and B are 1 . Hence, this gate is an all-or-nothing gate whose output occurs only when all its inputs are present.
3. In True/False terminology, the out-

Fig. 70.12 put of an $A N D$ gate will be true only if all its inputs are true. Its output would be false if any of its inputs is false.
The $A N D$ gate works on the Boolean algebra

$$
A \times B=X \text { or } A . B=X \quad \text { or } \quad A B=X
$$

It is a logical multiplication and is different from the arithmetic multiplication. Often the sign ' x ' is replaced by a dot which itself is generally omitted as shown above. The logical meaning of the above equation is that

1. output X is 1 only when both A and B are 1 .
2. output X is true only when both A and B are true.

Table 70.4		
A	B	X
0	0	0
0	1	0
1	0	0
1	1	1

Fig. 70.13

Table 70.5

A	B	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1
		ABC $=\mathrm{X}$	

As seen from Fig. 70.12 (b), the lamp would be $O N$ when both switches A and B are closed. Even when one switch is open, the lamp would be OFF. Obviously, an $A N D$ gate is equivalent to a series switching circuit.

Truth Table Fig. 70.13 shows truth table for a 2 -input $A N D$ gate and Fig. 70.14 gives the same for a 3-input AND gate.
As seen, X is at logic 1 only when all inputs are at logic 1, not otherwise. The procedure for writing down the first three columns is the same as explained in Art. 70.8 earlier.

70.11. Equivalent Relay Circuit of an AND Gate

The $A N D$ gate can be physically realized with the help of relay circuit shown in Fig. 70.15. Here, the two relay contacts have been wired in series.

When +5 V is applied to both input circuits, relays K_{1} and K_{2} are energized thereby pulling M and N downwards which brings C in contact with the supply point S. Hence, X goes to +5 V .

It is obvious that energizing only one relay will not make X go to +5 V .

70.12. Diode AND Gate

It is shown in Fig. 70.16. Its logical operation is as under :

1. When A is at 0 V , diode D_{1} conducts and

Fig. 70.15 the supply voltage of +5 V drops across R. Consequently, point N and hence point X are driven to 0 V . Therefore, the output C is 0 .
2. Similarly, when B is at $0 \mathrm{~V}, D_{2}$ conducts thereby driving N and hence X to ground.
3. Obviously, when both A and B are at 0 V , both diodes conduct and, again, the output X is 0 .
4. There is no supply current and hence no drop across R only when both A and B are at +5 V . Only in that case, the output X goes to supply voltage of +5 V .

70.13. Transistor AND Circuit

It is shown in Fig. 70.17. When both A and B are at +5 V , the two transistors Q_{1} and Q_{2} conduct. The current so produced drops the supply voltage of +5 V across R_{1} thereby driving

Fig. 70.16 point N and hence base of Q_{3} to ground or 0 V . This cuts off Q_{3} so that X goes to supply voltage of +5 V .

Fig. 70.17

Obivously, there is an output at X only when there is an input at A and B.

If either A or B is at 0 V , then Q_{1} or Q_{2} will be cut off and no drop will take place across R_{1}. Hence, point N will go to supply voltage of +5 V . Consequently, Q_{3} will conduct and whole of supply voltage will be dropped across R_{2}. As a result, point M and hence output X will go to 0 V .

70.14. AND Gate Symbolizes Logic Multiplication

According to Boolean algebra, the $A N D$ gate performs logical multiplication on its inputs as given below:

$$
\begin{aligned}
0.0 & =0 \\
0.1 & =0 \\
1.0 & =0 \\
1.1 & =1
\end{aligned}
$$

In general, we can put the laws of Boolean multiplication in the following form:

$$
\begin{array}{rlrl}
A .1 & =A & A .0 & =0 \\
A . A & =A & -\operatorname{not} A^{2}
\end{array}
$$

The above indentities can be verified by giving values of 0 and 1 to A.

1. $\mathbf{A . 1}=\mathbf{A} \quad$ When $A=0$
then $\quad 0.1=0 \quad$-Fig. 70.18 (a)
When $\mathrm{A}=1$
then $1.1=1 \quad$-Fig. 70.18 (b)
It is seen that in each case, output has the same value as that of A.

A. $0=0$
(a)

(b)
)

Fig. 70.19

$\mathrm{A} . \mathrm{A}=\mathrm{A}$
(a)

Fig. 70.20
2. $\mathbf{A .} 0=0$

When $A=0$
then $\quad 0.0=0$
-Fig. 70.19 (a)
When $A=1$
then $\quad 1.0=0 \quad$-Fig. $70.19(b)$
It is seen that output is always 0 whatever the value of A.
3. $\quad \mathbf{A} . \mathbf{A}=\mathbf{A}$

When $A=0$, then $0.0=0-\operatorname{Fig} 70.20(a)$
When $A=1$, then $1.1=1$ - Fig. 70.20 (b) It is seen that output always takes on the value of A.

70.15. The NOT Gate

It is so called because its output is NOT the same as its input. It is also called an inverter because it inverts the input signal. It has one input and one output as shown in Fig. 70.21 (a). All it does is to invert (or complement) the input as seen from its truth table of Fig. 70.21 (b).

The schematic symbol for inversion is a small circle as shown in Fig. 70.21 (a). The logical symbol for inversion or negation or complementation is a bar over the function to indicate the opposite state.

Sometimes, a prime is also used as A^{\prime}. For ex-

(a)

(b)

Fig. 70.21
ample, \bar{A} means not-A. Similarly, $(\overline{\mathrm{A}+\mathrm{B}})$ means the complement of (A $+B$).

70.16. Equivalent Circuits for a NOT Gate

The relay circuit of Fig. 70.22 (a) is a physical realization of the complementation operation of the Boolean algebra. When +5 V is applied to input A, K is energised and opens the normallyclosed contact thereby driving output X to 0 V . Of course, when A is at $0 \mathrm{~V}, X$ has the supply voltage of +5 V applied to it because the relay contact is normally closed.

In the equivalent transistor circuit of Fig. $70.22(b)$ when +5 V is applied to A, the transistor will be fully turned $O N$, drawing maximum collector current. Hence, whole of $V_{C C}=5 \mathrm{~V}$ will drop across R thereby sending X to 0 V . With 0 V applied at A, the transistor will be cut $O F F$ and the output X, therefore, will go to $V_{C C}$ i.e. +5 V . Obviously, in each case, output is the opposite of input.

70.17. The NOT Operation

It is a complementation operation and its symbol is an overbar. It can be defined as under:

As stated earlier, $\overline{0}$ means taking the negation or complement of 0 which is 1 .

$$
\begin{aligned}
\overline{0} & =1 \\
\overline{1} & =0
\end{aligned}
$$

It should also be noted that complement of a value can be taken repeatedly. For example,

$$
\overline{\overline{1}}=\overline{0}=1 \quad \text { or } \quad \overline{\overline{0}}=\overline{1}=0
$$

As seen double complementation gives the original value as shown in Fig. 70.23.

Fig. 70.23

Fig. 70.24

Example 70.1. Find the Boolean equation for the output X of Fig. 70.24 (a). Evaluate X when (i) $A=0, B=1, C=1$ (ii) $A=1, B=1, C=1$.

Fig. 70.25
[Computer Engg., Pune Univ. 1991]
Solution. The output of the AND gate is $A B$. It then becomes one of the inputs for the 2 input $O R$ gate. When $A B$ is ORed with C, we get $(A B+C)$.
$\therefore \quad X=A B+C$
-Fig. 70.24 (b)
(i) $X=0.1+1=0+1=1$ —Art 70.7
(ii) $X=1.1+1=1+1=\mathbf{1}$

Example 70.2. Find the Boolean expression for the output of Fig. 70.25 (a) and evaluate it when (i) $A=0, B=1, C=1$, (ii) $A=1, B=1, C=0$.

Solution. The output of the $O R$ gate is $(A+B)$. Afterwards, it becomes the input of the $A N D$ gate. When $A N D$ ed with C, it becomes $(A+B) . C$.
$\therefore \quad X=(A+B) . C \quad$-Fig. $70.25(b)$
(i) $X=(0+1) \cdot 1=1 \cdot 1=1$
(ii) $X=(1+1) \cdot 0=1 \cdot 0=0$

Example 70.3. Find the Boolean expression for the output of Fig. 70.26 and compute its value when $A=B=C=1$ and $X=0$.
(Digital Computations, Punjab Univ. 1990)

(a)

(b)

Fig. 70.27
Substituting the given values, we get

$$
X=1 \cdot 1 \cdot 1 \cdot 0=1 \cdot 1 \cdot 0=1 \cdot 0=0
$$

Example 70.4. Find the Boolean expression for the output X of Fig. 70.27 (a) and compute its value when
(i) $A=0, B=1$
(ii) $A=1, B=0$

Solution. As seen, one of the inputs to the $O R$ gate is inverted i.e. A becomes \bar{A} as shown in Fig. 70.27 (b). Hence, output is given by $X=\bar{A}+B$

(a)

(b)

Fig. 70.28
(i) $X=\overline{0}+1=1+1=\mathbf{1} \quad$ (ii) $X=\overline{1}+0=0+0=\mathbf{0}$

Example 70.5. What is the Boolean expression for the output X of Fig. 70.28 (a)? Compute the value of X when
(i) $A=0, B=0$
(ii) $A=1, B=1$

Solution. As seen, in this case, both inputs to the OR gate have been inverted. Hence as shown in Fig. 70. 28 (b), the inputs become \bar{A} and \bar{B}. Therefore, Boolean expression for the output becomes $X=\bar{A}+\bar{B}$.
(i) $X=\overline{0}+\overline{0}=1+1=1$
(ii) $X=\overline{1}+\overline{1}=0+0=0$

Fig. 70.30

(a)

(b)

Fig. 70.29
Example 70.6. Write down the Boolean equation for the output X of Fig. 70.29 (a). Compute its value when
(i) $A=0, B=0$
(ii) $A=0, B=1$
(iii) $A=1, B=0$
(iv) $\quad A=1, B=1$

Solution. As seen, inputs to the $A N D$ gate are A and B [Fig. 70.29 (a)]. The output of the $A N D$ gate is $A . B$. However, this output is inverted by the second inverter connected in the output. Hence, final output equation is

$$
X=\bar{A} B
$$

(i) $X=\overline{\overline{0} .0}=\overline{1.0}=\overline{0}=1$
(ii) $X=\overline{\overline{0} .1}=\overline{1.1}=\overline{1}=0$
(iii) $X=\overline{\overline{1}} .0=\overline{0.0}=\overline{0}=1$

(a)

(b)
(iv) $X=\overline{\overline{1}} .1=\overline{0.1}=\overline{0}=1$

Fig. 70.31
While evaluating expressions of the above type, you must remember the following two points :

1. take the NOT i.e. inversion of the individual term first.
2. When a NOT or inversion is applied to more than one term (like 1.0), you should work out the $O R$ (or $A N D$) operation first and then take the $N O T$ of the result so obtained.

70.18. Bubbled Gates

A bubbled gate is one whose inputs are NOTed or inverted i.e. it is a negated gate. Fig. 70.30 (a) shows an $A N D$ gate whose both input are inverted.

In practice, instead of this logic symbol, the one shown in Fig. $70.30(b)$ is widely used. As seen, the inverter triangles have been eliminated and the two small circles or bubbles have been moved to the inputs of the gate. Such a gate is called a bubbled AND gate, the bubbles acting as a reminder of the inversion or complementation that takes place before $A N D$ ing the inputs.

It would be shown later that a bubbled $A N D$ gate is equivalent to a $N O R$ gate.

Table 70.6		
A	B	X
0	0	1
0	1	0
1	0	0
1	1	0

Fig. 70.32

Similarly, a bubbled $O R$ gate is equivalent to a $A N D$ gate.

70.19. The NOR Gate

In fact, it is a NOT-OR gate. It can be made out of an $O R$ gate by connecting an inverter in its output as shown in Fig. 70.31 (a).

The output equation is given by

$$
X=\overline{A+B}
$$

A $N O R$ function is just the reverse of the $O R$ function.

Fig. 70.33

Fig. 70.34

Logic Operation

A NOR gate will have an output of 1 only when all its inputs are $\mathbf{0}$. Obviously, if any input is $\mathbf{1}$, the output will be 0 . Alternatively, in a $N O R$ gate, output is true only when all inputs are false.

The truth table for a 2-input NOR gate is shown in Fig. 70.32. It will be observed that the output X is just the reverse of that shown in Fig. 70.2.

The equivalent relay circuit for a $N O R$ gate is shown in Fig. 70.33.

It is seen that the lamp glows under 00 input condition only but not under $01,10,11$ input conditions.

Fig. 70.35

The transistor equivalent of the $N O R$ gate is shown in Fig. 70.34. As seen, output X is 1 only when both transistors are cut-off i.e. when $A=0$ and $B=0$. For any other input condition like 01,10 and 11 , one or both transistors saturate forcing point X to go to ground.

70.20. NOR Gate is a Universal Gate

Fig. 70.36

It is interesting to note that a $N O R$ gate can be used to realize the basic logic functions : $O R, A N D$ and $N O T$. That is why it is often referred to as a universal gate. Examples are given below:

1. As OR Gate

As shown in Fig. 70.35, the output from $N O R$ gate is $A+B$. By using another inverter in the output, the final output is inverted and is given by $X=A+B$ which is the logic function of a normal $O R$ gate.

2. As AND Gate

Here, two inverters have been used, one for each input (Fig. 70.36). The inputs have, thus, been inverted before they are applied to the $N O R$ gate.

The output is $\bar{A}+\bar{B}$ which can be proved (with the help of De Morgan's theorem) to be equal to $A B$.

Incidentally, we could have used a bubbled $N O R$ gate for the above purpose.

3. As NOT Gate

The NAND gate is used to design an interior lighting system of a car such that the light is switched off only when both doors are shut

The two inputs have been tied together as shown in Fig. 70.37 (a). The output is $\bar{A}+\bar{A}$ which can be proved to be equal to A with the help of De Morgan's theorem. Instead of the first symbol, the second symbol shown in Fig.
70.37 (b) is widely used where only single input has been used.

Here is a different way of making $O R$ and $A N D$ gates. Fig. 70.38 (a) shows how we can use $N O R$ gates to produce an $O R$ gate. Simi-

(a)

(b)

Fig. 70.37
larly, Fig. 70.38 (b) shows the formation of an $A N D$ gate from three NOR gates. Knowledge of De Morgan's theorem is needed to understand their logic operation.

70.21. The NAND Gate

It is, in fact, a NOT-AND gate. It can be obtained by connecting a NOT gate in the output of an AND gate as shown in Fig. 70.39. Its output is given by the Bool-

(a)

(b)

Fig. 70.38 ean equation.

This gate gives an output of 1 if its both inputs are not 1 . In other words, it gives an output 1 if either A or B or both are $\mathbf{0}$.

(a)

(b)

Fig. 70.39

The truth table for a 2-input $N A N D$ gate is given in Fig. 70.40. It is just the opposite of the truth for $A N D$ gate. It is so because NAND gate performs reverse function of an $A N D$ gate.

The equivalent relay circuit of a $N A N D$ gate is shown in Fig. 70.41.

It is seen that lamp glows under input conditions of $00,01,10$ but not under 11 input condition

A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

Fig. 70.40

Fig. 70.42

70.22. NAND Gate is a Universal Gate

NAND gate is also called universal gate because it can perform all the three logic functions of an $O R$ gate, $A N D$ gate and inverter as shown below.

As shown in Fig. 70.43 (a), a NOT gate can

(a)

(b)

Fig. 70.43 be made out of a NAND gate by connecting its

Fig. 70.41
when both switches A and B are $O N$. The diodetransistor equivalent of a $N A N D$ gate is shown in Fig. 70.42.

It is seen that point N would be driven to ground when either D_{1} or D_{2} or both D_{1} and D_{2} conduct. It represents input conditions of 10,01 and 11^{*}. Under such conditions, Q is cut off and hence X goes to $V_{C C}$ meaning logic 1 state. Only time X is 0 is when $A=1$ and $B=1$ (i.e. input voltages at A and B are at +5 V) so that N is +5 V and Q is saturated.
two inputs together. When a NAND gate is used as a NOT gate, the logic symbol of Fig. 70.43 (b) is employed instead.

The use of two NAND gates to produce an AND gate is shown in Fig. 70.44 (a).
Similarly, Fig. 70.44 (b) shows how $O R$ gate can be made out of three NAND gates. The $O R$ function may not be clear from the figure because we need De Morgan's theorem to prove that $\bar{A} \bar{B}$ $=A+B$.

Fig. 70.44

[^29]

70.23. The XNOR Gate

It is known as a not-XOR gate i.e. $\overline{X O R}$ gate. Its logic symbol and truth table are shown in Fig. 70.45.

Its logic function and truth table are just the reverse of those for XOR gate (Art 70.9)

This gate has an output 1 if its both inputs are either 0 or 1 . In other words, for getting an output, its both inputs should be at the same

Fig. 70.45 logic level of either 0 or 1 . Obviously, it produces no output if its two inputs are at the opposite logic level.

70.24. Logic Gates at a Glance

In Fig. 70.46 is shown the summary of all the 2 -output logic gates considered so far along with their truth tables.

Following points should prove helpful when writing these truth tables:

1. In first column A, logic values alternate between 0 and 1 every two rows
2. In second column B, logic values alternate every other row
3. Column X is filled up as per the logic function it performs

$\mathrm{A}+\mathrm{B}=\mathrm{X}$

A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

$\overline{\mathrm{A}+\mathrm{B}}=\mathrm{X}$
A B X 0 0 1 0 1 0 1 0 0 1 1 0

$A B=X$

A	B	X
0	0	0
0	1	0
1	0	
1	1	0

A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

$\mathrm{A} \oplus \mathrm{B}=\mathrm{X}$

A	B	X
0	0	0
0	1	1
1	0	1
1	1	0

$\overline{\mathrm{A} \oplus \mathrm{B}}=\mathrm{X}$

A	B	X
0	0	1
0	1	0
1	0	0
1	1	1

Fig. 70.46
4. Truth tables for $N O R, N A N D$ and $X N O R$ (or $\overline{X O R}$) gates are just the opposite of those for $O R, A N D$ and $X O R$ gates.
Example 70.7. An electrical signal is expressed as 101011. Explain its meaning. If this signal is applied to a NOT gate, what would be the output signal ?

Fig. 70.48

Solution. The signal represents binary number 101011_{2}. It is electrically represented as a train of pulses. Taking positive logic, 1 will represent high voltage and 0 will represent low (or zero) voltage as shown in Fig. 70.47.

When such a signal is applied to a NOT gate, it would be inverted or complemented as shown in Fig. 70.48.

The NOT output will represent the binary number 010100_{2}.

Example 70.8. Two electrical signals represented by $A=101101$ and $B=110101$ are applied to a 2-input AND gate. Sketch the output signal and the binary number it represents.

Solution. The pulse trains corresponding to A and B are shown in Fig. 70.49.

Remember that in an $A N D$ gate, C is 1 only when both A and B are 1. It is an all-or-nothing

Fig. 70.49 gate. The output can be found in different time intervals as under :

1. 1st interval

$$
: \quad 1+1=1
$$

2. 2nd interval : $0+1=0$
3. 3rd interval : $1+0=0$
4. 4th interval : $1+1=1$
5. 5th interval : $0+0=0$
6. 6th interval : $1+1=1$

Hence, ouput of the $A N D$ gate is 100101_{2}. It is sketched in Fig. 70.49.
Example 70.9. Convert the Boolean expression $(A B+C)$ into a logic circuit using different logic gates. (Computer Engg. Pune Univ. 1992)
Solution. In such cases, it is best to start with the output and work towards the input. As seen, C has been $O R$ ed with $A B$. Hence, the output gate must be a 2 -input $O R$ gate as shown in Fig. 70.50 (a).

Now, term $A B$ is an $A N D$ function. Hence, we need an $A N D$ gate with inputs A and B. The complete logic circuit is shown in Fig. 70.50 (b).

Example 70.10. Design logic hardware based on the Boolean expression $(A+\bar{B} C)$.

Solution. We will work from output to input. It is seen that the last gate is a 2-input $O R$ gate with inputs of A and $\bar{B} C$. It is shown in Fig. 70.51 (a).

Since \bar{B} has been $A N D$ ed with C, it requires an $A N D$

(a)

Fig. 70.50 gate as shown in Fig. 70.51 (b). For inversion of B, a NOT gate has been used as shown in Fig. 70.51 (c).

Example 70.11. Design a logic circuit whose output is given by the Boolean expression $(A+$ B). $\overline{A B}$.
(Computer Science, Allahabad Univ. 1992)
Solution. Working from output to input, we find that the output gate has to be a 2-input AND gate with inputs of $(A+B)$ and $\overline{A B}$. The first step of the circuit design is shown in Fig. 70.52 (a). It is also seen that the input to the entire circuit consists of A and B only.
(a)

(a)

(b)

Fig. 70.52

Fi.g 70.51

The input of $(A+B)$ has been obtained with the help of an $O R$ gate as shown in Fig. 70.52 (b).

Finally, a NAND gate is connected in parallel with the $O R$ gate for getting its inputs of A and B and thereafter for supplying an output of $\overline{A B}$. The complete circuit is shown in Fig. 70.52 (c).

70.25. Digital Signals
 Applied to Logic Gates

A binary digital signal applied to a logic gate is nothing else but the application of a time sequence of 1 's and 0's. The response of $A N D$ and $O R$ gates to various periodic digital signals is shown in Fig. 70.53.

Fig. 70.54 shows how two waveforms can be $O R$ ed by using two input gates.

70.26. Applications of Logic Gates

Range of application of the logic gates is very wide but the main headings would include.

1. to build more complex devices like binary counters etc.,
2. for decision making in automatic control of machines and various industrial processes,
3. in calculators and computers,
4. in digital measuring techniques,

Fig. 70.54
5. in digital processing of communications,
6. in musical instruments, games and domestic appliances etc.
Sometimes it is more convenient to show the digital signals or pulse waveforms without the x - and y-axes. The examples below will fol-

Fig. 70.55 low this practice.

Example 70.12. Fig. 70.55 shows an OR gate with two input waveforms. What is the resulting output waveform ?

Solution. Remember that the output of an OR gate is 1 when either or both inputs are 1. Therefore, we can sketch the output wave form, C as shown in Fig. 70.56.

Example 70.13. For a three-input OR gate shown in Fig. 70.57 determine the output waveform.

Fig. 70.58
Solution. Remember the output of a three-input $O R$ gate is 1 when one or more of the inputs are

1. Therefore, we can sketch the output waveform, D as shown in Fig. 70.58.

Example 70.14. Fig. 70.59 shows a 2 -input AND gate with waveforms A and B. Sketch the resulting output waveform.

Fig. 70.59
Solution. Remember the $A N D$ gate produces an output 1 only when all its inputs are present. Thus the output of $A N D$ gate is 1 when both A and B are 1 . Its output is 0 when any of its inputs is 0 . Using this concept, we can sketch the output waveform as shown in Fig. 70.60.

Example 70.15. For a 3-input AND gate with waveforms A, B and

Fig. 70.60 C at its inputs as shown in Fig. 70.61, determine the resulting output waveform.

Fig. 70.61
Solution. A 3-input AND gate produces an output 1 only when all the three inputs A, B and C are 1. Its output is 0 when any one of three inputs is 0 . Using this concept, the resulting output waveform is as shown in Fig. 70.62.

Example 70.16. Fig. 70.63 shows the two waveforms applied to the NOR gate inputs. Sketch the resulting output waveform.

Solution. Remember, a NOR gate will have an output of 1 only when all its inputs are 0 . Obviously, if any input is 1 , the output will be 0 . Using this concept, we can sketch the output waveform as shown in Fig. 70.64.

Fig. 70.62

Example 70.17. Sketch the output waveform for a 3-input NOR gate shown in Fig. 70.65. Showing the proper time relationship to the inputs.

Fig. 70.63

Fig. 70.64
Solution. Remember, a 3-input NOR gate will have an output of 1 only when all the three inputs A, B and C are 0 . Obviously if any one of the three inputs A, B and C or all are 1, the output will be 0 .

Using this concept, we can sketch the output waveform as shown in Fig. 70.66.

Fig. 70.65

Fig. 70.66

Fig. 70.67
Example 70.19. Sketch the output waveform for a 3-input NAND gate shown in Fig. 70.69

Fig. 70.68

Solution. Remember, the output of a 3-input NAND gate is 1 only if either any one of the inputs A, B and C or all are 0 . Using this concept, we can sketch the output waveform as shown in Fig. 70.70.

Fig. 70.69

Example 70.20. The waveforms A and B are applied as an input to the XOR and XNOR gate as shown in Fig. 70.71. Determine the output waveforms of these logic gates.

Solution. In exclusive- $O R(X O R)$ gate, output is 1 if its either input but not both, is 1 . In other words, it has an output 1 when its inputs are different. The

Fig. 70.70

Fig. 70.71

output is 0 only when inputs are the same. Using this concept, we can sketch the $X O R$ output waveform as shown in Fig. 70.72.
In $X N O R$ gate, output is 1 if its both inputs are either 0 or 1. It produces 0 output if its two inputs are at the opposite logic level. Using this concept, we can sketch the $X N O R$ output waveform as shown in Fig. 70.72

Fig. 70.72

70.27. Combinational Logic Circuit

It is a circuit built from various logic gate combinations. The circuit possesses a set of inputs, a memoryless logic network to operate on the inputs and a set of outputs as shown in Fig. 70.73 (a). The output from a combinational logic circuit depends solely on the present input values and not on the previous ones. Moreover, output combinational networks are used to make logical decisions and control the operation of different circuits in digital electronic systems. For a given set of input conditions, the output of such a circuit is the same. Consequently, a truth table can fully describe the

Fig. 70.73
operation of such a circuit. Examples of such a circuit are : decoders, adders, multiplexer and demultiplexers etc.

70.28. Sequential Logic Circuits

Such circuits have inputs, logic network, outputs and a memory as shown in Fig. 70.73 (b). Their present output depends not only on their present inputs but also on the previous logic states of the outputs.

Examples of such circuits are a variety of latches and flip-flops. Sequential logic circuits may be either synchronous or asynchronous. The synchronous sequential circuits are built to operate at a clocked rate whereas asynchronous ones are without clocking.

70.29. Adders and Subtractors

The logical gates discussed so far can be used for performing arithmetical functions like addition, subtraction, multiplication and division in electronic calculators and digital instruments. In the central processing unit $(C P U)$ of a computer, these arithmetic functions are carried out by the arithmetic and logic unit $(A L U)$. The logic functions used generally are $X O R, O R$ and $A N D$. We will consider the following:

1. Half Adder-it is 1-bit adder and carries out binary addition with the help of $X O R$ and $A N D$ gates. It has two inputs and two outputs.
2. Full Adder-It has three inputs and can add three bits at a time. It is made up of two half adders and one OR gate.
These adders can also perform subtraction by the method of 1's and 2's complements.
3. Half Subtractor-it uses one $X O R$ and one $A N D$ gate.
4. Full Subtractor-it employs two half subtractors and one $O R$ gate.

70.30. Half Adder

It can add 2 binary digits at a time and produce a 2-bit data i.e. sum and carry according to the binary addition rules (Art. 70.10).

Block Diagram

It is shown in Fig. 70.74. As can be seen, it has two inputs for applying the two binary digits to be added. As is well known, binary

Table 70.7

Fig. 70.74 addition of two bits always produces 2-bit output data i.e. one $S U M$ and one CARRY. For example, $(1+1)$ gives a sum of 0 and a carry of 1 . Also, $(0+0)$ gives the sum 0 and carry 0 . That is why the adder has two outputs : one for $S U M$ and the other for CARRY.

Truth Table 70.7 lists the two columns of input, one of

Fig. 70.75 $S U M$ and one of CARRY. The SUM output has the same logic pattern as when A is $X O$ Red with B. In fact, to add it to XOR. Also, the CARRY output has the same logic pattern as when A is $A N D e d$ with B. That is why a half-adder can be formed from a combination of one $X O R$ gate and one $A N D$ gate as shown in Fig. 70.75.

The circuit is called half-adder because it cannot accept a carry-in from previous additions. For that purpose, we need a 3input adder called full-adder.

Incidentally, the logical equations for the $S U M$ and $C A R R Y$ are $\mathrm{S}=\mathrm{A} \oplus \mathrm{B}$ and $C=A . B$

Input			Output	
A	B	C_{i}	S	C_{o}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Fig. 70.76

70.31. Full Adder

As shown in the block diagram of Fig. 70.76, it has three inputs and two outputs. It can add 3 digits (or bits) at a time. The bits A and B which are to be added come from the two registers and the third input comes from the carry generated by the previous addition. It produces two outputs; SUM and CARRY-OUT.

The truth table 70.9 gives all possible input/output relationships for the full adder. A and B are the inputs from

Fig. 70.77 the respective digits of the registers to be added and C_{i} is the input for any carry generated by the previous stage. The $S U M$ output gives binary addition of A, B and C_{i}. The other output generates the carry C_{0} to be added to the next stage.

The full-adder can be constructed from two half-adders and one $O R$ gate (Fig. 70.77).
Working. Let us illustrate, with the help of two examples, how this full adder adds three bits.

Fig. 70.78

Fig. 70.79
(i) $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{Ci}=0$

The full adder with these three inputs is shown in Fig. 70.78. First half adder gives a sum of 0 and a carry of 1 . The second $H A$ gives a sum of 0 with a carry of 0 . The final output is : SUM $0, C A R R Y$ 1. As we know from the rules of binary addition, $1+1+0=10_{2}$ (i.e decimal 2).

Fig. 70.80
(ii) $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1$

As detailed in Fig. 70.79, we get a final SUM 1 with a CARRY 1. The result conforms to the binary addition : $1+1+1=11_{2}$ (i.e. decimal 3)

Detailed Circuit

Fig. 70.80 shows more circuit details of a full adder. The two half adders have been replaced by their $X O R$ and $A N D$ gates. The final carry is given by the $O R$ gate and final sum by the $X O R$ gate of the second adder.

70.32. Parallel Binary Adder

For adding two 4-bit numbers, we need 4 full adders connected in parallel as shown in Fig. 70.81. The two numbers being added are $A_{3} A_{2} A_{1} A_{0}$ and $B_{3} B_{2} B_{1} B_{0}$ and their sum is $S_{4} S_{3} S_{2} S_{1} S_{0}$.

Fig. 70.81
The first adder could be a half adder though we may use a full adder but leave its $C A R R Y$-IN lead unconnected. As seen, different bits are fed to the four adders from two parallel registers which hold these bits. The final $S U M$ appears as a 5 -digit display.

Operation

The actual operation may be better understood with the help of the diagram of Fig. 70.82. Suppose, we want to add the following two 4 -bit numbers.

Fig. 70.82

| 1010 |
| ---: | ---: |
| +1011 |
| 10101 | | 10 |
| ---: |
| +11 |
| 21 |

$$
\frac{+11}{21}
$$

The first adder performs $0+1$ binary addition, giving a sum of 1 and a carry of 0 . The two bits 0 and 1 are supplied simultaneously from the two registers A and B. The sum 1 appears on the display panel and carry 0 is passed on to the next full adder.

The next adder adds $1+1$ +0 carry $=$ sum 1 with a carry 1 . The third adder performs $0+0+$ 1 carry $=1$ with carry 0 . The fourth adder adds $1+1+0$ carry = sum 0 with carry 1 both of which appear on the display unit. Hence, the final addition of the two numbers appears as

Fig. 70.83 10101.

It may be noted that the largest binary numbers that can be added by this parallel adder are 1111 and 1111 which give a sum of 11110_{2} (decimal 30). To increase its capacity, more full adders may be connected at the left end of Fig. 70.82. For example, for adding 6-bit numbers, we will have to add two more adders thus making a total of six.

70.33. Half Subtractor

It can subtract only two binary digits at a time and produce an output of a difference and a borrow. As shown in the block diagram of Fig. 70.83, it has two inputs and two outputs.

The operation of a half subtractor is based on the rules of binary subtraction illustrated in the truth Table 70.10 for all possible input/output combinations. The difference output in the fourth column has the same logic pattern as when A is XORed with B (same was the case for SUM in Art. 70.30). Hence, we can use an $X O R$ gate to get the difference of two bits. The borrow output in the third column can be obtained by $A N D$ ing \bar{A} with B.

The circuit for a half subtractor is shown in Fig. 70.84.

Fig. 70.84

As mentioned earlier, the logical equations for the difference and borrow are given by

$$
D=A \oplus B \text { and } \mathrm{W}=\bar{A} B
$$

70.34. Full Subtractor

As shown in the block diagram of Fig. 70.85, it has three inputs and two outputs. As explained above, half subtractor can handle only 2 bits at a time and can be used for the least significant column of a subtraction problem. A full subtractor can, however, take care of higher-order columns.

Fig. 70.85

Fig. 70.86

As shown in Fig. 70.86, a full subtractor consists of two half subtractors and one $O R$ gate.

It may be remarked here that by cascading 4 full subtractors, we can directly subtract 4-bit numbers i.e. we can subtract $B_{3} B_{2} B_{1}$ B_{0} from $A_{3} A_{2} A_{1} A_{0}$.

Tutorial Problems No. 70.1

1. Find the Boolean equation for the output of the logic circuit shown in Fig. 70.87. What would be the output if $A=1, B=0, C=1, D=1$ $[X=A B+C D ; 1]$

Fig. 70.87

Fig. 70.88
2. What is the output equation of the logic circuit shown in Fig. 70.88 ? Evaluate the output if $A=1, B=$ $1, C=0$.

$$
[X=A B+(B+C) ; 1]
$$

3. After finding the Boolean equation for the circuit shown in Fig. 70.89, compute the output if $A=1, B$ $=0, C=1, D=0$.

$$
[X=(A+B)(C+D) ; 1]
$$

Fig. 70.89

Fig. 70.90
4. Translate the hardware shown in Fig. 70.90 into a Boolean expression. Compute the value of the output if $A=0, B=1, C=0, D=1$.

$$
[X=A+B C D ; 0]
$$

5. What is the Boolean expression for the logic diagram shown in Fig. 70.91? Evaluate its output if $A=1$, $B=1$, and $C=1$.
$[X=A B+C ; 1]$

Fig. 70.91
Fig. 70.92
6. Find Boolean expression for the logic circuit of Fig. 70.92. What is the output if $A=1, B=1$?

$$
[X=(\overline{\mathbf{A}}+\overline{\mathbf{B}}) \cdot(A+B) ; 0]
$$

7. Give the logic functions performed by the circuits shown in Fig. 70.93 (a), (b) and (c).

$$
[(a) \mathbf{X}=\overline{\mathbf{A B}} \cdot(\overline{\mathrm{C}+\mathrm{D}})(b) \mathbf{X}=\overline{\mathrm{AB} \cdot \mathrm{C}}(c) \overline{(\mathrm{A}+\mathrm{B}) \mathrm{CD}}]
$$

(a)

(b)

(c)

Fig. 70.93
8. State the logic functions of the circuits shown in Fig. 70.94 (a), (b) and (c).
$[(a)(\mathbf{A}+\mathrm{B}) .(\mathrm{CD})(b) \mathrm{AB}+\mathrm{CD}(c)(\mathbf{A}+\mathrm{B}) . \mathrm{C} \cdot \mathrm{D} \cdot \mathrm{E}]$

(a)

(b)

(c)

Fig. 70.94
9. State the logic functions performed by the circuits of Fig. 70.95 (a), (b) and (c).
$[(a) \overline{\mathbf{A B}} \cdot(\overline{\mathbf{C}+\mathbf{D}})(b) \overline{\mathbf{A B}+\mathbf{C}}(c) \mathbf{A}+\mathbf{B}]$

(a)

(b)

(c)

Fig. 70.95
10. Write the logic functions for the circuits shown in Fig. $70.96(a),(b)$ and (c).

$$
[(a) \mathbf{A}(\mathbf{B}+\mathbf{C})+\mathbf{C D}(b) \overline{\mathbf{A}+\mathbf{B} \cdot \mathbf{A} \cdot \mathbf{C}}(\boldsymbol{c}) \mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{C}} \mathbf{D}]
$$

(a)

(b)

(c)

Fig. 70.96
11. What would be the output signal if two signals $A=101011_{2}$ and $B=110101_{2}$ are applied to the inputs of an AND gate?
[100 001]2
12. What would be the output signal if two input binary signals given by $A=100101$ and $B=110110$ are applied to (a) OR gate (b)NAND gate and (c) XNOR gate?
[(a) 1101112 (b) 0110112 (c) 1011002]
13. Sketch the output waveform at C-for a 2-input $O R$ gate shown in Fig. 70.97 and with the given A and B input waveforms.

Fig. 70.97
Fig. 70.98
14. Sketch the output waveform of a 2-input $A N D$ gate shown in Fig. 70.98 with the input waveforms A and B.
15. Sketch the output waveform at D for a 3-input $A N D$ gate shown in Fig. 70.99, with the given A, B and C input waveforms.

Fig. 70.99
Fig. 70.100
16. Sketch the output waveform at D for a 3 -input $A N D$ gate shown in Fig. 70.100 , with the given A, B and C input waveforms.

Fig. 70.101
17. Sketch the output waveform at C for a 2-input $N O R$ gate shown in Fig. 70.101, with the given A and B input waveforms.
18. Sketch the output waveform at D for a 3-input $N O R$ gate shown in Fig. 70.102, with the given A, B and C input waveforms.

Fig. 70.103
19. Sketch the output waveform at C for a 2-input $N A N D$ gate shown in Fig. 70.103, with the given A and B input waveforms.
20. Sketch the output waveform at D for a 3-input $N A N D$ gate shown in Fig. 70.104, with the given A, B and C input waveforms.

Fig. 70.104

OBJECTIVE TESTS - 70

1. A logic gate is an electronic circuit which
(a) makes logic decision
(b) allows electron flow only in one direction
(c) works on binary algebra
(d) alternates between 0 and 1 values.
2. In positive logic, logic state 1 corresponds to
(a) positive voltage
(b) higher voltage level
(c) zero voltage level
(d) lower voltage level.
3. In negative logic, the logic state 1 corresponds to
(a) negative voltage
(b) zero voltage
(c) more negative voltage
(d) lower voltage level.
4. The voltage levels of a negaive logic system
(a) must necessarily be negative
(b) may be negative orpositive
(c) must necessarily be positive
(d) must necessarily be 0 V and -5 V
5. The output of a 2-input $O R$ gate is zero only when its
(a) both inputs are 0
(b) either input is 1
(c) both inputs are 1
(d) either input is 0 .
6. An $X O R$ gate produces an output only when its two inputs are
(a) high
(b) low
(c) different
(d) same.
7. An AND gate
(a) implements logic addition
(b) is equivalent to a series switching circuit
(c) is an any-or-all gate
(d) is equivalent to a parallel switching circuit.
8. When an input electrical signal $A=10100$ is applied to a NOT gate, its output signal is
(a) 01011
(b) 10101
(c) 10100
(d) 00101.
9. The only function of a NOT gate is to
(a) stop a signal
(b) recomplement a signal
(c) invert an input signal
(d) act as a universal gate.
10. A NOR gate is ON only when all its inputs are
(a) ON
(b) positive
(c) high
(d) OFF .
11. For getting an output from an $X N O R$ gate, its both inputs must be
(a) high
(b) low
(c) at the same logic level
(d) at the opposite logic levels.
12. In a certain 2-input logic gate, when $A=0, B=$ 0 , then $C=1$ and when $A=0, B=1$, then again $C=1$. It must be \qquad gate.
(a) XOR
(b) AND
(c) NAND
(d) NOR
13. The logic symbol shown in Fig. 70.105 represents
(a) single-output AND gate
(b) NAND gate
(c) NAND gate used as NOT gate

Fig. 70.105
(d) NOR gate.
14. The output from the logic gate shown in Fig. 70.106 will be available when inputs \qquad present.
(a) A and C
(b) B and C
(c) A, B and C

Fig. 70.106
(d) A and B
15. To get an output 1 from circuit of Fig. 70.107, the input must be $A B C$
(a) 010
(b) 100
(c) 101
(d) 110

Fig. 70.107
16. Which of the following logic gates in Fig. 70.108 will have an output of 1 ?

(a)

(c)

(b)

(d)

Fig. 70.108
17. A half-adder can be constructed from
(a) two XNOR gates only
(b) one XOR and one OR gate with their outputs connected in parallel
(c) one XOR and one OR gate with their inputs connected in parallel
(d) one XOR gate and one AND gate
18. The digital equivalent of an electric series cir-
cuit is the \qquad gate.
(a) NOR
(b) NAND
(c) OR
(d) AND
19. Which of the following represents analog data ?
(a) ON and OFF states
(b) 0 and 1
(c) 0 V and 5 V
(d) $1.5,3.2,4$ and 5 V
20. The logic gate which produces a 0 or low-level output when one or both of the inputs are 1 is called. \qquad gate.
(a) AND
(b) OR
(c) NOR
(d) NAND
21. The output X of the gated network shown in Fig. 70.109 is
(a) $\overline{\mathrm{AB}} \cdot \overline{\mathrm{CD}} \cdot \overline{\mathrm{EF}}$
(b) $\overline{\mathrm{AB}}+\overline{\mathrm{CD}}+\overline{\mathrm{EF}}$
(c) $\mathrm{AB}+\mathrm{CD}+\mathrm{EF}$
(d) $(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})(\mathrm{E}+\mathrm{F})$

Fig. 70.109
22. The digital circuit shown in Fig 70.110 generates a modified clock pulse at the output. Choose the correct output waveform from the options given below.
(GATE; 2004)

Fig. 70.110

ANSWERS

1. (a)
2. (b)
3. (d)
4. (b)
5. (a)
6. (c)
7. (b)
8. (a)
9. (c)
10. (d)
11. (c)
12. (c)
13. (d)
14. (c)
15. (c)
16. (d)
17. (c)
18. (d)
19. (d)
20. (c)
21. (c) 22. (d)

C H A P T E R

71

Learning Objectives

> Unique Feature of Boolean Algebra
$>$ Laws of Boolean Algebra
$>$ Equivalent Switching Circuits
$>$ DeMorgan's Theorem's
$>$ The Sum-of-Products (SOP) Form
$>$ The Standard SOP Form
$>$ The Standard POS Form
> The Karnaugh Map
> The Four-variable Karnaugh Map
> Square Adjacency in Karnaugh Map
$>$ Mapping Directly on Karnaugh Map from a Truth Table
> "Don'† Care" Conditions
$>$ Main Logic Families
> Saturated and Non-saturated Logic Circuits
> DC supply voltage
$>$ Noise Immunity
$>$ Noise Margin-Power Dissipation
> Power Dissipation versus Frequency
$>$ Propagation Delay
> Speed-Power Product
$>$ RTL Circuit
$>$ DTL Circuit
$>$ TTL Circuit
$>$ TTL Sub-families
$>$ ECL Circuit
$>$ MOS family

BOOLEAN ALGEBRA AND LOGIC FAMILIES

DNA Logic gates have been developed and are the firststep towards creating a computer that has a structure of that of electronic PC

71.1. Introduction

Boolean algebra, named after its pioneer George Boole (1815-1864) is the algebra of logic presently applied to the opertion of computer devices. The rules of this algebra are based on human reasoning. It originated from the study of how we reason, what lines of reasoning are valid and what constitutes proof etc.

Starting with his investigation of the laws of thought, Boole developed in 1854 a mathematical system of logic in which he expressed truth functions as symbols and then manipulated these symbols to arrive at a conclusion. His new system was not the ordinary numerical algebra we know from our high school days but a totally new system called logic algebra. For example, in Boolean algebra $A+A=A$ and not $2 A$ as is the case in ordinary algebra.

Boolean algebra remained in the realm of philosophy till 1938 when Claude E. Shannon used it to solve relay logic problems. As we know, all thinking and logic is concerned with finding answers to binary or twovalued questions like : is it good or bad, right or wrong, true or false etc. This binary nature of logic is exactly like the binary working of relay and switching circuits where relay is either energised or not, light is ON or OFF or pulse is present or not. Because of its very logical nature, Boolean algebra is ideal for the design and analysis of ligic circuits used in computers. Morever, it pro-
 vides an economical and straight forward way of describing computer circuitry and complicated switching circuits. As compared to other mathematical tools of analysis and design, Boolean algebra has the advantages of simplicity, speed and accuracy.

71.2. Unique Feature of Boolean Algebra

As we know, the different variables used in ordinary algebra can have any value including plus and minus values. There is no restriction on the value they can assume. For example, in the equation $2 x+3 y=z$, the variables x, y and z can take on any value available in the entire field of real numbers.

However, the variables used in Boolean algebra have a unique property i.e. they can assume only one of the two possible values of 0 and 1. Each of the variable used in a logical or Boolean equation can assume only the value 0 or 1 . For example, in the logical equation $A+B=C$, each of the three variables A, B and C can have only the values of either 0 or 1 . This point must be clearly taken note of by the reader for easy understanding of the laws of Boolean algebra.

71.3. Laws of Boolean Algebra

As started earlier, Boolean algebra is a system of Mathematics based on logic. It has its own set of fundamental laws which are necessary for manipulating different Boolean expressions.

Fig. 71.1

1. ORLaws

These four laws have already been discussed in the previous chapter. These are
Law 1. $A+0=A$
Law 3. $A+A=A$
Law 2. $A+1=1$
Law 4. $A+\bar{A}=1$

The expression given in Law 4 can be understood with the help of Fig. 71.1. Consider the following two possibilities :
(i) When $A=0, \bar{A}=1 \quad \therefore \quad A+\bar{A}=0+1=1$
(ii) When $A=1, \bar{A}=0$
$\therefore \quad A+\bar{A}=1+0=1$
2. ANDLaws

Law 5. $A .0=0$ Law7. $A . A=A$
Law 6. $A .1=A \quad$ Law 8. $A \cdot \bar{A}=0$
The expression for Law 8 can be easily understood with the help of the logic circuit of Fig. 71.2. Consider the following two possibilities :
(i) When
$A=0, \bar{A}=1$
$\therefore A . \bar{A}=0.1=0$
(ii) When
$A=1, \bar{A}=0$
$\therefore \quad A . \bar{A}=1.0=0$
3. Laws of Complementation

Fig. 71.2

Law 9. $\overline{0}=1$
Law 10. $\overline{1}=0$
Law 11. if $A=0$, then $\bar{A}=1$
Law 13. $\quad A=A$

4. Commutative Laws

These laws allow change in the position of variables in $O R$ and $A N D$ expressions.
Law 14. $A+B=B+A$ Law 15. $A . B=B . A$
These two laws express the fact that the order in which a combination of terms is performed does not affect the final result of the combination.

5. Associative Laws

These laws allow removal of brackets from logical expression and regrouping of variables.
Law 16. $A+(B+C)=(A+B)+C$
Law 17. $(A+B)+(C+D)=A+B+C+D \quad$ Law 18. $A \cdot(B \cdot C)=(A \cdot B) . C$

6. Distributive Laws

These laws permit factoring or multiplying out of an expression.
Law 19. $A(B+C)=A B+A C$
Law 20. $A+B C=(A+B)(A+C)$
Law 21. $A+\bar{A} \cdot B=A+B$

7. Absorptive Laws

These enable us to reduce a complicated logic expression to a simpler form by absorbing some of the terms into existing terms.
Law 22. $A+A B=A$

Law 24. $A \cdot(\bar{A}+B)=A B$
The above laws can be used to prove any given Boolean identiry and also for simplifying complicated expressions.

71.4. Equivalent Switching Circuits

The equivalent circuits to illustrate some of the $O R$ and $A N D$ laws given above are shown in Fig. 71.3.
(i) Fig. 71.3 (a) illustrates $A+1=1$. Here, lower switch is permanently closed representing 1 . Hence, value of the $O R$ function is 1 (i.e. it is $O N$) whatever the value of A.

Law 23. $A \cdot(A+B)=A$

Fig. 71.3
(ii) Fig. 71.3 (b) represents $A+0=A$. Here, function value is determined by A alone.
(iii) In Fig. 71.3 (c) when A opens, A closes and vice versa. Obviously, whatever the position of A, the circuit would always be $O N$ proving that $A+\bar{A}=1$.
(iv) Fig. $71.3(d)$ proves $A+A=A$. It shows that final result depends on the value of A alone. If $A=0$, the two switches are open, hence circuit is $O F F$. If $A=1$, both switches are closed. Hence, circuit is $O N$.
(v) In Fig. 71.4 (a), the circuit is permanently $O F F$ irrespective of the value of A. It is due to permanent open (0) in the circuit. Hence, it proves $A .0=0$.
(vi) Fig. 71.4 (b) shows that circuit conditions will

Fig. 71.4 depend solely on the position of the switch. If $A=1$, circuit is $O N(1)$ and when $A=0$, circuit is $O F F$ (0). It is all due to the presence of a permanent short (1) in the series circuit. Hence, everything depends on A.

Example 71.1. Prove the following Boolean identity : $A C+A B C=A C$
Solution. Taking the left hand side expression as y, we get

$$
\begin{aligned}
& y & =A C+A B C=A C(1+B) & \\
\text { Now } & 1+B & =1 & \text {-Law 2 } \\
\therefore & y & =A C \cdot 1=A C & \text {-Law 6 } \\
\therefore & A C+A B C & =A C &
\end{aligned}
$$

Example 71.2. Determine the logic expression for the output Y, from the truth table shown in Fig. 71.5. Simplify and sketch the logic circuit for the simplified expression.

Solution. There are two $1 s$ in the output column of the given truth table. The corresponding binary values are 001 and 101. These values are converted into product terms as follows :

$$
001 \rightarrow \bar{A} \bar{B} C \quad \text { and } \quad 101 \rightarrow A \bar{B} C .
$$

Fig. 71.5
The resulting expression for the output,

$$
\begin{align*}
Y & =\bar{A} \bar{B} C+A \bar{B} C \\
& =(\bar{A}+A) \bar{B} C \tag{Law19}\\
& =1 . \bar{B} C \tag{Law4}\\
& =\bar{B} C
\end{align*}
$$

...(Law 6)
Fig. 71.6 shows the logic circuit to implement the simplified logic expression for the output. As seen it is formed by ANDing the variables \bar{B} and \bar{C}. The \bar{B} can be obtained by inverting B.

Example 71.3. Prove the following Boolean identity: $(A+B)(A+C)=A+B C$
Solution. Putting the left hand side expression equal to y, we get

Boolean Algebra and Logic Families
2589
$Y=(A+B)(A+C)$
$=A A+A C+A B+B C \quad$-Law 19
$=A+A C+A B+B C \quad$-Law 7
$=A+A B+A C+B C$
$=A(1+B)+A C+B C$
-Law 19
$=A+A C+B C$
-Law2
$=A(1+C)+B C$
-Law 19
$=A+B C$
-Law 2
$\therefore \quad(A+B)(A+C)=A+B C$
Example 71.4. Prove the following identity: $A+\bar{A} B=A+B$
Solution. Let the left-hand side expression be put equal to Y.

$$
\begin{aligned}
Y & =A+\bar{A} B=A \cdot 1+\bar{A} B \\
& =A(1+B)+\bar{A} B \\
& =A \cdot 1+A B+\bar{A} B \\
& =A+B A+B \bar{A} \\
& =A+B(A+\bar{A}) \\
& =A+B .1 \\
& =A+B
\end{aligned}
$$

—Law 6
—Law 12
-Law 19
-Law 6 and 15
—Law 19
-Law 4
-Law 6

$$
\therefore \quad A+\bar{A} B=A+B
$$

Example 71.5. Prove the following Boolean identity: $(A+B)(A+\bar{B})(\bar{A}+C)=A C$
(Digital Computations, Punjab Univ. 1990)
Solution. Left the left-hand side expressionbe represented by Y.

$$
\begin{array}{lll}
\therefore \quad Y & =(A+B)(A+\bar{B})(\bar{A}+C)=(A A+A \bar{B}+B A+B \bar{B})(\bar{A}+C) \\
& =(A+A B+A \bar{B})(\bar{A}+C)=[A(1+B)+A \bar{B}](\bar{A}+C) \quad \because B \bar{B}=0 \\
& =(A+A \bar{B})(\bar{A}+C)=A(1+\bar{B})(\bar{A}+C) \\
& =(A .1)(\bar{A}+C)=A(\bar{A}+C)=A \bar{A}+A C=A C & \because A \bar{A}=0
\end{array}
$$

Example 71.6. Prove the following Boolean identity :

$$
A B C+A \bar{B} C+A B \bar{C}=A+(B+C)
$$

(Digital Electronic Systems-I, Kurukshetra Univ. 1991)
Solution. Equating the left-hand side expression to Y, we have

$$
\begin{array}{rlr}
Y & =A B C+A \bar{B} C+A B \bar{C}=A C(B+\bar{B})+A B \bar{C} & \\
& =A C+A B \bar{C} & \\
& =A(C+B \bar{C}) & \\
& =A(C+B) & \\
& =A(B+C) &
\end{array}
$$

Hence, it proves the given identity.
Example 71.7. Simplify the following Boolean Expression :

$$
A B \bar{C}+A \bar{B} \bar{C}+\bar{A} B C+A B C+A \bar{B} C
$$

(Digital Computations, Punjab Univ. 1992)
Solution. Bringing together those terms which have two common letters, we get

$$
Y=A B \bar{C}+A B C+A \bar{B} \bar{C}+A \bar{B} C+\bar{A} B C
$$

$$
\begin{align*}
& =A B(\bar{C}+C)+A \bar{B}(\bar{C}+C)+\bar{A} B C \\
& =A B+A \bar{B}+\bar{A} B C \\
& =A(B+\bar{B})+\bar{A} B C \\
& =A+\bar{A} B C=A+B C
\end{align*}
$$

$$
=A B+A \bar{B}+\bar{A} B C \quad \quad-\operatorname{Law} 4
$$

$$
\text { —Law } 4
$$

Example 71.8. Simplify the following expression and show the minimum gate implementation.

$$
Y=A \cdot B \cdot \bar{C} \cdot \bar{D}+\bar{A} \cdot B \bar{C} \cdot \bar{D}+B \cdot \bar{C} \cdot D
$$

Solution. As seen from $O R$ and $A N D$ laws of Art 67.3, $A+\bar{A}=$ 1 and $A .1=A$

$$
\begin{aligned}
\therefore \quad Y & =B \cdot \bar{C} \cdot \bar{D}(A+\bar{A})+B \cdot \bar{C} \cdot D=B \cdot \bar{C} \cdot \bar{D} \cdot 1+B \cdot \bar{C} \cdot D \\
& =B \cdot \bar{C} \cdot \bar{D}+B \cdot \bar{C} \cdot D=B \cdot \bar{C} \cdot(D+\bar{D})=B \cdot \bar{C} \cdot 1=B \cdot \bar{C}
\end{aligned}
$$

Fig. 71.7

Minimum gate implementation is shown by the circuit of Fig. 71.7
Example 71.9. Simplify the following Boolean expression and draw the logic circuits for the simplified expressions.
(a) $Y=\bar{A} B C+A \bar{B} C+A B C+B \bar{C}$
(b) $Y=\bar{B}(A+C)+C(\bar{A}+B)+A C$

Solution. (a) $\quad Y=\bar{A} B C+A \bar{B} C+A B C+B \bar{C}=B C(A+\bar{A})+A C(\bar{B}+B)+B \bar{C}$

$$
=B C+A C+B \bar{C}=B(C+\bar{C})+A C=A C+B
$$

Fig. 71.8

Fig. 71.9
(b)

$$
Y=\bar{B}(A+C)+C(\bar{A}+B)+A C=A \bar{B}+\bar{B} C+\bar{A} C+B C+A C
$$

$$
=A \bar{B}+C(\bar{B}+\bar{A}+B+A)=A \bar{B}+C .1=A \bar{B}+C
$$

Example 71.10. Using truth table, prove that $A+\bar{A} B=A+B$ and illustrate the equivalence with the help of a switching circuit.

Solution. Since there are only two variables A and B, their number of possible combination is $2^{2}=4$ in terms of 0 and 1 .

As seen, \bar{A} is the negative of A. In the fourth column of Table 71.1, \bar{A} has been $A N D$ ed with B. In the fifth column, A has been $O R$ ed with $\bar{A} B$. The values in last column have been obtained by O Ring A with B. By comparing results of column 5 to 6 , the equivalence

Table No. 71.1

A	B	\bar{A}	$\bar{A} B$	$A+\bar{A} B$	$A+B$
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	0	1	1

Switching circuit of Fig. 71.10 (a) represents $(A+\bar{A} B)$. In this circuit, when A is open, \bar{A} is closed and vice versa. It can be shown that his circuit becomes closed with either A or B is closed.
(i) when A is closed, then \bar{A} opens. Circuit is completed via the upper branch.
(ii) keeping A open, when we close B, the circuit again becomes closed via lower branch because \bar{A} is already closed (due to A being open).

Fig. 71.10

Hence, all that we have to do for closing the circuit of Fig. $71.10(a)$ is to close either switch A or B. It is exactly what circuit of Fig. $71.10(b)$ does.

Example 71.11. Simplify the expression: $(A B+C)(A B+D)$

$$
\left.\begin{array}{llr}
\text { Solution. Let } & Y & =(A B+C)(A B+D) \\
& =A B A B+A B D+A B C+C D & \\
& =A A B B+A B D+A B C+C D & \\
& & \text { - Law 19 } \\
& & A B+A B D+A B C+C D \\
& =A B(1+D)+A B C+C D=A B+A B C+C D & \text {-Law 7 } \\
& & \text { - Law } 2 \\
\therefore & & A B(1+C)+C D=A B+C D
\end{array}\right]
$$

71.5. DE Morgan's Theorem

These two theorems (or rules) are a great help in simplifying complicated logical expressions. The theorems can be started as under :

Law 25. $\overline{A+B}=\bar{A} \cdot \bar{B} \quad$ Law 26. $\overline{A \cdot B}=\bar{A}+\bar{B}$
The first statement says that the complement of a sum equals the product of complements. The second statement says that the complement of a product equals the sum of the complements. In fact, it allows transformation from a sum-of-products from to a product-of-sum from.

As seen from the above two laws, the procedure required for taking out an expression from under a NOT sign is as follows :

1. complement the given expression i.e., remove the overall NOT sign
2. change all and ANDs to ORs and all the ORs to ANDs.
3. complement or negate all individual variables.

As an illustration, take the following example

$$
\begin{aligned}
\overline{A+B C} & =A+B C & & \text {-step } 1 \\
& =A(B+C) & & \text {-step } 2 \\
& =\bar{A}(\bar{B}+\bar{C}) & & \text {-step } 3
\end{aligned}
$$

Next, consider this example,

$$
\begin{array}{rlr}
\overline{(\bar{A}+B+\bar{C})(\bar{A}+B+C)} & =(\bar{A}+B+\bar{C})(\bar{A}+B+C) & - \text { step } 1 \\
& =\bar{A} B \bar{C}+\bar{A} B C & - \text { step } 2 \\
& =\overline{\bar{A}} \bar{B} \overline{\bar{C}}+\overline{\bar{A}} \bar{B} \bar{C} & - \text { step 3 } \\
& =A \bar{B} C+A \bar{B} \bar{C} &
\end{array}
$$

This process is called demorganization. It should, however, be noted that opposite procedure would be followed in bringing an expression under the NOT sign. Let us bring the expression $\bar{A}+\bar{B}$ $+\bar{C}$ under the NOT sign.

$$
\begin{aligned}
\bar{A}+\bar{B}+\bar{C} & =\overline{\bar{A}}+\overline{\bar{B}}+\overline{\bar{C}} & & \text {-step } 3 \\
& =A+B+C & & \\
& =A B C & & \text {-step } 2 \\
& =\overline{A B C} & & - \text { step } 1
\end{aligned}
$$

Fig. 71.11 shows the circuits to illustrate De Morgan's theorems.

As seen, basic logic function can be either an $O R$ gate or an $A N D$ gate.

Fig. 71.11

2592

Example 71.12. Demorganize the expression : $\overline{(A+B)(C+D)}$

Solution. The procedure is as explained above.

$$
\begin{aligned}
& \overline{(A+B)(C+D)}=(A+B)(C+D) \\
&=(A B)+(C D) \\
&=\overline{A B}+\overline{C D} \text { - } \operatorname{cop} 1 \\
& \text {-step 3 }
\end{aligned}
$$

Example 71.13. Simplify each of the following expressions using De Morgan's theorems:
(a) $\overline{A \overline{(B+\bar{C})} D}$
(b) $\overline{(M+\bar{N})(\bar{M}+N)}$
(c) $\overline{\overline{\overline{A B} \bar{C}} D}$

De Morgan (1806-1871)

Solution. Please note that there is more than one way of simplifying the expressions given in part $(a),(b)$ and (c).
(a)

$$
\begin{array}{rlr}
\overline{A \overline{(B+\bar{C})} D} & =A \overline{(B+\bar{C})} D & \ldots \text { step } 1 \\
& =A+\overline{(B+\bar{C})}+D & \ldots \text { step } 2 \\
& =\bar{A}+\overline{\overline{B+\bar{C}}}+\bar{D} & \ldots \text { step } 3 \\
& =\bar{A}+B+\bar{C}+\bar{D} & \ldots(\because \overline{\overline{B+\bar{C}}}=B+\bar{C})
\end{array}
$$

(b)

$$
\overline{(M+\bar{N})(\bar{M}+N)}=(M+\bar{N})(\bar{M}+N)
$$

... step 1

$$
=(M \bar{N})+(\bar{M} N)
$$

$$
\text { ... step } 2
$$

$$
=(\bar{M} \overline{\bar{N}})+\overline{\bar{M}} \bar{N}
$$

$$
\text { ... step } 3
$$

$$
=\bar{M} N+M \bar{N}
$$

$$
\text { ... step } 4
$$

(c)

$$
\begin{array}{rlr}
\overline{\overline{A B} \bar{C} D} & =\overline{\overline{A B} \bar{C}} D & \ldots \text { step } 1 \\
& =\overline{\overline{A B} \bar{C}}+D & \ldots \text { step } 2 \\
& =\overline{\overline{\overline{A B}} \bar{C}}+\bar{D} & \ldots \text { step } 3 \\
& =\overline{A B} \bar{C}+\bar{D} & \ldots(\because \overline{\overline{A B} \bar{C}}=\overline{\mathrm{AB}} \overline{\mathrm{C}})
\end{array}
$$

The term $\overline{A B} \bar{C}$ can be simplified further by De Morganising the term $\overline{A B}$ as $\bar{A}+\bar{B}$. Thus

$$
\overline{\overline{\overline{A B} \bar{C} D}}=\overline{A B} \bar{C}+\bar{D}=(\bar{A}+\bar{B}) \bar{C}+\bar{D}=\bar{A} \bar{C}+\bar{B} \bar{C}+\bar{D}
$$

Example 71.14. Find switching circuits for the following logic expressions :
(i) $A \cdot(B+C)$
(ii) $A \bar{B}+C D$
(iii) $(\bar{A} B+A C) \bar{C}$
(Industrial Electronics, City \& Guilds, London)
Solution. (i) A. $(\boldsymbol{B}+\boldsymbol{C})$
Here, switches B and C have been O Red i.e. connected in parallel. This parallel circuit is connected in series with switch A because $(B+C)$ has been $A N D$ ed with A. hence, the circuit becomes as shown in Fig. 71.12 (a). As seen, it is a series-parallel circuit.

(ii) $A \bar{B}+C D$

Here, $A \bar{B}$ has been $O R$ ed with $C D$. We can easily make out that a 2 -brached circuit is needed for this logic expression. One branch contains switch A in series with \bar{B} (with one

Fig. 71.12 contact point shows raised to indicate negation) and the other branch contains two series-connected switches C and D as show in Fig. 71.12 (b).
(iii) $(\bar{A} B+A C) \bar{C}$

From the look of it, we can make out that it consists of a series-parallel circuit as shown in Fig. 71.13. $\bar{A} B$ has been $O R$ ed with $A C$ i.e. $\bar{A} B$ and $A C$ are in parallel. Of

Fig. 71.13 course, \bar{A} and B are in series in one branch where as A and C are in series in the other branch. Both these parallel branches are in series with \bar{C}.

Example 71.15. Prove that 3-input NAND gate of Fig. 71.14 (a) is equivalent to the bubbled AND gate of Fig. 71.14 (b).

Solution. The output of $N A N D$ gate is $\overline{A B C}$ and that of bubbled $O R$ gate is $\bar{A}+\bar{B}+\bar{C}$. We have to show that the above two expressions are equivalent.

De Morgan's theorem can be used to prove the above equivalence,

$\overline{A B C}=A B C$	-step 1
$=A+B+C$	-step 2
$=\bar{A}+\bar{B}+\bar{C}$	-step 3

(a)

(b)

71.6. Duals

Fig. 71.14
Basic duality underlies all Boolean algebra. Each expression has its dual which is as true as the original expression. For getting the dual of a given Boolean expression, the procedure is to convert

1. all $1 s$ to $0 s$ and all $0 s$ to $1 s$.
2. all ANDs to ORs and all ORs to

ANDs.
The dual so obtained is also found to be true.

Some of the Boolean relations and their duals are given in Table 71.2.

Example 71.16. Design a logic circuit whose output is HIGH only when a majority of the inputs A, B and C are HIGH.

Solution. Since there are three inputs, A, B and C, therefore whenever two or more than two (i.e. a majority) inputs are HIGH, the output is HIGH. This situation can be represented in the form of a truth table as shown in Fig. 71.15 .

Table No. 71.2

Relation

$A \cdot 0$	$=0$	$A+1=1$
$A \cdot A$	$=A$	$A+A=A$
$A \cdot \bar{A}$	$=0$	$A+\bar{A}=1$
$A \cdot 1$	$=A$	$A+0=A$
$A \cdot(A+B)$	$=A$	$A+A B=1$
$A \cdot(\bar{A}+B)$	$=A B$	$A+\bar{A} B=A+B$

Fig. 71.15

There are four $1 s$ in the output column of the truth table. The corresponding binary values are $011,101,110$ and 111 respectively. Converting these values into product terms and summing up all the terms, we get

$$
Y=A B \bar{C}+A \bar{B} \mathrm{C}+\bar{A} B C+A B C
$$

Adding the term $A B C$ two times from our side in the Boolean expression for the output,

$$
Y=A B \bar{C}+A \bar{B} C+\bar{A} B C+A B C+A B C+A B C \quad(\because A B C+A B C+A B C=A B C)
$$

Bringing together those terms which have two common letters, we get,

$$
\begin{aligned}
Y & =A B \bar{C}+A B C+A \bar{B} C+A B C+\bar{A} B C+A B C \\
& =A B(\bar{C}+C)+A C(\bar{B}+B)+B C(\bar{A}+A) \\
& =A B+A C+B C \\
& =A B+C(A+B)
\end{aligned}
$$

The logic circuit that produces the output $Y=A B+C(A+B)$ is as shown in Fig. 71.16.
Alternatively :
You can also arrange the equation,
as

$$
\begin{align*}
Y & =A B+A C+B C \\
Y & =\mathrm{A}(B+C)+B C \tag{i}\\
Y & =(A+C) B+A C \tag{ii}
\end{align*}
$$

If you implement equation (i) or $(i i)$ using AND and OR logic gates, the number of logic gates is used will still be the same (4).

Example 71.17. Determine the Boolean expression for the logic circuit shown in Fig. 71.17. Simplify the Boolean expression using Boolean Laws and De Morgan's theorem. Redraw the logic circuit using the simplified Boolean expression.

Fig. 71.17 circuit can be obtained by determining the output of each logic gate while working from left to right.

Fig. 71.18
As seen from the logic circuit shown in Fig. 71.18. The output of the circuit is,

$$
X=B C \overline{(A B+\bar{C})}
$$

The output, X can be simplified by De Morganizing the term $\overline{(A B+\bar{C})}$ as shown below.

$$
\begin{array}{rlrl}
B C \overline{(A B+\bar{C})} & =B C(A B+\bar{C}) & \ldots \text { step } 1 \\
& =B C(A+B) \cdot \bar{C} & \ldots \text { step } 2 \\
& =B C(\bar{A}+\bar{B}) \cdot \overline{\bar{C}} & \ldots \text { step } 3 \\
& =B C(\bar{A}+\bar{B}) C & \ldots \text { Law } 13 \\
& =B C(\bar{A}+\bar{B}) & \ldots \text { Law } 7 & \text { A } \circ \\
& =\bar{A} B C+B C \bar{B} & & \text { B o } \\
& =\bar{A} B C+0= & \ldots \text { Law } 8 & \text { C } 0 \\
& =\bar{A} B C & \ldots \text { Law } 1 &
\end{array}
$$

The logic circuit with a simplified Boolean expression $X=\bar{A} B C$ is as shown in Fig. 71.19.

Fig. 71.20

Example 71.18. Determine the output X of a logic circuit shown in Fig. 71.20. Simplify the output expression using Boolean Laws and theorems. Redraw the logic circuit with the simplified expression.

Solution. The output of the given logic circuit can be obtained by determining the output of each logic gate while working from left to right.
As seen from Fig. 71.21, the output,

$$
\begin{aligned}
& X=(\bar{A} B+A \bar{B})(A+\bar{B}) \\
&=\bar{A} B A+A \bar{B} A+\bar{A} B \bar{B}+A \bar{B} \bar{B} \\
&=0+A \bar{B} A+0+A \bar{B} \bar{B} \\
&=A \bar{B}+A \bar{B} \\
&=A \bar{B}
\end{aligned}
$$

... Law 8
... Law and Law 1
... Law 3
Using the simplified Boolean expression, the logic circuit is as shown in Fig. 71.22.

Fig. 71.21

Fig. 71.22

Example 71.19. Consider the logic circuit shown in Fig. 71.23. Determine the Boolean expression at the circuit output, simplify it. From the simplified Boolean expression, find which logic gate is redundant in the given logic circuit.

Solution. As seen from Fig. 71.24, the logic circuit output,

Fig. 71.23

$$
X=\bar{W}+\bar{W} Z+X Y \bar{Z}
$$

The expression can be simplified as follows :

$$
\begin{aligned}
& =\bar{W}+\bar{W} Z+X Y \bar{Z} \\
& =\bar{W}(1+Z)+X Y \bar{Z} \\
& =\bar{W}+X Y \bar{Z}
\end{aligned}
$$

Fig. 71.24
From the simplified Boolean expression of the output $X=\bar{W}+X Y \bar{Z}$, and the actual output $\bar{W}+\bar{W} Z+X Y \bar{Z}$, we find that the two-input AND gate (producing the term $\bar{W} Z$) is redundant.

Example 71.20. Determine the output of the logic circuit shown in Fig. 71.25. Simplify the output Boolean expression and sketch the logic circuit.

Fig. 71.25
Solution. The output of the circuit can be obtained by determining the output of each logic gate while working from left to right.

Fig. 71.26
As seen from the circuit shown in Fig. 71.26, we find that the output,

Fig. 71.27

$$
y=A \bar{B}+\overline{A B}
$$

The sketch of a logic circuit for the simplified Boolean expression is as shown in Fig. 71.27.
Alternatively :

$$
\begin{aligned}
y & =A \bar{B}+\bar{A} \bar{B} \\
& =A \bar{B}+(\bar{A}+\bar{B}) \\
& =(A \bar{B}+\bar{B})+\bar{A} \\
& =(A+1 \bar{B}+\bar{A} \\
& =\bar{B}+\bar{A}
\end{aligned}
$$

The logic circuit to implement this logic equation is as shown in Fig. 71.27(b). Notice the difference in terms of the number and type of logic gates used in the circuits shown in Fig. 71.27. So when you are simplifying and designing logic circuits, it is always possible to have more than one solution.

The circuit shown in Fig. 71.27 shows that it makes use of one inverter (or NOT gate), one AND gate, one NAND gate and one OR gate. In other words, there are four different types of logic gates. However the logic circuit of Fig. 71.27 (b) makes use of only three logic gates (two inverters and one OR gate).

71.7. Standard Forms of Boolean Expressions

All Boolean expressions, regardless of their form, can be converted into either of the two following standard forms :

1. Sum-of-products $(S O P)$ form and 2. Product-of-sums (POS) form.

The standardization of Boolean expressions makes their evaluation, simplification and implementation much more systematic and easier. Now we shall discuss these two standard forms in more detail.

71.8. The Sum-of-Products (SOP) Form

A product term is a term consisting of the product (or Boolean multiplication) of literals (i.e. variables or their complements). When we add two or more product terms, the resulting expression is called, sum-of-products (SOP) expression. Some examples of sum-of-products expressions are $A \bar{B}+\bar{A} B C, \bar{A} B C+A \bar{C} D+A \bar{B} C D, \bar{A} B+A C+\bar{A} \bar{B} C$

Sometimes, it is convenient to define the set of variables contained in the expression (in either complemented or uncomplemented form) as a domain. For example, domain of the expression $A \bar{B}+$ $A B$ is the set of variables A and B. Similarly the domain of the expression $\bar{A} B C+A B C+A \bar{B} C D$ is the set of variables A, B, C and D.

Any logic expression can be changed into $S O P$ form by applying Boolean algebra laws and theorems. For example, the expression $A(B C+D)$ can be converted to $S O P$ form by applying the distributive law :

$$
A(B C+D)=A B C+A D
$$

71.9. The Standard SOP Form

So far, we have seen $S O P$ (sum-of-products) expressions in which some of the product terms do not contain all the variables in the domain of the expression. For example, the expression, $\bar{A} B C+$ $A \bar{C} D+A \bar{B} C D$ has a domain made up of the variables A, B, C and D. But notice that the first two terms contains only three variables, i.e. D or \bar{D} is missing from the first term and B or \bar{B} is missing from the second term.

A standard $S O P$ expression is defined as an expression in which all the variables in the domain apper in each product term. For example $\bar{A} B C D+A B \bar{C} D+A \bar{B} C D$ is a standard $S O P$ expression. Standard $S O P$ expressions are important in constructing truth tables and in karnaugh map simplification method.

It is very straightforward to convert non-standard product term to a standard $S O P$ using Boolean algebra. Each product term in the $S O P$ expression that does not contain all the variables in the domain has to be expanded to standard form to include all the variables in the domain and their complements. As stated below, a nonstandard SOP expression is converted into standard form using Boolean algebra law $4: A+\bar{A}=1$ i.e. a variable added to its complement equals 1 .

Step 1. Multiply each nonstandard product term by a term made up of the sum of a missing variable and its complement. This results in two product terms. It is possible because we know that we can multiply anything by 1 without changing its value.

Step 2. Repeat step 1 until all resulting product terms contain all variables in the domain in either complemented or uncomplemented form. Note that in converting a product term to a standard form, the number of product terms is doubled for each missing variable.

For example, suppose we want to convert the Boolean expression $\bar{A} B C+A \bar{C} D+A \bar{B} C D$ to a standard $S O P$ form. Then following the above procedure we proceed as below :

$$
\begin{aligned}
& \bar{A} B C(D+\bar{D})+A(B+\bar{B}) \bar{C} D+A \bar{B} C D \\
& =\bar{A} B C D+\bar{A} B C \bar{D}+A B \bar{C} D+A \bar{B} \bar{C} D+A \bar{B} C D
\end{aligned}
$$

The expression given above is a standard $S O P$ expression.

71.10. The Product-of-sums (POS) Form

The sum term is a term consisting of the sum (or Boolean addition) of literals (i.e. variables or their complements). When we multiply two or more sum terms, the resulting expression is called product-of-sums $(P O S)$. Some examples of $P O S$ form are $(\mathrm{A}+\bar{B})(\bar{A}+\mathrm{B}+\mathrm{C}),(\bar{A}+\mathrm{B}+\mathrm{C})$ $(\mathrm{A}+\bar{C}+\mathrm{D})(\mathrm{A}+\bar{B}+\mathrm{C}+\mathrm{D})$ and $(\bar{A}+\bar{B})(A+C)(\bar{A}+\bar{B}+C)$.

It may be carefully noted that a $P O S$ expression, can contain a single-variable term as in $\bar{A}(A+$ $\bar{B}+C)(B+\bar{C}+\bar{D})$. In POS expression, a single overbar cannot extend over more than one variable, although more than one variable in a term can have an overbar.

71.11. The Standard POS Form

So far, we have seen POS (product-of-sums) expressions in which some of the sum terms do not contain all the variables in the domain of the expression. For example, the expression, $(\bar{A}+B+C)$, $(A+\bar{C}+D)(A+\bar{B}+C+D)$ has a domain made up of variables, A, B, C and D. Notice that the complete set of variables in the domain is not represented in the first two terms of the expression, i.e. D or \bar{D} is missing in the first term and B or \bar{B} is missing in the second term.

A standard $P O S$ expression is defined as an expression in which all the variables in the domain appear in each sum term. For example $(\bar{A}+B+C+D)(A+B+\bar{C}+D)(A+\bar{B}+C+D)$ is a standard $P O S$ form. Any nonstandard POS expression can be converted to a standard form using Boolean algebra.

Each sum term in an POS expression that does not contain all the variables in the domain can be expanded to standard form to include all variables in the domain and their complements. As stated below : a nonstandard POS expression is converted into a standard form using Boolean algebra Law $8: A . \bar{A}=0$, i.e. a variable multiplied by its complemented equals 0 .

Step 1. Add to each nonstandard product term a term made up of the ptoduct of a missing variable and its complement. This results in two sum terms. This is possible because we know that we can add 0 to anything without changing its value.

Step 2. Apply law 20, i.e. $A+B C=(A+B)(A+C)$
Step 3. Repeat Step 1 until all resulting sum terms contain all variables in the domain in either complemented or uncomplemented form.

For example we want to convert the Boolean expression,

$$
(\bar{A}+B+C)(A+\bar{C}+D)(A+\bar{B}+C+D)
$$

into a standard POS form. Then following the above prodcedure, we proceed as below :

$$
\begin{aligned}
& (\bar{A}+B+C+D \bar{D})(A+B \bar{B}+\bar{C}+D)(A+\bar{B}+C+D) \\
= & (\bar{A}+B+C+D)(\bar{A}+B+C+\bar{D})(A+B+\bar{C}+D)(A+\bar{B}+\bar{C}+D)(A+\bar{B}+C+D)
\end{aligned}
$$

The expression given above is a standard $P O S$ expression

71.12. The Karnaugh Map

The Karnaugh map (or simply a K-map) is similar to a truth table because it presents all the possible values of input variables and the resulting output for each value. However, instead of being organised into columns and rows like a truth table, the Karnaugh map is an array of squares (or cells) in which each square represents a binary value of the input variables. The squares are arranged in a way so that simplification of given expression is simply a matter of grouping the squares. Karnaugh maps can be used for expression with two-three, four, and five variable Karnaugh maps to illustrate the principles. Karnaugh map with five-variables is beyond the scope of this book. For higher number of
variables, a Quine-McClusky method can be used. This method is also beyond the scope of this book.

The number of squares in a Karnaugh map is equal to the total number of possible input variable combinations (as is the number of rows in a truth table). For two variables, the number of square is 2^{2} $=4$, for three variables, the number of squares is $2^{3}=8$ and for four variables, the number of squares is $2^{4}=16$.

71.13. The Two-variable Karnaugh Map

Fig. 71.28 (a) shows a two-variable Karnaugh map. As seen, it is an array of four squares. In this cass, A and B are used for two variables although any other two letters could be used. The binary values of A (i.e. 0 and 1) are indicated along the left side as \bar{A} and A (notice the sequence) and the binary values of B are indicated across the top as \bar{B} and B. The value of a given square is the value of A at the left in the same row combined with the value of B at the top in the same column. For example, a square

(a)

(b)

Fig. 71.28 in the upper left corner has a value of $\bar{A} \bar{B}$ and a square in the lower right corner has a value of $A B$. Fig. $71.28(b)$ shows the standard product terms represented by each square in the Karnaugh map.

71.14. The Three-variable Karnaugh Map

Fig. 71.29 (a) shows a three-variable Karnaugh map. As seen it is an array of eight squares. In this case, A, B and C are used for the variables although any other three letters could be used. The value of A and B are along the left side (notice the sequence carefully) and the values of C are across the top.

The value of a given square is the values of A and B at the left in the same row combined with the value of C at the top in the same column. For example, a square in the upper left corner has a value of $\bar{A} \bar{B} \bar{C}$ and a square in the bottom right corner has a value of $A \bar{B} C$. Fig. 71.29 (b) shows the product terms that are represented by each square in the Karnaugh map.

Fig. 71.29

71.15. The Four-variable Karnaugh Map

Fig. 71.30 (a) shows a four-variable Karnaugh map. As seen, it is an array of sixteen squares. In this case A, B, C and D are used for the variables. The values of A and B are along the left side, and the values of C and D are across the top. The sequence of the variable values may be noted carefully.

(a)

	$\bar{c} \bar{C} \bar{D}$		$\bar{C} D$	$C D$
	$C \bar{D}$			
$\bar{A} \bar{B}$	$\bar{A} \bar{B} \bar{C} \bar{D}$	$\bar{A} \bar{B} \bar{C} D$	$\bar{A} \bar{B} C D$	$\bar{A} \bar{B} C \bar{D}$
$\bar{A} B$	$\bar{A} B \bar{C} \bar{D}$	$\bar{A} B \bar{C} D$	$\bar{A} B C D$	$\bar{A} B C \bar{D}$
$A B$	$A B \bar{C} \bar{D}$	$A B \bar{C} D$	$A B C D$	$A B C \bar{D}$
$A \bar{B}$	$A \bar{B} \bar{C} \bar{D}$	$A \bar{B} \bar{C} D$	$A \bar{B} C D$	$A \bar{B} C \bar{D}$

(b)

Fig. 71.30
The value of a given square is the values of A and B at the left in the same row combined with the values of C and D at the top in the same column. For example, a square in the upper right corner has a value $\bar{A} \bar{B} C \bar{D}$ and a square in the lower left corner has a value $A \bar{B} C \bar{D}$. Fig. 71.30 (b) shows the standard product terms that are represented by each square in the four-variable Karnaugh map.

71.16. Square Adjacency in Karnaugh Map

We have already discussed a two-variable Karnaugh map, a three-variable Karnaugh map and a four-variable Karnaugh map. Now we shall discuss the concept of square adjacency in a Karnaugh map.

It will be interesting to know that the squares in a Karnaugh map are arranged in such a way that there is only a single-variable change between adjacent squares. Adjacency is defined as a singlevariable change. It means the squares that differ by only one variable are adjacent. For example, in a three-variable Karnaugh map shown in Fig. 71.29 (b), the $\bar{A} B \bar{C}$ square is adjacent to $\bar{A} \bar{B} \bar{C}$ square, the $\bar{A} B C$ square and the $A B \bar{C}$ square. It may be carefully noted that square with values that differ by more than one variable are not adjacent. For example, the $\bar{A} B \bar{C}$ square is not adjacent to the
$\bar{A} \bar{B} C$ square, the $A B C$ square, the $A \bar{B} \bar{C}$ square or the $A \bar{B} C$ square. In other words, each square is adjacent to the squares that are immediately next to it on any of its four sides. However, a square is not adjacent to the squares that diagonally touch any of its corners.

It may also be noted that squares in the top row are adjacent to the corresponding squares in the bottom row and squares in the outerleft column are adjacent to the corresponding squares in the outer right column. This is called "wrap around" adjacency because we can think of the map as wrapping around from top to bottom to form a cylinder or from left to right to form a cylinder. Fig. 71.31 (a) and (b) shows the square adjacencies with a threevariable and a four-variable Karnaugh maps respectively.

Notice the square adjacencies in a four variable Karnaugh map :

(a)

(b)

Fig. 71.31

Here for example, the square $\bar{A} \bar{B} \bar{C} \bar{D}$ is adjacent to $\bar{A} \bar{B} \bar{C} D$ square, $\bar{A} B \bar{C} \bar{D}$ square, $A \bar{B} \bar{C} \bar{D}$ square and $A \bar{B} C \bar{D}$ square. Similarly $\bar{A} B \bar{C} D$ square is adjacent to $\bar{A} \bar{B} \bar{C} D$ square, $\bar{A} B \bar{C} \bar{D}$ square, $\bar{A} B C D$ square and $A B \bar{C} D$ square.

71.17. Mapping a Standard SOP Expression on the Kamaugh Map

Consider a $S O P$ (sum-of-products) expression. $\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}$. In order to map this expression on the Karnaugh map, we need a three variable Karnaugh-map because the given expression has three variables A, B, and C. Then select the first product term $\bar{A} \bar{B} \bar{C}$ and enter 1 in the corresponding square (i.e. the first row and the first column) as shown in Fig. 71.32 .

Similarly, for the second product term, $\bar{A} B \bar{C}$ place a 1 in the second row and first column. Repeat this process for the other two product terms, i.e. $A \bar{B} C$ and

Fig. 71.32 $A \bar{B} \bar{C}$. The squares that do not have 1 are the squares for which the expression is 0 . Usually when working with sum-of-products expressions, the $0 s$ are left off the map.

Example 71.21. Map the following SOP expression on the Karnaugh map : $\bar{A} \bar{B} C+\bar{A} B C$ $+A B \bar{C}+A B C$.

Solution. Sketch a three variable Karnaugh map as shown in Fig. 71.33. Select the first product term $\bar{A} \bar{B} C$ and enter 1 in the cor-

Fig. 71.33
responding square. Similarly enter 1 for the other product terms in the given $S O P$ expression. Check that number of $1 s$ in the Karnaugh map is equal to the number of product terms in the given $S O P$ expression.

Example 71.22. Map the following standard sum-of-products (SOP) expression on a Karnaugh map :

$$
\begin{aligned}
& \bar{A} B C \bar{D}+A B C \bar{D}+A B \bar{C} \bar{D}+ \\
& \bar{A} \bar{B} \bar{C} \bar{D}+A B \bar{C} D+\bar{A} \bar{B} \bar{C} D+
\end{aligned}
$$

$$
A \bar{B} C \bar{D}+A B C D
$$

Fig. 71.34

Solution. Sketch a four variable Karnaugh map. Select the first product term $\bar{A} B C \bar{D}$ from the given $S O P$ expression and enter 1 in the corresponding square as shown in Fig. 71.34. Similarly enter 1 for the other product terms in the given $S O P$ expression. Check that number of $1 s$ in the Karnaugh Map is equal to the number of product terms in the given $S O P$ expression.

71.18. Mapping a Nonstandard SOP Expression on the Karnaugh Map

A nonstandard sum-of-products ($S O P$) expression is a one that has product terms with one or more missing variables. In such a case, Boolean expression must first be converted to a standard form by a procedure explained in Art. 71.9.

Let us consider an example to illustrate the procedure for mapping a nonstandard $S O P$ expression on the Karnaugh map. Suppose we have the $S O P$ expression :

$$
\bar{A}+A \bar{B}+A B \bar{C}
$$

As seen, this expression is obviously not in standard form because each product term does not have three variables. The first term is missing two variables, the second term is missing one variable and the third term is standard. In order to convert the given nonstandard $S O P$ expression to a standard form, we multiply the first product term by $B+\bar{B}$ and $C+\bar{C}$, and the second term by $C+\bar{C}$. Expanding the resulting expression, we get,

$$
\begin{aligned}
& \bar{A}(B+\bar{B})(C+\bar{C})+A \bar{B}(C+\bar{C})+A B \bar{C} \\
= & \bar{A} B C+\bar{A} \bar{B} C+\bar{A} B \bar{C}+\bar{A} \bar{B} \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+A B \bar{C}
\end{aligned}
$$

Rearranging the expression for our convenience, we get

$$
\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} B \bar{C}+\bar{A} B C+A B \bar{C}+A \bar{B} \bar{C}+A \bar{B} C
$$

This expression can be mapped on a three-variable Karnaugh map as shown in Fig. 71.35.

Fig. 71.35

71.19. Simplification of Boolean Expression Using Karnaugh Map

The process that results in an expression containing the minimum number of possible terms with the minimum number of variables is called simplification or minimization. After the $S O P$ (or the Boolean) expression has been mapped on the Karnaugh map, there are three steps in the process of obtaining a minimum $S O P$ expression. The three steps are : (\boldsymbol{a}) grouping the $1 s,(\boldsymbol{b})$ determining the product term for each group and (c) summing the resulting product terms.
(a) Grouping the $1 s$: We can group the $1 s$ on the Karnaugh map according to the following rules by enclosing those adjacent squares containing $1 s$. The objective is to maximize the size of the groups and to minimize the number of groups.

1. A group must contain either $1,2,4,8$ or 16 squares. In the case of two-variable Karnaugh map, 4 squares is the maximum group, for three-variable map, 8 squares are the maximum group and so on.
2. Each square in the group must be adjacent to one or more squares in that same group but all squares in the same group do not have to be adjacent to each other.
3. Always include the largest possible number of $1 s$ in a group in accordance with rule 1 .
4. Each 1 on the Karnaugh map must be included in at least one group. The $1 s$ already in a group can be included in another group as long as the overlapping groups include noncommon $1 s$.
(b) Determining the Product Term for each group: Following are the rules that are applied to find the minimum product terms and the minimum sum-of-products expression :
5. Group the squares that have $1 s$: Each group of squares containing $1 s$ creates one product term composed of all variables that occur in only one form (either uncomplemented or complemented) within the group. Variables that occur both uncomplemented and complemented within the group are eliminated. These are known as contradictory variables.
6. In order to determine the minimum product term for each group, we need to look at the standard methodology for three-variable and four-variable Karnaugh map respectively.
(i) For a three-variable K-map: (1) for 1-square, group we get a three-variable product term, (2) for a 2 -square group, we get a two-variable product term, (3) for a 4 -square product term, we get a one-variable product term.
(ii) For a four-variable K-map: (1) For a 1-square group, we get a four-variable product term, (2) for a 2 -square group, we get a three-variable product term, (3) for a 4 -square group, we get a two-variable product term and (4) for a 8 -square group, we get a onevariable product term.
(c) Summing the resulting product terms: When all the minimum product terms are derived from the Karnaugh map, these are summed to form the minimum sum-of-products expression.

Note: In some cases, there may be more than one way to group the $1 s$ to form the product terms. Whatever be the way, the minimal expression must have the same number of product terms and each product term, the same number of Boolean variables.

The examples given below will help you to understand and apply the simplification of the $S O P$ expression using Karnaugh map.

Example 71.23. Simplify the following Boolean expression using the Karnaugh mapping technique:

$$
X=\bar{A} B+\bar{A} \bar{B} C+A B \bar{C}+A \bar{B} \bar{C}
$$

Solution. The first step is to map the given Boolean expression on the Karnaugh map. Notice that there are three variables A, B and C in the Boolean expression, therefore we need a three-variable Karnaugh map.

The Boolean expression to be mapped is,

$$
X=\bar{A} B+\bar{A} \bar{B} C+A B \bar{C}+A \bar{B} \bar{C}
$$

Note that the given Boolean expression is a nonstandard SOP expression because the first product term $\bar{A} B$ has the variable C missing in it. This can be converted into a standard $S O P$ form by modifying the expression as below.

$$
\begin{align*}
X & =\bar{A} B .1+\bar{A} \bar{B} C+A B \bar{C}+A \bar{B} \bar{C} \\
& =\bar{A} B(C+\bar{C})+\bar{A} \bar{B} C+A B \bar{C}+A \bar{B} \bar{C} \tag{C}\\
& =\bar{A} B C+\bar{A} B \bar{C}+\bar{A} \bar{B} C+A B \bar{C}+A \bar{B} \bar{C} \tag{1}
\end{align*}
$$

Equation (1) can be mapped on the Karnaugh map as shown in Fig. 71.36. In order to simplify the given expression, the $1 s$ can be grouped together as shown by the loop around the $1 s$. The four $1 s$ in the first column are grouped together and the term we get is \bar{C}. This is because of the fact that the squares within this group contain both A and \bar{A} and B and \bar{B}, so these variables are eliminated. Similarly, the two $1 s$ in the second row are grouped together and the term we get is $\bar{A} B$. This is because of the fact that squares in this group contain both C and \bar{C} which is eliminated. Summing up the two-product terms, the simplified expression is,

Fig. 71.36

$$
X=\bar{A} B+\bar{C}
$$

Example 71.24. Simplify the following SOP expression using the Karnaugh mapping procedure :

$$
X=\bar{A} B \bar{C} D+A \bar{B} \bar{C} D+\bar{A} \bar{B} \bar{C} D+A B \bar{C} D+A B \bar{C} \bar{D}+A B C D
$$

Solution. First of all, notice that the given $S O P$ expression is already in the standard from i.e. all the product terms in the given expression have all the four variables A, B, C and D.

Next sketch a four-variable Karnaugh map. Select the first product term $(\bar{A} B \bar{C} D)$ from the given expression and enter 1 in the corresponding square as shown in Fig. 71.37. Similarly enter 1 for the other product terms in the given $S O P$ expression to complete the mapping. In order to simplify the given $S O P$ expression, the $1 s$ can be grouped together as shown by the loop

Fig. 71.37 around the $1 s$. The four $1 s$ in the second column are grouped together and the product term we get is $\bar{C} D$. This is because of the fact that squares within this group contain both A and \bar{A} and B and \bar{B}, so these variables are eliminated.

The two $1 s$ in the first and second columns can be grouped together. This group contains both D and \bar{D}, so this variable is eliminated and the resulting product term is $A B \bar{C}$. Similarly the two $1 s$ in the second and third columns can be grouped together. This group contains both C and \bar{C}, so this variable is eliminated and the resulting product term is $A B D$.

The resulting minimal or simplified $S O P$ expression is obtained by summing up the three product terms $\bar{C} D, A B \bar{C}$ and $A B D$ as shown below :

$$
X=A B D+A B \bar{C}+\bar{C} D
$$

Example 71.25. Simplify the following SOP expression using the Karnaugh mapping technique.

$$
X=B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D+\bar{A} B C D+A B C D
$$

Solution. First of all, notice that the given SOP expression is in the nonstandard SOP form because the first product term $(B \bar{C} \bar{D})$ has a variable A or \bar{A} missing in it. Let us convert the given $S O P$ expression into a standard $S O P$ form as shown below :

$$
\begin{aligned}
X & =1 . B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D+\bar{A} B C D A B C D \\
& =(\bar{A}+A) B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D+\bar{A} B C D+A B C D \quad \ldots(\because \bar{A}+A=1) \\
& =\bar{A} B \bar{C} \bar{D}+A B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D+\bar{A} B C D+A B C D
\end{aligned}
$$

This expression can be mapped on to the four-variable Karnaugh by entering 1 for each product term in the corresponding square as shown in Fig. 71.38.

In order to simplify the $S O P$ expression, the $1 s$ can be grouped together as shown by the loop around the $1 s$. The four $1 s$ looped together form the first and second cloumns, contain both A and \bar{A} and D and \bar{D}, so these variables are eliminated and the resulting product term is $B \bar{C}$. Similarly, the four $1 s$ looped together form the second and the third column contain both A and \bar{A} and C and \bar{A}, so these

Fig. 71.38 variables are eliminated and the resulting product term is $B D$. The resulting simplified $S O P$ expression is the sum of the product terms $B \bar{C}$ and $B D$, i.e.,

$$
X=B \bar{C}+B D
$$

Example 71.26. Fig. 71.39 shows a Karnaugh map of a sum-of-products (SOP) function. Determine the simplified SOP function.
(UPSC Civil Services 2000)

Fig. 71.39

Fig. 71.40

Solution. The grouping of $1 s$ is as shown in the Fig. 71.40. Notice the "wrap around" four-square group that includes the $1 s$ on four corners of the Karnaugh map. This group produces a product term
$\bar{B} \bar{D}$. This is determined by observing that the group contains both A and \bar{A} and C and \bar{C}, so these variables are eliminated.

Another group of four with "wrap-around" adjacency is formed form the top and the bottom rows of the Karnaugh map. This group overlaps with the previous group and produces a product term $\bar{B} \bar{C}$. This is determined by observing that this group contains both A and \bar{A} and D and \bar{D}, so these variables are eliminated.

The remaining 1 is absorbed in a overlapping group of two squares. This group produces a threevariable term $\bar{A} \bar{C} D$. This is determined by observing that this group contains both B and \bar{B}, so this variable is eliminated. This resulting simplified $S O P$ function is the sum of the product terms $\bar{B} \bar{D}+$ $\bar{B} \bar{C}$ and $\bar{A} \bar{C} D$, i.e.

$$
X=\bar{B} \bar{D}+\bar{B} \bar{C}+\bar{A} \bar{C} D
$$

71.20. Mapping Directly on Karnaugh Map from a Truth Table

It is possible to map directly on Karnaugh map from a truth table. Recall that a truth table gives the output of a Boolean expression for all possible input variable combinations. Let us illustrate direct mapping through an example of a Boolean expression and its truth table representation.

Let $X=\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B \bar{C}$. Then its truth table can be indicated as shown in Fig. 71.41 (a) and its Karnaugh mapping is shown in Fig. 71.41 (b). Notice in the truth table that the output X is 1 for four different input variable combinations.

It is evident from the Fig. $71.41(a)$ and (b) that truth table and Karnaugh map are simply different ways to represent a logic function.

Fig. 71.41
Example 71.27. Implement the following Boolean expression using minimum number of 3-input NAND gates.

$$
f(A, B, C, D)=\Sigma(1,2,3,4,7,9,10,12)
$$

(UPSC Engg. Services 1991)
Solution. The given Boolean function indicates that its output is 1 corresponding to the terms indicated within the expression i.e., 1, 2, 3, 4, 7, 9, 10 and 12. This is shown in Fig. 71.42 (a). We can map these values directly on to the four-variable Karnaugh map as shown in Fig. 71.42 (b). In order to simplify the Boolean expression represented on the Karnaugh map, group the $1 s$ as shown in the Fig. 71.42 (b). The group of two squares in the first coloum produces a product term $B \bar{C} \bar{D}$. This is determined by observing that the group contains both A and \bar{A}, so this variable is eliminated. Another group of two squares in the second column produces term $\bar{B} C D$. The variable A is eliminated because the group contains both A and \bar{A}.

Another group of two squares in the third column produces the term $\bar{A} C D$. The variable B is eliminated because the group contains both B and \bar{B}. Still another group of two squares in the fourth column produces the term $\bar{B} C \bar{D}$. The variable A is eliminated because the group contains both A and \bar{A}. Thus the resulting simplified expression,

$$
f(A, B, C, D)=B \bar{C} \bar{D}+\bar{B} \bar{C} D+\bar{A} C D+\bar{B} C \bar{D}
$$

This can be implemented using 3-input NAND gate as shown in Fig. 71.43.

Decimal Number	Inputs				Output
	A	B	C	D	f
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	
8	1	0	0	0	0
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	0
12	1	1	0	0	
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

(a)

(b)

Fig. 71.42

Fig. 71.43

71.21. "Don't Care" conditions

In digital systems design sometimes a situation arises in which some input variable conditions are not allowed. For example in a $B C D$ (binary coded decimal) code, there are six invalid combinations : 1010, 1011, 1100, 1101, 1110 and 1111. Since these unallowed states will never occur in an application involving the $B C D$ code, they can be treated as "don't care" terms with respect to their effect on the output. That is, for these "don't care" terms either 1 or 0 may be assigned to the output.

Now, we shall discuss as how the "don't care" terms can be used to advantage on the Karnaugh map for simplifying the Logic equations.

Consider for example, a combinational circuit which products a ' 1 ' output corresponding to a
$B C D$ input equal and greater than 6 . The output is 0 corresponding to a $B C D$ input less than 6 . The truth table for this situation is as shown in Fig. 71.44 (a).

Inputs				Output	
A	B	C	D	X	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	1	$\longrightarrow \overline{\mathrm{A}} \mathrm{BC} \overline{\mathrm{D}}$
0	1	1	1	1	$\longrightarrow \overline{\mathrm{A}} \mathrm{BCD}$
1	0	0	0	1	$\longrightarrow \mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}} \overline{\mathrm{D}}$
1	0	0	1	1	$\rightarrow \mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}} \mathrm{D}$
1	0	1	0	X	
1	0	1	1	X	
1	1	0	0	X	
1	1	0	1	X	
1	1	1	0	X	
1	1	1	1	X	

(a)

Fig. 71.44
We know that we can place $1 s$ directly from the truth table on the Karnaugh map. Similarly we can place X for the "don't care" enteries directly on the Karnaugh map as shown in Fig. 71.44 (b). When grouping the $1 s, X s$ can be treated as $1 s$ make a larger grouping or as $0 s$, if they cannot be used to advantage Recall the larger the group of $1 s$ the simpler the resulting term will be. Taking advantage of the "don't care" and using them as $1 s$, the resulting expression for the output is $A+B C$. However, if the "don't cares" are not used as $1 s$, the resulting expression is $A \bar{B} \bar{C}+\bar{A} B C$. Thus we can see the advantage of using "dont care" terms to get the simplest logic expression.

(b)

Fig. 71.45

Example 71.28. Consider the Karnaugh map shown in Fig. 71.45. Determine the logic function represented by the map and simplify it in the minimal form.
(UPSC Engg. Services 1997)
Solution. We know that when grouping the $1 s, \mathrm{X} s$ can be treated as $1 s$ to make a larger

Fig. 71.46 grouping or as $0 s$ if they cannot be used to advantage. Recall, the larger the group of $1 s$, the simpler the resulting term will be. Taking advantage of the $X s$ and using them as $1 s$, the grouping of $1 s$ and $X s$ is as shown in Fig. 71.46.
Notice the "wrap-around" four-square group that includes the $1 s$ and $X s$ on fours corners of the Karnaugh map. This group produces a product term $\bar{B} \bar{D}$. This is determined by observing that the group contains both A and \bar{A} and C and \bar{C}, so these variables are eliminated. Another group of four squares containing $1 s$ and $X s$ around the centre of Karnaugh map is formed.

This group produces a product term $B D$. This is determined by observing that the group contains both A and \bar{A} and C and \bar{C}, so these variables are eliminated.

Another group of four containing $1 s$ and $X s$ is formed near the top right corner of Karnaugh map. This group overlaps with the previous group and produces a product term $\bar{A} C$. This is determined by observing that the group contains both B and \bar{B} and D and \bar{D}, so these variables are eliminated.

The resulting simplified logic function is the sum of the three product terms : $\bar{B} \bar{D}, B D$ and $\bar{A} C$, i.e.,

$$
X=\bar{B} \bar{D}+B D+\bar{A} C
$$

71.22. Main Logic Families

Most digital systems are designed by combining various logic functions discussed in Chapter 19. All these logic circuits are available in $I C$ modules and are divided into many 'families'. Each family is classified by abbreviations which indicate the type of logic circuit used. For example, $R T L$ means resistor-transistor logic. We will discuss the following seven transistor logic families although the first two are, at present, of historic interest only.

1. Resistance-transistor logic (RTL) : it was the first family group of logic circuits to be developed and packaged in IC form in early 1960s;
2. Diode-transistor logic $(\boldsymbol{D L T})$: It followed $R T L$ in late 1960 s ;
3. Transistor-transistor logic (TTL) $O R\left(T^{2} L\right)$: was introduced in the early 1970 s ;
4. Schottky $T T L$: was introduced to improve the speed of $T T L$;
5. Emitter-coupled logic $(\boldsymbol{E C L})$: It is fastest logic line currently available;
6. Integrated-injection logic $\left(I^{2} L\right)$: It is one of the latest of the bipolar types of logic;
7. Complementary metal-oxide semiconductor (CMOS) : It has the lowest power dissipation of the currently-available logic circuits.

The various logic families discussed above posses different characteristics as detailed below.

71.23. Saturated and Non-saturated Logic Circuits

Those logic circuits in which transistors are driven into saturation are called saturated logic circuits or simply saturated logic. Those circuits which avoid saturation of their transistors are designed non-saturated logic.

The disadvantage of saturated logic is the delay that occurs when the transistors is brought out of saturation. When a transistor is saturated, its base is flooded with carriers. Even when base voltage is switched off, the base remains flooded for some time till all carriers leave it. The time required by the carriers to leave the base is called saturation delay time $\left(t_{s}\right)$. Obviously, saturated logic circuits have low switching speeds whereas non-saturated type are much faster. TTL is the example of a saturated logic whereas $E C L$ represents a non-saturated logic.

71.24. Basic Operating Characteristics and Parameters of Logic Families

When we work with digital ICs from different logic families, we should be familiar with, not only their logical operation but also with the basic operational properties. Following are the important basic operational properties important from the subject point of view.

1. $D C$ supply voltage.
2. TTL and CMOS logic levels
3. Noise immunity
4. Noise margin.
5. Power dissipation.
6. Propagation delay.
7. Speed-power product.
8. Loading and fan-out.

Now we will describe all the above operational characteristics one by one in the following pages.

71.25. DC Supply Voltage

The standard value of the dc supply voltage for TTL (i.e., transistor-transistor logic) and CMOS (i.e., complementary metal-oxide semiconductor) device is +5 V . For simplicity, the dc supply voltage is usually omitted from the logic circuits. But in practice, it is connected to the $V_{C C}$ or $V_{D D}$ pin of an IC
package and the ground is connected to the $G N D$ pin of an $I C$ package. Both the voltage and ground are distributed internally to all the logic gates with the package as shown in Fig. 71.47 (a). The connections for the single logic gate are as shown in Fig. 71.47 (b).

(a)

(b)

Fig. 71.47

71.26. TTL and CMOS Logic Levels

For TTL circuits, the range of input voltages, that can represent a valid $L O W$ (logic 0) and a valid HIGH (logic 1) is as shown in Fig. 71.48 (a). As seen from this diagram, the range of input voltages that can represent a valid LOW (logic 0) is from 0 to 0.8 V . The LOW input voltage is indicated by the symbol $V_{I L}$. The lower limit for $V_{I L}$ is represented by $V_{I L(\min)}$ and the higher limit for $V_{I L}$, by $V_{I L(\max)}$. The range of input voltages that can represent a valid HIGH (logic 1) is from 2 V to $V_{C C}$ (usually 5 V). The HIGH input voltage is indicated by symbol $V_{I H}$. The lower limit for $V_{I H}$ is represented by $V_{I H(\min)}$ and the higher limit for $V_{I H}$ by $V_{I H(\max)}$. Note that the range of values between 0.8 V and 2 V is called indeterminate. This means that when a input voltage is in this range, it can be interpreted as a HIGH or LOW by the logic circuit. Therefore TTL logic gates cannot be operated reliably when input voltages are in this range.

Fig. 71.48
Fig. 71.48 (b) shows the range of $T T L$ output voltages that can represent valid HIGH (logic 1) and valid $L O W$ (logic 0). As seen the range for logic 1 output ifs from 2.4 V to 5 V and $\operatorname{logic} 0$ output is from 0 to 0.4 V . Note again that the range of values between 0.4 V and 2.4 V is indeterminate. Also note that the output voltage for logic 1 is indicated by the symbol $V_{O H}$. The lower limit for $\mathrm{V}_{O H}$ is represented by $\mathrm{V}_{O H(\min)}$ and the higher limit for $\mathrm{V}_{O H}$ by $\mathrm{V}_{O H(\max)}$. Similarly the output voltage for logic 0 is indicated by the symbol $\mathrm{V}_{O L}$. The lower limit for $\mathrm{V}_{O L}$ is represented by $\mathrm{V}_{O L(\min)}$ and the higher limit for $\mathrm{V}_{O L}$ by $V_{O L(\max)}$.

2612

It may be noted from Fig. $71.48(a)$ and (b) that the minimum HIGH output voltage, $V_{O H(\min)}$ is greater than the minimum HIGH in put voltage $V_{I H(\min)}$. On the other hand, the maximum LOW output voltage, $V_{O L(\min)}$ is less than the maximum LOW input voltage, $V_{I L(\max)}$.

The input and output voltages for a device from HCMOS (i.e. High-speed CMOS) logic family for $V_{D D}=5 \mathrm{~V}$ as shown in Fig. $71.49(a)$ and (b) respectively.

(a) input

(b) output

Fig. 71.49
Notice that the input and output voltage values in the HCMOS device are different from that of a TTL device. In a HCMOS device, $\mathrm{V}_{\mathrm{IL}(\max)}$ is 1.5 V (its value is 0.8 V in TTL), $V_{I H(\min)}$ is 3.5 V (its value is 2 V in TTL), $V_{O L(\max)}$ is 0.1 V (its value is 0.4 V is TTL), $V_{O H(\min)}$ is 4.9 V (its value is 2.4 V in TTL).

71.27. Noise Immunity

The noise immunity of a logic circuit refers to the circuit's ability to tolerate noise without causing a false change in its output voltage. The noise voltage is produced by stray electric and magnetic fields on the connecting wires between logic circuits. Sometimes, too much noise voltage cause the voltage at the input of the logic circuit to drop below $V_{I H(\min)}$ or rise above $V_{I L(\max)}$. This could produce unpredictable operation in a logic circuit.

71.28. Noise Margin

A quantitative measure of a circuit's noise immunity is called noise margin. It is expressed in volts. There are two values of noise margin specified for a given logic circuit as described below.

1. The high level noise margin $\left(V_{N H}\right)$
2. The low level noise margin $\left(V_{N L}\right)$

These parameters are shown in Fig. 71.50 and are given by the equations,

$$
\begin{aligned}
V_{N H} & =V_{O H(\min)}-V_{I H(\min)} \\
V_{N L} & =V_{I L(\max)}-V_{O L(\max)}
\end{aligned}
$$

Fig. 71.50

Example 71.29. Table shows the input/output voltage specifications for the standard $T T$ family.

Parameter	Min (V)	Typical (V)	Max (V)
$V_{O H}$	2.4	3.4	-
$V_{O L}$	-	0.2	0.4
$V_{I H}$	2.0	-	-
$V_{I L}$	-	-	0.8

Using these values, find (a) the maximum value of noise spike that can be tolerated when a HIGH output is driving an input, (b) the maximum value of noise spike when a LOW output is driving an input.

Solution. The maximum value of the noise spike, when driven by a HIGH output,

$$
V_{N H}=V_{O H(\min)}-V_{I H(\min)}=2.4-2.0=0.4 \mathrm{~V}
$$

and the maximum value of the noise spike, when driven by a LOW output,

$$
V_{N L}=V_{I L(\max)}-V_{O L(\max)}=0.8-0.4=0.4 \mathrm{~V}
$$

It is observed that a TTL gate is immunte to 0.4 V of poise for both the HIGH and LOW input states.

71.29. Power Dissipation

As a matter of fact, all logic gates draw current from the dc supply voltage for its normal operation. When the logic gate is in the HIGH output state, it draws an amount of current, $I_{C C H}$, as shown in Fig. 71.51 (a) and when in LOW output state, it draws an amount of current $I_{C C L}$ as shown in Fig. 71.51 (b).

Fig. 71.51
The power dissipation of a logic gate is given by the product of the dc supply votage ($V_{C C}$) and the amount of current drawn from the suppy (i.e., $I_{C C H}$ or $I_{C C L}$). Thus power dissipation is given by :

$$
P_{D}=V_{C C} \cdot I_{C C H} \text { or } V_{C C} \cdot I_{C C L}
$$

For example, if $I_{C C H}$ is 2.5 mA when $V_{C C}$ is 5 V , the power dissipation,

$$
P_{D}=V_{C C} \cdot I_{C C H}=5 \mathrm{~V} \times 2.5 \mathrm{~mA}=12.5 \mathrm{~mW} .
$$

Usually, the logic gate operates with the inputs, which keep on changing with time (i.e., the input is pulsed). Accordingly the output of a logic gate also switches back and forth between HIGH and LOW. Because of this, the amount of current drawn from the dc supply also varies between $I_{C C H}$ and $I_{C C L}$. In such a situation, we calculate the average power dissipation. The average power dissipation depends upon the duty cycle and is usually specified for a duty cycle of 50%, the output is HIGH half the time and LOW the other half. Therefore average supply current is :

$$
I_{C C}=\frac{I_{C C H}+I_{C C L}}{2}
$$

and the average power dissipation is,

$$
P_{D}=V_{C C} \cdot I_{C C}
$$

Example 71.30. A TTL logic gate draws 2 mA when its output is HIGH and 3.5 mA when its output is LOW. Calculate the average power dissipation if the supply voltage is 5 V and the logic gate is operated on 50% duty cycle.

Solution. The average supply current,

$$
I_{C C}=\frac{I_{C C H}+I_{C C L}}{2}=\frac{2 \mathrm{~mA}+3.5 \mathrm{~mA}}{2}=2.75 \mathrm{~mA}
$$

\therefore The average power dissipation,

$$
P_{D}=V_{C C} \cdot I_{C C}=5 r \times 2.75 \mathrm{~mA}=\mathbf{1 3 . 7} \mathbf{~ m W}
$$

71.30. Power Dissipation versus Frequency

Fig. 71.52 shows a graph of power dissipation versus frequency for a $T T L$ and a $C M O S$ logic gate. As seen from this graph, the power dissipation in a TTL circuit is essentially constant over its range of operating frequencies. However, the power dissipation in a CMOS circuit is frequency dependent. That is, it is extremely low under zero frequency (or dc) conditions. But the power dissipation increases as the frequency increases. For example, the power dissipation of a typical TTL logic gate is a constant 2 mW . On the other hand, power dissipation of typical CMOS logic gate is 0.0025 mW under static (or dc) conditions and 0.17 mW at 100 kHz .

Fig. 71.52

71.31. Propagation Delay

When a signal passes (i.e., propagates) through a logic circuit, it always experiences a finite time delay as shown in Fig. 71.53. It shows that the change in output level occurs after a short time, (called the propagation delay time), later than the change in input level that caused it. There are two propagation delay times specified for logic gates.

Fig. 71.53
Fig. 71.54

1. $t_{P L H}$ - It is the time interval between a designated point on the input pulse and the corresponding point on the output pulse when the output is changing from LOW to HIGH (or 0 to 1) as shown in Fig. 71.54.
2. $t_{P H L}$ - It is the time interval between a designated point on the input pulse and the corresponding pont on the output pulse when the output is changing from HIGH to LOW (or 1 to 0) as shown in Fig. 71.54.

It may be noted that the propagation delay times are indicated in Fig. 71.54 with 50% points on the pulse edges used as references.

The propagation delay time of a logic gate limits its maximum operating frequency. The greater the propagation delay time of a logic gate, the lower is its maximum operating frequency. This means a high speed logic gate is a one that has a small propagation delay time. For example, a logic gate with a delay time of 2 ns is faster than a logic gate that has a delay time of 10 ns .

71.32. Speed-Power Product

It provides a basis for comparison of logic circuits when the propagation delay and power dissi-

Fig. 71.55 pation are important considerations in the selection of the type of logic family to be used in certain application. The speed power product is exdpressed in picojule (pJ). It may be noted carefully that the lower the speed-product, the better is the value. Typically the CMOS family has much lower value of speed-power product as compared to the TTL logic family. For example, a typical CMOS logic family has a speed-power product of 1.5 pJ at 100 Hz while a typical $T T L$ has speed-power product of 20 pJ .

71.33. Loading and Fan-out

When the output of any logic gate is connected to one or more inputs of other logic gates, a load on the driving gate is created. This is shown in Fig. 71.55. Here the output of a logic gate (labeled as 1) is connected to the inputs of 3 other logic gates (labeled as 2, 3, and 4). Note that the logic gate labeled 1 is called a driving gate while the logic gates labeled as 2,3 and 4 are called load gates.

In any logic family, there is a limit to the number of load gate inputs that a given logic gate can drive. This limit is called the fan-out of the logic gate. Now we will study the loading and fan-out in $T T L$ and CMOS logic families in more detail.

Loading and fan-out in TTL family : A TTL gate that acts as a driving gate sources (i.e., supplies) current to a load gate input in the logic HIGH state and sinks (i.e., receives) current from the load gate in the logic LOW state. Fig. 71.56 (a) illustrates the current sourcing and (b) shows current sinking in the logic gates.

(a)

(b)

Fig. 71.56

Note that $I_{I H}$ is the current supplied by the driving gate to the load gate when the input of the load gate is HIGH similarly. $I_{I L}$ is the current received by the driving gate from the load gate when the input of the load gate is $L O W$.

As more and more number of load gates are connected to the driving gate, the loading on the driving gate increases. The total source current increases with each load gate input that is added as illustrated in Fig. 71.57. As the source current increase, the internal voltage drop of the driving gate increases $V_{O H}$. This causes the voltage drop $V_{O H}$ to de-

Fig. 71.57 creases. If a large number of load gate inputs are connected, drops below $V_{O H(\min)}$. As a result of this, HIGH level noise margin is reduced, thus affecting the specified operating characteristics of the gate. Moreover, as the total source current increases, the power dissipation of the driving gate increases.

The maximum number of load gate inputs that can be connected without affecting the specified operational characteristics of the driving gate is called fan-out. Its value is important for designing logic circuits. For example, the standard $T T L$ has a fan-out of 10 . One input of the same logic family as the driving gate is referred to as a unit load. This we can also say that a standard $T T L$ has a fanout of 10 unit loads.

The total sink current also increases with each load gate input that is added as shown in Fig. 71.58. As this current increases, the internal voltage drop of the driving gate increases, causing $V_{O L}$ to increase. If a large number of loads are added, $V_{O L}$ exceeds $V_{O L(\max)}$ and the LOW-level margin is reduced.

Fig. 71.58

When the output of the driving gate is HIGH, the input capacitance of the load gate is charging through the output resistance of the driving gate. When the output of the driving gate is LOW, the

Fig. 71.59
capacitance is discharging. When more and more number of load gate inputs are added to the driving gate output, the total capacitance increases because the input capacitances effectively appear in parallel. This increase in capacitance increases the charging and discharging times. As a result, the maximum operating frequency of the logic gate is reduced. Thus fan-out in a CMOS logic family depends upon the operating frequency. The smaller the number of load gate inputs, the greater the maximum operating frequency.

71.34. RTL Circuit

It is a saturated logic. It uses only transistors and resistors as circuit elements and also resistances in the input to each base. This family is based on the NOR circuit shown in Fig. 71.60. All other members of the family are made up of $N O R$ cells or variations on them.

Fig. 71.60

Circuit Operation

We will assume ideal transistors. When both inputs A and B are 0 V (or logic 0) both transistors are turned $O F F$, hence point M goes to $+V_{C C}$ so that output is logic 1 .

If either or both input terminals are at $+V_{C C}$ i.e. are high (or logic 1), one or both transistors would be fully turned $O N$ (i.e. saturate) thereby reducing the voltage of point N to almost 0 V . Hence, output would be at logic 0 .

It is seen that the output is at logic 1 only when both inputs are at logic 0 - the NOR logic functions as shown in Fig. 71.60 (b).

The $R T L$ family has the following characteristics :

1. relatively slow speed,
2. low fan-out of 6 and a fan-in of 4,
3. poor noise immunity,
4. expensive since resistors are required to be fabricated,
5. cannot operate at speed
(a)

(b)

Fig. 71.61 above 4 MHz .

71.35. DTL Circuit

It is a saturated logic because transistors between cut-off and saturation. It was the next family to be introduced after $R T L$. It consists of diodes, resistors and transistors. The basic gate of this family performs NAND function. As shown in Fig. 71.61 (a) the circuit basically consists of a diode $A N D$ gate followed by a transistor inverter which leads to a NAND gate.

Circuit Operation

1. When both D_{1} and D_{2} have positive voltage applied to them (logic 1), neither conducts and Q is turned $O N$ by the current provided by $V_{C C}$ through R_{1}. Since Q becomes saturated, point C is brought to $0 \mathrm{~V}(\operatorname{logic} 0)$. Hence output goes logic 0 .
2. If either or both inputs are at 0 V (logic 0), the associated diode will conduct driving point N to ground i.e. 0 V . Since there is no base voltage for Q, it will be cut $O F F$ thereby driving point C and hence output to $V_{C C}$ i.e. logic 1.
It is seen that output is low (a logic 0) only when all inputs are high-the condition for a NAND gate.

The $D T L$ family is characterised by

1. relatively lower speed,
2. Comparatively better noise immunity,
3. propagation delay of 30 ns ,
4. a fan-out of 5 .

71.36. TTL Circuit

It is a saturated logic. It is the most widely used circuit line since early $1970 s$ because of its speed, good fan-out and easy interface with other digital circuitry. The unique feature of this circuit is that it used multiple-emitter transistor at input which replaces the input diodes of the DTL. Th number of emitters is equal to the number of inputs of the logic circuit (limited to 8). Since a multi-emitter transistor is small in area than the diodes it replaces, the yield from a wafer is increased. Moreover, smaller area resultes in lower capacitance to the substrate, thereby wide selection of circuit modules ranging from simple gates and flip-flops in SSI circuit series through various registers in computers in $M S I$ circuit series to micro-processor bit-slice chips in the $L S I$ series.

Basic Circuit

The basic circuit of the TTL familyis the NAND gate cell shown in Fig. 71.62. However, at present $N O R, O R$ and $A N D$ gate configurations have also been added to the series.

Circuit Operation

1. If both inptus A and B are high (logic 1), E / B junction of Q_{1} is reverse-biased so that it has no emitter current. Hence Q_{1} is $O F F$. However, its C / B junction is forward-baised supplying base current to Q_{2} from $V_{C C}$ via R_{1}. As a result transistor Q_{2} is turned fully $O N$ (i.e. it becomes saturated) driving point N to $O V$. Hence, output is a logic 0 .
2. When either or both inputs are at $0 V(\operatorname{logic} 0)$, the associated E / B junction becomes forwardbiased. The value of R_{1} is so selected as to ensure that Q is turned fully $O N$. The voltage at point M falls to $0 V$ with the result the base current for Q_{2} is reduced to zero. Hence, Q_{2} is cut $O F F$ driving point N and the output

Fig. 71.62 to logic 1 .

Totem Pole Output

The basic circuited of Fig. 71.62 is never used in practice. Its modified version with an added output stage is in common use (Fig. 71.63). This extra output stage is often known as totem-pole stage because the three components Q_{3}, Q_{4} and D are stacked one on top of the other in the manner of a totem-pole. The circuit action is as follows :

1. When Input is High

In this case, the two input terminals have positive voltage (logic 1). the E / B junction is reversebiased because of which there is no emitter current. Hence, Q_{1} is $O F F$. Since C / B junction of Q_{1} is forwardbiased, base current of Q_{2} flows from $V_{C C}$ through R_{1}. Hence, Q is turned $O N$. As a result, potential of point N falls so much that Q_{2} is turned $O F F$. At the same time Q_{4} is turned $O N$ by the voltage drop across R_{3}. Now, when Q_{4} is $O N$, its collector potential (i.e. potential of point C) is nearly that of its emitter. Hence, output is low i.e. at

Fig. 71.63 logic 0 .

In short, when inputs are at logic 1, Q_{1} is $O F F, Q_{2}$ is $O N, Q_{3}$ is $O F F$ and Q_{4} is $O N$ because of which output because logic 0 .

2. When Input is Low

If any of the two inputs or both are low (logic 0), Q_{1} turns $O N$ and potential of its collector (point M) falls. Hence, Q_{2} is turned $O F F$, grounding its emitter and the base of Q_{4} so that Q_{4} is also turned OFF.

Since N is at $V_{C C}$, it turns $Q_{3} O N$. The potential of point C is $V_{C C}$ minus drop in R_{4}, Q_{3} and D. Since these drops do not amount to much, output is at logic 1 .

It may be noted that when even-numbered transistors are ON, the odd-numbered ones are OFF and vice-versa.

The function of diode D in Fig. 71.63 is to prevent both Q_{3} and Q_{4} from being turned $O N$ simultaneously. If both were to be $O n$ at the same time, they would offer low immedance to teh suppy which will draw excessive current and produce large noise 'spikes' in the output. It may also be noted that the addition of a pair of totem pole transistor increases the operating speed and output current capability of this circuit. The standard $T T L$-family has

1. greater speed then $D T L$,
2. less noise immunity $(0.4 \mathrm{~V})$,
3. average propagation delay per gate of 9 ns ,
4. average power dissipation of 10 mW ,
5. a fan-out of 10 meaning one output can drive 10 other TTL inputs,

Fig. 71.64

Fig. 71.64 shows a pin-out of a $B E L$ $7400 I C$ referred to as 'quad (quadrupole). 2-input NAND gate chip'. As seen, there are four separate

2-input $N A N D$ gates of which any or all may be used at any point in time. It is manufactured by Bharat Electronics LTD. (BEL) Bangalore, India.

71.37. TTL Sub-families

TTL has several sub-families having different speed and lower dissipation charcteristics as detailed below :

1. 74L00 series-the letter L standing for low power consumption. It has an average power dissipation of 1 mW per gate but an average propagation delay of 33 ns .
2. $\mathbf{7 4 H 0 0}$ series-the letter H standing for higher speed. It has a propagation delay of 6 ns but averge power dissipation of $23 \mathrm{~mW} /$ gate.
3. 74S00-the letter S representing Schottky. It has the highest speed because its average propagation delay is just 3 ns per gate. However, its average power dissipation is $23 \mathrm{~mW} /$ gate.
4. 74LS00-It is called low-power Schottky TTL. It has an average propagation delay of 9.5 ns and an average power dissipationof 2 mW .
5. 74AS00 series-The letter A representing Advanced and S stnading for schottky. It is called advanced schottky $T T L$ series. It is the fastest $T T L$ series.
6. 74ALS00 series-It is called Advanced Low-power Schottky $T T L$ series. The $74 A L S$ series has the lower speed-power product and the lowest gate power dissipation of all the TTL series.
7. 74 F 00 series - The letter F standing for fast. This logic family uses a new $I C$ fabrication technique to reduce interdevice capacitances to achieve reduced propagation delays. It has a propagation delay of 3 ns and a power consumption of 6 mW .
Table 71.3 summarizes the important characteristics of the each of the $T T L$ sub-families.
Table 71.3

Characteristic	TTL sub-family					
	74	74 S	74 LS	74 AS	74 ALS	74 F
Propagation delay (ns)	9	3	9.5	1.7	4	3
Power Dissipation (mW)	10	20	2	8	1.2	6
Speed-power product (pJ)	90	60	19	13.6	4.8	18
Fan-out	10	20	20	40	20	33

71.38. ECL Circuit

The $E C L$ also called current-mode logic ($C M L$), has the highest speed of any of the currentlyavailable logic circuits. It is primarily due to the fact that transistors never operate fully saturated or cut-off. That is why $E C L$ is known as non-saturated logic. The latest $E C L$ series has propagation delay time varying from 0.1 ns to 0.8 ns . However, power dissipation is increased since one transistor is always in the active region.

Another feature of $E C L$ is that it provides two outputs which are always complement of each other (Fig. 71.65). Itis so because the circuit operation is based on a differential amplifier.

This family is particularly suited to monolithic fabrication techniques because logic levels are function of resistor ratios.

Circuit Operation

The basic circuit shown in Fig. 71.65 is combined $O R / N O R$ circuit and is operated from a $V_{E E}=-$ 5.2 V supply. A built-in constant-current source provides current to the emitters. Strictly speaking,
logic 1 is represented by -0.9 V (less negative) and logic 0 by -1.75 V (more negative). Please note that it is a positive logic. In negative logic, the functions would be $A N D / N A N D$. A reference voltage of -1.29 V is applied to the base of Q_{3} from a built-in temperature-compensated reference voltage source ($R V S$).

Fig. 71.65

1. When both inptus are logical $\mathbf{0}$ i.e. $\mathbf{- 1 . 7 5} \mathbf{V}$

In this case, base potential of Q_{3} is less negative (or more positive) than the base potential of either Q_{1} or Q_{2}. Hence, Q_{3} conducts whilst Q_{1} and Q_{2} do not. Only enough base current is drawn by Q_{3} from RVS so as to remain out of saturation. The collector current of Q_{3} develops a voltage of -1.0 V across R_{3} which makes Q_{4} to conduct. Transistor Q_{4} gives an output voltage at the emitter of about $-1.0-0.7=-1.7 \mathrm{~V}$ which represents logic 0 . Since collector potentials of Q_{1} and Q_{2} are nearly zero (because they are cut off), the output voltage at the emitter of Q_{5} is $0-0.7=-0.7 \mathrm{~V}$ which is a logic 1 . Obviously, the two outputs are complements of each other.
2. When either input A or B is at logical 1 i.e. -0.9 V

In that case, the associated transistor (either Q_{1} or Q_{2}) is turned $O N$ while Q_{3} is turned $O F F$. The collector potentials of Q_{1} / Q_{2} and are opposite of the previous case. Hence, now Q_{5} output is at logical 1 and Q_{4} output is at logical 0 .

Typical characteristics of an $E C L$ family are :

1. propagation delay time per gate of 0.3 ns (meaning extremely fast speed),
2. power dissipation of 25 mW ,
3. fan-out of 25 to 50 ,
4. noise margin from about 0.2 to 0.25 V .

It will be interesting to know that $E C L$ family of $I C s$ does not include a wide range of general purpose logic devices as do the $T T L$ and $C M O S$ logic families. $E C L$ does include complex, special purpose $I C s$ used in applications such as high-speed data transmission, high-speed memories and high-speed arithmetic units. The relatively low noise margins and high power drain of ECL are disadvantages compared with $T T L$ and $C M O S$. Another drawback is its negative power supply voltage and logic levels which are not compatible with those of other logic families. This makes it difficult to use $E C L$ devices in conjunction with $T T L$ and/or CMOS ICs. Special level-shifting (also called interface) circuits must be connected between $E C L$ devices and the $T T L$ (or $C M O S$) devices on both input and output.

71.39. $\mathbf{I}^{2} \mathrm{~L}$ Circuit

It is the latest entry into the bipolar saurated logic field. It uses no biasing and loading resistors at all! Resistors require lot of power and space on an $I C$ chip. Hence, their elimination results in higher density circuits operating at much reduce power. Because of its high speed and less power dissipa-
tion, it is used in large computers. Such circuits are also used where high packing density is of prime consideration as in digital wrist watches. $I^{2} L$ chips are capable of microwatt power dissipation yet can provide high currents when necessary to drive $L E D$ displays. Another feature of $I^{2} L$ (integrated injection logic) is that it is easy to fabricate.

Circuit Operation

$I^{2} L$ NOR logic circuit is shown in Fig. 71.66. Here, transistors Q_{1} and Q_{2} act as current sources to the bases of Q_{3} and Q_{4} respectively.

If A input goes low, the current to the base of Q_{2} will be shorted to ground which will result in Q_{2} being turned $O F F$. The input B controls Q_{4} in a similar way.

Fig. 71.66

If A is high, base current flowing to Q_{2} will turn in $O N$, making output C low. Same would be the case when B is high.

It is obvious that output would be high only when both inputs A and B are low.
The output would be low when either A or B or both are high i.e. NOR logic function.

71.40. MOS Family

It does not use bipolar transistors but just Enhancement-only MOSFETs (Art. 71.1). There are two kinds of digital MOS circuits.
(a) one which uses MOSFETs of one polarity either all of N-type called NMOS or all of P-type called PMOS but not both on the same chip,
(b) the other which employs both N-type and P-type MOSFETSs on the same chip. It is called comlementary MOS (CMOS).

The MOS family may be subdivided as under :

Since a $F E T$ requires small area, it is possible to fabricate a large number of $M O S$ ciruits on a single small chip. Gating arrays with thousands of gates and flip-flops are manufactured in standard containers and are often used in IC memories and microprocessors.

Followings are same of the advantages of MOS ICs over the bipolar ICs (i.e. TTL, ECL etc.)

1. The MOS IC is relatively simple and inexpensive to fabricate.
2. The $M O S$ device size is small and it consumers less power. Because of the small size, the MOS ICs can accommodate a much larger number of circuit elements on a single chip than bipolar $I C$ in the area of large scale integration. This makes them especially well-suited for complex ICs such as microprocessor, memory chips etc.
3. MOS digital ICs normally do not use the $I C$ resistor elements that take up so much of the chip area or bipolar ICs.

The continuous improvement in MOS IC technology has led to the device that are faster than TTL devices. Consequently MOS devices (especially CMOS) have become dominant in the SSI (smallscale integration) and MSI (medium-scale integration) market.

The major disadvantage of MOS devices is that they are susceptible to static-electricity damage. Although we can minimize it by adopting proper handling procedures, yet TTL is still more durable for laboratory experimentation. As a result, we are likely to see $T T L$ devices used in education as long as they are available.

71.41. PMOS Circuit

A PMOS NAND gate is shown in Fig. 71.67 (a). As seen, there are no resistors in the circuit. The gate consists of two E only MOSEFETs Q_{1} and Q_{2} as logic elements and the third one Q_{3} as load resistors. When $-V_{D D}$ (say -12 V) is applied, MOSFETs will be turned $O N$ and when 0 V is applied they would be turned $O F F$. Hence, with positive logic, 0 V would be 1 and -12 V would be 0 since 1 is as-

(a)

A	B	X
0	0	1
0	1	1
1	0	1
1	1	0

(b)

Fig. 71.67 signed to the most positive voltage.

Circuit Operation

1. If any of the two inputs A or B is at logic 0 (i.e. -12 V), the concerned MOSFET would turn $O N$ thereby offering a low resistance from drain to source thus causing the output to be nearly $0 V$ i.e. a logic 1.
2. The output can be at -12 V i.e. logic 0 only when both inputs A and B are at 0 V i.e. logic 1 . This is the NAND function as shown by the truth table of Fig. 71.67 (b).
Incidentally, the positive logic NAND gate of Fig. 71.67 (a) would be the negative logic NOR gate since the two are identical.

71.42. NMOS Circuit

In Fig. $71.68(a)$ is shown a twoinput $N O R$ gate circuit consisting of two MOSFETs Q_{1} and Q_{2} acting as logic elements and Q_{3} as a load resistor. For positive logic, $0 V$ will be logic 0 and positive voltge $\left(+V_{D D}\right)$ will be logic 1 .

Fig. 71.68

Circuit Operation

1. If any of the inputs A or B is at logic 1 , the corresponding $M O S F E T$ will conduct causing the output to go low i.e. logic 0 .
2. If both inpouts A and B are at logic 0 , then both MOSFETs will be $O F F$ driving the output to logic 1.
This is NOR function as shown by the trugh table of Fig. 71.68 (b).

Fig. 71.69

71.43. CMOS Circuit

$C M O S$ logic circuits use both $P M O S$ and NMOS devices in the same circuit. It gives the advnatage of drastic decrease in power dissipation (12 nW per gate) and increase in speed of operation. In fact, it has the lowest power dissipation amongest different logic families. It has very high packing density i.e. larger number of circuits can be placed on a single chip. As a result, it is extensively used in VLSI circuits such as on-chip computers and memory systems. The recent silicon-onsaphire MOS (SOSMOS) is 2 to 4 times faster than the standard CMOS. Hence, they are being widely used for everything from electronic watches and calculators to micro processors.

Fig. 71.69 (a) shows a CMOS NOR circuit which has two N-channel MOSFETs Q_{1} and Q_{2} and tow P-channel MOSFETs Q_{3} and Q_{4}. The two inputs A and B switch between $+V_{D D}(\operatorname{logic} 1)$ and ground (logic 0).

Circuit Operation

1. Let $A=B=$ logic i.e. have positive voltage. In that case, Q_{1} and Q_{2} are $O N$ (closed switches) but Q_{3} and Q_{4} are $O F F$ and act as open switches as shown in Fig. 71.79 (b). Henc, output C is logic 0 .
2. If either A or b is at logic 1 , then the associated N-channel $\operatorname{MOSFET}\left(Q_{1}\right.$ or $\left.Q_{2}\right)$ is turned $O N$ but the associated P-channel $\operatorname{MOSFET}\left(Q_{3}\right.$ or $\left.Q_{4}\right)$ is turned $O F F$. Since either Q_{3} or Q_{4} would be OFF [Fig. $71.69(b)$], output C would be at logic 0 .
3. When both A and B are at logic $0, Q_{3}$ and Q_{4} would be $O N$ but Q_{1} and Q_{2} would be $O F F$-just the opposite of that in Fig. 71.69 (b). Hence output C would be at logic 1 (remember, voltage across an open equals the supply voltage-Art. 1.21.

A	B	C
0	0	1
0	1	0
1	0	0
1	1	0

Fig. 71.70

The above logic represents a $N O R$ function as shown in the truth table of Fig. 71.70. It would be observed from Fig. 71.69 that in each combination of A and B, there is at least one open switch between $+V_{D D}$ and ground. Hence, the gate draws only leakage current from supply for any static state. However, when the gate switches from one level to another, some power is consumed becasue two MOSFETs are partly $O N$ at the same time. Because of this reason, power dissipated by CMOS circuit is a function of input signal frequency. Higher the frequency, greater the power dissipation.

71.44. CMOS Sub-families and their characteristics

The CMOS family of ICs competes directly with $T T L$ in the small and medium-scale integration. As CMOS technology has produced better and better performance characteristics, it has gradually taken over the field that has been dominated by $T T L$ for so long. As a matter of fact, $T T L$ devices will be around for a long time, but more and more new equipment is using $C M O S$ logic circuits. These days, the CMOS ICs provide all the logic-functions that are available in TTL Some special-purpose functions provided in CMOS ICs are not provided even by TTL. Before we look at the various CMOS
subfamilies, let us define few terms that are used when ICs from different families or series are to be used together or as replacements for one another.
(a) Pin-to-pin Compatible : Two ICs are said to be pin-to-pin compatible when three pin configurations are the same. For example, pin 14 on both ICs is $V_{C C}$ supply. Pin 7 on both is ground etc.
(b) Functionally Equivalent : Two ICs are said to be functionally equivalent when the logic function they perform are exactly the same. For example, both contain four two-input $A N D$ gates, or two-input NAND gates etc.
(c) Electrically compatible: Two ICs are said to be electricaly compatible when they can be connected directly to each other without taking any special measures to ensure proper operation.

Let us now study the different $C M O S$ subfamilies.

1. 5000/14000 series: The CMOS 4000 series or the improved $4000 B$ is the oldest series and was first introduced by $R C A$. This series is functionally equivalent to 14000 series from Motorola. The CMOS devices in 4000/14000 series have a very low power dissipation and can operate over a wide range of supply voltage (i.e. from 3 to 15 V). These devices are very slow as compared to $T T L$ and other $C M O S$ subfamilies. The 40 H 00 series was designed to be faster than 4000 series. It did overcome some of the speed limitations, but it is still much slower than LSTTL series. The 4000 series have very low output current capability. The devices in 4000 series are not pin-compatible or electrically compatible with any $T T L$ series.
2. 74C00 series: This is pin-compatible as well as functionally equivalent to $T T L$ devices having the same device number. For example, 74C04 is a HEX inverter that has the same pin configuration as the TTL 7404 HEX inverter IC. The performance characteristics of 74C00 series are the same as those of 4000 series.
3. $74 \mathrm{HC} / \mathrm{HCT} 00$ series: The letter $H / H C$ is standing for high-speed $C M O S$ series. This series has a speed which is 10 times faster than of $74 L S 00$ series devices. It has also a higher current capability than that of $74 C 00$ series. The $74 H C / H C T 00$ series ICs are pin-compatible with and functionally equivalent to TTL ICs with the same device number. This series has become the most widely used series.
4. 74AC/ACT 00 series: This series is referred as advanced CMOS logic. It is functionally equivalent to the $T T L$ series but not pin-compatible.
5. $74 \mathrm{AHC00}$ series: This series is referred to as advanced high-speed CMOS logic. It is faster, and haslower-power dissipation. The devices in this series are 3 times faster and can be used as direct replacements for $H C$ series devices.
6. 74-BiCMOS series: These days, the $I C$ manufacturers have developed a new logic seriescalled BiCMOS logic. This series combines the best features of bipolar and CMOS logic i.e. low power characteristics of $C M O S$ and high speed characteristics of bipolar circuits. BiCMOS ICs are available only in those functions that are used in microprocessor interfacing and memory applications such as latches, buffers, drivers and transceivers.
7. 74-Low Voltage series: A new series of logic using a nominal supply voltage of 3.3 V has been developed to meet the extremely low power design requirements of battery powered and hand held devices. These $I C s$ are being designed into the circuits of notebook computers, mobile radios, hand-held video games, telecommunication equipment, personal digital assistant ($P D A$) and high performance work station computers.
Table 71.4 shows some of the common Low-voltage families identified by the suffixes as indicated:

	Table 71.4
Suffixes	Low-voltage series
LV	Low-voltage HCMOS
$L V C$	Low-voltage CMOS
$L V T$	Low-voltage technology
$A L V C$	Advanced Low-voltage CMOS
$H L L$	High speed Low-power Low-voltage

The power consumption of CMOS logic ICs decreases approximately with the square of the supply voltage. On the other hand, the propagation delay increases slightly at this reduced voltage. However the speed is restored and even increased by using finer geometry and sub-micron $(<1 \mu \mathrm{~m})$ CMOS technology that is tailored for low-power and low-voltage applications.
8. $74 \mathrm{AHC} / \mathrm{AHCT}$ series : This is an enchanced version of $74 H C / H C T 00$ series. It provides superior speed and low power consumption. The $74 A H C$ series devices have half the static power consumption, one-third the propagation delay, high output drive current, and can operate at $V_{C C}$ of 3.3 to 5 V .
Table 71.5 shows a comparison of the important characteristics of the CMOS logic families. It is evident from this table that the devices from 74AHC/AHCT series has the lowest propagation delay and the smallest value of power dissipation.

Table 71.5
S. No. Characteristic CMOS logic family $\begin{array}{cccc}4000 \mathrm{~B} & 74 \mathrm{HC} / \mathrm{HCT} & 74 \mathrm{BiCMOS} & 74 \text { AHC/AHCT } \\ 50 & 8 & 2.9 & 3.7\end{array}$

1. Propagation

50
8
2.9
3.7
delay (ns)
2. Power
0.001
0.0025
0.0003-7.5
0.000009
dissipation
static (mW)
3. Speed-power

105
15
0.00087 to 22 product (pw-s)

Tutorial Problems No. 71.1

1. Prove the following identities:
(i) $A B+A \bar{B}=A$
(ii) $A+A \bar{B}=A+B$
(iii) $(A+B)(A+\bar{B})=A$
2. Simplify the following Boolean expressions :
(i) $A \bar{A} C$ (ii) $A B C D+A B D$ (iii) $A B C D+A \bar{B} C D$
[(i) 0, (ii) ABD, (iii) ACD]
3. Simplify the following Boolean functions :
(i) $A+\bar{A} B+A B$ (ii) $\bar{A} B+\bar{A} B+A B \bar{A} B$
(iii) $(A B+C)(A B+D)$
(iv) $A+\bar{B} C(A+B \bar{C})(v) A[B+C(\overline{A B+A C})]$
(vi) $(A+B) \cdot(A+C)$
$[(i) A+B(i i) 1$ (iii) $A B+C D(i v) A(v) A B(v i) A+B . C(v i i) \bar{B}]$
4. Simplify the following Boolean expressions :
(i) $A \bar{B} C+A B \bar{C}+A B C$ (ii) $\bar{A} \bar{C}+B \bar{C}+\bar{A} B C+A B C$
(iii) $A D+A \bar{B} \bar{C}+\bar{B} C \bar{D}+\bar{A} C D+\bar{A} B C \bar{D}$
(iv) $A \bar{B} \bar{D}+A B \bar{C} \bar{D}+A B C \bar{D}+\bar{A} B C \bar{D}$

$$
[(i) A(B+C)(i i) B+\bar{A} \bar{C}(\text { (iii) } A D+\bar{A} \bar{B}+\bar{A} \bar{C} \text { (iv) } A \bar{B} \bar{D}+A \bar{D}+C \bar{D}]
$$

5. Use truth tables to verify the following identities :
(i) $\bar{A}+B=\bar{A} \cdot B$ (ii) $A+B C=(A+B)(A+C)$
(iii) $A(\bar{A}+\bar{B})=A B$
6. Write the logic equation for the switching circuit of Fig. 71.71.
$[A(B+C+D+E]$
7. Write down the logical expression which describes the working of the circuit of Fig. 71.72.
[AB(CD)]

Fig. 71.71

Fig. 71.72
8. Simplify the following Boolean expressions :
(i) $y=A B \bar{C}+A \bar{B} \bar{C}+A \bar{B} \bar{C}+\bar{A} \bar{C} \bar{B}+A \bar{B}$
(ii) $y=A B \bar{C} \bar{D}+A B \bar{C} D+A B C+A B D+C D$
[(i) $A \bar{C}+\bar{B}$
(ii) $A B+C D]$
9. Design a logic circuit whose output is HIGH only when majority of inputs A, B and C are LOW.
10. Determine the Boolean expression for the logic circuit shown in Fig. 71.73. Simplify the Boolean expression using Boolean Laws and De Morgan's theorem. Redraw the logic circuit using the simplified Boolean expression.

Fig. 71.73
11. Determine the output, X of a logic circuit shown in Fig. 71.74. Simplify the output expression using Boolean Laws and theorems. Redraw the logic circuit with the simplified expression.
$(\bar{B} \bar{C} D+A C)$

Fig. 71.74
12. Consider the logic circuit shown in Fig. 71.75. Determine the Boolean expression at the circuit output X, simplify it. Using the simplified expression, redraw the logic circuit.

$$
A(\bar{B}+C)
$$

Fig. 71.75
13. Fig. 71.76 (a) shows a three-variable Karnaugh map. Group the $1 s$ and hence obtain the minimized Boolean expression.

Fig. 71.76
14. Fig. 71.76 (b) shows a four-variable Kamaugh-map. Group the $1 s$ and hence obtain the minimized Boolean expression.
$(\bar{A} B+\bar{A} \bar{C}+A \bar{B} D)$
15. A truth table has output $1 s$ for these inputs : $A B C D=0011, A B C D=0110, A B C D=1000$ and $A B C D=1100$, and $0 s$ for the other inputs. Draw the Karnaugh map and find the simplified Boolean equation for the truth table.
$(\mathrm{A} \bar{C} \bar{D}+\bar{A} \bar{B} C D+\bar{A} B C \bar{D})$
16. Determine the minimized expression for the Karnaugh map shown in Fig. 71.77 (a).

$$
(B \bar{C}+B D+\bar{B} C)
$$

$\overline{\mathrm{A}} \overline{\mathrm{B}}$	$\overline{\mathrm{C}}$ D	$\overline{\mathrm{C}}$ D	CD C $\overline{\mathrm{D}}$	
	0	0	1	1
$\overline{\text { A }}$ B	1	1	1	0
A B	1	X	X	X
A \bar{B}	0	0	X	X

(a)

(b)

Fig. 71.77
17. Determine the simplified Boolean expression for the Karnaugh map shown in Fig. 71.77 (b).

$$
\text { (UPSC Engg. Services 1995) }(\bar{A} \bar{C}+\bar{A} \bar{D}+A B C)
$$

OBJECTIVE TESTS - 71

1. Boolean algebra is essential based on
(a) symbols
(b) logic
(c) truth
(d) numbers
2. The first person who used Boolean algebra for the design of relay switching circuits was
(a) Aristotle
(b) Boole
(c) Shannon
(d) Ramanujam
3. Different variables used in Boolean algebra can hvae values of
(a) 0 or 1
(b) low or high
(c) true or false
(d) On or OFF.
4. According to the algebra of logic, $(A+\bar{A})$ equals
(a) A
(b) 1
(c) 0
(d) $\overline{A A}$.
5. According to the absorptive Laws of Boolean algebra, expressioin $(A+A B)$ equals
(a) A
(b) B
(c) $A B$
(d) A
6. When we demorganize $\bar{A} \bar{B}$, we get
(a) $\overline{A B}$
(b) $\bar{A}+\bar{B}$
(c) $\overline{A+B}$
(d) $\overline{A B}$.
7. The dual of the statement $(A+1)=1$ is
(a) $A \cdot 1=A$
(b) $A .0=0$
(c) $A+A=A$
(d) $A . A=1$.
8. The expression $\overline{A B C}$ can be simplified to
(a) $\bar{A} \cdot B \cdot \bar{C}$
(b) $A B+B C+C A$
(c) $A B+\bar{C}$
(d) $\bar{A}+\bar{B}+\bar{C}$.
9. While obtaining minimal sum-of-products expression,
(a) all don't cares are ignored
(b) all don't cares are treated as logic $1 s$
(c) all don't cares are treated as logic $0 s$
(d) only such don't cares that aid minimization are treated as logic $1 s$.
10. In a saturated bipolar logic circuit, transistor operate
(a) in deep cut-off
(b) over active region
(c) in saturation
(d) just short of saturation
11. Saturated logic circuits have inherently
(a) short saturation delay time
(b) low switching speed
(c) higher power dissipation
(d) lower noise immunity.
12. Noise margin is expressed in
(a) decibel
(b) watt
(c) volt
(d) phon
13. DTL family employs
(a) resistors and transistors
(b) diode and resistor
(c) diode and transistors
(d) diodes, resistors and transistors.
14. The chief advantage of Schotty TTL logic family is its least
(a) power dissipation
(b) propagation de-
lay
(c) fan-in
(d) noise immunity.
15. The main advantage claimed for $E C L$ family oflogic gates is its
(a) very large fan-in
(b) use of negative power supply voltage
(c) extremely low propagation times
(d) least power dissipation.
16. Special feature of an $I^{2} L$ logic circuit is that it (a) uses ony high-value resistors
(b) dissipates negligible power
(c) is a bipolar saturated logic
(d) is easy to fabricate
(e) uses no biasing and loading resistors.
17. A unique advantages feature of $C M O S$ logic family is its
(a) use of NMOS circuits
(b) power dissipation in nanowatt range
(c) speed
(d) dependence on frequency for power dissipation.
18. CMOS circuits are extensively used for onchip computers mainly because of their extremely
(a) low power dissipation
(b) large packing density
(c) high noise immunity
(d) low cost.
19. The main advantage of a CMOS logic family over the TTL family is its
(a) much reduced power
(b) increased speed of operation
(d) extremely low cost
(d) series base resistor
20. CMOS logic family uses only
(a) MOSFETs and resistors
(b) NMOS circuits
(c) MOSFETs (d) bipolar transistors.
21. Power is drawn by a CMOS circuit only when
(a) its output is high (b) its output is low
(c) it switches logic levels
(d) in static state.
22. The most obvious identifying feature of a $T T L$ gate is its
(a) large fan-out
(b) high power dissipation
(c) interconnected transistors
(d) multiemetter input transistor.
23. In digital circuits shottky transistors are pre-
ferred over normal transistor because of their
(a) lower propagation delay
(b) higher propagation delay
(c) lower power dissipation
(d) higher power dissipation
24. A unique operting feature of $E C L$ circuit is its
(a) very high speed
(b) high power dissipation
(c) series base resistor
(d) compatibility with other logic series.
25. The fan-in a logic gate refers to the number of
(a) input devices that can be connected
(b) input terminals
(c) output termi- nals
(d) circuits output can drive
26. Which of the following statements regarding $I C s$ is not correct,
(a) $E C L$ has the least propagation delay
(b) $T T L$ has the largest fan out
(c) CMOS has the biggest noise margin
(d) TTL has the lowest power consumption.
27. The Boolean equation for $N O R$ gate is
(a) $\overline{A B}=C$
(b) $\bar{A}+\bar{B}=C$
(c) $A+B=C$
(d) $\overline{A+B}=C$.
28. The Boolean equation for a NAND gate is
(a) $\overline{A+B}=C$
(b) $\overline{\overline{A B}}=C$
(c) $A+B=C$
(d) $\bar{A}+\bar{B}=C$
29. The logic function of an invertor is
(a) $B=A$
(b) $B=\bar{A}$
(c) $B=\overline{\bar{A}}$
(d) None of these
30. The simplified form of the Boolean expression $Y=(\bar{A} \cdot B C+D)(\bar{A} \cdot D+\bar{B} \cdot \bar{C})$ can be written as
(a) $\bar{A} \cdot D+\bar{B} \cdot \bar{C} \cdot D$
(b) $A D+B \cdot \bar{C} \cdot D$
(c) $\quad(\bar{A}+D)(\bar{B} \cdot C+\bar{D})$
(d) $A \cdot \bar{D}+B C \cdot \bar{D}$
(GATE; 2004)

ANSWERS

$\begin{array}{lrrrrrrrrrr}\text { 1. }(b) & \text { 2. }(c) & \text { 3. }(a) & \text { 4. }(b) & \text { 5. }(a) & \text { 6. }(c) & \text { 7. }(b) & \text { 8. }(d) & \text { 9. }(d) & \text { 10. }(c) & \text { 11. }(b) \\ \text { 12. }(c) \\ \text { 13. }(d) & \text { 14. }(b) & \text { 15. }(c) & \text { 16. }(e) & \text { 17. }(b) & \text { 18. }(b) & \text { 19. }(a) & \text { 20. }(c) & \text { 21. }(c) & \text { 22. }(d) & \text { 23. }(a)\end{array}$ 24. $\left.(a)\right)$

[^0]: A worker at a hydro-electric power station is carrying out routine maintenance on a highvoltage insulator made of a ceramic material.

[^1]: * According to Bohr's theory, $p_{1}=n . h / 2 \pi$.

[^2]: * A single germanium atom has 32 electrons out of which only four electrons take part in electrical properties of germanium, the remaining 28 electrons being tightly bound to the nucleus. The four electrons revolve in the outermost shell and are called valence electrons.

[^3]: * For the present discussion, Fermi level may be defined as $\overline{\text { the }} \overline{\text { energy }} \overline{\text { which }} \overline{\text { corresponds to the centre }} \overline{\text { of }}$ gravity of conduction electrons and holes weighted according to their energies.

[^4]: * Since the number of electrons as compared to the number of holes increases with temperature, the position of Fermi level also changes considereably with temperature.

[^5]: Researchers have demonstrated a new type of nanometer scale optoelectronic device that performs addition and other complex logic operations

[^6]: * Since charging time is negligibly small, the approximate discharging time represents the full time-period.
 ** given by $V_{c}=V_{i p} e^{-t} / C R_{L}$

[^7]: * In a transistor, for normal operation, collector and base have the same polarity with respect to the emitter
 (Art. 57.3)

[^8]: DC biasing is used to establish a steady level of transistor current and voltage called the dc operating point or quescent point (Q-Point)

[^9]: * It is also known as Universal Bias Stabilization Circuit.

[^10]: -

 Generalised hybrid parameter equivalent

[^11]: * This circuit is valid both for $P N P$ as well as $N P N$ transistors because difference in the direction of ac current does not matter.
 ** Also called bulk-resistance.

[^12]: * Here, $\mathrm{V}_{\text {in }}$ equals v_{s} because there is no internal resistance of the source. In case it is there, the two will not be equal (Art 59.5).

[^13]: * The negative sign is used because actual load current is opposite to that shown in figure.

[^14]: * The above result could also be obtained by applying β-rule (Art. 9..24)

[^15]: * (Emitter resistance does not come into the picture because it has been ac grounded by the capacitor.

[^16]: * It may please be noted that it is not the same as the β of a transistor (Art.57.9)

[^17]: * It has negative value for an N-channel JFET but a positive value or a P-channel JFET.

[^18]: * It is numerically equal to $V_{\text {GSoff) }}$ i.e. $V_{p}=/ V_{\text {GSC(off) }} /$

[^19]: * Because of the squared term in the equation, JFET and MOSFET are referred to as square-law devices.

[^20]: * Miller effect occurs only where output is antiphase with input as $C S$ amplifier circuit.

[^21]: * After the name of its inventor William Shockley.

[^22]: with C for Capacitor.

[^23]: * You can chose any value of C which could result in the value of R_{2} in kilohms. The reason for this is that we want the current in the circuit to be limited to few milliamperes.

[^24]: * An AM signal has only two side frequencies for each modulating frequency (Art. 16.11)

[^25]: * A detector circuit in which the rectified output is proportional to the square of the input signal voltage is called square-law or non-linear detector.

[^26]: * Sometimes, there is an $\overline{\mathrm{RF}}$ stage before it (Fig. 66.29)

[^27]: * Sometimes, transistors are used as detectors.

[^28]: * It is so because there is 0 at the interger position i.e. to the left of the decimal point.

[^29]: * In this case, $V_{A}=V_{B}=0 \mathrm{~V}$

